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Sommario

I movimenti franosi rappresentano un pericolo diffuso negli ambienti ter-

restri con pendenze, causando vittime umane nelle aree urbane, lungo le vie

di trasporto e presso siti di industria rurale. Il rischio associato ai movimenti

franosi e all’instabilità delle pendenze è aumentato negli ultimi decenni. I

movimenti franosi innescati dall’attività umana stanno crescendo a causa

della costruzione, dell’estrazione mineraria illegale e del taglio delle colline

[31], oltre all’aumento della frequenza di eventi meteorologici estremi [32].

Gli eventi recenti nell’Appennino Emiliano-Romagnolo sono solo l’ennesima

testimonianza dell’incremento dei movimenti franosi e dell’instabilità delle

pendenze nella zona. Questo aumento del rischio ha richiamato l’attenzione

sull’importanza di indagini geologiche complete per prevedere l’evoluzione

delle pendenze instabili, identificare i meccanismi potenziali di cedimento e

quantificare il pericolo e il rischio associati all’instabilità [1].

Stimare con precisione la velocità, la profondità, il volume e i parametri di

resistenza o reologici dei movimenti franosi è essenziale per la previsione del

pericolo [33]. Tuttavia, queste stime sono notoriamente difficili perché i dati

superficiali e sottosuperficiali sono solitamente limitati a misurazioni puntu-

ali e brevi finestre di tempo.

La maggior parte dei metodi classici che consentono di caratterizzare la su-

perficie di cedimento dei movimenti franosi si basa su relazioni geometriche

relativamente semplici [34]. Sebbene i metodi puramente geometrici siano

facili da utilizzare, essi richiedono tipicamente forti ipotesi sulla struttura e

sul comportamento del movimento franoso, e l’analisi viene effettuata solo

iii



lungo una particolare sezione trasversale del movimento franoso, come nel

metodo dell’inclinazione vettoriale [29].

L’obiettivo di questo lavoro è determinare lo spessore di una frana in roccia

a partire dalle misure della velocità superficiale. In particolare, si analizza

l’approccio proposto da Booth et al. (2013) in [6], che coinvolge la discretiz-

zazione dell’equazione di trasporto su dominio bidimensionale mediante dif-

ferenze finite e la risoluzione di un problema inverso per la ricostruzione dello

spessore basandosi sulle misure di spostamento superficiale acquisite con la

tecnica del radar ad apertura sintetica [1].

Inizialmente, vengono analizzate le caratteristiche dei dati acquisiti. Questa

fase preliminare permette di comprendere appieno le peculiarità dei dati e di

utilizzarli in maniera ottimale. Successivamente, viene esaminato l’approccio

di regolarizzazione dal punto di vista dell’ottimizzazione numerica. At-

traverso un’analisi accurata, si valutano i vantaggi e le limitazioni di tale ap-

proccio, consentendo di selezionare le soluzioni più efficaci per la ricostruzione

dello spessore della frana.

Un ulteriore contributo consiste nell’approfondimento del Principio del Bi-

lanciamento come metodo per il calcolo del parametro di regolarizzazione.

Questo principio offre una base solida per determinare il parametro ottimale,

permettendo di ottenere risultati accurati e affidabili nella ricostruzione dello

spessore della frana.

Passando alla sintesi dei risultati ottenuti, si evidenzia un notevole miglio-

ramento dell’efficienza computazionale rispetto all’implementazione proposta

in [6]. Grazie all’ottimizzazione numerica e all’utilizzo del Principio del Bilan-

ciamento, si riesce a ottenere una significativa riduzione dei tempi di calcolo,

rendendo il processo di ricostruzione dello spessore più rapido ed efficiente.

Inoltre, i risultati ottenuti sono qualitativamente in linea con le analisi effet-

tuate tramite tecniche alternative. Ciò conferma l’affidabilità e l’accuratezza

del metodo proposto, fornendo una conferma valida dell’efficacia delle tec-

niche di regolarizzazione utilizzate.
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Infine, è stato sviluppato un’applicazione Matlab dedicata alla ricostruzione

delle mappe dello spessore della frana a partire dai dati forniti. Questo stru-

mento permette di semplificare e automatizzare il processo, consentendo agli

utenti di ottenere in modo rapido e affidabile le informazioni desiderate.

La struttura della tesi è la seguente. Nel primo capitolo è introdotto il

problema computazione da un punto di vista geologico e sono brevemente

accennati i dati usati per l’inversione. Il capitolo 2 parte da alcuni concetti

basilari di meccanica dei continui per arrivare ad una equazione che lega i dati

disponibili e la stima in questione. Il capitolo 3, la parte centrale di tutto il

lavoro, fornisce prima la presentazione teorica poi l’implementazione dei vari

metodi numerici, usati sia per la discretizzazione dell’equazione differenziale,

sia per la regolarizzazione del problema con i moderni metodi di ottimiz-

zazione. Nel capitolo 4 sono illustrati gli esperimenti numerici condotti con i

vari paramatri selezionati. Nel capitolo 5 sono richiamate le ipotesi che i ge-

ologi hanno formulato sulla struttura della frana a partire da studi sul campo,

analisi di profili, confronto con dati con l’altimetria laser [1] e applicazione

di l’analisi delle componenti indipendenti [30]. Infine nel capitolo conclusivo

è data una possibile interpretazione dei risultati numerici in relazione alle

conoscenze attuali sulla struttura della frana e ulteriori possibili sviluppi del

metodo.





Abstract

Landslides are an ubiquitous hazard in terrestrial environments with

slopes, along transport corridors and at sites of rural industry. The risk

associated with landslides has increased over the past decades, both in rela-

tion to human activity [31] and to climate change [32]. The recent events in

the Emilia-Romagna Apennines are just the latest testament to the increas-

ing occurrence of landslides and slope in the area. This increased risk has

called attention to the importance of comprehensive geological investigations

to forecast the evolution of unstable slopes, identify potential failure mecha-

nisms, and quantify the hazard and risk associated with the instability.

Accurately estimating landslides’ velocity, depth, volume, and strength or

rheological parameters is essential for hazard prediction [33]. However, these

estimates are notoriously difficult because surface and subsurface data are

usually limited to point measurements.

Most of the classical methods that allow us to characterize the landslide fail-

ure surface geometry are based on relatively simple geometric relations [34].

Although purely geometrical methods are easy to use, they typically require

strong assumptions on the structure and behavior of the landslide, and the

analysis is carried out only along a particular cross-section of the slope, as

in the vector inclination method [29].

In this work, we determine the thickness of a rock compound slide in Alaska

[1] from measurements of superficial velocity. In particular, we analyze the

method proposed by Booth et al. (2013) in [6], which involves the discretiza-
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tion of a transport equation with bidimensional domain by means of finite

difference approximations and the solution of an inverse problem to infer the

underlying thickness from superficial displacements acquired using a syn-

thetic aperture radar [1].

We first analyze the features of the acquired data. This preliminary phase

allows us to comprehend the peculiarity of data and to understand how to

use them properly. Then, we study the regularization techniques and the

optimization algorithms used to infer the thickness. An accurate analysis

shows the advantages and limitations of these methods, allowing to identify

the most efficient and reliable implementation.

A further contribution consists in the investigation of the Balancing Principle

as the criterion to select the regularization parameter. This principle pro-

vides a solid foundation to determine the proper regularization parameter,

allowing us to obtain accurate and realistic results in the estimation of depth

of Fels landslide.

Regarding the results, a remarkable improvement in efficiency has been achieved

compared to the method proposed in [6]. Thanks to more efficient optimiza-

tion algorithms and the application of the Balancing Principle, it’s possible

to reduce drastically the computation time making the process of inversion

more practical. The results obtained with Fels landslide data are qualita-

tively consistent with other analysis techniques. Thus the reliability and the

accuracy of the proposed method are confirmed, proving also the effective-

ness of the applied regularization techniques.

Finally, we developed a Matlab application to synthesize the depth of a land-

slide from input data. This tool allows to simplify and automate the inversion

process, providing users with the estimate rapidly and effectively.

The thesis is structured as follows. In Chapter 1, we introduce the compu-

tational problem from a geological point of view and we shortly present the

data used for inversion. Chapter 2 provides some basic notions of continuum



ABSTRACT ix

mechanics which allow us to derive a relation between data and the unknown

depth. Chapter 3 forms the central part of the work, we first present the the-

oretical aspects of numerical methods to approximate differential equations,

notions of inverse theory and modern optimization algorithms, then we dis-

cuss their implementations. In Chapter 4, results obtained with numerical

experiments and Fels landslide data are shown. In Chapter 5, we review the

latest results engineering geologists have found on the structure of this slope

from field studies, profile analysis, comparison with data acquired from air-

borne laser scanning [1] and application of independent component analysis

[30]. Finally, in Chapter 6 we give a possible interpretation of numerical

results in relation to the hypotheses discussed in the previous chapter, and

further possible developments to improve the method.
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Chapter 1

The Geological Problem

1.1 Problem Definition

The risk associated with landslides and slope instability has increased

over the past several decades due to expanded development of mountainous

areas to accommodate population and tourism growth as well as increased

frequency of extreme weather events resulting from ongoing climate change

[1]. This increased risk has called attention to the importance of comprehen-

sive geological investigations to forecast the evolution of unstable slopes.

The hazardous impact and erosive potential of slow moving landslide depends

on landslide properties including velocity, size, and frequency of occurrence.

Importantly, the landslide failure style also impacts our ability to measure

landslide properties, such as thickness and volume, which can strongly influ-

ence runout and erosion rate [2]. Some landslides create clear and identifiable

scars and deposits by evacuating material from hillslope, making it possible to

directly measure landslide properties from field data, digital elevation models

and remote sensing observations. However, for landslides that move slowly

for years or centuries, referred to as slow-moving landslides, and do not

create hillslope scars, it is difficult to infer their thickness and volume.

Direct measurements can be taken from boreholes, but data are usually lim-

1
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ited to isolated point measurements, for which financially expensive and time

consuming operations are required. As a consequence, the collected data can-

not capture the spatial variability exhibited by these landslides.

An example of these landslide is the Fels landslide. Fels landslide is a rock-

compound landslide located in the Alaska Range about 150 km southeast of

Fairbanks, on the north slope of Fels Glacier valley, which is tributary of the

Delta River valley (Figure 1.1).

Figure 1.1: 2017 satellite view of the intersection of the Delta River valley

and Fels valley. The black-dotted lines delineate the areas of ongoing slope

deformation within Fels Glacier valley. The red dashed line shows the trace

of the Denali Fault. RapidEye 4, WGS84/UTM 6N grid. Picture from [1].

It terminates at an elevation of 820 m above sea level.

The glacier has been retreating for more than a century and a comparison of

aerial photographs taken in 1949 and 2017 shows that the glacier retreated

more than 900 m over this period (Figure 1.2).
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Figure 1.2: Aerial photographs of Fels Glacier from 1949 to 2017. Courtesy

of Dr. Davide Donati.

Within Fels Glacier valley, slope deformation involves 2 areas, referred to as

lobe a and lobe b (Figure 1.1) , that are divided by a deeply incised gully,

perpendicular to the valley. Lobe a displays significantly higher deformation

rates and prominent slope damage features, compared to lobe b. In the fol-

lowing, we consider lobe a as Fels landslide.

Fels landslide has a surface area of about 2.3 km2 and extends 1400 m in

the East-West direction and 1600 m in the North-South direction between

920 and 1490 m above sea level. The ground surface within the landslide

area has an overall slope of 20-30◦ to the South, steepening up to a slope

angle of 40-50◦ at its glacially eroded toe. The rock mass has a prominent

slope-parallel foliation (D1 in figure 1.3 (b)), and two other orthogonal dis-

continuity sets (D2 and D3 in figure 1.3 (b)). Much of the slope surface is

covered by colluvium that hosts localized superficial slumps (figure 1.3 (c)).
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Figure 1.3: (b) Detail of the rock mass forming the slope. Note the slope-

parallel foliation D1 and the discontinuity sets: D2, which forms the outcrop

surface (red, dashed outline shows a D2 discontinuity plane), and D3, dipping

into the slope. (c) View of a surface slump scar, displaying the colluvial

material drapping the slope. Pictures from [1].

Glacial deposits are associated with lateral and frontal moraines in the

lower part of Fels valley and in the Delta River valley. The active Denali

Fault is located 3 km south of the Fels landslide (Figure 1.1). It strikes
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NW-SE and follows and controls the orientation of the Canwell valley, which

neighbors Fels valley on the south.

An earthquake of moment magnitude 7.9 occurred on the Denali Fault on

November 3, 2002. Many co-seismic rock avanlanches, rockslides, slumps,

and debris avanlanches were triggered by the earthquake in the epicentral

area. Although no major landslides occurred within Fels valley, the intense

ground shaking, exacerbated by material and topographic amplification, is

likely to have enhanced internal damage (e.g. rock mass dilatation, fracture

propagation) within the slope.

Historical, geological, and geomechanical analyses indicate that the current

instability phase in the Fels Glacier valley was initiated by glacier retreat,

which provided kinematic freedom for movement of the toe of the landslide.

Slumping at the toe, in turn, caused the instability to propagate upslope,

where displacements are occurring by planar sliding along a slope parallel

rupture surface that is likely controlled by foliation.

1.2 Available Data

Direct measurements of landslide thickness are expensive and could be

available only at a limited number of points. An alternative way to study

the failure style of a landslide is provided by computer simulations. Typically,

a computer simulation is based on a physical model which has relevant phys-

ical quantities constrained by data derived from fieldwork or remote sensing

surveys.

A wealth of satellite sensors can be used to study landslides [1]. Optical

sensors provide multispectral and panchromatic imagery as well as hyper-

spectral datasets.

Synthetic aperture radar (SAR) processing algorithms create images from

microwave signals emitted and received after scattering from Earth’s sur-

face, by sensors mounted on satellite-based, aerial-based or ground-based

platforms. Both the amplitude and phase of the radar waves backscattered
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along the line of sight (LoS) are recorded by these sensors.

Millimeter-scale displacements of the surface can be measured by computing

the interferometric phase difference of multiple such SAR images with the

same line of sight geometry acquired at different time (Figure 1.4). This

technique is known as Differential Interferometric SAR (DInSAR).

Figure 1.4: An interferogram created by using two SAR images that are

acquired in two different times and maps the phase shift caused by a

movement of the surface between the two acquisitions - Picture from

https://www.un-spider.org/links-and-resources/data-sources/daotm-land-

deformation.

When data from different viewing geometries are analyzed, the 3D decom-

position of the DInSAR measurements can provide the magnitude of the

displacements in the vertical and horizontal directions, by solving basically

a least-square problem [19]. In all cases, these approaches involve analysis

of datasets acquired along at least 2 distinct line of sight geometries by a
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satellite moving along ascending paths (satellite traveling approximately

from south S to north N, looking east E) and descending paths (satellite

traveling approximately from N to S, looking west W).

An important limitation of the DInSAR technique is its relative insensitivity

to the N-S component of slope deformation, due to the E-W LoS of space-

borne SAR sensors, which are constrained to polar orbits (Figure 1.5).

