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Abstract

MRI is a commonly used clinical tool for diagnosing, evaluating, and monitoring neurode-
generative diseases. One of the key contrast mechanisms in MRI is diffusion-weighted
imaging (DWI), which measures the signal attenuation caused by water molecule dis-
placement within brain tissues. This technique allows for the analysis of the brain tissue
structure, specifically the white matter tracts where water diffusion aligns with the direc-
tion of the fibres. A new model called neurite orientation dispersion and density imaging
(NODDI) has been proposed for characterizing brain tissue at a microscopic level. How-
ever, there is no gold standard for validating diffusion measures due to factors such as
scanner type, scanning protocols, software methods, and observers. The aim of this work
is to evaluate the repeatability and stability of NODDI diffusion modelling using phan-
toms and in vivo acquisitions. Phantoms and healthy volunteers are scanned multiple
times on different days, and the acquired data is fitted to the NODDI model. The co-
efficient of variation is computed for phantoms to assess the consistency of the model
over time, and the p-value of the paired t-test is calculated. The Bland-Altman analysis
is performed for in vivo acquisitions to assess the stability and repeatability of NODDI
over time. Results showed a great consistency of the NODDI metrics over time for both
phantoms and in vivo acquisitions. The results also indicated stability even with mag-
netic field gradient coil heating, which can affect the acquired images and cause the model
to not fit well. Additionally, the analysis showed that the hydration state of a healthy
participant does not influence the outcome of the analysis. In conclusion, the proven
stability of the NODDI model over time and under different acquisition conditions opens
the way to several applications for clinical patients to study the effect and the progression
of neurodegenerative diseases at a microscopic level.
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INTRODUCTION

The technique of nuclear magnetic resonance (NMR) and especially its extension toward
imaging, denoted as magnetic resonance imaging (MRI), is the most used clinical tool for
non-invasive diagnosis, evaluation, and monitoring of neurodegenerative diseases. This
advanced imaging technique relies on the use of strong magnetic fields, magnetic field
gradients, and radio waves to generate detailed images of organs without the use of ion-
ising radiation, setting it apart from CT and PET scans [1, 2]. Furthermore, it is more
advantageous than traditional radiography and computed tomography (CT) due to its
exceptional soft-tissue contrast and multi-planar capability. Magnetic resonance imaging
has a wide range of contrast mechanisms that make it an extraordinary tool for diagnostic
and research imaging. One of the key contrast mechanisms in MRI is the measurement
of signal attenuation caused by water diffusion within brain tissues and structures.

Diffusion-weighted imaging (DWI) is an MRI technique that has become more commonly
used as both a scientific and clinical tool over the past years. DWI relies on the diffusion
properties of water molecules and allows for the exploration of the structure of the bio-
logical environment that is not visible through traditional MRI methods. In particular,
DWI is used to visualise and analyse white matter tracts in which water diffusion aligns
with the direction of fibres [3].

Currently, the gold standard metrics in diffusion analysis are fractional anisotropy (FA)
and mean diffusivity (MD), also known as apparent diffusion coefficient (ADC). These
metrics are obtained from the diffusion tensor model, a formalism introduced by Basser et
al. [4, 5] to characterise diffusion anisotropy in the brain. FA is a measure of the degree of
diffusion anisotropy, and MD describes the average diffusion [3]. Diffusion tensor imaging
(DTI) measures water diffusion along different directions within tissues, particularly in
the brain. It characterises the diffusion behaviour by fitting the diffusion tensor, a sym-
metric positive-defined 3× 3 matrix, to the acquired data at each voxel in the MR image.
To characterise water molecule diffusion within the brain tissues, fractional anisotropy
and mean diffusivity can be obtained starting from the diffusion tensor.

The metrics of diffusion can be used for examining the condition of tissues at a microscopic
level, specifically the white matter tracts in healthy brains and pathological conditions [4,
5]. Changes in FA and MD have been observed in various white matter diseases. For in-
stance, a decrease in FA values and an increase in MD values can indicate a breakdown of
tissue microstructure in white matter tracts [6]. Although these markers are characterised
by great sensitivity, they are inherently non-specific [7]. For example, a decrease in FA
could be caused by a decrease in neurite density, an increase in the dispersion of neurite
orientation distribution, or other changes in tissue microstructure [8]. Therefore, changes
in these statistics cannot be attributed to a specific change in the tissue microstructure.

Zhang et al. [8] proposed a new model to address the limitations of the tensor model and
developed a clinically feasible technique for in vivo neurite orientation dispersion and den-
sity imaging (NODDI). This technique combines a three-compartment tissue model with a
two-shell high-angular-resolution diffusion imaging (HARDI) protocol, which is optimised
for clinical feasibility, to map neurite orientation dispersion and density in vivo [8]. In
particular, the first implementation of the NODDI model uses the Watson distribution
as the orientation distribution function, to characterise the neurite dispersion. NODDI
imaging has been quickly adopted in the field of neuroimaging because it can measure
changes in microstructures in both grey matter (GM) and white matter (WM) with an
efficient imaging processing technique. However, one limitation of Watson-NODDI is that
it cannot accurately model intricate neurite configurations that result from the fanning
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and bending of axons. In these fibre configurations, the dispersion around the dominant
orientation is highest in the plane of fanning and bending, but lowest in the plane per-
pendicular to it, causing anisotropic fibre dispersion [9].

Tariq et al. [9] introduced an extension to the NODDI formalism, using the Bingham dis-
tribution to characterise the neurite dispersion. The new model, the Bingham-NODDI, es-
timates the extent of dispersion about the dominant orientation, separately along the pri-
mary and secondary dispersion orientations, enabling the characterisation of anisotropic
orientation dispersion [9].

Although quantitative DTI is a powerful tool for characterising brain tissue at a mi-
croscopic level, it is a relatively new method and has certain variables and limitations
that need to be considered. There is limited understanding of the various factors that
may influence the results of brain structure measurements, including hydration and blood
pressure. Additionally, physiological changes can potentially interfere with the analysis
results. For instance, age can impact both FA and MD values, and there may be slight
variations throughout one’s life, which may differ between genders [10]. Furthermore,
there is a possibility that small changes in brain volume estimates caused by physiological
factors such as dehydration, blood pressure, caffeine levels, and circadian rhythm could
confound FA and MD values [11]. Accounting for physiological changes could significantly
increase the sensitivity of future diffusion MRI studies and increase the reliability of serial
measures using diffusion MRI.

In addition to that, there is yet no gold standard for validating diffusion measures, as
they may vary depending on factors such as the type of scanner, scanning protocols,
methods of the software and observers. Currently, only a limited number of studies have
evaluated the reliability of DTI metrics using HARDI [12, 13]. Additionally, according
to the literature, there is a lack of research examining the consistency and repeatability
over time of NODDI fit results. As a result, it is crucial to thoroughly evaluate the typi-
cal fluctuations and consistency of the most used diffusion magnetic resonance measures
[14]. Furthermore, there is currently no established protocol for preparing patients before
undergoing a DTI brain scan. Specifically, further investigation is needed to clarify the
impact of hydration on clinical study results, as it may affect the accuracy of findings,
thereby reducing statistical power and increasing the need for many more patients to be
scanned to detect a given effect size. This, in turn, increases the cost and time required
to complete neuroimaging studies (such as to assess whether a new treatment is working)
and so slows patient benefit from new therapies.

The purpose of this work is to evaluate the consistency and stability of DTI fit results over
time, particularly in relation to FA and MD. In addition to FA and MD, the study also
examines the NODDI (neurite orientation dispersion and density imaging) fit parameters,
such as Orientation Dispersion Index (ODI), tissue volume fraction and intra-neurite vol-
ume fraction. These parameters are relevant indicators of the underlying microstructural
features of brain tissue, and they can provide valuable insights into the pathophysiology
of various neurological disorders.

To assess the repeatability of the results, the study employs two DTI phantoms that mimic
restricted anisotropic diffusion in the brain, in particular in white matter. Each phantom
is scanned four times on different days, and multiple times during the same day using
the same scanner and the same acquisition protocol. After evaluating the repeatability
of DTI fit results on the phantoms, a group of four healthy volunteers is scanned twice
to verify the consistency over time of the results in vivo. The volunteers are scanned
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using the same scanner and acquisition protocol as the phantoms. Lastly, a final analysis
is conducted on a single healthy volunteer to determine whether their hydration level
could impact the outcome. The volunteer undergoes two scans, one in a dehydrated state
after abstaining from water overnight, and another after consuming water and waiting 10
minutes before rescan. By a final comparison of the results obtained in the two scans, it is
possible to determine if the hydration level of the participant may influence the outcome
of the study.

The thesis is structured as follows:

• Chapter 1 covers the basis and the principles of nuclear magnetic resonance and
magnetic resonance imaging, together with an explanation of how the image is
obtained and a brief overview of a clinical magnetic resonance imaging scanner.

• Chapter 2 provides a comprehensive overview of diffusion-weighted imaging, includ-
ing an in-depth explanation of the tensor model, the process of acquiring diffusion-
weighted images, and the correction of distortions. The chapter concludes by
discussing the Bingham-NODDI model and its linear implementation, AMICO-
NODDI.

• Chapter 3 contains a detailed description of the two phantoms used in the analysis.
The chapter also provides a few details about the healthy volunteers. The second
part of the chapter covers the explanation of the sequence acquisition used to acquire
the diffusion-weighted images for both the phantoms and the healthy volunteers.

• Chapter 4 provides an explanation of the implementation of the software developed
to analyse the acquired diffusion data. In particular, the chapter describes the
implementation of the Bingham-NODDI and AMICO-NODDI models.

• Chapter 5 describes how the acquired data is processed and the metrics of interest
are obtained. In particular, the last part of the chapter describes how the ROIs,
from which the metrics are extracted, are created.

• Finally, Chapter 6 and 7 present the obtained results both in the case of the phantom
study and in the in vivo study, and the influence that these results might have on
future studies. Moreover, the last chapter also presents the hydration level study
performed on a single healthy volunteer.
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Chapter 1

Magnetic Resonance Imaging

MRI is a medical imaging technique that produces detailed 3D images of the human
body without using ionising radiation. It is non-invasive and commonly used to detect
illnesses, diagnose diseases, and monitor treatments. This advanced imaging method relies
on the use of strong magnetic fields, magnetic field gradients, and radio waves to generate
detailed images of organs without the need for X-rays or ionising radiation, setting it apart
from CT and PET scans. MRI is based on the concept of nuclear magnetic resonance
(NMR), that is a physical phenomenon in which nuclei in a strong, constant magnetic
field are perturbed by a weak, oscillating magnetic field and respond by producing an
electromagnetic signal with a frequency characteristic of the magnetic field of the nucleus.

In this chapter, the basic principles of MRI are treated. Detailed and advanced concepts
can be found in Foltz et al. [2] and in Haacke et al. [1].

1.1 Physics of magnetic resonance imaging

MRI technology exploits the principle of nuclear magnetic resonance (NMR). This prin-
ciple refers to a physical phenomenon in which nuclei within a strong, steady magnetic
field B0 are affected by a weaker, oscillating magnetic field B1, that is perpendicular to
the former.

For a nucleus to interact with the uniform magnetic field B0, it needs to have an intrinsic
nuclear magnetic moment and angular momentum, referred to as spin I⃗. This happens
when an isotope contains an odd number of protons or neutrons. Hydrogen nuclei 1H,
made of one proton only, are largely used in clinical and research MRI as they generate
a detectable radio-frequency signal and are naturally abundant in people and other bio-
logical organisms, especially in water and fat. Therefore, MRI scans primarily map the
location of water and fat in the body.

A non-zero spin I⃗ is associated with a non-zero magnetic dipole moment µ⃗ through the
following relation (1.1), where γ is the gyromagnetic ratio, a constant characteristic of
the given nucleus.

µ⃗ = γI⃗ (1.1)

The nuclear spin is a type of angular momentum that is quantized. This means that the
magnitude and components of this momentum can only take on certain values, which are
restricted to integer or half-integer multiples of ℏ. The magnetic quantum number m is
associated with the spin component along the z-axis of the applied magnetic field, and it
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CHAPTER 1. MAGNETIC RESONANCE IMAGING

ranges in value from +I to −I, in integer steps. For this reason, the z-component of the
magnetic moment is simply:

µz = γmℏ (1.2)

The spin of a hydrogen nucleus is one-half, and it has two distinct spin states which
are linearly independent. These states are commonly known as the spin-up state with
m = 1/2 and the spin-down state with m = −1/2.

In the absence of a magnetic field, the two energy states are degenerate, meaning that they
have the same energy. This leads to an almost equal number of nuclei existing in both
states at thermal equilibrium. In other words, the magnetic moments of the hydrogen
nuclei are distributed randomly and independently.
When a nucleus is exposed to an external magnetic field B0, the two states no longer have
the same energy due to the interaction between the nuclear magnetic dipole moment with
the magnetic field. As explained in [2], the interaction energy of the nucleus is described
by the Zeeman Hamiltonian, defined in Equation (1.3).

HZ = −γB0hIz
2π

(1.3)

The eigenvalues of the Zeeman Hamiltonian are shown in Equation (1.4), and they rep-
resent the allowed values of energy for a free nucleus with spin quantum number I and
gyromagnetic ratio γ, in the magnetic field B0.

Em = −γB0hm

2π
= −γB0ℏm (1.4)

If a nucleus with spin 1/2 is found within a magnetic field B0 along the z axis, the Zeeman
interaction causes the nucleus’s energy level to split into two new energy levels, as shown
in Figure 1.1, with energy given by Equation (1.4). The Zeeman energy is also called the
energy of spin interaction with the magnetic field. The energy levels are equally spaced
because the consecutive values of m differ by 1 [2]. As a result, the different nuclear
spin states have different energies in a non-zero magnetic field. In other words, the two
spin states of a spin 1/2 can be seen as being aligned either with or against the external
magnetic field. If γ is positive, then m = 1/2 is the lower energy state.

Figure 1.1: Zeeman levels of a nucleus with spin 1/2 caused by the interaction of the
nuclear magnetic moment and the external magnetic field B0.
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From Equation (1.4), it can be easily calculated that the energy difference between neigh-
bouring levels is given by:

∆E =
γB0h

2π
= γℏB0 (1.5)

As a general rule, the nuclei are distributed among energy levels based on the Boltzmann
distribution, with the most populated levels being those with the lowest energy. This
indicates that a larger number of spins will be found in the energy level of m = 1/2.
Although it is quite small at room temperature, the difference in population between the
two energy levels gives rise to a macroscopic quantity known as bulk magnetisation M⃗ ,
which is the observable of the nuclear magnetic resonance phenomenon [15].

M0 ∝
γ2B0

KBT
(1.6)

As Equation (1.6) shows, the bulk magnetization M⃗ , defined as the volume density of the
spin magnetic moments, is aligned and proportional to the magnetic field and its intensity
characterises the imbalance between the two spin populations.

A central concept in NMR is the precession of the spin magnetisation around the magnetic
field at the nucleus, with the angular frequency given by the Larmour frequency:

ωL = γB0 (1.7)

This indicates that every spin rotates in a cone around the direction set by the B0 field
with a frequency given by Equation (1.7), similar to how a tilted spinning top’s axis
precesses around the gravitational field, as shown in Figure 1.2.

Figure 1.2: Precession of a 1H nucleus about the applied magnetic field B0.

Considering the macroscopic bulk magnetisation, the Bloch equation (1.8) expresses how

M⃗ evolves in time.

dM⃗

dt
= γM⃗ ×B0ẑ (1.8)

In particular, Equation (1.8) describes how the macroscopic magnetisation interacts with
the static magnetic field B0. When the magnetisation is completely aligned with the di-
rection of the magnetic field, there will be no effect due to the vector product. However,
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CHAPTER 1. MAGNETIC RESONANCE IMAGING

if the magnetisation is tilted with respect to the direction of the B0 field, it will begin to
precess around the static magnetic field and the frequency of this precession will be given
by the Larmor frequency from Equation (1.7).

When referring to the static magnetic field, its direction is known as the longitudinal axis,
while the perpendicular plane is called the transverse plane. During thermal equilibrium,
the magnetisation is aligned with the static magnetic field along the longitudinal axis
due to the uncorrelated phases of the spin magnetic moments. However, detecting the
magnetisation is challenging in this circumstance. The phenomenon of nuclear magnetic
resonance can be used to measure the magnetisation. This was first observed by Rabi [16]
and later characterised by Purcell and Bloch [15, 17] a few years later.

An oscillating magnetic field in the transverse plane, also known as the B1 field or RF
pulse, can disrupt the spin system. The B1 field has a frequency within the radio fre-
quency range and lasts for a specific period. If the B1 field frequency matches the Larmor
frequency of the spin system, it induces transitions between the Zeeman levels, perturb-
ing the magnetisation M⃗ and tilting it away from its equilibrium towards the transverse
plane.

Figure 1.3: In (a), the net magnetization vector (Mxy) is shown precessing around the
magnetic field after being tilted into the transverse plane. In (b), the same scenario is
viewed from a rotating frame of reference.

Considering also the presence of the oscillating field B1, Equation (1.8) becomes:

dM⃗

dt
= γM⃗ × (B1x(t)x̂+B1y(t)ŷ +B0ẑ) (1.9)

Figure 1.3a, represents the result of the interaction between the magnetisation and the
RF pulse in the transverse plane.

The same interaction can be described in the so-called rotating reference frame, which
rotates in the transverse plane together with the B1 field. In this case, B1 will appear
stationary and the effective longitudinal magnetic field will be zero. As a consequence,
Equation (1.9) can be rewritten as:

dM⃗

dt
= γM⃗ ×B1y(t)ŷ (1.10)

In Figure 1.3b, it can be seen that instead of precessing around ẑ, the magnetisation
processes around ŷ, which is the direction of the RF wave in the rotating frame. By
adjusting the magnitude and/or the duration of the RF, the flip angle α can be changed,
which corresponds to the angle of the magnetisation tilt:

10



1.1. PHYSICS OF MAGNETIC RESONANCE IMAGING

α = γB1t (1.11)

Typical values for α are 90◦ and 180◦.

After being excited, meaning tilted in the transverse plane, the magnetisation begins
to return to its original state. This is known as relaxation and it restores the thermal
equilibrium distribution of spins while building up the equilibrium magnetisation. The
evolution in time of M⃗ can be described by the Bloch equation:

dM⃗

dt
= γ

(
M⃗ ×B0ẑ

)
− Mxî+My ĵ

T2

− Mz −M0

T1

k̂ (1.12)

Equation (1.12) illustrates how the bulk magnetisation evolves over time. This evolution
is influenced not just by precession around the B0 field, but also by the magnetisation’s re-
laxation processes as it returns to its equilibrium state. There are two types of relaxation:
longitudinal and transverse.

Figure 1.4: Diagram of the longitudinal (a) and transverse (b) relaxation. Image credit
to ”Application of nuclear magnetic resonance technology in geologic carbon dioxide uti-
lization and storage: A review” [18].

Longitudinal relaxation, which is governed by the T1 time constant, affects the longitudinal
component of the magnetisation Mz. It is an energetic process that involves an exchange
of energy between the spin system and the bulk. For this reason, it is also called spin-
lattice relaxation. In particular, this process regulates the restoration of a group of nuclear
spins to their original state of equilibrium in the direction of the external magnetic field.
In contrast, transverse relaxation is controlled by the T2 time constant and affects the
transverse component of the magnetisation Mxy. It is an entropic process that arises
from the loss of coherence of the spins in the transverse plane, caused by the interaction
between adjacent spins. Therefore, transverse relaxation is the process by which nuclear
spins reach thermal equilibrium among themselves.

With the Bloch equation (1.12), it is possible to compute both the longitudinal Mz(t) and
transverse Mxy(t) magnetisation components in the rotating reference frame as a function
of time. The components of the magnetisation over time are also shown in Figure 1.4.Mz(t) = Mz(0)e

− t
T1 +M0

(
1− e

− t
T1

)
Mxy(t) = M0e

− t
T2

(1.13)
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CHAPTER 1. MAGNETIC RESONANCE IMAGING

When the nuclear spins realign to the B0 field, during their precession motion, they
induce an electric signal that can be detected by a coil surrounding the sample. This
signal is known as the Free Induction Decay (FID), and it is commonly observed in MRI
experiments. The FID, shown in Figure 1.5, is a complex time-domain signal that contains
information about the sample’s nuclear properties and local environment. In MRI, the
FID is used to create images by spatially encoding the signal and employing various
reconstruction algorithms.

Figure 1.5: Example of the Free Induction Decay (FID). The signal is produced when the
transverse magnetization returns to its original equilibrium state after a radio frequency
pulse. This signal is used to gather important information in NMR and MRI experiments.

The relaxation times T1 and T2 are unique to each type of tissue, meaning that different
tissues are characterised by different relaxation times. For example, the more complex
and intricate the tissue, the quicker the longitudinal relaxation occurs. Figure 1.6 shows
how white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) have different
relaxation times. The image in Figure 1.6 a clearly shows that white matter and grey
matter have a faster longitudinal relaxation than CSF. This difference in relaxation time
can be used to create contrast in the final image, as faster relaxation means a higher signal
is detected. As a result, in T1-weighted images (images where the contrast is based on
the difference in T1 relaxation time), white matter will appear brighter than grey matter,
which will appear brighter than CSF. T1-weighted images provide good anatomical detail
and are commonly used to visualize normal anatomy. An example of a T1-weighted image
is shown in Figure 1.7.

In the final image, the difference in the transverse relaxation time, denoted as T2, can
also determine the contrast between various tissues. Figure 1.6b shows that cerebrospinal
fluid (CSF) has the longest T2, making it appear very bright in a T2-weighted image.
In contrast, white matter will appear the darkest as it has a relatively fast spin-spin
relaxation. An example of a T2-weighted image is shown in Figure 1.7.
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1.2. SPATIAL ENCODING

Figure 1.6: MRI uses different time constants (T1 and T2) to create relaxation curves for
different tissues. This produces contrast between tissues, leading to clear images. The
magnetisation represents the signal emitted from the tissues, and the red line shows the
time point to receive the MRI signal. T1 images show tissue-specific net magnetization in
the z-direction, while T2 images show net magnetisation rotating in the transversal (xy)
plane. M0 is the net magnetisation after the slice excitation. Image credit to [19].

Figure 1.7: Example of T1 (left) and T2 (right) weighted images. Image taken from ”MRI
Basics” [20].

1.2 Spatial encoding

Spatial encoding in MRI is a fundamental principle that allows the reconstruction of
images based on the spatial distribution of hydrogen spins within the body. This is
achieved through the use of magnetic field gradients, in addition to the static magnetic
field B0 and the RF pulse B1.

The magnetic field gradients cause the static magnetic field to change linearly in space,
which affects the frequency with which the single spin precesses. From Equation (1.7) it
is clear that the precession frequency of the single spin is proportional to the strength of
the magnetic field B0. If the B0 field changes linearly within space, then the spins will

13



CHAPTER 1. MAGNETIC RESONANCE IMAGING

precess with different frequencies, depending on their position.

Considering a B0 field and a magnetic field gradient applied along the ẑ direction,

Gz =
∆B0

∆z
(1.14)

then, the magnetic field along ẑ will be given by:

B0(z) = B0(0) +Gz · z (1.15)

Using Equation (1.15) to express the Larmor frequency in Equation (1.7), it becomes
clear how the precession frequency changes linearly in space:

ω(z) = γ (B0(0) +Gz · z) (1.16)

Figure 1.8: The slice selection technique: on the left, a rectangular frequency pulse is
generated by a sinc(t) time modulated pulse; on the right it is shown that the frequency
pulse excites a slice of finite thickness in the patient’s body. Image credit to [21].

