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"Mathematics can explore the fourth dimension and the world of what is

possible, but the tsar can only be overthrown in the third dimension."



Introduction

In the following paper, we will address the existence and uniqueness of the solution of a
stochastic differential equation, known as an SDE. We shall therefore start by defining
what an SDE is:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt.

We will then illustrate the basic notions, such as solution in the strong sense, in the
weak sense and uniqueness, also examining the first theorems on uniqueness and the
existence of the solution.In these proofs, we will make use of very strong hypotheses such
as Lipschitz and linear growth, also known as the standard hypothesis. The results are
of great importance for the theory of SDEs, and are analogous to the results seen in
deterministic differential equations.

In the final chapter we will discuss an extremely important result, namely the unique-
ness of the weak solution of an SDE with a Hölder diffusive parameter and a measurable
drift parameter. This result was initially demonstrated by Ito and Watanabe for one-
dimensional SDEs, and they also showed that uniqueness could only be obtained for a
Hölder parameter α ≥ 1

2
by providing a counterexample. In this work, we will extend

this result to d-dimensional SDEs and prove the existence and uniqueness of the solution
with Hölder parameter

In order to achieve this, we will utilise the estimates formulated by Krylov, which
compare the expected value conditional on a filtration:

E

(∫ t1∧τR

t0∧τR
(det(σsσ

∗
s))

1
d+1f(s, ξs)

∣∣∣∣Ft0∧τR

)
with functions in Ld.
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Our objective will then be to search for a non-negative functional that satisfies the
following properties:

* The functional must satisfy the following∫ t

0

∫
BR

F (s, x)p det(σσ∗)−1(s, x)dxds <∞

** The functional must provide an estimate on the diffusive part and the drift param-
eter of our stochastic equation.

These assumptions serve to obtain the uniqueness of the solution.
Finally, we have provided examples on which to apply the theorem. To show the

validity of the theorem on these examples, we have introduced the Hardy-Littlewood
operator:

MRϕ(x) = sup
0<r<R

1

| Br |

∫
Br

ϕ(x+ y)dy

which plays the non-negative operetor role described above. We have also stated a
corollary that allows us to apply the theorem in a simpler and more intuitive manner.
By applying this corollary, we can verify the theorem for such examples.
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Chapter 1

Stochastic analysis

1.1 Preliminary concepts

In the first chapter, we see the first definitions of what a stochastic process is, uniqueness,
existence and where solutions live.

Definition 1.1 (SDE). Given the interval I = [t0, T ] and a W Brownian motion m-
dimensional, we define Borels measurable functions :

b : R+ × Rd → Rd

and
σ : R+ × Rd → Rd×m

Let us consider the following equation:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt X0 = 0 (1.1)

We define a space where we search for solutions

Definition 1.2 (set-up). We define set-up as a triple (Z,W,F ) , where:
Z is a random variable and Ft0-measurable,
W is a d-dimensional Brownian motion on (Ω,F ,P,F)

F = (Ft)t≥0 is a filtration where the usual assumptions hold (completeness and
continuity on the right).

1



1.1 Preliminary concepts 2

We indicate that X is a solution of an SDE we use:

X ∈ SDE(b, σ, Z,W,F)

Let us give the generic definition of the solution of an SDE

Definition 1.3 (solution of an SDE). A stochastic process is solution of (1.1) relative
to our set-up if:

(i) X is continuous process on (Ω,F ,P);

(ii) X is a process adapted to F.

(iii) ∫ T

t0

| b(t,Xt) | dt+
∫ T

t0

∥σ(t,Xt)∥2dt < +∞ P − a.s

where ∥ · ∥ stands for Hilbert-Schmidt norm of a matrix.

(iv) (
Xt = Z +

∫ T

t0

b(s,Xs)ds+

∫ T

t0

σ(s,Xs)dWs ∀t ∈ I
)

a.s

we will say Xt that solution of our SDE,

In the study of solutions of the weak type it is useful to refer to the canonical set-up.
Let’s introduce it gradually, making some considerations:

• Let µ be a law on RN , let’s take:

Z : (RN ,B, µ) → RN

x 7→ Z(x) = x

then Z ∼ µ.

