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Alla purezza della matematica



Per la credulità il piccolo spirito si persuade siffattamente della

verità e certezza de’ suoi principi, del suo modo di vedere e

giudicare, delle impossibilità ch’egli concepisce, che tutto quello

che vi ripugna gli sembra assolutamente falso, qualunque prova

v’abbia in contrario; perchè la credulità che immobilmente lo

attacca alle precedenti sue idee, lo stacca dalle nuove e lo fa

incredulissimo. E cos̀ı l’eccesso di credulità causa l’eccesso

d’incredulità, e impedisce i progressi dello spirito. [...]

Piccolissimo è quello spirito

che non è capace o è difficile al dubbio.

Giacomo Leopardi, Zibaldone



Introduction

Even in non-mathematical environments, a set is well known to be a

collection of distinct, well-defined objects, named the elements of the set. A

priori, a set can contain any number of elements. If an order can be defined on

a set, then a permutation can be seen as any of the various ways in which its

elements can be ordered. Now, how a permutation acts on a set can appear

quite intuitive as we deal with a finite number of elements. Although the

concept of permutation remains the same as we consider an infinite set, some

aspects change radically and yield noteworthy results. The purpose of this

work is to study the group of infinite permutations from a topological point

of view and eventually prove a uniqueness result under defined hypotheses.

More specifically: the combination of a group structure and a ”compatible”

topology yields what we call a topological group. Our interest is to study the

case where a topological group also happens to be completely metrisable and

separable, meaning that it has a compatible complete metric and a countable

dense subset. When such conditions are fulfilled then a group is said to be

Polish, and the relative topology is called a Polish group topology.

In this paper we first go through some foundational theory and at the end

we gather all previous knowledge to eventually prove that the group of per-

mutations on the naturals admits a unique Polish group topology.
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Chapter 1

Topological Groups

This first chapter is focused on giving the definition of topological group

and study what are the implications of giving a group a ”good” topological

structure. We will see the basic properties of topological groups and prove

some relevant theorems on this topic. Ultimately, we will show that if we

add the hypothesis of metrisability on a topological group then we obtain

some remarkable equivalent conditions. This result goes under the name of

Birkhoff Kakutani Theorem, and will be used for following developments in

the last chapter. All contents of this chapter refer to [6]

1.1 Topological and metric spaces

In this section we see some preliminary definitions and basic theorems

about topological and metric spaces that will be frequently used throughout

the paper.

A topological space is a set X together with a collection τ of subsets of X,

with the property that both ∅ and X itself are contained in τ and τ is closed

under arbitrary unions and finite intersections. Under these conditions, the

collection τ is called a topology on X, and the relative topological space is

denoted by the pair (X,τ ). The elements of the topology τ are called open

sets, and their complements are called closed. Consequently, the collection
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2 1. Topological Groups

of closed sets is closed under arbitrary intersection and finite union, and the

banal sets ∅ and X are both open and close. Observe that two immediate

topologies on a space X are the discrete topology, namely the topology

where all subsets are open, and the indiscrete topology, namely the one

where the only open sets are the empty set and X itself. We say that a

topology τ on a set X is finer than another τ ′ if τ ′ ⊆ τ , that is, each open

set in τ ′ is also open in τ .

A set that is a countable intersection of open sets is called a Gδ set, while

one that is a countable union of closed sets is called a Fσ set.

A subspace of (X, τ) is a subset Y with the topology τY = {U ∩Y | U ∈ τ}.
We call τY the relative topology.

A basis B for a topology τ is a subset of τ such that every open set can be

written as union of elements of B (by convention we set the empty union to

give the open set ∅). Notice that a collection B of subsets of X is a basis for

a topology τ if and only if the intersection of any two members of B is itself

obtained by union of elements of B and the union of all B ∈ B gives X. This

leads to the following definition: A subbasis for a topology τ is a subset S
of τ such that the collection of finite intersections of sets in S gives a basis

for τ . Given a family S of subsets of X, the topology generated by S is

the smallest topology definable on X that contains S, and it is formed by

all arbitrary unions of finite intersections of elements of S (notice that, by

definition, S is obviously a subbasis for such topology).

A topological space is second countable if it admits a countable basis.

Given any element x of a topological space, an open neighborhood of x is

any open set that contains x. A neighborhood basis for x is a collection

U of open neighborhoods of x with the property that, if V is any open

neighborhood of x, then some U ∈ U can be found such that U ∈ V . A

topological space is first countable if each point x ∈ X admits a countable

neighborhood basis.

A topological space (X, τ) is a Hausdorff space if, given a pair of arbitrary

points x, y ∈ X, there exists a pair of disjoint open sets Ux, Uy ∈ τ containing
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respectively x and y. A Hausdorff space also takes the name of T2 and

separated.

A function f : (X, τ) −→ (Y, σ) from a topological space to another is

continuous if the inverse image of any open set is open. The map f is open

if the image of any open set is open, while it is closed if the image of any

closed set is closed. The map f is a homeomorphism if it is a bijective map

with the property of being both continuous and open (or, equivalently, if it

is a continuous bijection such that its inverse map is also continuous), while

it is an embedding if X is homeomorphic to its image f(X), where f(X)

has the relative topology inherited from (Y, σ). Finally, f is continuous

at a point x ∈ X if the inverse image of any open neighborhood of f(x)

contains an open neighborhood of x. Hence f is continuous if and only if f

is continuous at every point x ∈ X.

A metric space is a set X together with a commutative function d : X ×
X −→ R+ such that the inverse image of 0 is the diagonal ∆X×X = {(x, x) ∈
X ×X} and d(x, y) ≤ d(x, z) + d(z, y) for each x, y, z ∈ X. Such a function

is called a metric on X, and the relative metric space is denoted by the pair

(X, d). Under these conditions, the open ball with center x and radius r is

the subset B(x, r) = {y ∈ X | d(x, y) < r} of X; the corresponding closed

ball is Bcl(x, r) = {y ∈ X | d(x, y) ≤ r}.

A topological space (X, τ) is metrisable if there exists a metric d on X so

that τ coincides with the topology generated by the collection of all the open

balls in (X, d), named the topology of the metric space (X, d). In such

case the metric d is said to be compatible with τ .

A subset of a topological space is dense if it has nonempty intersection with

each nonempty open set.

A separable space is a topological space admitting a countable dense sub-

set.

By previous definitions it follows that every second countable space is sepa-

rable; in fact, if we consider D to be the union of all sets that constitute a

basis for the topology, then D clearly meets each nonempty open set. We
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will recall this later on for following developments.

The following lemma will be useful for further proofs

Lemma 1.1. Let X be a topological space and U an open set of X. If D is

a dense subset of X, then U ∩D is a dense subset of U .

Proof. We will show that U ∩ D meets every nonempty open subset of U .

Let V be an arbitrary nonempty open subset of U , meaning that V is the

intersection of U with some open set W of X. As V is a finite intersection

of open sets, it is open in X too. Then what happens is that V ∩ (U ∩D) =

V ∩D ̸= ∅ because D is dense in X by assumption. Hence each nonempty

open subset of U has nonempty intersection with U ∩D, meaning that U ∩D
is dense in U .

1.2 Topological groups

We have seen that, given any set, we can define a topological structure on

it. This process becomes particularly interesting if the set we want to work

with has some properties itself. For instance, let (G, ·) be a group. Then we

are interested in defining on G a topology that preserves the group structure

in a continuous way. Such a topology is said to be compatible with G.

Definition 1.2. A topological group is a group (G, ·) together with a

topology τ on G such that the map (x, y) → xy−1 from (G × G, τ × τ) into

(G, τ) is continuous.

Observation 1.3. Given a group G, the discrete topology and the indis-

crete topology are both compatible with G. Hence, any group can be seen as

a topological group.

Theorem 1.4. Given a topological group G, if a,b are fixed elements of G,

then each of the following applications is a homeomorphism of G:

(1) x −→ x−1;
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(2) x −→ ax (left translation induced by a);

(3) x −→ xa (right translation induced by a);

(4) x −→ axb;

(5) x −→ axa−1 (inner automorphism of G induced by a);

Moreover, for fixed a∈G, the mapping:

(6) x −→ xax−1 is continuous.

Proof. (1) The map x −→ x−1 is continuous and self-inverse.

(2),(3) The map x −→ (a, x) −→ ax is the composition of two continuous

mappings, hence is continuous. Its inverse is given by x −→ a−1x, which

also is the composition of two continuous mappings. The case x −→ xb is

analogous.

(4),(5) By the case above we see x −→ ax −→ (ax)b as the composition of

two homeomorphisms. Similarly for x −→ axa−1.

(6) The map x −→ (xa, x−1) −→ (xa)x−1 is the composition of two con-

tinuous mappings. Continuity of the first one comes from considering the

composition of the projections x −→ xa and x −→ x−1, that are separately

continuous by the above properties. The continuity of the second one follows

from the previous cases.

Notation Let G be a group, x a fixed element of G and A,B subsets of G,

then we let:

Ax = {ax | a ∈ A};

xA = {xa | a ∈ A};

AB = {ab | a ∈ A, b ∈ B};

A−1 = {a−1 | a ∈ A}.
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Corollary 1.5. If G is a topological group and B is a fundamental system

of neighborhoods of the neutral element e, then the sets {aV | V ∈ B} and

{V a | V ∈ B} are fundamental systems of neighborhoods of a for each a∈G.

Proof. We know from 1.4 that that the maps x −→ ax and x −→ xa are

homeomorphisms of G sending e to a, and hence transforming B into a fun-

damental system of neighborhoods of a. In a similar way B is sent to another

fundamental system of neighborhoods of e through the homeomorphic map

x −→ x−1.

Corollary 1.6. If G is a topological group, A is a subset of G and U ⊆ G

is open, then the subsets U−1, AU, UA are also open.

Proof. We can suppose that A and B are both nonempty (otherwise the

thesis is automatically verified). Then U−1 is open since inversion is a home-

omorphism. For the same reason the sets aU and Ua are open for each a ∈ A.

Therefore also

AU =
⋃
a∈A

aU

UA =
⋃
a∈A

Ua

are open, for they are countable union of open sets.