The imaging technique known as Zeugmatography was first described by Lauterbur [22].
The term derives from Greek roots indicating the magnetic field gradient’s role in con-
necting the RF magnetic field to a specific local spatial region via magnetic resonance.
This relationship between the Larmor frequency and the position of the spins in space
can be exploited to stimulate a thin plane along the ẑ axis, rather than the entire brain
volume. This specific plane of stimulation is commonly referred to as a ”slice”.

In general, the RF pulse is a magnetic field that oscillates over time. By using the Fourier
transform (1.17), it becomes possible to acquire the frequency elements of the excitation
pulse.

F (ω) =

∫ +∞

−∞
f(t)e−2πiωtdt (1.17)

In particular, when considering a B1 field with the shape of a sinc function, its Fourier
transform will correspond to a boxcar function in the frequency domain, centred around

ω(z∗) ± ∆ω(z∗)

2
. This means that only spins with a Larmor frequency within the RF

pulse’s frequency range will be excited. Figure 1.8 shows that the RF pulse excites a slice
with a finite thickness in the patient’s body, and this thickness is related to the strength
of the magnetic field gradient, also known as the slice selection gradient.

After selecting the slice, it is essential to encode the signal within it to obtain the brain’s
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volume image. This is accomplished using two gradients: the frequency and phase-
encoding gradients.

Figure 1.9: Space encoding procedure. First, the slice is selected by applying the slice
selection gradient, typically along the ẑ direction. Then, the signal within the slice is
encoded by using the phase and frequency encoding gradients.

The frequency encoding gradient is applied along the direction of x̂, causing the Larmor
frequency to increase linearly in the same direction. As a result, an x-dependent Larmor
frequency ω(x) is produced.
Similarly, the phase encoding gradient is applied along the ŷ direction for a specific du-
ration in time. Due to the varying magnetic field at different positions, the spins will
exhibit different frequencies at different y locations. After the application of the pulse,
the result is a y-dependent phase of the spins. In this way, each hydrogen nucleus can
be distinguished from the others, allowing for the reconstruction of a map of the spins in
space, resulting in the final image.

The Fourier transform (1.17) is used to encode the signal in space, meaning that the

MR signal is acquired in the frequency domain. The vector k⃗ in Equation (1.18) relates
reciprocal space and real space, with dimensions that are the inverse of a length.

k⃗ =
γG⃗

2π
t (1.18)

Using the k⃗ formalism, each signal acquisition in time is represented by a point in k⃗-space.
By applying magnetic field gradients, it’s possible to move along the k̂x, k̂y, and k̂z axes,
ultimately sampling the entire reciprocal space. Finally, the reconstructed image of the
scanned sample is obtained through an inverse Fourier transform, as illustrated in Figure
1.10.

1.3 Hardware of a clinical MRI scanner

A clinical MRI scanner is made up of several crucial components that allow for the ac-
quisition of highly detailed images of the inner workings of the human body. Figure 1.11
shows a cutaway view of a standard clinical MRI scanner.

To make a clinical MRI scanner, the first essential component is the magnet. Its func-
tion is to create a static and uniform magnetic field called B0. For medical purposes,
the common B0 values are 1.5T or 3T , but they can be as high as 7T . Higher field

15



CHAPTER 1. MAGNETIC RESONANCE IMAGING

Figure 1.10: Example of signal acquired in the k⃗-space. The final image is reconstructed
by the application of the Fourier transform to the acquired signal.

strengths provide better image quality and enable advanced imaging techniques. There-
fore, a permanent magnet alone cannot serve the purpose. Generally, a superconducting
electromagnet made of Niobium-titanium (Nb-Ti) is used to generate static magnetic
fields with an intensity greater than 0.5T .

Figure 1.11: Schematic illustration of the MRI system that outlines the primary compo-
nents.

Superconductors are materials that lose all electrical resistance when cooled below a crit-
ical temperature. This unique characteristic allows superconducting magnets to generate
strong, uniform magnetic fields while operating with minimal energy loss. Additionally,
they can sustain a steady magnetic field for extended periods of time.

The superconductive electromagnet in a clinical scanner is kept at a temperature of around
4K by being immersed in liquid helium. The scanner is designed with multiple layers
to provide thermal insulation for the magnet. A layer of liquid helium surrounds the
superconductive electromagnet, followed by a vacuum layer, and then another layer of
liquid nitrogen to further enhance thermal shielding.

To create the necessary gradients of the B0 field for spatial encoding of the signal within
the envelope, multiple magnetic field gradient coils are utilized. These coils, as depicted
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in Figure 1.12, are responsible for inducing changes in the static magnetic field along the
primary spatial axes. By allowing the flow of high currents, the coils produce variations
in the B0 field, which change rapidly over time.

Figure 1.12: Schematic representation of the magnetic field gradient coils inside a clinical
MRI scanner. Image credit to [23].

Due to the rapid change in the current flux, the magnetic field gradient coils in magnetic
resonance imaging create noise. The intense current changes generate the Lorentz force,
which causes the coils to move and produce noise. As the noise can be very loud, patients
are usually provided with earplugs before the scan.

When a sample or patient is placed inside the scanner, it can cause variations in the B0

field, which may lead to distorted images. To solve this issue, shim coils are placed within
the scanner. These coils produce static magnetic fields to correct the local B0 field and
improve image quality.

Figure 1.13: RF coil used to scan the brain in a 3T scanner.

The final components of a clinical scanner are the RF coils. These coils play a crucial
role in producing the excitation pulse to stimulate the magnetisation of the sample. They
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also function as an antenna to detect and receive the MR signal emitted by the sample.
Different RF coils are available for scanning different parts of the body, such as the head
coil shown in Figure 1.13. To increase the detected signal intensity and improve the SNR,
the coils must be placed as close as possible to the surface of the body, as the signal is
acquired against thermal noise.
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Chapter 2

Diffusion Weighted Imaging

Magnetic Resonance Imaging (MRI) has a wide range of contrast mechanisms that make
it an exceptional tool for diagnostic and research imaging. One of the key contrast mech-
anisms in Magnetic Resonance Imaging is the measurement of signal attenuation caused
by water diffusion within brain tissues and structures. Specifically, diffusion-weighted
imaging (DWI) can be used to map and characterise the three-dimensional diffusion of
water according to its spatial location [4].

Diffusion is a stochastic process that characterises the movement of particles or molecules,
specifically water molecules, from one position to another over a given period. Wa-
ter molecule diffusion is primarily caused by random thermal fluctuations. In three-
dimensional space, the unrestricted isotropic diffusion, schematised in Figure 2.1, can be
described by the Einstein diffusion equation:

D =
⟨∆r2⟩
2n∆t

(2.1)

In Equation (2.1), the diffusion coefficient D, typically expressed in units of square mil-
limetres per second (mm2/s), relates the average displacement of a molecule over an area
to the observation time, with higher values of this constant indicating more mobile water
molecules [24]. Equation (2.1) elucidates the direct proportionality between the diffusion
coefficient D and the mean square displacement ⟨∆r2⟩, divided by the product of the
number of dimensions n and the diffusion time ∆t. This proportionality establishes a
quantitative connection between the rate of diffusion and the extent of particle displace-
ment over a given time period.

In the absence of boundaries, the molecular displacement of water is described by a Gaus-
sian probability density function, as in Equation (2.2) [25].

P (∆r,∆t) =
1√

(2πD∆t)3
exp

(−∆r2

4D∆t

)
(2.2)

Water diffusion occurs within, outside, around, and through cellular structures in biolog-
ical tissues. As a result, the movement of water molecules is additionally influenced by
interactions with cellular membranes and organelles. Specifically, cellular membranes im-
pede the diffusion of molecules, leading to water following more intricate routes, thereby
decreasing the average squared displacement. Furthermore, water within cells tends to
encounter greater constraints imposed by cellular membranes, resulting in reduced dif-
fusivity [25]. In general, the existence of membranes and organelles alters the observed
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Figure 2.1: Left : Illustration of the diffusion random walk for a single water molecule
from the green location to the red location. The displacement is indicated by the yellow
arrow. Right : Diffusion describes the probability of displacement with time τ for a group
or ensemble of water molecules. For short diffusion times, the predicted spread is compact
but increases with longer diffusion times. Image credit to ”Diffusion Tensor Imaging of
the Brain” [25].

diffusion, referred to as the apparent diffusion coefficient (ADC).

Within the brain, neurons are organised primarily into two main tissue types: grey matter
and white matter, each made of distinct components of the cell. Grey matter predom-
inantly consists of neuronal cell bodies [26], indicating that diffusion in this tissue type
is constrained by cell membranes but remains isotropic. White matter primarily consists
of axons that extend from neuronal cell bodies, establishing connections with neurons in
other regions of the brain. These axons are enveloped by a protective layer of glial cells
[26], leading to a constrained diffusion of water molecules. Specifically, water diffusion is
highly restricted and hindered in directions perpendicular to the fibres, but it is relatively
unimpeded in the direction parallel to the fibre orientation [25]. Consequently, as shown
in Figure 2.2, the diffusion of water molecules in white matter exhibits anisotropy, with
a clear preference for diffusion aligned along the fibre orientation. This characteristic of
anisotropy can be exploited to accurately map the spatial orientation of white matter
pathways in the brain, assuming that the direction of the fastest diffusion reflects the
overall alignment of the fibre tracts [27].

Figure 2.2: Illustration of anisotropic diffusion, in the ideal case of a coherently oriented
tissue. This example compares the diffusion measured parallel and perpendicular to the
axons in a white matter fibre tract. Image credit to ”An introduction to diffusion tensor
image analysis” [28].
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2.1 Diffusion Tensor model

To characterise diffusion anisotropy in the brain, Basser et al. introduced the diffusion
tensor formalism [4, 5]. With diffusion tensor imaging (DTI), diffusion anisotropy effects
in diffusion MRI data could be fully extracted and characterised, providing new insights
into tissue microstructure [29]. In the diffusion tensor model, diffusion is described by a
multivariate normal distribution, shown in Equation (2.3).

P (∆r⃗,∆t) =
1√

(4π∆t)3 |D|
exp

(−∆r⃗ TD−1∆r⃗

4∆t

)
(2.3)

In this equation, D represents the diffusion tensor, a 3× 3 covariance matrix, defined in
Equation (2.4), which describes molecular mobility along each direction and the correla-
tion between molecular diffusion along these directions [29].

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.4)

The diagonal elements (Dii > 0) are the diffusion variances along the axes x, y and z,
while the off-diagonal terms are the covariances and are symmetric about the diagonal
(Dij = Dji) [25]. In other words, each element of the diffusion tensor represents a diffusion
coefficient along a particular axis: the diagonal terms of the diffusion tensor D represent
the diffusion coefficients along the principal axes of diffusion, specifically along x, y and
z; the off-diagonal terms of the diffusion tensor describe the cross-diffusion effects, or
diffusion anisotropy, and provide additional information about the relationships between
different diffusion directions.

The diffusion tensor can be diagonalised to establish a reference frame with axes that
align with the principal directions of diffusion. As shown in Equation (2.5), diagonalis-
ing the diffusion tensor, the eigenvalues (λ1, λ2, λ3) and their corresponding eigenvectors

(V⃗1, V⃗2, V⃗3) are obtained, which depict the apparent diffusion coefficient along the principal
diffusion axes and their directions.

D =

V1x V1y V1z

V2x V2y V2z

V3x V3y V3z

 ·

λ1 0 0
0 λ2 0
0 0 λ3

 ·

V1x V2x V3x

V1y V2y V3y

V1z V2z V3z

 (2.5)

Once diagonalised, the diffusion tensor can be represented as an ellipsoid [5]: the three
perpendicular axes of the ellipsoid are aligned with the directions given by the eigenvec-
tors, and their length is determined by the corresponding eigenvalues. An example of the
diffusion ellipsoid is shown in Figure 2.3.

Diffusion is considered isotropic when all eigenvalues are nearly equal, that is, λ1 ≈
λ2 ≈ λ3. On the contrary, the diffusion tensor is anisotropic when the eigenvalues are
significantly different in magnitude, that is, λ1 > λ2 > λ3.

In the central nervous system, water diffusion tends to exhibit greater anisotropy in white
matter regions, while being more isotropic in both grey matter and cerebrospinal fluid
(CSF). In regions of homogeneous white matter, the primary diffusion eigenvector V⃗1,
representing the direction of the most significant diffusion, is assumed to align parallel to
the tract orientation, as shown in Figure 2.2.
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Figure 2.3: Graphical representation of the diffusion ellipsoid. On the left, the ellipsoid
represents isotropic diffusion with λ1 ≈ λ2 ≈ λ3. On the right, the diffusion tensor
represents anisotropic diffusion with λ1 > λ2 ≈ λ3.

Numerous scalar indices have been proposed to quantify diffusion anisotropy and extract
inherent structural information. Invariant indices are derived from combinations of the
eigenvalues (λ1, λ2, and λ3) of the diagonalised diffusion tensor [29].

The first scalar index that can be introduced is the mean diffusivity (MD) - also referred
to as the apparent diffusion coefficient (ADC). It is calculated as the trace of the diffusion
tensor divided by 3, which is equivalent to the average of the eigenvalues, as shown in
Equation (2.6).

MD =
Tr(D)

3
=

λ1 + λ2 + λ3

3
(2.6)

The mean diffusivity (MD) is a measure of the overall diffusion magnitude within a voxel.
It quantifies the average molecular motion of water in all directions and provides informa-
tion about the overall diffusion characteristics, such as the extent of diffusion restriction
or hindrance. On the other hand, MD does not provide any information about anisotropy
or the directionality of diffusion.

Currently, the fractional anisotropy (FA) stands as the most extensively employed invari-
ant measure of anisotropy. It was initially introduced by Basser and Pierpaoli [30] and
has gained wide recognition in diffusion imaging studies.

FA =

√
3
∑3

i=1 (λi − ⟨λ⟩)2
2 (λ2

1 + λ2
2 + λ32)

(2.7)

FA, defined in Equation (2.7), is a measure of the directionality or anisotropy of water
diffusion within a voxel. It provides information about the coherence and organization
of tissue microstructure. FA values range from 0 to 1, where 0 indicates isotropic diffu-
sion, equal diffusion in all directions, and 1 indicates fully anisotropic diffusion, diffusion
restricted to a specific direction [7]. Overall, MD and FA provide complementary infor-
mation on tissue microstructure and can be used to characterise different types of tissues
or pathological conditions in diffusion imaging studies. It is important to note that, while
FA provides valuable insights into diffusion anisotropy, it does not fully describe the com-
plete tensor shape or distribution. This is because various combinations of eigenvalues
can produce identical FA values [31].
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(a) Structural T1 image (b) MD map (c) FA map

Figure 2.4: Example of quantitative maps from a diffusion tensor imaging (DTI) experi-
ment.

Figure 2.4 presents an example that includes maps of mean diffusivity (MD) and frac-
tional anisotropy (FA), along with a structural T1-weighted image to be used as a refer-
ence. The mean diffusivity map, illustrated in Figure 2.4b, is displayed as a grey-scale
image, where the intensity of each voxel reflects its corresponding mean diffusivity value
in mm2/s. In the MD map, cerebrospinal fluid (CSF) appears bright, indicating high
diffusion due to its unrestricted movement. On the other hand, white matter appears
dark, reflecting restricted diffusion caused by the presence of densely packed axonal fibres
and myelin sheaths. It’s worth noting that the MD map provides valuable insights into
the microstructural properties of tissues. The bright appearance of CSF highlights its
fluid nature and free diffusion, while the dark appearance of white matter indicates its
organised structure with limited water diffusion.

Figure 2.4 also includes a map of fractional anisotropy (FA) as part of the example.
The fractional anisotropy map, shown in Figure 2.4c, provides information on the direc-
tionality and coherence of water diffusion within tissues. In the FA map, each voxel’s
intensity represents the degree of anisotropy, ranging from 0 to 1. Higher FA values in-
dicate greater directionality and alignment of water diffusion, often observed in regions
with well-organized structures such as white matter tracts. Lower FA values suggest less
directionality and more isotropic diffusion, commonly seen in regions with disorganized
or heterogeneous tissue composition.

2.2 Diffusion-weighted image acquisition

To fully determine the diffusion tensor, it is necessary to collect diffusion-weighted images
along several directions. The pulsed-gradient spin echo pulse sequence with a single-shot,
echo-planar imaging (EPI) readout is widely recognised as the most common approach
for diffusion-weighted imaging (DWI). The acquisition protocol is summarised in Figure
2.5.

The most simple arrangement of this pulse sequence consists of a slice selection gradient,
a frequency and a phase encoding gradients, along with a pair of large-gradient pulses
positioned on either side of the 180◦ refocusing pulse. The initial gradient pulse causes the
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Figure 2.5: Schematic of a diffusion-weighted echo-planar imaging (DW-EPI) pulse se-
quence. A spin-echo is used to achieve diffusion weighting from the gradient pulse pairs
(coloured). The imaging gradients are shown in grey. Diffusion weighting gradients can
be applied in any arbitrary direction using combinations of Gx (red), Gy (green), and Gz

(blue). Image credit to ”Diffusion Tensor Imaging of the Brain” [25]

magnetisation to lose coherence throughout the sample, whereas the subsequent gradient
pulse restores magnetisation coherence.

In the presence of gradient pulses, the loss of spin coherence varies depending on the
position of the spin. When dealing with stationary molecules, the induced phases of both
gradients cancel each other out completely. Consequently, the magnetisation of these
molecules achieves optimal coherence, which leads to no signal attenuation. Conversely,
in the case of coherent diffusion of molecules along the direction of the applied gradient,
the bulk motion induces distinct phase changes for each pulse, as shown in Figure 2.6. As
a result, the phases introduced by both gradients do not cancel out entirely, resulting in a
net phase difference. The final phase difference will be proportional to the displacement,
described by Equation (2.3), the amplitude of the diffusion gradients G, the duration of
the diffusion gradients δ, and the time interval between the two gradients ∆, also called
mixing time.
Therefore, when diffusion gradients are present, water molecules tend to accumulate in
different phases. The MRI signals produced are directly related to the combined mag-
netisation of all water molecules within a voxel. Consequently, the dispersion of phases
as a result of diffusion leads to signal attenuation.

S = S0 · e−bD (2.8)

The signal attenuation for diffusion gradient pulses in the case of simple isotropic Gaussian
diffusion can be mathematically described by Equation (2.8). In this equation, S repre-
sents the diffusion-weighted signal, S0 denotes the signal measurement obtained without
applying any diffusion gradient, D corresponds to the apparent diffusion coefficient and b
is referred to as the ”b-value.” The b-value, as defined in Equation (2.9), determines the
sensitivity of the signal to diffusion [33].
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Figure 2.6: Schematic representation of diffusing spins. If spins diffuse during the time in
between the two diffusion gradients, according to the principles of Brownian movement,
the rephasing gradient will not lead to a realignment of the hydrogen atoms. Rather,
they will be out of alignment in proportion to how much they have diffused in the time
between the gradients, leading to a signal loss. Image credit to ”Principles of diffusion
tensor imaging and its applications to basic neuroscience research” [32].

b = (γGδ)2 ·
(
∆− δ

3

)
(2.9)

The signal attenuation, as described in Equation (2.8), applies specifically to the isotropic
Gaussian distribution and requires adjustments to accurately describe the signal attenu-
ation for anisotropic diffusion involving the diffusion tensor. To account for anisotropic
diffusion, the measured attenuation signal in each voxel, following the application of gra-
dient j with direction xj and b-value bj, can be characterised using Equation (2.10) [4].

Sj = S0 exp
(
−bjx

T
j Dxj

)
(2.10)

In Equation (2.10), the diffusion tensor D is a fundamental component that must be fully
determined. To achieve this, a minimum of seven measurements are required, which in-
volves the acquisition of multiple diffusion directions along with, at least, one unweighted
(b = 0) image. This combination of measurements allows for accurate estimation and de-
termination of the diffusion tensor, enabling a comprehensive characterisation of diffusion
properties within the tissue of interest.
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2.3 Distortions correction

Measurements of diffusion anisotropy can be susceptible to image noise, which can poten-
tially introduce biases in the estimated anisotropy values. The inherent sensitivity of these
measurements to noise can result in variations and inaccuracies in the quantification of
diffusion anisotropy [34]. Moreover, the application of large diffusion weighting gradients
in DW-MRI makes the technique highly sensitive to subject motion [35]. Any movement
occurring during the acquisition can lead to severe image artefacts and distortions in the
diffusion-weighted images, compromising the quality and reliability of the data.

The scan time can be shortened to reduce the influence of motion artefacts. An approach
to achieve this is to use single-shot echo planar imaging (EPI) in diffusion-weighted MRI.
EPI is a rapid imaging technique that acquires a complete readout of k-space in a sin-
gle shot, allowing fast data acquisition [36]. By acquiring the diffusion-weighted images
quickly, the likelihood of motion artefacts is reduced as there is less time for motion-
related distortions to occur. However, it’s important to note that shorter scan times can
also introduce other challenges, such as field inhomogeneities at B0 (especially at higher
fields), and eddy-current induced distortions [37]. In DWI, the diffusion gradients used
are typically longer compared to other MRI techniques. This increased gradient duration
can lead to perturbations in the local magnetic field, which in turn can induce currents in
the various conducting surfaces of the MRI scanner. These induced currents can cause im-
age distortions, including contraction, overall shift, and shear, which are usually visually
detectable [38]. Figure 2.7 shows an example of a DWI image.

(a) Phase Encoding gradient AP (b) Phase Encoding gradient PA

Figure 2.7: Example of DWI images exhibiting notable distortions due to B0 inhomo-
geneities. The image on the left displays compression of the frontal area, attributed to
the application of a phase encoding gradient directed from the Anterior to the Posterior
part of the brain. Conversely, the image on the right demonstrates elongation of the
frontal area due to the application of a phase encoding gradient directed from the Poste-
rior to the Anterior part of the brain.

As shown in Figure 2.7, the distortions in DWI images are clearly observed along the
direction of the phase encoding gradient. This gradient plays a crucial role in spatial
encoding and determines the location of each pixel in the image. Figure 2.7a illustrates
an image acquired with a phase encoding gradient directed from the anterior to the pos-
terior part of the brain. As a consequence, the frontal area appears compressed in the
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final image. On the other hand, Figure 2.7b presents an image acquired with the opposite
phase encoding gradient, resulting in an elongation of the frontal area in the final image.
These observations highlight the impact of the phase encoding gradient on the spatial
distortion characteristics of DWI images.

The presence of artefacts in DWI acquisitions can indeed introduce errors in tensor es-
timation, affecting the accuracy of derived diffusion maps such as fractional anisotropy
(FA) and mean diffusivity (MD). These errors can subsequently lead to erroneous fibre
reconstruction, affecting both the orientation and length of reconstructed fibres [38]. By
implementing appropriate distortion correction methods, the accuracy and reliability of
diffusion tensor estimation can be improved, leading to more accurate diffusion maps and
more reliable fibre reconstruction.

As diffusion imaging is performed using diffusion-weighted spin-echo EPI, the most com-
mon artefacts affecting these images are the inhomogeneities of the B0 field, typically
caused by the susceptibility distribution of the subject’s head (known as a susceptibility-
induced off-resonance field), and eddy currents from the rapid switching of the diffusion
weighting gradients.

To a first approximation, the susceptibility-induced field will be constant for all acquired
images, implying that the set of images will be internally consistent. It is a problem
because it will result in a geometric mismatch between the structural images (which are
typically unaffected by distortions) and the diffusion image. topup [39] is a method,
implemented in FSL [40], for estimating the susceptibility-induced field. To estimate the
susceptibility-induced off-resonance field, the topup method uses two or more acquisi-
tions with different acquisition parameters. The most common approach is to acquire
two images with opposing polarities of the phase-encoding gradient. This way, the same
field leads to distortions in opposite directions in the two acquisitions, as shown in Fig-
ure 2.7. Using these acquired images and known acquisition parameters, topup aims to
estimate the field by finding the field that, when applied to the two volumes, maximises
the similarity of the unwarped volumes. The similarity is assessed by measuring the
sum-of-squared differences between the unwarped images. By iteratively refining the field
estimation, topup aims to minimize the distortions caused by the susceptibility-induced
off-resonance field.