• Let W be a Brownian motion:

W : (Ω,F ,P) → C(I,R)

ω 7→ W (ω)
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We now denote by µW the Wiener measure of W. This is a probability measure on the
space (C(I,R),B(C)), where B(C) is a Borel algebra, hence

µW (H) = P(W ∈ H).

We can actually observe that the Wiener measure µW is uniquely determined by the
finite-dimensional distributions, ie by the laws of (Wt1 , ...,Wtn).

Example 1.1.1. We can build the canonical version of a Browian motion:
Let us take the interval I = [t0, T ], Borel’s σ-algebra on the space of continuous

functions B(C) = σ(w(t) ∈ H,H ∈ B, t ∈ I)(1-dimensional cylinder) and a filtration,
the one-dimensional cylinder: Bt(C) = σ(w(s) ∈ H, s ≤ t).

Figure 1.1: the canonical version of a Browian motion

So if we take:
(C(I,R),B(C), µW ,Bt(C))

(Bt(C) then we will replace it with the completed filtration FW
t )

W : C(I,R) → C(I,R)

w 7→ W (w) = w

whene W is a browian motion.
We have just described the canonical version of a Browian motion with the outcomes

coinciding with the trajectories of W, i.e. Wt(w) = w(t).

Let us give the formal definition of canonical set-up
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Definition 1.4 ( canonincal setup). Taking the interval I = [t0, T ] and the space of
continuous functions C(I,Rd) = Ωd, we define the canonical set-up for µ the following
quantity:

(RN × Ωd,F
Z,W
T , µ⊗ µW ,F

Z,W
t )

where:
Z : RN × Ωd → RN

(x,w) 7−→ x

W : RN × Ωd → Ωd

(x,w) 7−→ w

• Z ∼ µ

• W is a d-dimenional Brownian motion

• Z and W are independent

• (RN × Ωd) is a Polish space, that is, it is a Banach space and it is separable.

Let us now look at the definition of a solution in the strong and weak sense of an
SDE

Definition 1.5 (solution of the SDE of coefficients b and σ).

(I) weak type: for every µ distribution on BN (Borelian of RN) there exists a set-up
(Z,W,F ) such that Z ∽ µ and there exists X ∈ SDE(b, σ, Z,W,F)

(II) strong type: for every set-up
(Z,W,F ) there exists X ∈ SDE(b, σ, Z,W,FZ,W ), where FZ,W = (FZ,W

t )t≥0)

with standard filtration, which is the completion of σ(Z,Ws with s ≤ t)
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Remark 1.1.2. In general the solution of an SDE is unique when the coefficients b and
σ are uniformly Lipschitz continuous to the variable x uniform in t. However, when b
and σ are non-Lipschitz continuous, the pathwise uniqueness would not hold as in the
case of ordinary differential equations.

In one dimensional case, the famous Yamada and Watanabe theorem provides a
sufficient condition for pathwise uniqueness.

In this thesis we see some new conditions to ensure the pathwise uniqueness and also
the existence of weak solutions for multidimensional SDEs without assuming uniform
ellipticity and Lipschitz continuity.

Definition 1.6 (uniqueness). We say that for the SDE of coefficients b, σ we have
uniqueness:

• in a strong sense (pathwise uniqueness) , if X ∈ SDE(b, σ,W,Ft) and Y ∈
SDE(b, σ,W,Gt) with Xt0 = Yt0 a.s implies that X and Y are indistinguishable
processes;

• in a weak sense (in law), if X ∈ SDE(b, σ,W,Ft) and Y ∈ SDE(b, σ, B,Gt) with
Xt0

d
= Yt0 , implies that (X,W )

d
= (Y,B), or, equivalently, (X,W ) and (Y,B), have

the same finite-dimensional distributions.

Remark 1.1.3. In the definition of strong uniqueness the two processes X and Y are
defined on the same probability space (Ω,F ,P) and are solutions of the SDE related
to the setups (W,Ft)and (W,Gt) where W is a Brownian motion with respect to both
filtrations Ft and Gt which may be different. In the definition of uniqueness in law, the
processes X and Y can be solutions related to set-up (W,Ft)and (B,Gt) distinct, also
defined on different probability spaces.

we observe the standard assumptions with which the first results on the existence
and uniqueness of the solution were provided.