Observation 1.7. The fact that the translations are homeomorphisms means

that for any pair of points a, b ∈ G the mapping x −→ ba−1x is a homeo-

morphism of G that sends a to b. Consequently, topological behaviour at a is

reflected at b. For instance, if a point a ∈ G has a countable neighborhood

basis, then each point b ∈ G has a countable neighborhood basis. Therefore,

a topological group is said to be ’topologically homogeneous’.

Due to the homogeneity of a topological group, the topology is completely

determined by the system of neighborhoods of the neutral element e. The

following theorem outlines the pertinent properties of this neighborhood sys-

tem.
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Theorem 1.8. If G is a topological group, then the class V of all neighbor-

hoods of the neutral element e has the following properties:

(1) e ∈ V for all V ∈ V;

(2) If V,W ∈ V, then V ∪W ∈ V;

(3) If V ∈ V, then there exists W ∈ V such that WW ⊂ V ;

(4) If V ∈ V, then V −1 ∈ V;

(5) If V ∈ V and a ∈ G, then aV a−1 ∈ V;

(6) If V ∈ V and V ⊆ W , then W ⊆ V.

Proof. (1),(2),(6) Are more generally properties of the class of neighborhoods

of a point in a topological space.

(3) The map f : (x, y) −→ xy is continuous at (e, e) and f(e, e) = e. Hence,

given any open neighborhood V of e, its inverse image contains an open

neighborhood A = (W1 ×W2) ∈ G×G of (e, e). If we let W = V1 ∩ V2 then

we obtain

W ·W = f(W ×W ) ⊆ f(W1 ×W2) ⊆ V.

(4),(5) The proof is similar to (3) after recalling that the maps x −→ x−1

and x −→ axa−1 are continuous.

The latter properties can be considered a characterisation of compatibility

of a topology with the group structure.

Proposition 1.9. Let G be a topological group and B a subset of G. Then

B̄ = ∩{AB | A is a neighborhood of e}

Proof. Recall that the closure of a subset B is the intersection of all open

sets containing B; then the fact that B̄ ⊆ ∩{AB | A is a neighborhood of e}
is obvious.

For the reverse, we will show that if x ∈ ∩{AB | A is a neighborhood of e}
and U is any neighborhood of x then U ∩B ̸= ∅, for this means that x ∈ B.
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Suppose x ∈ ∩{AB | A is a neighborhood of e}. If U is a neighborhood of

x then there is a neighborhood A of e such that Ax ⊆ U . Now also A−1 is

a neighborhood of e, so x ∈ A−1B, following that x = a−1b for some a ∈ A

and b ∈ B. Hence B ∋ b = ax ∈ Ax ⊆ U , and so B ∩ U ̸= ∅.

Theorem 1.10. If G is a topological group and B is any fundamental system

of neighborhoods of e, then the following conditions are equivalent:

(1) G is a Hausdorff space;

(2) {e} is a closed subset of G;

(3)
⋂

B∈BB = {e}.

Proof. (1) =⇒ (2) In a Hausdorff space each point is closed, in particular,

the singleton e is.

(2) =⇒ (3) If we assume x ̸= e then we shall prove that there exists some

B ∈ B such that x ̸∈ B. As {e} closed, {x} is also closed because by 1.4 the

map x −→ ax is a homeomorphism. Being {e} and {x} both closed, there

exists a neighborhood V of e such that x ̸∈ V . Now B is a fundamental

system of neighborhood and we can pick B ∈ B such that B ∈ V .

(3) =⇒ (1) Assume x ̸= y, then we search for a neighborhood V of e such

that xV ∩yV = ∅. Since xy−1 ̸= e, by hypothesis there exists B ∈ B such that

xy−1 ̸∈ B. Now we can choose C ∈ B so that C · C ⊆ B; then V = C ∩ C−1

is a symmetrical neighborhood of e. If we suppose, by contradiction, that

(xV ) ∩ (yV ) ̸= ∅, then it follows that

xy−1 ∈ V · V −1 = V · V ⊆ C · C ⊆ B.

Hence (xV ) ∩ (yV ) = ∅.

Theorem 1.11. If G is a topological group and H is a subgroup of G, then

its closure H is also a subgroup of G. Moreover, if H is normal, then H is

also a normal subgroup of G.
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Proof. Suppose H is a subgroup of G and define f : G×G −→ G as f(x, y) =

x−1y; then f(H × H) ⊆ H from the fact that H is a subgroup. Since f is

continuous and H×H is the closure of H×H it follows that f(H×H) ⊆ H,

meaning that H is a subgroup too.

If, in addiction, H is normal in G, this implies that for each a ∈ G the

homeomorphism x −→ axa−1 sends H into H. Then, by continuity, x −→
axa−1 also sends H into H, yielding that H is normal as well.

Corollary 1.12. If G is a topological group, then {e} is a closed normal

subgroup of G.

Theorem 1.13. If G is a topological group and H is an open subgroup of G,

then H is also closed.

Proof. If H is a subgroup of G, then its complement HC can be written as

union of all left translates of H. In particular:

HC = G \H =
⋃

{Hx | x ̸∈ H}

and this is open according to 1.6, as H is open.

Proposition 1.14. If a subgroup H of a topological group G contains a

neighborhood of e, then H is open.

Proof. Let V be a neighborhood of e such that V ∈ H and let x ̸= e be an

element of H. Then xV is a neighborhood of x that is contained in H. In

fact, let a be any element of xV and write a = xv with v ∈ V . Then a ∈ H

since both x and v belong to the subgroup H.

Corollary 1.15. Let G be a topological group and H be a subgroup. If H

contains a nonempty open set of G then H is open.

Proof. Let H be a subgroup of G containing a nonempty open set U . Then

choose x ∈ U , so that U is an open neighborhood of x. Consider the left-

translate H ′ = x−1H. H ′ is a subgroup of G that contains x−1U , which is

a neighborhood of e, hence by Proposition 1.14 H ′ is open. Therefore H is

also open by Corollary 1.6.
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Observation 1.16. It follows from Corollary 1.15 that a subgroup of a topo-

logical group is open if and only if its interior is nonempty.

Theorem 1.17. Let G be a topological group and let D be a dense subgroup

of G. If H is an open subgroup of D then the closure of H in G is open in

G.

Proof. Assume H nonempty, otherwise there is nothing to prove. Let H

be the closure of H in G. Since it is the closure of a subgroup of G, H

is a subgroup as well, according to Theorem 1.11. Then, to see that H is

open in G it suffices to show that it contains a nonempty open subset of G

by Corollary 1.15. Since H is a nonempty open subset of D, there exists

a nonempty open subset H ′ of G such that H = H ′ ∩ D. It follows from

Lemma 1.1 that H ′ ∩D is dense in H ′, hence H = H ′ ∩D = H ′. Therefore

H contains H ′, which is the open subset of G that we wanted.

1.3 The Birkhoff-Kakutani Theorem

Recall that a topological group is first countable if each point admits a

countable neighborhood basis. On the other hand, we have seen that a topo-

logical group has homogeneity properties. For this reason, first countability

on a topological group G can be more easily defined by restricting the stated

property to any singular point of G. Precisely, a topological group G is first

countable if the neutral element e admits a countable neighborhood basis.

It is trivial to prove that, in general, a metrisable topological space is both

Hausdorff and first countable. A remarkable fact is that, if a topological space

has a compatible group structure, then the converse is true: if the neutral

element e of a topological group G has a countable fundamental system of

neighborhoods and it is a Hausdorff space, then G is metrisable.

Definition 1.18. A left invariant metric is a metric d on a metric space

X such that d(x,y)=d(zx,zy) for each x,y,z ∈ X.
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Observation 1.19. If a topological group (G, τ) admits a left-invariant com-

patible metric d, then the metric d′(x, y) = d(x−1, y−1) is clearly right-invariant.

Since the mapping x −→ x−1 is a homeomorphism of G, d′ generates the

same topology of d, the metric d′ is also compatible with τ . Thus, in the

Birkhoff-Kakutani theorem, it is immaterial whether one says ’left’ or ’right.

Part of the proof can be separated out as the following lemma:

Lemma 1.20. Let X be a set and suppose that f : X×X −→ R is a function

satisfying the following conditions:

(1) f(x, y) ≥ 0 for all x, y ∈ X

(2) f(x, x) = 0 for all x ∈ X

(3) For each ϵ > 0 the relations f(w, x) ≤ ϵ, f(x, y) ≤ ϵ, f(y, z) ≤ ϵ imply

that f(w, z) ≤ 2ϵ.

Now define a function d: X×X −→ R as follows.

If (x, y) ∈ X × X and p = {x = x0, x1, ..., xn = y} is any finite system of

points in X that begins at x and ends at y, then we write

|p| =
n∑

k=1

f(xk−1, xk)

and define

d(x, y) = inf(|p|),

where p varies over all such finite systems. Then d has the following proper-

ties:

(a) 1
2
f(x, y) ≤ d(x, y) ≤ f(x, y);

(b) d(x, z) ≤ d(x, y) + d(y, z);

(c) if f(x, y) = f(y, x) for all x, y ∈ X then d(x, y) = d(y, x) for all

x, y ∈ X.
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If f(x, y) = f(y, x) for all x, y ∈ X and if f(x, y) > 0 whenever x ̸= y, then

d is a metric on X.

Proof. (c). This clearly holds by how d is defined; then if (a) and (b) are

verified the last assertion comes consequently. Hence we only have to verify

(a) and (b). A preliminary observation derived from condition (3) is that

for each ϵ > 0, if both f(x, y) < ϵ and f(y, z) < ϵ, then f(x, z) < 2ϵ. If, in

particular, f(x, y) = f(y, z) = 0 then 0 < f(x, z) < 2ϵ for each ϵ, implying

that f(x, z) = 0. By induction we obtain that, for each system of points

p = {x = x0, x1, ..., xn = y} such that |p| = 0, then f(x, y) = 0.

(a). Consider the system q = {x = x0, x1 = y}: By definition of d we have

that d(x, y) ≤ |p| = f(x, y), so the second inequality is verified. To prove

that 1
2
f(x, y) ≤ d(x, y) we will show that 1

2
f(x, y) ≤ |p| for each system p.

