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Abstract

The heat kernel method is a powerful technique in mathematical physics,
with applications ranging from black hole entropy to mathematical finance.
It consists in a variety of perturbation methods applied to elliptic second—
order differential operators on manifolds, which allow to study asymptotic
expansions and singularities of Green functions. Perturbative quantum grav-
ity is grounded on the background field method, where the metric tensor is
split into a fixed background and quantum perturbations. By moving to
euclidean time, the kinetic operators of BRST—quantised gravity become el-
liptic operators of second—order in partial derivatives, which can be studied
via heat kernel techniques. The heat kernel coefficients obtained in this ex-
pansion correspond to the counterterms needed to renormalise the one—loop
effective action; once computed on—shell, i.e. by using Einstein equations,
they become gauge invariant. Up to now, only the first three coefficients for
perturbative quantum gravity were known, so the main goal of this thesis
is to compute the fourth one, which allows to study renormalisation the-
ory for D = 6 gravity at one-loop, behaving similarly to D = 4 gravity
at two—loops. Both theories are known to be non-renormalisable, and our
calculation shows the precise coefficient of the one—loop term that gives the
logarithmic divergences in D = 6 extended to arbitrary dimensions (for
D > 6 these divergences are not anymore logarithmic). Our result is in
accordance with the one—loop calculation performed independently through
the A/ = 4 spinning particle in the worldline formalism. The computations
are then extended to the case of matter fields coupled to the graviton, in
the vacuum approximation; a suitable extension of these results to the gen-
eral matter case might have a role in evaluating quantum corrections to the
entropy of Kerr—Newmann black holes.
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Introduction

In a well-known and over quoted paper [1], Eugene Wigner described a
peculiar despite recurrent phenomenon in theoretical physics: studying the
mathematical structure of a theory sometimes leads to truly physical devel-
opments of the theory itself. At the same time, the need to model unintel-
ligible physical phenomena has traditionally led to develop new mathemat-
ical structures. This unreasonable effectiveness of mathematics, and, more
broadly, the continuous interplay between mathematical formulations and
their corresponding physical theories, appear especially apparent in math-
ematical physics, where the same model finds unexpected applications in
different disciplines, completely independent one from the other.

The heat kernel method, object of the present thesis, is a powerful tech-
nique in mathematical physics, with applications ranging from black hole
entropy to mathematical finance; its name comes from the heat equation,
which was studied by Fourier in his Théorie analytique de la chaleur (1822).
His mathematical treatment of the heat propagation led to significant de-
velopments in mathematical analysis and differential equation theory [2],
but the advent of Riemannian geometry has shown that the technique can
be generalised further to study curvature perturbations on manifolds. This
idea, however, did not emerge until DeWitt pioneered the computation of
the first counterterms for the one—loop effective action for perturbative quan-
tum gravity in four dimensions [3; 4]. His computational techniques were
not efficient, and the results contained errors [5], presumably transcription
errors or typos; nevertheless, his deep intuition allowed to find more refined
computational methods [6; 7], which form now a full coherent mathematical
theory [8]. Nowadays, these methods are commonly employed for studying
second—order elliptic partial differential operators; since most systems can
be described through second—order PDEs, their appereance is ubiquitous in
theoretical physics and mathematical modeling.

In this thesis, we apply the heat kernel method to perturbative quan-
tum gravity, in order to investigate deeper the issue of renormalisation in
quantum gravity, and in particular the calculation of the counterterms nec-
essary to make the theory finite at one—loop. We shall see that perturbative
quantum gravity at two—loops is non-renormalisable, so it can be seen as an
effective theory of a more general and up to now unknown quantum theory
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of gravity. This is already well-known in the literature, and the novelty here
is the determination of the gauge—invariant structure of the fourth coefficient
in arbitrary dimensions, which reduces to the logarithmic divergence in six
dimensions.

In the first chapter, we present a general mathematical description of the
heat kernel method, following the most recent treatment of the sub-
ject by Avramidi [8]. After having described the connection between
second—order elliptic differential operators and Riemannian manifolds,
the heat kernel is defined in full generality. The focus is then re-
stricted to the particular case of perturbation theory: the heat kernel
can be written as an expansion around small curvature perturbations,
whose form is discussed in detail, introducing the necessary mathe-
matical tools. The coefficients of this expansion, defined through a
Mellin transform, are the heat kernel coefficients needed for solving
the partial differential equation at small times. In the second part
of the chapter, we review the effective action formalism for a generic
bosonic or fermionic theory, compute the effective action at one—loop
and show how this quantity, upon moving to euclidean time, is re-
lated to the heat kernel coefficients found above. The chapter ends
by sketching the most efficient method that allows to compute these
coefficients, and providing the generic values for the first four of them.

In the second chapter, we describe the BRST quantisation of quantum
gravity at one—loop: after expanding the Einstein—Hilbert action at
one—loop level, gauge fixing of the quantum gauge symmetry is accom-
plished by introducing ghosts and auxiliary fields. The kinetic operator
related to the graviton and ghost fields are found to be second—order
elliptic differential operators, which can thereby be treated with heat
kernel techniques.

In the third chapter, the computation of the first four heat kernel co-
efficients for perturbative quantum gravity is described in full detail.
After having introduced the curvature monomial expansion for Ein-
stein spaces, which allows to express any quantity defined on these
manifolds as a function of invariants up to a fixed order in curvature,
the kinetic operators for the ghost and graviton are simplified accord-
ingly. The heat kernel coefficients are then evaluated on—shell, i.e. on
a background satisfying Einstein equations, which ensures them to be
gauge independent. Thus, they can serve as a benchmark for verifying
alternative approaches to perturbative quantum gravity. The main
contribution of this work is the evaluation of the fourth coefficient,
which has never been computed before in its full generality. The value
of this new coefficient is shown to enforce non-renormalisability of
one—loop quantum gravity in D = 6, but the result, given in a generic
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dimension D, could be useful in other contexts. The final results are
then compared with a different computation, which exploits the N' = 4
spinning particle treated within the worldline formalism, providing a
strong consistency check on their correctness.

In the fourth and last chapter, the heat kernel method is applied
to a slightly more general theory, including both the graviton and
matter fields. By adding to the gravity action a scalar, spinor or vector
field, the heat kernel coefficients are modified; the computations are
performed here only in the vacuum approximation, where matter fields
do not contribute to the background metric, which is therefore still a
solution of vacuum Einstein equations. Generalisation of these results
are found to be useful in computing quantum corrections to Kerr—
Newmann black holes entropy, even though a general computation is
still missing.






Chapter 1

Heat kernel method

In this chapter we briefly review the mathematical foundations of the heat
kernel method, and show its connection with the effective action defined in
the background field method for quantum field theories. We also sketch the
fundamental ideas of the most recent technique for computing the HDMS
coefficients. Our main references are [9; 8].

1.1 Elliptic second—order differential operators

Let us write the coordinate vector in n spatial dimensions as (¢, z%) € R**!
with ¢ = 1,...,n. The most general form for a second-order differential
operator is

n

L(t,z,0,) = — Z Q' (t,2)0;0; + Zﬁi(t, x)0; +v(t,x), (1.1)

ij=1 i=1

where % (t, z) are real functions, while 8¢(t,x) and (¢, ) can be complex;
we will assume that they are all C® (M )-functions, with M C R"*!. Here
and in the following we assume also that M has no boundary, 0M = &. By
introducing the dual variables p; and the inner product (p,z) = Y, piz’, we
define the symbol of the operator (1.1) as the quantity

o(t,z,p) = (p, A(t,x)p) +i(p, Bt x)) +v (1.2)
and the leading symbol as
O-L(tvl'ap) = <p7 A(t7$)p> ) (13)

where A = (o) and 8 = (%), and all derivatives have been replaced as
0; — ipj. An operator is said to be elliptic if Vo € M and p # 0 the leading
symbol of the operator is positive, o (¢, z,p) > 0.1

I This is the case, for instance, of the Laplacian A = > 0?, which has o1, = \p\2 > 0.

)
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The operator (1.1) can be seen as acting on L?(M, i), the space of
square—integrable functions on M with weight function u(x), and its (for-
mal) adjoint L* is defined by (o, L) = (L*¢,).2 Tt turns out to be really
useful to decompose the quantities 47 and v in terms of real-valued functions
A;, BJ and Q:

5 =B — Z,u_lai (;w/j) — 21 ZajkAk

k

g ‘ y (1.4)
y=Q+ Z AV A —i Zu_l& (ua”Aj) )
ij ij
since this allows to write (1.1) as
L=-) u'Djpe’* Dy + BID; +Q, (1.5)

kj

where we introduced the covariant derivative D; = 0;+1A;. Equation (1.5)
enlightens that the theory of second—order differential operators is deeply
intertwined with Riemannian geometry, since if L is elliptic, a¥ is a real,
symmetric and non—degenerate tensor, which can be naturally identified
with a metric tensor.

1.1.1 Extension to Riemannian manifolds

Riemannian geometry shall be really helpful in studying elliptic second-
order differential operators, since they can be defined in terms of the in-
trinsic geometry of the manifold. Consider a Riemannian manifold (M, g),
equipped with a metric tensor g = gijdmi ® dz7; the operator (1.1) can
likewise be written as

L= —a%(2)d,0; + ()9 + 7(x). (1.6)

where the symmetric and positive-definite tensor o is to be identified with
the inverse metric ¢ = (g;;)~! and 2 € U C M, U = @. The decomposi-
tion (1.5) can be applied again, leading this time to

L=—g72(0;+A)g2g” (0, + A;) + Q, (1.7)

since now u(x) = g%(x) in the Hilbert space LQ(M,g%), where g = | det g|.
The quantities A; and @ appearing in (1.7) are defined as

1 o
Ai = =53 (8 +17)

- ) o (1.8)
Q=7+g"AA; +9 20; (gig”Aj> ,

2The inner product (-,-) in the space of square-integrable functions L?(M, ) should
not be confused with the one (-, ) between coordinates z* and dual variables p;.

6



Heat kernel method

NGO

where A; is known as generalised connection, while I'V are the contracted
Christoffel symbols.? Using the covariant derivatives defined above and a
simple identity,* (1.7) can be written as

L=—(Vi+A)g" (V;+A)+Q (1.9)
Q=7+g"AA; + gV, A; . (1.10)

This allows us to interpret the quantity R;; = 0;.4; — 0;A; as a generalised
curvature, since the covariant derivative can be extended to a generalised
covariant derivative containing both a gravitational (spacetime) term and a
purely gauge (internal) term,

VA=Vi+ A, (1.11)
allowing to write the Laplace—type operator (1.9) more compactly as

L=—¢g"Vivi+Q. (1.12)

1.2 The heat kernel

Consider now a positive-definite operator A in a Hilbert space, (A, A) > 0.
We define the heat semigroup as the operator

U(t) =exp(—tA) =) (_jl!)] (tA), (1.13)
j=0

which is well defined for ¢ > 0, and satisfies the operator heat equation
(O +A)U{#)=0  with U)=1. (1.14)

The operator U(t) enjoys the semigroup defining properties, since for any
ti,t2 > 0 one has U(t; + t2) = U(t1) U(t2), but since in general it is not
invertible, as U~!(t) = exp (tA) is not well defined for ¢ > 0, it cannot be
considered as an element of a group.

*Starting from 'y, = 29" (0;gkm + Okgjm — Omgjr) and contracting with 5% we get
the expression

i 1 1 _ _1 1
L =Ty = §9Jk3i9jk =39 '0ig =9 70i97 .

4As a consequence of the previous result, given a vector field K* defined on the manifold,
we have the useful formula

ViK'= 8,K' + K" = g~ 29 (g%Ki) .



CHAPTER 1

NGO

The heat kernel is then defined as the integral kernel® of the heat semi-
group for the operator L in (1.1), which in spectral decomposition reads

Ut;z,2') = Z e Npi(x)p,(2), (1.15)
J

where Lyj(x) = A\jp;(z) are the eigenfunctions and eigenvalues of the dif-
ferential operator L. According to (1.14), U(t; x, ') satisfies the differential
heat equation’®

[0y + L(z,0,)|U(t;x,2") =0, with U(0;z,2") = 6(z,2"), (1.16)

where the d—function, in the case of curved space, is to be interpreted as a
biscalar density.”

The usefulness of this operator appears once we consider how it can be
exploited to solve the initial value problem for the “heat equation”

p@+u%@HWu@:o 117
V(0,z) = f(z),
which is solved indeed by

V(t,z) = /M do’ u(x" YUt x,2") f(2'). (1.18)

Similarly, for the non—homogeneous case, where a generic (smooth) function
h € C*°(M) appears on the right-hand side, we have that

{@+Lm@mvwm=hw@ (1.19)

V(0,2) = f(x)

®The integral kernel of an integral operator K acting on L?(M,u), M C R", is a
two—point function K (z,z') such that Vf € L*(M, 1) one has

Mﬁ@=@mmwmmwmﬁ

SThere is also an equivalent equation for the adjoint operator L* [8, §2.4.1] which for
sake of brevity we will omit in the following discussion.

"In detail, §(z,2') = g~ (2)5(z — 2’)g~ 1 (¢'), where the factors of g(z) are inserted in
a symmetric way to satisfy the definition

/ dz /g 0(z, ") f(z) = f('),
M

so that the heat kernel is a biscalar (and not a biscalar density, as it would have been,
had we chosen the standard definition for the d—function).

8
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is solved by

V(t,x) :/de' w(Z ) U(t;z,2') f(2')

/ dt'/ dz’ p(2")U(t;z, ") h(t', 2') .

The forcing term, according to Duhamel’s principle, is adding a new initial
condition at each instant of time [10, § 1.1]. On a Riemannian manifold M,
we can formulate the same problem, upon replacing L(z, ;) by the Laplace—
type operator (1.12). It can be shown that for ¢ > 0 the heat kernel is a
smooth function of the time ¢t and of z, 2’ [8, § 5.1]; however, it is impossible
to analytically evaluate it in general; in the following, we will therefore focus
on the approximation at small times, ¢ — 0.

(1.20)

1.2.1 Singular perturbation theory

Consider the operator L written in the form (1.6), and rescale all derivatives
by a constant parameter € > 0, to get a singularly perturbed operator

L(z,e0) = —£%a?*(2)0;0, + e (x)0; + . (1.21)
The corresponding heat equation becomes
[€0; + L(z,20,)|U(t;z,2') =0, with U(O;z,2") = §(z,2") . (1.22)

We now look for a solution of (1.22) by introducing the following semi—
classical ansatz for the heat kernel:

Ult;z,2) Ns_gg_éll(x)g_éli(m')exp{—S (t;z, 2’ }Zs bj(t;x,2")
(1.23)

This choice is motivated as follows: the solution of equation (1.22) for oper-
ators (1.21) with costant coefficients is a sort of “plane wave” in euclidean
space [8, §§4.2.1, 4.3], so the idea is to replace in the limit ¢ — 0 and t — 0
this euclidean plane wave by a distorted one which depends on a function
S(t;z,2’) and on an expansion around ¢ = 0, with coefficients b;(¢; z, z’).
The factor 5_%g_i(a:)g_%(x') is introduced to satisfy the initial condition
(1.22), that is

1
lim U(t;z,2') ~ lim e 2g %(m)g_i(m') exp{—ES(t;x,x')}bo(t;a:,:U')

e, t—0 e, t—0
= g_%(x)é(x - x')g_%(x’) = 6(z, ). (1.24)

The algorithm for determining the function S(¢; z, 2") and the coefficients
bj(t;z,2") is rather simple: we plug the ansatz (1.23) in the differential

9
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equation (1.22) and equate to zero the coefficients at order /. For j = 0
we get a non—linear first—order partial differential equation for S, known as
Hamilton—Jacobi equation. To solve this equation, one has to introduce the
Hamiltonian system of equations, whose solution is the action S. For j > 1,
we get a system of differential recursion relations for b;, known as transport
equations, which allow to find as many coefficients b; as needed.

Another form for the expansion

Introduce now a real two—point function ® = ®(z,z") such that ®(z,z") > 0

for x # 2’ and ®(z,2") = 0 iff x = 2’. We also assume that it is an analytic

function of x, so that it can be expanded in Taylor series around z’, with
0;®(x, x/)‘

= 0 ®(z,a)| =0, (1.25)

r=x’ r=x'

and that it has a non degenerate Hessian det [—8;0;®(z, 2')] }x:x, # 0. This
means that ®(z,z") has a non-degenerate absolute minimum at =’ equal to
8 Then the limit derived in appendix 1.A, equation (1.108), can be
generalised as

Zero.

%LH(I] (4mt) ™2 det (8,0, ®(z,2")] 2 exp {—21t<1>(:n, :E')} = §(x,2"), (1.26)

and this equation still holds if ®(¢;x,2’) is an analytic function of t as
well, such that ®g(x,2’) = ®(0;x,2’) satisfies the conditions above and
0:®(0;z,2')|,_,» = 0. By comparison between (1.24) and (1.26) the func-
tions S and by have the following asymptotics at ¢ — 0:

S(tiz, ') = %@(m,x') +o(1) (1.27)
bo(t; z,2') = (4mt)~F det [—0,0y®(x,2')]? + O (tl—%) . (1.28)

These functions can then be written in terms of expansions around ¢ — 0,
by introducing the unknown functions S;j(x, ") and bji(x, '),

. no__ 1 / Ny /
S(tyz,x") = ﬂfb(x,x) —I—Z%tjsj(x,x) (1.29)
J:
bt 2,0) = (4mt) ™5 det [<0,0p (2, 2)]2 S thb(a,a’),  (1.30)
k=0

8We denote by primed indices, i.e. ;/, the derivatives with respect to z’.

10
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and by plugging (1.29) and (1.30) inside our ansatz (1.23), upon a suitable
redefinition of the generic functions bj;(x, "), we find

Ult;z, 1;’) ~ e 3 (47rt)_%g_i () det [—Bic’)j@(:v, JU/)] %g_% (l‘/)
00 4 (1.31)
- exp {—21&5‘1’(337 33/)} Z(ft)ch(% a'),

J=0

where ®(z,2') and ¢j(x,z") are still undetermined functions.