Definition 1.7 (standard hypothesis).
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• b and σ have a linear growth, i.e ∃c1 such that

|b(t, x)|+ |σ(t, x)| ≤ c1(1 + |x|) ∀t ∈ I, ∀x ∈ RN ;

• b and σ are Lipschitz, i.e ∃c2 such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ c2(|x− y|) ∀t ∈ I, ∀x, y ∈ RN ;

Let us now look at two theorems that we will need for the third chapter

Lemma 1.1.4 (Gronwall lemma). We assume that u ∈ C([0, T );R), T ∈ (0,+∞),
satisfies the differential inequality:

u
′ ≤ a(t)u+ b(t) on ∀t ∈ [0, T ) (1.2)

for some a, b ∈ L1(0, T ) Then, u satisfies the pointwise estimate

u(t) ≤ eA(t)u(0) +

∫ t

0

b(s)eA(t)−A(s)ds, ∀t ∈ (0, T ) (1.3)

where we have defined the primitive function:

A(t) :=

∫ t

0

a(s)ds

Proof. From inequality (1.2), for every function test φ ∈ D(0, T ) with φ ≥ 0 we get:

−⟨u, φ′⟩ = ⟨u′
, φ⟩ ≤ ⟨a(t)u+ b(t), φ⟩ (1.4)

and for every 0 ≤ φ ∈ Cc(0, T ) ∩W 1,∞(0, T ).
If we take

v(t) = u(t)e−A(t) −
∫ t

0

b(s)e−A(t)ds

we can observe:
v

′
(t) ≤ 0, v ∈ D′

(0, T ) v ∈ C([0, T ])

We can note that:

• if v ∈ C1(or even v ∈ W 1,1) we immediately conclude:

v(t) = v(0) +

∫ t

0

v
′
(s)ds ≤ v(0) = u(0)

from the (1.2) follows.
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• In the general case when v ∈ C([0, T ]) , we proceed as follows.

We fix ε > 0 and ϱ ∈ C1
c (0, ε) such that:

ϱ ≥ 0

∫
ϱ = 1

.

For any function w ≥ 0 w ∈ C1
c (ε, T ), the function

ψ := −w +

(∫ T

0

w

)
ϱ

belongs to Cc([0, T ]) and ∫ T

0

ψ = 0

.

As a consequence ψ has a primitive φ such that φ(0) = φ(T ) = 0 The function φ

thus enjoys the following properties:

φ ∈ C1
c ([0, T ]), φ ≥ 0 and φ

′
= ψ

.

We deduce:

0 ≥ ⟨u′
, φ⟩ =

∫ T

0

v

{
w −

(∫ T

0

w

)
ϱ

}
dt =

∫ T

0

w

{
v −

∫ T

0

wϱ

}
Because the above inequality is true for any w ∈ C1

c ([ε, T ]),with w ≥ 0 than:

v ≤
∫ T

0

vϱ on (ε, T )

Taking ϱ = ϱα a mollifier sequence,(i.e. ϱ→ δ0)and letting α → 0 we deduce again
v(t) ≤ v(0) on (0, T ).
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Lemma 1.1.5 (Stochastic Gronwall’s inequality). Let ξ(t) and µ(t) be two nonnegative
càdlàg Ft-adapted processes, At a continuous nondecreasing Ft-adapted process with
A0 = 0, Mt a local martingale with M0 = 0. Suppose that:

ξ(t) ≤ µ(t) +

∫ t

0

ξ(s)dAs +Mt ∀t ≥ 0 (1.5)

Then for any 0 < q < p < 1 and stopping time τ , we have:

[E(ξ(τ)∗)q]

1

q ≤
(

p

p− q

)1

q
(

Ee

pAr

(1− p)
)(1− p)

p E(µ(τ)∗), (1.6)

where
ξ(t)∗ := sup

s∈[0,t]
ξ(s)

Proof. We fix a stopping time τ . Without loss of generality, we may assume that the
right hand side of (1.6) is finite and µ(t) is nondecreasing. Otherwise, we may replace
µ(t) with µ(t)∗.