We proceed by induction on the number n of points contained in p. If n = 1

the only system can be p = {x = x0, x1 = y}, then |p| = f(x, y) ≥ 1
2
f(x, y)

since f is non-negative. Now we consider n ≥ 2 and suppose the assertion

to be true for systems containing less than n points. We have three cases to

consider:

Case 1: f(x0, x1) ≥ 1
2
|p|. Then

1

2
|p| = |p|−1

2
|p| ≥ |p|−f(x0, x1) =

n∑
k=2

f(xk−1, xk) ≥ d(x1, xn) ≥
1

2
f(x1, xn),

where the last inequality comes by induction on a system of n − 1

points. We hence obtain that f(x1, xn) ≤ |p|, and taking into account

the obvious fact that f(x0, x1) ≤ |p| it follows that f(x0, xn) ≤ 2 |p|,
which is 1

2
f(x, y) ≤ |p|.

Case 2: f(xn−1, y) ≥ 1
2
|p|. Then we obtain the same result of Case 1 by a

similar argument.

Case 3: f(x0, x1) <
1
2
|p| and f(xn−1, xn) <

1
2
|p|. We can assume |p| > 0 and

n ≥ 3. Let r be the largest natural number such that
r∑

k=1

f(xk−1, xk) ≤
1

2
|p| .
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From the fact that f(x0, x1) <
1
2
|p| it follows that r ≥ 1 while, as

f(xn−1, xn) <
1
2
|p|, we have that

∑n−1
k=1 f(xk−1, xk) = |p|−f(xn−1, xn) >

1
2
|p|. This implies that r < n − 1 and so, by induction and the result

above, we can write 1
2
f(x0, xr) ≤

∑r
k=1 f(xk−1, xk) ≤ 1

2
|p|, hence

(i)

f(x0, xr) ≤ |p|

while clearly

(ii)

f(xr, xr+1) ≤ |p| .

Recall that by maximality of r we had
∑r+1

k=1 f(xk−1, xk) >
1
2
|p|; it

naturally follows that

n∑
k=r+2

f(xk−1, xk) <
1

2
|p| .

Then by induction we can write 1
2
f(xr+1, xn) ≤

∑n
k=r+2 f(xk−1, xk) <

1
2
|p|, which is

(iii)

f(xr+1, xn) ≤ |p| .

So now we can finally gather (i),(ii) and (iii) together and by (3) obtain

that f(x0, xn) ≤ 2 |p|, which is equivalent to saying that 1
2
f(x, y) ≤ |p|.

So the first inequality is verified as well.

(b). Let x, y, z be elements of X and consider two systems of points

p = {x = x0, x1, ..., xn = y}, q = {y = y0, y1, ..., ym = z}

and define s as the concatenation of p and q, namely

s = {x = x0, x1, ..., xn = y = y0, y1, ..., ym = z}

Then by definition of d it is clear that d(x, z) ≤ |s| = |p| + |q|. Being

p and q two arbitrary independent systems we conclude that d(x, z) ≤
d(x, y) + d(y, z).



14 1. Topological Groups

Theorem 1.21 (Birkhoff Kakutani Theorem). Let G be a topological group.

Then G is metrisable if and only if G is a Hausdorff space and the identity

e has a countable neighborhood basis. Moreover, if G is metrisable, then G

admits a compatible metric d which is left-invariant.

Proof. We have seen that the first implication is true for any metrisable

space, so it is true in particular for topological groups, where first count-

ability coincides with the neutral element having a countable neighborhood

basis.

Let now a topological group G be a Hausdorff space with a fundamental se-

quence of neighborhoods {Un | n ∈ N} of e. We shall start by constructing an

’improved’ fundamental sequence of neighborhoods {Vn}n∈N. We first replace

Un with Un ∩ U−1
n so that all Un are symmetric, meaning that Un = U−1

n ,

then let V1 = U1. According to properties listed in 1.8 there exists Uk such

that U3
k ⊂ U2∩V1. Let V2 be the first Uk with this property and, inductively,

let Vn be the first Uk such that U3
k ⊂ Un ∩ Vn−1. By this definition Vn ⊂ Un

for all n, hence the system of neighborhoods {Vn}n∈N is also fundamental.

As G is a Hausdorff space, according to 1.10 we have that

(i) ⋂
k∈N\{0}

Vk = {e}

while by construction we get

(ii)

V 3
k+1 ⊂ Vk

for each k = 1, 2, 3,... Set V0=G. Then from (ii) we have

(iii)

G = V0 ⊃ V1 ⊃ V2 ⊃ V3 ⊃ ...

This means that every x ∈ G must belong to some Vk, and it follows from

(i) and (iii) that, if x ̸= e, then Vk excludes x from some k onward. In other

words x belongs to only finitely many Vk. Notice that, if G admits a finite
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fundamental system of neighborhoods of e, then it is obviously discrete. In

this case the discrete metric, that is d(x, x) = 0 for all x and d(x, y) = 1

when x ̸= y, is a left-invariant compatible metric. Thus, let now assume

G nondiscrete. Each VK represents a degree of ’nearness’ to the ’origin’ e

or, equivalently, x−1y ∈ Vk is a measure of the nearness of x to y. The

problem is to express such qualitative statements in terms of a metric, then

left-invariance will follow from the fact that the basic relation x−1y ∈ Vk is

itself left-invariant; in fact, (ax)−1(ay) = x−1y).

Suppose x ̸= y. Two qualitative assertions are that x−1y ∈ Vk for some k,

and that there exists a largest such k. This allows us to define f(x, y) =

min{(1/2)k | x−1y ∈ Vk}. On the other hand, if x = y then x−1y = e ∈ Vk

for all k. So, if we set f(x, x) = 0 for all x then we can write

(iv)

f(x, y) = inf{(1/2)k | x−1y ∈ Vk}

for all x, y ∈ G. The desired metric d will be derived from f via 1.20.

Thus, we now show that the hypotheses of the lemma are fulfilled. Clearly

f(x, y) ≥ 0, and f(x, y) = 0 if and only if x = y. Also, f(x, y) = f(y, x) since

the Vn are symmetric by construction. Hence, to apply 1.20 we only need

to verify the third condition on f ; then the left-invariance of d will follow

from the property that f(ax, ay) = f(x, y). With regards to the hypotheses

of 1.20, supposing ϵ > 0, f(w, x) ≤ ϵ, f(x, y) ≤ ϵ, f(y, z) ≤ ϵ, it is to be

shown that f(w, z) ≤ 2ϵ. Notice that this is trivial if ϵ > 1/2, since in any

case f(x,w) < 1 by definition; hence, suppose 0 < ϵ < 1/2. According to

(iv) there exist positive integers i, j, k such that

w−1x ∈ Vi and (1/2)i ≤ ϵ;

x−1y ∈ Vj and (1/2)j ≤ ϵ;

y−1z ∈ Vk and (1/2)k ≤ ϵ.

Let r = min{i, j, k}; then (1/2)r ≤ ϵ and it follows from (ii) that

w−1z = (w−1x)(x−1y)(y−1z) ∈ V1VjVk ⊂ V 3
r ⊂ Vr−1
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hence f(w, z) ≤ (1/2)r−1 = 2(1/2)r ≤ 2ϵ. We eventually verified the hy-

potheses in order to apply 1.20 which, as already said, yields a left-invariant

metric d; it is left to prove that d generates the given topology. For any ϵ> 0

and any a ∈ G we define

Uϵ(a) = {x ∈ G | f(a, x) < ϵ}

and we claim that the set {Uϵ(a) | ϵ > 0} is a fundamental system of neighbor-

hoods for the given topology on G. To begin, every Uϵ(a) is a neighborhood

of a. In fact, if k is a positive integer such that (1/2)k < ϵ, then from the

chain of implications

x ∈ aVk =⇒ a−1x ∈ Vk =⇒ f(a, x) ≤ (1/2)k < ϵ

it follows that aVk ⊂ Uϵ(a), hence Uϵ(a) is a neighborhood of a. On the other

hand we want to show that if A is any neighborhood of a then Uϵ ⊂ A for

some ϵ > 0. According to the fact that a−1A is a neighborhood of e and

that Vk is a fundamental system of neighborhoods of e, we let k be a positive

integer such that aVk ⊂ A, then set ϵ = (1/2)k. If x ̸∈ aVK , then a
−1x can

belong to Vj only for j < k, meaning f(a, x) > (1/2)k = ϵ. Hence x ̸∈ Uϵ(a),

yielding to Uϵ(a) ⊂ aVk ⊂ A. We have shown that {Uϵ(a) | ϵ > 0} is a

fundamental system of neighborhoods for any fixed a ∈ G.

Now recall (1) of 1.20, by which 1
2
f(x, y) ≤ d(x, y) ≤ f(x, y); it follows that,

for ϵ > 0, f(x, y) < ϵ =⇒ d(x, y) < ϵ =⇒ f(x, y) < 2ϵ. Thus

(v)

Uϵ(x) ⊂ {y | d(x, y) < ϵ} ⊂ U2ϵ.

Now, the {Uϵ(x) | ϵ > 0} are a fundamental system of neighborhoods of x

for the given topology on G, while the open balls {y | d(x, y) < ϵ} are a

fundamental system of neighborhoods of x for the topology derived from the

metric d. An immediate implication of (v) is that the two topologies coincide.

Finally, if G is metrisable then it is Hausdorff and first countable by the

first inclusion, hence, by the second inclusion, G possesses a left-invariant

compatible metric.



Chapter 2

Polish Groups

A topological space is Polish if it is both completely metrisable and

separable. Consequently, the topology on such a space is called a Polish

topology. Throughout the previous chapter we have seen that, given a

group G, it is always possible to define a topology in order for it to be a

topological group. Then the following definition comes automatically: If a

topological group is a Polish space, then it is called a Polish group, and

the given topology is said a Polish group topology.

In this chapter we will see some interesting theorems on Polish groups which

will ultimately yield an interesting uniqueness result on the Polish group of

our interest: S∞. The contents in Sections 2.1, 2.2 and 2.3 mostly refer to

[1], while Section 2.4 is based on the work in [3] .

2.1 Trees

Let A be a non-empty set and n ∈ N. The set of finite sequences s =

(s(0), ..., s(n− 1)) of length n from A is denoted by An. Concerning the case

n = 0, we let A0 = {∅}, where {∅} denotes the empty sequence. We now

define by A<N the collection of all finite sequences from A, meaning that

A<N =
⋃
n∈N

An.

17
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The length of a finite sequence s is denoted by length(s), by which length(∅)=0.