1.2.2 Hamilton—Jacobi equation

At this point, it is important to note that the ansatz (1.31) is not written
in a covariant way, but can be easily made so. Consider the form (1.12) of
the operator L, and singularly perturb it as

L.=¢&’L = —EQQUV;-AV;‘ +£2Q. (1.32)

Assuming that the coefficients of L do not depend on ¢, the following com-
mutation formula [8, §5.1] is easily seen to hold:

1 1
exp <5S> (0 + €*L) exp <—€S> =To+eTh +€°L, (1.33)

with

{Tg = —S — gijSZ‘Sj (1 34)

T1 = 815 + QQiij (Vz + .AZ) + gijSij
by denoting §; = V;S and S;; = V;V;S. In order to cancel the leading
term in (1.33), we require that 7y = 0 in (1.34), that is,

oS+ ¢¥V;SV;S =0, (1.35)

which is our Hamilton-Jacobi equation. Moreover, due to (1.29) we can
assume that S(t;z,z") takes the form

1
St;z,2') = %O'(l‘,l‘/), (1.36)
hence (1.35) becomes
1 ..
o= §g”(V,~U)(VjU) , (1.37)

which is the definition of the Synge function o(z,z'), see appendix 1.B, and
gives the exact form of the action S. The ansatz (1.31) can now be written
in an explicitly covariant manner,

e .
(et) ¢j(x,2")
=0

(1.38)

n n 1
Ult;x,2') ~ 6_5(47Tt)_5A%(£L‘, 2') exp {—Ma(az, 33')}
J

11
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where A(xz,2') is Van Vieck—Morette determinant, defined in appendix 1.C.
With the asymptotic ansatz (1.38) in mind, the second line of (1.34),
together with (1.36), gives the following transport operator

1 ; 1,

where 0; = V,0, 055 = V;Vjo and D = 0'V;. Using (1.129), proved in
appendix 1.C, (1.39) can equivalently be written as

Ty =t 5A3 [at +1(D+ a’Ai)} t5A77; (1.40)

moreover, by introducing of the generalised operator of parallel transport
P(x,x"), defined in appendix 1.D,

Ty =t 5 PA? (at + 11)) t2Pp 1Az (1.41)

Since the asymptotic ansatz (1.38) depends on ¢ and t only through their
product et, by replacing et — ¢ and using (1.41), it becomes

Ult;z,2') ~ (47rt)*%77(x,af’)A%(x,x’) exp {—Qlta(a?,w’)}ﬁ(t; r,z') (1.42)

where we assume that z and 2’ are sufficiently close, so that all two—point
functions are well defined, i.e. the geodesic connecting the two points is

unique. The transport function Q(t;x,2’) is arbitrary, besides satisfying a
transport equation

1 .
(ék + ;D + L> Qt;x,2") =0 with Q0;z,2') =1, (1.43)

where I = P~A"2 LA2P. The condition (1.43) comes from imposing the
commutation formula (1.33).

1.3 Minakshisundaram—Pleijel equation

We assume that the potential Q(z) is bounded from below by a positive
parameter m?, so that Q(x) > m?2. Then the operator L is positive-definite
and the heat kernel U(t;z,2) and the function Q(¢;x,2’) decrease at the
infinity ¢ — oo more rapidly than any power of ¢, whereas around t — 0
we can expand Q(¢; z,2’) in positive integer powers of t. Therefore, for any
a, N > 0:

t—00,0

o\ N
lim t* (8t> Qt;z,2') = 0. (1.44)

12
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Consider now the Mellin transform of the transport function Q(¢; x, 2'),

dt 7't 2, 2" 1.45
e (6,2 (1.45)
which converges in the region Re (¢) < 0, ¢ € C. The function b,(z,z’) can

be extended for Re (¢) > 0 via analytic continuation [7, §2]. By integrating
by parts, for Re(¢) < N € N,

_1\N 0o N
by(x,2') = F((—ql—)i—N)/O dt 971N <[§t> Qt;z, '), (1.46)

and the asymptotic property (1.44), together with integration by parts, al-
lows to compute by(z, ') at the positive integers ¢ = k,

k
br(x, ") = (_gt) Qt;x, ") (1.47)
t=0
with asymptotic behaviour
lim I'(—g+ N) by(z,2') =0. (1.48)
lg|—o00
Re(q)<N

The functions by(z,2’) can therefore be seen as an analytical continuation
of the coefficients b; on the whole complex plane of ¢ from positive inte-
ger values, with the asymptotic condition (1.48). By inverting the Mellin
transform,

c+1i00 d
Qt;z,2') = / Q—ql t1 T(—q) by(x,2'), c<0, (1.49)
. s

—1400

which gives the heat kernel diagonal as an integral of the coincidence limit
z' — x of the function b,

w3

c+1i00
Ut 2, 2) = (4rt)~ / Y9 gy by (150)

—i00 211

Shifting to the right the contour of integration in (1.49) and taking into
account the properties (1.47) and (1.48), it is possible to prove that

=2

| &,

' ' enioe dg '
Qt;z,2') +bj(@,2") + — t1T(—q) by(z,2")

N—ico 2T

<.
Il
]
<

F

J
j!

o~

bj(z,2') + Ry(t;z,2'), (1.51)

<.
Il
o
<
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with N — 1 < ey < N. Here, Ry(t;z,2') ~ O(t") as t — 0 and is smaller
than the last term in the sum, so (1.51) gives the asymptotic expansion of
Q(t;z,2') as t — 0 in the form
/ - tj /
Q(t;z,2') ~ f'bj(x, x'), (1.52)
=07’
leading to the asymptotic expansion of the heat kernel diagonal,
n o=
U(t;x,z) ~ (4rt) "2 f'bj(:r,x). (1.53)
— ]
7=0

The coefficients b;(z, 2’) are smooth functions known as Hadamard-De Witt—-
Minakshisundaram—Seeley (HDMS) coefficients, and the asymptotic expan-
sion (1.53) is known as Minakshisundaram—Pleijel equation.

Note that the expansion (1.52) is convergent only if the remainder term
Ry (t;x,2") vanishes as N — oo in a neighborhood of ¢t = 0, in which case
Q(t;z,2') is analytic at ¢ = 0. In general, for any fixed ¢ > 0, Ry(t;z,2')
does not vanish as N — oo and (1.52) diverges for any ¢t > 0. Thus the
asymptotic ansatz (1.52) makes sense only when its lowest—order terms are
essential.

1.4 One—loop effective action

Consider a generic field ¢(z) on a n—dimensional space—time, with compo-
nents goA(:L‘) which transform with respect to some representation of the
diffeomorphism group, and which can be either bosonic or fermionic:

P = (~1)4BpBpA, (1.54)

with indices A, B equal to zero in the first case, and equal to one in the
latter. In order to construct a local action functional S[p] we also need to
introduce a metric for the configuration space E4p, which allows to define
a scalar product

(1, 02) = 1 Eapps (1.55)

and to higher and lower the indices, ¢4 = @PEp4 and pf = @ (E~1)45,
with (E~1)APEpc = 6@. If the theory is gauge-redundant — which is the
case of quantum gravity — we assume that the ghost fields are included in
the set of fields p(x), and that the action is modified accordingly. We also
employ DeWitt hyper—condensed notation.’

9This notation combines summation with integration, allowing to use a unique discrete—
continuous index i = (A,x) to denote the fields, " = o™ (z). Summation-integration is
then combined in a brief contraction of indices, ;1' = [ d"z @a ()™ (z).
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Consider two causally connected in— and out-regions in spacetime, that
lie in the past and in the future with respect to the region containing the
physical system we are looking at, and define two vacuum states |in), (out|
in the two regions. The transition amplitude between these two states, in
presence of background classical sources J;, is given by the path integral

®MMm:i/d@Aﬂ¢]wp{é(S@}+L@ﬂ}Eﬂmp{;Wqﬂ}. (1.56)

The quantity M]p] is a measure functional, fixed by canonical quantisa-
tion of the theory, while W[J] is the generating functional for connected
correlations functions,

Y P ——WIJ 1.57
wie= (1) s WU (157)
where 4y, is the left functional derivative. In particular, the first functional
derivative of W[J]| gives the background field
() = @'1) = L=l (1.58)
0J;
in terms of which we can define the key concept of effective action T'[®],
through the functional Legendre transform

L@ = W[J] — J;®". (1.59)
The right functional derivative of (1.59) gives the sources,

Or
oPt

and (1.60) shows that, by taking J;[®] = 0, the effective action generates
effective equations of motion in the background field ®. The second deriva-
tive of (1.59) determines the propagator, while higher derivatives give all
vertex functions. By using the definition (1.59), as well as (1.56), one finds
that I'[®] satisfies the integro-differential equation

exp{;r[cb]} _ /dgp/\/l[go] exp{; [sm _ 5%1:1)[?] (¢ @i)] } (1.61)

This shows that, when using the effective action functional for the construc-
tion of the S—matrix, one needs only tree—level diagrams, since all quantum
corrections determined by the loops are already included in the full prop-
agator and vertex functions. In other words, the fundamental entities of
the theory (effective action and Green’s function) become functionals of an
external classical (background) field and in principle contain the entire in-
formation of quantum field theory [11]. The effective equations of motion

(@] = —Ji[®], (1.60)
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(1.60), with J; = 0, describe the dynamics of the background fields with
regard to all quantum corrections.

At this point, a problem arises: the off-shell effective action depends on
the choice of the gauge, so it is not gauge—invariant. The solution of this
problem has been proposed by Vilkovisky [12] and later extended to curved
spacetimes by DeWitt [13], and goes under the name of Vilkovisky—De Witt
formalism. The key idea is to introduce a connection in configuration space,
which allows to keep gauge invariance safe. Very recent developments [14],
however, show that a more refined definition of background independence,
rooted on the extensive studies on this subject made by Anderson [15; 16;
17], appears to conflict with gauge invariance. We will not tackle this issue
here,'? even though it is important, from a more general-theoretical point
of view, to be aware of its existence.

Going back to our formalism, we can now expand the effective action by
orders of h, which correspond to the number of loops,'!

L[®] = S[®] + > KT (@], (1.62)
k>1

and substitute (1.62) in (1.61), with the shift of variable ¢’ = & + /A ¢".
After having expanded the action S[¢] and the measure M[y] in quantum
fields ¢°, by equating coefficients at equal powers of i we get recurrence
relations that uniquely define the coefficients I'(;)[®]. The fundamental ele-
ments of this computation are the bare propagators, i.e. the Green functions
of the differential operator

01,0
Ajle] = LR

= 555 (1.63)

In particular, the one-loop effective action can be obtained from the com-
putation of a Gaussian—like integral, and has the well-known form

1 sdet A[D]

where we have introduced the functional Berezin superdeterminant

sdet A = exp (sTr log A) (1.65)

and the supertrace
sTr Fz’j = (—1)2F2‘ . (166)

)

0Qur computations in the background field method will be carried out only on-shell,
that is, by assuming that the background solves Einstein equations, so covariance will not
be a problem in our case.

1At L loops we will have an amplitude proportional to KX~ 1.
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The local functional measure M|[yp] can be taken to be the square root of
the superdeterminant of the metric in configuration space,

N

M = [sdet E;;(9)]? (1.67)
where we assumed ultralocality [18, § 3]
Eijle] = Eap(e(x)) (z, ). (1.68)

Note that the measure dp M[yp] is invariant under point—wise transforma-
tions of the fields, p(z) — Flp(x)]. Multiplicativity of the superdeterminant
[19, §1.2] allows then to write (1.64) as

1 A . A _
L) [®] = —Q—ilogsdetA with  A=E"'A. (1.69)

1.4.1 Effective action and heat kernel expansion

The most general form of the operator A (1.69) is covariantly given by
(1.12); by explicitly writing down the configuration space indices A, B, as
well as factoring out the lower bound of Q(z) > m? > 0 as

QAB(x) = @AB - m25§a (1.70)
we have
AAB(x, 7)) = [5§ (V2 — m2) + @AB(x)] g%(:c) 5(z,2'). (1.71)

By means of the Fock—Schwinger—DeWitt proper time method, we can write
down the Green function G4, (z,2') for the operator (1.71), that is,'?

(68 (V2 = m?) + QL] GG (w.2) = =0% 973 (@) 8(z,0),  (L72)

as a contour integral over an auxiliary “time” variable s [9, § 1.2]. Then, as
the heat kernel is the integral kernel of the heat semigroup,

G(z,2') = z/ ds exp (—ism?) U(s;z, ). (1.73)

C
In the following we will choose the Feynman causal propagator by integrating
s from 0 to oo, and shifting m? — m? + ie. Using (1.52) and (1.53), at

coinciding points # = ' we then have

G(z,z) = z/ ds (47s)72 exp (—ism? + es) Q(s; 2, ) . (1.74)
0

12Note that this Green function is a two-point quantity, transforming as the field o (z)
under the transformation of coordinates in x, and as the current Jp/(z') under the trans-
formation at x’.
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We now move for further convenience to euclidean time 8 = is, and exploit
the operatorial identity [20, § 1]

log A =— / — exp(—pA), (1.75)

which can be seen to hold by differentiating both sides with respect to A,
and neglecting an infinite additive constant which does not depend on A
itself. By recalling that logsdet A = sTr log A and setting A = A, (1.69)

becomes'?
L) = flogsdetA = —/ — sTr exp (— BA)
— < dp 2 n .
= —5 5 exp (—pm*) | d"z /g sTrU(B;z, ), (1.76)
0

and the integral (1.76) admits two different kinds of divergences:

o for f — oo, infrared divergences can be due to negative or zero eigen-
values of A (they can be removed by assuming that m is sufficiently
large, which is not the case of the graviton);

e for 8 — 0, we have instead wultraviolet divergences; indeed, by intro-
ducing a cutoff at § = A7!,

ta=g [ 5 ew(oam?) [ @ iU, 010

it is easy to see that the divergent part of I'a, for A — o0, is a subgroup
of the heat kernel coefficients.

By using the HDMS expansion (1.53) in euclidean time 3,'* the action
(1.76) becomes

1 [>d d J
Ly = —2/0 55 exp(—BmQ)/ 4:5f Zﬂ (z,x) (1.78)

which is the general form for the effective action in terms of HDMS coef-
ficients. From a physical point of view, the expansion in series in proper
time corresponds to the expansion in the dimensionless parameter o = \/L,
where A = i/mc is the Compton wavelength, and L is the characteristic scale
of variation of the background fields. When A < L, this approximation is
nothing else than the semi—classical approrimation of quantum mechanics,
since o ~ h in usual units.

3When going to euclidean time 8 = is, the factor —(2i)™* in front of the effective
action (1.69) becomes 2.

Note that (1.53) is written for a Riemannian manifold; since, when shifting to eu-
clidean time, we move from a pseudo-Riemannian manifold to a Riemaniann one, the
“time” coordinate ¢ introduced in (1.53) is to be identified with 3, and not with s.
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1.5 Heat kernel coefficients computation

The computation of the HDMS coefficients was carried out by DeWitt [3,
§17; 4, §§9.7-9.9], but the method employed by him, which exploits a recur-
sive relation between the coefficients, although being the simplest in prin-
ciple, turns out to be cumbersome when looking for higher order terms
(indeed, he did not compute ag). The fourth heat kernel coefficient a3 was
computed for the first time by Gilkey [21, §§ 3-4], with all terms spelled out
explicitly, and to which we refer as a starting point in our computations.
However, the method due to Gilkey is still formulated in a very complicated
form, which cannot be immediately applied to the physical problems: it
is not covariant nor can be extended to computer calculations [6, §1]. A
fully covariant and algorithmic method has been more recently developed
by Avramidi [11; 6; 7; 9, §§2.1-2.4; 8, §§5.5-5.7].

To briefly sketch this latter procedure, we rewrite the transport equation
(1.43) for the differential operator (1.71) with ¢ = is, to get

(d + ,1D) Qs) =P ! (M—%VQA% + @) PQ(s), (1.79)

dis  is

where Q(s) = Q(s;x,z) in the coincidence limit, satisfying the boundary
condition 94, (0;x,z) = §4;,. Then, from (1.52) we get

Q(s) = ZO (i;!)] b, (1.80)

and hence, by plugging (1.80) into (1.79) we find
ap =1 (1.81)
1 -1 1o, 1 ~
142D )b =P (1475v2A% 4 Q) Py (1.82)

While equation (1.81) gives immediately the first heat kernel coefficient as
reported in (1.96), we can rewrite the recursion relation (1.82) as

1.\! 1 -1
b = (1+,D> F<1+,1D> F...A+D)'F, (1.83)
j j—

where ) L~
F=pt! (m—iv?m + Q) P. (1.84)

Assuming that HDMS coefficients admit a coincidence limit for x — a/,
we can introduce the covariant Taylor series described in appendix 1.E:

bj =Y In) (nlb;) (1.85)

n>0
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and hence

1 \* j
<1+jD) :Zj+n|n> (n] . (1.86)

n>0

The recursive relation (1.83) can therefore be rewritten as

J j—1 1
n|b;) = . -
< | j> nl,..,%lx)]—i_n ]_1+7”Lj,1 1+nj
- (n|F|nj_1) (nj_1|Flnj_2) ... (n1|F|0), (1.87)

where the matrix elements of the operator F are

_1TL / /
VWF( Vo ot (1.88)

(m|F|n) =V R

G
As the operator I is a differential operator of second order, the matrix ele-
ments (1.88) do not vanish only for n < m + 2, so the summation (1.87) is
always finite, an in particular ny > 0, n; < nj;11+2. The problem of comput-
ing HDMS coefficients is therefore reduced by (1.87) to compute the matrix
elements (1.88). This last procedure can be simplified even more by intro-
ducing a diagrammatic technique, which consists in writing a generic element
(m|F|n) as a “block” of m lines coming from the left and n lines going out
to the right, whereas contractions between matrix elements (m|F'|k) (k|F|n)
are represented by two blocks connected by k intermediate lines. To get the
contraction (1.87), we must then draw all possible diagrams with j blocks
connected in all possible ways by any number of intermediate lines k, which
does not exceed the number of incoming lines by more than two nor by
exactly one. The different diagrams are then summed with the weights
provided by (1.87); for the first coefficients these diagrams are:

(olbr) = O (1.89)
O} =0 O +5 OO (1.90)
Ot} =0 O O +30 OO +3;TO O (1.91)

+1 5000 +3 ;000 +5 5 OTED.

Explicit results

The exact computation of the matrix elements is quite involved, and will not
be carried out here; the results obtained by Avramidi [11; 6], however, are
in accordance with the earlier ones by Gilkey [21], which is a strong cross—

20



Heat kernel method

NGO

check for the correctness of both procedures.'” More recently, the same
coefficients have been written in [23] with all curvature monomials spelled
out.

To show the outcome of these involved computations, it is useful to write
the operator (1.71) in the following simplified form

H=-V?’-V, (1.92)

where we keep implicit configuration space indices, and define V = —Q
[20, §2.1]. We will also denote by n = D the dimension of our spacetime
manifold. The trace of the heat kernel coefficients (1.53) can be written as

1 < 1 o
(47rt)% Tr Z tfaj(x, x)| = (47rt)% Tr [exp Z tjozj (2, ) . (1.93)
Jj=0 =

whereas the standard coefficients, in the normalisation previously employed,
are the b;’s defined as

1 .
a; = ﬁ bj with a; = a; —+ Bj . (194)
We separated the contribution o, coming from connected diagrams, from
Bj, due to disconnected ones, as it is commonly performed in quantum field

theory [22, § B]. By comparing the two terms in (1.93) we find

Bo=pB1=0
1
B = 5ad (1.95)

1
B3 = 604? + ajan .

Proof. Neglecting the prefactor in (1.93), we expand the exponential as

k

Tr |exp thaj(x,x) :TrZE thaj(x,m)
k=0 =~ \j=1

=1

1 1
=Tr [IL + agt + <a2 + 2@%) 24 (ag + gai’ + alaz) 3+ O0(th)

and direct comparison between the two terms identifies the coeflicients By = %a%
and B3 = ga} + aqas, as reported in (1.95). [

15Tt is important to note that the notation we employ here for the Riemann tensor,
Ricci tensor and scalar is the same of [22; 5],

_ A A _ [e% —
R, e = 0,1%, — 05T, — T 0, — T4, T, R = R., R=R",,

while [21; 20] adopt the opposite sign in the Riemann tensor and in its contractions,
R, = R,,.", so the heat kernel coefficients (1.96)—(1.99) have been changed accordingly.
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By using the form (1.92) for the differential operator and by denoting
the gauge field strength tensor as Q,, = [V,,V,], the first four HDMS
coefficients'® are given by:

ap(z) =1 (1.96)
1

ay(z) = éRIl +V (1.97)
1_,/1 1 9 9 1 5

042(117) = év 5R]l —+ V —+ @ (RMV/JU — RMV) 1 —+ EQNV (198)

1
as(z) = o [18V*R +17(V,R)?* — 2(V,uRyo)? — 4V, Ryo VY RH
+ 9(VaRuwpo)? — 8R, V2 RM + 24R,,, VYV . RH

208

64
+12Ryupo VAR = ZERIRRS 4 Ry Roo R

16 , 44
= g R Ry R 4 SR Ry R 5

80
5 Ruwoo RUPPR T | 1

2 v v g
+ 57 [B(VS0)® +2(V Q) + 120, VPO —120,70,70/)

+ 6Rpupo Q7 — AR, Q7O+ 6VV +30(V,V)?
+4R,, VHV'V + 12V, RV*V]. (1.99)

These results can be equivalently employed for gauge fields and potentials
expressed in matrix form, as it will be apparent in the following.