Figure 1.5: Sun-synchronous orbit (SSO), a particular kind of polar orbit

- Picture from https://www.esa.int/Enabling Support/

Space Transportation/Types of orbits.

Therefore the true 3D displacement vector can only be determined using

sophisticated analyses of several LoS geometries, or estimated based on con-

straints imposed by slope orientation.

The error statistics of the multi-DInSAR inversions of 3D displacement are af-

fected by many factors. The most important of these factors include temporal

coherence losses of the individual interferograms, imperfect mutual overlap

of the temporal intervals of the individual interferograms (if displacement
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changes over time), as well as the robustness of the multiple LoS geome-

tries spanning 3D spaces. For the case of solely using multiple LoS without

additional constraints (such as surface parallel displacement) the geometric

robustness, expressed by the determinant of the least square inversion ma-

trix, leads to poor error statistics. This as the available diversity of LoS

for spaceborne sensors is limited leading to multi-LoS geometries with small

inversion determinants far from ideal case of 3 orthogonal LoS.

Nevertheless, DInSAR is a powerful tool for studying landslides and is rou-

tinely employed to monitor slope displacements associated with slow and

very slow landslides.

A further limitation of conventional DInSAR monitoring (using a single pair

of images) is that, to maintain signal quality and avoid temporal decorrelation

in non-arid areas the technique can only be used to monitor over relatively

short periods of days or weeks. To overcome this limitation, various ap-

proaches have been proposed. Digital image correlation (DIC) allows track-

ing of pixel blocks in co-registered 2D images to map and quantify changes

between the images, allowing more rapid movements to be monitored. The

DIC technique has been applied to track changes in optical satellite imagery

and in SAR scenes, using offset-tracking technique methods.

The SAR speckle tracking (ST) technique is a particular application of DIC

methods. SAR ST algorithms exploit the amplitude of the SAR scenes and

extend the ability of conventional DInSAR to provide deformation measure-

ments of up to tens of meters, depending on the resolution of the data. For a

given pixel size of a SAR image pair the spatial resolution of the resulting ST

map is considerably less (by a factor of 50 or more) than that of a DInSAR

map. This requires higher resolution of the primary SAR data to capture

reasonable spatial detail of slide motion with the ST method.

In the case of Fels landslide, Donati et al. (2021) presented in [1] a pro-

cedure that exploits the deformation field extracted by ST algorithms from

multi-geometry datasets to characterize the progressive (substantial) defor-
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mation that occurs over a 10-year period. They derived a spatial dataset

comprising full 3D displacement vectors using very high (sub-meter) resolu-

tion RADARSAT-2 (Figure 1.6) Spotlight mode scene acquired from both

ascending and descending orbits.

Figure 1.6: RADARSAT-2: a Canadian Space Agency Earth observation

satellite - Picture from

https://earth.esa.int/eogateway/missions/radarsat.

The analysis was focused on progressive slope deformation over 2 subsequent

5-year periods (2010-2015 and 2015-2020).
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Figure 1.7: Table showing RADARSAT-2 data acquisition parameters - Pic-

ture from [1].



Chapter 2

Physical Modeling

2.1 The Continuous Model

From the superficial displacement field, we can obtain an approximation

of the real mean annual velocity field. Surprisingly from these data alone,

we’ll show in this chapter and the next one that it is possible to give an

estimate of the landslide thickness, therefore of the failure plane geometry.

First of all, we need to find a relation between the available data and the

thickness. Since a generic landslide can be approximated, for simplicity, by

a continuous body, in the following some basic definitions from Continuum

Mechanics [3] will be recalled.

Definition 1. A continuous body B is a regular open set of the ordinary

space R3. Each point of B, denoted by P, identifies a material point of the

body and similarly each subset A, a part of the body.

Properly speaking this open set is the initial configuration of a physical

body with respect to an inertial Cartesian reference frame F,

B ⊆ {t0} × R3

so it’s more appropriate to call it reference configuration of the body. But

from now on when we say continuous body, we mean its initial configuration

11
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with the related frame.

Fels Landslide can be considered as a continuous body. We’ll set the initial

time as July 12, 2015 the date the first measurements of displacement are

taken in the 2015-2020 time window. We will also consider an inertial Carte-

sian frame such that the x-direction corresponds to E-W direction (with E

positive), the y-direction corresponds to N-S direction (with N positive) and

the z-direction corresponds to the vertical direction (with upward direction

positive). Finally, for visualization purposes, it’s convenient to assume the

point cloud of superficial displacement lies within the positive orthant, in

particular we’ll see that the problem can be simplified as a bivariate one

such that the discrete grid lies within the positive quadrant.

Definition 2. Given a continuous body B, a deformation f on B is any

transformation

f : B → R3

such that

(i) f is smooth

f ∈ C∞

(ii) f is 1-1

(iii) f has positive-determinant Jacobian

∀P ∈ B detJf (P ) > 0

Definition 3. Given a continuous body B, a motion x⃗ is a 1-parameter

family of deformations

x⃗ : (0,∞)×B → R3

which is smooth

x⃗ ∈ C∞
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Since for each material point P at instant t, the vector x⃗(t, P ) represents its

spatial position at time t (Figure 2.1), the set of all (t,x⃗) is called trajectory

T of the motion

T = {(x1, x2, x3, x4) ∈ R4|(x1, x2, x3, x4) = (t, x⃗(t, P )), t ∈ (0,∞) ∧ P ∈ B}

Figure 2.1: A material point P of a continuous body and its position at time

t.

The velocity of the body associated to the motion is its time derivative.

v⃗ =
∂x⃗

∂t

similarly the acceleration, its second time derivative

a⃗ =
∂2x⃗

∂t2
.

The natural motion of the Fels landslide initiated by glacier retreat at the toe

is indeed smooth. We will assume that each instant deformation x⃗(t, ·) is
injective, having also positive-determinant Jacobian.

Definition 4. A continuous body B has continuously distributed mass

if for any deformation f there’s a density function ρf

ρf : Im(f) → R

such that
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(i) ρf is smooth

(ii) ρf is positive

(iii) the integral of ρf over any deformed part of the body is the mass of that

part

∀A ⊆ B

∫
f(A)

ρf = m(A)

We will assume the Fels Landslide has continuously distributed mass.

The main result from Continuum Mechanics that we’ll use is the following.

Lemma 1 (Local Conservation of Mass). Given a continuous body B in

motion x⃗, if B has continuously distributed mass, by setting ρ as density in

the motion

ρ : T → R

ρ(t, x⃗) = ρx⃗(t,.)(x⃗),

where ρx⃗(t,.) is the density function associated with x⃗(t, .), the deformation at

time t, and by introducing the reference map P as

P : T → B

P (t, x⃗) = (x⃗(t, .))−1(x⃗)

then it can be proved that the following relation between the density and the

velocity must hold during motion

∀(t, x⃗) ∈ T
∂ρ

∂t
(t, x⃗) + ρ(t, x⃗) < ∇⃗x⃗, v⃗(t, P (t, x⃗)) >= 0

Lemma 2. In particular, if the motion is isochoric i.e.

∂ρ

∂t
≡ 0

the relation becomes

∀(t, x⃗) ∈ T < ∇⃗x⃗, v⃗(t, P (t, x⃗)) >= 0
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2.2 Thickness Equation

A glacier, like many other entities, can also be approximated by a contin-

uous body with continuously distributed mass. The following result is known

in Ice Dynamics [4] [20] as the ice-thickness equation.

Definition 5. The surface of a glacier, seen as a continuous body B with its

frame, whose velocity field can actually be measured, is known as the free

surface and in the inertial Cartesian reference frame, at each time t, it can

be represented in implicit form as

{(t, x, y, z) ∈ {t} × R3 : Fs(t, x, y, z) = 0}

where

Fs(t, x, y, z) = z − f(t, x, y).

Similarly the base surface has implicit representation at a particular time

t

{(t, x, y, z) ∈ {t} × R3 : Fb(t, x, y, z) = 0}

where

Fb(t, x, y, z) = z − b(t, x, y).

Consequently, we can define the underlying thickness h at time t as

h : Projt → R

h(t, x, y) = f(t, x, y)− b(t, x, y)

where Projt ⊆ {t}×R3 is the projection of the free surface on {z = 0}
at time t.
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Figure 2.2: The thickness of a glacier as difference of 2 heights - Picture from

[4].

From this definition it follows that the thickness is independent from the

height variable z. It’s not difficult to see that the previous definitions are

well-defined for a generic continuous body, in particular for a landslide, under

the assumption that the configuration is similar to the one in Figure 2.2.

The goal of following work is to give an estimate of the thickness of the Fels

landslide on Projt0 where t0=July 12, 2015.

Theorem 1 (Ice-Thickness Equation). Given an active glacier with contin-

uously distributed mass in isochoric motion, by setting, at each time t, the

ice-flux Q as

Q : Projt → R2

(Qx, Qy)(t, x, y) = (

∫ f(t,x,y)

b(t,x,y)

vx(t, P (t, x, y, z))dz,

∫ f(t,x,y)

b(t,x,y)

vy(t, P (t, x, y, z))dz),
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then the ice-flux divergence is balanced by the rate of thickness change and

the net surface/basal mass balances, namely

∀(t, x, y) ∈ Projt

∂h

∂t
(t, x, y) =− < ∇(x,y), Q(t, x, y) >

− ∂

∂t
(Fs(t, x, y, P (t, x, y, f(t, x, y))))

+
∂

∂t
(Fb(t, x, y, P (t, x, y, b(t, x, y))))

where f(t,x,y) is the height of the free surface and b(t,x,y) is the height of the

basal surface.

Proof. From Lemma 2 we know that

∀(t, x, y, z) ∈ T

∂

∂x
(vx(t, P (t, x, y, z))) +

∂

∂y
(vy(t, P (t, x, y, z))) +

∂

∂z
(vz(t, P (t, x, y, z))) = 0

in particular, at each time t, the vertical integral from the basal height b to

the surface height f of the same function is zero

∀(t, x, y) ∈ Projt∫ f(t,x,y)

b(t,x,y)

∂

∂x
(vx(t, P (t, x, y, z)))+

∂

∂y
(vy(t, P (t, x, y, z)))+

∂

∂z
(vz(t, P (t, x, y, z)))dz = 0

The third integral, according to the fundamental theorem of calculus, is

simply∫ f(t,x,y)

b(t,x,y)

∂vz
∂z

(t, P (t, x, y, z))dz = vz(t, P (t, x, y, f(t, x, y)))−vz(t, P (t, x, y, b(t, x, y)))

(2.1)

For Leibniz integral rule, we have

∂

∂x
(

∫ f(t,x,y)

b(t,x,y)

vx(t, P (t, x, y, z))dz) =
∂f

∂x
(t, x, y)vx(t, P (t, x, y, f(t, x, y)))

− ∂b

∂x
(t, x, y)vx(t, P (t, x, y, b(t, x, y)))

+

∫ f(t,x,y)

b(t,x,y)

∂

∂x
(vx(t, P (t, x, y, z)))dz
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∂

∂y
(

∫ f(t,x,y)

b(t,x,y)

vy(t, P (t, x, y, z))dz) =
∂f

∂y
(t, x, y)vy(t, P (t, x, y, f(t, x, y)))

− ∂b

∂y
(t, x, y)vy(t, P (t, x, y, b(t, x, y)))

+

∫ f(t,x,y)

b(t,x,y)

∂

∂y
(vy(t, P (t, x, y, z)))dz

The first and second integrals in the mass conservation equation, being the

last addend in the right hand side of each equation, can be written respec-

tively as∫ f(t,x,y)

b(t,x,y)

∂

∂x
(vx(t, P (t, x, y, z)))dz =− ∂f

∂x
(t, x, y)vx(t, P (t, x, y, f(t, x, y)))

∂b

∂x
(t, x, y)vx(t, P (t, x, y, b(t, x, y)))

∂

∂x
(

∫ f(t,x,y)

b(t,x,y)

vx(t, P (t, x, y, z))dz)

(2.2)∫ f(t,x,y)

b(t,x,y)

∂

∂y
(vy(t, P (t, x, y, z)))dz =− ∂f

∂y
(t, x, y)vy(t, P (t, x, y, f(t, x, y)))

∂b

∂y
(t, x, y)vy(t, P (t, x, y, b(t, x, y)))

∂

∂y
(

∫ f(t,x,y)

b(t,x,y)

vy(t, P (t, x, y, z))dz).

(2.3)

Substituting the expressions of the three integrals, namely (2.2), (2.3) and

(2.1) , in the local conservation of mass equation and by recalling the defini-

tion of ice-flux Q, we get the following equation

0 = < ∇(x,y), Q(t, x, y) >

− ∂f

∂x
(t, x, y)vx(t, P (t, x, y, f(t, x, y)))−

∂f

∂y
(t, x, y)vy(t, P (t, x, y, f(t, x, y)))

+ vz(t, P (t, x, y, f(t, x, y)))

+
∂b

∂x
(t, x, y)vx(t, P (t, x, y, b(t, x, y))) +

∂b

∂y
(t, x, y)vy(t, P (t, x, y, b(t, x, y)))

− vz(t, P (t, x, y, b(t, x, y)))
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On the other hand, by definition of surface height and basal height

Fs(t, x, y, z) = z − f(t, x, y)

Fb(t, x, y, z) = z − b(t, x, y)

writing the explicit dependence on material points

Fs(t, x(t, P ), y(t, P ), z(t, P )) = z(t, P )− f(t, x(t, P ), y(t, P ))

Fb(t, x(t, P ), y(t, P ), z(t, P )) = z(t, P )− b(t, x(t, P ), y(t, P ))

and deriving with respect to time

∂

∂t
(Fs(t, x(t, P ), y(t, P ), z(t, P ))) =

∂

∂t
z(t, P )− ∂

∂t
f(t, x(t, P ), y(t, P ))

∂

∂t
(Fb(t, x(t, P ), y(t, P ), z(t, P ))) =

∂

∂t
z(t, P )− ∂

∂t
b(t, x(t, P ), y(t, P ))

Leibniz rule yields

∂

∂t
(Fs(t, x(t, P ), y(t, P ), z(t, P ))) = vz(t, P )− (

∂f

∂t
(t, x(t, P ), y(t, P ))

+
∂f

∂x
(t, x(t, P ), y(t, P ))vx(t, P )

+
∂f

∂y
(t, x(t, P ), y(t, P ))vy(t, P ))

∂

∂t
(Fb(t, x(t, P ), y(t, P ), z(t, P ))) = vz(t, P )− (

∂b

∂t
(t, x(t, P ), y(t, P ))

+
∂b

∂x
(t, x(t, P ), y(t, P ))vx(t, P )

+
∂b

∂y
(t, x(t, P ), y(t, P ))vy(t, P )).