If s ∈ An, then for any m ≤ n the subsequence s|m = (s(0), ..., s(m− 1)) ca

be defined; hence s| 0 = ∅.
For m ∈ N, a sequence s from Am is an initial segment of a finite sequence

t from An, with n ≥ m, if it happens that s = t|m. In this case, t is called

an extension of s, and we denote it by s ⊆ t. If such condition is verified,

then s and t are compatible; otherwise, they are called incompatible.

The latter case is denoted by s⊥t. With this definition, the empty sequence

can be seen as an initial segment of any finite sequence from A, and it is

thus compatible with any other sequence. Given two sequences s, t in A<N

of length n and m respectively, the concatenation of s and t is the the

sequence s ∗ t = (s(0), ..., s(n− 1), t(0)..., t(m− 1)) ∈ An+m ⊆ A<N.

Similarly, we define by AN the set of all infinite sequences x = (xn)n∈N from

A and we give analogous definitions. If x ∈ AN and n ∈ N, let x|n =

(x(0), ..., x(n − 1)) ∈ An. We say that s ∈ An is an initial segment of

x ∈ AN if s = x|n and we denote it by s ⊆ x. Also, for s ∈ A<N and x ∈ AN

we let the concatenation of s, x be the infinite sequence y = s ∗ x where

y(i) = s(i) for each i < length(s) and y(length(s)+j) = x(j). More generally,

the concatenation s0∗s1∗s2∗... of si ∈ A<N is the unique x ∈ AN∪A<N such

that x(i) = s0(i) if i < length(s0); x(length(s0) + i) = s1(i) if i < length(s1);

and so on.

A tree on a set A is a subset T ⊆ A<N closed under initial segments, meaning

that if t ∈ T and s ⊆ t then s ∈ T . In particular, ∅ ∈ T if T is nonempty.

We call the elements of T the nodes of T. An infinite branch of T is a

sequence x ∈ AN such that x|n ∈ T for all n. The body of T is the set of

all infinite branches of T , and we denote it by

[T ] = {x ∈ AN | x|n ∈ T,∀n}.

Finally, we call a tree T pruned if every s ∈ T has a proper extension

t ⊋ s, t ∈ T .
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It is well known that any set A can be viewed as a topological space within

the discrete topology, that is the topology where every subset of A is open.

It is also easy to notice that this can be metrisable with compatible metric

δ(a, b) = 1 if a ̸= b. Therefore AN, viewed as the product space of infinitely

many copies of A, is in turn metrisable with compatible metric d defined as

follows:

d(x, x) = 0

for each x ∈ X, while

d(x, y) =
1

2n+1

if x ̸= y and n is the least number such that xn ̸= yn.

The standard basis for the topology of AN consists of the sets

Ns = {x ∈ AN | s ⊆ x}

where s ∈ A<N. Note that s ⊆ t ⇐⇒ Ns ⊇ Nt, while s⊥t ⇐⇒ Ns∩Nt = ∅.

Proposition 2.1. The map T −→ [T ] is a bijection between pruned trees on

A and closed subsets of AN. Its inverse is given by

F −→ TF = {x|n | x ∈ F, n ∈ N}.

We call TF the tree of F.

Proof. The proof of this fact is quite evident by the fact that, given an

arbitrary closed subset of AN and restricting it to all n ∈ N, we obtain finite

sequences that can be seen as nodes to construct a correspondent pruned tree.

Reversely, given a pruned tree T we know that any element of T , that is a

subsequence, admits a proper extension. Then the process above is evidently

reversible.

Notation: Let T be a tree on A. Then for any s ∈ A<N we define

Ts = {t ∈ A<N | s ∗ t ∈ T};
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T[s] = {t ∈ T | s ⊆ t}.

Notice that [T[s]] = [T ]∩Ns is a basis for the topology of [T]. Also, while T[s]

clearly is a subtree of T , Ts in general is not. For instance, consider

T = {(0, 0, 1, 1), (0, 0, 2, 2), (0, 0, 3, 3)}

and let s = (0, 0) ∈ A2. Then

Ts = {(1, 1), (2, 2), (3, 3)},

which evidently is not even a tree since the condition of being closed under

initial segments is not fulfilled.

Definition 2.2. Let S, T be trees on sets A,B respectively. A map

ϕ : S −→ T

is monotone if s ⊆ t implies ϕ(s) ⊆ ϕ(t). For such ϕ let

D(ϕ) = {x ∈ [S] | limn−→∞length(ϕ(x|n)) = ∞}.

For x ∈ D(ϕ) define

ϕ∗(x) =
⋃
n

ϕ(x|n) ∈ [T ].

We call ϕ proper if D(ϕ) = [S].

Definition 2.3. Let F be a closed subset of a topological space X. Then F is

a retract of X if there exists a continuous surjection f : X −→ F such that

f |F = idF .

Proposition 2.4. For each two closed nonempty subsets F ⊆ H of AN, F

is a retract of H.

Proof. By 2.1, each closed subset of AN is in bijection with a pruned tree;

hence we let S, T be pruned trees on A such that [S]=F and [T ]=H. Notice

that S ⊆ T . What we want do is to define a monotone proper ϕ : T −→ S
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such that ϕ|S = idS. With this, we will then extend ϕ to all [T ] through ϕ∗

as defined in Proposition 2.2 ; this will imply that S is a retract of F .

We now define ϕ(t) by induction on length(t). First we let ϕ(∅) = ∅ and we

let ϕ(t) be already defined. Then, for a ∈ A with t ∗ a ∈ T we define ϕ(t ∗ a)
as follows: If t ∗ a ∈ S, let ϕ(t ∗ a) = t ∗ a. Otherwise, if t ∗ a ̸∈ S, then

ϕ(t ∗ a) can be any ϕ(t) ∗ b ∈ S, which exists since S is pruned.

Definition 2.5. A Lusin scheme on a set X is a family {As}s∈N<N of

subsets of X such that

(1) As∗i ∩ As∗j = ∅, if s ∈ N<N with i ̸= j ∈ N;

(2) As∗i ⊆ As, if s ∈ N<N with i ∈ N.

Let (X,d) be a metric space and {As}s∈N<N a Lusin scheme on X.

Then if

limn−→∞diam(Ax|n) = 0

for all x ∈ N we say that {As}s∈N<N has a vanishing diameter. In such

case we let D = {x ∈ N |
⋂
n

Ax|n ̸= ∅} and define the map from D to X as

{f(x)} =
⋂
n

Ax|n.

The map f is called the associated map.

Proposition 2.6. Let {As}s∈N<N be a Lusin scheme with a vanishing diam-

eter on a metric space (X,d). Then if f : D −→ X is the associated map we

have:

(i) f is injective and continuous;

(ii) If (X,d) is complete and each As is closed, then D is closed;

(iii) If As is open, then f is an embedding.

Proof. (i) This part is straightforward since N has the standard topology

and if
⋂

nAx|n =
⋂

nAy|n then x|n = y|n for all n, i.e. x = y.

(ii) Let {xn}n∈N be a sequence in D such that xn −→ x. Then:
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1. Given ϵ > 0 there exists N such that diam(Ax|N) < ϵ, as {As}s∈N<N

has a vanishing diameter by hypothesis;

2. there exists M such that xn|N = x|N for all n ≥ M , because we set

xn −→ x.

Then it follows that d(f(xn), f(xm)) < ϵ for all n,m ≥M , meaning that the

sequence {f(xn)}n∈N is Cauchy in (X, d). Hence, there exists y ∈ X such

that f(xn) −→ y, because (X, d) is complete. By what stated previously,

f(xn) ∈ Ax|n for all n > M , and, since each As is closed by hypothesis, it

follows that also y ∈ Ax|n for all n. Thus y ∈
⋂
n

Ax|n, yielding that x ∈ D.

So D is closed.

(iii) This follows from the fact that f(Ns ∩D) = f(D) ∩ AS.

2.2 Topological characterisation of the Baire

space

Let X be a topological space. If A is a subset of X, the interior of A

is the union of all open sets that are contained in A or, in other words, the

greater open set contained in A. The border of A, indicated with ∂(A), is

the set given by the closure of A minus the interior of A. Notice that ∂A is a

closed set for it is the intersection of two closed sets, namely ∂A = A∩X \ A.
A subset of X is nowhere dense if the interior of its closure is empty. A

subset of X is meagre if it is countable union of nowhere dense sets.

A subset A of X has the Baire property if there exists an open set U such

that U △ A is meagre. Here U △ A represents the symmetric difference,

namely the set {x ∈ X | x ∈ (U \ A) or x ∈ A \ U)} .

A Borel set of X is any set belonging to the σ-algebra generated by the

open sets of X. We denote the class of Borel sets of X by B(X). In other

words, the Borel sets are generated from the open sets via the operations of

complementation and countable union. This means that the class of Borel

sets of a topological space X is the family of all open and closed sets of X.
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Let X and Y be topological spaces. A function f : X −→ Y is Baire

measurable if f−1(U) has the Baire property for all open sets U in Y .

Notice that a continuous function is obviously Baire-measurable.

Lemma 2.7. If X is a topological space, then every Borel set in X has the

Baire property.

Proof. Let A be a Borel set in a topological space X. Then A is either open

or closed. If A is open there is nothing to prove. If A is closed then we

consider the open set given by its interior, call it U . Since U = A, then the

set U△A = A\U=U \U is the boundary of U . Recall that the boundary of a

set is closed and, according to the definition, its interior is empty. Therefore

B = U △ A = ∂U is nowhere dense, then in particular it is meagre. Hence

A has the Baire property.

Definition 2.8. The Baire space N = NN is the set of all mappings from

N to N.

Theorem 2.9. Let X be a Polish space. Then there is a closed set F ⊆ N
and a continuous bijection f : F −→ X. In particular, if X ̸= ∅, there is a

continuous surjection g : N −→ X extending f.

Proof. To prove the first assertion we begin by using the hypothesis of X

being Polish to fix a complete metric d ≤ 1 on X. Then, recalling Definition

2.5, we construct a Lusin scheme {Fs}s∈NN on X such that:

(i) F∅ = X;

(ii) Fs is an Fσ set;

(iii) Fs =
⋃
i

Fs∗i =
⋃
i

Fs∗i;

(iv) diam(Fs) ≤ 2−length(s).