1%Tn the following, when referring to the HDMS coefficients for perturbative quantum
gravity, we will simply speak of Seeley—DeWitt coefficients.
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Appendix

In this appendix we review some mathematical tools which were needed to
define the heat kernel expansion in the previous chapter.

1.A Elliptic operators with constant coefficients

One of the very few simple cases in which computations can be carried
out explicitly is that of elliptic differential operators (1.1) with constant
coefficients (A4, 3, 7). Let A € C and h = h(xz) € C*°(M) be a given smooth
function, and let f(x) be an unknown function satisfying the equation

(L =) f(z) = h(x) with lim f(z)=0. (1.100)

z—+o00

By Fourier transforming, (1.100) is solved by

= (1) )= [ et 0

(2m)" o(p) — A
_ / d"s’ G(\iz,2) h(2') (1.101)
having introduced the resolvent of the operator L,
dnp . s 1
Gz, 7)) = / eiplz=a))___— 1.102
( ) n (2m)7 o(p) — A ( )

which satisfies the condition
(L-)N) G\ x,2') =6z —2). (1.103)

Let us assume that Re (\) is sufficiently large and negative, so that for any
p € R, Re(o(p) — A) > 0. Then, we can parametrise

1 / 0
— = dt exp{—tlo(p) — Al}, 1.104
o) {~tlo(p) ~ A} (1104
and therefore (1.102) admits an integral representation

G\, 2') = / dt MU (t;z, "), (1.105)
0
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in terms of the heat kernel operator

Ult;z,2') = /n (g;];n exp{—to(p) +i(p,(x —2'))}. (1.106)

Since in this case the symbol o(p) = (p, Ap) +1i (p, 5) +~ (1.2) is a quadratic
polynomial, (1.106) is a Gaussian integral and can be computed exactly, to
give [8, §2.5.3]

n 1
Ut;z,2") = (4nt)” 2 (det A)fé exp {2 {(x — 2", A1,6’)}
]. 1 ]- / —1 /
-exp § —t 7+1<5’A B)| ¢ exp —@((m—x),A (x —2"))» (1.107)
and by using the Fourier integral representation of the )—function we find

tl_i}r(])rh(élwt)_%(det A)_% exp {_let (x—a), A" (z — x’)>} =§(x —2).
(1.108)

This implies that U(¢; z,z") satisfies the initial condition (1.16), because in
the limit £ — 0T the other two exponential terms give the identity.

1.B  Synge function

Consider a fixed point ' € M and assume that there is a sufficiently small
neighborhood of z’ such that each point = therein can be connected to x’
by a single geodesic z = x(7), with 7 € [0,¢] and z(0) = a’, z(¢t) = . The
Synge function is defined as half of the square of the geodesic distance

1 t .

o(z,2') = =d*(z,2') = 2t/ dr gja'd’ . (1.109)
0

It is a biscalar function that fully determines the local geometry of the

manifold. Consider now the one-parameter family of geodesics 2* = (7, ),
such that the initial point 2°(0, ) = 2’ is fixed, and let us denote

: 0z’ (1,€)
h* =" . 1.110
m)= g (1110
Since 2’ is fixed, h*(0) = 0, and we can compute V,o as
0o :
- = h'(t)V,o. 1.111
7| —Hove (111)
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By plugging (1.111) into the integral definition (1.109) we find

do 1 [ 017 0gi; ..
- = —t | dr |2¢;;1'—— + —ZL it
Oe |._o 2/0 T[gj$ 66+88$$:|€O
]. ¢ 'Zah] 7T
= 275/() dr [QQUJU B + hkakgijx ac]L:O (1.112)

and integrating by parts the first term returns

oo P t o L
5% . =t [gijxlh]}o} o + t/o dr {*giszhj — Opgisatith?
1 o

+28kgij:tla':]hk]
e=0
t

=t [gijilhj}g} B t/ dr [i’ + Fz‘zﬁw’l} gikhk’ . (1.113)

e=0 0 o

The second term in (1.113) vanishes, since x = z(7,¢) is a geodesic, and as
h(0) = 0 we are left with

Jo

Tt on () — Vie=teEln),  (1114)

e=0

where we recalled (1.110). Equation (1.114) shows that first derivatives of
the Synge function are proportional to the tangent vectors, and hence

9" (Vo) (Vo) = t?|i|* = d*, (1.115)

from which, by comparing once more with (1.109), we find
1 ..
o= §g”(ViU)(VjU) . (1.116)

Equation (1.114) for the first covariant derivative of Synge function can be
equivalently derived for primed indices — that is, for derivatives with respect
to 2’ — in which case it reads as

o = —ti (0), (1.117)

and then

1
o =597 (Vio)(Vyo). (1.118)

1.C Van Vleck—Morette determinant

The Van Vieck-Morette determinant is a two—point quantity A(z,2’), de-
fined in terms of the Synge function as [8, §3.6.3]

N |=

A(z,a") = g2 (x) det [0y (z,2")] g2 ('), (1.119)
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where we denote by pedices the covariant derivatives of Synge function, i.e.
o;v = V;Vjo. In the following, we will also denote D = 0'V;, so that
(1.116) takes the form Do = 20. By differentiating (1.116) and (1.120),

oj = inai and o= Jj/iO'i , (1.120)

or, equivalently,
Do’ =o' and Do’ =o' . (1.121)

By derivating again the second equation in (1.120), and using the fact that
derivatives with respect to z always commute with derivatives with respect
to o/, we find

oy = Uj/,-koi + aj/,-aik — aiviaj,; + Uj;aik — aj,; =0. (1.122)
Define now the matrices £ = (fij) = aij and n = (77“']) = ai,j. Then (1.122)
can be written in a more compact form:

Dn+n(E—1)=0. (1.123)

1 _ %
, one has 0,5 = gjn" and

By setting v =n~
det (—oy5) = g(a') det (—n) = g(a') det (=)™ ; (1.124)

therefore, the Van Vleck—Morette determinant can also be written as

(') = g2 (x) det (—) g3 (2').  (1.125)

N

A(w,a') = 7% (x) det (~n)g
We may now compute
AT'V;A = §;log [g’% det (—77)} = Tr [y9;m) — g 3dig?
= k0, —TE = AE, V= Tr [y V) (1.126)
and by contracting with o? we get
AT'DA = Tr[yDn)] . (1.127)

The trace of (1.123), contracted with v on the left, gives Tr [yDn] = n—o?,,
therefore the Van Vleck—Morette determinant satisfies the linear differential
equation

DA = (n—o')A, (1.128)

and its square root satisfies the equation

= %(” —a')A

N
[NIES

DA (1.129)
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1.D Operator of parallel transport

With the same conventions as in appendix 1.C, we define the operator of
parallel transport P(x,x’) as the two—point scalar function which solves the
equation DAP(z,z') = 0 with initial condition P(z,z) = 1. Here, we denote
by DA = aiVlA the operator of differentiation along the geodesic connecting
z and /. Formally, the solution is given by [8, §3.7.3]

Pla,2') = exp {— /Ot dr i‘i.Ai[x(T)]}, (1.130)

where 7 is the affine parameter along the geodesic, and it satisfies the sym-
metry property P(x',z) = P~!(z,2’). Note that (1.130) is unitary and
preserves the norm only if A; is purely imaginary.

1.E Covariant Taylor series

The subject of covariant Taylor series is quite involved, and here we will
just scratch the surface of this mathematical technique [9, §2.1]. Consider
the usual collective field ¢, and transport it parallel along the geodesic
connecting x to 2/, to obtain:

¢ =% (2)) = PY(, 2)p(z) = P Lo, (1.131)

where P71 = 73(“;; (2',x) is the parallel transport operator along the oppo-
site path, satisfying PP~ = 1. The function @ is a scalar under coordinate
transformations at point z, since it does not have non—primed indices; there-
fore, it can be expanded in Taylor series as a function of the geodesic affine
parameter 7:

Tk dk
k>0

7=0

Now, exploiting again the fact that ¢ is a scalar,

d
P = "0up = a"V,up. (1.133)

Moreover, equation (1.117) in this context reads as

o = —7rit(0). (1.134)

Combining these results with the geodesic equation 2#V ;1" = 0 we eventu-
ally find

i

-1k,
cp:P@:PZ(k')a“l NCL2 A VRN V) (1.135)
k>0 )
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which is know as generalised covariant Taylor series for an arbitrary field
and connection in curved space. The key point is that the series (1.135) is
a complete set of eigenfunctions for the operator D = 0#V,. Indeed, as
the vectors o# and o are eigenfunctions of D with eigenvalue one, we can
construct the basis

_1n / /
0) =1 and \n>E|Vi...l/>:( ) o1 o, (1.136)

which, due to (1.120), satisfies

Din) =n|n) , (1.137)
and which has dual elements
(m| =yl = (0" 9" Vi - V)0, 2) - (1.138)
which satisfy
(m|n) = /d”x T T | 7 VA R 5mn5(”;1 . 5ZZ) . (1.139)

The scalar product (1.139) allows to write the covariant series (1.135) in a
much more compact form, since

(m|p) = Vi - Vi) @ and lp) = PZ In) (nle) . (1.140)
n>0

It is now easy to see that a relation of completeness holds,

1=> |n)n, (1.141)

n>0

and that a generic differential operator F[p] can be written in the form

F= Y Plm)(mP'FPn)(n|P", (1.142)
m,n>0
with
-1 — -1 (_1)n 7 v
(m|P~"FPln) =V (,, ...V, P FP Y ERAARREL AR (1.143)
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Chapter 2
Gauge—fixing the graviton

In this chapter we apply the BRST quantisation procedure to find a quantum
action principle for the graviton in the background field method [5].

2.1 Perturbative quantum gravity action

Consider a D-dimensional Riemannian manifold (M, G) equipped with a
metric tensor G with euclidean signature. The line element is given by
ds®> = Gwdxtdz”, where G, are the components of G, and the metric
enjoys the local gauge symmetry!

oz dxP
G/W(x) - G:LV('I“/) = ww aﬁ($), (2'1)
leaving the Einstein—Hilbert action
1
Sen(G) = —15 APz VG [R(G) — A] (2.2)

invariant, where k2 = 167Gy, being Gy the Newtonian universal gravita-
tional constant, R(G) is the Ricci scalar computed from G, G = |det G, |
and a cosmological constant A # 0 has been included. As well known, Ein-
stein field equations in presence of a cosmological constant may be obtained
from (2.2) through the principle of least action.

In perturbative quantum gravity we employ the background field method
described above, by splitting the metric tensor G into a fixed (but generic)
classical background g and a “small” perturbation h, that is, |h| < |g|:

G () = g (@) + hyw () - (2.3)

'In general, gravity has a global gauge symmetry leaving (M, G, T') invariant, where
T are all tensor structures on M; this wide symmetry is described by the non—Lie type
Bergmann—Komar algebra, and is larger than local diffeomorphism invariance (2.1), which
describes only local transformations that are connected to the identity.
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Quanta of the field h are usually called gravitons. As a consequence of
the splitting (2.3), the action (2.2) can be expanded in power series in the
fluctuations h,

Senlg +h] = Z S,lg,h"]. (2.4)

Since we are to consider perturbative quantum gravity at one—loop, we will
be concerned with the terms up to Sz in (2.4). This expansion can be
explicitly computed, as described in appendix 2.A. The result is:

Sp = — / dPz\/g[R — 24A] (2.5)
1
Sy = / dPz\/g [h’“’ <RW — 9w+ gWA>] (2.6)
D 1 v 2 1 2
So = [ d7z\/g | = 0" (Vv +2A—R)huy+§h(v +2A—R)h
1 1 2
S v _ - = AL Vo uv
5 (v By 2Vuh> > (W20 = ) Ry,
1 14
—ih’“h PRW,)] . (2.7)
It is important to note that in (2.5)—(2.7) the Ricci tensor Ry, = R, (g) and
scalar R = R(g), as well as covariant derivatives V,, = V,(g), are computed
with respect to the background metric g. As expected, the principle of least

action on the tree-level action S; (2.6) leads to the graviton equations of
motion, which are the Einsten equations for the metric g.

2.2 Gauge fixing

To overcome gauge redundancy (2.1), the computation of Seeley-DeWitt
coeflicients requires to fix a specific gauge. Consider an infinitesimal change
of coordinates

gt — 2 =at =),  [E()| <", (2.8)
under which the components of the metric tensor G transform as

0Guw(x) = G’ 2) = Gu(x) = £70aGuy + Gan0,6Y + GLa0,E"  (2.9)
= V& + Vil = (LeG) ,, (2.10)
where we denote by L¢ the Lie derivative along the vector field ¥, and the
last equality (2.10) comes from its definition when applied to tensor fields.
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Proof. By inverting equation (2.8) we get ¥ = z'# + &*, which plugged into the
transformation law (2.1) gives
A(z' +¢%) d(z" + &)

Gl (@) = R m 2 e G (a) = (8 + 9,6) (6 + 9,6)Grasa)

= G/w + Gavap,ga + Guaayéﬂ 5

where we used the fact that, at first order in £, we can approximate &' ~ 9¢, with
0" denoting derivatives w.r.t. ’. By Taylor expanding and keeping only first order
terms,

G,/uy(l./) = G;“,(SL' - 5) - G,/uy(x) - faaaG:“/(iL’) = Gi“,(l') - gaaaG#l/(x) )
hence

Gl (@) = G (1)) + £70aG ()

pv

= Guu + Gauaﬂga + Gp,ocauga + gaaaGuu ;

from which (2.9) follows. To get (2.10), recall that the covariant derivative is defined
as V& = 0,8 — I, &q, therefore

1
Viuby = 0uby — §Ga6 (0,Gpy + 0,Gpu — 3G ) Sa
1
= |Graly — 3 (0,Gar + 0,Gap — 0aGuy) | €% 4+ €%0,Gra
v,ugu + vuf,u = gaaaG;w + Gaua,uga + Guaauga )

where we used 0,§, = 0,(Gral®) = Gua0,6Y +£%0,Guq to remove antisymmetric
terms under the exchange of indices {u < v}. |

2.2.1 Two gauge symmetries

The splitting (2.3) we introduced before gives rise to two different gauge
symmetries:

1. the truly quantum gauge symmetry, which transforms h, leaving the
background g unchanged:

019 =0 (2.11)
o h = EfG = ﬁg(g + h) ;

2. a background gauge symmetry, which transforms g as a dynamical field
as well, so that g and h transform as tensor fields:

029 = Leg (2.12)
Ssh = Leh.
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Only (2.11) is a true dynamical symmetry, and is to be gauge—fixed. The
gauge—fixing procedure will remove 2D unphysical degrees of freedom from
the metric tensor (they are canceled by the ghost fields), leaving us with

D(D —
p=2LHD _op_ DIDZ3)

5 5 (2.13)

degrees of freedom for the graviton. Note that the above expression for
D = 4 gives the familiar result of n = 2 degrees of freedom of a massless
spin—2 gauge theory, while for D = 3 the number of degrees of freedom is
n = 0 and Einstein gravity has no dynamics.

2.2.2 BRST quantisation

Following the BRST quantisation procedure, we introduce the BRST varia-
tion of the field h by performing the substitution £&# — Act in (2.11), with
the aid of (2.10):

dhu = AM(Vyue, +Vioey) = A(shu) , (2.14)

where ¢ is the ghost field, A is a constant Grassmann number and s is
the Slavnov variation operator, defined by dp = As. Moreover, two non—
minimal fields are needed: the antighost ¢, satisfying fermionic statistics,
and the Nakanishi-Lautrup auziliary field B,,, which instead is a bosonic
field, with the following BRST variations:

(2.15)

dpct = ABH = A(scH)
opB*=0.

The BRST variation of the ghost ¢* can be found by requiring that it is
nilpotent (i.e. s> = 0) when acting on a generic scalar field ¢,

dopct = Ac"0,ct = A(sct). (2.16)

Proof. Since the Lie derivative on a scalar field ¢ acts as the usual directional
derivative, Le¢¢p = £#0,¢, we have by the usual substitution ¥ — AcH that
d0p¢ = Ac*0,¢, and requiring nilpotency:

0

s(cH0ug) = (sc")0u¢ — 0, (c"0v9)
= (sc")0uop — 0,00 — ' (0uc”) 0y
=(

sct —c”0,c")0,9,

s2¢

where in the last line we removed the vanishing term c¢*c¢”0,0,¢ and relabeled the
indices p, v in the last term of the sum. By comparing the first with the last line,
we end up with (2.16). [ ]
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The most suitable gauge—fixing choice for our problem is de Donder
gauge, which is defined by the gauge—fixing function

1
~V,h, (2.17)

fulz) =V7hy, — 5

with A = Tr [h]. Using (2.17), we define the following gauge fermion:
V=c"(f,+aB,), (2.18)

where « € R is a constant. The action S computed in (2.7) can be made
BRST-invariant by adding the Slavnov variation of the gauge fermion,

SIh, ¢, 6] = Solh] + 5 / P /G 0. (2.19)

The actions S and Sy belong to the same cohomology class, as their dif-
ference is an exact element (a BRST variation), therefore they give rise to
the same physical observables.