In particular for a material point belonging to the free surface P (t, x, y, f(t, x, y)),

which at time t has height f(t, x, y), we have

∂

∂t
(Fs(t, x, y, f(t, x, y))) +

∂f

∂t
(t, x, y) =vz(t, P (t, x, y, f(t, x, y)))

− ∂f

∂x
(t, x, y)vx(t, P (t, x, y, f(t, x, y)))

− ∂f

∂y
(t, x, y)vy(t, P (t, x, y, f(t, x, y)))
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and similarly for a material point belonging to the base surface P (t, x, y, b(t, x, y)),

which at time t has height b(t, x, y), we have

∂

∂t
(Fb(t, x, y, b(t, x, y))) +

∂b

∂t
(t, x, y) =vz(t, P (t, x, y, b(t, x, y)))

− ∂b

∂x
(t, x, y)vx(t, P (t, x, y, b(t, x, y)))

− ∂b

∂y
(t, x, y)vy(t, P (t, x, y, b(t, x, y))).

Therefore the final form of mass conservation equation is

0 = < ∇(x,y), Q(t, x, y) >

+
∂

∂t
(Fs(t, x, y, P (t, x, y, f(t, x, y)))) +

∂f

∂t
(t, x, y)

− ∂

∂t
(Fb(t, x, y, P (t, x, y, b(t, x, y))))−

∂b

∂t
(t, x, y)

or equivalently

∂f

∂t
(t, x, y)− ∂b

∂t
(t, x, y) = − < ∇(x,y), Q(t, x, y) >

− ∂

∂t
(Fs(t, x, y, P (t, x, y, f(t, x, y))))

+
∂

∂t
(Fb(t, x, y, P (t, x, y, b(t, x, y))))

Recall the definition of the thickness to conclude the proof.

The last two addends of the right hand side are called respectively surface

mass balance (precipitations might increase the height of the free surface)

and basal mass balance (ice melting will decrease overall the thickness).

For a landslide these two terms are typically negligible [6], so thickness equa-

tion can be simplified

∀(t, x, y) ∈ Projt
∂h

∂t
(t, x, y) = − < ∇(x,y), Q(t, x, y) > .

Moreover, by the definition of volume flux, if we set (v
(z−mean)
x , v

(z−mean)
y )
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as the vertically-averaged horizontal velocity, the ice-flux Q can be

approximated by

Q(t, x, y) ≃ (hv(z−mean)x , hv(z−mean)y )(t, x, y),

where each integral in the definition of Q yields the thickness h. Therefore,

the thickness equation can be seen as

∀(t, x, y) ∈ Projt
∂h

∂t
(t, x, y) = − < ∇(x,y), h(v

(z−mean)
x , v(z−mean)y ) > (t, x, y).

If the landslide is thin relative to its length then the vertically-averaged hor-

izontal (v
(z−mean)
x , v

(z−mean)
y ) should be a fraction of the surface horizontal

velocity (v
(surf)
x , v

(surf)
y ) [5]:

v(z−mean)x (t, x, y) = γv(surf)x (t, x, y)

v(z−mean)y (t, x, y) = γv(surf)y (t, x, y)

with γ ∈ (0, 1). The latter is exactly part of the data available and can be

visualized as a vector field at the free surface of the landslide.

Finally, assuming that the basal height is constant within the time interval

in which measurements are available

∂b

∂t
(t, x, y) = 0

and the landslide does not behave like a rigid body, the change in thickness

can be approximated by the surface vertical velocity

v(surf)z (t, x, y) =
∂f

∂t
(t, x, y).

By setting the scaled thickness hγ as

hγ = γh,

the relation we were looking for is

∀(t, x, y) v(surf)z (t, x, y) = − < ∇(x,y), hγ(v
(surf)
x , v(surf)y ) > (t, x, y).
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To summarize the previous remarks we can state the following theorem

analogous to Theorem 1.

Theorem 2 (Landslide Thickness Equation). Given an active landslide with

continuously distributed mass in isochoric motion, which is thin relative to

its length, assuming that the basal height is constant and the landslide does

not behave like a rigid body, if the surface velocity field at a particular time

t0 can be measured (indirectly)

v⃗(surf) = (v(surf)x , v(surf)y , v(surf)z )

then an estimate of the underlying thickness field h can be given by solving

the following partial differential equation (PDE)

v(surf)z = − < ∇(x,y), (hγv
(surf)
x , hγv

(surf)
y ) > (2.4)

where γ ∈ (0, 1) is a constant number which depends on landslide rheology.

Although landslides might have heterogeneous material properties, this is

rarely quantified, and defining γ as constant implies that the landslide’s rhe-

ology is spatially uniform so that changes in thickness alone are responsible

for the observed deformation field.



Chapter 3

Numerical Modeling

3.1 The Discretized Model

Writing explicitly the equation (2.1), i.e. applying Leibniz rule, the sought

relation between data and thickness becomes

−v(surf)z =
∂hγ
∂x

v(surf)x +
∂v

(surf)
x

∂x
hγ +

∂hγ
∂y

v(surf)y +
∂v

(surf)
y

∂y
hγ. (3.1)

If the superficial velocities v⃗(surf) were completely known, in order to find

the scaled thickness all we need to do would be solving a first order PDE

in two variables. But since the superficial velocity is known only at a finite

number of points and, most importantly only an approximation of the real

displacement of the landslide is known, due to error statistics in DInSAR

(Sectio 1.2), it’s necessary to approximate (3.1) numerically [7] [22] [23].

3.1.1 Finite Difference Approximation

The most simple way to approximate the derivative of a function in a

point by means of the values of the function is the finite difference (FD)

approximation.

Definition 6. Given an univariate smooth function f and a point of the

domain x, a forward difference approximation of stepsize h is simply the

23
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difference quotient

D+(h) =
f(x+ h)− f(x)

h
,

similarly the backward difference approximation is

D−(h) =
f(x)− f(x− h)

h
.

Finally, the central difference approximation is

D0(h) =
f(x+ h)− f(x− h)

2h
.

Since the derivative of a function at a point is defined as the limit of the

difference quotient as the stepsize approaches to 0, the forward difference

should be a fisrt approximation of the derivative. In particular the following

result holds.

Theorem 3. Given an univariate smooth function f and a point of the do-

main x, defining the local truncation error τ as the difference between the

FD value and the true derivative value

(i) if a forward difference is adopted then

τ =
f ′′(ξ)

2
h, ξ ∈ (x, x+ h)

(ii) if a backward difference is adopted then

τ = −f
′′(ξ)

2
h, ξ ∈ (x− h, x)

(iii) if a central difference is adopted then

τ =
f ′′′(ξ)

6
h2, ξ ∈ (x− h, x+ h)

Proof. In the case of (i)

τ = D+(h)− f ′(x) =
f(x+ h)− f(x)

h
− f ′(x)
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writing the Taylor expansion of f at x+ h with respect to x

f(x+ h) = f(x) + f ′(x)h+
∞∑
n=2

f (n)(x)

n!
hn

equivalently
f(x+ h)− f(x)

h
= f ′(x) +

∞∑
n=2

f (n)(x)

n!
hn−1

the local truncation error becomes

τ =
∞∑
n=2

f (n)(x)

n!
hn−1

and mean value theorem provides the desired ξ.

Case (ii) is proved in the same way by applying the Taylor expansion of f at

x− h with respect to x. To prove (iii), consider

τ = D0(h)− f ′(x) =
f(x+ h)− f(x− h)

2h
− f ′(x)

since

f(x+ h) = f(x) + f ′(x)h+
∞∑
n=2

f (n)(x)

n!
hn

f(x− h) = f(x)− f ′(x)h+
∞∑
n=2

(−1)n
f (n)(x)

n!
hn

the local truncation error is

τ =
2f ′(x)h+

∑
n=2p+1 2

f (n)(x)
n!

hn

2h
− f ′(x) =

f ′′′(ξ)

6
h2, ξ ∈ (x− h, x+ h).

The previous theorem guarantees the consistency of the FD method in

approximating the first derivative, in particular the forward and backward

difference are first order convergent methods and the central difference is a

second order convergent method.

For the second order derivative we can iteratively approximate it with a finite

difference scheme, for example using a central difference

f ′′(x) ≃ f ′(x+ h)− f ′(x− h)

h
≃

f(x+h)−f(x)
h

− f(x)−f(x−h)
h

h
,
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we can obtain the central difference approximation of the second order deriva-

tive as

f ′′(x) ≃ f(x+ h)− 2f(x) + f(x− h)

h2
. (3.2)

With the same procedure in the proof of (iii), it can be shown that the local

truncation is

τ =
f (4)(ξ)

12
h2.

It’s not difficult to generalize this method for multivariate functions, in par-

ticular the consistency result holds for each partial derivative of this function.

3.1.2 Thickness Linear System

In the case of Fels landslide, the superficial velocity field is known on a

rectangular grid of 1 m resolution both along x and y, therefore it’s natural

to approximate the partial derivatives of the scaled thickness with stepsizes

hx = hy = 1 m.

If we set Nx and Ny as the number of points along each x-direction and y-

direction, the discrete grid is the set of all points{(xi, yj), i = 1, .., Nx j =

1, .., Ny}. In our data

Nx = 2750, Ny = 2050.

The vertical velocity scalar field is shown in Figure 3.1, negative values (dark

regions) imply a downward displacement has occurred, and positive values

(bright regions), an upward displacement.

The resolution of the grid is very high with respect to the size of the landslide

and the magnitude of the horizontal velocity is generally very small, as a

consequence to get an impression of the superficial horizontal velocity field

we should plot a scaled version of it on a subgrid. In Figure 3.2 we plotted

the horizontal velocity scaled by a factor of 10 on the subgrid of resolution

25 m.
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Figure 3.1: The vertical velocity field of Fels landslide on a 1 m resolution

rectangular space. The unit is meter per year and data are derived from SAR

ST (Section 1.2).
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Figure 3.2: The horizontal velocity field of Fels landslide on a 25 m resolution

subgrid. The measurement unit is meter per year and data are scaled by a

factor of 10.

To simplify notation as much as we can, we introduce the following con-

vention. For every function f , if we set

f(xi, yj) = fij

the equation (3.1) implies the following relation must hold at each grid point
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(xi, yj)

(−v(surf)z )ij =(
∂hγ
∂x

)ij(v
(surf)
x )ij + (

∂v
(surf)
x

∂x
)ij(hγ)ij

+ (
∂hγ
∂y

)ij(v
(surf)
y )ij + (

∂v
(surf)
y

∂y
)ij(hγ)ij

With the previous notation, each function f on the grid identifies a matrix

F = [fij]{i=1..Nx,j=1..Ny} which is the transpose of the visually evident matrix

of values of f on the grid (Figure 3.3).

Figure 3.3: The discretization of a function and the associated matrix.

Now if we use a central difference approximation for both partial derivatives

of the scaled thickness, the system of equations becomes

(−v(surf)z )ij =
(hγ)i+1j − (hγ)i−1j

2hx
(v(surf)x )ij +

(v
(surf)
x )i+1j − v

(surf)
x )i−1j

2hx
(hγ)ij

+
(hγ)ij+1 − hγ)ij−1

2hy
(v(surf)y )ij +

(v
(surf)
y )ij+1 − (v

(surf)
y )ij−1

2hy
(hγ)ij.

Since hx = hy = 1

(−2v(surf)z )ij =((hγ)i+1j − (hγ)i−1j)(v
(surf)
x )ij + ((v(surf)x )i+1j − v(surf)x )i−1j)(hγ)ij

+ ((hγ)ij+1 − hγ)ij−1)(v
(surf)
y )ij + ((v(surf)y )ij+1 − (v(surf)y )ij−1)(hγ)ij.
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Writing explicitly with respect to the unknown scaled thickness hγ and sort-

ing first by y then by x, equivalently vectorizing the matrix identified by hγ

by column, we obtain the following equation

(−2v(surf)z )ij =− (v(surf)y )ij(hγ)ij−1

− (v(surf)x )ij(hγ)i−1j

+ (−(v(surf)y )ij−1 − (v(surf)x )i−1j + (v(surf)x )i+1j + (v(surf)y )ij+1)(hγ)ij

+ v(surf)x )ij(hγ)i+1j

+ (v(surf)y )ij(hγ)ij+1.

Note that vectorizing the associated matrix by column means collecting rows

of the visually evident matrix from bottom to top (figure 3.3).

In vectorial notation, for each grid point from bottom-left of the visually

evident matrix to top-right

∀j = 1..Ny ∀i = 1..Nx

if we set k = (j − 1) + i, by introducing b as the vector b = [bk]{k=1..NxNy}

with

bk = (−2v(surf)z )ij

the system of linear equations becomes

Ahγ = b, (3.3)

where the matrix of coefficients A has a block-tridiagonal structure.

In particular it’s tridiagonal with also (-Nx)-diagonal and Nx-diagonal dif-

ferent from zero vectors. The reason is, in each equation only 5 unknowns

are involved which are the value of thickness at (xi, yj), the values at the

previous and next points along x and y respectively. This particular choice

is known as the five-point stencil structure. In particular, if we construct

A row by row, on the diagonal, which will multiply by (hγ)ij, the coefficient

is given by

−(v(surf)y )ij−1 − (v(surf)x )i−1j + (v(surf)x )i+1j + (v(surf)y )ij+1
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the previous and next coefficients are −(v
(surf)
x )ij and (v

(surf)
x )ij. Finally at

distance Nx from the diagonal there is on the left −(v
(surf)
y )ij and (v

(surf)
y )ij

on the right.

3.2 The Regularized Problem

The system of linear equations to solve is huge: the unknown array has

dimension 5 637 500. To make the problem more complicated, the matrix

of coefficients, given completely by the horizontal velocity field, turns out to

be numerically singular. In fact the matrix is very ill-conditioned. In order

to give a physically meaningful result we have to apply results from Inverse

Theory [8-13].

3.2.1 Fidelity Functional

Inverse problems are ubiquitous in nature: they have a central role in

Imaging Science and Geophysics and they are becoming more and more im-

portant in many other fields of science and engineering. Example of applica-

tions include Computed Tomography, Astronomical Image Deblurring, Black

Hole Imaging and Nuclear Magnetic Resonance data inversion for Petroleum

Engineering, just to name a few. A formal definition of a linear inverse prob-

lem, which is so general to incorporate a myriad of engineering problems, can

be given as follows.

Definition 7. Let K be a bounded and linear operator between 2 Banach

spaces X,Y

K : X → Y

if y† ∈ Y, the exact effect, is the transformation of the exact cause x† ∈
X

y† = Kx†
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but only a noisy version of y†, the observed effect yδ, is known such that:

ϕ(x†, yδ) ≤ δ2

for some metric ϕ : X × Y → R and some noise level δ > 0,

a linear inverse problem is about to find x̂, a guess or estimate of x†

based on observation yδ.

The operator K can represent an image formation process, for example

a camera taking a picture of an object, or it can be a causal relationship

between physical quantities. In our example (equation (2.4)), K is the differ-

ential operator linking the underlying thickness and the superficial vertical

velocity of the landslide.

Almost always an inverse problem arising from application is an ill-posed

problem, that is according to Hadamard, the solution may not exist, or if a

such solution does exist it may not be unique, or a tiny change in observed

effect may lead to a completely different guess. In the last case we say the

problem is unstable. The general approach to deal with an ill-posed inverse

problem is by regularization, namely we find and solve a new well-posed

inverse problem which is, in a sense, ”near” to the original one.