We now consider the associate map f : D −→ X. By (iii) we obtain that

f(D) = X, and according to Proposition 2.6 f is a continuous bijection of D

onto X. Hence it is enough to show that D is closed.
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If we let {xn}n∈N be a succession in D such that xn −→ x, by a similar

argument as in Proposition 2.6 it can be proven that {f(xn)}n∈N is Cauchy.

This implies that fn −→ y ∈ X, because X is Polish and hence it is complete.

Notice that condition(iii) also implies that y ∈
⋂
n

Fx|n =
⋂
n

Fx|n, thus x ∈ D

and D is close.

Let’s now get to the construction of a Lusin scheme with the above-mentioned

properties. Let Fσ, F ⊆ X and ϵ > 0 be arbitrary we can write F =
⋃
i∈N

Fi,

where the Fi are pairwise disjoint Fσ sets of diameter < ϵ such that Fi ⊆ F .

For that let F =
⋃
i∈N

Ci, where Ci is closed and Ci ⊆ Ci+1. Then F =⋃
i∈N

(Ci+1\Ci). Now write Ci+1\Ci =
⋃
j∈N

E
(i)
j , where E

(i)
j are pairwise disjoint

Fσ sets of diameter < ϵ. Then F =
⋃
i,j

E
(i)
j and E

(i)
j ⊆ Ci+1 \ Ci ⊆ Ci+1 ⊆ F .

For what concerns the last assertion, we notice that both F and N itself

are closed subsets of N such that F ⊆ N . Then according to 2.4 F is a

retract of N , meaning that there exists a continuous surjection g : N −→ F .

By the first assertion there exists a continuous bijection f : F −→ X, so

g ◦ f : N −→ X is indeed a continuous surjection that extends f .

Theorem 2.10. Let X be a Polish space and A ⊆ X be Borel. Then there

exists a closed set F ⊆ N and a continuous bijection f : F −→ A. In

particular, if A ̸= ∅, there is also a continuous surjection g : N −→ A

extending f .

Proof. Enlarge the topology τ of X to a Polish topology τA in which A is

both open and closed. Notice that A is Polish as well because a closed subset

of a Polish space is Polish too. So now we can apply Theorem 2.9 to A in

order to say that there exists a closed set F ∈ N and a bijective function

f : F −→ A that is continuous for τA|A. Since τ ⊆ τA, then f : F −→ A

is also continuous for the topology τ . Finally we note that F ⊆ N is an

inclusion of closed subsets of N , then we let the last assertion follow from

2.4.
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2.3 Lusin-Souslin Theorem

Generally speaking, the continuous image of a Borel set is not necessarily

Borel. However, it is interesting to see that this happens under conditions of

injectivity. This result goes under the name of Lusin-Souslin Theorem and

it will be proven at the end of this section. Towards this objective we will

have to go through some more fundational theory first.

Definition 2.11. A measurable space (X,S) is a standard Borel space

if it is isomorphic to (Y,B(Y )) for some Polish space Y or, equivalently, if

there exists a Polish topology τ on X with S = B(τ).

Definition 2.12. Let X be a Polish space. A set A ⊆ X is an analytic set

if there exist a Polish space Y and a continuous function f : Y −→ X such

that f(Y ) = A.

Definition 2.13. Let X be a standard Borel space. Then A ⊆ X is analytic

if there is a Polish space Y and a Borel isomorphism f : X −→ Y such that

f(A) is analytic in Y .

Definition 2.14. Let P,Q be two subsets of a Polish space X. Then P and

Q are Borel-separable if there exists a Borel set R separating P from Q,

meaning that P ⊆ R and R ∩B = ∅.

Lemma 2.15. If P =
⋃
m

Pm, Q =
⋃
n

Qn where Pm, Qn are Borel-separable

for each m,n, then P,Q are Borel-separable.

Proof. Let Rm,n be the Borel-set separating Pm from Qn for each n, and m

and define the set R =
⋃
m

⋂
n

Rm,n. R is clearly a Borel-set, for it is generated

by unions of intersections of Borel sets, and it separates P from Q since every

Rm,n does.

The following result is of fundamental importance.

Theorem 2.16 (The Lusin Separation Theorem). Let X be a standard Borel

space and let A,B ⊆ X be two disjoint analytic sets. Then A and B are

Borel-separable.
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Proof. Assume, without loss of generality, that A and B are non-empty and

let f : N −→ A and g : N −→ B be continuous surjections (which exist

by Theorem2.10 since A,B are Borel sets). Let also As = f(Ns) and Bs =

g(Ns), then As =
⋃
m

As∗m and Bs =
⋃
n

Bs∗n. If A and B are not Borel-

separable, then by iterated use of Lemma 2.15 we can recursively define

x(n), y(n) ∈ N such that Ax|n, Bx|n are not Borel-separable for each n ∈ N.
Then f(x) ∈ A, g(y) ∈ B, so f(x) ̸= g(y). Let U, V be disjoint open sets

with f(x) ∈ U, g(y) ∈ V . By continuity of f and g, if n is large enough we

have f(Nx|n) ⊆ U, g(Ny|n) ⊆ V . Hence U separates Ax|n from By|n, which is

a contradiction. Thus A,B must be Borel-separable, as desired.

The following extension is immediate.

Corollary 2.17. Let X be a standard Borel space and {An}n∈N a pairwise

disjoint sequence of analytic sets. Then there is a pairwise disjoint sequence

of Borel sets {Bn}n∈N such that An ⊆ Bn for each n.

Theorem 2.18 (Lusin-Souslin Theorem). Let X,Y be Polish spaces and let

f : X −→ Y be continuous. If A ⊆ X is Borel and f |A is injective, then

f(A) is Borel.

Proof. In Theorem 2.10 we have seen that there exists a continuous bijection

between Borel-sets of Polish spaces and the closed sets of N . Hence we can

assume X = N and that A is a closed subset of N .

Let Bs = f(A ∩ Ns) for s ∈ N<N. As f |A is injective, then {Bs} is a Lusin

scheme such that B∅ = f(A), Bs =
⋃
n

Bs∗n and Bs is analytic (since is the

continuous image of a Polish space). Thus, by Corollary 2.17, there exists

a Lusin scheme {B′
s} where each B′

s is Borel and such that B′
∅ = Y and

Bs ⊆ B′
s. We will now define inductively on length(s) the Borel sets B∗

s so

that each {B∗
s} is also a Lusin scheme:

B∗
∅ = B′

∅

B∗
n0

= B′
n0

∩Bn0
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B∗
(n0,...,nk)

= B′
(n0,...,nk)

∩B∗
(n0,...,nk−1)

∩B(n0,...,nk)

Then it is easy to prove by induction on k that B(n0,...,nk) ⊆ B∗
(n0,...,nk)

⊆
B(n0,...,nk). The objective is now to show that

f(A) =
⋂
k

⋃
s∈Nk

B∗
s ,

which would obviously yield that f(A) is Borel.

Consider x ∈ f(A). Then there exists a ∈ A such that f(a) = x: this means

that x ∈ ∩kBa|k, and thus x ∈ ∩kB
∗
a|k.

Conversely, consider x ∈ ∩k ∪s∈Nk B∗
s . Then there exists unique a ∈ N such

that x ∈ ∩kB
∗
a|k; we will ultimately show that a ∈ A and that x = f(A).

By how x is defined, it is clear that x ∈ ∩kBa|k, meaning in particular that

Ba|k ̸= ∅ is nonempty for all k. This implies that A ∩ Na|k ̸= ∅ for all k,

meaning that A contains a succession that converges to a. Then a ∈ A since

A is closed. So f(a) ∈ ∩kBa|k. We claim that f(a) = x. In fact, suppose

f(a) ̸= x. Continuity of f implies that there is an open neighborhood Na|k0

of A with f(Na|k) ⊆ U , where U is open such that x ̸∈ U . It follows that

x ̸∈ f(Na|k0) ⊇ Ba|k0 , giving a contradiction. Hence it must be f(a) = x.

We have shown that the sets f(A) and
⋂

k

⋃
s∈Nk B∗

s coincide, then f(A) is

Borel for it is generated by operations of intersection and union of Borel-sets.

Thus we conclude by saying that the continuous image of a Borel-set

is still a Borel-set under hypothesis of injectivity.

2.4 A Uniqueness Result for Polish Group

Topologies

This last section is aimed at gathering previous knowledge in order to

prove a quite interesting uniqueness fact on Polish group topologies: Any

two compatible Polish group topologies on a group G such that one is finer

than the other must coincide.
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Theorem 2.19 (Petti’s Theorem). Suppose that G is a Polish group and let

A,B be subsets of G. If U(A) and U(B) are the largest open sets in G such that

A is comeagre in U(A) and B is comeagre in U(B), then U(A)U(B) ⊆ AB.

Proof. The proof is trivial if either U(A) or U(B) are empty, since U(A)U(B) =

∅ is clearly contained in AB. Suppose now that x is an arbitrary element

of U(A)U(B) = {uv | u ∈ U(A), v ∈ U(B)}; then there exist a ∈ U(A)

and b ∈ U(B) such that x = ab. It follows that xb−1 = a ∈ U(A), hence

xb−1 ∈ xU(B)−1 ∩ U(A). If we set V=xU(B)−1 ∩ U(A), then V ̸= ∅. Since

V ⊂ U(A), then V \ A ⊂ U(A) \ A. Recall that A is comeagre in U(A) by

hypothesis, implying that its complement in U(A), namely U(A) \ A, is a

meagre subset of G. Hence, V \ A must also be meagre in G. By a simi-

lar argument we have that V \ xB−1 ⊂ xU(B)−1 \ xB−1. Now we rewrite

xU(B)−1 \ xB−1 as x(U(B)−1 \ xB−1) and notice that U(B)−1 = U(B−1),

hence V \ xB−1 ⊂ x(U(B−1) \ B−1). Since B is comeagre in U(B), then

U(B) \ B is meagre in G, and by the fact that inversion and multiplication

by x are homeomorphisms of G, it follows that x(U(B−1) \ B−1) is meagre

too. Hence V \ xB−1 is meagre in G. Thus, both A and xB−1 are comeagre

in V , implying that also A ∩ xB−1 is comeagre in V . But V is nonempty,

then also A∩ xB−1 is nonempty and there must exist a ∈ A and b ∈ B such

that xb−1 = a. This implies that x = ab ∈ AB. Hence we can conclude that

if x ∈ U(A)U(B) then x ∈ AB, which yields the desired subset inclusion.