The Slavnov variation in (2.19) can be computed by the aid of the BRST
variations (2.14) and (2.15),

s [APeyg v = [APeyg ((se) (Fu + aBy) — (o1,
- / 0Py [Bf, +aB —a(sf,)] . (2.20)

From the first two terms in (2.20), Lg = B*f,, + aB?, we can compute the
equations of motion for the auxiliary field B*,

0Lp 1
0= @ = flf' + QOLBM — BH = —%fu, (221)

which, plugged back in (2.20), returns

1

1 2
Lo =—5, " Taga

2= fan. (2.22)

With the gauge choice (2.17), the Lagrangian (2.22) cancels off in the total
action (2.19) by hitting the term

1/, 1 2
—5 V huy - §th C EQ; (223)

with
Sy = /dDa: Lo
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identified from (2.7), provided that we set the arbitrary parameter o = %
What remains in S5 (2.19) is then the action (2.7), stripped off of the term
(2.23), which in the following will be denoted by

1 1 2
Sp[h] = Sy[h] + 3 /de (th - 2v#h> , (2.24)

and the ghost action, which can be proved to be

Sgh = — /de g ct(sf,) = —/de g (V3¢ + Ruc”).  (2.25)

Proof. Using the expression for the Slavnov variation of the metric (2.14) we get
v 1 v 1 14
sfu=s (V Py — QVuh) =V"(Vue, + Viey) — is(VMh )

1
=V, + V'V, — 3(2VuVYe,) = Ve, + [V, V,]e”
=V, +R,, ¢ =V, + R,

v o

where we used the definition of the Riemann tensor as a commutator of covariant
derivatives, [V, V,]V? =R, °, V7, which allows to reproduce (2.25). [ ]

uv o

2.2.3 Kinetic operators

We are now able to identify the invertible (thanks to gauge—fixing) kinetic
operators from the actions Sgp and Sj,. The ghost action (2.25) can be
immediately rewritten as

Sgn = — / dPx\/g ¢, (6!V? + R*) e = / dPx\/g c, Fhe”,  (2.26)
allowing us to identify the ghost kinetic operator
FH = —(6IV? + RM). (2.27)

Similarly, the graviton kinetic operator can be defined by writing the action
Sp, (2.24) as

Sy, = / dPz /g %hw,F“”o‘ﬂhaﬂ, (2.28)
where
Frvel = — % (g“ag”ﬁ + gveght — g gh ) (V2 +2A - R)
- % (R”‘”’B B R gaﬂRW) (2.29)
_ % (QuaRVﬁ + guﬁRva + gVOtRuﬁ + gVﬂRua> .
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Proof. The explicit form of Sy, see (2.7) and (2.24), is
D L (o2 1 2
Sp= [ d"z\/g —Zh“ (Vv +2A—R)h#,,+§h(v +2A—R)h

1
g (W23 = D) Ry = S Ry |

1
2
The first line in (2.29), when plugged into (2.28), gives
1 1
—Zh@ﬁ (V2 +2A — R) hag + 3h (V2 +2A—R)h,

which corresponds to the first line of Sp,; note that indices are highered and lowered
by the background metric g. The second line gives instead

1 |7y Nt 7@ Ne) «
-1 (R h*P Rpyanp + H* h*P Ry, — 2hh*P Rop5)
1 « 1@ Ne)
=—3 (hh*? Rog + " h*® Ryaug)

where the symmetry of h,g allows to relabel the indices «, 5 and obtain twice the

first term. This corresponds to the last two terms in Sj; to conclude, the third line

gives
1
8

which corresponds to the third to last term in Sj. |

1
(h%hapR*P + B0, hapR"™ + h,*hag R’ + b L hogRM) = —Eha,ghal,Rl’ﬂ ,

To fit properly in the following computations, the graviton kinetic oper-
ator (2.29) needs to be slightly transformed. To lower its first two indices,
we introduce the DeWitt super-metric?

1
ol = 2 (9797 + 99" — g7 (2:30)
2
Yuvap = Juafvs + Gupdva — mglwgaﬁ ) (2.31)

which is symmetric under the exchange of the two couples of indices and is
normalised by

BT = — (8057 + 6580) - (2.32)

N |

Yuvap Y

2In general, the form of the graviton operator is compatible with a more general family
of metrics,

ro 1 o vV Vo v
i = 1 (97 + 909" = kg g™

*x 2k
Vuwap = Jpagvp + GusGva = 15— Guvgas »

where the parameter k is arbitrary. Note that k = % is not allowed, since it brings a
singularity in the inverse metric: indeed, for k = % the metric ~ is the projector on the

traceless subspace [5, § 2]. In this thesis we will always keep k = 1.
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Proof. By direct computation,

1 2
Tuvas 177 = 1 (flwgvﬂ + guplva — D_ggwgaﬂ> (9°°9°" +9°79" = 9"9"")

(ed o loa 2
{2 (6Z5V + 5“55) — 2gng “D_9

A~ =

2 Dlgyus’|

—_

= 5 (9207 +6707)

where we used the fact that, in D dimensions, gaﬁgo‘ﬁ =D. |

Under the action of the super—metric, the graviton kinetic operator (2.29)
assumes the form

1

1
af acf B sa 2

Y guvgaﬁR

2 167 o (6% «
+ 5wk P+9*°Ru - RS —RP, (2.33)

L (sapB o s8R0 4 sopf o s8R0
= (5#1%” + LR + 60 RS + 5VRH) .
Proof. The first line in (2.29), when contracted as F,o af = 'ypUWF“”"B, gives the
usual factor (V2 +2A — R) multiplied by

2

1
- Z (guaguﬁ + guaguﬁ - gul/gab’) <gp,ugay + gpugap - MQ;}UQ;W)

1
b (6568 + 6063)
which is exactly the same computation performed in the contraction 7,,s yBpo

above; this reproduces the first term of F,, af_ The second line, instead, gives:

2

1
-3 (Ruauﬁ 4+ RHBro _ g;wRaﬁ _ gaﬁRw) (gpugo'y + 9pvGop — Mgpoguu>

1 2
= _5 (Rﬂaaﬁ + RPBaa + Roapﬁ + Raﬁpa - -9 2gP0Raﬁ

~2g,0 R —2¢g°P R, + DL?QQPJRO‘B + D2_29pgga’8R>
= RS = RS+ 9" Rpy — 55— 0p09" "R
= =R = RS+ 9" Ry — 5 1_ 59p09" R,

where we used the symmetries of the Riemann tensor to enforce

RUBpa = Ruﬁmgpugou = Ruawgpugau = Rpaaﬁ ;
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and similarly for R * pﬁ . This corresponds to the last term in the first line and the
three last terms in the second one of (2.33); to conclude, the third line gives

1 1% 1% v v ” 2
- 1 (gltaR g +gMBR ¢ +g aRHﬁ +g ﬁRla) (gpugou +gp1/gc7u - D— 29p(rgm/>

1

=—= (6%RJ + 60 RY + 69R + 00 RY) + ————— 49,0 R*”
2(“ 1/+ n IJ+ v u+ v M)+2(D—2) 9p
1

— a pB B po app B po af

__5(6MRV+6#RU+6VRM+6VRM)+(D72)gwR ,

corresponding to the last line and to the first term of the second line of (2.33). W
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Appendix

In this appendix we prove the expansions for the Einstein—Hilbert action up
to one-loop, as given in equations (2.5)—(2.7), following [24, §4].

2.A Expansion of the action at one—loop

In order to expand the Einstein—Hilbert action (2.2), which we here rewrite
by expanding R(G) = G*" R, (G),

SpH[G] = —% dPz VG [G" R,,(G) — A], (2.34)

we need to consider three different terms separately, namely: the square
root of the metric determinant /G (2.A.1), the inverse metric G* (2.A.2)
and the Ricci tensor R, (G) (2.A.3).

2.A.1 Square root of the metric determinant

By using some well know properties of the exponential and logarithmic func-
tions of operators, we find:

VG = +/]detg + h| = /| det g| \/det |1 + g—'h]|

(1
= /| det g| exp ilogdet‘]l —l—g_lh@

' |
= /| det g| exp §Trlog‘1l+g h}

E ~1 Loy, 2 3
= /| det g| exp §Tr g h—a(g h)“+ O(h’)

1 1 1
= /| detg] {1 + 5T (g h) = Tr (g7'h)* + gTr2 (97'h) + O(h?’)]

1 1 1
SNl [1 + oW = P + 3 (h“u)z} +O(h?). (2.35)
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2.A.2 Inverse metric
To invert the metric G we observe that

Gl=(g+h=g'(l+g 'R
=g '~g?h+g hg 'h+O(R?). (2.36)

Since (gfzh)lw = g“o‘g”ﬁhag = h* and (g*thflh)
ponents (2.36) becomes

= h**h,/ in com-

GHV = g — W 4 hFOh Y 4 O(RP) . (2.37)

2.A.3 Ricci tensor

The most involved computation is the expansion of the Ricci tensor R, (G),
since we need to start from the full Riemann tensor and contract it. The
starting point is therefore the evaluation of Christoffel symbols:

1
rjw(G) = iam (04Gra + 3G o — 0aGuy)

1
P <g)\a _ h)\a + h)\ﬁhﬁa>

2
: [aﬂ<gua + hua) + al/(g/.LOé + h;wz) - aa(gﬁw + hMV)] + O(hg)
=1,(0)+T7,(1) +},(2) + O(h?), (2.38)

where we used (2.37) and denoted by T’ l)‘w(n) the Christoffel symbol at n-th
order in h. It is then clear that

L o
Fi\w(O) = §g>\ (8ugua + &zgua - 30(9;“,) ; (2.39)

while
A 1 Ao 1 Ao
Iy, (1) = 39 (Ouhva + Ovhpa — Oahyw) — §h (Ougva + OvGua — Oaguv)
—lm(ah + Ouhpe — Bahuw) — Gpah T2, (0)
= 29 v vl allyy 9pa 7%

L
= 59)\ [8Mhyo¢ + 81/]74/«01 - aOéh’/U/ - QhaPFZlf(o)]

1
= igAa (V,uhua + vuhua - Vah,uu) s (2.40)

where we used (2.39) and in the last step we added and subtracted the term
(hupl'tw + hupl'ay), in order to reproduce V,hya = dphya —hyplop—hpalh
and so on. Note that all covariant derivatives in (2.40) and in the following
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equations are computed with respect to the background metric g. When

not specified, moreover, Ff\w = F;\W(O) = Fﬁy(g). In the same manner,

]‘ (0% 1 (0%
I, (2) = ihghﬁ (Ou9va + OvGue — OalGuw) — 5 P (Dphwe + OuPpe — Oahy)
= —hAI%,(1). (2.41)

a+ pv

The results obtained in (2.40) and (2.41) show that both Ff‘w(l) and F;\w(2)
are tensors, so it is meaningful to apply covariant derivatives to them, as it
will be done in the following.

With the aid of equations (2.39)—(2.41) we can now expand the Riemann
tensor around perturbations:

_ 3
R0 (G) = RF,,,(0) + R, 0 (1) + R, 5 (2) + O(R7) . (2.42)
The term of order zero is just given by the definition of Riemann tensor,
Ruupa(()) = VPFIVLO'(O) - VoFgu(O) ’ (243)
while the first order term will be of the form

Ruupa(l) = 80Pg1/(1) - 8UF51/(1) + Fg)\rgu(l) + FZ)\(l)FéV
—TH ), (1) =T ()T, . (2.44)

This rather involved expression can be simplified by adding and subtracting
the quantity F;\UFf\Ly(l), to reproduce covariant derivatives as in (2.43),

Ruupa(l) = Vprl;a(l) - Vﬂrgu(l) : (245)
The second order expression is

Rul/po'(2) = 8ﬂrgu(2) - aﬂrgu(z) + FZ)\I%V(2) =+ FZ)\(2)P§Z/ (246)
—Th\T5,(2) = T, ()T, + DO (1)T5,(1) = T4, (1)T,(1),

which can be likewise simplified to give
RF, 0 (2) = Vs (2) = VoI, (2) + T, (D5, (1) = Thy (DT, (1) . (2:47)
Another equivalent way of writing (2.47), by exploiting (2.41), is
Rul/pa(2) = _thﬂVpa(l) - guagﬁ"{ FZa(l)Fgu(l) - Fga(l)rgu<1) : (248)
Using again (2.37), the Ricci tensor is then given by
Ruo(G) = Rys(0) + Rup(1) + Ry (2) + O(R?), (2.49)
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where quite trivially R,,(0) = R",,5(0), while
RVU(l) = R‘uu,ucr(l) = vurﬁa(l) - Vdrﬁu(l)
1
=3 (Vu Vb 4+ YV, Voht, — VoV, h — Vhy,) (2.50)

where we used the explicit form (2.40). At the next order, thanks to the
alternative form (2.48), we have

Ry (2) = R",,,(2)
= R0 (1) = ¢ ga, [T (DT5,(1) = T2 (T5,(1)] . 251)
The Ricci scalar curvature can likewise be decomposed as
R(G) = R(0) + R(1) + R(2) = (97 = b + I\h*) Ryo(G),  (2.52)
where R(0) = ¢’ R,,(0) as before, while from (2.50)

R(1) = ="’ Ry (0) + ¢"° Rus(1)
= —h"°R,(0) + V,V,h"? —V>h, (2.53)

and from (2.51)
R(2) = hVURVU(l) - gyahuﬁRﬁuua(l) + hy/\h/\aRua(O)
~ 979" g5 [T DTE, (1) ~ TH(TLM)] . (254)

We can expand some of the terms in (2.54) by using (2.45) and (2.40), to
obtain

WY RE,, (1) = —g" W [V, (1) = VoI5, ()]
v 1 v 1 v
S (h"ﬁvuvyhﬁ +5hV A thVQh”
BV LA VR v Vi)
9 B 1220 2 2 BYH
14 1 174 1
= —h V.V, + §hwv2hﬂ + 5h“ﬁvuvﬂh, (2.55)
and similarly

~ 9"79" 95, [Tha( VT2, (1) — T (VTS (1)] =
1

-4 (4" Vo™ 4 5hVPh — 4715, V7R

—3VIRYEY g, + 2V”h“6v5hw) . (2.56)
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which plugged back into (2.54) gives
R(2) = h"\h " Ry (0) — h°V Vb, — WO Vb + BV 2Ry,
1
+ h" VoV, h — VPR,V P — 1vﬁhvﬁh + VP hg, VPR
3 14 ]' v
+ Vi AN uhgy — 5V WV hy (2.57)

Collecting all terms, the action (2.2) becomes

1 1 1 1
Spu[G] = -7 dPz /g { <1 + b = M s + 8h2)

- [R(0) + (—h"" Rys (0) + V, V1" — V?h)
+ (h”AhA"RW(O) — WV NV oht, — WYV, NV b+ bV by,

1
+ VoV h — VPV, Y — Zvﬁhvﬁh + VFhg, VPh

1
+ Zv“hvﬁvuhﬂy — QV”h”BVBhW> — 2A} + O(h3)} :

(2.58)

whence Sy (2.5) follows immediately by taking only zeroth order terms, and
S1(2.6) from terms first order in h, recalling that h = g, h*" and neglecting
the total derivative V, V,h*? — V2h. The one-loop result Sy (2.7) is instead
given by

1
k2

1

Sy = Pz /g [R(z) + %hR(l) +3 (h? — 20" h,,,) R(0)

1 1
+2A <4hwh’“’ — 8h2>] ., (2.59)

where integration by parts, neglecting total derivatives as before, allows to
simplify the expression in the form (2.7). In detail,

1 1 1 1
5hR(1) = —§hh“”RW(O) + 5hvuvyhﬁw - 5hv%

1 1 1
— —ihh“”RW(O) = 5 Vah V" = 5hvzh (2.60)

while for the terms contained in R(2) we have h*°V,V,h = —V,h*?V,h,
which cancels off with V“hmvﬁh; nghVﬂh = —ihVQh, which sums with
the similar term in (2.60); %V“h”ﬁvuh@, = —%h”ﬁvzhg,,, which can be
summed with h*?V?h,,. The other five terms can be related one to the other
by using the explicit form of the commutator between covariant derivatives,

(Vs VuIW Yy = By 5B + Ry 5,h7, (2.61)

aBp
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Indeed:
SRV = VNV, = B (R0, R )

=V, h"V b, — B"7h% Ry, — R*7 R, R (2.62)

Vo
and the same for —h"?V,V,h";, while
et = Lotvrnen
9 B w9 BHY
1 174 v
= =5 VIV s + (R + B ) B
1 v
= —§Vﬁh“BV”hW + R P hAshy — W\ By RN, (2.63)
so that what remains is really the expansion (2.7). It is important to note
that a more general form of the action can be guessed from first principles:
by requiring gauge—invariance in Einstein spaces it is possible to fix three
of the five arbitrary parameters therein [25, §3.3]. However, the direct

computation performed here shows in a more explicit form the terms to be
considered in expanding the action at one—loop.
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Chapter 3

Seeley—DeWitt coeflicients

In this section we apply the heat kernel method to euclidean perturbative
quantum gravity. The computation is performed assuming that the back-
ground satisfies Einstein equations, and the results are extended up to the
fourth coefficient, which was unknown up to now [5]. At the end of the
chapter, a new form for the effective action is provided.

3.1 Einstein manifolds

A D-dimensional Riemannian manifold without boundary can be described
through an (infinite) basis of curvature monomials R?k These are geomet-
ric invariants of order n in the Riemann tensor, Ricci tensor and scalar, and
have been introduced precisely to deal with heat kernel computations [26],
and more recently reviewed by [27; 28]. The order n of such monomials, that
is, the number of differentiations of the metric tensor implicitly appearing
in the monomial, should not be confused with his rank k, defined as the
number of free indices [27; 28]. Since we consider only scalar invariants, we
will always take kK = 0. Up to order n = 2, there are only five,

R'=R (3.2
R% = R2 R% — RHVR#V R% - R/j,l/pch#VpU) (33

while moving to third order we encounter ten more invariants,

R3 = RV’R RS = R, V?R"™ R3 = R?
R} = RR,, R" R:=R/R/R} Ri = Ry Rpe RM°
Rg = RR#VPURNVPJ R3 = RMVRM)UTRV;JJT Rg = R;u/paRpa aﬁRaﬁwj

Riy = RS, RV RET (3.4)
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where V2 = G* V.V, and we used the assumption that the manifold has
no boundary to exclude two invariants, which are total derivatives.! In this
thesis, however, we will restrict ourselves to the case of Einstein manifolds,
which are a special class of Riemannian manifolds whose metric satisfies
Einstein field equations:

1
Ry = 3G R+ MG = 0. (3.5)

By contracting (3.5) with G* we get

D -2

WR, (3.6)

1
R - §DR +DA=0 — A=
which allows to express the cosmological constant A as a function of R;
moreover, by plugging (3.6) back into (3.5) we find
1 D -2 1
RNV - §GMVR + TRGMV - 0 — RMV - BGMVR, (37)
so the Ricci curvature R, is proportional to the Ricci scalar R on Ein-
stein manifolds. Another important result comes from the second Bianchi
identity,
VuBRaguvp + VoRagpu + VpRagu =0, (3.8)

that through multiple contractions leads to
VpR,Lwap = VZ/R/J,CY - vuRua (39)
Y 1
V RHV - §VHR7 (310)

which are known as contracted Bianchi identities. Plugging equation (3.7)
in (3.10), as Ry, o« R, we find that V,R = V”R,, = 0. Moreover, by
taking the covariant derivative of (3.7), V4R, = 0, so that equation (3.9)
together with the last result implies that VPR, = 0 as well. Therefore,
on FEinstein manifolds all covariant derivatives of the form V, R, VR,
and VR0 vanish identically.