The classical example is given by the least square problem as a regularized

version of an overdetermined linear system: instead of looking for the exact

preimage of the vector b, we find a solution whose image is close enough to

it in some metric. For example using Euclidean distance in Rn, we can solve

Ax = b, A ∈ Rm×n

with m > n, by solving

min
x∈Rn

||Ax− b||.
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The previous approach can be generalized to the so-called variational

methods.

Definition 8. Given a linear inverse problem, variational methods are

those seeking x̂ as a minimizer of an Energy functional with parameter λ

min
x∈X

Jλ(x), Jλ : X → R (3.4)

where the functional is made of 2 parts: a Fidelity term ϕ(·, yδ), which con-

strains the approximate solution to produce an effect similar to the observed

one, and a Regularization term ψ which represents additional properties

we think the exact solution might have, i.e.

Jλ(x) = ϕ(x, yδ) + λψ(x).

The fidelity term typically incorporates prior information about the data

acquisition model, in particular about the noise affecting the observation. To

clarify this claim let’s recall the definition of a discrete linear inverse problem

in a stochastic setting.

Definition 9. Given a linear map between Rn and Rm

A : Rn → Rm

let b† be the exact image of a point x†

b† = Ax†

if N is a random operator on Rm, representing the noise affecting the mea-

surements

N : Ω× Rm → Rm

assuming the observed effect bδ is a realization of the random vector B

B = N (b†)

such that

ϕ(x†, bδ) ≤ δ2
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for some metric ϕ : Rn × Rm → R and some noise level δ > 0,

a discrete linear inverse problem is about to find an estimate x̂ of x†.

Definition 7 is concise and elegant, but it’s not very of practical use. On

the contrary, Definition 9 allows us to turn theoretical models of interest to

something that can be represented and manipulated on a computer.

In the case of Fels landslide we will assume A is exactly the matrix in equation

(3.3) and the vertical velocity is the realization of the noisy vertical velocity

bδ = b.

To be precise the noise is also affecting the operator K, but we will not deal

with this aspect.

Theorem 4. Given a discrete linear inverse problem, if the noise is additive

white Gaussian, i.e.

B = b† +N = Ax† +N,

where N is a random vector having independent and normally distributed

components Ni such that

∀i = 1, ..,m Ni ∼ N(0, σ2) , σ ∈ R

then the most likely guess is given by a variational method with the following

fidelity term

ϕ(·; bδ) : Rn → R

ϕ(x; bδ) =
1

2
||Ax− bδ||2

Proof. If we set U as the random vector representing the guess undergoing

the process K, the most likely guess should maximize the probability of

observing bδ as the effect, in other words it should maximize the likelihood

x̂ ∈ arg max
u∈Rm

p(B|U)(b
δ, u).
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Since the noise is additive white Gaussian the joint probability is the product

of the marginals

p(B|U)(b
δ, u) =

m∏
i=1

p(Bi|U)((b
δ)i, u)

where each component Bi = (Ax)i +Ni is a random variable, because Ni is

a random variable. In particular since the latter is centered at the origin

Bi ∼ N((Ax)i, σ
2).

Now recalling the expression of the Gaussian distribution, the probability

density of B given U can be written as

p(B|U)(b
δ, u) =

m∏
i=1

1√
2πσ2

e−
((bδ)i−(Ax)i)

2

2σ2

We can drop the positive constant in the maximization problem so

x̂ ∈ argmax
u∈Rn

e−
∑m

i=1
((bδ)i−(Ax)i)

2

2σ2

On the other hand, maximizing the previous function is equivalent to mini-

mize the negative logarithm of the same function, so

x̂ ∈ arg min
u∈Rn

m∑
i=1

((bδ)i − (Ax)i)
2

2σ2
.

Drop the positive constant σ2 to conclude the proof.

Assuming the noise affecting the measurements of the vertical velocity

b in equation (3.3) is additive white Gaussian, in our case m = n, and by

setting d as

d = NxNy = 5 637 500,

the fidelity term yielding the best guess is

ϕ : Rd → R

ϕ(hγ; b) =
1

2
||Ahγ − b||2
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3.2.2 Regularization Functional

Given a general linear inverse problem, the additional information on

the solution, represented by the regularization term, is usually a particular

functional space it belongs to. This information can be for example its dif-

ferentiability or, in the discrete case, its sparsity.

The classical regularization term is the Tikhonov regularizer, dating back

in the 1960s [21]

ψ : Rn → R

ψ(x) =
1

2
||Lx||2,

where L is the discretization of some linear operator.

Booth et al. (2013) chose L to be the Laplacian operator in [6], which maps

a generic bivariate function u onto

Lu = ∆u =
∂2u

∂x2
+
∂2u

∂y2
.

Again, since the resolution in data is 1 m, if we use a central difference

approximation, according the approximation (3.2), each second order partial

derivative has discretization:

(
∂2u

∂x2
)ij = ui+1j − 2uij + ui−1j

(
∂2u

∂x2
)ij = uij+1 − 2uij + uij−1

which imply

(
∂2u

∂x2
)ij + (

∂2u

∂x2
)ij = uij−1 + ui−1j − 4uij + ui+1j + uij+1.
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Therefore, in the same way we found the block-tridiagonal structure of

the matrix of coefficients A in Subsection 3.1.2, the discretization matrix L

representing the Laplacian is

Figure 3.4: Picture from [7].

To recapitulate, an estimate of the underlying thickness of Fels landslide can

be derived by solving the following minimization problem

min
hγ∈Rd

1

2
||Ahγ − b||2 + λ

1

2
||Lhγ||2. (3.5)

3.2.3 Implementation Details

A closer look at optimization problem (3.5) tells us the energy functional

is quadratic, in particular it has form

min
hγ∈Rd

1

2
hTγQhγ − b̃Tx,

where Q is a positive-semidefinite symmetric matrix and b̃ a vector in Rd.

Indeed, by calling x = hγ, we have

1

2
||Ax− b||2 + λ

1

2
||Lx||2 = 1

2
(Ax− b)T (Ax− b) + λ

1

2
(Lx)TLx

=
1

2
(xTAT − bT )(Ax− b) + λ

1

2
xTLTLx

=
1

2
(xTATAx− xTAT b− bTAx+ bT b) + λ

1

2
xTLTLx

=
1

2
(xTATAx− 2xTAT b+ bT b) + λ

1

2
xTLTLx.
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Since the variable is x, dropping the constant, the energy function to mini-

mize is

1

2
(xTATAx− 2xTAT b) + λ

1

2
xTLTLx =

1

2
xTATAx+ λ

1

2
xTLTLx− xTAT b

=
1

2
xT (ATA+ λLTL)x− (AT b)Tx

therefore, the final computational problem to solve is

min
x∈Rd

1

2
xT (ATA+ λLTL)x− (AT b)Tx s.t. x ≥ 0. (3.6)

The computational effort to solve this problem is enormous (d = 5 637 500),

Booth et al. proposed a bootstrapping approach in which they downsam-

pled all the 1 m resolution data to a 20 m grid, resulting in 400 independent

estimates of hf in each cell. We did all our experiments with cells of size 10

m by 10 m.

Formally instead of minimizing the energy functional (3.5) we are minimizing

an approximation of it. Indeed, writing explicitly the components

1

2
||Ax− b||2 + λ

1

2
||Lx||2 = 1

2

d∑
i=1

(Ax− b)2i + λ
1

2

d∑
i=1

(Lx)2i

=
d∑
i=1

1

2
(Ax− b)2i + λ

1

2
(Lx)2i

the minimum is

min
x∈Rd

1

2
||Ax− b||2 + λ

1

2
||Lx||2 = min

x∈Rd

d∑
i=1

1

2
(Ax− b)2i + λ

1

2
(Lx)2i

= min
x∈Rd

∑
I=SubgridIndex

∑
i∈I

1

2
(Ax− b)2i + λ

1

2
(Lx)2i

On the other hand, if we consider a cell of size 10 m × 10 m having index I,

we can solve the optimization subproblem

min
x∈R100

1

2
||A(I)x− b(I)||2 + λ

1

2
||L(I)x||2
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where A(I) is built using data on the cell and the outer perimeter, except

for the 4 corners, due to particular discretization scheme chosen (five-point

stencil).

Furthermore, they allowed the regularization parameter to vary on each cell,

i.e. in our notation

min
x∈R100

1

2
||A(I)x− b(I)||2 + λ(I)

1

2
||L(I)x||2.

Therefore the real computational problem solved on each cell is

min
x∈R100

1

2
xT ((A(I))TA(I) + λ(I)(L(I))TL(I))x− ((A(I))T b(I))Tx s.t. x ≥ 0

(3.7)

3.2.4 Regularization Parameter

To be precise, on each cell we have identified a 1-parameter family of

optimization subproblems, since for each different value of parameter λ the

associated minimization problem gives a different guess.

The regularization parameter represents a trade-off between the fidelity term

and the regularization term, or equivalently the weight given to the additional

property of the solution. Booth et al. (2013) showed in [6] that a too small

value of λ produces a highly oscillatory failure surface, on the other hand a

value too big of the λ yields a thickness model that is overly smooth. There-

fore choosing the regularization parameter is a crucial step.

For a generic linear inverse problem as in Definition 7, if the noise level is

known or can be estimated, an a posteriori choice of regularization parameter

proposed by Morozov is the following: let xδ(λ) be a minimizer of the En-

ergy functional in (3.4) with a fixed value of λ, an acceptable regularization

parameter should have realized residual ϕ(xδ(λ), yδ) compatible with the

noise level δ, i.e.

ϕ(xδ(λ), yδ) = cδ2
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for some small constant c > 1. The method is known as the Discrepancy

Principle and in the case of a Gaussian noise, it’s straightforward to pick

the best estimate among several computed solutions.

Theorem 5. Given a discrete linear inverse problem, if the noise is additive

white Gaussian with standard deviation σ and if a variational method is

chosen with the fidelity term as

ϕ(x, yδ) = ||Ax− yδ||2,

then applying discrepancy principle is equivalent to require

||Axδ(λ)− yδ||2 = c(mσ2)

for some small constant c > 1.

Proof. The observed effect yδ is given by ν ∈ Rm, a realization of the random

vector N

yδ = Ax† + ν

so the squared norm of the realized noise is

||ν||2 = ||Ax† − yδ||2.

On the other hand, since the noise random vector N has independent iden-

tically distributed components, its population variance σ̂2 is

σ̂2 =

∑m
i=1 ν

2
i

m
=

||ν||2

m
.

The exact solution makes the following equation true

||Ax† − yδ||2 = mσ̂2,

therefore a good guess should have residual proportional to standard devia-

tion of the noise.



3.2 The Regularized Problem 41

The discrepancy principle has been proved to be quite reliable for image

denoising and deblurring tasks, however in practical applications the noise

level is often unknown.

There exists another rule for choosing regularization parameter λ which can

yield results comparable with those achievable with the previous criterion

without any knowledge on σ. The basic idea is to balance the fidelity func-

tional and the regularization functional, a general approach known as Bal-

ancing Principle [11].

Given a linear inverse problem, if a variational method is adopted then the

value function is defined as

F : (0,∞) → R

F (λ) = inf
x∈X

Jλ(x).

For a given constant γ, assuming F is always positive, if we set Φγ as

Φγ : (0,∞) → R

Φγ(λ) =
F (λ)1+γ

λ
,

the method proposed in [11] finds an optimal regularization parameter λ by

minimizing Φγ.

Theorem 6. Given a linear inverse problem with a variational method and

a constant γ > 0, if λ̄ is a local minimizer of Φγ then the value function F

is differentiable at λ̄. Also, if the associated energy functional Jλ̄ admits a

local minimizer xδ(λ̄), then this guess makes the following equality true

ϕ(xδ(λ̄), yδ) = γλ̄ψ(xδ(λ̄))

The theoretical justifications of the rule is given by the following a pos-

teriori error estimate.
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Theorem 7. Given a linear inverse problem with a variational method and

a constant γ > 0. Assume both X and Y are Hilbert spaces, the fidelity term

is

ϕ(x, yδ) =
1

2
||Kx− yδ||2

and the regularization term is

ψ(x) =
1

2
||x||2.

Assuming also that the exact solution is such that

x† = (K∗K)µw,

where ||w|| ≤ ρ, with µ ∈ (0, 1] and ρ > 0, if λ̄ is an optimal regularization

parameter determined by the rule Φγ, by setting δ̄ as

δ̄ = ||Kxδ(λ̄)− yδ||

then the following estimate holds

||xδ(λ̄)− x†|| ≤ C(ρ
1

1+2µ +
F (δ

2
1+2µ )

1+γ
2

F (λ̄)
1+γ
2

)max(δ, δ̄)
2µ

1+2µ , C > 0

An efficient numerical algorithm is also provided in [11].

Algorithm 1 BalancingPrinciple(yδ, ϕ(·, yδ), ψ, λ0,maxit, tol) → (λ, xδ)

1: λ = λ0;

2: for k = 1, ..,maxit do

3: xδ ∈ argminx∈X ϕ(x, y
δ) + λψ(x);

4: λold = λ;

5: λ = 1
γ
ϕ(xδ,yδ)
ψ(xδ)

;

6: if (|λ− λold| <= tol) then

7: break;

8: end if

9: end for
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We note that λ0 is an initial regularization parameter. This algorithm

has a practically very desirable monotone convergence, under reasonable as-

sumptions.

Theorem 8. Given a linear inverse problem with a variational method and

a constant γ > 0. If there exists an interval [ζ0, ζ1] such that

(i) ϕ(xδ(ζ1)) > 0

(ii) ∃λb ∈ [ζ0, ζ1] which is an optimal parameter with

D±Φγ(λ) < 0 ∀λ ∈ [ζ0, λb) and

D±Φγ(λ) > 0 ∀λ ∈ (λb, ζ1],

if also the initial parameter λ0 ∈ [ζ0, ζ1] then the sequence {Φγ(λk)}k∈N gen-

erated by Algorithm 1 is monotonically decreasing and the sequence {λk}k∈N
converges to the local minimizer λb.

For our purposes, to solve each minimization subproblem (3.7), the reg-

ularization parameter on line 5 will be updated as follows

λ(I) = c
||A(I)h

(I)
γ − b(I)||2

||L(I)h
(I)
γ ||2

;

for an appropriate constant c > 0.

3.3 Unconstrained Optimization

To recapitulate, we have found the relation between input data and the

desired output, i.e. the thickness equation. We have discretized it because

we have only a finite number of measurements. The linear system obtained

in this way cannot be solved directly since measurements inevitably contain

noises, therefore a regularization technique is required. In the end, what we

really have to do is to solve a sequence of optimization problems, to be able

to give an estimate of the underlying thickness of a landslide and infer its

failure geometry. Thus it’s necessary to recall some classical optimization

methods [14] [15] [8] which provide the basis more modern algorithms rely

on.
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3.3.1 First Order Condition

Definition 10. Given a multivariate function

f : Rn → R

an optimization problem is about to find a global minimizer or a local

minimizer of f.