Figure 2.8 shows an example of the output of topup. In particular, Figure 2.8a shows
the fieldmap image that represents the estimated susceptibility-induced off-resonance field.
This field map provides information about the spatial variations in the field due to sus-
ceptibility effects. Figure 2.8b instead shows the unwarped (corrected) image, providing a
corrected representation of the acquired data with reduced geometric distortions caused by
the susceptibility field. In addition to these two images, topup also generates coefficient
maps that describe the voxel-wise mapping of the susceptibility field to the distortions
observed in the acquired images.

To correct for eddy currents instead, one can use the tool eddy [41], implemented by FSL
[42]. Starting from the estimated fieldmap by topup, eddy estimates the eddy current-
induced distortions and any potential subject motion that may have occurred during the
DWI acquisition. The primary output of ”eddy” is the corrected DWI dataset. This
dataset comprises the original DWI volumes with the eddy current-induced distortions
corrected. The correction aligns the volumes and reduces the artefacts, resulting in im-
proved spatial accuracy and image quality. Figure 2.9 shows a comparison between the
original diffusion-weighted image and the final eddy-corrected image.
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(a) topup fieldmap (b) Unwarped image

Figure 2.8: Example of the output from topup. The image on the left shows the fieldmap
image that represents the estimated susceptibility-induced off-resonance field. The im-
age on the right instead shows the unwarped (corrected) image, providing a corrected
representation of the acquired data with reduced geometric distortions caused by the sus-
ceptibility field.

(a) Original DWI image (b) eddy-corrected image

Figure 2.9: Comparison between the original DWI image and the corresponding eddy-
corrected image.

2.4 Bingham NODDI model

Among all the different models proposed and used to fit the diffusion MRI data, Zhang
et al. [8] introduced Neurite Orientation Dispersion and Density Imaging (NODDI), a
clinically feasible diffusion MRI technique for estimating the microstructural complexity
of dendrites and axons in vivo on clinical magnetic resonance scanners.

Dendrites and axons, the projections of neurons, are collectively known as neurites, and
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their morphology is a key marker of brain development and ageing. Changes in the
dispersion of the orientation or morphology of the neurites could indicate the emergence
of neurological diseases such as multiple sclerosis [43] or Alzheimer’s disease [44].

The NODDI model [8] is a two-level multi-compartment model, depicted in Figure 2.10,
in which all compartments are considered non-exchanging.

Figure 2.10: Breakdown of the total normalised diffusion MRI signal as modelled by
NODDI. The contributions of the tissue and non-tissue components of the brain are
modelled separately. The tissue signal is further broken down to account for the signal
originating from the highly restricted neurites and the hindered space outside the neurites.
The non-tissue compartment is modelled by isotropic Gaussian diffusion. The intra-
neurite compartment models the neurites as orientationally dispersed sticks, while the
space around the neurites is described an anisotropic diffusion model. Image credit to
”Bingham–NODDI: Mapping anisotropic orientation dispersion of neurites using diffusion
MRI” [9].

At the first level, the NODDI model distinguishes between the tissue and non-tissue
components within the brain. The non-tissue compartment specifically represents the
cerebrospinal fluid (CSF), which accounts for the freely diffusing water in the brain. This
compartment is modelled as free isotropic Gaussian diffusion, with a diffusivity denoted
as diso.

The second level of the NODDI model focuses on modelling the diffusion MRI signal orig-
inating from the tissue compartment, which includes both grey and white matter. Within
the tissue compartment, a further breakdown is performed to capture the signal contri-
butions from two distinct components: the highly restricted neurites and the hindered
space surrounding the neurites. The intra-neurite volume fraction νin gives an estimate
of the density of the neurites while, by construction, the extra-neurite volume fraction is
(1− νin). Thus, the total normalised signal S is modelled as the signal contribution from
the tissue and non-tissue components of the brain, weighted by their respective volume
fractions, as in Equation (2.11) [8].

S = (νiso)Siso + (1− νiso) (νinSin + (1− νin)Sen) (2.11)

In Equation (2.11), Sin and νin are the normalised signal and volume fraction of the intra-
neurite compartment; Sen is the normalised signal of the extra-neurite compartment; Siso

and νiso are the normalised signal and volume fraction of the CSF compartment [8].

Neurites are modelled in NODDI as sticks (cylinders with zero radius), taking into account
the restriction of their membranes and their impact on the diffusion of water molecules
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throughout their length [45]. During typical diffusion MRI experiments, water diffusion
predominantly occurs along the longitudinal axis of neurites. Consequently, the diffusion
signal arising from a neurite with a specific orientation n̂ is characterised by the attenu-
ation resulting from hindered diffusion along its length, parallel to the applied gradient
direction.

Sin =

∫
S2
f(n̂)e−bd∥(q·n̂)2dn (2.12)

To accommodate the orientational dispersion of the neurites, the signal originating from
the intra-neurite volume fraction is calculated by summing this attenuation across all
possible orientations, as expressed in Equation (2.12). In the equation, q and b represent
the direction of the diffusion weighting gradient and the b-value, respectively. The term
f(n̂)dn denotes the probability of finding sticks orientated along the direction n̂, while
e−bd∥(q·n̂)2 represents the signal attenuation resulting from the unrestricted diffusion along
a stick with an intrinsic diffusivity of d∥ = 1.7 · 10−9 m2

s
and an orientation n̂ [8, 46, 9].

The extra-neurite compartment refers to the space around the neurites, in which the
diffusion of water molecules is hindered by the presence of neurites, but not restricted.
Thus, it is modelled with Gaussian anisotropic diffusion [8].

logSen = −bqT

(∫
S2
f(n̂)D(n̂)dn

)
q (2.13)

Equation (2.13) defines the normalised signal of the extra-neurite compartment. In this
equation, D(n̂) is a cylindrical symmetric tensor with the principal direction of diffusion
n̂, diffusion coefficients d∥ parallel to n̂ and d⊥ = d∥(1− νin) perpendicular to n̂ [8].

When it was first introduced in [8], the NODDI model used the Watson distribution [47],
Equation (2.14), as the orientation distribution function.

f(n̂) = M

(
1

2
;
3

2
;κ

)−1

eκ(µ·n̂)2 (2.14)

In Equation (2.14), M is a confluent hypergeometric function, µ is the mean orientation
and κ is the concentration parameter, which quantifies the degree of orientation dispersion
about µ. The Watson distribution was chosen in [8] as the orientation distribution func-
tion in the NODDI model because it was considered the most straightforward distribution
that may take into account orientation dispersion. The Watson distribution provides an
appropriate representation for both cases of low orientation dispersion in highly coherent
white matter and cases of large orientation dispersion in grey matter. As a result, it offers
a flexible framework for simulating different tissue microstructures in diffusion MRI.

Despite its strengths, the Watson-NODDI model has a limitation in characterising com-
plex neurite configurations, such as those involving fanning and bending axons [46]. This
originates from the fact that the Watson distribution constrains the dispersion about the
dominant orientation to be isotropic, as shown in Figure 2.11.
For fanning and bending axons, the dispersion about the dominant orientation is typically
anisotropic: the dispersion is the highest along the plane of fanning and bending but the
lowest perpendicular to the plane. This type of anisotropy cannot be characterised by the
Watson-NODDI.

Tariq et al. [46] proposed a new NODDI model that incorporates the Bingham distribution
[47] as the orientation distribution function, to enable the quantification of dispersion
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Figure 2.11: Schematic representations of Watson and Bingham distributions of sticks.
Watson models isotropic dispersion and is a particular case of Bingham when concentra-
tion parameters κ1 = κ2. In the Bingham distribution instead κ1 > κ2. Image credit to
”Advanced dMRI Signal Modeling for Tissue Microstructure Characterization” [48].

anisotropy of neurites. As shown in Figure 2.12, because Watson is a particular case
of the Bingham distribution, the Bingham-NODDI provides an important alternative
to overcome the isotropic dispersion limitation of the Watson-NODDI model. Unlike
the Watson distribution, the Bingham distribution can capture anisotropic orientation
dispersion at several levels as well as isotropic dispersion. As a result, a wider range of
microstructural characteristics in neurite configurations can be efficiently modelled.

Figure 2.12: Probability density plots for Bingham distribution. From left to right, in-
creasing dispersion anisotropy about the dominant orientation µ1. The primary dispersion
orientation, µ2, represents the orientation of dispersion anisotropy about µ1. Watson is a
special case of Bingham distribution. Image credit to ”In vivo Estimation of Dispersion
Anisotropy of Neurites Using Diffusion MRI” [46].

The Bingham distribution is the spherical analogue of a two-dimensional Gaussian dis-
tribution. The probability density of orientation along a direction n̂ for the Bingham
distribution is defined in terms of a symmetric matrix 3× 3 B [9], as in Equation (2.15)
where cB is the normalisation constant.
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f(n̂;B) =
1

cB
e(n̂

TBn̂) (2.15)

A more intuitive definition of the Bingham distribution can be obtained by diagonalising
the tensor B [9], as done in Equation (2.16).

B =
(
µ̂1 µ̂2 µ̂3

)
·

κ1 0 0
0 κ2 0
0 0 κ3

 ·

µ̂T
1

µ̂T
2

µ̂T
3

 (2.16)

In this equation, the diagonal terms reflect the concentrations of orientations about the
principal axes, µ̂1, µ̂2 and µ̂3, as shown in Figure 2.12, with κ1 > κ2 > κ3 [9].

The Bingham distribution is invariant to the addition of an arbitrary constant to its
eigenvalues [47]. By choosing −κ3 as the arbitrary constant, Equation (2.15) can be
rewritten as in Equation (2.17), where κ = κ1 − κ3 and β = κ2 − κ3.

f(n̂;B) =
1

cB
exp

(
κ (µ̂1 · n̂)2 + β (µ̂2 · n̂)2

)
(2.17)

In Tariq et al. [9], A more intuitive description of the orientation distribution is derived
by rewriting Equation (2.15) in a form that is analogous to the two-dimensional Gaussian
distribution, obtaining the function written in Equation (2.18).

f(n̂;B) =
eκ

cB
exp

(
− (µ̂2 · n̂)2
1/ (κ− β)

)
exp

(
−(µ̂3 · n̂)2

1/κ

)
(2.18)

In the given equation, 1/ (κ− β) and 1/κ represent the dispersion about the dominant
orientation µ̂1, specifically along µ̂2 and µ̂3 respectively. These dispersion parameters can
be seen as analogous to the variance parameters in a Gaussian distribution, and they
are inversely proportional to the concentration parameters κ and β. In particular, since
κ ≥ β, the dispersion along µ̂3 is either less than or equal to that along µ̂2, as visually
demonstrated in the density plot presented in Figure 2.12. Consequently, we refer to µ̂2

as the primary dispersion orientation and µ̂3 as the secondary dispersion orientation [9].

To quantify the dispersion characteristics of neurites using Bingham-NODDI, the Bing-
ham distribution allows for the calculation of two Orientation Dispersion Indices (ODIs).
These indices provide measures of dispersion along the primary dispersion orientation and
the secondary dispersion orientation, respectively, shown in Equations (2.19) and (2.20).

ODIP =
2

π
arctan

(
1

κ− β

)
(2.19)

ODIS =
2

π
arctan

(
1

κ

)
(2.20)

Figure 2.12 illustrates that as the value of β increases while keeping κ constant, there is
an increase in the anisotropic dispersion. Specifically, this leads to an increase in ODIP ,
while ODIS remains constant. Therefore, while the absolute values of ODIP and ODIS
indicate the overall level of dispersion, the relative values of these indices serve as an
indicator of dispersion anisotropy.

To estimate the overall orientation dispersion, Tariq et al. [9] observed that the over-
all spread, or dispersion, of a multivariate normal distribution can be quantified as the
determinant of its covariance matrix, thus defining the index in Equation (2.21),
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|ΣBing| =
√(

1

κ− β

)(
1

κ

)
(2.21)

which can be mapped to a finite range giving a measure of total dispersion:

ODI =
2

π
arctan (|ΣBing|) (2.22)

The Orientation Dispersion Index (ODI), defined in Equation (2.22), can be used to char-
acterise the degree of dispersion or alignment of neurite orientations within a voxel of
brain tissue. It ranges from 0 to 1, where 0 indicates a perfect alignment of neurite ori-
entations (such as in highly organised fibre bundles), and 1 indicates complete dispersion
or isotropic diffusion (such as in regions with crossing or complex fibre configurations).
The ODI can provide important information about tissue microstructure and can be used
to extract properties such as fibre coherence, axonal packing density, and white matter
integrity. Among other things, it can be used in various studies to investigate how the
brain connects or to determine the effects of neurodegenerative diseases.

2.5 AMICO-NODDI model

Watson-NODDI is a microstructural diffusion-based modelling technique that is able to
provide useful microstructural quantification with a relatively simple diffusion acquisition
protocol. Despite its great potential for clinical feasibility, the model currently demands
a significant amount of time to complete its fitting process. Daducci et al. [49] introduced
the Accelerated Microstructural Imaging via Convex Optimisation (AMICO), in which
they reformulated the NODDI model as a linear model. In this way, the fitting procedure
was reduced from about 13 hours to 10 minutes, thus meeting real application demands.

The objective of AMICO-NODDI is to remodel Equation (2.11) as a system of linear
equations as follows:

y = Φx+ η (2.23)

As explained in [49], Equation (2.23) includes three variables. The first variable, y,
represents the measured signal. The second variable, Φ, is a dictionary of pre-generated
signals that can be combined in a linear manner to estimate the measurement x. The third
variable, η, accounts for any noise that may be present during the acquisition process.

In order to deal with signals arising from different compartments, Daducci et al. [49]
partitioned the dictionary into the following two blocks:

ΦN =
[
Φt

N |Φi
N

]
(2.24)

In Equation (2.24) Φi
N models the isotropic contribution to the signal, while Φt

N accounts
explicitly for the coupled intra- and extra-cellular compartments in the tissue. Each col-
umn in Φt

N represents the signal attenuation that results from a micro-environment with
a unique density and orientation dispersion of the axons. In the context of the AMICO-
NODDI model, the dictionary terms ΦN are referred to as ”atoms”. Each ”atom” is a
pre-generated signal that corresponds to a specific micro-environment with unique char-
acteristics. These characteristics may include features like axon density and orientation
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dispersion. The dictionary is constructed by generating a range of these pre-defined sig-
nals, each representing a potential microstructural configuration in the tissue.

As in Zhang et al. [8], the Watson distribution [47] is used to model the dispersion of
white matter and the longitudinal diffusivity is set to d∥ = 1.7 · 10−3mm2/s. On the
other hand, Φi

N is used to describe the signal attenuation that comes from the isotropic
compartment. Similar to Zhang et al.’s approach in [8], the intrinsic diffusivity is set to
the standard in vivo value of diso = 3.0 · 10−3mm2/s.

Having defined the linear dictionary, NODDI can be formulated as a convex optimization
problem:

argmin
x≥0

1

2

∥∥∥Φ̃Nx− y
∥∥∥2
2
+ λ

(
1

2
∥x∥22

)
+ γ (∥x∥1) (2.25)

Equation (2.25) shows that the classical Tikhonov regularization is used in conjunction
with the L1 norm to enhance problem stability.

Daducci et al. [49] developed an optimization routine that consists of three steps. First,
they estimate the volume fraction of the isotropic compartment νiso by solving Equation
(2.25) without regularization (i.e., λ = γ = 0). Next, they remove the isotropic con-
tribution to the dMRI signal by subtracting Φ̃i

Nνiso from y and solving Equation (2.25)
with regularization terms. This step identifies the smallest subset of atoms needed to
represent the signal, but the fitted coefficients x are not directly usable as they tend to be
biased due to the underestimation by the L1 norm. The final step involves debiasing the
previously found solutions by solving Equation (2.25) again without regularization over
the set of solutions already identified.

After following the procedure outlined above to determine the weights of specific atoms,
the NODDI model parameters can be extracted using the following methods:

νic =

∑Nt

j=1 fjx
t
j∑Nt

j=1 x
t
j

(2.26)

κic =

∑Nt

j=1 κjx
t
j∑Nt

j=1 x
t
j

(2.27)

νiso =
Nt∑
j=1

xt
j (2.28)

The notation fj and kj is used to refer to the intra-cellular volume fraction and concen-
tration parameter of the j-th atom in Φt

N , for j ∈ {1, . . . , Nt}.
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Figure 2.13: NODDI metrics compared for a healthy subject with both the original formu-
lation and the AMICO linear framework. Near each parameter image, the difference map
is shown. Image credit to ”Accelerated Microstructure Imaging via Convex Optimization
(AMICO) from diffusion MRI data” [49].
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Chapter 3

Phantoms, subjects and sequence
acquisition

This chapter presents a detailed description of the phantoms employed in the study.

Phantoms play an important role in this research as they enable the examination of
diffusion outcomes without relying on healthy volunteers. This ensures that the results
are not influenced by any physiological change that may occur in healthy volunteers, which
could potentially impact the outcome of the analysis. These phantoms are designed to
replicate the diffusion properties in brain tissue, particularly in white matter. If the study
was successful, the phantoms could become an essential part of a calibration process of
different MRI scanners.

Moreover, this study involves four healthy volunteers to look for the repeatability of the
results also in vivo. The involvement of healthy volunteers in the study is crucial since it
allows to evaluate the potential impact of physiological parameters on analytic outcomes,
such as the participant’s hydration level. These physiological factors may, in fact, affect
the measurement results. A few details about the volunteers are presented in the second
part of the chapter.

Finally, the last part of the chapter is dedicated to a detailed description of the MRI
sequence used to acquire the images with the locally available 3T GE Premier scanner at
the Oxford Centre for Clinical Magnetic Resonance Research (OCMR).

3.1 DTI Phantoms

Two phantoms are used in this study to assess the consistency and stability of diffusion
results over time. The phantoms, shown in Figure 3.1, are scanned several times on dif-
ferent days using the same scanner and acquisition protocol to evaluate the repeatability
of the results. Moreover, the phantoms undergo multiple scans on the same day, with
one acquisition after another, to investigate if the gradient heating affects in any way the
results.

The first phantom used in the study is called the ”basic phantom”, shown in Figure 3.2a,
and it was manufactured by the German Cancer Research Center, Heidelberg (DKFZ)
[50]. It is composed of a fibre ring with uniform anisotropy at each position, which is
embedded in a homogeneous medium. Specifically, the phantom is made by winding
polyamide fibres around an acrylic plastic spindle. The fibres are made of a synthetic,
extremely fine polyester fiberfill of diameter 15µm. The polyfill is made of filament yarn,
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Figure 3.1: Top vision of the DTI phantoms. On the left is shown the crossing phantom,
with fibres crossing at 60◦, while on the right is shown the basic phantom, with a single
fibre ring mimicking restricted anisotropic diffusion.

specifically known as Filamentgarn TYPE 611. This type of yarn consists of continuous,
long strands of polyester fibres, with a linear mass density of 50 decitex (dtex), indicat-
ing that 10000 meters of this yarn weigh 50 grams. Trevira GmbH, a company based in
Bobingen, Germany, produces this polyfill. The fluid portion of the phantom is a mix-
ture of distilled water and an aqueous sodium chloride solution (83 gNaCl per kilogram
of water). This fluid constitution enables an orientation-independent and reliable use of
DTI phantoms for evaluation purposes [50].

In Figure 3.2b, it can be observed that the outer fibre strand has a diameter of 60mm
and a thickness of 10mm. Water is present between the fibres to simulate restricted
anisotropic diffusion in the brain’s white matter. The polyamide fibres winded around
the plastic spindle are contained inside a cylindrical phantom container, shown in Fig-
ure 3.2a, of diameter 150mm and height 150mm. As per the information provided by
the manufacturer [50], the phantom was crafted using an automatic winding machine.
This machine ensured a constant rotation speed and controlled horizontal movement that
resulted in an even distribution of the thread over the spindle’s width. Additionally, a
counter kept track of the total amount of thread used. The achieved fractional anisotropy
is 0.78± 0.02.

The second phantom used in this work is the ”Q-Ball phantom”, also referred to as the
”crossing phantom”. This phantom is shown in Figure 3.3a and it was manufactured by
Moussavi-Biugui et al. [51]. For the production of the phantom, polyfill fibres (50 dtex,
consisting of several 15µm fibres, Filamentgarn TYPE 611, Trevira GmbH, Bobingen,
Germany) were wound on a spherical polyamide spindle. According to the manufacturer
[51], phantom winding was performed using a semiautomatic winding machine driven by
electric motors, and the guidance of the thread was performed manually. During the
winding process, the fibre was passed through a solution containing 83 grams per litre
of NaCl. This resulted in a better quality of the phantom compared to dry winding,
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(a) (b)

Figure 3.2: (a) Picture of the basic phantom that shows the part in which the fibre bundle
is contained and the liquid in which it is immersed. (b) detailed view of the plastic spindle,
with the region of anisotropic diffusion highlighted in blue.

where the air between the fibres is removed in a fluid bath afterwards [51]. As shown
in Figure 3.3b, the two fibre bundles cross each other at 60◦. This way, the restricted
diffusion in fibre crossing in the white matter of the brain can be modelled. As in the
basic phantom, the spherical spindle is embedded in a fluid made of a mixture of distilled
water and sodium chloride (83 gNaCl per kilogram of water). The concentration of NaCl
was adapted to minimise the susceptibility difference between fluid and fibres and to
eliminate orientation-dependent transversal relaxation times [51]. In Figure 3.3b, it can
be observed that the spherical spindle has an outer diameter of 60mm and the thickness
of the two fibres is 10mm. Additionally, Figure 3.3a shows that the cylindrical container
has a diameter of 150mm and a height of 150mm.

The phantoms are scanned at the Oxford Centre for Clinical Magnetic Resonance Research
(OCMR) - University of Oxford, using the locally available 21-channel head and neck
coil (General Electric Healthcare, Waukesha, WI, USA), an example of which is shown
in Figure 1.13. The phantoms are placed inside the head coil in such a way that the
cylindrical container’s axis is parallel to the B0 field of the clinical scanner. Additionally,
the part of the phantom that contains the fibres is positioned at the scanner’s isocenter.

3.2 Healthy volunteers

As the aim of this study is to investigate the reliability of diffusion results, also obtained
from in vivo scans, in order to evaluate the reproducibility of the diffusion results over
time in vivo, four healthy volunteers are scanned along with the phantoms. Just as the
phantoms, the participants are scanned with the same sequence acquisition and using the
same 21-channel head and neck coil from GE (General Electric Healthcare, Waukesha,
WI, USA), which can be observed in Figure 1.13.

This study also aims to assess whether the hydration state of participants can affect the
outcome of diffusion analysis, as it is unknown if physiological factors like hydration could
confound the results. An additional participant is scanned twice with the same scanner
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(a) (b)

Figure 3.3: (a) Picture of the crossing phantom that shows the part in which the fibre
bundle is contained and the liquid in which it is immersed. (b) Detailed view of the plastic
ball spindle, with the region of anisotropic diffusion highlighted in blue.

and sequence as the phantoms and the other participants. The first scan is done after
fasting and refraining from drinking water all night. The second scan is performed after
drinking 500 mL of water and waiting for 10 minutes, right after the first scan.

The age range of the volunteers is 24 to 30, with three males and one female included in the
study. The study involves University staff volunteers who have no prior experience with
neurological or psychiatric illnesses. The ethics committee of the research centre approved
the study, and each subject provided informed consent before undergoing scanning.