As a consequence, the basis given by (3.1)—(3.4) reduces to

=1 (3.11)
E'=R (3.12)
£} = R? E3 = Ryypo RMP7 (3.13)
& =n E3 = RRyypo RMF°

& =R, R,,“"R, " & =R, RV R, (3.14)

!These are R = V2R and R}, = V'R [28, § A].
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since we can substitute (3.6) and (3.7) repeatedly in (3.3)—(3.4) to find the
equations relating the new basis elements to the old ones,

1
R3 = 5512 (3.15)
1
Ri=R3=0 Ri= 5Ef
1 1

Proof. Equation (3.15) comes from direct substitution,

, 1 , 1 1
R3 = R, R" = HRGuw R = 5R2 = 5512,

and the second equation in (3.16) follows immediately; to get the last two conditions
of (3.16) we have to manipulate indices,

1
RE = R/RSRY = GuaGusGoy R R R = 3 R2GiaGupGpy GOV GG
1 1

— RS _ 3
- D3 N2 - 7D251 )

3 ot en 1.
R2350, G G = 53 RPGp G = 3

and similarly

1o 1
Dt = mh

vo 1 vo
R = R, R,, R'"7 = o R?G,,,G o R =
3 _ WPOT PV _ 1 WPOT PV _ 1 WpoT _ 1 3
RE = Ry R R,y = = RG R Ry = SRR Ry = =65

which completes the proof of (3.16). [

Some useful identites

The basis constructed above, when combined with the second Bianchi iden-
tity, leads to useful identities involving contractions of the Riemann tensor.
At order R? we just have

s 1 1
RuyapRFP = 53,2”&6 = 5522, (3.17)

while at order R3 there are three independent conditions,

[P

RMaVﬁRuupaRaﬁpU = 553 (3.18)
0 poupr 1
R, 4" R Ry, = 15;,” (3.19)
1
R0 RMI RS, = —15;5 + &3 (3.20)
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Proof. Since these identities are crucial in the following computations, we derive

them in full detail. The first identity (3.17) comes from

RuwapR'"? = = Ryppa R = Ryppo (R + RMPY) = R s + Ryuwpa R
= £~ Ryuap R,

having exploited the first Bianchi identity and the symmetry properties of the
Riemann tensor, as well as the relabeling of indices « <+ 8. Equation (3.17) follows
from comparing the first with the last term in the above equality. For what concerns
(3.18) we can write

RFYO Rypo Ryg" = — (R™PY + RV Ry po R, 577
= R RuypoRos"" — R*™ Ruvpo Ry "7
=& — R*PRuupo Ry 5"
where in the last line we again relabeled « <+ 8. Similarly, (3.19) is proven by
R, 5" R Rypoy = =R, 5" R (Rpoup + Ropvpo)
= R, 5" R Rypopuy — R g" R Ry i
= %5;? — R,5" R Ry,

where we used (3.18) as well. The last one can be deduced by exploiting the previous
identities in a similar manner,

RpauﬁR”prang = _Ru(wﬁRupW (Raﬁpa + Rapgﬁ)
1
= —Ryuavs R 7R + Ry R RS, = =265 + €]

which corresponds to (3.20). These identities are stated without proof in [27, §5.1],
equations (5.5 a—c); identity (3.17) is proved in [26, § 2]. |

There is also a useful identity which involves covariant derivatives of the
Riemann tensor, not contracted with the tensor itself:

2
RuvapViRMP = 5&3 — &3 483, (3.21)

Proof. By using the second Bianchi identity (3.8) and the commutator of covariant
derivatives acting on the Riemann tensor,

[va’ VB]R#V‘OU - RO‘B#)\R)‘”PU + RaﬁDARﬂ)\pa + Raﬁl’)\R,uv)\g + Raﬁo)\Ruup)\ )
we find
R;J,uaﬁv2RlJ«V&B = —RMVQBVp (Vﬁthupa + VQRHV,BP) — _2RuyaﬁvpoR/_wpa
= _2RMV045 (VﬁVpRpaluz 4 RPﬁMARkupa + RP,BV/\R,LAPQ
+ R% R 4 RpﬁO‘)\Rqux\)

2 al v B QA
= BRRim —2RuapRONPR"  — ARyuapR "\ R

2 5 2
— 555’ — & — AR, pa R R P = 553 — &3 483,
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where we used V,RP*"” = 0 and the antisymmetry properties of the Riemann
tensor; in the second-to-last step, we also employed the identity (3.18).2 A similar
identity, stated without proof, appears in [27, § 5.1], equation (5.4). |

3.1.1 Kinetic operators on Einstein manifolds

The expression for the kinetic operators for the ghost (2.27) and for the
graviton (2.33) can be greatly simplified in the context of Einstein manifolds.
In a previous work [5], the operators are not reduced to this simpler form,
and the first three coefficients are computed off—shell. Without employing
Vilkovisky—DeWitt formalism [12; 13], however, these results are not gauge
invariant, and have to be hereafter reduced to Einstein manifolds, as it
occours indeed in [5]. Here, to simplify computations, we immediately reduce
the differential operators to the case of Einstein manifolds; the outcoming
coeflicients will then be automatically gauge invariant. Therefore, from now
on we assume that the background field g satisfies Einstein equations (3.5).
The ghost kinetic operator (2.27), with the aid of (3.7), becomes

1
FH = (V2 + RM) = —oV <v2 + DR) , (3.22)
while the graviton kinetic operator (2.33) can be reduced to

1
B == (0] 4 0a0) V2 RS - RESL 329

In%
by repeated application of (3.6) and (3.7).

Proof. The starting point is equation (2.33): it is simple to see that Einstein man-
ifold constraints do not modify the terms appearing in (3.23). We now prove that
all the remaining terms vanish identically:

1, N 1 a 2 a o
-5 (6965 +6%52) (2A — R) — 55wl PR+ 50wl P4+ 9°P R,

1
appf B pa a pp B pa
-3 (63 R) + 0, Ry + 07 R, + 6, RY)

1 D-2 1 2 1
— _Z(s5as8B B ca -1 _ - af
2(5“5”+5“5”)< D >R+[ D—2 DD—2 "D
1 « «
-5 (Oh0) + 6007 R
D-2 1 1
= — _— = e asB By =
<2D 2+D>(5uay+5uay)3 0. n

2T thank Francesco Comberiati and Filippo Fecit for having drawn my attention on
this identity. The proof given here was suggested by them.
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3.1.2 Maximally symmetric spaces

The basis (3.11)—(3.14) simplifies even more in the case of mazimally sym-
metric spaces, where the Riemann tensor is proportional to the Ricci scalar,

1

RMVPU = m (GHPGVU - GHUGVP> R, (324)

and the number of linearly independent Killing vectors can be proved to
be %D(D + 1), which is the highest possible one. In euclidean time, these
spaces are given by the D-spheres S” [29, § A.2]. From condition (3.24),
it is possible to prove that the basis of curvature monomials, in the case of
maximally symmetric spaces, contains only one element at each order R",
proportional to the Ricci scalar n—th power R", since

2 2
2 _ 2 3 _ 3
& = D(D — 1)R & D(D — 1)R (3.25)
4 D—2
3 3 3 3
R < R3. 2
& D2(D —1)2 i D?2(D —1)2 (3:26)

Proof. The second equation in (3.25) is trivially deduced from the first one, which
can be proved by direct computation using (3.24):

vpo 1 vo o v
(‘:22 = RuupoRu Pe = m (G/,LpGl/U - GuaGup) (GMPG - GHMG p) R2
— 1 2 2 _ 2 2
= 55D "1 (2D? - 2D) R 77D(D_1)R .

Similarly,

83? _ RﬂupnggaﬁRaﬁlw

]. g o a o v v
= D 1) (OR00 — 90%) (9505 — 6367) (o0 — oxo%) B
1 o a v v B
= 5erp 12 (0o — 9.0) (st — oros) B®
-2 o S
“ -1 PP =

and

3 v
& =R5,R VR,

1

= Dap 1y (GG = 5301 (GG = 0457) (67 Gus - a405) B
1

= 5 =1y [P~ 2)G Gy + 3502] (G Gy — 3405 R
1 D -2

=—— (D-2(D*-D)R*= ————_R3

i —1p P~ 2 B = et
which proves (3.26). [ ]
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The ghost kinetic operator (3.22) cannot be simplified more, while the

graviton operator (3.23) can be cast in the even simpler form

1 2 2
af _ _~ |sasB B sa 2
F,, 5 [5#@ +5M5V} (V B0

% R)-—Z  G,GP
! D—l)R> b

(3.27)

Proof. Starting from (3.23) we get

a 1 e’ «@ 2 1 et et a «
F/,Ll/ ? :_5 (6u65+656y)v - m(ijG '8_65(5,/ +GHVG’B _6H55)R
— L0 4 0f5) VP4~ R| - — 2 GL,GR u
9 \OnC T Ol D(D—1) D(D—1) " '

3.2 Seeley-DeWitt coefficients computation

Everything is now ready to start a detailed computation of Seeley—DeWitt
coefficients for perturbative quantum gravity. In the following, we consider
the ghost, graviton and total coefficients — obtained as a combination of
the previous two — up to the fourth one, as(z). The result will allow us to
write a more general form for the effective action in D dimensions.

3.2.1 Ghost coefficients

To compute the ghost heat kernel coefficients we have to relate the ghost
kinetic operator in its simplified form (3.22) to the general form for an
elliptic operator (1.92). This implies to replace 1 <+ & and V'« HRSL.
Moreover, the contravariant ghost field ¢* satisfies the commutation relation

Vi, Vil =R, 7, (3.28)
which stems from the definition of the Riemann tensor. Since in non—abelian
gauge theories Q,, = [V,,V,], we conclude that (Q,,)"’s = Ru"s. Note
that in this expression the indices u, v label the different elements of the
gauge field strength €2,,,, which are D x D matrices whose components are
given by the (spacetime) indices p, . Therefore, the substitutions to be
performed in the heat kernel coefficients (1.96)—(1.99) are

1 < &
1
V BRéﬁ (3.29)

(u)’s < Ruw's.
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To compute the first two coefficients we note that Tr [6] = D, and with
the aid of (1.94) and the first line of (1.95) we can transform (1.96) and
(1.97) in

Tr [agh(x)] =Tr [agh(:ﬁ)] =D (3.30)

1
Tr [aﬁ]h(x)] =Tr [oz*‘l]h(az)] = <6D + 1) R. (3.31)
Similar computations are to be performed in the case of (1.98), where the
term containing V2 identically vanish because of Einstein manifolds prop-
erties, and we are left with

N D 1
Tr {ag (95)} = Tgg Biwpo = Biw) + 5T [O]
_ D (1) 1o
- = (RWU SR ) SR (3.32)

Proof. By the last of (3.29),
Tr[02,] = Te [(Qu)", ()] = ()", ()7,
= Rupo R"P = -R2, . [

nvpo

According to (1.95), agh is to be summed to

w1/ a2 1 1 1 21 /1 1\?
g =2 (af") :2[55(6+D)R] =% gtp) B (3

hence, by taking the trace of (3.33),

Tr [ gh(x)] = g (é + é)QRQ, (3.34)

which combined with (3.32) gives in the end

5D?% 4+ 58D + 180 D—-15
T { gh } _ 2 2 .
r a3 (z) 360D R+ 180 R o (3.35)
In D = 4 these coefficients reduce to
Tr [ (2)] =14 3.36
r _ao (l‘)_ D ( )
- 1 5

Tr |a9" - R 3.37
r|ay (fv)_ ps 3 (3.37)

- 1 41 11
Tr {ag = R~ R 3.38
2 (@), = 10 180 o (3.38)
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where (3.36) reproduces the correct number of degrees freedom for the ghost
field. On maximally symmetric spaces the third coefficient (3.35) can be
further simplified, using the first equation in (3.25), to?

~ 5D +53D% + 126D — 240 o 179

Tr |ad" = = _"R*. (3.
r|ag' ()| 360D(D = 1) o R=p (339)

Fourth heat kernel coefficient for the ghost

We are now ready to compute the fourth heat kernel coefficient for the
ghost field, starting from the general formula (1.99) and performing the
substitutions (3.29). It is convenient to write

agh(l’) = %Agh (R, Ryuws Ruvpo] + %th{]ﬁ Ry, Rywpos Quo, V1, (340)
where Ag, and By, are two (involved) functions of the metric invariants
and of the gauge field strength, as reported in (1.99).

Let us start from Ag,: six of the first eight terms vanish identically,
since they are all proportional to covariant derivatives of R, R, or R, 0,
except from the two proportional to (VQRWW)2 and RWPUVQR/“””, as
the covariant derivatives are not contracted with the Riemann tensor there.
Recalling again that Tr[d,] = D, we are therefore left with

vpo 208 v g 64 vo
Tr[Agy) = D <3RWPUV2R“ 7~ =5 RYRIRY + 5 RuRye R

16 44
oT o Bp v
= 3 B Ry R 4 SRy, Ry ™ Ry

poT
80 163 vV O
+§Rul/poRM P8R A B)
16 2 17D 28D
= —gpfl T8+ g & - g e, (341)

which, on maximally symmetric spaces, reduces to

16 (D* -~ D —6) _,
9D(D — 1)? ‘

Tr {,Zgh} _ (3.42)

Proof. Let us start from the vanishing terms: VIR = (V,R)? = (V,R,,)? = 0 by
Einstein manifolds properties. Similarly,

VR, V'R =0 and R,,V'V,R" =0.

3Here and in the following equations, a tilde indicates that the quantity is computed
in maximally symmetric spaces.
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Moreover, it is useful to integrate by parts, and use the assumption that OM = &
to neglect boundary terms, so that
R/M/VQRMV — _vaRuyvaRuV _ 0 )

What remains are then two terms, proportional to (VQRWW)2 and RWWVQRWP".
By integrating by parts,

(vaRqua)Q — _R;u/po'sz’uypo- ,

where we neglected again boundary terms, so that (1.99), by identity (3.21), will
contain only

2
3Ruupe VPRIPT =3 (Deg — & - 452) :

For what concerns the terms in (1.99) which do not contain covariant derivatives,
using (3.16) we have

1

vp o — P33 _ 3

R/RSR) =R5 = 53€)
vo 1

Ry Rpo R'?7 = RG = 55 E7

1
RP«VRMPUTRVPGT = Rg = 555’7

while the other two factors cannot be simplified, being already equal to the elements
of the Einstein manifold basis £5 and £}, respectively. On maximally symmetric
spaces, instead, these reduce to

1 2
L vpoT _ 3 _ — o3 _ 3
R, R pMR R D€2 D2(D = 1)R
4
o af v _ 3 3
pr de Raﬁu _53 - D2(D— 1)2R
D -2
apBpv o __ 03 __ 3
B RT3 = 88 = ap e
by using (3.25) and (3.26). ]

We now compute Byj,. Since (Q“,,)po = R,"5, the second term of By,
in (1.99) vanishes identically; moreover, as V' o< R, the same occours for the
last four, leaving us with

Tr [Bgn] = 4Tr [, VM| — 12Tr [Q,/Q,7Q /]
+ 6Tr [Ryp pe U Q7] — 4Tr (R, QM7 Q"]

4
= —563 — 283 4483, (3.43)
and on maximally symmetric spaces
Tv [B ] S /A - 44
gh DQ(D — 1)2 R (3 )
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Proof. The vanishing terms are (V#Q,,)? = (V¥ R,,,0)% = 0, as well as V4V =
(V,.V)? = R,,V*V"V = V,RV*V = 0, since V o« R. The only terms contain-
ing covariant derivatives which do not vanish are 8(V,LQW)2 + IZQWV2Q’“’; by
integrating by parts they sum up to

ATy [Q,, V"] = ATr [Ryuvpe VP R*] = —4R1pe V> R*P7
2
_ (Dgg e 45;3) ,

where we used the identity (3.21). The traces appearing in the remaining three
terms can be computed by explicitly writing all the matrix indices:

Tr [QrQ,°Q0] = Tr [R%,VRE TR '] = R, /R TR,/ =&

Tr [RWMQWQM] = Ryppo It {RaﬂwRﬂ“/pa} - RWPURaﬁWRBapU
_ o B vo__ 3
= —pr Rpo_o‘ Ra[}M = -&;

Tt [Ry QU707 ] = Ry Tt [R“ﬁ“"RaVJ} = R R RS,
1 1
= —Ru R R o5 = = 5 RRuoap R = =565,

and the result for maximally symmetric spaces can be obtained by the same iden-
tities recalled in the previous proof. |

Going back to (3.40) we conclude that

1 D — 84 17D — 252 D—18
T gh - _ 3 3 3 = Y3
: [0‘3 ( )} 2835D &+ 7560D & 45360 & 1620 &
2D3 —2D? + 51D + 126
~gh _ 3
Tr [a3 (a:)} = 5670D%(D — 172 R’ (3.45)

which however does not provide the full coefficient for the ghost, since we
still have to add the term 3 defined in (1.95). This is evaluated as

5D? 4 54D + 180)(D + 6) (D +6)(D — 15)
T [ gh } _ ( 3 3 4
v {85 (=) 6480D2 O+ —sop &2 (346)
while on maximally symmetric spaces
~ D +6)(5D3 4+ 49D? + 138D — 360)
Tr |38 (@) = ( 5. 4
RS 6480D2(D — 1) & (347)

Proof. The computation to get (3.46) is made a bit more complicated than before,
since we cannot take the trace at first:
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L1 1 2 p2ysa, o2
3+ 5) 7] |15 (Bl — RL) 55+ 02
R

1 2 1 2
} 180 (RWP” ol )
1 /1 1
i T B v
+ 15 (6+D>RRWVR,Y :

where it is important to note that 47, is contracted with the first index of (2,,,)% =

R%,,,, to give R7g . Taking the trace,

D/1 1)\° D /1 1 1
T|:gh:|:— — — 3 _ _ 2 N > Y]
F1Ps s\67 D) T tio\s T D)\ Buwe — pF
1 /1 1
i e T T B v
+12<6+D>RRBWRT

(D +6)(D — 15)
1080D

_ (5D? + 54D + 180)(D + 6) &
64802 !