In practical applications f can be the loss of accuracy for an artificial

neural network, the energy function of a physical system or the function rep-

resenting the risk undertaken by a financial investor. Of course, from another

perspective, an optimization problem can viewed as finding the maximizers

of a function: for example the performance of a network, the probability of

physical configurations or the rate of return achievable by an investor.

Almost always a numerical method will provide us a local minimizer of a loss

function. But if the function is convex, the local minimizer is also global as

shown in the following result.

Theorem 9. Given an optimization problem, if f is convex i.e.

∀x, y ∈ Rn f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

then a point is a local minimizer if and only if it’s a global minimizer. As a

consequence, for a convex function we will refer to the solution simply as a

minimizer.

Moreover, if f is strictly convex, namely the previous inequality holds

strictly, there can be at most one minimizer.

Proof. If a x̄ is a global minimizer of a f , it means

∀x ∈ Rn f(x̄) ≤ f(x)

since the definition of a local minimizer is that the previous inequality must

hold true for some neighborhood of the point, x̄ is a local minimizer if we
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take the neighborhood as the entire domain Rn.

On the other hand, if now x̄ is a local minimizer, let’s suppose that it is not

a global minimizer. There must exist a point y at which the function has a

lower value

∃y ∈ Rn : f(y) < f(x̄)

since f is convex the value of f along the segment [x̄, y] is less or equal than

a linear combination of the values at the ending points

f((1− t)x̄+ ty) ≤ (1− t)f(x̄) + tf(y)

but from the previous inequality

f((1− t)x̄+ ty) < (1− t)f(x̄) + tf(x̄) = f(x̄),

which means that there cannot exist any neighborhood such that x̄ is a local

minimizer, contradicting the hypothesis. Therefore we conclude x̄ must be

also a global minimizer.

The second part of the theorem is also proved by contradiction: if there were

two minimizers x̄, ȳ, since f is stricly convex, we would have

f(
1

2
x̄+

1

2
ȳ) <

1

2
f(x̄) +

1

2
f(ȳ) = f(x̄)

where f(ȳ) = f(x̄) due to definition of global minimizer.

For a generic function, a good starting point to find its local minimizers

is by checking the stationarity.

Theorem 10 (Fermat’s). Given an optimization problem, if f is continuously

differentiable then all its local minimizers are stationary.

Proof. Let x̄ be a local minimizer, let’s suppose that is it not stationary i.e.

∇f(x̄) ̸= 0.

Then we can consider the following function

g : Rn → R

g(x) = −∇f(x̄)T∇f(x)
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it follows that

g(x̄) = −||∇f(x̄)||2 < 0

since g is continuous, because f is C1, there is a neighborhood of x̄ such that

the previous inequality holds for all points in this set. In particular it’s true

along the direction of the negative gradient

∃T > 0 : ∀t ∈ [0, T ] g(x̄+ t(−∇f(x̄))) < 0

on the other hand, using Taylor expansion of f at each point along this line

we have ∀t ∈ [0, T ]

f(x̄+ t(−∇f(x̄))) = f(x̄)+ < ∇f(x̄+ τ(−t∇f(x̄))), t(−∇f(x̄)) >

with some τ ∈ (0, 1). If we take a closer look at the right hand side

f(x̄)+ < ∇f(x̄+ τ(−t∇f(x̄))), t(−∇f(x̄)) >= f(x̄) + tg(x̄+ τt∇f(x̄))

since g is negative along this segment, we have

f(x̄) + tg(x̄+ τt∇f(x̄)) < f(x̄)

which implies

f(x̄+ t(−∇f(x̄))) < f(x̄),

contradicting the fact x̄ is a local minimizer.

In the case of a convex loss function, the previous necessary condition is

also sufficient. To prove it, we have to give an equivalent characterization of

convexity of a function.

Theorem 11. Given f a multivariate function

f : Rn → R

which is continuously differentiable, it is convex if and only if

∀x ∈ Rn,∀h ∈ Rn f(x+ h) ≥ f(x) +
∂f

∂h
(x)

equivalently, if and only if

∀x, y ∈ Rn, f(y) ≥ f(x) + (y − x)T∇f(x)
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Proof. Let x be a point and h a direction from x, the partial derivative of f

along h at x is defined as

∂f

∂h
(x) = lim

t→0

f(x+ th)− f(x)

t

if we set y as

y = x+ h

the right hand side can be written as

f(x+ th)− f(x)

t
=
f(x+ t(y − x))− f(x)

t

since f is convex

f(x+ t(y − x))− f(x)

t
≤ (1− t)f(x) + tf(y))− f(x)

t
= f(y)− f(x).

Therefore
∂f

∂h
(x) ≤ f(y)− f(x) = f(x+ h)− f(x).

Corollary 1. Given an optimization problem, if f is continuously differen-

tiable and convex then the set of its minimizers coincides with the set of its

stationary points.

Proof. Given a stationary point x̄, let’s suppose it is not a (global) minimizer.

Then there is at least a point y

∃y ∈ Rn : f(y) < f(x̄)

but from the characterization theorem, if we set h as h = y− x̄ we know that

f(y) ≥ f(x̄) +
∂f

∂h
(x̄)

since the directional derivative can be written in terms the gradient

∂f

∂h
(x̄) = hT∇f(x̄)

the previous inequality implies

hT∇f(x̄) < 0

contradicting the fact that x̄ is a stationary.
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The most important example of convex function to keep in mind is a

positive-semidefinite quadratic function.

Definition 11. Given a multivariate function f, it is quadratic if and only

if there’s a symmetric matrix Q ∈ Rn×n such that

∀x ∈ Rn f(x) =
1

2
xTQx− bTx+ c

where b ∈ Rn, c ∈ R

It’s known that when Q is not the zero matrix, the roots of f form a

quadratic hypersurface in Rn. In particular if n = 2, the set of all roots is a

conic section, whist if n = 3, a quadric surface [24].

Theorem 12. A quadratic function is convex if and only if Q is positive

semidefinite. It is strictly convex if and only if Q is positive definite.

The theorem is a direct consequence of the following lemma, since a

straightforward computation shows that the Hessian of a quadratic function

is the constant matrix Q.

Lemma 3. Given a multivariate function f, if the Hessian is positive semidef-

inite then f is convex. If the Hessian is positive definite, then f is strictly

convex.

Proof. Thanks to Theorem 9 it sufficies to prove that

∀x, y ∈ Rn, f(y) ≥ f(x) + (y − x)T∇f(x)

Let x,y be 2 points in Rn, the Taylor expansion of f at y with respect to x is

f(y) = f(x) + (y − x)T∇f(x) + 1

2
(y − x)THf (x+ τ(y − x))(y − x)

where τ ∈ (0, 1), since the Hessian is positive semidefinite, we have

f(y) ≥ f(x) + (y − x)T∇f(x).

The strict convexity result is a porism of proof to Theorem 9 and the above,

in particular it suffices to read every inequality strictly.
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As a consequence of Corollary 1, an optimization problem with a positive-

definite quadratic loss function can be solved by solving a linear system.

Theorem 13. Given an optimization problem, if f is quadratic with a positive

definite Q then the unique (Theorem 9) minimizer is given by the solution to

the following system of linear equations

Qx = b

This is true because a straightforward computation shows the gradient of

a quadratic function is

∇f(x) = Qx− b.

3.3.2 Second Order Condition

For a generic optimization problem, if the loss function is also twice-

continuously differentiable then there’s a further condition a local minimizer

must fulfil.

Theorem 14. Given an optimization problem, if f is C2 then all its local

minimizers have positive semidefinite Hessian matrix.

Proof. If x̄ is a local minimizer, let’s suppose that the Hessian of f at this

point is not positive semidefinite.

It means

∃p ∈ Rn \ {0} : pTHf (x̄)p < 0.

If we set g as

g : Rn → R

g(x) = pTHf (x)p,

by construction

g(x̄) < 0.

Since g is continuous because f is twice-continuously differentiable

∃T > 0 : ∀t ∈ [0, T ] g(x̄+ tp) < 0.
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On the other hand using Taylor expansion of f along this segment

∀t ∈ [0, T ] f(x̄+ tp) = f(x̄)+ < ∇f(x̄), tp > + <
Hf (x̄+ τtp)tp

2
, tp >

for some τ ∈ (0, 1). The stationary of x̄ implies the second addend is zero,

so

f(x̄+ tp) = f(x̄) +
t2

2
g(x̄+ τtp)

and the previous inequality implies

f(x̄+ tp) < f(x̄),

contradicting the fact that x̄ is a local minimizer.

If a point has positive definite Hessian, the first order condition and the

second order condition are also sufficient conditions, in particular

Theorem 15. Given an optimization problem with a twice-continuously dif-

ferentiable loss function, if x̄ is a stationary point with positive definite Hes-

sian, then x̄ is a strict local minimizer.

Proof. We want to prove that there is a neighborhood of x̄ on which

∃N neighborhood x̄ : ∀x ∈ N f(x̄) < f(x).

First of all, there exists a neighborhood on which each point is positive

definite

∃R > 0 : ∀x ∈ BR(x̄) Hf (x) ≻ 0.

If we set the neighborhood as the ball of radius R centered in x̄

N = BR(x̄)

then for any point y ∈ N

f(y) = f(x̄)+ < ∇f(x̄), y − x > + <
Hf (x̄+ τ(y − x))(y − x)

2
, y − x >

the stationarity of x̄ implies

∀y ∈ N f(y) = f(x̄) +
1

2
(y − x)THf (x̄+ τ(y − x))(y − x) > f(x̄)

since

||x̄+ τ(y − x)− x̄|| = τ ||y − x|| < ||y − x|| < R.
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3.3.3 Scaled Gradient Descent

So far, we have seen properties a solution to an optimization problem must

possess. From the algorithmic point of view, all classical methods generate a

sequence of iterates {xk}k≥0 from a initial guess x0 and they terminate when

either no more progress can be made or when it seems that a solution point

has been approximated with sufficient accuracy.

Since we are looking for a local minimizer, given xk, the most intuitive idea

to find the next iterate xk+1 ∈ Rn is choosing one such that the loss function

f decreases

f(xk+1) < f(xk).

This class of optimization algorithms is known as iterative descent meth-

ods.

A large family of iterative descent algorithms adopt the line search strat-

egy, namely a direction from the current iterate is chosen and the new iterate

is sought along this direction

xk+1 = xk + αkpk,

where pk ∈ Rn is the search direction and αk > 0 the search stepsize.

To guarantee the decrease in the loss function the line-search direction must

be a descent direction.

Definition 12. Given an optimization problem, let xk be a point in the do-

main Rn and pk ∈ Rn a direction at xk, pk is a descent direction if and

only if the directional derivative of f at xk is negative

∂f

∂pk
(xk) = pTk∇f(xk) < 0

Example 1. Given an optimization problem, let xk be a point in the domain.

If Dk is a positive definite symmetric matrix then by setting

pk = Dk(−∇f(xk))
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we can prove that pk is a descent direction. This is true since

Dk(−∇f(xk))T∇f(xk) = −∇f(xk)TDk∇f(xk) < 0.

The class of methods which use a such descent direction is known as

scaled gradient descent

xk+1 = xk + αkDk(−∇f(xk)).

A different choice of the matrix Dk gives arise to a different descent method:

when Dk = I is the identity matrix, we obtain the classical gradient de-

scent. When Dk = Hf (xk)
−1, provided the Hessian is positive-definite sym-

metric, the method is known as Newton’s method.

Whist if Dk = B−1
k , where the matrix Bk is an approximation of the Hessian,

the method is known as Quasi-Newton: notable examples are Davidon-

Fletcher-Powell method (DFP) and Brotden-Fletcher-Goldfarb-Shanno (BFGS)

method.

The value of f along a generic line-search direction pk is

f(xk + αkpk) = f(xk) + αkp
T
k∇f(xk) +O(α2

k)

It follows that if pk is a descent direction, then f(xk + αkpk) < f(xk) for all

positive but sufficiently small values of αk. As a consequence, if a descent

direction is fixed a sufficiently small search stepsize will provide an iterate

with smaller value of f.

Even if the decreasing condition is guaranteed, the reduction may be insuffi-

cient for the method to converge. A popular condition on the search stepsize

to ensure a sufficient reduction is given by Armijo, namely αk is required to

be such that

f(xk + αkpk) < f(xk) + c1αkp
T
k∇f(xk), c1 ∈ (0, 1).
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On the other hand, to rule out unacceptably short steps it’s useful to consider

a curvature condition provided by Wolf

pTk∇f(xk + αkpk) > c2p
T
k∇f(xk), c2 ∈ (c1, 1).

In the case of a positive-definite quadratic loss function, we know that there

exists a unique (global and local) minimizer. Therefore a greedy approach

will always provides us the solution. In particular, if we use an iterative

descent algorithm with the steepest descent direction

pk = −∇f(xk) = −(Qxk − b)

and the stepsize which provides us the most decrease (exact line search)

αk = argmin
α∈R

f(xk − αk∇f(xk))

then the descent algorithm giving us the minimizer of the quadratic function

is the classical steepest descent method. The minimizer is exactly the solution

of linear system in Theorem 13.

3.4 Constrained Optimization

The optimization problem (3.7) we are trying to solve has an additional

constraint: physically speaking, thickness must be a non-negative quantity.

This is an example of constrained optimization problem [14] [16].

Definition 13. Given an optimization problem, it is constrained if and

only if the solution is required to belong to a closed convex set Ω of Rn.

min
x∈Rn

f(x) s.t. (subject to)x ∈ Ω

The set Ω is known as the feasible set. A global minimizer is a point

x̄ ∈ Ω such that

∀x ∈ Ω f(x̄) ≤ f(x)
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and a local minimizer x̄ becomes a point such that there exists a neigh-

borhood, in the induced topology on Ω, such that the previous inequality

holds

∃Br(x̄) : ∀x ∈ Br(x̄) ∩ Ω f(x̄) ≤ f(x).

Note that the Definition 13 is equivalent to

min
x∈Ω

f(x).

As a consequence, the unconstrained problem (Definition 10) can be seen as

a particular constrained case, with Ω = Rn. In this perspective, many of

the previous results can be generalized. For example, to a convex function,

there’s no distiction between local minimizer and global minimizer.

Porism 1. Given a constrained optimization problem, if f is convex then a

point is a local minimizer if and only if it’s a global minimizer. If f is strictly

convex, there can be at most one minimizer.

Proof. The proof is identical to that of Theorem 7, where 1) we replace

Rn with Ω, 2) the neighborhood is meant in the induced topology, 3) the

segments [x̄, y], [x̄, ȳ] lie completely in Ω due to its convexity.

3.4.1 First Order Condition

Regarding the first order necessary condition, the stationarity of a point

becomes a weaker property.

Theorem 16. Given a constrained optimization problem, if f is continu-

ously differentiable on Ω then any local minimizer x̄ must make the following

inequality true

∀x ∈ Ω (x− x̄)T∇f(x̄) ≥ 0 (3.8)

Proof. Let’s suppose there exist a point x ∈ Ω such that

(x− x̄)T∇f(x̄) < 0
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then we can consider the values of f along the segment [x̄, x]

ϕ : [0, 1] → R

ϕ(r) = f(x̄+ r(x− x̄)).