We define ξ(t) the right side of (1.5) and

At :=

∫ t

0

ξ(s)

ξ(s)
dAs

.
Then

ξ(t) ≤ ξ(t) = µ(t) +

∫ t

0

ξ(s)dAs +Mt

we use Ito’s formula to get:

e−Atξ(t) = µ(0) +

∫ t

0

−Asdµ(s) +

∫ t

0

eAsdMs.

We take (τn)n∈N localization sequence stopping times of the local martingale M , that
is, for every n ∈ N,

t 7−→Mt
∧

τn is a martingale.

since we have that e−At ≤ 1 , we have:

E

(
e−At∧τ∧τnξ(t ∧ τ ∧ τn)

)
≤ E

(
µ(t ∧ τ ∧ τn)

)
≤ E

(
µ(t ∧ τ)

)
.



1.1 Preliminary concepts 9

Going to limit for n→ ∞ a.s. by Fatou’s lemma, we get:

E

(
e−Aτ ξ(τ)

)
≤ E

(
µ(τ))

)
.

Because thanks to the Holder inequality of , ξ(t) ≤ ξ(t) and At ≤ At, that for any
p ∈ (0, 1),

E

(
ξ(τ)p

)
≤ E

(
ξ(τ)p

)
≤
(

E

(
e
(
pAτ

1− p
)
))(1−p)(

E

(
µ(τ)

))p

.

Now we define for each λ ≥ 0 a stopping time:

τλ := inf{s ≥ 0 s.t. ξ(s) ≥ λ}.

Since ξ is càdlàg, we have ξτλ ≥ λ and

λpP

(
ξ(τ)∗ > λ

)
≤ λpP(τλ ≤ τ) ≤ E

(
ξ(τ∧τλ)p

)
≤
(

E

(
e
(
pAτ

1− p
)
))(1−p)(

E

(
µ(τ)

))p

=: δ

and for any q ∈ (0, p),

E

(
|ξ(τ)∗|p

)
= q

∫ ∞

0

λq−1p(ξ(τ)∗ > λ)dλ ≤ q

∫ ∞

0

λq−1((λ−pδ) ∧ 1)dλ =
pδ

(
q

p
)

(p− q)
.

the proof is complete.



Chapter 2

Uniqueness in the classical sense

Now let’s see uniqueness in the classical sense, ie with very strong hypotheses on the
diffusion and drift parameter. We see an estimate derived from standard hypotheses

Lemma 2.0.1. Let X,Y be adapted and continuous processes a.s. and p ≤ 2. Then

• if b, σ verify the condition of linear growth, there exists a positive constant c1 =

c1(T, d,N, p, c1), such that

E[ sup
to≤t≤t1

|
∫ t

t0

b(s,Xs)ds+

∫ t

t0

σ(s,Xs)dWs|p]

≤ c1(t1 − t0)

p− 2

2

∫ t1

t0

(1 + E[ sup
to≤r≤s

|Xr|p])ds

for each t1 ∈ (t0, T );

• if b,σ verify the global lipschitz condition, there exists a positive constant c2 =

c2(T, d,N, p, c2) such that

E[ sup
to≤t≤t1

|
∫ t

t0

b(s,Xs)− b(s, Ys)ds+

∫ t

t0

σ(s,Xs)− σ(s, Ys)dWs|p]

≤ c2(t1 − t0)

p− 2

2

∫ t1

t0

(E[ sup
to≤r≤s

|Xr − Yr|p])ds

We now see theorems that give existence and uniqueness of the solution of an SDE,
obviously under standard assumptions

10



11

Theorem 2.0.2. Suppose that the coefficient

b : (0, T )× Rd → Rd

is a bounded Borel-measurable function. Then the SDE

dXt = b(t,Xt)dt+ dWt

and solvable in the weak sense with unique solution in law.

Proof. We divide the proof into 2 parts, existence and uniqueness.