Lemma 2.20. If G is a Polish group and U⊆G is open, then G can be covered

by countably many left translates of U.

Proof. Suppose without loss of generality that U is any open neighborhood

of e. If G is Polish, then in particular it is metrisable; thus by the Birkhoff-

Kakutani theorem there exists a compatible left-invariant metric d on G. But

G is also separable, hence there exists a countable dense subset D. Density

hypothesis on D implies that the open balls

Bd(x, ϵ) = {g ∈ G | d(x, g) < ϵ}
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for x ∈ D and ϵ ∈ Q form a basis for the topology on G. It follows that

there exists ϵ ∈ Q such that Bd(e, ϵ) ⊆ U . Now, if x is an arbitrary element

of G then Bd(x, ϵ) ∩D ̸= ∅ because D must meet every nonempty open set.

This implies that d(x, y) < ϵ for some y ∈ D, that is, x ∈ Bd(y, ϵ). Bringing

all together we obtain the following:

G =
⋃
y∈D

Bd(y, ϵ) =
⋃
y∈D

yBd(e, ϵ) ⊆
⋃
y∈D

yU.

Being D a countable set, we have covered G with countably many left trans-

lates of U .

Proposition 2.21. If G and H are Polish groups, then any Baire-measurable

homomorphism π : G −→ H is continuous.

Proof. It suffices to show that π is continuous at the neutral element of

G, namely eG, as G is a topological group. Therefore it suffices to prove

that for every open neighborhood V of the neutral element of H, namely

eH , π
−1(V ) contains an open neighborhood of EG. Suppose that V is an

open neighborhood of eH ∈ H. Let w be an arbitrary element of H. Then

ww−1 = eH ∈ V . Since multiplication is continuous in H, there exist open

neighborhoods W1 and W2 of w and w−1 respectively, such that gh ∈ V

for all g ∈ W1 and h ∈ W2. Set W = W1 ∩ W−1
2 . Then W and W−1

are open neighborhoods of w and w−1 respectively; if g ∈ W ⊂ W1 and

h ∈ W−1 ⊂ W2, then gh ∈ V . Hence WW−1 ⊆ V , and since w ∈ H was

arbitrary, we may set w = eH so that eH ∈ W ∩W−1.

Since W is open, it follows from the previous lemma that there exists a

sequence {hiW}i∈N of left translates of W such that

H ⊆
⋃
i∈N

hiW

Hence

G =
⋃
i∈N

π−1(hiW ) ⊆
⋃
i∈N

π−1(hi)π−1(W )

ans so π−1(W) is non-meagre (since a countable union of meagre sets is

meagre, but G is not meagre). On the other hand π is Baire-measurable by
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hypothesis, and so π−1(W ) has the Baire property. This means that there

exists an open set E ⊆ G such that π−1(W )△E is meagre. For such choice

we have that

π−1(W ) \ (π−1W ∩ E) ⊆ (π−1(W ) ∪ E) \ (π−1(W ) ∪ E) = π−1(W )△ E

Notice that if we suppose π−1(W ) ∩ E to be empty, then π−1W must be

meagre as it is contained in a meagre set. If the intersection is nonempty

then E is nonempty as well. Notice that π−1(W ) is comeagre in E. Therefore,

the largest open set U(π−1(W )) in which π−1(W ) is comeagre must also be

non-empty. By a similar argument, the largest open set U(π−1(W−1)) in

which π−1(W−1) is comeagre is non-empty too. Hence by Theorem 2.19 we

obtain that

eG ∈ U(π−1(W ))U(π−1(W )−1) ⊆ π−1(W )π−1(W−1) = π−1(WW−1) ⊆ π−1(V )

But

U(π−1(W ))U(π−1(W )−1) =
⋃

x∈U(π−1(W ))

xU(π−1(W )−1)

We have that U(π−1(W ))U(π−1(W )−1) is a union of open sets containing eG

(i.e. it is an open neighborhood of eG) and it is contained in π−1(V ), hence

we can conclude that π is continuous at eG.

Corollary 2.22. If τ and τ ′ are Polish topologies on a set X such that

τ ⊆ τ ′, then every open set in τ ′ is a Borel set in τ .

Proof. By definition, since τ ⊆ τ ′, then the identity map idX : (X, τ ′) −→
(X, τ) is continuous. Notice that every open set in τ ′ is Borel in τ ′, and

that the identity map is injective. So we apply Lusin-Souslin Theorem to the

identity map, obtaining that for each open set U in (X, τ ′), idX(U) = U is

Borel in (X, τ).

We are now in possession of all the tools needed to prove the following

fundamental proposition.
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Proposition 2.23. If τ and τ ′ are Polish group topologies on a group G such

that τ ⊆ τ ′, then τ = τ ′.

Proof. If τ and τ ′ are Polish group topologies on a group G and τ ⊆ τ ′,

then by Corollary 2.22 it follows that every open set in τ ′ is a Borel set in

τ . By Lemma 2.7, every Borel set in τ ′ has the Baire Property. Hence if we

consider the identity map

idG : (G, τ) −→ (G, τ ′)

its inverse is continuous, for τ ′ is finer than τ . Then by Theorem 2.18

id−1
G (U) = U ∈ τ is Borel in (G, τ) for each open set U ∈ (G, τ ′) and by

Corollary 2.22 it has the Baire property. Hence, each open set U in (G, τ ′)

has the Baire property in (G, τ), that is, idG is Baire measurable. Then it

follows from Proposition 2.21 that idG : (G, τ) −→ (G, τ ′) is continuous,

meaning that each open set U ∈ τ ′ is also open in τ . So the two topologies

coincide.

The meaningful result of this chapter is a uniqueness result and it lies

in the latter proposition: if two Polish group topologies τ and τ ′ on a

group G are such that τ ⊆ τ ′ then τ = τ ′.
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Chapter 3

Infinite Permutation Groups

Throughout this chapter we assume M to be an infinite set, we let S(M)

denote the group of all permutations of M and we assume τ to be a topol-

ogy that is compatible with S(M), so that (S(M), ◦, τ) is a topological

group. Primarily we introduce some remarkable aspects of infinite permuta-

tion groups that will be useful in following proofs. Consequently, we prove

some meaningful theorems on S(M) with the above-mentioned topology. One

of the main facts is that, with the said assumptions, the subgroup that leaves

a generic element x fixed is open if and only if it is closed. This, combined

with further results, will play a key role in Gaughan’s Theorem: If S(M)

is a Hausdorff topological group then all stabilisers Ex are open. This will

have noteworthy implications on the group of permutations on the natural

numbers. All contents in Sections 3.1 and 3.2 are mostly based on [4] and

[2]. Section 3.3 refers to [5], while Section 3.4 is based on [3].

3.1 Infinite Permutation Groups

Let M be an infinite set and let S(M) be the group of all permutations

of M .

Let n be any natural number. We indicate by Sn the symmetric group on

a set of cardinality n, i.e. the group of all permutations of n elements.

33
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The alternating group on n elements will be denoted by An, meaning the

subgroup of Sn consisting of all permutations that are the composition of

an even number of transpositions. Notice that Sn and An are subgroups of

S(M).

For each x ∈ M we define Ex = {σ ∈ S(M) | σ(x) = x}. Similarly, for

F ⊆ M , we define EF = {σ ∈ S(M) | σ(x) = x for each x ∈ F}. The

subgroups of this form take the name of stabilisers. Notice that EF is a

subgroup of S(M) for each F ⊆ M . In particular, Ex is the subgroup of all

permutations that leave the element x fixed.

For each doubleton {x, y} we define the subgroup Ẽx,y = {σ ∈ S(M) |
σ({x, y}) = {x, y}} = Ex,y < (xy) >. Notice that this is the subgroup of all

permutations of S(M) that leave {x, y} setwise invariant.

For each x ∈M and A ⊆ S(M) we define A(x) = {σ(x) | σ ∈ A}.
If σ ∈ S(M) then we define sptσ = {x ∈M | σ(x) ̸= x}.
Finally, we say that a subgroup G of S(M) is n-transitive on M if, given

any pair of sequences (x1, x2, ..., xn) and (y1, y2, ..., yn) in M
n, there exists a

permutation g ∈ G that sends xi to yi for each i = 1, ..., n.

Notation: We will indicate by Alt(M) the subgroup of S(M) generated by

all 3-cycles.

Notice that, as An is n-transitive, the subgroup Alt(M) is n-transitive for all

n ∈ N.

Proposition 3.1. If H is a normal subgroup of S(M) containing a 3-cycle,

then H contains Alt(M).

Proof. For any arbitrary 3-cycle (abc) of S(M) there exists a permutation σ

such that σ−1 ◦ (123) ◦ σ = (abc); sure enough it is sufficient to define σ such

that σ(a) = 1, σ(b) = 2, σ(c) = 3, so that any element that is not a, b, c is

fixed. A direct implication of this is that if a normal subgroup H of S(M)

contains a 3-cycle, then it contains all 3-cycles of S(M). Then H contains

Alt(M) and it is therefore n-transitive for all n ∈ N.
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Lemma 3.2. If H is a normal subgroup of S(M) different from {e}, then
H is n-transitive.

Proof. First we observe a basic fact: Since a normal subgroup is conjugate-

closed, if it contains a 2-cycle (ab) then it contains all other 2-cycles too. It

is well known that the set of transpositions generate all finite permutations,

then in this case H contains all of Alt(M) and hence it is n-transitive for all

n.

Now suppose that H does not contain a 2-cycle: then H will contain a

permutation of S(M) that is not a transposition. Our objective is to show

that consequently H contains a 3-cycle, for this implies H containing all

3-cycles and hence all of Alt(M). Without loss of generality we let σ =

(1234...) ∈ H. Since H is normal, the permutation

τ = (123)−1 ◦ σ ◦ (123) = (321) ◦ σ ◦ (123)

belongs to H. If we now consider σ−1 ◦ τ ∈ H it is an easy check to see

that it is the 3-cycle (23σ−1(1)), for any number that differs from 1,2,3 only

undergoes the action of σ first and σ−1 after. So H eventually contains a

3-cycle, then by Proposition 3.1 it contains all of Alt(M) and it is hence

n-transitive.

Proposition 3.3. Ex is a maximal subgroup of S(M).