3
&,

where the permutation of indices 3, 7 brought a negative sign in the last term. The
maximally symmetric case (3.47) is obtained by replacing &3, as usual. |

The ghost coefficient is then computed by summing up the two results
(3.45) and (3.46), to get

h 35D3 + 588D?% + 3512D + 7560 _4
Ir [ag (x)} - 45360 D2 &
7D?*—-62D — 714 ., 17D —252 ., D —18
- ¢ 3.48
7560D 2T 5360 P 1620 b (348)

while on maximally symmetric spaces

_35D° + 518D* + 2455D3 4 268 D% — 18804D + 14112 B3

Ir {agh(m)} 45360(D — 1)2D2

(3.49)

Due to the rather complicated final expressions (3.48) and (3.49), it might
be useful to evaluate them at D = 4 as well:

4157 85 23 7

Tr [adh = 29les 99 g3 29 3, [ g3 3.50

g [“3 (m)]D:ZL 90720 ~ 30242 T 56703 T 310 (3.50)
o 5599

Tr [a3 (m)]D:4 = rasg B (3.51)
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3.2.2 Graviton coefficients

To compute the graviton heat kernel coefficients we again relate the ghost
kinetic operator in its simplified form (3.23) to the general form (1.92). This
implies to replace 1 <« 4., B oandV o Vv B where

1
_ 6, 8

0 = 5 (53@ n 5@3) (3.52)
af — a B B «

VWP =ROS RS (3.53)

0w of is a symmetrised version of the usual Kronecker delta, acting on a
space of dimension £D(D + 1), as it can be seen from the fact that

1 1
Tr [%aﬂ} = 0" = (46, + 83L) = SD(D +1). (3.54)
Note that both d,, 8 and Vi B are symmetric under the exchange of the
lower or upper indices among themselves. Moreover, as the graviton ki-
netic operator (3.23) acts on covariant symmetric tensors, the commutation
relation of covariant derivatives is now given by

[VPH vl’]hPU - Rpa aﬂ/u/haﬂ ’ (355)

having defined the correspondingly symmetrised version of the Riemann
tensor,

1
af « B B e (e B B «
Ry = 5 (05 ReP + 00 Ry %+ 02R, % + 80R, %, ) . (3.56)

From the general definition Q,, = [V, V,], we find (Qu) 0 oh — Rys O‘BW.
Again, the indices u, v label the different elements of the gauge field strength
Q,u, which are D(D+1) x 3 D(D+1) matrices whose components are given
by the indices «, 8 and p, o. Therefore, the substitutions to be performed
in the heat kernel coefficients (1.96)—(1.99) are

1 < 5W°‘B
Voo VP (3.57)
(Qw)paaﬁ NS Rpaaﬂw-

The first coefficient is computed directly from (1.96) and (1.94)—(1.95),
corresponding to the trace (3.54),

1
Tr [af ()] = Tr [af (2)] = 5D(D +1). (3.58)
For the second coefficient, we have to evaluate (1.97) with
T r 1 @
Traf ()] = Trfo ()] = 15D + DR+ Tr [,

_ (D+4)(D-3)
= 5 R. (3.59)
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Proof. The trace is

Tr [V

nv aﬁ} = Vuu W =R!S+ Ruyyll = _RMVW/ =-R

n v
where the first term vanishes by antisymmetry of the Riemann tensor. ]

The third coefficient (1.98) has no terms containing V2, since V,,, B isa

function of the Riemann tensor only, whose covariant derivatives vanish on
Einstein manifolds. We are left with

. D(D +1) 1 1
Tr [of (2)] = 50 (Rim — DR2> + 5T [
_ D+1_, D*-29D—60 ,
=0 B 260 R0 - (3.60)

Proof. The trace in (3.60) is

Tr [92 ] =Tr {(Q#V)poaﬁ(ﬂuy)aﬁ’ﬂs} = (Q#V)paaﬁ(ij)aBpa = Rpaaﬁpl/RaBpouy

n%

1
=1 OO R, 7 + 0 R, %, + 65 R, O + 07R, )

o puv o pv P pv P pv
(B4R %+ OTR, " y + O4 R+ 0GR )
1

=7 (-DR?,,, — 2R, ,, + permutations)
_ 2
=—(D+2)R;,,,,

where we used the fact that the other three terms are just like the first one, upon
relabeling contracted indices. |

According to (1.95), of" is to be added to

T 1 2 1 1 [6% [6% 2
1 2 afs 1 po af 1 af
= R85, %7+ 5V "V, 4 RY,, (3.61)

hence, by taking the trace of (3.61),

. D?+ D —24 3
Tr (83 ()] = ﬁRQ + §R,2Wpa7 (3.62)

which combined with (3.60) gives in the end

5D?+3D —122 , D?—-29D +480 ,
= R® + :
720 360 oo

Tr [a ()] (3.63)

Proof. The trace of (3.61) can be computed by recalling that

Tr [6,0 o

“5] = %D(D +1) and Tr [V 0‘5] =—-R,
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AR
were we used the result coming from the proof of (3.59). What remains to be
computed is then
Tr D};w pavpo aﬁ] = pr pgvpo # = (Rupyg + R,uaup) (Rpﬂau + Rpuau)
2 ov\ __ 2
=2(R},,, + RuopR"") = 3R2, .,
where, by identity (3.17),

1
R,ua'upRpMUV = R,uduprjap = 5522 . [ |

In D = 4 these coefficients reduce to

Tr [ad (z)] p_, = 10 (3.64)
" 2

Tr [a? ($)]D:4 = §R (3.65)
. 1 19

Tr [af (2)] p_y = —ﬂRQ + ERZ,,M, (3.66)

where (3.64) reproduces the number of degrees freedom of a symmetric ten-
sor of rank 2 in dimension D = 4.* On maximally symmetric spaces, (3.63)
reduces to

5D* —2D3 —121D2 + 6D + 1920

Tr [a3 (z)] = 730(D 1D R? (3.67)
T @pes = 5 R (3.69)

Fourth heat kernel coefficient for the graviton

To compute the fourth heat kernel coefficient for the graviton, we start once
more from the general formula (1.99) and perform the substitutions (3.57).
It is again convenient to split

. 1 2
of () = ﬁAgT[R, Ry Ryvpo) + aBQ,T[R, Ry, Ryvpo, Qs V], (3.69)

as we did in (3.40) for the ghost. By inspecting more closely the substitution
rules (3.29) and (3.57), though, it is clear that A, and A, differ only by
the trace of the identity operator 1. Using (3.41), we find in particular

D41

Tr[Ag] = 9 Tr [Agn]

(3.70)

1, 17D _, 14D )
3 )

_ _i 3 - 3 3
_(D+1)< et 58+ g & - 56l

4To find the correct number of degrees of freedom for the graviton, which correspond
to its physical polarisations, we have to sum these coefficients to the ghost ones.
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which, on maximally symmetric spaces, reduces to

~ }:_8(D3—7D—6)

Tr [Agr SDD—17 R3. (3.71)

For the computation of By, we can repeat the previous observations,
and consider the only non—vanishing terms
Tr [Byy] = 4Tr [Q,, VO] — 12Tr [Q,7Q,7Q ¥
+ 6Tr [Ry1pe QM Q7] — 4Tr [R,, Q70,1 + 30Tr [(V,.V)?]

4(D + 4
= —(;7) E3—2(D —43) &3 +4(D +92) &3, (3.72)

which on maximally symmetric spaces reduce to

_ 2
Tr [BQT} - —;2(5;_21))2 R3. (3.73)

Proof. The traces containing no covariant derivatives are computed as follows:

I v
v o 9 A v
= (Qu )p)\aﬂ(QV )aﬁw (Qaﬂ)y5p = Rp)\aﬁu Rozﬁ

_ af v 7Y pPAC L
- Rp)\ “w Raﬁ uo'R'yé

Tr [Q#”Q,,UQUM} =Tr [(Q V),»\aﬁ(Q U)aB’Yé(QJM)'yé WT}

Y6 o PA 1
v R’y5 o

1 a B v B a v «a B v B av
=5 (3R + 00R Y +85R, P + R, )

' (5Z¢Rﬁ 61/0' + 62RB ’Yl/a + 5gRaéuo + 5gRa’Yua>
) ((V;R(S Ao + 5’>Y\R5 pop 4 5§R’Y Aop 4 63\R'y pay,) 7

where the last two factors are

6§RB 61/0'R6 Aok + 6(§RB 61/0'R6 pon + Ra )\U#Rﬁ pua + Ra po#R,B )\ua

¥ Ao A ¥ oI Ao 14 o A
—+ 6(§RB VD'R’Y ! + 50(RB Vo’R’Yp ! + Ra ! Rﬂ vo + Rap ! R,B vo
+ 6gRa 6V0R6 Ao + 62Ra 6V0R6 s + RB )\UHRa pI/O' + Rﬁ pUuRa )\l/o'

+ 4R, R, A"+ 3R, R, " + RN R,P,, + Ry PR,

a vo « vo
=2 (55RB 61/0'R5 ATk + 62Rﬁ 61/0'R5 ok + Roc AJMRﬁ puo’ + Roc pauRﬂ A1/0'

+6§ROL6VJR6 Aok + 62ROL6VUR6 pat + Rﬁ )\JuRapua + Rﬁ pg#Ra Aug) )
since the first two rows are equal, and so the last two: notice how the switching
of the indices «, [ does change the value of the expression, while the one of §,
does not, since they are contracted. The product with the first factor in the full
expression for the trace will be, by a similar symmetry, given by four times the
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product of the above expression by o7 R, Puv

the Riemann tensor we then find
Tr [QM”QV‘TQU’L] =

= 05 R (00Rs % Ry M 4 AR, o Ry P Ry ARG, + Ry PR,

. Using the symmetry properties of

§ Ao ) o Ao o
+ 5§Ro¢ I/JR(S " + 5§Ra l/O'R[S Por + R,B #Rapua + RB g #Ra Auo)
=(D+3)R, " "Ry RO + R, VR, PIR, N, = (D +2)E],
since
R,"YR,""R,*,, = Rapu R R, = —Rpru RPMRY, = —€5.
The second trace is similar to computations already performed,
Ty [RMVPUQ;U/Q/)O'] — Rm,png“ [(QW/L—)\O{/H(QPU)Q[}V&

_ RMVPU(Q#V)T)\O‘B(QPG)%BTA
1
= $Ruwpr (03B 4 52RO + 03R4 67R, )
. (6;R5 Apo + 52Rﬁ Tpo + (%Ra Apo + 62\Ra Tpa)
1
= |:R,u1/pa(D + 2)R)‘ﬁ“”R/\ﬁM + permutations}
= _(D + 2)RHVPURPU)\BR>\ﬁIW = _(D + 2) 5??7

while the third one can be easily computed exploiting the result found in the proof
of (3.60), since on Einstein manifolds

v 1 oy 1 D+2
Tr[R,, Q" Q" | = o Rgp Tr [QH7QY ] = R Tr Q2] = -5 3.
We are left to compute the trace which contains the covariant derivative,
Tr I:Q/,LVV2Q“V:| — (Quu)pa(mVQ(Q#u)aﬁpa _ Rpo'aﬁlu/VQRongo-uy

1 a @ o @
= Z (5/) Ro ﬂ/}.l/ + (;gRa uv + 5(7 Rp B[LV + 6£Rp ,uu)
V2 (84R, T + 6TR, Y + ShR, T + 05 R, )

= 05 R, V% (04, T 4+ 6TR, ™ + ShR, T + 05 R, )
— (D +2)Ryup V2R — —(D +2) <12)5§ . 45;’5) .
Three of the last four terms vanish identically. Indeed, quite trivially V,RV#V = 0,
and by integrating by parts we see that
R, V'VV'V = -V'R,,V'V =0.

Notice that for these computations we do not need the explicit form of V. The
term V4V is not identically zero, but has vanishing trace, as

Tr [V, ] = VAT [V,,"| = -V*R =0,
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while for the term proportional to (VMV)2 we can integrate by parts and neglect
the boundary term, (V,V)? = —VV2V, to compute

Tr [(VaV, )% = =V, 77V, " = = (RS + R7L) V2 (RS 4+ RH)
= =2 (Ruvpo V2 R™"?? + R0, V2 RPH)

2
= —3R,1po V2 RMP7 = -3 (D&j - & - 455{’) :

since we still can use the identity (3.17), by keeping the covariant derivative between
the two Riemann tensors:

R/MVPVQRMWV = R;prVQRW)UV = %Ruupang””PU . |
Going back to (3.69) we conclude that
D+1 4 D? — 167D — 7896 3

Tr[ad" (z)] = — E 3.74
vloy (@) = —ggzop S F 15120D 2 (3.74)
17D? — 487D + 21672 3 D? — 35D — 3312 &3
90720 3 3240 4

which on maximally symmetric spaces reduces to

B D* 4+ 56D? + 246D + 252
5670D2(D — 1)2

Tr[ad (z)] = R3. (3.75)
The last step is to compute the term (3 defined in (1.95), which turns
out to be given by
5D3 — D? — 186D + 72 _4

T [55" (2)] = 12960D &

D3 —29D? + 468D + 2520 g3 5
2160D 212

while on maximally symmetric spaces

2
£3— gejf, (3.76)

+ 5634D?% + 16056D — 34560
12960D2(D — 1)2

5D% — 11D% — 167D* + 83D3 )
3

Tr [Bg"(x)} - ( (3.77)
Proof. We start again from the last of (1.95), which reads
T 1 \3 r_gr
g =gy +atiaf
The first term, before computing the trace, is

1 8 s\’
<6R6WO‘ +V,,° )

1 3 B 1 2 B 1 o 8 o AT af
(2163 8™ T3 EV ™ b SRV, V0 O 4V, P Y,

1 31
6(0@) =%
_1
6
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and we already know that

Tr [5,,*"] = %D(D—i—l), T V,*=-R, TV, "V, " =3R

7% uvpo

so the only trace we are left to compute is

L L T
= (Rupua + R,uaup) (RPAJT + RpTcr)\) (R)\#TU + R/\VT#)
— ( Rupu(r + R#Uup) ( Rp)\a‘T R)\MTV + RPAUT R)\VT;L

+RpTa/\R)\MTV + RpTa/\R)\VTN)
—4 ( Rup Va Rp)\O'T R)\MTU + Rup Vo Rp)\[;r R)\VTH)

po AT Qv
v Vpo V/\T

1
:4(543—45§+52> =88 - &3,

where we used the identity (3.20). Putting everything together,
1 31 D2+ D—36
Lrfory] - 230
g () 2592
The second term, instead, is
Car 1 1 1 1 AT
r_gr __ B B 2 2 AT 2
Oé‘({ Oég = <6R6“Va +Vﬂya ) |:180 (RMVPU — BR ) 60(,8 + E (Qpa)aﬁ

1
A v e

6 H
1 9 1 3 A 1 2 AT
- ~ SR 6, M 4 —R(Q
1080 (RRW" ol > T B (o),

1

1 4
&+ 155’ - 65§>+ ggf.

1 2 1 2 AT 1 af 2 AT 1 afw2 AT
+ o (RW,M L ) Vi 4 5V (92),5 "+ SV IV,

where all the traces are known, except from

« AT a o AT "y
Tr [V/w g (Qia)aﬁ ] - VW g (Qp )aﬁ (QPU))\TA
1
— a B B o
- i (Ru v t Ru v )
. (63R5 PO | (5;RB Apo + (52Ra PO 4 (%Ra /\po)

: (5§RT Yoo F SR+ SER\Y 4 YR, )

A po
— (RS + R (5535 PR e + 4R TR,
R B
—2 (RWRBT’"’R" rpo F Ry R PR,
+ RH&VBRMBPURpUVa)

2 -
= 56 + 265+ 2R R 5" Ryova
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where by identity (3.18)

RMO{VBR“ﬁpURpaVa - RuaﬁuRuﬁpoRand = *gg )

2

so that 5
AT
Tr [VMV 0 (2,), } = S5+ 363,

and
Tt [V, PV ] =V, 2002, M = (Ref + RLS) VR (RS + R L)
=2 (Ruavs V> R""? + Ryp,a V2 RFVP)

1
=2 (RWW?RWﬁ + QRWBVQRILW)
2
= 3Ry V2RIP =3 (Dsg’ - & - 452’) :

where we used (3.17) and (3.21). In the end

D>+ D-12 D3 —29D? — 72D + 2520 5 1

gr _gry __ 3 T3 3
Trlof 03] = 5600 oLt 2160D €2 — 38 — 2%,
which, when summed with the first term, gives (3.76). [ ]
By summing (3.74) and (3.76) we conclude that
35D3 — 7D? — 1318D + 488
Tr [af (z)] = &
r [a3 ()] 907200 1
N 7D — 202D? + 3109D + 9744 &3
15120D 2
17D? — 487D — 16128 D? — 35D — 1152
&3 — g (3.78
90720 3 3240 1 (378
and

35D% — 77D5 — 1185D%* + 581 D3
—_— + 38542D2 + 108456 D — 245952 3 470
rlay (@) = 90720D2(D — 1) ' (3.79)

In dimension D = 4 they reduce to

83 oy 4849 o, 4451 4 319,

Tr [ —_ _ 2200 g3y 027 .

95" @p=s = ~ 1732081 T 151202 ~ 22680% T m10ct (380
o 157

TI' [ag (I‘)}Dzll = m RS . (381)

Before proceeding, we notice that (3.78) is also useful as it stands, as it
can be interpreted as the total coefficient of a system composed of gravity
coupled to a complex spin—1 field and D real scalars [5, §2].
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3.2.3 Total coefficients and effective action

Let us now go back to the effective action (1.78), which we rewrite here in
terms of the Seeley-DeWitt coefficients a;,

1 [>adB 9 dP /g9
I 2 ) B exp (— Bm)/(wﬁ) sTr]ZOBJajma: (3.82)

By using the definition of the supertrace (1.66), we find that the ghost field,
being a complex fermion, brings a factor of —2, while the graviton, a real
boson, a factor of +1. Using the ghost kinetic operator F (3.22) and the
graviton one F' (3.23), and the fact that these fields are massless (m = 0)
we can therefore write (3.82) more compactly as

D
Py — - / dﬁ/d Vo Trzﬂjajmc

47T5

_ _2/0 dﬁﬁ{ [ *ﬁF} Ty [e*ﬁf}}. (3.83)

The heat kernel expansion (1.53) can be then plugged in (3.83), to give

T [a;] = Tr[af"] — 2Tr [afh] . (3.84)

Inserting the results found above in (3.84) returns

D(D -3
Tr [ap(z)] = (2) (3.85)
D?—-3D—36
Tra(z)] = —-—— R (3.86)
12
5D3 —17D? — 354D — 720 D? — 33D + 540
Tr [ag(z)] = =D E2 + 260 £2 (3.87)
35D* — 147D3 — 3670D? — 13560D — 30240
Trlas(2)] = 90720 D2 2t
N 7D?® — 230D? + 3357D + 12600 e
15120D 2
17D?% — 555D — 15120 D? —39D — 1080
3 ., (3.89)

90720 3 3240
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which in D = 4 reduce to
Tr [ag(x)] py = 2 (3.89)
8
Tr a1 (2)] py = —gR (3.90)
29 53
Tr [az(z)| py = —E&Q + 5522 (3.91)
4489 5699 4267 61
T _ 3 3 3., 94 992
rlas(@)]p=1 = ~ 1536061 T 151202 + 22680°° T 162°0 (3.92)
On maximally symmetric spaces:
5D* — 22D3 — 333D? — 498D + 2880
Tr [a = R? 3.93
rldz()] 720(D — 1)D (3.93)
35D% — 217D5 — 3257D* — 9239 D3
T (e + 37470D? + 183672D — 302400 e 304
and in D =4,
- 571
T = —— 3.95
r [CLQ (x>]D:4 1080 ( )
% 2459
T = . .

The effective action for perturbative quantum gravity can now be written,
up to third order in euclidean time, as

- _/ /d%[ @877 +a(@)s2

tar(@)8'F +az(@)fF +0 (58], (397)

from which it is apparent that in D = 4 divergences occur up to as(z), so
that the first three coefficients are the counterterms needed to renormalise
the one-loop effective action. For 4 < D < 6, instead, ag(x) has to be
included as well to perform renormalisation.

3.3 Discussion

Before ending this chapter, we comment on some details which emerge from
the result obtained, and compare it with the literature on this subject.

66



Seeley—DeWitt coefficients

NGO

3.3.1 Divergences and topological invariants

A well-known result from ’t Hooft and Veltman states that D = 4 pure
gravity (that is, with no cosmological constant A = 0) is finite at one loop
[24]. To be more precise, it is free of logarithmic divergences [5]: indeed, we
see from (3.97) that for D = 4 these divergences would come from as(z).
By setting A = 0, however, we have R = 0 as well, due to (3.6). This allows
to drop the term proportional to 812 in (3.91), and therefore to conclude
that Tr [az(z)] < £F = wam The connection between this result and [24]
will be apparent after having introduced the Gauss—Bonnet theorem, which
allows to compute the Fuler character of the manifold xg(M) as a volume

integral of the 2-form R* = R"” pdz® A da?b:

1
XE(M) = W /M EmmmudydRmm A A\ RHaVd , (3.98)
where D = 2d is the dimension of the manifold, assumed here to be even.®
In local coordinates, (3.98) becomes
1 B v v,
xe(M) = 2(47T)/ w\f 750;115511 : 5355ud]Rm 10&151 . R dadﬂd )
(3.99)

It is possible to prove that xg(M) defined in this way does not depend on
the metric settled upon M, and is fixed only by the global topology of the
manifold. For D =2, d =1, (3.99) becomes

xE(M)

d*z\/g R, (3.100)
D=9 ~ 167 /

which is proportional to the Einstein—Hilbert action, while at D =4, d =2
the Euler character reads

xE(M) 327r d'z\/g (R? — 4R, R" + Ry, R™P7) . (3.101)

D=4

On Einstein spaces the first two terms in the integrand of (3.101) cancel off,
and therefore we are left with

1
= 533 / d*z/g Ryupe RMP7 = / d*z/g Ey.  (3.102)

xe(M)

D=4

Therefore, the third heat kernel coefficient Tr [a2(z)] o pra is propor-
tional to the Fuler density F4 and hence is a total derivative, which can be
neglected in the effective action. This result is no more true when A # 0,
even if we drop the total derivative term corresponding to Euler density [5].