Note that ϕ is well-defined since Ω is convex. Moreover, since f is continu-

ously differentiable, Taylor and mean value theorem imply

ϕ(r) = f(x̄+ r(x− x̄)) = f(x̄) + r(x− x̄)T∇f(x̄+ τr(x− x̄)),

where τ = τ(r) ∈ (0, 1).

Since the gradient of f is continuous, the previous inequality guarantees that

for a sufficiently small value of r

(x− x̄)T∇f(x̄+ τr(x− x̄)) < 0.

As a consequence, we have

f(x̄+ r(x− x̄)) = f(x̄) + r(x− x̄)T∇f(x̄+ τr(x− x̄)) < f(x̄)

which contradicts the hypothesis x̄ is a local minimizer.

When solving a constrained optimization problem, a point satisfying the

condition (3.6) is said to be stationary.

Example 2. If the feasible set is the non-negative orthant

Ω = {x ∈ Rn|∀i = 1, .., n xi ≥ 0}

a local minimizer must be such that

∀x ≥ 0
n∑
i=1

(xi − x̄i)
∂f

∂xi
(x̄) ≥ 0,

In particular, by choosing ∀i = 1, .., n x = x̄ + ei we have ∂f
∂xi

(x̄) ≥ 0,

similarly ∀i : x̄i > 0 by setting x = x̄ − ei we conclude that corresponding

partial derivative must be zero

∀i : x̄i > 0
∂f

∂xi
(x̄) = 0.
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Just like the unconstrained case, stationarity is also a sufficient condition

for convex functions.

Corollary 2. Given a constrained optimization problem, if f is continuously

differentiable and convex, a point is a minimizer if and only if condition (3.6)

holds.

The proof is a direct consequence of the following porism of Theorem 9.

Porism 2. Given a function on Ω, a closed convex set of Rn

f : Ω → R

if f is continuously differentiable then f is convex if and only if

∀x, y ∈ Ω f(y) ≥ f(x) + (y − x)T∇f(x)

Proof. (of Corollary 2)

If x̄ is stationary

∀x ∈ Ω (x− x̄)T∇f(x̄) ≥ 0

the convexity of f and Porism 2 imply

∀x ∈ Ω f(x) ≥ f(x̄) + (x− x̄)T∇f(x̄) ≥ f(x̄)

which prove that x̄ is a (global) minimizer.

3.4.2 Scaled Gradient Projection

There is a great variety of algorithms to solve a constrained optimiza-

tion problem, for our purposes, we will recall those which can be viewed as

constrained versions of the unconstrained descent algorithms.

Definition 14. Given a constrained optimization problem, let xk be a point

in Ω and pk a direction at xk. pk is a feasible direction if only if for any

sufficient small λk > 0

xk + λkpk ∈ Ω.
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Since Ω is convex, a feasible direction at a point xk is of the form

pk = γ(yk − xk)

with yk ∈ Ω and γ > 0.

A feasible descent method is an iterative descent method with line search

strategy, where the descent direction is also feasible. Namely, the iteration

has form

xk+1 = xk + λk(yk − xk)

with

(yk − xk)
T∇f(xk) < 0.

If a such yk doesn’t exist, the method returns xk.

The search stepsize of a feasible descent algorithm must be sufficiently small

to also guarantee the next iterate belongs to Ω. Since Ω is convex, any

λk ≤ 1 will be enough. A class of feasible direction methods, which set yk as

the projection of some point, is given by the Scaled Gradient Projection

methods (SGP) [17].

We need to introduce the projection operator first.

Definition 15. Given a constrained optimization problem, if Bk ∈ Rn×n is

a positive-definite symmetric matrix, it can be seen as the matrix associated

with a metric tensor which induces a norm

|| · ||Bk
: Rn → R

||ξ||Bk
=

√
ξTBkξ.

Let zk ∈ Rn, we define the projection of zk on Ω with respect to the metric

Bk as

PΩ,Bk
(zk) = argmin

y∈Ω
||y − zk||2Bk
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According to the definition

PΩ,Bk
(zk) = argmin

y∈Ω
(y − zk)

TBk(y − zk),

since

(y − zk)
TBk(y − zk) = yTBky − 2yTBkzk + zTk Bkzk

dropping the last addend, which is constant with respect to y, the projection

operator has form

PΩ,Bk
(zk) = argmin

y∈Ω

1

2
yTBky − yTBkzk.

The idea behind this class of methods is based on the following necessary

condition of a local minimizer: the projection onto the feasible set in a metric

of any displacement along the descent direction given by inverse of the metric

is the stationary point itself.

Theorem 17. Given a constrained optimization problem, if f is continuously

differentiable and x̄ is a local minimizer then for any positive scalar αk, for

any positive definite symmetric matrix Dk, x̄ must be a fixed point of the

following operator

Tαk,Dk
: Ω → Rn

Tαk,Dk
(x) = PΩ,D−1

k
(x+ αkDk(−∇f(x))).

It’s tempting to implement a fixed point algorithm

xk+1 = xk + λk(yk − xk)

with

yk = Tαk,Dk
(xk).

But what guarantees the decrease in the loss function of the optimization

problem? The answer is provided by the following result, also proved by

Bonettini et al. (2009) in [17].
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Theorem 18. Given a constrained optimization problem with f a continu-

ously differentiable function. Let xk be a point in Ω, αk a positive scalar and

Dk a positive definite symmetric matrix such that

||Dk||, ||D−1
k || ≤ L, L > 1.

Supposing xk is not a stationary point, then Tαk,Dk
(xk) − xk is a descent

direction at xk.

Bonettini et al. (2009) proposed the following algorithm.

Algorithm 2 SGP (f, x0,M ∈ N, c1, θ ∈ (0, 1),maxit, tol) → x
1: x = x0;

2: fx = f(x);

3: for k = 1, ..,maxit do

4: fx = [fx; f(x)];

5: α = StepsizeSelection;

6: D = ScalingMatrixSelection;

7: y = PΩ,D−1(x+ αD(−∇f(x)));
8: d = y − x;

9: if (||d|| < tol) then

10: break;

11: else

12: λ = 1;

13: fmax = max(fx(max(1, k − (M − 1)) : k));

14: while (f(x+ λd) > fmax + c1λd
T∇f(x)) do

15: λ = θλ;

16: end while

17: xold = x; ▷ useful for StepsizeSelection

18: x = x+ λd;

19: end if

20: end for
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In particular in choosing the search stepsize λk, a generalization of Armijo’s

rule is adopted. The non monotone line-search strategy implemented on lines

12-16 ensure the new value of the loss function is lower than the maximum

on the last M-iterations.

The convergence result is given by the following theorem.

Theorem 19. Given a constrained optimization problem with f a continu-

ously differentiable function. If SGP is adopted with Dk as in Theorem 18

and an initial guess such that the set {x ∈ Ω|f(x) ≤ f(x0)}, then every

accumulation point of the sequence {xk}k∈N is a stationary point.

Similarly to the unconstrained case, a different choice in the scaling matrix

Dk on line 6 of Algorithm 2 yields a different method. When for each iteration

the scaling matrix is just the identity

Dk = I ∀k

we obtain the classical gradient projectionmethod. In this case the update

of x becomes

xk+1 = xk + λk(yk − xk), yk = [xk − αk∇f(xk)]+

where [·]+ represents the projection operator on Ω with respect to the Eu-

clidean metric.

The simplest scaling matrix which is not the identity is a diagonal one

Dk = diag(d
[k]
1 , .., d

[k]
n ).

A diagonal scaling matrix allows one to make the projection on line 7 of

Algorithm 2 a non-excessively expensive task. But the convergence rate of

the diagonally scaled gradient projection is often unacceptably slow.

An efficient choice of a diagonal scaling matrix Dk is an approximation the

inverse of the Hessian matrix at xk. For example by requiring

d
[k]
i ≈ 1

∂2f
∂x2i

(xk)
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an updating rule could be

d
[k]
i = min(L,max(

1

L
,

1
∂2f
∂x2i

(xk)
))

or

d
[k]
i = min(L,max(

1

L
, (xk)i)).

Regarding the choice of αk on line 3, several stepsize updating strategies

have been devised to accelerate the slow convergence exhibited in most cases

by standard gradient methods. Numerical experiments on randomly gener-

ated, library and real-life test problems have shown the class updating rules,

originally proposed by Barzilai and Borwein (BB) [25], has a remarkable con-

vergence rate improvement.

If we set the matrix Sk as function of stepsize αk

Sk(αk) = (αkDk)
−1

as an approximation of the Hessian Hf (xk), we can derive two BB updating

rules for αk by forcing quasi-Newton properties on Sk

α
(BB1)
k = argmin

α∈R
||Sk(α)∆x(k−1) −∆g(k−1)||

and

α
(BB2)
k = argmin

α∈R
||∆x(k−1) − Sk(α)

−1∆g(k−1)||

with ∆x(k−1) = xk − xk−1 and ∆g(k−1) = ∇f(xk)−∇f(xk−1).

In this way, the stepsizes

α
(1)
k =

(∆x(k−1))TD−1
k D−1

k ∆x(k−1)

∆x(k−1)D−1
k ∆g(k−1)

and

α
(2)
k =

(∆x(k−1))TDk∆g
(k−1)

∆g(k−1)DkDk∆g(k−1)
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are obtained, that reduce to the standard BB rules in the case of non-scaled

gradient methods, namely if Dk = I

α
(1)
k =

(∆x(k−1))T∆x(k−1)

∆x(k−1)∆g(k−1)

and

α
(2)
k =

(∆x(k−1))T∆g(k−1)

∆g(k−1)∆g(k−1)
.

At this point the authors of [17] proposed a stepsize updating rule which

adaptively alternates the values provided by the previous equations. The

rule decides the alternation between 2 different selection strategies by means

of the variable threshold τk as shown in the following algorithm.
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Algorithm 3 StepsizeSelection(αmin, αmax) → α

1: if (k==1) then

2: α ∈ [αmin, αmax];

3: τ ∈ (0, 1);

4: α2 = [ ];

5: Mα ∈ N;
6: else

7: dx = x− xold;

8: dg = ∇f(x)−∇f(xold);
9: if (dxTD−1dg <= 0) then

10: α1 = αmax;

11: else

12: α1 = max(αmin,min(αmax,
dxTD−1D−1dx
dxTD−1dg

));

13: end if

14: if (dxTDkdg <= 0) then

15: α2 = [α2;αmax];

16: else

17: α2 = [α2;max(αmin,min(αmax,
dxTDkdg

dgTDkDkdg
))];

18: end if

19: τold = τ ;

20: if (α2

α1
> τ) then

21: α = α1;

22: τ = 1.1 ∗ τ ;
23: else

24: α = min(α2(max(1, k −Mα) : k − 1));

25: τ = 0.9 ∗ τ ;
26: end if

27: end if
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3.4.3 2-Metric Projection

In the following we will set the feasible set Ω as the non-negative orthant.

Ω = {x ∈ Rn|xi ≥ 0 ∀i = 1, .., n}

The principal drawback of the SGP is that the projection on line 7, with a

non diagonal scaling matrix, can be excessively complicated.

A natural and simple adaptation of unconstrained Newton-like methods is

the 2-metric projection method, presented in [16], which has the general

iterate given by

xk+1 = [xk + αkDk(−∇f(xk))]+

where

[·]+ Rn → Rn

([x]+)i = max(0, xi), ∀i = 1, .., n.

The fundamental difficulty here is that an arbitrary matrix Dk will not nec-

essarily yield a descent direction.

It turns out, however, that there is a class of non-diagonal matrices for which

descent is guaranteed. This class is sufficiently wide to allow superlinear con-

vergence whenDk properly embodies second derivative information. To prove

this claim, first we need a weaker notion of diagonal matrices.

Definition 16. Given a square matrix D ∈ Rn×n and a set of indices I ⊆
{1, .., n}, D is diagonal with respect to I if and only if

∀i ∈ I ∀j ̸= i Dij = 0

and

∀j ∈ I ∀i ̸= j Dij = 0.
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Similarly to Theorem 17, the idea of this new algorithm comes from the

following equivalent condition of stationarity.

Theorem 20. Given a constrained optimization problem on the non negative

orthant, if f is continuously differentiable and x̄ is a local minimizer then,

defining I+(x̄) as

I+(x̄) = {i = 1, .., n|x̄i = 0 ∧ ∂f

∂xi
(x̄) > 0}

then for any positive scalar αk and for every positive definite symmetric ma-

trix Dk, which is diagonal with respect to I+(x̄), x̄ must be a fixed point of

the following operator

Tαk,Dk
: Ω → Rn

Tαk,Dk
(x) = [x+ αkDk(−∇f(x))]+.

Proof. We will prove the condition is equivalent to stationarity. First, if x̄

is a stationary point, let αk be a positive scalar and Dk a positive definite

symmetric matrix diagonal with respect to I+(x̄). We can assume, without

loss of generality, that

I+(x̄) = {r + 1, .., n}

such that

Figure 3.5: Picture from [16].

where D̄ is positive definite symmetric and dr+1, .., dn > 0. From the station-

arity of x̄ (Example 2) and the definition of I+(x̄), we have

(i) ∀i = 1, .., r ∂f
∂xi

(x̄) = 0
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(ii) ∀i = r + 1, .., n ∂f
∂xi

(x̄) > 0

so the first r components of Tαk,Dk
(x̄) are exactly those of x̄ since no dis-

placement has been made along these directions. The last n− r components

are also the same since

∀i = r + 1, .., n x̄i + αkdi(−
∂f

∂xi
(x̄)) < x̄i = 0

and the projection of a negative component is just 0 = x̄i.

On the other hand, let the condition be true we show x̄ is stationary. For a

given matrix Dk and scalar αk > 0, by setting

q = Dk∇f(x̄)

we must have

(i) qi = 0 ∀i = 1, .., r with x̄i > 0

(ii) qi ≥ 0 ∀i = r + 1, .., n with x̄i = 0

since

Tαk,Dk
(x̄) = [x̄− αkq]

+

Now by the definition of I+(x̄), we have that if xi = 0 and i ̸∈ I+(x̄), then
∂f
∂xi

(x̄) ≤ 0. This together with the relations above, imply that

r∑
i=1

∂f

∂xi
(x̄) ≤ 0.

Since 
q1

.

.

qr

 = D̄


∂f
∂x1

(x̄)

.

.
∂f
∂xr

(x̄)


while D̄ is positive definite, we also have

r∑
i=1

qi
∂f

∂xi
(x̄) ≥ 0
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and it follows that

qi =
∂f

∂xi
(x̄) = 0 ∀i = 1, .., r.

Since

∀i = r + 1, .., n
∂f

∂xi
(x̄) > 0 ∧ xi = 0

we see that x̄ is a stationary point.

The decrease in the loss function is guaranteed by the following result.

Theorem 21. Given a constrained optimization problem on the non negative

orthant with f continuously differentiable function. Let xk be a point in Ω

which is not a stationary point. Then for every positive definite symmetric

matrix Dk which is diagonal with respect to I+(xk), there exists a positive

scalar αk such that

f([xk + αkDk(−∇f(xk))]+) < f(xk)

Proof. We’ll assume Dk has the same structure as in the previous proof, i.e.