• Existence

Let µ0 be a distribution on Rd and let X be a d-dimensional Brownian motion
with initial value X0 ∼ µ0 defined on the space (Ω,F ,P,Ft). For the borderness
assumption on b we have:

Mt := exp
(∫ t

0

b(s,Xs)dXS − 1

2

∫ t

0

|b(s,Xs)|2ds)
)

t ∈ [0, T ]

Is a martingale. So, we know that the process:

Wt := Xt −X0 −
∫ t

0

b(s,Xs)ds

Is a standard Brownian motion under the measure Q defined by
dQ

dP
=MT . Thus,

the equation just seen shows that X is the weak solution of the SDE under Q.In
addition:

Q(X0 ∈ H) = EP [1H(X0E
0[MT |F ]] = P (X0 ∈ H)

by the martingale property of the process M, and thus X0 ∼ µ0 in Q.

• Uniqueness

Let X(i), i = 1, 2 be solutions of the SDE for the setups respectively (W (i),F (i)
t

defined on the spaces (Ωi,F (i),Pi) such that X(1)
0 and X(2)

0 are equal in law. Still
for the borderness b we have the process :

M
(i)
i exp

(
−
∫ t

0

b(s,X(i)
s )dW (i)

s − 1

2

∫ t

0

|b(s,X(i)
s )|2ds)

)
t ∈ [0, T ]
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are martingale.

From which we obtain that:

X
(i)
t := X

(i)
0 −

∫ t

0

b(s,X(i)
s )ds+W

(i)
t

are Brownian motions on spaces respectively (Ωi,F (i), Qi,Pi) where
dQi

dPi

= M
(i)
T .

Thus, the law of X(1) of Q1 is equal to the law of X(2) of Q2 So we have that the law
of (X(1),W (1),M (1)) in Q1 is egual to the law of (X(2),W (2),M (2)) in Q2.Finally,
for every 0 ≤ t1 < · · · < tn ≤ T and H ∈ B2nd we have:

P1((X
(1)
t1 , (W

(1)
t1 , · · · , (X

(1)
tn , (W

(1)
tn ) ∈ H) =

∫
Ω1

1H(X
(1)
t1 , (W

(1)
t1 , · · · , (X

(1)
tn , (W

(1)
tn )

dQ1

M
(1)
T

=∫
Ω2

1H(X
(2)
t1 , (W

(2)
t1 , · · · , (X

(2)
tn , (W

(2)
tn )

dQ2

M
(2)
T

=

P2((X
(2)
t1 , (W

(2)
t1 , · · · , (X

(2)
tn , (W

(2)
tn ) ∈ H)

The following result establishes the relationship between solvability and uniqueness
for an SDE in a weak and strong sense

Theorem 2.0.3. (Yamada e Watanabe)

i) If an SDE is solvable in the strong sense then it is also solvable in the weak sense;

ii) If for an SDE there is uniqueness in the strong sense then there is also uniqueness
in the weak sense;

iii) If for an SDE there is solvability in the weak sense and uniqueness in the strong
sense then there is solvability in the ‘ strong sense;

Sketch of proof. i) It is sufficient to construct a set-up to deduce the weak resolu-
bility from the strong one.
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More precisely, having assigned a distribution µ0 on RN , we consider the canonical
space RN × Ωd equipped with the filtration (Gt)t∈[0,T ] generated by the identity
process

(Z,W) : RN × Ωd −→ RN × Ωd, Z(z, w) = z, Wt(z, w) = w(t), t ∈ [0, T ]

and the product measure µ0 ⊗ µW , where µW is the law of Brownian motion
d-dimensional. Then Z ∼ µ0 is G0 − measurable and W is a Brownian motion
(withrespect to Gt). Therefore, by the strong solvability hypothesis, there exists a
solution X relative to the set-up (W,Gt) and such that X0 = Z ∼ µ0.

ii) Let us consider two solutions X i = SDE(b, σ,W i,F i
t ) such that X i

0 = x ∈ RN

almost surely, for i = 1, 2. We prove that the strong uniqueness hypothesis implies
that (X1,W 1) and (X2,W 2) are equal in law. The problem is that the solutions
X1 and X2 are in general defined on different sample spaces: so the idea is to
construct versions of X1 and X2 that are solutions of the SDE on the same space
and relatively the same Brownian. To this end, we construct a canonical space
on which three processes are defined: a Brownian motion and versions of X1 and
X2. We know that there is a regular version of law X i conditional on W i, for each
w ∈ Ωd i.e µXi|W i = (µXi|W i(·;w))w∈Ωd

is a distribution over the Borelians G N
T of

ΩN and applies:

∫
A

µXi|W i(H;w)µW (dw) = E[E[1H(X
i)|W i]1A(W

i)] = µXi,W i(H×A) (H,A) ∈ G N
T ×G d

T .