If D is odd, the integral (3.98) vanishes, and the theorem does not provide a useful
way of computing x g(M).
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3.3.2 Pure gravity in six dimensions

The newly computed coefficient (3.88), which contains terms proportional
both to 85’ and Sf, allows to see what happens in dimension D = 6 when
A = 0. The Euler character is now [29, § A.3]

1

XE(M)‘ = 3343 / dSz\/g (4R3 — 48R} + 64R3 + 96R}
D=6

+12R3 — 96R + 16R3 — 32R%y), (3.103)

which on Einstein spaces, according to (3.16), reduces to

xE(M)

1 4
b 384m3 /dﬁm\/é <9Sf’ —4E3 + 1655 — 3252) . (3.104)

The condition A = 0, that is R = 0, forces & = & = 0, so that (3.104)
eventually becomes

1 ‘ , ,
xe(M) = 3343 /d%\/g (1685 — 32€3) = /d%\/g Fes. (3.105)
D=6 d

The fourth coefficient (3.88), when evaluated at D = 6, reduces to

799 5 481 5 991 5 Tl g
- g3 £ 3.106
1132051 T 16802 ~ 50408 T 1804 ( )

Tr [a3(2)] p—g =

and we see that Tr [ag(x)] is not proportional to the Euler density Eg. Thus,
at dimension D = 6, even with A = 0 (and therefore £ = £ = 0), the per-
turbative quantum gravity effective action is not free of logarithmic diver-
gences. The result found by 't Hooft and Veltman appears to be a specific
property of four—dimensional spacetime, as it was already conjectured by
van Nieuwenhuizen in 1977 [30] and shown again more recently [31]. From
(3.105) and (3.106), in particular, we have

1

3
= — 1

1
£3 = 555,} —1273F — Tr [as(7)] p—g

and the divergence in (3.97) becomes

1 1 1
——— T = &3 3.108
20y T las@lp—s = ~57 537650 (3.108)
This result (3.108) is in agreement with van Nieuwenhuizen’s pioneering
calculation [30], besides a computational error in the numerical factor in his
equation (81), already noted a year later by Critchley [32, § 5]. Confirmation
of the validity of the result is also found in [31, §5.2] or [33].
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3.3.3 Comparison with the N = 4 spinning particle

The heat kernel coefficients can be computed in a completely independent
manner by studying the N/ = 4 spinning particle in the so—called worldline
formalism, where scattering amplitudes are computed as the correlators or
n—point functions of a 1-dimensional QF T that lives on the Feynman graphs,
namely the worldline theory (usually, a sigma—model into the given target
spacetime). Intuitively, the edges in a Feynman diagram correspond to
worldlines of virtual particles. The worldline formalism is equivalent to
the traditional formulation, but it has the conceptual advantage that it
expresses the Feynman perturbation series of QFT manifestly as a second
quantisation of its particle content, given explicitly as the superposition of
all one—particle processes, and the calculational advantage of automatically
summing over subsets of Feynman diagrams related by exchange of external
legs, thus maintaining permutation symmetry and explicit gauge invariance
of on—shell scattering amplitudes.

In this section, we briefly describe how to obtain the one-loop effective
action for Einstein-Hilbert gravity in the worldline formalism; however, we
do not perform any explicit computation, referring to our outcoming paper
[34]. The starting point is the so-called O(N') spinning particle, a relativistic
particle with A —extended local supersymmetries on the worldline, which
has been shown to produce the spectrum of a particle of spin s = %/\/’ in
four dimensions. In our case, we are interested in reproducing the graviton,
which corresponds to setting NV = 4. It is important to note that the model is
consistent only on background metrics satisfying Einstein equations [35; 36].
The one-loop effective action I'[g,, | for Einstein-Hilbert gravity corresponds
to the circle path integral of the worldline A/ = 4 spinning particle action
S[X, G; gy,

DGDX
T[g,,] = T ER SXGigu] 1
9] /51 Vol(Gauge) ¢ o (3-109)

where the action depends on the worldline gauge fields G = (e, x, X, a) and
on the coordinates with supersymmetric partners X = (x,zp,z/;). Explic-
itly, the effective action (3.109) is related to the N’ = 4 spinning particle
path integral Z(T') through its Schwinger representation, which, in euclidean
configuration space, is given by

Mol =3 | 7201, (3.110)

The partition function Z(T"), upon gauge fixing, becomes

Z(T) = N dg P(9,9) DxDaDbD D D1 e~ S1Xi9mv]
— ; —_ ; — , xDa c YvDe ,
PBC

2T 2 ABC
(3.111)
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where P (0, ¢) is the measure on the moduli space (0, ¢) generated by the
gauge fixing on the graviton degrees of freedom, and which implements the
correct projection on the physical graviton Hilbert space. The worldline
variables X = (x,w,l/;,a, b, c) now include the ghosts (a,b,c). The path
integral over bosonic variables is evaluated by fixing periodic boundary con-
ditions (PBC), while the fermionic path integral is performed by choosing
anti-periodic boundary conditions (ABC) on each flavour of fermionic fields
1;, with the internal index ¢ taking values ¢ = 1,2. The nonlinear sigma
model action reads

1 i |
S[X; 9] = /dT [4Tg‘“/ (&HE” + ata” + 0 ") + <5§87 — Ai) Yaj
B0 = TRaea - 0970 = V], (3.112)

where we used flat indices on the worldline complex fermions 9, a dot de-
notes contraction on the internal indices and D, = 52]- Or — Ag is the covariant
derivative with the spin connection, having defined

Al = < g f;)s > : (3.113)

The scalar potential term V is needed even at the classical level, since it
contains the counterterm required by the regularization scheme, and at the
quantum level to achieve nilpotency of the BRST charge [5]. The latter
condition requires Vprst = —%R, while the former, adopting dimensional
regularization on the worldline [37], introduces a counterterm Vor = —3R
[38], producing an effective potential

1

2
- — (£ -2)R. 114
V = Verst + Vor <D 4> R (3.114)

It is convenient to rewrite the angular integration in the complex plane. This
can be achieved by introducing the Wilson variables z = €? and w = €%,

Z(T) = 7{ dz dw P(z,w) / DxDaDbDc / DDy e SX9wl - (3.115)
27 211 PBO ABG

where the measure on the moduli space reads

(z + 1)D_2 (w+ 1)D_2
23 w3

P(z,w) = % (z—w)?(zw—1). (3.116)

Perturbative expansion

The perturbative expansion around the free theory, which is to be expressed
in terms of the parameter T, requires to:
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o factorise out the zero mode in the kinetic operator, that is, parametrise
the bosonic coordinates of the circle as /(1) = zff + ¢/(7), and set
all loops in spacetime with a fixed base point xf)‘ plus quantum fluctu-
ations with Dirichlet boundary conditions, represented by ¢*(7); note
that fermions coordinates have no zero modes, due to their antiperi-
odic boundary conditions on the circle;

e use Riemann normal coordinates [39; 36] centered around zf, so to
expand the metric tensor and the spin connection at order 7%. The
Riemann tensor appearing in the four—fermions Weyl vertex in (3.109)
has to be Taylor expanded around zfj, as well.

With these prescriptions (3.115) can be written as

21y = ¢ L9 p. ) o Y7 IOL;< —Smt>, (3.117)

21t 27 ( ArT)

factorising out for convenience the \/g(zg) arising from the free ghost part
of the action when functional integrating, together with the numerical factor
arising each time one evaluates vacuum expectation values. The expectation
value in (3.117) is to be evaluated using the Wick theorem on the free path
integral, with the free action Sy[X] being the first line of (3.109), while
higher order terms form the interacting action Siy. Introducing the double
expectation value of the interacting action << e >>, defined as the average
over the path integral and over the moduli space,

<<e_si“t >> = Ed—w P(z,w) <e_si“°> , (3.118)

21 21

we can rewrite (3.109) in a more compact form:

Z(T) = / (f:ﬁg 9(z0) <<e—5mt>>. (3.119)

Now, since the perturbative expansion of the path integral is a Taylor ex-
pansion in the proper time 7', we can rearrange (3.119) so to make explicit
the Seeley-DeWitt coefficients arising from the perturbative expansion,

_ [ 4Pz .- "
2(T) = / =y o) S an(D)T (3.120)

47I'T 21 27

D
/dxo %%dzdw szanDzw
(
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thus identifying

<e*3mt> - i an(D, z,w)T" (3.121)
n=0

<<e—5mt >> = au(D)T" = ag + arT + apT? + a3 T% + O(TY) . (3.122)
n=0

By computing (3.119) we are then able to extract the values of Seeley—
DeWitt coefficients. This computation has been carried out by Filippo Fecit,
and the comparison with the same result obtained through heat kernel tech-
niques led to an improvement of both methods, producing the same results
(3.85)—(3.88), which are to be published soon [34].
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Extended models

In this last chapter we broaden the discussion by adding matter fields that
couple to the graviton; the computations are performed in the matter vac-
uum, but could be extended to a more general background. From the point
of view of renormalisation theory, only pure gravity in D = 4 is renormalis-
able [24], as the inclusion of matter fields introduces terms which cannot be
absorbed into the effective Lagrangian as counterterms [30].

4.1 Scalar field

Consider the most general! action principle for a free real scalar field ¢(z),
¢ : M — RP in curved spacetime and euclidean time,

%:;/&%¢Ewwmw@¢+@ﬁ+R@&y (4.1)

and assume that the scalar field itself can be decomposed into a classical
background ¢ and quantum fluctuations ¢, so that ¢ = ¢+ .2 The classical
equations of motion stemming from (4.1) are

(-O0+m”+ R¢) ¢ =0. (4.2)

! Actually, the most general action principle would contain a generic potential V' (¢).
However, by splitting the field as described above, we can write

V(9) = Ve +3) = V(p) + V(@) + V' (@)F +0F),

and we can argue that V(p) = V'(¢) = 0. Indeed, the first condition comes just from
a rescaling of the potential, while the second one can be justified by observing that the
background (classical) configuration should be a stationary one, i.e. V'(y) = 0.

2The components of the fields are denoted by ¢°, i = 1,..., D; when indices do not
appear, we look at the field as a vector in RP.
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4.1.1 The vacuum case

We start from the simplest case of vacuum Einstein equations: if the classical
field ¢ = 0, the momentum—energy tensor of the background is

. . 1 . .
T (@) = 0p9' 00" — guv [2%9013%’ + V(@)} =0, (4.3)
and vacuum Einstein equations (3.5) are still satisfied. We now expand G*”
in the metric perturbations h*” according to (2.37), and the square root of
the determinant /G following (2.35), while R should be expanded according
to (2.52)—(2.57),

Sy = ;/de NG [1 + %h - %h“”hw + ;hQ]
~ [(g*w 1 1) 3 (04 8) 0 (0+6)
+ [m?+ (R(0) + R + R2) €] (¢ + %] . (49)

However, with ¢ = 0, the only one-loop contributions in (4.4) come from
the leading order terms in the metric tensor,

Sox =3 [P0 VA (970,505 + (m® + ROQ F]. (@5)

which has the same form as (4.1), except from the fact that now the back-
ground metric involved in the action Sy o is purely classical, while the field
¢ is quantum. Note that, however, the action (4.5) is to be summed with
the graviton one-loop action Ss (2.7), so that the system described by
Sg“’ = S + 84,2 is not just a quantum scalar field in a classical curved
spacetime, as instead is the case in [9, §2.5]. Indeed, spacetime contains it-
self quantum perturbations, which do not interact directly with the field at
one—loop level, but do contribute to the evaluation of heat kernel coefficients.

Heat kernel coefficients

The evaluation of the heat kernel coefficients for the action S§+¢ in the
above setting is really simple, as one needs to add to the coefficients already
computed for the graviton the term corresponding to the scalar field. By
inspecting the action (4.5), we easily identify the kinetic operator F, = §;; V>
and the potential Vg = R(0)£0;;5, as (4.5) can be cast into the form

Ssn=—y / d"x /g |36,0" 0,0 — & (m? + RO)E) 6] (4.6)

while [V, V,]¢ = [04,0,]¢ = 0, so that Q,, = 0 as well. Recall that the
mass term, as in (1.71) and (1.78), is singled out in the Schwinger-DeWitt
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parametrisation, and transformed into an exponential term in front of the

effective action: for this reason, it does not appear in the definition of V.
By comparison with (1.92) we get the following substitution rules:

]l<—>5,-j

V & —R(O)féij (47)
Qu < 0.

Since Tr[d;5] = D, and denoting from now on R(0) = R, the first two heat
kernel coefficients for the scalar field are

Tr [ag(m‘)] =D

(4.8)
Tr [a‘{’(g:)] =D (1 - g) R.

6
For the third one, we have

D 1
Tr |:Oé§(m):| = @ (RZVPU — R2>

D

(4.10)
w[ito] = (G- €)oo =3 (5

2
- R? 4.11
o6 ®o
therefore

5D(1 — 6€)2 — 2 D
¢ _ 2, Y 2
Tr [aQ(m)] = 360 R+ 180Rm,pa. (4.12)

The fourth coefficient is even simpler: V' oc R and €2, = 0, in the notation
of (3.40), imply that By = 0; so from (3.41) we get

Tr [ag(l‘)} = %Tr [Agn]

1 16 .5 2. 17D
—71<‘9951+5 9

28D
36+ 55’—952), (4.13)
while
6 Lo\ o o
Tr{?,(x)]:Tr 6(041) + aja;
D (1 . D [1 ) 1,
-5 (5-¢) P o (5-¢) (A - )
1 1 3 1 D(6¢ —1)
= — 30D (= — — |- 8, (414
180 [30 <6 5) +& 6]51 Tos0 20 (14
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resulting in

6 11, /1 K 1
T [a?’(x)} - [6D (6_5> T %’35D | 180 f_*

D(7 —426) + 1 17D
7560 &+ 153605 1

. (4.15)

20

Effective action

The effective action (1.78) for the scalar field ¢ becomes then

1)——/ — exp ( BmQ)/d x\f Z { )}, (4.16)

(47B)=

which cannot be directly summed with the gravity one, since in general
m # 0, giving

-t [ {4 5

(4mB)2

+ exp (—pm?) /d47r$ﬂf Z [ } . (4.17)

If we assume that the scalar field mass is small enough to expand in series
the exponential in (4.17), this introduces for each heat kernel coefficient a
term of the form

ay™ (z) = af (x) (4.18)
af’m(x) = af(ﬂc) — m2a§(:p) (4.19)
4"(@) = a(w) ~ mPaf () + a2 (420
0§ (@) = af(w) ~ mPa(x) + gmtaf(a) — gmlaf(a),  (421)
and in general
I (_1)k
a?m(x) — Z ( kll) m2k a;z‘b_k(x% (4.22)
k=0

so that ag+¢( ) = aj(z) + af’m(x) represent the total coefficients for the
theory contamlng an almost massless scalar field coupled to a graviton.
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4.1.2 Outlook of the general case

More interesting, though, is the general case of ¢ # 0, where the background
metric is influenced by the presence of the scalar field. The one-loop expan-
sion of the action (4.4) is much more involved; it has already been carried out
in the slightly particular case £ = 0, at D = 4 [24]; indeed, any additional
term proportional to R in the action does not change the UV behaviour of
the theory in four dimensions [24, §7|. In the generic D—dimensional case,
however, one should consider the general form of the action (4.4) with £ # 0,
and repeat the gauge fixing procedure discussed for the case of gravity with
no background matter.

This computation will not be carried out here, but the heat kernel
method, combined with an algorithmic evaluation of tensor contractions,
can provide a reliable technique to solve this problem. The expansion could
also be extended to the two—loop level; very recently, a result at two—loops
has been obtained for D = 4 and with a flat gravitational background, while
the scalar background is left arbitrary [40].

4.2 Spinor field

The action for a D—dimensional spinor field ¢ : M — V in a gravitational
field® is written by exploiting the wvierbein or tetrad basis e, = ehe,, with
€q - €p = egeZGuV = TNab*

Swz/dDa:ew(W—km)dJ, (4.23)

where e = dete), = VG is the vierbein determinant,* and the covariant
derivative is defined as

1
Y = Y*elV,,, Vy=0,+ Zwuabyayb, (4.24)

where v# = v%} are the curved y-matrices, and Wyab 18 the spin connection

wil = eI 7 + el (4.25)

whose expression in terms of the vierbein coefficients is found by requiring
that a vector X € TpM satisfies X = e, X [41, §2]. In order to have
Hermitian y—matrices, we assume that our euclidean spacetime manifold

3Here, V is a vector space in which the spin group Spin (D) is suitably represented.
4
Indeed,

g= ’det (ef{eZnab)‘ = (det e)? ‘det 7| = (detet)?.
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has even dimension D: in this way, the kinetic operator Y is Hermitian as
well. The equations of motions corresponding to (4.23) are

(Y +m)y=0. (4.26)

By decomposing the metric as usual, G, = guv + by, we correspondingly
assume that the spinor field can be written as ¢ = W 4 d1p, where ¥ is the
background field and § are quantum fluctuations. We can use again the
Einstein background hypothesis by taking the solution of (4.26) correspond-
ing to ¥ = 0, which gives 7),,(¥) = ¥4, V, ¥ = 0, hence preserving Einstein
equations in vacuum (3.5). Then (4.23) becomes

1 1 1 _ _
Sy = / dPz\/g [1 +5h = b + ShQ] (¥ +0v) (4.27)
1
et (B o0+ (1) + @]9 ) ] (0 480,
where, according to (4.25) and (2.39)—(2.41),
Wuab(n) = epll, (n)e” + eld,e”’ o . (4.28)

However, since ¥ = 0, the action principle (4.27) at one—loop reduces to the
much simpler expression

— 1
Spo = /de\fg 01 [’yceﬁj <8M + 4wuab(0)’y“’yb> + m} o

= /de V9 6% (Y(0) + m) 61, (4.29)

where ¥ (0) corresponds to the covariant derivative computed at order zero
in quantum perturbations.