∀i = r + 1, .., n (xk)i = 0 ∧ ∂f

∂xi
(xk) > 0

as a consequence

∀i = r + 1, .., n∀αk > 0 ([xk − αk∇f(xk)]+)i = (xk)i = 0.

Consider the sets of indices

I1 = {i = 1, .., r|(xk)i > 0 ∨ ((xk)i = 0 ∧ (qk)i < 0)}

with qk = Dk∇f(xk) and

I2 = {i = 1, .., r|(xk)i = 0 ∧ (qk)i ≥ 0}.

Let ᾱ be

ᾱ = sup{α|(xk)i − αqk ≥ 0 ∀i ∈ I1},

if we define the direction pk as

(pk)i =

−(qk)i if i ∈ I1

0 if i ∈ I2 ∨ i ∈ I+(xk)
(3.9)
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then

∀αk ∈ (0, ᾱ) Tαk,Dk
(xk) = xk + αkpk.

In view of definition of I2 and I+(xk) we obtain

∂f

∂xi
(xk) ≤ 0 ∀i ∈ I2

and hence ∑
i∈I2

∂f

∂xi
(xk)qi ≤ 0.

Therefore, from the definition of pk

pTk∇f(xk) =
∑
i∈I1

−(qk)i
∂f

∂xi
(xk) ≤

r∑
i=1

−(qk)i
∂f

∂xi
(xk).

Since xk is not stationary, from the previous theorem, we must have Tαk,Dk
(xk) ̸=

xk for some αk > 0 and hence also, (qk)i ̸= 0 for some i ∈ {1, .., r}. Since D̄k

is is positive definite, we have

r∑
i=1

−(qk)i
∂f

∂xi
(xk) < 0

proving that pk is a descent direction.

3.4.4 Newton Projection

To guarantee convergence, the implementation should be done more care-

fully. The reason is that the set I+(xk) exhibits an undesirable discontinuity

at the boundary of the constraint set, whereby given a sequence (xk) of

interior points that converges to a boundary point x̄, the set I+(xk) may

be strictly smaller than the set I+(x̄). This causes difficulties in proving

convergence of the algorithm and may have an adverse effect on its rate of

convergence.

To bypass these difficulties one may add to the former set the indices of those
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variables (xk)i that satisfy ∂f
∂xi

(xk) > 0 and are ”near” zero, i.e. the set of

indices to be considered is

I+ϵ (xk) = {i = 1, .., n|0 ≤ (xk)i ≤ ϵ ∧ ∂f

∂xi
(xk) > 0}

With such a modification and with a variation of the Armijo rule on the

projection arc, one can prove a satisfactory convergence result.

It is also possible to construct Newton-like algorithms, where the diagonal

portion of the matrix Dk consists of the inverse of the Hessian submatrix

corresponding to the indices not in I+(xk), and to show a quadratic conver-

gence result under the appropriate assumptions.

Landi and Loli Piccolomini (2008) proposed in [18] a method of such form

referred to as Complete-Hessian Newton Projection Conjugate Gra-

dient (CNPCG). In particular they chose a different tolerance for each iter-

ation, i.e. ∀k they considered I+ϵk(xk) with

ϵk = min(ϵ, wk), wk = ||xk − [xk −∇f(xk)]+||

Moreover, instead of incorporating second order information, like in [26], by

imposing

pk : H
(I)
k pk = −∇f(xk)

where H
(I)
k is the reduced Hessian

(HI
k)ij =

δij if i ∈ I+ϵk(xk) ∨ j ∈ I+ϵk(xk)

(Hf (xk))ij otherwise,
(3.10)

they solved first the linear solution using all information available

dk : Hf (xk)dk = −g(I)k

where g
(I)
k is the reduced gradient

(gIk)i =

0 if i ∈ I+ϵk(xk)

(∇f(xk))i otherwise.
(3.11)
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Only then, they consider the search direction pk

(pk)i =

−(∇f(xk))i if i ∈ I+ϵk(xk)

(dk)i otherwise.
(3.12)

The stepsize αk is computed with the variation of the Armijo rule discussed

in [26]. In particular, αk is the first natural power of 1
2
such that

f(xk)− f([xk + (
1

2
)mpk]

+) ≥

η(−(
1

2
)m

∑
i ̸∈I+ϵk (xk)

(∇f(xk))i(pk)i +
∑

i∈I+ϵk (xk)

(∇f(xk))i((xk)i − ([xk + (
1

2
)mpk]

+)i))

with η ∈ (0, 1
2
). The proposed algorithm is the following.

Algorithm 4 CNPCG(f, x0, η ∈ (0, 1
2
),maxit, tol) → x

1: x = x0;

2: for k = 1, ..,maxit do

3: I = {i = 1, .., n|0 ≤ x(i) ≤ ϵ ∧ ∂f
∂xi

(x) > 0};
4: g = ∇f(x); g(I) = 0;

5: d = CG(Hf (x), g); ▷ Coniugate Gradient

6: p = d;

7: p(I) = g(I);

8: α = StepSelection(η);

9: x = max(0, x− αp)

10: ToleranceChecking(tol);

11: end for

On line 5 the approximation solution is obtained by the Conjugate Gradient

method. About the stopping criterion, let g
(proj)
k be the projected gradient

(g
(proj)
k )i =

(∇f(xk))i if (xk)i > 0 ∨ ((xk)i = 0 ∧ (∇f(xk))i < 0)

0 otherwise,
(3.13)
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the Algorithm 4 stops before reaching the maximum number of iterations

either when the norm of the projected gradient is sufficiently close to 0

||g(proj)k || ≤ tol||g(proj)0 ||

or when the relative distance between 2 consecutive iterates has become less

than a tolerance
||xk+1 − xk||

||xk+1||
≤ tol.

The convergence of the algorithm is provided by the following result.

Theorem 22. Given a constrained optimization problem on the non-negative

orthant with f twice-continuously differentiable. If the CNPCG algorithm is

applied and if for each iteration k

∃µ1, µ2 > 0 : ∀ ξ ∈ Rnµ1||ξ||2 ≤ ξTHf (xk)ξ ≤ µ2||ξ||2

then every limit point of the sequence generated by the method is a stationary

point.
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Chapter 4

Numerical Results

In this chapter we present the results obtained with the proposed inver-

sion method with 4 different implementations and Fels landslide data.

The input data (Section 1.2) is a table with five different columns; each row

identifies a grid point belonging to the 1 m resolution rectangular discrete

grid used to discretize the free surface of the slide. In particular, the first and

second columns give the spatial coordinate of the point and the remaining

three columns are the Cartesian components of the velocity vector at this

point. The data comprises 5 637 500 grid points.

We first implemented the exact method proposed by Booth et al. (2013)

in [6], in particular the bootstrapping approach is adopted and the regular-

ization parameter of each optimization subproblem is found by applying the

discrepancy principle. Then, we improved this method by applying balanc-

ing principle (Subsection 3.2.4) in the second experiment. In the third and

the fourth experiments we kept balancing principle as the criterion to deter-

mine the regularization parameter and we experimented the SGP (Subsection

3.4.2) and CNPCG (Subsection 3.4.4) respectively.

73
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4.1 Numerical Experiment 1

In article [6] the constrained optimization problem is solved using the

program CVX, a Matlab-based modeling system for convex optimization [27]

[28]. The regularization parameter is found by applying the discrepancy prin-

ciple where the authors of the article use the standard deviation of b as an

approximation of the standard deviation of the noise.

Following their notation by setting λ = α2 we chose 10 evenly spaced values

of α between 10−2 and 10, then on each cell we solved the the optimization

problem using the CVX program saving both the actual minimizer vector

and its mean value. We also saved on each cell the best value of α provided

by the discrepancy principle (Subsection 3.2.4) as shown in Figure 4.3.

Let’s consider first the intensity of the velocity (Figure 4.1). It’s straightfor-

ward to see that the intensities on the south are much larger than those on

the north, this is one of factors contributing to peak values found here.
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Figure 4.1: Superficial velocity intensity field. Unit of measurement: meter

per year.

Since the most interesting data are away from the south and on the south

the frontal moraine and glacier make measurements of landslide displacement

particularly noisy, we decided to consider only values below a threshold to

capture the general geometry. In particular for a value of γ = 0.035, the

thickness inferred by the CVX method is the one shown in Figure 4.2. To be

more precise in Figure 4.2 it’s plotted the mean value which is constant on

each cell, since the graph of the solution is exactly the same but with black
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lines corresponding to smaller values on the northern edge of each cell.

Figure 4.2: Numerical Experiment 1: inferred thickness field with meter as

the unit of measurement.

In Figure 4.3 we plotted the best α satisfying the discrepancy principle which

is constant on each cell. Most value of landslide are 0.01 which is different

from 0 value outside the landslide, where we imposed the thickness to be the

zero vector just as on the southern part corresponding to the glacier.

From the efficiency point of view, on a laptop Lenovo Legion 5 with 16GB of
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RAM and processor AMD Ryzen 7 5800H the program took almost 2 days

to complete the inversion.

Figure 4.3: Numerical Experiment 1: Regularization parameter under square

root.
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4.2 Numerical Experiment 2

Since no information on the noise is known, we then implemented Algo-

rithm 1 (Balancing Principle) in the inversion program such that no a priori

bounds on the regularization parameter are set.

We chose maxit = 10 and tol = 10−5 with a scaling parameter equal to 10
Nls

where Nls is the number of data points on the active landslide. In Figure

4.4 we plotted the inferred mean thickness with the same threshold and the

same scaling factor γ as in Experiment 1. Despite showing globally the same

geometry, the result from balancing principle seems to offer more details than

the one from approximate discrepancy principle.
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Figure 4.4: Numerical Experiment 2: inferred thickness field with meter as

the unit of measurement.

This new principle provides directly λ in stead of α. From the graph

of the regularization parameter (Figure 4.5) we can see peaks again on the

southern part of the landslide, in particular extremely large values are reached

(∼ 1011). In order to compare with the previous result we plotted in Figure

4.5 the values of λ < 102, since we’re interested in values between 10−4 and

102. The most evident fact is that balancing principle seems to be able to

detect the contour of the landslide.
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Figure 4.5: Numerical Experiment 2: regularization parameter less than 100.

In Figure 4.6 we plotted the number of iterations run by Balancing Principle

cycle which has a constant value on each subgrid. On the same computer

the inversion was completed in almost 1 day.
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Figure 4.6: Numerical Experiment 2: number of iterations in Balancing Prin-

ciple.

4.3 Numerical Experiment 3

Now instead of using the CVX program to solve the optimization subprob-

lems, we can implement Algorithm 2 (Gradient Projection) with acceleration

techniques provided in Algorithm 3 (SGP) by choosing the scaling matrix to

be the identity matrix.
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In particular we set the parameters as follows: c1 = 10−4, θ = 0.4, maxit =

70, tol = 10−5 and [αmin, αmax] = [10−10, 105]. We took the zero vector as the

initial guess. The tolerance used is a relative one, i.e. the program returns

a result as soon as ration between the norm of the current gradient and the

initial one is less than tol.

Essentially the result shown in Figure 4.7 is the same geometry found in

Experiment 2 but with a scaling factor γ = 0.028.
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Figure 4.7: Numerical Experiment 3: inferred thickness field with meter as

the unit of measurement.

Regarding the regularization parameter (Figure 4.8), the largest value is

of order of magnitude ∼ 1012, whilst the patter of distribution of λ between

10−4 and 102 is similar to the previous experiment. Also the number of

iterations run by balancing principle is almost the same.
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Figure 4.8: Numerical Experiment 3: regularization parameter less than 100.

In Figure 4.9 is shown the number of iterations run by Balancing Princi-

ple, and in Figure 4.10, the number of iterations run by gradient projection.
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Figure 4.9: Numerical Experiment 3: number of iterations in Balancing Prin-

ciple.
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Figure 4.10: Numerical Experiment 3: number of iterations in SGP.

In Figure 4.11 and 4.12 we plotted the exiting ratio of norm of gradients

and the exiting norm of gradient in logarithmic scale. We chose maxit = 70

to make sure that the optimization method provides a good enough result.

The inversion program took 9 minutes and 10 seconds to give this result, a

remarkable improvement given the similarity of the results.
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Figure 4.11: Numerical Experiment 3: ratio of norm of gradients in SGP.

Figure 4.12: Numerical Experiment 3: norm of gradient in SGP.
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4.4 Numerical Experiment 4

Finally we experimented the Algorithm 4 (CNPCG). We took the zero

vector as the initial guess x0 = 0. We set η = 10−4, maxit = 140, we chose

the tolerance on the norm of the gradient to be tol = 10−5 and ϵ = 10−10

obtaining the results plotted in Figure 4.13. The scaling factor of the inferred

thickness is chosen as γ = 0.021.

Figure 4.13: Numerical Experiment 4: inferred thickness field with meter as

the unit of measurement.
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We also decided to double the number of iterations in the balancing prin-

ciple cycle, maxit = 20. It’s been observed a generally higher values of

regularization parameters as shown in Figure 4.14.

Figure 4.14: Numerical Experiment 4: regularization parameter less than

100.
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In Figure 4.15 is shown the number of iterations run by Balancing Princi-

ple, and in Figure 4.16, the number of iterations run by Newton projection.

Figure 4.15: Numerical Experiment 4: number of iterations in Balancing

Principle.
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Figure 4.16: Numerical Experiment 4: number of iterations in CNPCG.
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Finally in Figure 4.17 we plotted the norm of the projected gradient

exiting the Newton projection cycle in logarithmic scale. The program took

1 hour and 10 minutes to complete the inversion.

Figure 4.17: Numerical Experiment 4: norm of gradient in CNPCG.

4.5 Discussion

The overall geometries found by all four implementations are quite simi-

lar, but the inversion method with balancing principle and SGP is the most

efficient one.

Tikhonov regularizer chosen by Booth et al. (2013) has smoothened to some

degree the results. Further improvements might be achived by choosing a L1-

norm based regularizer such as the total variation regularizer (Di Serafino et

al., 2020) or by considering multi-penalties as done in [36] by Bortolotti et

al. (2021).



Chapter 5

Interpretation

In this chapter we review some results on Fels landslide obtained by en-

gineering geologists and Earth scientists.

In particular, first we review a classical method used to infer the thickness

of landslides, then we shortly present the latest results published by Donati

et al. (2021) and by Rabus et al. (2022).

5.1 Vector Inclination Method

We’ve seen in Theorem 2 that the proposed inversion method provides a

scaled version of the underlying thickness. If even a single direct measure-

ment of local thickness can be made, for example, in a borehole or with shal-

low geophysical techniques, that measurement can be used to determine the

scaling factor by minimizing the misfit between the observed and inversion-

predicted thickness.

Unfortunately no direct measurements are available for Fels landslide. There-

fore we chose a scaling factor for each experiment such that the resulting

thickness values belong to the range [0,140]. This choice is justified by the

result obtained with a classical estimation method we used to infer the thick-

ness but only along a profile of the landslide. The method is known as the

93
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Vector Inclination Method (VIM) [30].