Proof. Let γ ∈ S(M) Ex and y = γ(x) with y ̸= x. We will show that the

subgroup generated by Ex and γ, denoted by < Ex, γ >, coincides with all

S(M). Let α ∈ S(M) be an arbitrary permutation; we want to show that

α ∈< Ex, γ >. If α ∈ Ex then clearly the thesis is satisfied.

Assume α(x) = z with z ̸= x. We have two cases:

1) If z = y, then (γ−1 ◦ α)(x) = γ−1(z) = γ−1(y) = x. Let η = γ−1 ◦ α ∈ Ex:

If we rewrite α = γ ◦ η, then clearly α belongs to < Ex, γ >.

2) If z ̸= y, let ψ be the transposition (y, z) so that ψ ∈ Ex. Then (γ−1 ◦ψ ◦
α)(x) = (γ−1 ◦ ψ)(y) = γ−1(z) = x. Let η = γ−1 ◦ ψ ◦ α ∈ Ex: If we rewrite

α = ψ−1 ◦ γ ◦ η then, also here, α belongs to < Ex, γ >.



36 3. Infinite Permutation Groups

Observation 3.4. By a similar proof we can show that Ex1,...,xn is a maximal

subgroup of Ex1,...,xn−1 for any set {x1, ...xn} ⊆M and any n ∈ N.

Lemma 3.5. Suppose that A ⊆ S(M), e ∈ A, and |M \ A(x)| = |M |. Then
there exists σ ∈ S(M) such that [σAσ−1 ∩ A](x) = {x}.

Proof. First of all we shall note two basic facts: for each x ∈ M , σ ∈
S(M), and A ⊆ M we have that [σAσ−1](x) = σ[A(σ−1(x))] and also that

[σAσ−1 ∩ A](x) ⊆ [σAσ−1](x) ∩ A(X).

Since |M \ A(x)| = |M |, it is possible to define a permutation σ ∈ S(M) such

that σ(x) = x and σ(A(x) \ {x}) ⊆ M \ A(x). With the listed properties it

is verified that

x ∈ [σAσ−1 ∩ A](x) ⊆ [σAσ−1](x) ∩ A(X) = {x},

hence [σAσ−1 ∩ A](x) = {x}.

3.2 Gaughan’s Theorem

From, now on we assume τ to be any compatible topology with the group

of permutations of an infinite set M , meaning that (S(M), ◦, τ) is a topolog-

ical group. Where possible, we will take the liberty to write S(M) instead of

(S(M), ◦, τ) for simplicity reasons.

Theorem 3.6. Let M be an infinite set and let S(M) be a topological group.

For each x ∈M , Ex is closed if and only if Ex is open.

Proof. We have seen in Theorem 1.13 that an open subgroup of a topological

group is also closed. Therefore we just have to prove that if Ex is closed then it

is also open. If we suppose Ex to be closed then the set {σ ∈ S(M) | σ(x) ̸=
x} must be open. Hence, by homogeneity of topological groups, for each

y ∈M \{x} the set V = {σ ∈ S(M) | σ(x) ̸= y} must be open as well. Since

it also contains the identical permutation e, we have that V is a neighborhood

of e. Topological group properties linked in 1.8 suggest that there exists a
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neighborhoodW of e such thatW−1W ⊆ V. In fact, by continuity of the map

f : (x, y) −→ xy−1, V being a neighborhood of e implies that f−1(V ) contains

a neighborhood of (e, e): Let it be (W1,W2). If we defineW = W1∩W2, then

W is a neighborhood of e such that (W,W ) ⊆ (W1,W2) ⊆ f−1(V ). Hence

WW−1 = f(W,W ) ⊆ f(W1,W2) ⊆ V . Since W (x) and W (y) are disjoint, it

must happen that at least one of the following is true:

|M \W (x)| = |M | ;

|M \W (y)| = |M | .

Since e ∈ W , it follows from 3.5 that it exists a σ ∈ S(M) and a u ∈ M

such that [σWσ−1 ∩W ](u)={u} (where u is either x or y as M \W (x) or

M \W (y) has the same cardinality of M).

Hence the subgroup Eu contains σWσ−1∩W which clearly is a neighborhood

of e by properties listed in 1.8. By Proposition 1.14 it follows that Eu must

be open since it is a subgroup containing a neighborhood of e. We conclude

by the fact that all subgroups of permutations that fix exactly one element

are conjugate, hence for each x ∈M Ex is open if and only if it is closed.

Observation 3.7. Notice that the previous theorem can be applied to Ex =

S(M \ {x}) and any of its subgroups of the form Ex,y with y ∈ M \ {x} for

these are the stabilisers of y in Ex.

Lemma 3.8. If M is an infinite set and S(M) a topological group, then for

any doubleton {x, y} ⊂M we have that:

(a) The subgroup Ẽx,y of S(M) is maximal;

(b) Every proper subgroup of S(M) properly containing Ex,y coincides with

one of the subgroups Ex, Ey or Ẽx,y.

Proof. (a) Suppose that H is a subgroup of S(M) properly containing Ẽx,y.

Our goal now is to show that both the subgroups Ex and Ey are contained

in H, so that by Proposition 3.3 we obtain that H = S(M). Therefore we

begin by fixing σ ∈ Ex. If σ(y) = y then σ ∈ Ex,y ⊆ Ẽx,y ⊆ H. Hence we
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suppose that σ(y) = z ̸∈ {x, y}. As Ẽx,y is a proper subgroup of H there

exists ψ ∈ H\Ẽx,y, then by the fact that (xy) ∈ Ẽx,y ⊆ H we have that either

ψ(x) ̸∈ {x, y} or ψ(y) ̸∈ {x, y}. Without loss of generality we assume ψ(y) =

w ̸∈ {x, y}. In case w = z we put ψ = ψ, while if w ̸= z we let ψ = (zw)ψ,

so that in any case ψ ∈ H. Now we take t ∈ M \ {x, y, ψ−1(x), ψ−1(y)} and

let v = ψ(t) ∈ M \ {x, y, z}. It follows that the cycles (zt) and (zv) both

belong to Ex,y ⊆ H, implying that (yt) = ψ−1(zv)ψ ∈ H. Now if we define

ψ = (yt)(zt)σ it is an easy check to see that it belongs to Ex,y and hence

ψ ∈ H. This clearly gives that σ ∈ H, and as σ varies in Ex we obtain that

Ex ⊆ H as wanted.

(b) Suppose that H is a proper subgroup of S(M) properly containing Ex,y

and that H ̸= Ex and H ̸= Ey. Since our objective is to prove that H = Ẽx,y

and H already contains Ex,y, then it suffices to show that the cycle (xy)

also belongs to H. Notice that Ex,y is contained in both H and Ex, hence

it belongs to H ∩ Ex, which clearly is a subgroup of both. According to

Observation 3.4, Ex,y is a maximal subgroup of Ex and since it is contained

in H ∩ Ex and we assumed H ̸= Ex then it must be Ex,y = H ∩ Ex.

By a similar argument it must be H ∩ Ey = Ex,y. Therefore, if we choose

ρ ∈ H \ Ex,y then it must be ρ ̸∈ Ex and ρ ̸∈ Ey. Hence if we let z = ρ(x)

and t = ρ(y) then z ̸= x and t ̸= y. Now we consider the following cases:

Case 1: {z, t} = {x, y}. Then this happens only if z = y and t = x, meaning

that (xy)ρ ∈ Ex,y ⊆ H.

Case 2: {z, t}∩{x, y} = ∅. Then clearly (zt) ∈ Ex,y ⊆ H and (xy) = ρ−1(zt)ρ ∈
H.

Case 3: {z, t} ∩ {x, y} = z = y. Then obviously x ̸= t. Notice that (tyx)σ ∈
Ex,y ⊆ H implies (xyt) = (tyx)−1 ∈ H. Now take v ∈ M \ {x, y, z};
then we have that (tv) ∈ Ex,y, so ϕ = (xt)(yv) = (xyt)(tv)(xyt)(tv) ∈
H. Since ϕ(x) = t ̸∈ {x, y} and ϕ(y) ̸∈ {x, y} then we can apply here

the same argument as in Case 2 with ϕ in order to obtain (xy) ∈ H.
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Proposition 3.9. Let M be an infinite set and let S(M) be a topological

group. If S(M) is Hausdorff then there exists a neighborhood of e that is not

2-transitive.

Proof. Suppose by contradiction that all neighborhoods of e are 2-transitive,

then choose distinct u, v, w ∈M . Our aim is to show that the 3-cycle (uvw)

belongs to any arbitrary neighborhood V of e, so that the condition (3)

of Theorem 1.10 is not verified and this contradicts Hausdorff hypothesis on

S(M). By 1.8 we pick any symmetric neighborhoodW of e such thatWW ⊆
V . If we let σ = (uv) then U = σWσ ∩W is a symmetric neighborhood of

e and σUσ = U . As U is 2-transitive there exists ψ ∈ U such that ψ(u) = u

and ψ(v) = w. Therefore (uvw) = (uw)(uv) = ψσψ−1σ ∈ W (σUσ) ⊆
WW ⊆ V .

Lemma 3.10. Let M be an infinite set and S(M) a topological group. Let n

be a positive integer and let F be a finite subset of M with n elements. Then

EF is dense in S(M) if and only if each neighborhood of e is n-transitive.

Proof. Recall that if B ⊆ S(M) then B̄ =
⋂
{AB | A is a neighborhood

of e} by Proposition 1.9. Therefore EF is closed in S(M) if and only if

AEF = S(M) for each neighborhood A of e. But AEF = S(M) means that,

for each C ⊆ M of cardinality n, A must contain all permutations σ such

that σF = C. Hence each neighborhood A of e must be transitive on F .

But if F1 and F2 are subsets of M with the same cardinality, then EF1 and

EF2 are conjugate subgroups, hence EF1 is dense in S(M) if and only if EF2

is dense in S(M). It follows that EF is dense in S(M) if and only if each

neighborhood of e is n-transitive.

Notice that Proposition 3.9 together with Lemma 3.10 brings that, if the

stabilisers Ex,y are dense then every neighborhood of e is 2-transitive.