Now on the space of trajectories ΩN ×ΩN ×Ωd we define the probability measure

P (H×K×A) :=
∫
A

µX1|W 2(H;w)µX2|W 2(K;w)µW (dw), (H,K,A) ∈ G N
T ×G N

T ×G d
T .

and we denote by (X1,X2,W) the canonical process on that space. Given respec-
tively H =ΩN or K = ΩN in the equation above,we obtain:

(Xi,W)
d
= (X i,W i), i = 1, 2
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from which it follows in particular that W is a Brownian motion in the measure P ,
(X1,W) and (X2,W) are both solutions of the SDE of coefficients b, σ and with
initial datum x. For uniqueness in the strong sense we have that X1 and X2 are
indistinguishable in the measure P and therefore

(X1,W 1)
d
= (X1,W) = (X2,W)

d
= (X2,W 2).

iii) Also for this point, let us only consider the case of a deterministic initial datum.
Let therefore X ∈ SDE(b, σ,W,Ft) be a solution with initial datum X0 = x ∈ RN

a.s.

We apply the construction of the previous point (ii) with X1 = X2 = X i.e.
we construct a space ΩN × ΩN × Ωd the measure P and the canonical process
(X1,X2,W) in which X1,X2 are equal in law to X and are solutions of the SDE
with respect to Brownian motion W.

Consider the conditional probability P (·|W) = (Pw(·|W))w∈Ωd
and related condi-

tional laws
µXi|W(H) = P (Xi ∈ H|W), H ∈ ΩN , i = 1, 2,

we observe that µXi|W = µX|W . It is verified that the random variables X1 and X2

are simultaneously equal a.s. and independent in Pw(·|W) for almost any w ∈ Ωd

and therefore X1 and X2 have as law in Pw(·|W) a Dirac delta. In other words,
for almost every w ∈ Ωd we have µX|W (H;w) = µXi|W(H;w) = δF (w) for a certain
measurable map F from Ωd in ΩN and thus X = F (W ) a.s. To conclude, it is
necessary to show that X is adapted to the standard Brownian filtration FW .

Theorem 2.0.4 (Uniqueness in a strong sense). Let us assume that the following as-
sumption of local smoothness is valid in x, uniform in t: for each n ∈ N there exists a
constant kn such that

|b(t, x)− b(t, y)| ≤ kn|x− y|

for each t and x, y ∈ RN such that |x|, |y| ≤ n Then for the SDE (1.1) there is uniqueness
in the strong sense according to Definition (1.6)
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Proof. Let X,Y be two solutions of the SDEX ∈ SDE(b, σ,W,Ft) and Y ∈ SDE(b, σ,W,Gt).
Let us use a localization argument: we pose

τn = inf{t ∈ [t0, T ] | |Xt| ∨ |Yt| ≥ n}, n ∈ N,

with the convention min ∅ = T . We note that τn = t0 on (|Z| > n). Being by hypothesis
X,Y adapted and continuous a.s., τn and an increasing succession of stopping times at
values in [t0, T ], such that τn ↗ T a.s. let us assume

bn(t, x) = b(t, x)1[t0,τn](t), σn(t, x) = σ(t, x)1[t0,τn](t) n ∈ N

The processes Xt∨τn , Yt∨τn almost surely satisfy the equation

Xt∧τn − Yt∨τn =

∫ t∧τn

t0

(b(s,Xs)− b(s, Ys))ds+

∫ t∧τn

t0

(σ(s,Xs)− σ(s, Ys))dWs

=

∫ t

t0

(b(s,Xs∧τn)− b(s, Ys∧τn)ds+

∫ t

t0

(σ(s,Xs∧τn)− σ(s, Ys∧τn)dWs

we also have:

|bn(s,Xs∧τn)− bn(s,Y s ∨ τn)| = |bn(s,Xs∧τn)− bn(s,Y s ∧ τn)|1(|Z|≤n) ≤ kn|Xs∧τn −Xs∨τn|

because |Xs∧τn|, |Xs∧τn| ≤ n on (|Z|) ≤ n for s ∈ [t0, T ]

and a similar estimation occurs with σn instead of bn.Now let us assume

vn(t) = E[ sup
t0≤s≤t

|Xs∧τn − Ys∧τn|2], t ∈ [t0, T ].