The phantoms and the healthy volunteers are all scanned with the same 3T GE Premier
(General Electric Healthcare, Waukesha, WI, USA) scanner, an example of which is shown
in Figure 3.4. Specifically, the phantoms are scanned four times on different days within a
month to determine the consistency of the results over time. Additionally, eight scans are
conducted on the same day, one after the other, to investigate any potential magnetic field
gradient coil heating effect on the results. The healthy volunteers, instead, are scanned
twice on the same day. After each volunteer is scanned the first time, they are taken out
of the scanner, given some time to move around the scan room, repositioned, and scanned
again.

3.3 Sequence acquisition

The phantoms and the participants are scanned using the same 3T GE Premier scanner
(General Electric Healthcare, Waukesha, WI, USA) at the Oxford Centre for Clinical
Magnetic Resonance Research (OCMR) - University of Oxford.

The DTI protocol for the phantoms consists of a single-shot, spin echo-based, and diffusion-
weighted echo planar imaging sequence. The sequence includes a single refocusing pulse
(180◦ pulse) with a repetition time (TR) equal to 6000ms to allow for the acquisition of
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Figure 3.4: Example of a GE 3T scanner.

multiple slices during a single TR. The echo time (TE) is chosen to be 70.1ms. Addition-
ally, diffusion data is acquired with a multi-shell protocol, meaning data acquisition along
various diffusion directions with different b-values to provide a comprehensive view of the
diffusion process. Specifically, data acquisition is performed along 90 distinct diffusion
directions with two corresponding b-values: 30 directions with a b-value = 1000mm/s2

and 60 directions with a b-value = 2600mm/s2. In addition, 9 b = 0 images are randomly
dispersed in between the diffusion-weighted images. The inclusion of the b = 0 images is
critical for the assessment of signal intensity in the absence of diffusion weighting and for
the correction of artefacts due to B0 inhomogeneities, eddy currents and subject move-
ments. To improve acquisition efficiency without compromising image quality, an ASSET
(Array Spatial Sensitivity Encoding Technique) factor of 2 is applied. This parallel imag-
ing technique effectively reduces scan time allowing for the acquisition of more than one
slice per excitation. Additionally, the field of view is set to 240× 240mm2, with a matrix
size of 96 × 96. The slice thickness is optimised at 2.5mm with a total number of slices
equal to 32, and a bandwidth of 250 kHz is employed. Furthermore, to enhance image
quality, spectral fat saturation with non-spectral selective excitation is included in the
sequence. This technique selectively suppresses fat signals, thus avoiding N/2 chemical
shift ghosting artifacts which can cause the fat signal to appear displaced from its actual
location, creating a duplication of structures and reducing image quality. Finally, the
sequence is adapted to output the reversed polarity phase encode acquisition, which is a
b = 0 volume acquired with the opposite phase encoding gradient direction compared to
the diffusion-weighted volumes. This acquisition helps in the distortion correction step,
in particular, the correction of artefacts due to the B0 field inhomogeneities along the
direction of application of the phase encoding gradient.

Imaging protocol for healthy volunteers includes a T1-weighted and a diffusion-weighted
scan. After a subject is scanned with all MR sequences in a scan session, the subject
leaves the scanner table and is then repositioned for the second scan session, where the
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same sequences used in the first session are repeated. Whole-brain T1 weighted 3D vol-
umes are acquired with a Magnetization Prepared RApid Gradient Echo sequence (MP-
RAGE) with the following parameters: repetition time (TR) = 2584ms, Inversion Time
of 1058ms, Echo Time (TE) = 2.9ms, Pixel Bandwidth = 244Hz, 80% Phase Field of
View, Acquired and reconstructed Voxel Volume = 1mm3, Averages = 1, Flip angle = 8◦,
Field of view = 256mm.

The diffusion-weighted sequence includes a single refocusing pulse with a repetition time
(TR) of 6000ms and an echo time (TE) of 71ms. Diffusion data is acquired along 90
different directions with distinct b-values: 30 directions with a b-value = 1000mm/s2,
60 directions with a b-value = 2600mm/s2 and 9 b = 0 images randomly dispersed in
between the diffusion-weighted images. Just as for the phantoms, the ASSET factor is
set to 2 with a multiband factor equal to 2. This allows for a faster volume reconstruc-
tion by acquiring more than one slice per excitation. The field of view is chosen to be
240× 240mm2 and a matrix size of 96× 96. The slice thickness is set to be 2.5mm with
a total number of slices equal to 66. Also for the brains, spectral fat saturation with
non-spectral selective excitation is included in the sequence and the sequence is adapted
to output the integrated reverse polarity phase encode acquisition.

Table 3.1: Comparison between the parameters of the sequence acquisition used for the
phantoms and for the in vivo scans.

Phantoms Brain
TR 6000ms 6000ms
TE 70.1ms 71ms

Diffusion directions 90 90

b-values
1000mm/s2 2600mm/s2

1000mm/s2 2600mm/s2

b = 0 images 9 9
Field of view 240× 240mm2 240× 240mm2

Matrix size 96× 96 96× 96
Slice thickness 2.5mm 2.5mm
Number of slices 32 66
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Chapter 4

Software implementation

This chapter focuses on the practical implementation of the software tools used to analyse
diffusion MRI data.

The first part shows how to simply fit the tensor model to the DW-MRI data using the
dtifit function of the FMRIB Software Library (FSL) [42], a well-used software suite in
the neuroimaging community. It also goes into detail about integrating FSL into Python
with the fslpy library, combining the robust functionalities of FSL with the flexibility
and versatility of the Python programming environment.

The second section goes into the Bingham-NODDI model [9] implementation by using
the Dmipy library [52], an open-source Python programme built specifically for modelling
and analysing diffusion magnetic resonance data by building and constructing multi-
compartment modelling methodologies.

The final section delves into the implementation of the AMICO-NODDI model [49] us-
ing resources from the AMICO repository on GitHub (https://github.com/daducci/
AMICO).

4.1 Tensor model

The tensor model was implemented using the FMRIB Software Library (FSL), which is
a comprehensive and widely used software package designed for the analysis of functional
and structural neuroimaging data, with a major focus on magnetic resonance imaging
(MRI) techniques [42, 40, 53]. FSL was developed by the Oxford Centre for Functional
MRI of the Brain (FMRIB) at the University of Oxford. Because of its reliability, adapt-
ability, and broad range of capabilities, FSL is widely employed in the neuroscience and
medical imaging fields. Although some of its tools include graphical user interfaces (GUIs),
it is mostly command-line driven.

FSL provides a variety of tools and utilities for processing and analysing different types
of neuroimaging data. Among all the available features, FSL includes tools for processing
diffusion-weighted MRI (DW-MRI) data, as well as estimating diffusion tensor metrics by
fitting the tensor model to the DW-MRI data. In addition to data analysis capabilities,
FSL provides visualisation tools (FSLeyes) for showing and studying neuroimaging data
and results.

In FSL, the dtifit command is used to fit the diffusion tensor model to diffusion-weighted
MRI data. The dtifit command’s principal function is to estimate the diffusion tensor
parameters using DW-MRI data. These parameters include the three eigenvalues of the
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tensor λ1, λ2 and λ3, which correspond to the magnitudes of water motion in the tissue
microstructure’s principal directions. After estimating the three eigenvalues, mean diffu-
sivity and fractional anisotropy can be computed using Equations (2.6) and (2.7), with
the ultimate goal of obtaining valuable information about tissue integrity, anisotropy, and
other structural properties.

The inputs of the dtifit command include a series of diffusion-weighted images acquired
with different gradient directions and b-values, as described in Section 2.2 and 3.3. These
images capture the diffusion of water molecules in various directions and sensitivities. The
input diffusion-weighted images must be in the .nii format. In addition, a binary brain
mask must be provided as input in the .nii format. Moreover, the b-values and gradient
directions must be provided in separate .bval and .bvec files.

The dtifit command generates several output files, usually saved in .nii format. The
MD map, which depicts the average diffusion in each voxel, is the first result delivered. In
addition, the FA map, which represents the degree of anisotropy in each voxel, is provided
as output.

In this work, FSL was used in Python, thanks to the fslpy package. The fslpy project
is an FSL programming library written in Python. This package contains all the Python
functions which can be used to invoke FSL commands. FSL may thus be easily ac-
cessed and integrated into the rest of the programming needed to analyse the collected
data using Python commands. The fslpy complete documentation can be found at
https://open.win.ox.ac.uk/pages/fsl/fslpy/index.html#.

4.2 The Bingham-NODDI implementation

The first implementation of Neurite Orientation Dispersion and Density Imaging, also
known as Watson-NODDI, was accomplished through a package of functions called the
’NODDI toolbox’ inMATLAB, created by The Mathworks company in Natick, USA. The
toolbox can be accessed at http://mig.cs.ucl.ac.uk/index.php?n=Download.NODDI.
This toolbox allows users to select from a variety of biophysical models. The input
diffusion-weighted images must be in the .nii format, and the b-values and gradient di-
rections must be provided in separate .bval and .bvec files. Additionally, a binary brain
mask in .nii format is required, and the user must specify the name of the model to be
fitted.

The implementation of the Bingham-NODDI model can be facilitated by the use of
the Diffusion Microstructure Imaging in Python (Dmipy) package, recently introduced
by Fick et al. [52]. Dmipy is an open-source Python package specifically developed
for modelling and analysing diffusion magnetic resonance data by designing and devel-
oping multi-compartment modelling strategies. It offers a comprehensive set of tools
and functions that allows to easily incorporate complex diffusion models, such as the
Bingham-NODDI model, into the analysis pipeline. Dmipy is a software that implements
biophysical models independently, allowing for multi-compartment modelling that can
be customised for the situation at hand. The framework also includes multiple fitting
routines that can be selected without hard coding. Figure 4.1 presents the Dmipy work-
flow, showing how different and distinct models can independently be called at once,
building a more complex multicompartment model: different biophysical tissue mod-
els are combined in a multi-compartment model and fitted to diffusion data using an
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optimisation algorithm. This estimates tissue feature parameters, reconstructs fibre ori-
entation distributions (FODs), and quantifies fitting quality. Dmipy is publicly avail-
able (https://github.com/AthenaEPI/dmipy) and includes tutorials for fitting multi-
compartment models from the literature.

Figure 4.1: Dmipy workflow: Modular microstructure model setup and parameter estima-
tion. Different biophysical tissue models are dispersed and/or distributed and combined
together in a multi-compartment model, which is then fit to diffusion data using a cho-
sen optimization algorithm to estimate tissue feature parameters, reconstruct FODs, and
quantify the quality of the fitting. Image credit to ”The Dmipy Toolbox: Diffusion MRI
Multi-Compartment Modeling and Microstructure Recovery Made Easy” [52].

Equation (4.1) summarises the implementation of the Bingham-NODDI model, within
the Dmipy framework.

S = fCSF

Ball︷ ︸︸ ︷
Siso(·|DCSF)︸ ︷︷ ︸

CSF

+

Bingham︷ ︸︸ ︷
B(κ1, κ2,µi) ∗S2

fen Zeppelin︷ ︸︸ ︷
Sen(·|λtort

⊥ , λtort
∥ )︸ ︷︷ ︸

Hindered Extra-Axonal

+ fin

Stick︷ ︸︸ ︷
Sin(·|λ∥)︸ ︷︷ ︸

Intra-Axonal

 (4.1)

The characterisation of the total diffusion signal involves the application of multiple mod-
els, each tailored to capture the unique diffusion behaviours observed in different com-
partments. Specifically, the CSF compartment is represented using the Ball model, an
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isotropic Gaussian compartment whose signal attenuation only depends on isotropic dif-
fusivity λiso [52]. The extra-neurite compartment is described as the Zeppelin component,
an axially symmetric Gaussian distribution aligned along orientation µ̂, with parallel and
perpendicular diffusivity λ∥ ≥ λ⊥, often used to describe the diffusion signal originating
from the oriented, extra-axonal space [52]. Finally, the intra-neurite compartment is mod-
elled as a Stick, a cylinder with a diameter of zero. It has Gaussian diffusivity λ∥ along
the cylinder’s axis and λ⊥ = 0 perpendicular to the axis [52]. Notably, the orientation
distribution function used for the tissue compartment is the Bingham distribution, defined
as an anisotropic Gaussian distribution on the sphere with orientation µ and primary and
secondary concentration concentrations κ1 and κ2. To describe the neurite concentration,
the optimisation parameters ODI and β-fraction are used. The ODI is defined in Equation
(2.22), while the β-fraction is defined as follows:

κ2 = β · κ1 (4.2)

As described in Equation (4.2), β-fraction is used to characterise the degree of dispersion
in the secondary direction within the Bingham distribution.

Figure 4.2 presents a visual depiction of the implementation of the Bingham-NODDI
model. Through this combination of different simple models, Dmipy enables a compre-
hensive analysis of diffusion MRI data, accounting for the distinct diffusion properties
exhibited by various compartments.

Figure 4.2: Visual representation of the Bingham-NODDI model as the combination of
several simpler models.

Fitting Bingham-NODDI requires very similar inputs to the MATLAB toolbox. First
of all, the preprocessed diffusion-weighted data in the .nii format is required. Then, the
diffusion protocol specification in the form of a .bval text file for b-values and a .bvec
text file for gradient directions is required. b-values are usually supplied in s/mm2, but
in this case they have to be converted to s/m2. Moreover, a binary brain mask needs to
be provided in the .nii format.

The implementation of the Bingham-NODDI model in Dmipy produces several quantita-
tive maps as output. In particular, the output includes the tissue volume fraction map,
indicating the tissue proportion within each voxel. Additionally, the intra-neurite volume
fraction map specifies the fraction of the voxel occupied by neurites. Furthermore, Dmipy
generates a quantitative map representing the Orientation Dispersion Index (ODI), de-
fined in Equation (2.22). This map quantifies the degree of dispersion or coherence of
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neurite orientations within each voxel. Finally, the mean squared error (MSE) and the
R2 maps are provided to assess the goodness of fit.

Fitting Bingham-NODDI is quite time-consuming, with the time required to complete the
fitting procedure effectively ranging between 13 and 15 hours for one single acquisition.

4.3 AMICO-NODDI implementation

The AMICO framework includes a linearised version of NODDI in its repository, which is
publicly available (https://github.com/daducci/AMICO). Although a MATLAB im-
plementation exists (https://github.com/daducci/AMICO_matlab), it is outdated and
no longer officially supported by the authors. All necessary MATLAB functions have
been rewritten in Python.

Before fitting the model, the dataset needs to be organized according to the scheme shown
in Figure 4.3. Each subject acquisition needs to be stored in the appropriate subfolder
inside the dataset root directory, denoted by a specific diffusion protocol.

Figure 4.3: When the fitting procedure begins, AMICO assumes this specific folder layout.

This requirement was made to improve computational efficiency. For a particular b-value,
AMICO generates a large number of probable dictionary terms known as ’kernels’ with
high angular resolution, which are shared among participants scanned with the same
b-values, regardless of the number of DW images in the dataset. Once the kernel is
produced, the collection of synthetic signals is resampled to match the actual gradient
directions and may be used to fit the model in the dictionary. As a result, patients in
the same study who were scanned using the same diffusion protocol will have identical
pre-computed kernels in memory. This method is particularly useful because kernel com-
puting is one of the most time-consuming processes in the entire procedure.

Fitting AMICO-NODDI requires the following inputs. First of all, the preprocessed
diffusion-weighted data in the .hdr / .img format is required. Then, the diffusion protocol
specification in the form of a .bval text file for b-values and a .bvec text file for gradient
directions is necessary. Finally, a .hdr / .img file containing the binary image that de-
scribes the brain mask needs to be provided.

Fitting NODDI in the AMICO framework takes approximately 5-10 minutes for each ac-
quisition, which is a dramatically reduced time extent with respect to the original version
of the model.
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Chapter 5

Data analysis method

This chapter illustrates the data analysis method, starting from the preprocessing of the
acquired images to the statistical analysis of the obtained results, given as output from
the fit of the models to the preprocessed data. Python scripts were written on purpose
to process and analyse the DW-MRI data collected at the Oxford Centre for Clinical
Magnetic Resonance Research (OCMR) with the 3T GE Premier scanner. All the in-
house Python scripts used in this work for processing and analysing the acquired data
can be found on the GitHub page Oxford Molecular Imaging.

The first part of the chapter focuses on the analysis of the phantom data, illustrating each
step of the processing and analysis pipeline. In the second and last part of the chapter,
the in vivo data analysis is presented and described.

5.1 Phantom data analysis

Two phantoms are used in this work, as described in Section 3.1, to evaluate the stability
of the diffusion results across time. These phantoms are scanned four times on different
days, over a period of one month. The sequence acquisition is described in Section 3.3.
Several preprocessing steps are required before fitting the tensor model and the NODDI
model to the collected diffusion MRI data to correct for distortions caused by field inho-
mogeneities and eddy currents during the acquisition process. Thanks to the use of the
fslpy library, all of the preprocessing steps are integrated into one Python script that
can be employed to analyse phantom data.

The first step in the preprocessing pipeline is the correction of the artefacts caused by
the local inhomogeneities of the B0 field. This can be achieved by using the topup tool
[39] of FSL, as explained in Section 2.3. topup is available in the fslpy library with the
Python command topup.

The generation of a binary mask to locate the phantom in the image, particularly the
anisotropic diffusion ring, is the second stage in the preprocessing pipeline. The binary
mask is designed using a Python function that, given the 3D picture provided by topup
as input, iteratively calculates the mean noise value from a subset of the input data, incre-
mentally increasing the kernel size until a valid mean noise value is found. This noise level
is used to normalise the original input array, thereby scaling it in relation to noise. The
normalised data is then thresholded using the given signal-to-noise ratio (SNR) threshold.
Areas in the normalised data below the threshold are assigned to 0 in the mask, indicat-
ing areas with a low signal-to-noise ratio, whilst regions above the threshold are put to 1,
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indicating areas with sufficient signal intensity compared to noise.

The created binary mask is then used in the third step of the preprocessing pipeline,
that is the correction of distortions due to the presence of eddy currents, as introduced
in Section 2.3. To do this, the eddy tool [41] of FSL can be exploited using the fslpy

Python command eddy. eddy takes up to 4 hours to run and its primary output is the
corrected 4D DW-MRI image.

Figure 5.1a depicts the original diffusion-weighted image of the basic phantom, in which
the phantom appears to be deformed, particularly along the direction of the phase encod-
ing gradient. In Figure 5.1b, the binary mask created using the SNR threshold is shown.
This is necessary to correct the data from eddy currents using eddy. Finally, Figure 5.1c
shows the corrected DW-image, which is now ready to fit the tensor and NODDI models.

(a) (b) (c)

Figure 5.1: (a) Image of the original diffusion-weighted image of the basic phantom, in
which it appears to be warped, notably along the phase encoding gradient direction. (b)
The binary mask constructed using the SNR threshold is displayed. (c) The corrected
DW-image.

After correcting for distortions in the images, the tensor model may be fitted to the
diffusion data to get the final quantitative maps of mean diffusivity (MD) and fractional
anisotropy (FA). Because the region of interest in the phantom is the section of the
phantom that contains the fibre bundles, another binary mask is created in which only
the voxel containing the fibre bundles is set to 1, while the rest are set to zero. Only
the region of the fibre bundles is fitted to the models of interest in this way. This step is
carried out manually for both the basic and crossing phantoms using the FSLeyes viewer
tool. The two masks designed prior to model fitting are depicted in Figure 5.2.
The tensor model can be fitted to the eddy-corrected data using the dtifit function in
Python, as well as the binary mask that was just constructed. The fitting process takes
about 5 minutes and the desired quantitative maps of MD and FA are finally obtained.

The FSL commands fslmaths and fslstats are used to extract the mean value of MD
and FA from the fibre rings. For the basic phantom, the MD and FA mean values are
derived from the entire fibre ring. The mean value and standard deviation for the MD
and FA are directly extracted using the fslstats command in Python, provided by
fslpy. Instead, for the crossing phantom, two additional binary masks are constructed
to extract the mean value of MD and FA from the phantom’s rings region and crossing
region independently. These binary masks, shown in Figure 5.3, are designed manually
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(a) (b)

Figure 5.2: Binary masks have been created for the regions in the phantoms with fibre
bundles. This includes (a) a ring mask for the basic phantom and (b) rings mask for the
crossing phantom.

using the FSLeyes viewer by FSL.

The quantitative maps are multiplied to the rings binary mask, Figure 5.3a, to extract
the tensor model results from the rings region of the crossing phantom using the FSL
command fslmaths in Python. The mean value and standard deviation of MD and FA
are then calculated in Python using the FSL tool fslstats. The same approach is used
to extract the results from the crossing region of the crossing phantom, with the exception
that the quantitative maps are multiplied by the crossing region binary mask, shown in
Figure 5.3b.

(a) (b)

Figure 5.3: Two binary masks were designed to extract diffusion results separately from
the rings region and the crossing region of the crossing phantom: (a) mask with only the
two rings, and (b) mask for the region where the two fibres cross eachother.
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In addition to the tensor model, the data is fitted to the Bingham-NODDI and AMICO-
NODDI models. The Bingham-NODDI model is implemented using the Dmipy Python
module, as stated in Section 4.2, and the fitting method can take up to 15 hours to
complete. The AMICO-NODDI is implemented using the publicly accessible GitHub
repository, as described in Section 4.3. The quantitative maps of interest for both models
are the tissue volume fraction, intra-neurite volume fraction, and ODI defined in Equation
(2.22), to characterise neurite dispersion. These results are extracted using the same ROIs
and procedure as the MD and FA values.

As previously stated, the two phantoms are scanned four times on separate days using
the same scanner and sequence acquisition to examine the repeatability of the DTI fit
results over time. The data is analysed using the previously described approach, obtaining
multiple values for all the quantities of interest. The coefficient of variation (CV) is
calculated to determine whether there is variance in the results over time. It is defined
as follows:

CV =
Standard deviation

Mean
· 100 (5.1)

The coefficient of variation (CV) is a statistical measure that expresses a dataset’s relative
variability or dispersion in relation to its mean. It is calculated as the ratio of the standard
deviation (a measure of dispersion) to the mean and is commonly given as a percentage,
as specified in Equation (5.1). A higher CV indicates more relative variability, whereas
a lower CV indicates less relative variability. In Equation (5.1), the Mean represents the
average metric value from ROIs measured on four different days. Similarly, the Standard
deviation is the standard deviation computed considering the results of the measurements
performed on four different days.

5.2 Brain data analysis

Four healthy participants are scanned using the identical scanner and acquisition proto-
col outlined in Section 3.3 to assess the consistency of the diffusion data in vivo. Each
subject is scanned twice, with a roughly 10-minute gap in between the scans. A struc-
tural T1-weighted scan (MP-RAGE) and a diffusion-weighted protocol comprise the data
acquisition. The pipeline of processing is fairly similar to that given for the phantoms.

The first step in the processing pipeline is to correct the distortion of diffusion-weighted
images using FSL’s topup [39] and eddy [41], implemented in Python with fslpy. For
the in vivo data, a brain mask is required for eddy to define the brain tissue from non-
brain structures such as the skull, scalp, and other tissues. The brain mask is obtained
using FSL’s bet (Brain Extraction Tool), callable in Python with the fslpy command
bet. After correcting for distortion, the tensor and NODDI models can be fitted to the
diffusion data to produce the desired quantitative maps: MD, FA, tissue volume fraction,
intra-neurite volume fraction, and ODI.