Corollary 3.11. Let M be an infinite set and S(M) be a Hausdorff topolog-

ical group. Then for every pair of distinct elements x, y ∈ M the stabiliser

Ex,y is not dense in S(M).
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Proof. As S(M) is Hausdorff, by Proposition 3.9 and Lemma 3.10 there exist

distinct x′, y′ ∈ X such that Ex,y is not dense. Then, from the fact that all

stabilisers Ex,y for distinct x, y ∈ X are conjugated, we extend this property

to all stabilisers Ex,y.

Observation 3.12. Recalling that Ex is a maximal subgroup of S(M) and

that the closure of a subgroup is still a subgroup, it follows that if the closure

of Ex is not Ex itself then it must be all S(M). In other words, Ex is either

closed or dense in S(M) for each x ∈M .

Theorem 3.13 (Gaughan’s Theorem). Let M be an infinite set and let

(S(M), τ) be a topological group. If S(M) is Hausdorff then Ex is open

for all x ∈M

Proof. Let S(M) be a Hausdorff topological group and suppose, by contra-

diction, that Ex is not open. Then, as Ex is not open we obtain by Theorem

3.6 that Ex is not closed: hence by Observation 3.12 Ex must be dense in

S(M). By assumption S(M) is Hausdorff, then by Corollary 3.11 we have

that all stabilisers Ex,y are not dense in S(M). Now fix a pair of distinct

elements x, y ∈M and let Gx,y be the closure of Ex,y: as a matter of fact Gx,y

is a proper subgroup of S(M) containing Ex,y, as the closure of a subgroup

is itself a subgroup by Theorem 1.11. As we have Ex dense in S(M) and

Gx,y closed, Gx,y does not contain Ex, hence Ex ∩Gx,y is a proper subgroup

of Ex that contains Ex,y. Recall that, by Observation 3.4, Ex,y is a maximal

subgroup of Ex: then it must follow that Ex,y = Ex ∩Gx,y. This shows that

Ex,y is indeed a closed subgroup of Ex, as it is the intersection of Ex with a

closed subgroup of S(M). Then, according to Observation 3.7, Ex,y is also

open in Ex. Since Ex is dense in S(M) we have that the closure Gx,y of the

subgroup Ex,y is open in S(M), by Theorem 1.17. The fact that Ex is a

proper dense subgroup of S(M) implies that Ex cannot contain Gx,y, and by

a similar argument neither Ey can. Hence Gx,y ̸= Ex,y, meaning that Gx,y is

a proper subgroup of S(M) containing Ex,y and such that Sx ̸= Gx,y ̸= Ey,

so we can apply Lemma 3.8 (b) and obtain that Gx,y = Ẽx,y. Then Ẽx,y
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is open in S(M) and, as all subgroups of the form Ẽx,y are conjugated, it

follows that all subgroups Ẽx,y are open in S(M). Now we take all stabilisers

of finite sets F with |F | > 2 and observe that EF = {S̃x,y | x, y ∈ F, x ̸= y}.
Hence the subset EF is open in S(M) and so it is an open neighborhood of e.

For all x ∈ F we have that EF ⊆ Ex, then by Proposition 1.14 Ex is open in

S(M). Since all stabilisers of singletons are conjugate, then all Ex are open,

a contradiction.

3.3 The Standard Topology on S∞

We have defined the Baire Space N as the set of infinitely many copies

of N (see Definition 2.8). We are interested in a specific subset of N , namely

the group of permutations on the naturals: we denote it by S∞.

Our interest is to define a group topology on S∞. Hence, following the pattern

introduced in Section 2.1 for generic AN, we will define a topology on N and

then let the subgroup S∞ inherit such topology from N .

We begin with considering N as a topological space with the discrete topology.

Then we see the Baire space as the infinite cartesian product of N, and endow

it with the product topology. This is what we call the standard topology

on N . We want to show that this topology has a countable basis.

We see N as the set of all functions from N to N. Then a basis for the

standard topology on N is given by the collection U of all sets of the form

U = {f ∈ N | f(xk) = yk, k = 1, ..., n}

where xk < xk+1 for all k = 1, ..., n − 1 and xk, yk ∈ N for all k = 1, ..., n.

Consider the map ϕ from U to
⋃
n∈N

N2n defined by

ϕ(U) = (x1, ..., xn, y1, ..., yn).

It is easy to see that ϕ is injective, thus

|U| ≤

∣∣∣∣∣⋃
n∈N

N2n

∣∣∣∣∣ ≤
∣∣∣∣∣⋃
n∈N

Nn

∣∣∣∣∣ = ℵ0
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(for the latter equivalence see [7, Theorem 8.12]). This shows that N is

second countable.

Now we consider S∞ as the subset ofN consisting of all sequences σ such that

σ(i) ̸= σ(j) if i ̸= j for all i, j ∈ N. As a subset of N we let S∞ inherit the

standard topology from N and, coherently, name it the standard topology

on S∞. Note that, since N is second countable, S∞ has the same property.

For σ ∈ S∞, we take a basis for the open neighborhoods of σ consisting of

the sets

Xn1,..,nk
(σ) = {τ ∈ S∞ | σ(ni) = τ(ni), i = 1, ...k}

With this definition, it is easy to see that S∞ is a topological group, since

multiplication and inversion are continuous. Hence, the topology can be more

simply defined by giving a basis for the open neighborhoods of the neutral

element. Since the neutral element in S∞ is the identical permutation, then

the above-mentioned basis consists of all pointwise stabilisers of all finite sets.

We denote such stabilisers by

En1,...,nk
= {σ ∈ S∞ | σ(ni) = ni, i = 1, ..., k for k ∈ N}.

It follows that the collection of sets

Ex = {σ ∈ S∞ | σ(x) = x}

forms a subbasis for the open neighborhoods of the identity as x varies in N.
Now that we have given S∞ a compatible group topology, we will construct

a compatible metric d. Also here, we first define a compatible metric in N
and then let S∞ inherit it. The intuition is that permutations that agree on

may points are close. Recall from Section 2.1 that N can be seen as a metric

space by defining compatible metric

δ(f, f) = 0,∀f ∈ N

and

δ(f, g) =
1

2n+1
,∀f ̸= g ∈ N
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where n is the least number such that fn ̸= gn. Being a subspace of N , also

(S∞, δ) is a metric space.

However, S∞ is not complete in this metric. For instance, let σn be the

cycle (0, 1, ..., n) for all n; then, for all m ≥ n, we have that δ(σn, σm) =
1
2n
.

Thus the sequence {σn}n ∈ N is Cauchy, but it does not converge since its

pointwise limit is not a permutation: it is the cyclic shift n −→ n + 1. We

will hence see that a better metric d can be defined on S∞ such that (S∞, d)

is also complete. For each σ, τ ∈ S∞ set d(σ, τ) = 1
2n

if σ(i) = τ(i) and

σ−1(i) = τ−1(i) for i < n but either σ(n) ̸= τ(n) or σ−1(n) ̸= τ−1(n). In

other words,

d(σ, τ) = max{δ(σ, τ), δ(σ−1, τ−1)}.

Now (S∞, d) is a complete metric space. We briefly see this. Let {σn}n∈N
be a Cauchy sequence in (S∞, d). Hence for each N > 0 there exists N such

that max{δ(σn, σm), δ(σ−1
n , σ−1

m )} < 1
2N

for each n,m > N .

In other words, for each N there exists N such that δ(σn, σm) <
1
2N

and

δ(σ−1
n , σ−1

m ) < 1
2N

for each n,m > N . By definition of the metric δ, this

is equivalent to saying that for all n,m > N σn(k) = σm(k) and σ−1
n (k) =

σ−1
m (k) for all k < N . Then if we fix k ∈ N there exists nk such that

σn(k) = σm(k) and σ
−1
n (k) = σ−1

m (k) for all n,m > Nk. In other words, for

fixed k the sequence σn(k) is the constant sequence from some nk onward.

Then for each k ∈ N we define σ as follows:

σ(k) = σnk+1(k);

σ−1(k) = σ−1
nk+1(k).

So obviously limn→∞ σn = σ. For each disjoint pair h, k ∈ N we have that

σ(k) ̸= σ(h) and for each fixed (k) there exists σ−1(k). Therefore σ ∈ S∞

and (S∞, d) is complete.

It is easy to see that the above-defined metric d is compatible with the

standard topology on S∞. Moreover, it is also a separable space for it is

second countable. In fact, as S∞ is second countable we can find a countable
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basis {Bn}n∈N for the open sets. Note that each Bn is nonempty, hence we

choose an element xn for each Bn ∈ B and define the set D =
⋃

xn∈Bn
xn.

Let now U be any open set. As B is a basis then U contains Bk for some

k ∈ N, then clearly it must also contain xk. As U varies in all open sets we

obtain that D meets each nonempty subset of S∞. Therefore we have found

that D is a countable dense subset, and we have that S∞ is separable.

Thus, S∞ with the standard topology and the metric d previously

defined is a Polish group.

3.4 Proof of uniqueness

Consider the group of all permutations on the natural numbers N and

take any Hausdorff compatible topology τ on S∞. According to Gaughan’s

Theorem, all subgroups that fix one element x ∈ N are both open and closed

in such a topology. On the other hand we have seen that the set S = {Ex |
x ∈ N} forms a subbasis for the open neighborhoods of the identity V in

the standard topology. This means that the class of all finite intersections of

elements of S, namely

B = {
n⋂

j=1

Exj
, n ∈ N, xj ∈ N for each j}

is a basis for the open neighborhoods of e in the standard topology. Then

what happens is that all elements of B are open in any Hausdorff compatible

topology on S∞, implying that all open neighborhoods of e in the standard

topology are open neighborhoods of e also in (S∞, τ). We recall one more

time the fact that each open set of a topological group can be written as left-

translate of an element of V . As translation preserves openness we can say

that if a subset of S∞ is open in the standard topology then it is open in any

arbitrary Hausdorff compatible topology and conclude that any Hausdorff

topology on S∞ contains the standard topology.

Let τ be any Polish compatible group topology on the group of permutations

on the naturals, S∞. If τ is Polish then the topological group (S∞, τ) is
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metrisable. This implies in particular that τ is a Hausdorff topology, then by

Gaughan’s Theorem τ contains the standard topology on S∞. So τ and the

standard topology are both Polish group topologies on S∞, and one includes

the other. The conditions of Proposition 2.23 are hence fulfilled, then we

can conclude that the standard topology is the only Polish group

topology on the group of infinite permutations.
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