The VIM starts with the assumption that a point on the surface of the

landslide will move in a direction that is parallel to the slope of the sliding

surface beneath, provided that the mass moves as a rigid body. Another

assumption is that a single sliding surface exists. Also it’s required that

a displacement monitoring must be implemented and measurement points

(MPs), taken along a cross-section of choice, must be available. Then, the

methods can by applied as follows:

1. Draw the cross-section of the landslide intersecting the MPs and mark

with arrows the vectors of movement V̄i measured at each MP. The

first vector should be representative of the movement close to the main

scarp.

2. Draw the normals to each vector. Then find the intersection points Oi

between two consecutive normals and draw the bisection lines between

two consecutive normals.

3. The first point of the sliding surface P1 is identified as the first MP.

The second point P2 is found as the intersection of the line generate

by V̄1 and the first bisection line. The third point P3 is found as the

intersection of the line generated by V̄2 applied to P2 and the second

bisection line, so on and so forth.
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Figure 5.1: Vector Inclination Method procedures. Picture from [30].

Dr. Davide Donati and his research team traced various profiles across

the Fels slope. They sampled the depth of the reconstructed surface and

then interpolated the points to produce a surface shown in figure 6.3.
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Figure 5.2: Examples of profiles analyzed. Courtesy of Dr. Davide Donati.

5.2 Profiles Analysis

Donati et al. (2021) derived the trend, plunge and magnitude of displace-

ment from data presented in Section 1.2 using the Geographical Information

System (GIS) software ArcGIS 10.6. Then they extracted some profiles par-

allel to displacement direction and compared them with elevation data. The

combined analysis of displacement, plunge and elevation profiles facilitated

identification of geomorphic features produced by slope deformation such as

uphill- and downhill-facing scarps, grabens and slope breaks.



5.2 Profiles Analysis 97

Figure 5.3: Interpolated Thickness Field via VIM with meter as the unit of

measurement. Courtesy of Dr. Davide Donati.

One of such profile is the AA’ shown in Figure 5.7 (c). The displace-

ment profiles display a constant magnitude in the upper slope, suggesting

that the landslide body is deforming as a rigid body. A progressive downs-

lope increase in displacement magnitude begins in the central part of the

slope and continues downward to the boundary with the fast-moving slope

toe. Low-order undulations are evident within this zone, which locally cause

the cumulative displacement to decrease downslope (Figure 6.7 (a)). These
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Figure 5.4: Displacement magnitude field in 2010-2015 windows (a) and

2015-2020 window (b). Picture from [1].

Figure 5.5: Trend field in 2010-2015 windows (a) and 2015-2020 window (b).

Picture from [1]

undulations may be caused by shallow secondary instability within the col-

luvial deposit blanketing the slope (Figure 6.7 (c)). The transition between

the uniformly displacing part of the slope and the part with an increase in
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Figure 5.6: Plunge field in 2010-2015 windows (a) and 2015-2020 window

(b). Picture from [1].

displacement roughly coincides with a break in the elevation profile where

the slope steepens. A slope break also marks the upper boundary of the fast-

moving toe. This complex pattern in displacement magnitude is in accord

with the deformation plunge profile (Figure 6.7 (b)). Undulations in am-

plitude are observed along the profile. These undulations are superimposed

on the larger scale trend of the profile, which shows an overall decrease in

plunge in the upper slope, between the headscarp and the slope peak at 1300

above sea level, followed by an increase in plunge in the central and lower

slope. The area of increased plunge roughly corresponds to the increase in

displacement magnitude in the central part of the slope. The decrease in part

of the profile lower on the slope corresponds to the fast-moving toe, where

significant undulations in plunge occur.

5.3 Structural Lineaments Comparison

They then compared the magnitude and distribution of the surface dis-

placements with the location, distribution and orientation lineaments iden-
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Figure 5.7: AA’ (c) profile analysis. Picture from [1].

tified and mapped from the Airborne Laser Scanning (ALS) dataset. In

particular they first identified three different lineament trends, I, II and III

at Fels landslide using the ASL dataset. The lineament of the first type is

NE-SW oriented, of the second type is NNW-SSE oriented and of the third

type is NW-SE oriented.

Comparison of the lineament and displacement magnitude maps show sig-

nificant correlation between the datasets. The boundaries of the landslide

area can be roughly approximated by straight lines, with orientation similar

to the identified lineament trends. The western boundary of Fels landslide

is parallel to lineament trend I, and its location corresponds to the part of

slope where the same trend has a high L21, lineament intensity defined as
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Figure 5.8: The three types of Lineament trends. Picture from [1].

the ratio of the total length of lineaments to the sampling area and measured

in [ 1
m
]. The orientation of the eastern and upper boundaries of the landslide

area are sub-parallel with trend II and trend III lineaments, respectively.

The fast-moving toe appears to be outlined by scarps parallel to trend I on

the west side and trend III along the rear boundary. From these observations

they concluded that the landslide is structurally controlled and the surface

deformation is mainly related to displacements originating at depth within

the bedrock, rather than within the colluvial blanket draping the slope.

Based on reconstruction in Section 6.1 and the results from previous two sec-

tions, they proposed a subdivision of the Fels landslide into three different

domains: upper, central and lower.

The upper domain (UD) is a slowly moving block with displacement rates

of up to 1 m
year

. Here, slope-parallel deformation vectors suggest that the dis-

placement is occurring along a sub-planar sliding surface, likely controlled

by foliation, that connects with the ground surface in the upper part of the

domain. The head scarp does not correlate with any prominent geomorphic
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Figure 5.9: The lineament intensity of the three types of trends. Picture

from [1].

Figure 5.10: Three domains proposed by Donati et al. (2021) with picture

from [1].
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feature, suggesting that displacements noted in the upper slope are rela-

tively recent, and colluvial material may be smoothing the ground surface.

The style of deformation of the UD remained unchanged between 2010 and

2020.

The lower domain (LD) is the fast-moving toe that appears to be displacing

by a rotational or pseudo-rotational mechanism, with displacement rates up

to 5-8 m
year

over the 2010-2020 period.

The central domain (CD) appears to be transitional in nature between the

lower, fast-moving domain and the upper, slow-moving domain. It’s char-

acterized by displacement rates ranging from 1 to 2 m
year

, with a progressive

increase in the downslope direction. A progressive increase in plunge is also

noted across the domain, with highest values observed toward the fast-moving

toe, indicating steepening and lengthening of the displacement vectors. The

observed increase in plunge is likely not related to a steepening of the slid-

ing surface, but rather to a local progressive change in failure mechanism

from planar sliding to pseudo-rotational mechanism. The transition between

planar sliding and slumping is also evident from the changes in the displace-

ment plunge profile at the boundary between the CD and the fast-moving

toe. The increase in displacement plunge shows that the volume upslope of

the fast-moving toe was displacing through a planar sliding mechanism be-

tween 2010 and 2015, before transitioning to pseudo-rotational mechanism

between 2015-2020.

Therefore, they suggest that Fels landslide is characterized by a bi-planar

or multi-planar configuration related to a combination of gravitational and

glacial processes.

5.4 Drivers Analysis

Rabus et al. (2022) identified Fels landslide, including lobe b, as a Deep-

Seated Gravitational Slope Deformation (DSGSD) and analyzed its sensitiv-
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ity to three specific drivers in [30]: surface water from snow-melt and rainfall,

locally projected seismic activity of Alaskan earthquakes and lowering of Fels

Glacier at the slide toe. They found five displacement patterns that map to

independently moving domains of the slide from a surface displacement map-

series derived from 1991 to 2016 spaceborne multi-sensor InSAR data. Then,

they correlated the corresponding temporal pattern intensities with the sus-

pected drivers using Independent Component Analysis (ICA). The results

provide the first evidence that the Fels landslide comprises several indepen-

dently moving domains that respond differently to the suspected drives as is

suggestive of a complex slope deformation.

The landslide domains corresponding to the five independent deformation

patterns (IDPs) are believed to be parts of the landslide that are differently

affected by the investigated drivers due to lithological, structural and geomor-

phic characteristics, as well as the depth and orientation of the underlying

failure surface. Different landslide domains can have different sensitivities

to the primary driver series. In the case of lobe a we’re interested in IDP0,

IDP1 and IDP3. These areas appear to be outlined by linear features which

accord with major trends of lineaments previously discussed. Thus, it can

be assumed that the structural geology of the slope controls not only the

boundary of the landslide but also domains that have different deformation

behaviors relative to a specific primary driver.

The IDP0 is believed to be driven by glacier retreat due to its proximity to

the glacier terminus at the toe of the landslide. The relatively consistent

rate of the deformation after the 2002 earthquake suggests that this IDP was

not affected by the earthquake. However, progressive degradation of rock

strength due to deglaciation and debuttressing may have made IDP0 more

susceptible to the hydrological driver.

IDP1 is interpreted to be predominantly related to the seismic driver due to

high activity of these areas following the Denali earthquake in 2002. This

IDP is characterized by larger amplitudes than other IDPs and is spatially
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Figure 5.11: Five independent deformation patterns identified by Rabus et

al. (2022) with their relative intensities over time. Picture from [30].
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more extensive than other signals. Three years after the earthquake, the

intensities decreased, indicating that the slope movements had decelerated

and an equilibrium reached. The lower intensity movements suggest that

the hydrologic cycles are causing some movement, possibly promoted and

enhanced by seismic induced damage.

The intensity time series for IDP3 suggest that movements were relatively

low before the earthquake and higher in the years following it. This IDP is

likely driven by hydromechanical processes that vary on a annual cycle in

response snow melt, precipitation and possibly freeze-thaw cycles.

5.5 InSAR Data Comparison

Then the authors compared their observations with the displacement

maps derived by Donati et al. (2021) as discussed in the previous sections.

They combined RADARSAT-2 data captured in descending geometry with

additional data captured in ascending geometry and covering the time period

between July 2015 and August 2020. Figure 6.12 show the 3D displacement

vectors, the 1D projection of 3D vectors along the descending LoS (Line of

Sight) and the vertical displacement component projected to the InSAR LoS.

It is evident that, although lobe a is the core active region of Fels slide, lobe

a and b in the InSAR projection appear to be of similar strength because

the movement direction of less-active lobe b aligns more favorably with the

descending geometry LOS. This analysis thus shows that InSAR results for

lobe a are not representative as those for lobe b. It’s possible that additional,

unrecognized IDPs exist in lobe a.

They concluded that Fels slope appears to deform and move as a slope defor-

mation complex. It has a multi-planar, active-passive block configurations

and involves a complex three-dimensional failure mechanism with multiple

domains affected differently by geological and environmental drivers. The

results further highlight the importance of recognizing the complex three-
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Figure 5.12: Three-dimensional displacements versus one-dimensional dis-

placements, only descending orbit geometry of the available data (Section

1.2). (A) 3D velocity vectors indicating displacement magnitude (color

scale), map direction (arrow aspect), and plunge (arrow length). (B) In-

SAR 1D projection of 3D vectors along the descending LOS. (C) Vertical

component of 3D velocity vectors. Picture from [31].

dimensional nature of Fels landslide, which may involve different failure mech-

anisms within different parts of the landslide body, such as translational slid-

ing along foliation, wedge-related sliding and superficial slumping of newly

exposed glacial deposits or heavily damaged rock. The lateral growth of the

Fels slope failure as the glacier retreats also implies that different zones of

movement within the landslide will probably be at different stages of equi-
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librium, with mature landslides in the up-valley area and recent or incipient

landslides near the current position of the glacier terminus.



Chapter 6

Conclusion

In this work, we experiment the inversion method proposed by Booth et

al. (2013) to infer the failure surface geometry of a rock compound landslide

in Alaska, the Fels landslide. The available data are the superficial displace-

ment of the landslide acquired by a synthetic aperture radar. From these

data we derive the superficial annual average velocity field and we use the

classical regularization technique proposed by Tikhonov (1963) to obtain an

estimate of the depth of this landslide.

We analyze the results and performance of four different implementations,

and we found that the method (Section 4.3) which applies the Balancing

Principle and gradient projection algorithm is the most efficient one.

We first experiment the exact method proposed by Booth et al. (2013) which

adopts the discrepancy principle and uses CVX solver, a Matlab-based mod-

eling system for convex optimization [27] [28]. Then, we use Balancing Prin-

ciple instead of the previous principle, since little information about noise

affecting data is known. Finally we implement Balancing Principle with gra-

dient projection method proposed by Bonettini et al. (2009) and Newton

projection method proposed by Landi and Loli Piccolomini (2008), respec-

tively.

The thickness inferred by all four experiments agree on the general geometric
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shape of the sliding surface of Fels landslide. The complex patterns seem to

confirm that the Fels landslide is moving as a slope deformation complex as

hypothesized by Rabus et al. (2022). The authors also identified three inde-

pendent deformation patterns (IDPs), which are parts of the landslide that

are differently affected by meteorological, seismic, and deglaciation drivers.

The IDPs (Figure 5.11) are respectively IDP0, IDP1 and IDP3.

In their first analysis of Fels landslide, Donati et al. (2021) identified three

different domains (Figure 5.10): upper domain (UD), lower domain (LD) and

central domain (CD).

We consider the thickness inferred by the most efficient method (Figure 4.7)

in order to compare the numerical results obtained by the inversion method

and the previous knowledge and hypotheses on the structure of Fels land-

slide.

In the area corresponding to UD, where the ”image” seems to be smoother

than other parts, a multi-planar block configuration can be identified.

The eastern area corresponding to IDP1 displays more discontinuity features

and may be correlated to the fact that this area is predominantly related to

the seismic driver.

On the same y-coordinate, in the western part, there is a small region with

the same pattern, this may help to identify further IDPs which have not been

identified due to measurement constraints (Section 5.5).

Finally the lower part viewed as intersection of LD, IDP0 and IDP3 is the

area where least interpretation can be given. The alternation of high val-

ues and low values resembles the chaotic pattern of horizontal displacement

shown in Figure 3.2.
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To summarize, the results of the numerical methods analyzed are consis-

tent with the latest studies on Fels landslide, providing a further evidence

that the slope comprises several independently moving domains and the fact

that this landslide is better approximated by a ”slope deformation complex”

model [30].

From a mathematical point of view, further improvements of the inversion

method could be achieved by using another regularization function, such as

the L1-norm based total variation regularizer proposed by Di Serafino et al.

(2020) in [35], or by considering simultaneously different regularization func-

tionals as it is done by Bortolotti et al. (2021) in [36], even if this implies

that more efforts are required to solve the optimization (sub)problems.

Since the interpretation of results is not as straightforward as it might be in

image processing, it would be valuable to have some synthetic data, which can

be considered the ground truth data, from landslides generated by simulation

software such as FLAC3D [37] to evaluate quantitatively the performance of

the inversion method.

Finally, as real-world data becomes more accessible and abundant with ad-

vancement of measuring techniques, one could consider using machine learn-

ing techniques, such as artificial neural networks, both to gain insights from

data and to improve the efficiency and effectiveness of regularization meth-

ods.
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