The acquired quantitative maps must be registered to a standard space, the MNI152,
before the results can be extracted. The MNI152 space is a commonly used coordinate
system in neuroimaging. It is based on the Montreal Neurological Institute (MNI) ref-
erence brain, which is a template brain made up of an average of 152 healthy brains. It
serves as a reference space against which individual brain scans can be compared and
analysed across participants and studies.
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In order to perform the registration of the acquired images to the MNI152, there are a few
steps that need to be completed. First of all, the b0 volume, the volume acquired with
a b-value = 0, is aligned to the T1-weighted scan. This registration can be done with
the tool offered by FSL called flirt (FMRIB’s Linear Image Registration Tool) [54, 55,
56], which is a fully automated robust and accurate tool for linear intra- and inter-modal
brain image registration. Image registration involves aligning two images by applying
transformations to one of the images, such as translation, rotation, scaling, and shearing
transformations so that it closely matches the other image. flirt employs a cost function
to assess the similarity of the source and reference images after the transformation. The
goal is to identify the transformation parameters that minimise this cost function, sug-
gesting improved image alignment. In this work, the cost function that is employed is the
mutual information with 6 degrees of freedom (DOF). This number of degrees of freedom
determines that only rigid body transformations are used to register the b0 image to the
structural T1.

The T1-weighted image must then be registered to the MNI152 space. To accomplish
this, first perform a linear registration of the T1 to the MNI using flirt with 12 degrees
of freedom. Then, using the linear transformation matrix generated by executing flirt, a
non-linear registration of the T1 to the MNI space can be performed. This is accomplished
through the employment of the FSL’s tool fnirt (FMRIB’s Nonlinear Image Registration
Tool) [57, 58], a nonlinear image registration tool used when the relationship between two
pictures involves complicated deformations that cannot be correctly represented by linear
transformations.

Along with the T1-weighted image registered to the MNI space, fnirt generates a coef-
ficient file containing the nonlinear spatial transformation used in each voxel to align the
T1 to the MNI space, with the intensity value in each voxel representing the amount that
this voxel has been shifted by the transformation. In addition to the T1, this warp file
can be used to register other volumes to the MNI space. By using the FSL’s command
applywarp, all the quantitative maps of interest can be aligned to the MNI152 space by
simply applying the transformations contained in the warp file generated by fnirt.

(a) (b) (c)

Figure 5.4: ROIs in the brain used to extract the values of mean diffusivity (MD), frac-
tional anisotropy (FA) and non-tissue volume fraction. One ROI per tissue type has been
chosen: (a) Genu and Splenium of Corpus Callosum for white matter, (b) Thalamus for
grey matter, (c) Ventricles for CSF.
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Several ROIs have been created to extract values from the quantitative maps produced
by fitting the tensor and NODDI models to the diffusion data. The binary masks are
generated by extracting from the brain atlases available in FSL the regions of interest.
Additionally, an erosion is applied to the binary masks in order to avoid possible partial
volume effects when extracting the results. The ROIs presented in Figure 5.4 have been
created to extract the values of fractional anisotropy (FA) and mean diffusivity (MD).
One ROI was chosen for each tissue type: Genu and Splenium of Corpus Callosum for
white matter, Thalamus for grey matter, and Ventricles for CSF. These ROIs are designed
in the MNI space, and the results are derived from the quantitative maps using fslmaths
and fslstats.

To obtain more insightful information from the NODDI fit results, particularly the intra-
neurite volume fraction and the ODI, because the CFS signal is suppressed in the NODDI
model’s tissue volume fraction, new ROIs are designed to extract the results from the just
mentioned quantitative maps. These ROIs are shown in Figure 5.5 and are the Caudate
and Putamen for grey matter, and the anterior and posterior limbs of the Internal Capsule
for white matter. Overall, the results of the Bingham component of the NODDI model
were extracted from the anterior and posterior limbs of the Internal Capsule and from
the Genu and Splenium of the Corpus Callosum for white matter, while for grey matter
from the Thalamus, Caudate and Putamen.

Since all ROIs are defined in the MNI space, it is possible to extract results from quan-
titative maps in the same regions for every acquisition by aligning the maps to MNI152
space. This ensures that ROIs remain consistent between scans and across subjects.

(a) (b) (c)

Figure 5.5: ROIs in the brain used to extract the values of intra-neurite volume fraction
and ODI. (a) Caudate for grey matter, (b) Putamen for grey matter, (c) anterior and
posterior limbs of the Internal Capsule for white matter.

After the data acquisition and the image processing to obtain all diffusion metrics, a
critical step is to conduct a statistical analysis to assess the temporal consistency of the
results. A paired t-test is used to determine whether there are statistically significant
differences in diffusion parameters between the first and the second scans. This method
is ideal for paired data collected from the same participants during different scanning
sessions. The paired t-test improves sensitivity to detect important changes in diffusion
parameters over time by accounting for inter-subject variability and focusing on within-
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subject changes. The null hypothesis in the paired samples t-test is that the average of the
differences between the paired observations in the two samples is zero. If the estimated
p-value is less than 0.05, the conclusion is that the mean difference between the paired
observations is statistically significant different from zero.

Finally, Bland-Altman analysis [59] is performed to assess the consistency and repro-
ducibility of the obtained diffusion metric measurements, derived from both the tensor
model and the NODDI model. With the Bland and Altman analysis, it is possible to
obtain the Bland-Altman Bias, which represents the median of the differences between
the measurements from the two scans and indicates the presence or absence of a consistent
offset or bias. A Bland-Altman Bias close to zero suggests that, on average, there is little
to no systematic difference between the measurements obtained from the two scans. In
addition to the Bland-Altman Bias, the repeatability coefficient (RC) at a 95% confidence
interval is obtained. The RC is an estimate of the maximum difference that one would
expect to observe between two measurements taken on the same subject under the same
conditions. A smaller RC value signifies lower measurement variability and, consequently,
higher consistency between the two measurement techniques. The 95% Confidence In-
terval for the RC provides a range within which the true RC value is likely to fall with
a certain level of confidence. If this interval includes zero, it implies that the observed
differences between measurements are not statistically significant, reinforcing the notion
of agreement between the two models.

Figure 5.6: Flowchart of the processing pipeline of the diffusion data for the phantoms
and the brains.
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Chapter 6

Phantom results

This chapter presents the results of the analysis performed on the two phantoms. Fitting
methods were performed on the collected diffusion-weighted data using either the Tensor
and NODDI models, which included both the Bingham and AMICO formulations. The
obtained results were determined from the obtained quantitative maps using the binary
masks defined in Chapter 5.

The chapter is divided into two sections: the first delves into the results collected from the
basic phantom, while the second part focuses on the crossing phantom. In all portions, a
detailed explanation of the achieved results is thoughtfully presented.

6.1 Basic phantom repeatability over time

In order to assess the consistency of the diffusion metrics over time, four scans of the basic
phantom were acquired. The basic phantom is described in Section 3.1 and illustrated in
Figure 3.2. The scans were spread out over a time period of one month and performed
at the Oxford Centre for Clinical Magnetic Resonance Research (OCMR) - University of
Oxford, using the GE Premier 3T scanner and a 21 channel head coil, as discussed in
Chapter 3.

The acquired data was then fitted with the Tensor and NODDI models, both in the
Bingham and AMICO formulations. In the case of the basic phantom, the mean and
the standard deviation of the diffusion metrics were extracted from the whole fibre ring
using the binary mask shown in Figure 5.2a. Finally, the coefficient of variation (CV) was
computed to assess the consistency of the obtained results over time.

Table 6.1: FA and MD results for the basic phantom to look for the consistency of the
results over time.

Tensor model
FA MD (·10−3mm2/s)

Scan 1 0.79± 0.05 0.85± 0.08
Scan 2 0.78± 0.10 0.80± 0.11
Scan 3 0.81± 0.04 0.81± 0.08
Scan 4 0.81± 0.05 0.82± 0.08

CV 1.63% 2.28%

The tensor model’s outcomes from four separate acquisitions on distinct days are pre-
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sented in Table 6.1. The key metrics of interest include fractional anisotropy (FA) and
mean diffusivity (MD), as well as the coefficient of variation (CV). Table 6.1 demonstrates
that both FA and MD exhibit CVs well below 5%. This indicates that there is minimal
variation in diffusion tensor metrics over time, ensuring their reliability and consistency.

The basic phantom’s MD and FA maps are displayed in Figure 6.1. From the images,
it is clear that the MD and FA values remain constant throughout the entire fibre ring,
indicating a uniform distribution of the diffusion properties.

(a) (b)

Figure 6.1: (a) MD expressed in 10−6mm2/s and (b) FA quantitative maps for the basic
phantom. The images show a uniform distribution of the tensor model parameters along
the whole fibre ring.

In Table 6.2 the results of the Bingham-NODDI fit parameters for the four acquisitions
are presented along with the CV associated to each metric. In Figure 6.2, all the quanti-
tive maps given as output from the Bingham-NODDI fit are shown. These images show
a fairly uniform distribution of the parameter of interest within the fibre ring, except for
the β-fraction.

To assess the level of dispersion or spread of neurite orientation within a specific brain
tissue volume, the orientation dispersion index (ODI) can be analysed. Low ODI values
suggest a well-organized structure of neural fibres within the voxel, indicating a relatively
uniform alignment of neurites - consistent with the phantom’s manufacturing. The ob-
tained results, illustrated in Figure 6.2a, show a strong reproducibility of the ODI value
over time, with a CV of 1.36%.

To better understand the concentration of neurites within a voxel, it is important to con-
sider the β-fraction. This parameter measures the proportion of a voxel’s volume that
is occupied by neurites, specifically axons and dendrites, in relation to the total volume
of the voxel. A higher β-fraction indicates a greater concentration of neurites within the
voxel. When the β-fraction is close to 1, it indicates a significant presence of neurites
within the voxel and a more anisotropic distribution of neurite orientations. Table 6.2
displays the β-fraction values, which indicate a greater concentration of fibres in the ring
compared to other components and the quantitative map is shown in Figure 6.2b. The
CV of 6.5% is slightly above the desired threshold of 5%. This could be due to the
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non-uniform distribution of the β-fraction values in the fibre ring, resulting in a higher
standard deviation of the measurements.

Another important NODDI parameter is the tissue volume fraction. This measures the
amount of brain tissue, including neurites and other cellular structures, occupying a voxel’s
volume. It is complementary to the non-tissue volume fraction, which measures the por-
tion of the voxel filled by CSF or other non-tissue components. The values obtained
for the basic phantom are very close to 1 as shown by the quantitative map in Figure
6.2c, indicating that the fibre ring is able to mimic the brain tissue, excluding the CSF.
Moreover, the results obtained are consistent over time with a CV equal to 1.47%.

Table 6.2: Bingham-NODDI metrics extracted from the fibre ring of the basic phantom.
The metrics of interest are the orientation dispersion index (ODI), the β-fraction, the
tissue volume fraction, the intra-neurite volume fraction and the parameters to assess the
goodness of fit. The CV is computed to assess the reproducibility of the results over time.

Bingham-NODDI model
ODI β-fraction Tissue v.f. Intra-neurite v.f. R2 MSE

Scan 1 0.021± 0.002 0.36± 0.22 0.98± 0.04 0.45± 0.08 0.985± 0.007 0.0011± 0.0005
Scan 2 0.0202± 0.0015 0.41± 0.25 0.96± 0.05 0.46± 0.08 0.980± 0.018 0.0016± 0.0016
Scan 3 0.0202± 0.0009 0.37± 0.25 0.94± 0.09 0.44± 0.08 0.982± 0.007 0.0014± 0.0006
Scan 4 0.0201± 0.0007 0.42± 0.21 0.96± 0.04 0.45± 0.07 0.985± 0.004 0.0012± 0.0004

CV 1.36% 6.5% 1.47% 1.57% 0.22% 14.5%

In addition to the tissue volume fraction, the intra-neurite volume fraction refers to the
proportion of the voxel’s volume that is occupied by the fibres of the phantom, without
considering other tissue components. Also in the case of the intra-neurite volume fraction,
the results in Figure 6.2d are repeatable over time with a coefficient of variation of 1.57%.

Finally, to evaluate the goodness of fit, two measures are available - the mean squared
error (MSE) and the R2. The obtained values for the two indices indicate that the model
fits well the data, with a very low MSE, in Figure 6.2f, and an R2 coefficient very close
to 1, as shown in Figure 6.2e. Additionally, the CV for the R2 is extremely low, equal to
0.22%, while for the MSE is 14.5%. The quite high CV for the MSE can be due to the
very low values of the MSE itself, in some cases also equal to its standard deviation.

Table 6.3: The table shows the mean and standard deviation of metrics extracted from the
basic phantom’s fibre ring. These include the orientation dispersion (OD) index, isotropic
volume fraction (ISOVF), and intra-cellular volume fraction (ICVF). CV indicates result
reproducibility over time.

AMICO-NODDI model
OD ISOVF ICVF

Scan 1 0.0300± 0.0005 0.05± 0.04 0.45± 0.07
Scan 2 0.0300± 0.0007 0.06± 0.05 0.47± 0.09
Scan 3 0.0300± 0.0002 0.06± 0.04 0.44± 0.08
Scan 4 0.0300± 0.0003 0.08± 0.06 0.44± 0.10

CV 0% 17.4% 2.72%

The acquired diffusion data was also fitted to the linear formulation of the Watson-NODDI
model, referred to as the AMICO-NODDI model, illustrated in Section 2.5. The imple-
mentation of the AMICO-NODDI model is explained in Section 4.3. The parameters of
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Quantitative maps of the parameters given as output by the Bingham-NODDI
model. The images represent (a) the ODI, (b) the β-fraction, (c) the tissue volume
fraction, (d) the intra-neurite volume fraction, (e) R2 coefficient and (f) the mean squared
error.
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interest in the case of the AMICO-NODDI model are the orientation dispersion (OD) in-
dex, the isotropic volume fraction (ISOVF) and the intra-cellular volume fraction (ICVF),
which corresponds to the intra-neurite volume fraction in the Bingham formulation of the
NODDI model. Table 6.3 presents the results for the AMICO-NODDI model in the case
of the repeated measurements over time of the basic phantom, while the quantitative
maps are shown in Figure 6.3.

(a) (b)

(c)

Figure 6.3: (a) orientation dispersion (OD) index, (b) isotropic volume fraction (ISOVF)
and (c) intra-cellular volume fraction (ICVF) quantitative maps for the basic phantom
given by the AMICO-NODDI model. The images show how the parameters are distributed
over the fibre ring.

The OD index, which indicates the level of neurite orientation dispersion, has a perfectly
constant value across time, with a CV of 0%. The OD index is similarly nearly perfectly
constant across the whole fibre ring, as shown in Figure 6.3a. Furthermore, the OD index
of the AMICO model is slightly higher than the ODI of the Bingham-NODDI model. This
might be due to the fact that the AMICO formulation adopts the Watson distribution
rather than the Bingham distribution to model neurite orientation dispersion.

The ISOVF, shown in Figure 6.3b, as expected, has a very low value, emphasising how
the phantom was created with the goal of mimicking neurite fibres in the human brain.
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On the other hand, the standard deviation associated with the values of this parameter
is almost as high as the value itself, bringing to a CV equal to 17.4%. Finally, the ICVF,
shown in Figure 6.3c, presents a low coefficient of variation of 2.72%, indicating the strong
consistency and reliability of this parameter over time. Moreover, the values obtained in
the AMICO formulation are consistent with the values obtained for the intra-neurite vol-
ume fraction in the Bingham-NODDI model, reported in Table 6.2.

Overall, the results obtained for the basic phantom, in all three cases of the tensor model,
the Bingham-NODDI model and the AMICO-NODDI model, are consistent and repeat-
able in time, assessing in this way the stability and reliability of the NODDI model in
both formulations.

To investigate whether the repeated acquisition of data could impact the accuracy of mea-
surements, an analysis was conducted using the basic phantom. Specifically, the study
aimed to assess whether the heating of the magnetic field gradient coil and variations
in the main magnetic field due to heating after multiple acquisitions had any effect on
the results. To do this, the phantom was scanned eight times, with one acquisition right
after the other and the acquired data was fitted with both the Bingham and AMICO
formulations of the NODDI model.

Table 6.4: Bingham-NODDI metrics of the basic phantom from eight scans in a row.
The metrics of interest are the orientation dispersion index (ODI), the β-fraction, the
tissue volume fraction, the intra-neurite volume fraction and the parameters to assess the
goodness of fit. The CV is computed to assess whether the magnetic field gradient coils
heating could affect in any way the measurements.

Bingham-NODDI model
ODI β-fraction Tissue v.f. Intra-neurite v.f. R2 MSE

Scan 1 0.0202± 0.0009 0.37± 0.25 0.94± 0.09 0.44± 0.08 0.982± 0.007 0.0014± 0.0006
Scan 2 0.0202± 0.0009 0.37± 0.24 0.97± 0.05 0.43± 0.07 0.983± 0.006 0.0014± 0.0005
Scan 3 0.0202± 0.0009 0.37± 0.24 0.97± 0.05 0.43± 0.07 0.983± 0.006 0.0013± 0.0005
Scan 4 0.0202± 0.0009 0.36± 0.25 0.97± 0.05 0.42± 0.07 0.983± 0.006 0.0013± 0.0005
Scan 5 0.0202± 0.0009 0.35± 0.24 0.97± 0.04 0.42± 0.07 0.983± 0.006 0.0013± 0.0005
Scan 6 0.0202± 0.0009 0.38± 0.24 0.96± 0.05 0.42± 0.07 0.982± 0.006 0.0014± 0.0005
Scan 7 0.0202± 0.0009 0.36± 0.24 0.97± 0.05 0.42± 0.07 0.983± 0.006 0.0014± 0.0005
Scan 8 0.0201± 0.0008 0.37± 0.23 0.96± 0.05 0.43± 0.07 0.983± 0.006 0.0014± 0.0005

CV 0.16% 2.34% 1.03% 1.63% 0.044% 3.55%

Table 6.4 presents the analysis results, demonstrating a remarkable level of stability ex-
hibited by the Bingham-NODDI metrics across all eight successive acquisitions. This
is evidenced by the conspicuously low coefficients of variation associated with each pa-
rameter. This observation conclusively verifies the Bingham-NODDI analytical method’s
consistency, showcasing its robustness against potential distortion caused by magnetic
field gradient coil heating. As a result, this not only confirms the method’s reliability but
also offers the opportunity to conduct multiple consecutive scans without compromising
metric accuracy.

Similarly, Table 6.5 illustrates the AMICO-NODDI model analysis results, indicating a no-
table degree of consistency across all eight subsequent acquisitions. The AMICO-NODDI
analytical approach’s robustness is highlighted by the significantly low CV for each pa-
rameter, even in the presence of possible magnetic field gradient coil heating-induced
distortions. This result demonstrates the scanner’s stability and the method’s reliability,
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providing an opportunity to do several successive scans without impacting the validity of
the produced metrics.

Table 6.5: AMICO-NODDI results for the basic phantom in the case of eight consecu-
tive measurements. The table reports the mean and standard deviation for each metric
extracted from the fibre ring of the basic phantom. The metrics of interest are the orienta-
tion dispersion (OD) index, the isotropic volume fraction (ISOVF) and the intra-cellular
volume fraction (ICVF). The CV is calculated to determine whether the magnetic field
gradient coil heating has any effect on the measurements.

AMICO-NODDI model
OD ISOVF ICVF

Scan 1 0.0300± 0.0002 0.06± 0.04 0.44± 0.08
Scan 2 0.0300± 0.0007 0.06± 0.05 0.43± 0.08
Scan 3 0.0300± 0.0001 0.05± 0.05 0.43± 0.07
Scan 4 0.0300± 0.0006 0.06± 0.05 0.43± 0.07
Scan 5 0.0300± 0.0001 0.05± 0.04 0.43± 0.07
Scan 6 0.0300± 0.0003 0.06± 0.05 0.43± 0.07
Scan 7 0.0300± 0.0001 0.06± 0.05 0.43± 0.07
Scan 8 0.0300± 0.0001 0.06± 0.05 0.43± 0.07

CV 0% 7.53% 0.77%

6.2 Crossing phantom repeatability over time

The second phantom employed in the study is the crossing phantom, described in Section
3.1 and shown in Figure 3.3. The phantom is used to mimic restricted diffusion in the
brain in areas in which crossing fibres are present, as it comprises two fibre rings that
cross each other at 60◦. The analysis pipeline is analogous to the one used for the basic
phantom with the only difference being that the results are extracted from two distinct
ROIs, shown in Figure 5.3. These two masks are used to extract the results from the
rings and crossing region separately.

Table 6.6: FA and MD results for the crossing phantom both in the region of the rings
(Table a) and in the crossing region (Table b). Together with the FA and MD metrics,
the CV is shown to assess the consistency of the results over time.

Rings region
FA MD (·10−3mm2/s)

Scan 1 0.71± 0.06 0.86± 0.07
Scan 2 0.71± 0.07 0.93± 0.09
Scan 3 0.71± 0.07 0.93± 0.09
Scan 4 0.71± 0.08 0.93± 0.10

CV 0% 3.32%

(a)

Crossing region
FA MD (·10−3mm2/s)

Scan 1 0.52± 0.05 0.65± 0.06
Scan 2 0.51± 0.06 0.70± 0.08
Scan 3 0.50± 0.06 0.70± 0.09
Scan 4 0.51± 0.06 0.75± 0.11

CV 1.39% 5.05%

(b)

Table 6.6 presents the results for the tensor model metrics, FA and MD together with the
CV to assess the consistency over time. The results show great repeatability, especially
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for the fractional anisotropy with a CV equal to 0% in the rings and 1.39% in the crossing
region, demonstrating the great stability of the tensor model. It is interesting to highlight
the fact that the fractional anisotropy is sensibly low in the region in which the two fibre
rings cross each other. Also, the mean diffusivity results are repeatable in time with a
CV of 3.32% in the rings region and 5.05% in the crossing region.

Figure 6.4 shows the quantitative maps for MD and FA in the case of the crossing phantom.
It is particularly interesting to notice how the FA and MD values are fairly constant over
the fibre ring but drastically change in the region in which the two fibres cross each other,
decreasing FA and MD values. This great difference is the main reason why the results
were extracted separately from the two regions.

(a) (b)

Figure 6.4: (a) MD expressed in 10−6mm2/s and (b) FA quantitative maps for the crossing
phantom. The images show a uniform distribution of the tensor model parameters along
the fibre rings but different values in the crossing region, especially in the case of FA.

The Bingham-NODDI fit results for the crossing phantom are presented in Table 6.7
for the ring region, excluding the fibre crossing area. The ODI value is close to zero,
indicating minimal neurite dispersion, while the β-fraction highlights a significant presence
of neurites within the rings. The ODI consistency is confirmed with a coefficient of
variation of 5.43%, while the β-fraction presents a higher CV of 16.5%, suggesting possible
variation over time due to its high standard deviation compared to the mean value. This
non-uniform distribution of β-fraction can be observed in Figure 6.5b, which displays the
quantitative map.

In Table 6.7, the tissue volume fraction is shown to be almost equal to 1, indicating the
absence of any water component in the fibre rings. This parameter is highly stable and
consistent, evidenced by the CV of only 0.86%. Furthermore, the study reveals a slightly
lower intra-neurite volume fraction when compared to the basic phantom, a result that
could be due to how the phantom was manufactured. However, the analysis shows that the
intra-neurite volume fraction remains consistent over time with a coefficient of variation
of only 3.60%. The quantitative maps of these two parameters are shown in Figure 6.5c
and 6.5d. Finally, the two indices to evaluate the goodness of fit are reported in Table
6.7. The R2 and MSE show that the Bingham-NODDI model fits well the acquired data
with an R2 coefficient very close to 1 and a mean squared error close to 0.
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Table 6.7: Bingham-NODDI metrics extracted from the fibre rings of the crossing phan-
tom. The metrics of interest are the orientation dispersion index (ODI), the β-fraction,
the tissue volume fraction, the intra-neurite volume fraction and the parameters to assess
the goodness of fit. The CV is computed to assess the reproducibility of the results over
time.