The differential operator in (4.23) is not in the form (1.92), but we can
observe that the effective action can also be written as

'y = —logdet (W + m) = —% log [det (W + m) det (—W + m)]

__1 _y? 2\ _ 1 o2 R 2
= 2Trlog< v +m>— 2Trlog( \% +4+m ; (4.30)

where we have used Lichnerowicz identity

R
V= VT, =15 (V- 7). (1.31)
in which 1g denotes the identity operator in spinor space, and R = R(0) as
before. This procedure, known as bosonisation of the fermionic differential
operator, consists in a change of basis of y—matrices [42], and can be applied
to operators whose potential does not depend on y—matrices [43, §2.2].
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Proof. To prove that (4.31) works in any even dimensional spacetime D we ob-
serve that the Clifford fundamental relation {y*,+"} = 2n*1g is true in any even
dimension D, and that exploiting this relation we have
2
Y ="'V =99 [V, Vo] + 997V, Y,
= Pyuﬂyu[v/w VU] + 2]ISVQ - ,YV,YMVVVM )

and by comparing the second term with the last one, as well as using the commu-
tation relation (4.32),

Y'YV, =15V + %V“VW%BRWW :
At this point we can employ the identity
Yy YPRas = —2R1g,
which can be proved by using the symmetry properties of the Riemann tensor and
the identity
Rag?’® = =2 Ropurs """

2

that, in turn, comes from the Clifford algebra definition [41, §4], which is indepen-
dent on the dimension D. Indeed,

1 L "
Raﬁ’yﬁ = _§Rauuﬁ (VA VV + ’YV,YI )75

1 v 1 v
= _§Rauvﬁl‘/'u’7 7"+ 5 (Raﬁpu + Rozl/ﬁll) Y 7“’75

1
= —Rauwpy"v"~? + §Raﬂuw”7“vﬂ :

where
VAP = 29" 4" — APyt
= 2g"P" — 2g"P A 4 APy AR
and therefore
Rap?’ = —Rausr"v"" + % (—2Rau” = 2RapV" + Rapu "7 1")

3
= *iRa/wB'YM'YV’YB - 2Ro¢[3’Yﬁ )

from which

1
Rogy’ = 7§Ro¢yu5’)’“7y7ﬁ ,

that is, the identity above. By contracting this result with v* on the left we end
up with the desired result:

(e} 1 «
Rogy™y? = §RaB {v*,7"} = R1g
1 « v
= _iRaWﬁ'y APy 'yB. [ |
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4.2.1 Heat kernel coefficients

By inspecting (4.30), we easily identify the kinetic operator Fy = —1g5V?
and the potential V, = iRILS, while in any dimension D the commutator
of covariant derivatives has the form

1 (63
QMV = [VIM VV] = Z’Y ’V’BRaﬁ,uu . (432)
Proof. Indeed,

1
~wyabY* YVt — T, VAt

Vo Vb = 9, (Vi) + 3

1 1 1
= aua,u'l/] + Zauwpab'ya’ybflp + Zwuab’ya’ybauw + iwuaanbaM/J

1
+ 7wuabwpcd'ya"/bpyc’yd¢ - F a)ﬂb W)\ab’ya"/bw )

16

and, by neglecting all terms that are symmetric under the exchange i <> v, we are
left with

4‘“’

1
*8uwuab'7a'ybw + wﬂabwucd’Y Y A/ ’de - {:u’ Ans I/} .

[vw VV] Y= 4

16

By means of the same identity exploited in the previous proof [41, §4] we can
rewrite the four y—matrices product as
wﬂabwuchQWb’Yc’Yd 4( #a wubd’)/ ’Y _w# bwudedW ) —wuabwuchQ’}’b’Ych

= 8,10 Wik V"V — WoabWpued V"V YN

where we also used the fact that the spin connection is antisymmetric when swap-
ping the last two indices. Therefore,

WypabWyed” 'Vb’yc’yd = 4(4} WudeG’Yd )
and going back to the commutator we find

1 1
[V;u Vz/] = Z (auwl/ab - al/wuab + Wha CWllcb — Wya Cwucb) ’Ya’yb = ZRwab’Ya’Yb ’

having defined the Riemann tensor with mixed indices
J— (& C
RMV{lb = 8[Lw1/l1b - an,LLab + wua Wyeb — Wyq Wuceh -

The fully covariant form (4. 32) can be immediately obtained by introducing the
curved y—matrices as v* = e%y*. [ |

Again, the mass term is singled out in the Schwinger—-DeWitt parametri-
sation, and transformed into an exponential term in front of the effective
action. By comparison with (1.92) we get the following substitution rules:

1 < f]ls
V + 1RIlg (4.33)
Q,u,y A ipya’)/ﬁRaB;w-
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The heat kernel coefficients for a massive spinor field have been already
computed up to ag, see for instance the most recent work [44]. Here, we
repeat the computation in generic dimension D and we extend the compu-
tations to as, introducing the coupling to the graviton as well. The first two
coefficients can be easily computed by recalling that

Tr(lg] =27, (4.34)

since the group Spin (D) is represented in a vector space of dimension 2%
(assuming that D is even). From (1.96)—(1.97) we then obtain

Tr {a}f(x)} — 9% (4.35)
1
Tr {cﬁf(z)} - ﬁER. (4.36)
For the third coefficient we have to compute
(3 _o2 1 2 Lo o1
Tr [QQ (g;)] =28 <RMU L ) — 2% R, (4.37)
1 1 2 b 1
Tr [5;%;)] = JTr (12RILS> =28 R, (4.38)
therefore D3 -
Y _ 92 — %2 2
Tr [aQ (Z‘)} =22 ( 440D & 1440 52> . (4.39)

Proof. The only term we have to compute more carefully in (4.37) is the one con-
taining the gauge field strength, which turns out to be

1
Tr [95,] = 1o Ruvas B o Tr [v*7777°]

and since o
Tr [v*y79P77] =27 (9777 — g°Pg%" + g*7¢°"),
we conclude that 1
2 Dle2
Tr [QF,] = —27 36 |
Regarding the fourth coefficient, consider again that V o R, as in the
scalar field case, but now €, # 0. Therefore, we still have

Tr[Ay] = 2% %Tr A1)

o[ 16 5 2 5 175 28 _,
=22 <_9_D251 + 37D(€2 + 653 — 554 s (440)
while By, # 0, and in particular:
D 1 1 1
Tr[By] = 22 (—QDES - 155’ - 252) : (4.41)
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Proof. Indeed, using the rather involved identity

Tr [v*7v*7P 4P~ = p#*Tr [vP 4 #7°] — n*PTr [v* 4" v°4°] + 0 Tt [y*yP 7]
— T [y*yP 47 ] + o Tr [y*P 4]

we have

1
Tr [QMVQVUQU#] = 674Tr [’Ya’YB’Yé’Ye’Y/\’YT} R;J,VQBRVU(SeRJM)\T

1
=51 CT [P YRR, 0 R
+Tr (VP R5R, 50 Ry
—Tr [v*+°vy"| R ”agRy s R
+Tr [vP9°vY* R,"*3R,°5. R, M)

% 64R va (RyoarRouﬁT _ RVU(X)\RU#/\ﬂ
oT 2N
-R,°" R, B . +R, QRUMAB
~R,SPRM 4+ R,TPR M,
RVUB/\R g - R UAIBRU#ADA)

1 g T apT
5B s (B R —R,°TRM;,.) =2

N‘U

=2

g T

while, in a slightly simpler way,
v 1 (03 ag v
Tr [QWVQQ“ ] = —6Tr [7 PPy ]R#,,agVQR“ po

1 v
= 2F 47— 40) Ry VR

pl (2
:_228(D53_5§_453>

and

174 loa 1 « v o
Tr Ry pe QM Q7] = ETY [’Y ’YB’Y/\’Y ]RIWPURH aBRp AT
p 1

=2 16(

bl
gaTgB/\ ga)\gﬁr) RuupaRuyaﬁRp(r)\T — _9% ggg, 7

and exploiting the results of the previous proof,

oV 1 ]' L
Tr (R, Q" Q"] = S RTr Q2] = 52" 3. [ |
We then conclude that
» 1 2
Tr [a3 (m)} S Tr[Ay] + STr [B] (4.42)
D 1 19 29
=22 (o &} — &3 — &3 £
’ < 283502 "1 15120D 90720 < T 1296 4>
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Moreover,
v Loow\2 | v v
Tr [63 (:L')} =Tr 6 <a1) + aq oy

R® o R 1 1 b 1
25 + —{¢—(R?, — —=R?)22 + —Tr [Q?
10368 2+12{180< wor = ) Pl W]}

5D — 24 _, 7T
- 4.4
< 51840D 1 17280 52) ’ (443)

SN

=2

resulting in

2 _ _
Ty [a¢(x)} _ o2 <35D 168D — 128

3 3628802 1

49D 4+152 5 29 4
- - E3+ ¢ 4.44
1200600 <%~ 90720 < T 1206 4) (444)

4.2.2 Effective action

The effective action (1.78) for the spinor field 1) becomes then

Iﬂ(pl)ZQ/Oooﬁﬁexp( 5m)/?;5;fz [ )}, (4.45)

where the factor in front has been changed, according to the definition of the
supertrace (1.66). Again, when summed to the gravity action, since m # 0,
we have

Leds | rdPa g
=3 G it e

(47B)=

+ exp (—fm?) /?4;5\[ Z { } ., (4.46)

and the same analysis carried out for the scalar field can be repeated here,
including relation (4.22).

Again, the results could be extended to the more general case of matter
contributions to the background. Already in 1974, Deser and van Nieuwen-
huizen [45] proved that this theory is non-renormalisable at one-loop in
D = 4; a general computation could allow to extend this result to D > 4.
Moreover, it would be interesting to consider a model composed of both
massive spinors and a U(1) gauge field (the FEinstein—Mazwell-Dirac sys-
tem). If the gauge field is not considered as a dynamical one — which we
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will do in the next section — this amounts to introduce a gauge connection
A, in the covariant derivative (4.24), which becomes

1
Y = v*elV ., Vuy=0,+A,+ iw#ab’ya’yb. (4.47)

This situation has already been considered in the special case of a quantised
fermionic field, with a classical background [44].

4.3 Vector field

The last model we consider is the minimal coupling between the graviton
and a massless vector field A,(x), described by the action principle

1 1 .
S[G, Al = / Pz VG (kQR + 5 Fu " > : (4.48)

where F,, = V,A, — V, A, is the gauge field strength. (4.48) is known
as Finstein—Mazwell model and its effective action has already been stud-
ied in detail through worldline methods up to order RF* [46], as these
terms contain information on the modifications of light propagation by weak
gravitational fields in the limit of zero photon energies [47]. The effect of
non—dynamical scalar and spinor fields propagating on Einstein—-Maxwell
background has been studied as well [48].

Here, we shall consider a different limit, in which curvature dominates
over the electromagnetic field strength, which is expected to occur in the
vicinity of a black hole. Indeed, the Einstein—-Maxwell theory has been used,
together with the heat kernel method, to compute the quantum corrections
to the entropy of Kerr-Newmann black holes in Einstein gravity [49] and,
more recently, in NV = 2 supergravity [50; 51] and low—energy string theory
models [52]. In these computations, however, the cosmological constant A
is set to zero, and due to the tracelessness of the electromagnetic energy—
momentum tensor, R = 0 is a solution of Einstein equations: all terms
proportional to R are then disregarded [49; 50; 51; 52]. Here, instead, we
consider the case of A # 0, and keep all terms proportional to R, assuming
as usual that the background electromagnetic field vanishes.

The action (4.48) can then be expanded by setting G, = g, + by and
A,y = A, + ay, (correspondingly, Fl, = F,, + fu). Since the vector field
brings another term to the gauge connection and to the covariant deriva-
tive, Vﬁ = V, + A,, the expansion of the action at one-loop performed
in appendix 2.A should be computed again from the beginning. In general,
the gravitational term of the action (4.48) contains couplings between the
background vector field and the gravitational one [53, § 4.A];> however, if we

5Note that in this paper the author keeps A # 0 and employs Vilkovisky-DeWitt
formalism, but restricts himself to a flat background field g, = nu..
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again consider only vacuum solutions F;w = 0, all these terms vanish and
we are left with the action (2.7), plus the new term

1 1
1= [ @0 i (§) =5 [ 400 0 (47 19T
= / dPz /g a* (Fi, + V,.V,) a”. (4.49)

The term proportional to V#V¥ can be removed by fixing the gauge sym-
metry associated to the vector field, as we did for the graviton. On the
quantum level, this requires to introduce the additional ghost and antighost
fields ¢ and ¢, which are described by the Lagrangian

Silh = /dDZL‘ geVic. (4.50)

Additional interaction terms between the newly introduced ghost field ¢ and
the fields ¢, associated to the graviton are removed by the requirement that
A, =0, as it can be seen from equation (2.11) in [49, §2].

4.3.1 Heat kernel coefficients

From (4.49) and (4.50) we easily identify the substitution rules for the gauge
field A, and for the associated ghost c:

1 < 6f 1 < 1
V<0 and V&0 (4.51)
Qu & Fu=fuw Qu < 0

where for the ghost field [V, V,]c = 0, since ¢ behaves as a scalar under
covariant derivatives containing only spacetime components. Therefore, for
the ghost we immediately have

Tr :agh’A(x): =1 (4.52)
r 1 1

Tr _a*‘{h’A(x)_ = ER (4.53)
" ghA, ] 5D =2 1

Tr a3 (z) | = 260D X + @53, (4.54)

while for the fourth coefficient, from (3.41),

1
Tr [agh A(m)} ﬁTr [Agn]
1/ 16 4 2 .4 17.5 28,
— (- 2y Sy e 2 4.
7!< e R B> (4.55)
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and

3
gh.A _1/1 1p 1 2 1
T |30 = 6 <6R) 6" 180 M~ pf

5D — 6 1
= &3 &3 4.56
6430 7L T 108072 (4.56)

resulting in

_ 35D?% — 42D — 16
- 45360D2

Tr [agh’A(x)} &

TD+1 5 17 5 1 _,

75600 22 T 5360°° 102030 (457
Similarly, for the gauge field,
Tr :ag’A(x): =D (4.58)
Tr :a‘f’A(x): = %R (4.59)
Tr :ag’A(x): = 5]_‘3))66 2512 + %522 + %f;wflwa (4.60)

where we see the appereance of the new invariant F? = fuw fHY. Since the
tensor f,, is traceless, f*, = 0, we do not have invariants of order smaller
than two. Before computing the fourth coefficient, it is useful to list all
invariants of order three in curvature and gauge field strength:

Fr=1"001" 0 Fs = Rupe "7, F3 = Rf* fu,  (461)

where we already neglected the invariants containing the Ricci scalar, since
on Einstein manifolds they can be simplified further. Note that we do not
have any invariant of the form fWV2 fH, since it vanishes identically.

Proof. From Maxwell equations in vacuum we have V,F*” = 0, and by using the
second Bianchi identity, with [V, V,] = f., we find
T = VoV = = Vo (T 4 V7 )
= =S {([Va, V¥ + V¥V4) f7* = ([Va, V7] + V'Vq) [}
= _fuufaufya - fuuv'uvafya - fuufayfau - f;wvuvafau
= LR A LS =0 n

On this basis, the computations give

16 2 17D 28D

Tr[Aga(z)] = Tr[Ag] = —Q—DSi” + §€§’ + 5 &3 — 5 £ (4.62)
4

Tr [Bgy ()] = —12F} + 6F5 — —F3 (4.63)

D
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1 17D D
T 9,A _ 34 3 3
r [0‘3 (:”)] 2835D51 756052 4536053 16204
——J—"“ ]-"5 Lo e
3071 T 60 90D~ 3’ (4.64)
while 5D — 6
Tr |94 (2)| = 22— 3 4.
[ 3 (x)] 6480 & + 108052 + 72JT ’ (4.65)
to get
35D2 — 42D — 16 7D +1 17D D
Ty [ 94 _ 3 3 3 3
r[ (x)} 45360D 1T 7560 &+ 4536053 162054
5D — 4
——.P”’ Fs + F3. (4.66
+60 360 3 (4.66)

The total heat kernel coefficient, according to (3.84) (the coefficients for
the ghost and vector field are the same), is then given by

35D%3 —112D* + 68D +32 4 (D —2)(7TD+1) _4

Tr [af(2)] =
(a5 (=)] 15360 D2 &+ 7560D 2
17(D—-2) 5 2—-D_, 1 1 o, 5D—4_,
£ o G o F F3.
45360 T 1620 4 T 3071 Tg072 T 360 7B
(4.67)

The results of this chapter are just a first example of the kind of com-
putations that can be performed by means of the heat kernel method, when
considering more complex systems. The most apparent drawback of the ap-
proach described here is that it works only in the vacuum approximation;
to include matter background fields we would have to consider Einstein
equations with non—zero momentum—energy tensor, and the computations
quickly become daunting. A possible solution would be to implement a
symbolic calculus program that allows to perform easily all the tensor con-
tractions and evaluations required. In any case, we leave this topic to further
research.
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The main

results obtained in this thesis, together with possible directions

that could be undertaken to proceed further in research, are summarised for
sake of clearness in the list below.

e The main result is the evaluation of the first four heat kernel coeffi-
cients for pure gravity with nonzero cosmological constant, in generic
dimension D and on Einstein manifolds, so that the computation out-
come is gauge invariant:

e The

the fourth complete and gauge—invariant heat kernel coefficient
for perturbative quantum gravity was previously unknown [5];

this result allows to prove in a more general framework non—
finiteness of quantum gravity in D = 6 at one—loop, in contrast to
what happens in D = 4 at one-loop [24]. It would be interesting
to see if the precise one—loop coefficient that we have found could
have a relation with the coefficient at two—-loops in D = 4, going
beyond the formal analogies observed in [30].

result is then compared with the same coefficients coming from

the N’ = 4 spinning particle in the worldline formalism:

the fourth coefficient has never been computed before [5];

the comparison led to improvement of both methods, as it already
occurred for the previous coefficients [5];

further useful comparisons could be described by applying other
perturbative techniques, like the covariant derivative expansion,
which has recently been extended to all fermionic operators [43];

moreover, further important developments include implementa-
tion of Vilkovisky-DeWitt formalism [12; 13], which allows to
write a background independent and covariant effective action,®
and of Borel resummation, that after having been applied to heat

5As we already noted while describing the background field method, this appears not
to be the case. A comment on this will be given at the end of this section.
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kernel computations by Avramidi [9], has no more been consid-
ered in this context.

e In the last part of the thesis, we tried to extend the procedure to
systems containing matter fields which couple to the graviton:

— the computations have been performed in the vacuum case, in
which matter fields do not give contribution to spacetime curva-
ture;

— an extension to the FEinstein—Mazwell general case, with non—
vacuum background, would lead to improvements in computing
quantum corrections to Kerr—Newmann black holes entropy, ac-
cording to a well-established research line [49; 50; 51; 52].

e A more theoretical issue that could be explored is the tension which
has been very recently found to exist between covariance and back-
ground independence in the background field method [14]. This result
would imply that, even when taking advantage of Vilkovisky—DeWitt
formalism, there is no way to define a fully background independent
and covariant effective action. Computations perfomed within the heat
kernel method might shed more light on this result, providing explicit
examples of the construction described formally in [14].

In conclusion, this thesis has investigated the computation of the fourth
heat kernel coefficient for perturbative quantum gravity, which plays a cru-
cial role in understanding the behavior of quantum gravitational interactions
at one—loop in D = 6 and could provide insight for two—loops computations
in D = 4. These results try to strengthen our theoretical understanding of
quantum gravity and to shed light on the higher—order effects that arise in
gravitational interactions.

The findings presented in this thesis could be the starting point to ad-
vance our understanding of the perturbative approach for quantum gravity.
The derived expressions for the fourth heat kernel coefficient provide valu-
able tools for future investigations and pave the way for more accurate and
precise computations in perturbative quantum gravity, as the ones that can
be performed with matter fields in the non—vacuum case.

The insights gained from the computation of the fourth heat kernel co-
efficient provide a small contribution to the ongoing efforts to develop a
consistent and comprehensive theory of quantum gravity. We hope that fur-
ther research building upon the results of this thesis will continue to refine
our understanding of the fundamental nature of spacetime and the quantum
world.
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