Bingham-NODDI − Rings region
ODI β-fraction Tissue v.f. Intra-neurite v.f. R2 MSE

Scan 1 0.023± 0.015 0.49± 0.22 0.98± 0.05 0.36± 0.07 0.987± 0.015 0.001± 0.001
Scan 2 0.0204± 0.0015 0.33± 0.25 0.96± 0.06 0.33± 0.08 0.988± 0.004 0.0008± 0.0003
Scan 3 0.0203± 0.0035 0.34± 0.25 0.96± 0.05 0.34± 0.09 0.986± 0.012 0.0010± 0.0009
Scan 4 0.0204± 0.0013 0.38± 0.27 0.97± 0.05 0.33± 0.08 0.985± 0.009 0.0011± 0.0007

CV 5.43% 16.5% 0.86% 3.60% 0.11% 11.2%

The same analysis was performed also for the region of the crossing phantom in which
the two fibre rings cross each other. In this case, the mean and standard deviation for the
parameter of interest were extracted from the ROI defined by the binary mask in Figure
5.3b. The results are reported in Table 6.8

Table 6.8: Bingham-NODDI metrics extracted from the region in which the two fibre
rings of the crossing phantom cross each other. The metrics of interest are the orientation
dispersion index (ODI), the β-fraction, the tissue volume fraction, the intra-neurite volume
fraction and the parameters to assess the goodness of fit. The CV is shown as a metric
to assess the reproducibility of the results over time.

Bingham-NODDI − Crossing region
ODI β-fraction Tissue v.f. Intra-neurite v.f. R2 MSE

Scan 1 0.10± 0.05 0.79± 0.13 0.990± 0.003 0.44± 0.07 0.97± 0.03 0.002± 0.003
Scan 2 0.09± 0.05 0.81± 0.18 0.986± 0.017 0.40± 0.07 0.972± 0.012 0.0018± 0.0008
Scan 3 0.08± 0.06 0.83± 0.20 0.988± 0.008 0.40± 0.07 0.972± 0.011 0.0019± 0.0007
Scan 4 0.06± 0.05 0.80± 0.17 0.985± 0.018 0.38± 0.08 0.979± 0.009 0.0014± 0.0006

CV 17.9% 1.83% 0.19% 5.38% 0.35% 12.8%

The crossing region of the phantom showed a slight increase in ODI compared to the rings
region. As it can be seen from the quantitative map in Figure 6.5a, the ODI presents
with an uneven distribution in the crossing region, resulting in a CV of 17.9% as reported
in Table 6.8. This high CV is also related to the fact that the Bingham-NODDI model
is not able to fully resolve crossing fibres, as shown in the literature. In contrast, the
density of fibres in the crossing region of the phantom is greater than in the rings. This
is evidenced by the higher β-fraction values, compared to the rings region, which reaches
up to 0.83± 0.20 with a CV of 1.83%.

The study revealed that the tissue volume fraction remained consistent over time, with a
high level of uniformity even in regions where fibres intersect. The coefficient of variation
is 0.19%, indicating remarkable consistency. The intra-neurite volume fraction is slightly
higher in the areas where the fibres cross each other, thus with a higher concentration of
fibres, resulting in a coefficient of variation of 5.38%. The model’s fit to the data can be
evaluated through the R2 coefficient and the mean squared error. These parameters show
that the Bingham-NODDI model fitted well to the diffusion data, also in the case of the
crossing fibres. However, in Figure 6.5f it can be clearly seen how the MSE is higher in
the crossing region with respect to its value along the fibre rings.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Quantitative maps of the parameters given as output by the Bingham-NODDI
model. The images represent (a) the ODI, (b) the β-fraction, (c) the tissue volume
fraction, (d) the intra-neurite volume fraction, (e) R2 coefficient and (f) the MSE.
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In addition to the Bingham-NODDI mode, the acquired diffusion data of the crossing
phantom was also fitted to the AMICO-NODDI model. Table 6.9 presents the results
extracted from the two rings of the crossing phantom, while the quantitative maps are
shown in Figure 6.6. It can be clearly seen that the OD and the ICVF presents with a
strong consistency over time, with CV respectively of 0% and 2.08%. As in the case of the
basic phantom, the obtained OD values are slighlty lower that the ODI values obtained
with the Bingham-NODDI model. This could be due to the fact that the AMICO-NODDI
model employes the Watson distribution instead of the Bingham distribution to model
neurite orientation dispersion. Moreover, the OD values in the rings of the crossing
phantom are consistent with the values obtained in the fibre ring of the basic phantom,
showed in Table 6.3. In Figure 6.6c it can be noticed how the ICVF is high and constant
along the fibre rings but it substantially decreases when approaching the crossing region,
probably due to a fanning of the fibres, leading to a lower neurite density within the single
voxel.

Table 6.9: AMICO-NODDI results for the region of the rings of the crossing phantom.
The table reports the mean and standard deviation for each metric extracted from the
fibre ring of the basic phantom. The metrics of interest are the orientation dispersion (OD)
index, the isotropic volume fraction (ISOVF) and the intra-cellular volume fraction. The
CV is computed to assess the reproducibility of the results over time.

AMICO-NODDI − Rings region
OD ISOVF ICVF

Scan 1 0.030± 0.002 0.03± 0.02 0.35± 0.06
Scan 2 0.0300± 0.0002 0.06± 0.06 0.33± 0.08
Scan 3 0.0300± 0.0001 0.06± 0.04 0.34± 0.08
Scan 4 0.0300± 0.0006 0.05± 0.04 0.34± 0.08

CV 0% 24.5% 2.08%

Table 6.10: AMICO-NODDI results for the crossing region of the crossing phantom. The
table reports the mean and standard deviation for each metric extracted from the region
of the crossing phantom in which the two fibre rings cross each other. The metrics of
interest are the orientation dispersion (OD) index, the isotropic volume fraction (ISOVF)
and the intra-cellular volume fraction. The CV is computed to assess the reproducibility
of the results over time.

AMICO-NODDI − Crossing region
OD ISOVF ICVF

Scan 1 0.14± 0.02 0.0± 0.0 0.44± 0.06
Scan 2 0.13± 0.02 0.04± 0.04 0.39± 0.07
Scan 3 0.13± 0.02 0.04± 0.02 0.39± 0.07
Scan 4 0.11± 0.03 0.04± 0.03 0.36± 0.08

CV 8.55% 57.7% 7.27%

The results of the AMICO metrics in the region of the crossing phantom in which the two
fibre rings cross each other are reported in Table 6.10. In this case, it can be clearly seen
that all the metrics present higher CVs, highlighting the fact that the NODDI model can-
not correctly resolve crossing fibres. Specifically, the OD has a CV of 8.55% with a mean
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value of 0.13± 0.01, higher with respect to the rings region indicating lower compactness
of fibres and a higher orientation dispersion. The higher OD value in the crossing region
with respect to the rings region can be clearly seen in the quantitative map in Figure 6.6a.
The ISOVF results with a high CV, equal to 57.7%. This could be because the values
are comparable to zero due to how the phantom was built. Additionally, in Figure 6.6b
it can be noted how the ISOVF is not constant over the fibre rings, contributing to an
increase in the CV.

(a) (b)

(c)

Figure 6.6: (a) orientation dispersion (OD) index, (b) isotropic volume fraction (ISOVF)
and (c) intra-cellular volume fraction (ICVF) quantitative maps for the crossing phantom
given by the AMICO-NODDI model. The images show how the parameters are distributed
over the fibre rings.

Overall, the results of the crossing phantom measurements show that the NODDI metrics
have a high degree of temporal stability with consistently low coefficients of variation as-
sociated with each parameter. These findings not only confirm the NODDI methodology’s
robustness but also demonstrate its suitability for longitudinal studies. The measures’ in-
herent consistency contributes to the growing body of evidence proving the applicability
of NODDI in a number of research and clinical applications.

Also in the case of the crossing phantom, an investigation was performed to see whether
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repetitive data acquisitions could affect measurement accuracy. The study specifically fo-
cused on finding out whether the heating of the magnetic field gradient coil after several
acquisitions had any effect on the results. To do this, the phantom was scanned eight
times, one after the other. The diffusion data was fitted with the Bingham-NODDI and
AMICO-NODDI models and the results were extracted from the obtained quantitative
maps, in Figure 6.5 and 6.6, using the two binary masks for the rings and crossing region.

In Table 6.11 are displayed the findings derived from the ring region. The table demon-
strates that the coefficients of variation are remarkably low, indicating the robustness of
the NODDI model outcomes. This means that the Bingham-NODDI results are not influ-
enced by the possible changes in the main magnetic field B0 caused by the heating of the
magnetic field gradient coils, supporting the result already found with the measurements
performed with the basic phantom.

Table 6.11: Bingham-NODDI metrics extracted from the region of the rings in the case
of eight consecutive measurements. The metrics of interest are the orientation dispersion
index (ODI), the β-fraction, the tissue volume fraction, the intra-neurite volume fraction
and the parameters to assess the goodness of fit. The CV is computed to assess the
stability and robustness of the results.

Bingham-NODDI − Rings region
ODI β-fraction Tissue v.f. Intra-neurite v.f. R2 MSE

Scan 1 0.0203± 0.0035 0.34± 0.25 0.96± 0.05 0.34± 0.09 0.986± 0.012 0.0010± 0.0009
Scan 2 0.0205± 0.0041 0.39± 0.25 0.96± 0.05 0.34± 0.09 0.987± 0.013 0.0010± 0.0010
Scan 3 0.0203± 0.0016 0.38± 0.26 0.96± 0.05 0.34± 0.09 0.986± 0.013 0.0010± 0.0011
Scan 4 0.0203± 0.0014 0.33± 0.25 0.96± 0.05 0.33± 0.09 0.987± 0.009 0.0010± 0.0007
Scan 5 0.0203± 0.0012 0.37± 0.25 0.96± 0.05 0.34± 0.09 0.986± 0.012 0.0010± 0.0009
Scan 6 0.0204± 0.0032 0.34± 0.24 0.95± 0.05 0.34± 0.09 0.987± 0.013 0.0010± 0.0010
Scan 7 0.0203± 0.0015 0.36± 0.25 0.96± 0.05 0.34± 0.09 0.987± 0.011 0.0010± 0.0009
Scan 8 0.0203± 0.0013 0.38± 0.24 0.95± 0.05 0.34± 0.09 0.986± 0.012 0.0010± 0.0011

CV 0.34% 5.78% 0.45% 0.98% 0.051% 0%

Table 6.12 presents the results obtained from the crossing region of the phantom for
the Bingham-NODDI model. It is important to note that these results are consistent and
repeatable across all eight acquisitions, with the coefficients of variation for all parameters
are below 3%.
In Table 6.13 are presented the AMICO-NODDI model results of the eight repeated
acquisitions for fibre rings of the crossing phantom. These results show a remarkable
stability of the AMICO-NODDI model despite the heating of the magnetic field gradient
coils. The consistency of the AMICO metrics is by the obtained CVs, which are all below
1%.
Similarly, Table 6.14 shows the results of the eight repeated acquisitions in the case of the
AMICO-NODDI model, extracted from the region in which the two fibre rings intersect.
In this case, the OD and the ICVF are consistent with time, having a CV of respectively
0.39% and 1.12%. On the other hand, the ISOVF presents with a CV equal to 27.4%.
This high CV may be due to its uneven distribution in the crossing region and also to its
low value.
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Table 6.12: Bingham-NODDI metrics in the case of eight consecutive measurements ex-
tracted from the region of the phantom in which the two fibres cross each other. The
metrics of interest are presented together with the CV to assess the consistency of the
results despite magnetic field gradient coil heating.

Bingham-NODDI − Crossing region
ODI β-fraction Tissue v.f. Intra-neurite v.f. R2 MSE

Scan 1 0.08± 0.06 0.83± 0.20 0.988± 0.008 0.40± 0.07 0.972± 0.011 0.0019± 0.0007
Scan 2 0.08± 0.05 0.84± 0.17 0.987± 0.009 0.40± 0.07 0.973± 0.010 0.0018± 0.0007
Scan 3 0.08± 0.05 0.84± 0.17 0.988± 0.010 0.40± 0.07 0.972± 0.011 0.0019± 0.0007
Scan 4 0.08± 0.05 0.84± 0.18 0.986± 0.029 0.38± 0.07 0.974± 0.010 0.0018± 0.0007
Scan 5 0.08± 0.06 0.86± 0.13 0.987± 0.014 0.39± 0.07 0.972± 0.011 0.0019± 0.0007
Scan 6 0.08± 0.06 0.83± 0.19 0.988± 0.007 0.40± 0.07 0.972± 0.010 0.0019± 0.0007
Scan 7 0.08± 0.06 0.84± 0.17 0.987± 0.011 0.39± 0.07 0.973± 0.010 0.0018± 0.0007
Scan 8 0.08± 0.06 0.83± 0.19 0.986± 0.012 0.39± 0.07 0.973± 0.011 0.0018± 0.0007

CV 0% 1.11% 0.05% 1.78% 0.07% 2.70%

Table 6.13: AMICO-NODDI metrics extracted from the region of the rings in the case
of eight consecutive measurements. The mean and standard deviation for each metric
of interest, including the orientation dispersion (OD) index, isotropic volume fraction
(ISOVF), and intra-cellular volume fraction (ICVF), are presented. The coefficient of
variation (CV) is calculated to determine whether the magnetic field gradient coil heating
affected the measurements.

AMICO-NODDI − Rings region
OD ISOVF ICVF

Scan 1 0.0300± 0.0001 0.06± 0.04 0.34± 0.09
Scan 2 0.0300± 0.0007 0.06± 0.04 0.34± 0.09
Scan 3 0.0300± 0.0005 0.06± 0.04 0.34± 0.09
Scan 4 0.0300± 0.0013 0.06± 0.04 0.33± 0.09
Scan 5 0.0300± 0.0001 0.06± 0.04 0.34± 0.09
Scan 6 0.0300± 0.0002 0.06± 0.05 0.34± 0.09
Scan 7 0.0300± 0.0004 0.06± 0.05 0.34± 0.09
Scan 8 0.0300± 0.0001 0.06± 0.05 0.34± 0.09

CV 0% 0% 0.98%

Overall, the obtained results demonstrate the stability of the Bingham-NODDI param-
eters despite the heating of the magnetic field gradient coils. This is of significant im-
portance for several reasons. To begin, when doing neuroimaging investigations, ensuring
that the data obtained is reliable and reproducible is critical. If the acquired data were
susceptible to magnetic field gradient coil heating and B0 field changes due to heating,
it could cause the NODDI model to not fit the data well, possibly leading to variations
in measurements across scans, resulting in inconsistent results. The stability of the data
under such conditions ensures accurate interpretations and comparisons between different
subjects or time points can be made with confidence.

Furthermore, it is typical in clinical settings to do numerous successive scans on the same
person for longitudinal investigations or to evaluate treatment progress. If the NODDI
imaging process were to be influenced by heating in the magnetic field gradient coil, it
could significantly complicate the interpretation of observed changes between scanning
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Table 6.14: The table shows the mean and standard deviation of AMICO-NODDI metrics
extracted from the crossing region of the crossing phantom. Metrics of interest include
OD index, ISOVF, and ICVF. The CV is calculated to detect magnetic field gradient coil
heating effects on measurements.

AMICO-NODDI − Crossing region
OD ISOVF ICVF

Scan 1 0.128± 0.016 0.04± 0.02 0.39± 0.07
Scan 2 0.127± 0.016 0.03± 0.02 0.39± 0.07
Scan 3 0.127± 0.016 0.02± 0.02 0.39± 0.07
Scan 4 0.128± 0.018 0.05± 0.03 0.38± 0.07
Scan 5 0.128± 0.017 0.04± 0.03 0.39± 0.07
Scan 6 0.127± 0.016 0.03± 0.02 0.39± 0.07
Scan 7 0.127± 0.018 0.05± 0.03 0.38± 0.07
Scan 8 0.128± 0.017 0.03± 0.03 0.39± 0.07

CV 0.39% 27.4% 1.12%

sessions. Because these indicators are stable, physicians and researchers can accurately
examine and track neurological disorders or treatment responses without the danger of
confounding factors.

Additionally, stability in varying conditions can lead to more efficient use of resources,
such as MRI scanner time. Researchers and clinicians can perform more scans in a given
time period without affecting data quality, enhancing data collecting efficiency.

In summary, the stability of NODDI parameters despite magnetic field gradient coil heat-
ing is crucial for maintaining data quality, enabling reliable longitudinal studies, enhancing
scientific validity, and optimizing resource utilization in both clinical and research con-
texts.

To conclude, the consistent and reliable NODDI results across multiple days have signifi-
cant implications for both research and clinical applications. This stability is important
for detecting changes in brain structure over time and making appropriate patient care
decisions. It also increases NODDI’s credibility as a tool, enhancing its significance in
understanding complicated brain processes. Researchers may confidently examine data
and test new hypotheses, and efficient resource management becomes more realistic. In
summary, the consistent NODDI results ensure its reliability and promise to expand the
knowledge of brain health and illness.
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Chapter 7

In vivo Results

In order to assess the repeatability of the diffusion metrics over time, four healthy vol-
unteers were scanned with the 3T GE Premier scanner and the 21 channels head coil
available at OCMR - University of Oxford. The acquisition protocol is described in Sec-
tion 3.3.

This chapter presents the results of the analysis performed on the healthy volunteers.
The acquired in vivo diffusion data was fitted with the Tensor and NODDI models, both
in the Bignham and AMICO formulations to extract the diffusion metrics with the final
aim of assessing the consistency of these results over time. The participants were scanned
twice on the same day, with a 10-minute break between the two scans. The results were
extracted from specific ROIs, as described in Section 5.2. The ROIs binary masks are
shown in Figure 5.4 and Figure 5.5.

The first part of the chapter focuses on the Tensor model results, assessing the repeatabil-
ity of MD and FA over time. Then, the second part of the chapter presents the Bingham-
NODDI results, studying the consistency of the obtained metrics in time. Lastly, the
third part of the chapter deals with the results of the AMICO-NODDI model.

7.1 In vivo Tensor model results

The acquired data was first fitted with the Tensor model, to obtain the FA and MD
quantitative maps. These images are shown in Figure 7.1 together with the structural
T1-weighted image to be used as a reference. The shown quantitative maps are registered
to the standard space MNI152 in order to be able to extract the results always from the
same ROIs, defined in Section 5.2 and shown in Figure 5.4. Specifically, FA and MD values
were extracted from the Corpus Callosum, representing white matter, the Thalamus for
grey matter and the Ventricles to look at the metrics in the CSF.

The results of FA and MD for the four participants are reported in Table 7.1. As can be
observed from the table, as expected, the Corpus Callosum exhibits a higher FA compared
to the Thalamus and the Ventricles, remarking the highly organised structure of white
matter. On the other hand, the FA in the Ventricles is quite low, reflecting the more
isotropic water diffusion in CSF. Table 7.1 also reports the p-values obtained from the
paired t-test of FA and MD over time. As it can be clearly seen, all the obtained p-values
are sensibly greater than the significance level of 0.05. This implies that the null hypoth-
esis H0 cannot be rejected, meaning that there is no statistically significant difference
between the two values of FA and MD obtained in the first and second scans. In other
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(a) FA map (b) MD map

(c) Structural T1 image

Figure 7.1: (a) FA and (b) MD expressed in 10−6mm2/s quantitative maps obtained by
fitting the diffusion in vivo data to the Tensor model. In (c) the structural T1 weighted
image is shown as a reference.

words, there is no strong statistical evidence to claim a significant difference between the
FA and MD values from the first and the second scans, ensuring the consistency of the
tensor model metrics over time.

In addition to the paired t-test to obtain the p-value, the Bland-Altman analysis is car-
ried out to obtain the Bland-Altman bias, so the median of the differences between the
values obtained in the first and second scan, the repeatability coefficient (RC) and the
95% confidence interval (CI). The results of the analysis are shown in Table 7.1. The
Bland-Altman bias, representing the median difference between the measurement results
obtained from the two scans, both for FA and MD, in all the ROIs is close to zero, in-
dicating that the two measurements being compared, the first and second scans, are in
good agreement, on average. This suggests that the measurements from both scans tend
to be quite similar, with little to no systematic difference between them.

Moreover, the results reported in Table 7.1 show very low RC for both FA and MD in
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Table 7.1: Tensor model results for the four healthy volunteers. The table shows the
FA and MD results together with the p-value from the paired t-test, the Bland-Altman
Bias, the repeatability coefficient (RC) and the 95% confidence interval (CI) to assess the
reproducibility of the results over time.

Tensor model − Brain
FA MD (·10−3mm2/s)

Healthy Volunteer 1

Corpus Callosum
Scan 1 0.63± 0.17 0.67± 0.14
Scan 2 0.65± 0.17 0.64± 0.14

Thalamus
Scan 1 0.28± 0.05 0.63± 0.06
Scan 2 0.30± 0.06 0.60± 0.06

Ventricles
Scan 1 0.23± 0.11 1.68± 0.24
Scan 2 0.24± 0.12 1.67± 0.24

Healthy Volunteer 2

Corpus Callosum
Scan 1 0.63± 0.18 0.65± 0.18
Scan 2 0.63± 0.18 0.65± 0.18

Thalamus
Scan 1 0.28± 0.06 0.59± 0.06
Scan 2 0.28± 0.06 0.60± 0.06

Ventricles
Scan 1 0.20± 0.10 1.93± 0.27
Scan 2 0.20± 0.10 1.95± 0.28

Healthy Volunteer 3

Corpus Callosum
Scan 1 0.62± 0.16 0.68± 0.12
Scan 2 0.63± 0.17 0.67± 0.12

Thalamus
Scan 1 0.29± 0.06 0.63± 0.05
Scan 2 0.30± 0.06 0.62± 0.05

Ventricles
Scan 1 0.27± 0.13 1.46± 0.31
Scan 2 0.27± 0.13 1.47± 0.32

Healthy Volunteer 4

Corpus Callosum
Scan 1 0.60± 0.18 0.68± 0.14
Scan 2 0.60± 0.19 0.65± 0.13

Thalamus
Scan 1 0.29± 0.07 0.66± 0.10
Scan 2 0.29± 0.07 0.64± 0.09

Ventricles
Scan 1 0.18± 0.08 1.96± 0.28
Scan 2 0.19± 0.09 1.93± 0.27

p-value
Corpus Callosum 0.2152 0.1018

Thalamus 0.2152 0.2394
Ventricles 0.1817 0.8361

Bland-Altman Bias
Corpus Callosum 0.0050 −0.0175

Thalamus 0.0050 −0.0150
Ventricles 0.0050 0

RC
Corpus Callosum 0.0200 0.0050

Thalamus 0.0200 0.0100
Ventricles 0.0100 0.0200

95% CI
Corpus Callosum 0-0.02 −0.03-0.005

Thalamus 0-0.02 −0.03-0.01
Ventricles 0-0.01 −0.03-0.02

all the ROIs taken into consideration, assessing the consistency and reproducibility of the
FA and MD results over time.

Finally, the 95% Confidence Interval for the repeatability coefficient (RC) presents a range
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within which a high level of confidence can be expressed regarding the true value of RC.
In this study, the obtained 95% Confidence Intervals are very narrow and they include
zero, meaning that the measurements obtained from the two scans being compared are
not significantly different from each other within the given level of confidence.

Overall, the obtained p-values from the results consistently show that the null hypothe-
sis cannot be rejected, indicating no significant difference in FA and MD values between
the first and second scans. Moreover, the Bland-Altman bias, close to zero for all ROIs,
underscores the strong agreement between measurements obtained from both scans. The
low values of the RC in conjunction with narrow 95% confidence intervals further reinforce
the high level of confidence in the consistency of measurements. These findings suggest
that the diffusion metrics obtained from the Tensor model are stable and mere indica-
tors of brain microstructure, making them suitable for longitudinal studies and clinical
applications.

7.2 Bingham-NODDI in vivo results

The data obtained from the scans of the four healthy volunteers were fitted also with the
Bingham-NODDI diffusion model with the final aim of assessing its repeatability and sta-
bility over time. The metrics of interest are the same as for the phantoms. The obtained
quantitative maps are shown in Figure 7.2.

The results were extracted from the quantitative maps by using the ROIs shown in Figure
5.4 and 5.5, excluding the Ventricles since in the tissue component of the Bingham model,
the signal from the CSF is suppressed. Specifically, results were extracted from the Genu
and Splenium of the Corpus Callosum (CC) and from the anterior and posterior limbs
of the Internal Capsule (IC) for white matter. Instead, results were extracted from the
Thalamus, Caudate and Putamen regions for grey matter.

In Figure 7.2b, a great contrast can be observed between white and grey matter in the
ODI quantitative map. This contrast arises from the difference in the ODI index between
the two tissue types, with white matter having a significantly lower ODI than grey matter.
The lower index value indicates a more structured neurite arrangement in white matter,
with very little neurite dispersion. On the other hand, the relatively higher ODI in grey
matter suggests a greater level of neurite orientation dispersion. Additionally, Figure 7.2c
shows how in the Ventricles the tissue volume fraction is very close to zero, indicating the
absence of cells. On the other hand, white and grey matter presents with a tissue volume
fraction almost equal to one, highlighting the very low presence of inter-cellular water,
water that fills the spaces between adjacent cells in a tissue. As shown in Figure 7.2d, it
is evident that the intra-neurite volume fraction is greater in white matter than in grey
matter. This indicates that white matter has a higher density of neurites when compared
to grey matter.

Figure 7.2e and 7.2f respectively show the R2 and the MSE in the case of the in vivo
acquisitions. Ideally, the MSE and R2 should not show any structure of the underlying
data, meaning the model can at least fit the data equally well everywhere. However, the
structure of different brain structures in Bingham-NODDI can still be seen, but they are
becoming less obvious to see than in Ball and Stick or Watson-NODDI, the original formu-
lation of the NODDI model. The much lower R2 in white matter could be due to several
factors. In its current formulation, the Bingham-NODDI models the neurite orientation
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(a) (b)

(c) (d)

(e) (f)

Figure 7.2: Brain Bingham-NODDI quantitative maps obtained by fitting the diffusion in
vivo data to the Bingham-NODDI model. The maps represent (a) β-fraction, (b) ODI,
(c) tissue volume fraction, (d) intra-neurite volume fraction, (e) R2 coefficient and (f) the
mean squared error.
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distribution with a single Watson density and hence ignores fibre crossings which are a
distinctive feature of human connectional neuroanatomy. According to [60], the majority
of white matter voxels feature multiple fibre bundles whose accurate representation re-
quires two or more Bingham distributions. In addition, NODDI assumes a single and fixed
intrinsic diffusivity λ, which in human in vivo studies is set equal to 1.7µm2/ms. Kaden
et al. [60] demonstrated how λ actually varies significantly over the brain white matter,
with an average value that is considerably higher than the one assumed in NODDI. This
underestimation of λ in NODDI gives rise to a systematic overestimation of free-water
content in the cerebral white matter and may adversely affect the recovery of other pa-
rameters such as their neurite density index.

The results extracted from the white matter ROIs are presented in Table 7.2, together with
the p-value, the Bland-Altman Bias, the repeatability coefficient, and the 95% confidence
interval for each ROI.

As evident from Table 7.2, the β-fraction demonstrates remarkable stability by maintain-
ing an identical value across both initial and subsequent scans. Consequently, the p-value
remains undefined, indicated as ”//” in the table, due to the absence of variation, and all
metrics derived from the Bland-Altman analysis register as zero.
Turning attention to the Orientation Dispersion Index (ODI), its p-values are significantly
higher than the significance level of 0.05, indicating a lack of statistically significant dif-
ferences. Reinforcing this finding, the Bland-Altman biases and repeatability coefficients
converge close to zero, affirming the robust stability of the ODI metric across time.
Likewise, similar observations apply to the tissue volume fraction. The values closely
approach unity within white matter, indicating minimal presence of intercellular water
in this tissue. The p-values across all regions of interest exceed the threshold of 0.05,
implying the inability to reject the null hypothesis H0. This non-rejection underscores
the absence of statistically significant fluctuations in the tissue volume fraction, thereby
pointing out the consistency of the Bingham-NODDI metrics across temporal intervals.
This coherence is furthermore sustained by the low Bland-Altman biases and the small
values characterising the repeatability coefficients, collectively highlighting the strong sta-
bility of the tissue volume fraction across time.
Finally, high p-values and very low Bland-Altman biases and repeatability coefficients are
obtained also for the intra-neurite volume fraction. This means that also this metric can
be considered stable and consistent over time, without any statistically relevant variation
between the two scans.

Overall, the analysis highlights the inherent stability of NODDI metrics over time in white
matter. The repeated measurements consistently reveal minimal fluctuations in metrics
such as the β-fraction, Orientation Dispersion Index (ODI), tissue volume fraction, and
intra-neurite volume fraction. This steadiness is further substantiated by the high p-values
and negligible deviations in the computed values. As a result, these metrics present a de-
pendable and enduring measurement framework, well-suited for situations that demand
consistent and accurate results across multiple scans over time.

Similarly to the discussion made for the results extracted from white matter regions, Ta-
ble 7.3 presents the Bingham-NODDI metrics results extracted from grey matter ROIs,
being the Thalamus, the Caudate and the Putamen.

Grey matter presents with a higher ODI with respect to white matter. This is related
to the fact that grey matter does not exhibit organised fibre tracts like white matter,
meaning that the neurite fibres are less packed and organised in coherent paths, resulting
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Table 7.2: Bingham-NODDI model results for the four healthy volunteers in white matter.
The table shows the Bingham-NODDI metrics extracted from four ROIs: the Genu and
Splenium of the Corpus Callosum and the anterior and posterior limbs of the Internal
Capsule. The p-value from the paired t-test, the Bland-Altman Bias, the repeatability
coefficient (RC) and the 95% confidence interval are shown to assess the reproducibility
of the results over time. The p-value is not defined when measurements show no variation
over time, indicated by ”//”.

Bingham-NODDI model − White Matter
β-fraction ODI Tissue v.f. Intra-neurite v.f. R2 MSE

HV 1

Genu CC
Scan 1 0.5± 0.2 0.15± 0.09 0.84± 0.18 0.52± 0.09 0.87± 0.07 0.009± 0.006
Scan 2 0.5± 0.2 0.15± 0.08 0.87± 0.17 0.53± 0.08 0.86± 0.08 0.010± 0.006

Splenium CC
Scan 1 0.6± 0.3 0.12± 0.08 0.88± 0.13 0.59± 0.08 0.82± 0.08 0.013± 0.007
Scan 2 0.6± 0.3 0.11± 0.08 0.91± 0.12 0.59± 0.08 0.81± 0.08 0.014± 0.007

Anterior limb IC
Scan 1 0.4± 0.2 0.21± 0.08 0.92± 0.07 0.56± 0.08 0.88± 0.05 0.007± 0.004
Scan 2 0.4± 0.3 0.21± 0.09 0.95± 0.04 0.58± 0.07 0.87± 0.06 0.008± 0.004

Posterior limb IC
Scan 1 0.5± 0.2 0.20± 0.08 0.88± 0.05 0.64± 0.07 0.86± 0.06 0.009± 0.004
Scan 2 0.5± 0.2 0.20± 0.08 0.93± 0.04 0.66± 0.07 0.84± 0.07 0.009± 0.005

HV 2

Genu CC
Scan 1 0.5± 0.3 0.14± 0.08 0.85± 0.19 0.54± 0.08 0.87± 0.07 0.009± 0.006
Scan 2 0.5± 0.3 0.14± 0.08 0.85± 0.19 0.53± 0.08 0.87± 0.08 0.009± 0.006

Splenium CC
Scan 1 0.6± 0.3 0.13± 0.09 0.90± 0.13 0.59± 0.09 0.82± 0.09 0.014± 0.008
Scan 2 0.6± 0.3 0.13± 0.09 0.90± 0.13 0.59± 0.08 0.82± 0.09 0.013± 0.008

Anterior limb IC
Scan 1 0.4± 0.2 0.21± 0.07 0.95± 0.04 0.60± 0.07 0.87± 0.06 0.008± 0.004
Scan 2 0.4± 0.2 0.20± 0.07 0.94± 0.04 0.60± 0.06 0.87± 0.05 0.008± 0.004

Posterior limb IC
Scan 1 0.5± 0.2 0.19± 0.08 0.92± 0.04 0.68± 0.06 0.84± 0.05 0.009± 0.003
Scan 2 0.5± 0.2 0.19± 0.08 0.92± 0.04 0.67± 0.06 0.84± 0.05 0.009± 0.003

HV 3

Genu CC
Scan 1 0.5± 0.3 0.14± 0.08 0.90± 0.11 0.47± 0.09 0.87± 0.07 0.009± 0.005
Scan 2 0.5± 0.3 0.14± 0.08 0.90± 0.11 0.48± 0.09 0.87± 0.07 0.009± 0.005

Splenium CC
Scan 1 0.6± 0.3 0.12± 0.09 0.90± 0.12 0.55± 0.07 0.84± 0.07 0.012± 0.006
Scan 2 0.6± 0.3 0.12± 0.09 0.90± 0.12 0.55± 0.07 0.83± 0.08 0.012± 0.008

Anterior limb IC
Scan 1 0.5± 0.3 0.19± 0.08 0.94± 0.05 0.56± 0.06 0.88± 0.04 0.007± 0.003
Scan 2 0.5± 0.3 0.20± 0.08 0.94± 0.04 0.57± 0.06 0.88± 0.05 0.007± 0.003

Posterior limb IC
Scan 1 0.6± 0.2 0.20± 0.08 0.91± 0.05 0.63± 0.06 0.88± 0.05 0.007± 0.003
Scan 2 0.6± 0.2 0.20± 0.08 0.92± 0.04 0.64± 0.06 0.87± 0.05 0.008± 0.003

HV 4

Genu CC
Scan 1 0.5± 0.3 0.14± 0.09 0.90± 0.14 0.49± 0.08 0.87± 0.07 0.009± 0.006
Scan 2 0.5± 0.3 0.14± 0.09 0.90± 0.15 0.50± 0.08 0.86± 0.07 0.009± 0.006

Splenium CC
Scan 1 0.5± 0.3 0.13± 0.11 0.91± 0.13 0.53± 0.07 0.84± 0.08 0.012± 0.007
Scan 2 0.5± 0.3 0.14± 0.10 0.92± 0.11 0.54± 0.07 0.83± 0.08 0.012± 0.008

Anterior limb IC
Scan 1 0.4± 0.2 0.21± 0.08 0.94± 0.05 0.54± 0.06 0.89± 0.05 0.007± 0.003
Scan 2 0.4± 0.2 0.22± 0.07 0.95± 0.04 0.55± 0.06 0.88± 0.05 0.007± 0.004

Posterior limb IC
Scan 1 0.5± 0.2 0.19± 0.08 0.91± 0.05 0.61± 0.06 0.86± 0.05 0.009± 0.003
Scan 2 0.5± 0.2 0.19± 0.08 0.92± 0.04 0.63± 0.06 0.85± 0.05 0.009± 0.004

p-value

Genu Corpus Callosum // // 0.3910 0.3910 0.1817 0.3910
Splenium Corpus Callosum // 1.000 0.2522 0.3910 0.1817 1.000

Anterior limb IC // 0.6376 0.4444 0.0917 0.1817 0.3910
Posterior limb IC // // 0.2126 0.2522 0.0917 0.3910

B-A Bias

Genu Corpus Callosum 0 0 0.0075 0.005 −0.005 0.0003
Splenium Corpus Callosum 0 0 0.010 0.0025 −0.0075 0

Anterior limb IC 0 0.0025 0.0075 0.010 −0.005 0.0003
Posterior limb IC 0 0 0.0175 0.010 −0.010 0.0003

RC

Genu Corpus Callosum 0 0 0.0225 0.010 0 0.0008
Splenium Corpus Callosum 0 0.0075 0.025 0.0075 −0.0025 0.0008

Anterior limb IC 0 0.010 0.0225 0.0175 0 0.0008
Posterior limb IC 0 0 0.040 0.020 −0.0025 0.0008

95% CI

Genu Corpus Callosum 0-0 0-0 0-0.0225 −0.005-0.010 −0.0100-0 0-0.0008
Splenium Corpus Callosum 0-0 −0.0075-0.0075 0-0.025 0-0.0075 −0.010-− 0.0025 −0.0008-0.0008

Anterior limb IC 0-0 −0.005-0.01 −0.005-0.0225 0.0025-0.0175 −0.010-0 0-0.0008
Posterior limb IC 0-0 0-0 0.0025-0.040 −0.0026-0.0200 −0.0175-− 0.0025 0-0.0008

in a lower ODI. Moreover, the intra-neurite volume fraction is lower when compared to
the values obtained for white matter, indicating a slightly lower density of neurites in
this tissue. On the other hand, grey matter exhibits a higher tissue volume fraction,
meaning that grey matter contains less inter-cellular water than white matter. This could
be related to the fact that in grey matter, the cellular elements are packed more closely
together, leaving less extracellular space for water: neuronal cell bodies are densely ar-
ranged, which can restrict the amount of extracellular fluid.

As it can be seen from Table 7.3, all the Bingham-NODDI metrics show great stability
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Table 7.3: Bingham-NODDI model results for the four healthy volunteers in grey matter.
The table shows the Bingham-NODDI metrics extracted from three ROIs: the Thalamus,
Caudate and Putamen, which are deep grey matter structures. The p-value from the
paired t-test, the Bland-Altman Bias, the repeatability coefficient (RC) and the 95%
confidence interval are shown to assess the reproducibility of the results over time. The
p-value is not defined when measurements show no variation over time, indicated by ”//”.

Bingham-NODDI model − Grey Matter
β-fraction ODI Tissue v.f. intra-neurite v.f. R2 MSE

HV 1

Thalamus
Scan 1 0.6± 0.2 0.29± 0.08 0.95± 0.09 0.43± 0.06 0.96± 0.01 0.0019± 0.0006
Scan 2 0.58± 0.19 0.29± 0.08 0.95± 0.09 0.46± 0.06 0.95± 0.02 0.003± 0.001

Caudate
Scan 1 0.6± 0.2 0.49± 0.13 0.94± 0.11 0.43± 0.06 0.97± 0.01 0.0019± 0.0006
Scan 2 0.6± 0.2 0.48± 0.13 0.95± 0.10 0.44± 0.06 0.97± 0.01 0.0019± 0.0007

Putamen
Scan 1 0.5± 0.2 0.51± 0.13 0.99± 0.01 0.45± 0.03 0.96± 0.02 0.0022± 0.0012
Scan 2 0.5± 0.2 0.51± 0.14 0.99± 0.01 0.45± 0.03 0.96± 0.02 0.0024± 0.0012

HV 2

Thalamus
Scan 1 0.6± 0.2 0.29± 0.08 0.94± 0.13 0.47± 0.06 0.95± 0.02 0.003± 0.001
Scan 2 0.6± 0.2 0.29± 0.08 0.94± 0.11 0.46± 0.06 0.95± 0.02 0.0028± 0.0009

Caudate
Scan 1 0.65± 0.19 0.45± 0.13 0.89± 0.19 0.46± 0.08 0.97± 0.02 0.0021± 0.0009
Scan 2 0.62± 0.19 0.44± 0.13 0.89± 0.18 0.46± 0.08 0.97± 0.02 0.0021± 0.0010

Putamen
Scan 1 0.50± 0.19 0.53± 0.11 0.99± 0.01 0.50± 0.04 0.95± 0.02 0.0027± 0.0011
Scan 2 0.5± 0.2 0.53± 0.12 0.99± 0.01 0.49± 0.04 0.95± 0.02 0.0026± 0.0011

HV 3

Thalamus
Scan 1 0.6± 0.2 0.27± 0.08 0.97± 0.06 0.43± 0.05 0.96± 0.01 0.0027± 0.0007
Scan 2 0.6± 0.2 0.27± 0.08 0.97± 0.06 0.44± 0.05 0.95± 0.01 0.0028± 0.0007

Caudate
Scan 1 0.58± 0.19 0.49± 0.13 0.97± 0.06 0.42± 0.07 0.97± 0.01 0.0019± 0.0008
Scan 2 0.6± 0.2 0.49± 0.13 0.97± 0.06 0.43± 0.08 0.97± 0.01 0.0019± 0.0008

Putamen
Scan 1 0.5± 0.2 0.54± 0.12 0.99± 0.01 0.46± 0.03 0.97± 0.02 0.0020± 0.0009
Scan 2 0.51± 0.19 0.54± 0.12 0.99± 0.01 0.48± 0.03 0.96± 0.02 0.0022± 0.0009

HV 4

Thalamus
Scan 1 0.6± 0.2 0.28± 0.08 0.97± 0.07 0.43± 0.06 0.95± 0.01 0.0029± 0.0009
Scan 2 0.6± 0.2 0.29± 0.08 0.97± 0.06 0.45± 0.06 0.95± 0.02 0.0031± 0.0009

Caudate
Scan 1 0.6± 0.2 0.46± 0.12 0.93± 0.13 0.41± 0.07 0.97± 0.01 0.0016± 0.0007
Scan 2 0.6± 0.2 0.45± 0.12 0.94± 0.12 0.43± 0.08 0.97± 0.01 0.0019± 0.0007

Putamen
Scan 1 0.5± 0.2 0.52± 0.12 0.99± 0.01 0.46± 0.03 0.96± 0.01 0.0023± 0.0011
Scan 2 0.5± 0.2 0.51± 0.12 0.99± 0.01 0.48± 0.03 0.96± 0.02 0.0025± 0.0011

p-value
Thalamus 0.3910 0.3910 // 0.2394 0.1817 0.3623
Caudate 0.8240 0.1817 0.1817 0.4950 // 0.3910
Putamen 0.3910 0.3910 // 0.3910 0.3910 0.1942

B-A Bias
Thalamus −0.0050 0.0025 0 0.0125 −0.005 0.0003
Caudate −0.0025 −0.0075 0.0050 0.010 0 0.0001
Putamen 0.0025 −0.0025 0 0.0075 −0.0025 0.0001

RC

Thalamus 0 0.0075 0 0.025 0 0.0009
Caudate 0.0100 −0.0025 0.010 0.0175 0 0.0002
Putamen 0.0075 0 0 0.020 0 0.0002

95% CI
Thalamus −0.015-0 0-0.0075 0-0 −0.0025-0.025 −0.01-0 −0.0001-0.0009
Caudate −0.02-0.01 −0.01-0.0025 0-0.01 0.0025-0.0175 0-0 0-0.0002
Putamen 0-0.075 −0.0075-0 0-0 −0.005-0.02 −0.0075-0 0-0.0002

and repeatability over time, with p-values of the paired t-test sensibly greater than 0.05,
meaning the observed differences in the results between the first and second scans are
not statistically significant. Moreover, the Bland-Altman biases are all very close to zero,
which indicates that there is good agreement and minimal systematic difference between
the two scans.
Another result that supports the stability of the Bingham-NODDI metrics over time is
the repeatability coefficient, which presents values very close to zero for all the metrics
and ROIs analysed. When the repeatability coefficient is close to zero, it suggests that the
variability between measurements is minimal, and the measurements are consistent and
highly repeatable. In other words, a repeatability coefficient close to zero signifies that the
measurements are very consistent and that the method is producing highly reproducible
results.
Finally, all the Bingham-NODDI metrics present a narrow 95% confidence interval for the
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repeatability coefficient, indicating high agreement and precision between the two mea-
surements. This suggests that the two scans being compared are in strong agreement,
with consistent and repeatable measurements.

To summarise, the Bingham-NODDI diffusion model was carefully tested using in vivo
data from four healthy volunteers. The quantitative maps produced, which include mea-
sures like β-fraction, ODI, tissue volume fraction, and intra-neurite volume fraction, show
exceptional repeatability and stability over time in both white and grey matter regions of
interest. Significantly, the estimated p-values, which indicate the model’s reliability, were
consistently greater than 0.05, confirming the Bingham-NODDI approach’s robustness.
Furthermore, the Bland-Altman analysis demonstrated low bias and tight limits of agree-
ment between the two acquisitions for every participant of the study. These consistent
findings highlight the Bingham-NODDI model’s stability and reliability over time as a
tool for evaluating tissue microstructure in different brain areas.

7.3 AMICO-NODDI in vivo results

The same diffusion-weighted MRI data was also fitted to the linear implementation of the
NODDI model. In this case, the model employs the Watson distribution to model the
neurite dispersion, instead of the Bingham distribution. The analysis pipeline is the same
one used in the case of the Bingham-NODDI model, with the final aim of assessing the
stability and repeatability of the NODDI model.

The quantitative maps obtained from the AMICO-NODDI fit are shown in Figure 7.3,
and they represent the OD (orientation dispersion) index, the ICVF (intra-cellular volume
fraction), which corresponds to the intra-neurite volume fraction of the Bingham-NODDI,
and the ISOVF (isotropic volume fraction) representing the CSF in the brain.

The obtained OD map, shown in Figure 7.3a, is very similar to the one obtained with
the Bingham-NODDI model, shown in Figure 7.2b. One great difference is related to the
ventricles: while the Bingham-NODDI model suppresses the signal of the CSF compart-
ment, in the AMICO-NODDI model the ventricles present an OD index very close to one,
representing the total absence of a compact and coherent neurite structure in the CSF.

The second quantitative map is the ICVF, shown in Figure 7.3b. This map represents
the volume fraction occupied by neurites in each voxel. Also, this map looks very similar
to the intra-neurite volume fraction map obtained with the Bingham-NODDI model and
shown in Figure 7.2d. One difference between the two maps that can be observed is,
again, the values obtained in the ventricles: in the case of the AMICO-NODDI model,
the ventricles have an ICVF equal to zero, highlighting the absence of neurites in the
CSF.

The last quantitative map obtained as a result of the fitting of the AMICO-NODDI to
the acquired data is the ISOVF map, which represents the voxel’s fraction occupied by
CSF in the brain. This map, shown in Figure 7.3c, is complementary with respect to one
to the tissue volume fraction map of the Bingham-NODDI model, shown in Figure 7.2c.
In the ISOVF map can be clearly seen that the ventricles appear bright, with a voxel
value very close to one indicating the complete absence of cells organised into tissues in
the CSF.

The AMICO-NODDI metrics were extracted from the same ROIs used to extract the
Bingham-NODDI results. These ROIs are displayed in Figure 5.4 and Figure 5.5, with
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(a) (b)

(c)

Figure 7.3: AMICO-NODDI quantitative maps for the brain: (a) OD map representing
the orientation dispersion of the neurites, (b) ICVF map representing the intra-neurite
volume fraction in each voxel, and (c) ISOVF map depicting the CSF component in each
voxel.

the exclusion of the ventricles. Table 7.4 presents the AMICO-NODDI results in white
matter. It can be seen that the OD values are slightly lower compared to the values
obtained for the ODI in the Bingham-NODDI model. However, there is a high standard
deviation associated with these OD values, sometimes even equal to the mean values
themselves. Overall, the low OD values indicate the organised white matter structure
which contains compact fibre bundles. The obtained p-values for the OD index show that
the observed differences in values between the first and second scans are not statistically
significant, ensuring the repeatability of the results over time. Additionally, the repeata-
bility of the OD results over time is confirmed by the very low Bland-Altman bias in
the four ROIs, together with the very low repeatability coefficient and the narrow 95%
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Table 7.4: AMICO-NODDI model results for the four healthy volunteers in white matter.
The table shows the AMICO-NODDI metrics in white matter together with the p-value
from the paired t-test, the Bland-Altman Bias, the repeatability coefficient (RC) and the
95% confidence interval (CI) to assess the reproducibility of the results over time. The
p-value is not defined when measurements show no variation over time, indicated by ”//”.

AMICO-NODDI model − White matter
OD ICVF ISOVF

Healthy Volunteer 1

Genu CC
Scan 1 0.13± 0.13 0.54± 0.12 0.19± 0.18
Scan 2 0.13± 0.11 0.55± 0.11 0.16± 0.19

Splenium CC
Scan 1 0.09± 0.08 0.63± 0.10 0.15± 0.14
Scan 2 0.09± 0.08 0.63± 0.10 0.12± 0.13

Anterior limb IC
Scan 1 0.15± 0.10 0.57± 0.09 0.08± 0.06
Scan 2 0.16± 0.10 0.59± 0.08 0.05± 0.05

Posterior limb IC
Scan 1 0.16± 0.09 0.65± 0.08 0.12± 0.06
Scan 2 0.17± 0.09 0.66± 0.07 0.08± 0.04

Healthy Volunteer 2

Genu CC
Scan 1 0.14± 0.14 0.56± 0.12 0.18± 0.21
Scan 2 0.14± 0.14 0.55± 0.12 0.17± 0.21

Splenium CC
Scan 1 0.11± 0.10 0.63± 0.11 0.13± 0.13
Scan 2 0.11± 0.09 0.63± 0.10 0.13± 0.14

Anterior limb IC
Scan 1 0.15± 0.08 0.60± 0.08 0.05± 0.04
Scan 2 0.15± 0.08 0.61± 0.07 0.05± 0.05

Posterior limb IC
Scan 1 0.16± 0.07 0.70± 0.07 0.08± 0.04
Scan 2 0.16± 0.07 0.69± 0.07 0.09± 0.04

Healthy Volunteer 3

Genu CC
Scan 1 0.10± 0.09 0.50± 0.11 0.13± 0.11
Scan 2 0.10± 0.08 0.51± 0.10 0.12± 0.11

Splenium CC
Scan 1 0.10± 0.09 0.59± 0.09 0.13± 0.12
Scan 2 0.10± 0.09 0.60± 0.09 0.13± 0.12

Anterior limb IC
Scan 1 0.15± 0.09 0.56± 0.07 0.06± 0.05
Scan 2 0.15± 0.09 0.57± 0.07 0.06± 0.05

Posterior limb IC
Scan 1 0.19± 0.08 0.64± 0.07 0.10± 0.05
Scan 2 0.19± 0.09 0.65± 0.06 0.09± 0.04

Healthy Volunteer 4

Genu CC
Scan 1 0.11± 0.10 0.52± 0.11 0.14± 0.15
Scan 2 0.12± 0.10 0.53± 0.10 0.14± 0.16

Splenium CC
Scan 1 0.11± 0.10 0.56± 0.09 0.12± 0.14
Scan 2 0.11± 0.10 0.57± 0.09 0.11± 0.11

Anterior limb IC
Scan 1 0.16± 0.10 0.55± 0.07 0.06± 0.05
Scan 2 0.16± 0.10 0.56± 0.07 0.05± 0.04

Posterior limb IC
Scan 1 0.15± 0.07 0.62± 0.07 0.09± 0.05
Scan 2 0.15± 0.07 0.64± 0.07 0.08± 0.04

p-value

Genu of Corpus Callosum 0.3910 0.6376 0.1411
Splenium of Corpus Callosum // 0.1817 0.2522

Anterior limb of Internal Capsule 0.3910 0.0577 0.2522
Posterior limb of Internal Capsule 0.3910 0.3189 0.3120

Bland-Altman Bias

Genu CC 0.0025 0.005 −0.0125
Splenium CC 0 0.005 −0.010

Anterior limb IC 0.0025 0.0125 −0.010
Posterior limb IC 0.0025 0.0075 −0.0125

RC

Genu CC 0.0075 0.010 −0.0025
Splenium CC 0 0.010 0

Anterior limb IC 0.0075 0.0175 0
Posterior limb IC 0.0075 0.0175 0.005

95% CI

Genu CC 0-0.0075 −0.005-0.01 −0.025-− 0.0025
Splenuim CC 0-0 0-0.01 −0.0225-0

Anterior limb IC 0-0.0075 0.01-0.0175 −0.0225-0
Posterior limb IC 0-0.0075 −0.005-0.0175 −0.0325-0.005
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confidence interval. All of these results contribute to ensuring the consistency of the OD
index in time, stating that no significant difference between the two scanned is detected.

The values obtained for ICVF are very close to the intra-cellular volume fraction values
of the Bingham-NODDI model, reported in Table 7.2. This result proves the agreement
between the two formulations of the NODDI model. In the case of ICVF, the results are
also consistent over time, with p-values of the paired t-test higher than the significant level
of 0.05. Moreover, the Bland-Altman analysis revealed a bias, so the average difference
between the two scans, very close to zero, indicating no significant difference between the
two scans. In addition, a very low repeatability coefficient was obtained together with a
narrow 95% confidence interval, ensuring the repeatability of the results over time.

Similarly, the very low ISOVF values obtained in white matter prove that in white mat-
ter intercellular water is very rare, a result already obtained with the analysis of the
Bingham-NODDI model. Also in the case of the ISOVF, the results are stable in time,
with p-values way greater than the significant level. The stability over time of the ISOVF
is also confirmed by the outcomes of the Bland-Altman analysis, which resulted in small
Bland-Altman bias, small repeatability coefficient and narrow 95% confidence interval.

The same study is carried out in grey matter, with the results extracted from the Thala-
mus, Caudate, and Putamen. Table 7.5 displays the results.

The first distinction between grey and white matter is the substantially higher OD, which
highlights the greater dispersion or spread of neurite orientations within grey matter. This
indicates that the neurites are misaligned and oriented in different directions, indicating a
more complicated and disorganised neurite structure. Overall, the OD is characterised by
great stability in time, with p-values of the paired t-test much higher than 0.05. Moreover,
the Bland-Altman bias and the repeatability coefficient are close to zero in all the ROIs,
indicating a notable stability of the OD index in time.

In addition to the OD, the ICVF presents with a lower value in grey matter with respect
to white matter, indicating a lower neurite density in this tissue type. On the other hand,
the ICVF results are stable in time with a p-value greater than 0.05 in all the ROIs.
The consistency of the ICVF is also confirmed by the Bland-Altmann analysis outcomes,
with low biases and repeatability coefficients in all the ROIs. Finally, the ISOVF has also
been analysed, resulting in very low values in grey matter. These values are characterised
by a high standard deviation, probably indicating that the CSF signal in grey matter is
only given by noise. This evidences the absence of fluid and extracellular water in this
tissue type. Despite its high standard deviation, also the ISOVF presents with a very
low variability in time, allowing to conclude that all the AMICO-NODDI metrics exhibit
great stability and consistency in time.

This investigation demonstrated the AMICO-NODDI model’s consistency, stability, and
repeatability across time. This finding has important implications for neuroimaging re-
search and clinical applications. A stable AMICO-NODDI model assures that changes
in neurite density and orientation dispersion in different brain areas properly represent
real biological variations rather than measurement noise. This characteristic is crucial
for longitudinal research in which measuring changes in brain microstructure over time
is critical, particularly in ageing, disease progression, and treatment response contexts.
Furthermore, the consistency of AMICO-NODDI measurements improves study repro-
ducibility, allowing for partnerships across labs and institutions while also adding to the
overall robustness of neuroimaging investigations.
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Table 7.5: AMICO-NODDI model results for the four healthy volunteers in grey matter.
The table shows the AMICO-NODDI metrics in grey matter together with the p-value
from the paired t-test, the Bland-Altman Bias, the repeatability coefficient (RC) and the
95% confidence interval (CI) to assess the reproducibility of the results over time.

AMICO-NODDI model − White matter
OD ICVF ISOVF

Healthy Volunteer 1

Thalamus
Scan 1 0.31± 0.07 0.41± 0.06 0.08± 0.12
Scan 2 0.31± 0.08 0.43± 0.07 0.10± 0.13

Caudate
Scan 1 0.50± 0.12 0.35± 0.05 0.13± 0.16
Scan 2 0.49± 0.12 0.36± 0.05 0.12± 0.14

Putamen
Scan 1 0.49± 0.14 0.40± 0.05 0.02± 0.03
Scan 2 0.48± 0.15 0.42± 0.05 0.02± 0.02

Healthy Volunteer 2

Thalamus
Scan 1 0.33± 0.08 0.44± 0.08 0.12± 0.18
Scan 2 0.33± 0.07 0.44± 0.07 0.10± 0.15

Caudate
Scan 1 0.49± 0.12 0.37± 0.08 0.22± 0.24
Scan 2 0.48± 0.12 0.36± 0.08 0.21± 0.24

Putamen
Scan 1 0.51± 0.12 0.44± 0.05 0.01± 0.02
Scan 2 0.52± 0.12 0.44± 0.05 0.01± 0.02

Healthy Volunteer 3

Thalamus
Scan 1 0.29± 0.07 0.41± 0.06 0.05± 0.08
Scan 2 0.30± 0.08 0.42± 0.06 0.06± 0.09

Caudate
Scan 1 0.48± 0.12 0.34± 0.06 0.06± 0.09
Scan 2 0.49± 0.12 0.35± 0.06 0.06± 0.09

Putamen
Scan 1 0.54± 0.13 0.40± 0.04 0.02± 0.03
Scan 2 0.53± 0.13 0.41± 0.05 0.01± 0.02

Healthy Volunteer 4

Thalamus
Scan 1 0.31± 0.06 0.41± 0.07 0.07± 0.11
Scan 2 0.31± 0.07 0.42± 0.07 0.07± 0.11

Caudate
Scan 1 0.46± 0.11 0.33± 0.06 0.15± 0.19
Scan 2 0.46± 0.10 0.34± 0.06 0.15± 0.18

Putamen
Scan 1 0.50± 0.14 0.40± 0.04 0.01± 0.02
Scan 2 0.49± 0.14 0.42± 0.05 0.02± 0.03

p-value
Thalamus 0.3910 0.0917 0.7888
Caudate 0.6376 0.3910 0.1817
Putamen 0.3910 0.0796 1.000

Bland-Altman Bias
Thalamus 0.0025 0.0100 0.0025
Caudate −0.0025 0.005 −0.005
Putamen −0.005 0.0125 0

RC
Thalamus 0.0075 0.0175 0.015
Caudate 0.005 0.0100 0
Putamen 0.005 0.0200 0.0075

95% CI
Thalamus 0-0.0075 0.0025-0.0175 −0.0126-0.015
Caudate −0.01-0.0075 −0.005-0.01 −0.01-0
Putamen −0.01-0.005 0.005-0.02 −0.0075-0.0075

7.4 Impact of the hydration level of the participant

In order to understand whether the hydration level of the participant could influence in
any way the outcome of the analysis, a final study was carried out on a single healthy
volunteer. The participant underwent a first scan after fasting and refraining from drink-
ing water during the night before. The acquisition protocol is the same used for the other
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participants. After the first scan, the volunteer was given 500mL of water and, after
waiting roughly 10 minutes, a second scan was performed. The acquired data was then
fit to the Tensor and NODDI models, both in the Bignham and AMICO formulations.

The results of the Tensor model are presented in Table 7.6. This table shows the FA
and MD values extracted from the Corpus Callosum, Thalamus and Ventricles. As can
be clearly observed, no difference between the dehydrated and hydrated states can be
appreciated. This result brings to the conclusion that the Tensor model metrics are not
influenced by the hydration level of a healthy participant.

Table 7.6: Tensor model results for the hydration study. The table shows the FA and
MD results in the case of the single healthy volunteers who underwent a first scan in a
dehydration state, and a second scan after drinking 500mL of water.

Tensor model − Hydration study
FA MD (·10−3mm2/s)

Corpus Callosum
Dehydrated 0.66± 0.16 0.58± 0.09
Hydrated 0.65± 0.17 0.59± 0.12

Thalamus
Dehydrated 0.30± 0.06 0.58± 0.04
Hydrated 0.31± 0.06 0.58± 0.04

Ventricles
Dehydrated 0.22± 0.10 1.67± 0.29
Hydrated 0.22± 0.11 1.73± 0.33

The analysis of the Bingham-NODDI model results, under different hydration levels, are
presented in Table 7.7. The model was fitted to the data acquired from a healthy volunteer
in both dehydrated and hydrated states. The results demonstrate that the hydration level
of the participant does not have any significant impact on the model’s performance, as
there is no noticeable difference between the first and second scans. This finding suggests
that the Bingham-NODDI model is robust enough to provide accurate results regardless
of the hydration level of the participant. Thus, these results highlight the potential of the
Bingham-NODDI model as a valuable tool for investigating brain function and pathology
in a variety of contexts.

Table 7.7: Bingham-NODDI model results for the hydration study. The table shows the
Bingham-NODDI metrics in the case of the healthy volunteer who underwent two scans:
the first in a dehydration condition while the second after drinking 500mL of water.

Bingham-NODDI model − Hydration study
β-fraction ODI Tissue v.f. Intra-neurite v.f. R2 MSE

Genu CC
Dehydrated 0.5± 0.2 0.14± 0.07 0.92± 0.10 0.58± 0.07 0.82± 0.07 0.013± 0.006
Hydrated 0.5± 0.3 0.14± 0.08 0.93± 0.10 0.57± 0.09 0.82± 0.08 0.012± 0.006

Splenium CC
Dehydrated 0.5± 0.3 0.14± 0.09 0.91± 0.10 0.63± 0.07 0.80± 0.08 0.014± 0.007
Hydrated 0.5± 0.3 0.14± 0.08 0.90± 0.13 0.63± 0.07 0.81± 0.08 0.014± 0.007

Anterior limb IC
Dehydrated 0.4± 0.3 0.21± 0.09 0.94± 0.05 0.62± 0.08 0.85± 0.06 0.009± 0.005
Hydrated 0.4± 0.3 0.20± 0.09 0.95± 0.04 0.61± 0.07 0.86± 0.06 0.009± 0.004

Posterior limb IC
Dehydrated 0.5± 0.2 0.19± 0.09 0.92± 0.04 0.69± 0.07 0.82± 0.06 0.011± 0.004
Hydrated 0.6± 0.3 0.18± 0.09 0.92± 0.03 0.69± 0.06 0.83± 0.06 0.011± 0.005

Thalamus
Dehydrated 0.58± 0.19 0.28± 0.08 0.96± 0.09 0.47± 0.05 0.93± 0.02 0.004± 0.001
Hydrated 0.6± 0.2 0.28± 0.07 0.97± 0.07 0.47± 0.05 0.94± 0.02 0.0033± 0.0009

Caudate
Dehydrated 0.62± 0.19 0.48± 0.12 0.94± 0.12 0.46± 0.07 0.96± 0.02 0.002± 0.001
Hydrated 0.61± 0.19 0.51± 0.12 0.96± 0.08 0.46± 0.06 0.96± 0.01 0.0021± 0.0007

Putamen
Dehydrated 0.53± 0.18 0.50± 0.12 0.99± 0.01 0.51± 0.04 0.94± 0.03 0.004± 0.002
Hydrated 0.5± 0.2 0.54± 0.13 0.99± 0.02 0.50± 0.03 0.95± 0.02 0.003± 0.001

Similarly, Table 7.8 show the results of the AMICO-NODDI model in the case of the
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hydration study. In particular, the table is useful to compare the results obtained in the
dehydrated state of the participant and the ones obtained after letting the volunteer drink
500mL of water. Also in the case of the AMICO-NODDI model, no variation is observed
between the first and second scans, bringing to the conclusion that the linear formulation
of the NODDI model is robust to different hydration levels in healthy subjects.

Table 7.8: AMICO-NODDI model results for the hydration study. The table shows the
AMICO-NODDI metrics in the case of the healthy volunteer who underwent two scans:
the first in a dehydration condition while the second after drinking 500mL of water.

AMICO-NODDI model − Hydration study
OD ICVF ISOVF

Genu CC
Dehydrated 0.11± 0.08 0.62± 0.09 0.10± 0.10
Hydrated 0.11± 0.08 0.60± 0.11 0.10± 0.11

Splenium CC
Dehydrated 0.11± 0.09 0.68± 0.10 0.12± 0.10
Hydrated 0.11± 0.08 0.69± 0.09 0.13± 0.13

Anterior limb IC
Dehydrated 0.15± 0.10 0.63± 0.09 0.05± 0.05
Hydrated 0.15± 0.10 0.62± 0.09 0.05± 0.04

Posterior limb IC
Dehydrated 0.17± 0.09 0.70± 0.08 0.08± 0.05
Hydrated 0.16± 0.08 0.70± 0.07 0.08± 0.04

Thalamus
Dehydrated 0.31± 0.07 0.45± 0.06 0.07± 0.12
Hydrated 0.30± 0.07 0.45± 0.06 0.06± 0.10

Caudate
Dehydrated 0.50± 0.11 0.38± 0.06 0.13± 0.19
Hydrated 0.52± 0.10 0.37± 0.05 0.11± 0.14

Putamen
Dehydrated 0.50± 0.14 0.46± 0.05 0.01± 0.02
Hydrated 0.52± 0.15 0.44± 0.05 0.01± 0.02

In conclusion, the hydration study demonstrates that diffusion MRI analysis using the
Tensor, Bingham-NODDI, and AMICO-NODDI models is robust and unaffected by changes
in the hydration level of healthy subjects. This has significant implications for both clini-
cal and research applications, as it guarantees the consistency of these models in analysing
brain microstructure across situations. These findings highlight their potential for neu-
rological investigations and imply that they can be used confidently in clinical settings,
contributing to more accurate assessments of brain health and pathology in various med-
ical diseases. Future studies may explore broader applications and extreme hydration
conditions for further validation.
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This thesis is the result of the work carried out at the Oxford Centre for Clinical Mag-
netic Resonance Research (OCMR) - University of Oxford. The purpose of this study
was to assess the consistency and repeatability of the NODDI (neurite orientation dis-
persion and density imaging) model over time, which is a useful diffusion MRI technique
for estimating the microstructural complexity of dendrites and axons in vivo on clinical
magnetic resonance scanners. In particular, the study examined the Bingham-NODDI
model, which employs the Bingham distribution to model the neurite dispersion, and the
AMICO-NODDI model, a linear implementation of the NODDI model which requires
much less time to fit the diffusion data compared to its original formulation.

To assess the repeatability of the results, the study employed two DTI phantoms that
mimic restricted anisotropic diffusion in the brain, in particular in white matter, also in
the case of crossing fibres. The two phantoms, described in Section 3.1, were scanned four
times on different days, over a period of a month, with the acquisition protocol described
in Section 3.3. The acquired diffusion data were then fitted with the tensor, Bingham-
NODDI and AMICO-NODDI models, and the final results were extracted from ROIs
contoured onto the quantitative maps. The ROIs are shown in Figure 5.2a and 5.2b. To
assess the stability of the obtained results over time, the coefficient of variation (CV) was
computed considering the mean and standard deviation of the four acquisitions. This was
performed for every diffusion metric of the models taken into account.

The final results of the two phantom cases are presented in Chapter 6. The models con-
sidered in the analysis include the Tensor model, the Bingham-NODDI, and the AMICO-
NODDI model, which have all proven to be stable and repeatable. The consistency of
the models is highlighted by the very low coefficients of variation obtained for all the
metrics characterising each model, indicating that there is no significant variation in the
analysed metrics between the four scans of the DTI phantoms. These findings confirm
the robustness of the NODDI methodology and its suitability for longitudinal studies.

This study also aimed to investigate the stability of the NODDI model over time and
determine if repetitive data acquisitions could impact measurement accuracy. The focus
was on whether the heating of the magnetic field gradient coil after several acquisitions
affected the results. To test this, phantoms were scanned eight times consecutively. The
results demonstrated remarkable stability of the Tensor and NODDI models, despite the
heating of the magnetic field gradient coils. There are several reasons why this is highly
important. Firstly, in neuroimaging studies, it’s crucial to ensure that the data obtained
is both reliable and reproducible. If the NODDI parameters were affected by magnetic
field gradient coil heating, it would lead to inconsistent measurements across scans, ulti-
mately resulting in unreliable results. However, the stability of NODDI parameters under
such conditions ensures that accurate interpretations and comparisons can be made with
confidence, either between different subjects or time points. Furthermore, stability in
varying situations might lead to more efficient resource utilisation, such as MRI scanner
time. Researchers and physicians can run more scans in the same amount of time without
sacrificing data quality, increasing data acquisition efficiency.

In addition to the phantom study, four healthy volunteers were scanned twice with the
final aim of assessing the stability of the NODDI model over time, also in in vivo ac-
quisitions. Each volunteer was scanned twice, with a 10-minute break in between the
two scans. In the case of the in vivo acquisitions, a statistical analysis was performed
to assess whether a significant variation in the results between the two measurements for
each participant was observed. The obtained results are presented in Chapter 7.
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The obtained results are associated with p-values of the paired t-test that are way above
the significant threshold of 0.05. This implies that the null hypothesis H0 cannot be
rejected, meaning that there is no statistically significant difference between the values
obtained in the first and second acquisitions, ensuring the consistency and stability of the
Tensor and NODDI models, both in the Bignham and AMICO formulations. In addition
to the paired t-test, the Bland-Altman analysis was carried out to compare the measure-
ments obtained from the two scans. The analysis resulted in low Bland-Altman biases and
repeatability coefficients close to zero, reinforcing the consistency of the NODDI model
over time.

Moreover, a final study was performed to assess whether the hydration state of the par-
ticipant could affect in any way the NODDI metrics, possibly cofounding the final results.
Thus, a single healthy volunteer was scanned twice: the first time in a dehydrated con-
dition, after fasting and refraining from drinking water all night, while the second scan
was performed after letting the participant drink 500mL of water. The results show no
variation between the two scans, bringing to the conclusion that the hydration state of
a healthy participant does not influence in any way the NODDI metrics. However, this
result was obtained with just one volunteer. Thus, a deeper study needs to be carried
out in order to better understand whether the hydration state of the participant does not
really affect the analysis results.

The consistency of the measures contributes to the growing body of evidence proving
the applicability of NODDI in various research and clinical applications. This stability is
crucial for detecting changes in brain structure over time and making informed patient
care decisions. Additionally, it enhances the credibility of NODDI as a tool, making it
more valuable for understanding complex brain processes. In summary, the consistent
NODDI results ensure its reliability and promise to expand knowledge of brain health
and illness. This advancement has the potential to improve patient care and increase the
accuracy of research findings. The consistent, reliable nature of the NODDI methodology
will continue to contribute to the growth of knowledge in the field of neuroscience and
open new avenues for exploration.

In conclusion, this study represents a comprehensive exploration of the NODDI model’s
consistency, stability, and robustness. The research has not only confirmed the reliability
of the Tensor, Bingham-NODDI, and AMICO-NODDI models through phantom and in
vivo acquisitions but has also shed light on the potential impact of participant hydration
on NODDI metrics, reassuring its applicability in diverse research and clinical scenarios.
The remarkable stability observed, even in the face of challenges such as magnetic field
gradient coil heating and participant hydration differences, demonstrates the reliability
of the NODDI framework. Its reliability serves as a solid foundation for detecting minor
changes in brain microstructure over time, giving physicians and researchers the confidence
they need to make appropriate decisions. Additionally, NODDI’s growing legitimacy as a
versatile tool for understanding the complexities of the human brain increases its impor-
tance in both neuroscience and therapeutic practice. The next stage in the research will
be to undertake a multi-centre study to see how different MRI scanners produce varied
outcomes. This project will validate the NODDI approach, also in the case different scan-
ners are used, potentially leading to slightly different results. If successful, this study may
lead to the integration of phantoms into a calibration protocol. Such a protocol would
ensure consistent results across different MRI scanners, transcending the boundaries of
individual equipment and opening new possibilities for collaborative research and clinical
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applications.
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