thanks to the earlier findings we obtain:

vn(t) ≤ c

∫ t

t0

v(s)ds, t ∈ [t0, T ]

for a positive constant c = c(T, d,N, kn).
Since X and Y are continuous processes a.s. and adapted (and therefore progressively

measurable), Fubini’s theorem ensures that v is a measurable function on [t0, T ], i.e vn ∈
mB. Moreover, vn is bounded, precisely |vn| ≤ 4n by construction. From Gronwall’s
lemma we obtain that vn ≡ 0 and therefore
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E[ sup
t0≤t≤T

|Xs∧τn − Ys∧τn|2] = vn(T ) = 0

Turning to the limit as n → ∞, by the Beppo-Levi theorem, we have that X and Y
are indistinguishable on [t0, T ].

In the one-dimensional case, the following stronger result applies, which we report
without proof.

Theorem 2.0.5 (Watanabe-Yamada). Let be given a one-dimensional SDE (1.1),N =

d = 1, with the following conditions: for x, y ∈ R, t ≥ 0 we have:

• |b(t, x)− b(t, y)| ≤ k(|x− y|)

• |σ(t, x)− σ(t, y)| ≤ h(|x− y|)

where

• h and a strictly increasing function such that h(0) = 0 and for every ε ≥ 0:∫ ε

0

1

h2(t)
dt = ∞;

• k and a strictly increasing function such that k(0) = 0 and for every ε ≥ 0:∫ ε

0

1

k(t)
dt = ∞;

then we have unique strong solution for the SDE.

Example 2.0.6. Ito-Watanabe
The following SDE,

dXt = 3X
(1/3)
t dt+ 3X

(2/3)
t dWt

has infinitely many solutions of the following form:

X
(a)
t =

0 for 0 ≤ t < τa

W 3
t for τa ≤ t
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Where a ∈ [0,∞] and τa = inf{t ≥ a such that Wt = 0}.
In fact by applying Ito’s formula, in one dimension, we verify that:

dW 3
t = 3Wtdt+

6

2
W 2

t dWt = 3Wtdt+ 3W 2
t dWt

substitute Wt = X
1/3
t we obtain:

dXt = 3X
(1/3)
t dt+ 3X

(2/3)
t dWt

To give an idea, we set a = 1 as we see in the graph τa (stopping time) is immediately
after, therefore the solution is zero before τa and Wt after.

Figure 2.1: the stocastic prosses

Remark 2.0.7. We note that if the term a = ∞ the solution is the null one, instead
with a = 0 we have the solution W 3

t .

Theorem 2.0.8 (Solvability in the strong sense and flow properties). Let us assume
that the coefficients b, σ satisfy the standard assumptions(1.7) on (t0, T ) × RN Given a
set-up (W,Ft), we have:

i) for each x ∈ RN , there exists the strong solution X t0,x ∈ SDE(b, σ,W,FW ) with
initial data X t0,x

t0 = x. In addition, for each t ∈ [t0, T ] we have:

(x, ω) 7−→ ψt0,t := X t0,x
t (ω) ∈ m(BN ⊗ FW

t );
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ii) for each Z ∈ mFt0 the process X t0,Z defined by

X t0,Z
t (ω) := ψt0,t(Z(ω), ω), ω ∈ Ω, t ∈ [t0, T ],

is a strong solution of the SDE (1.1),X t0,Z ∈ SDE(b, σ,W,FZ,W ) with initial data
X t0,Z

t0 ;

iii) The flow property holds for each t ∈ [t0, T ] the process X t0,Z and X t,X
t0,Z
t are

indistinguishable on [t, T ] i.e. almost surely we have

X t0,Z
s = X t,X

t0,Z
t

s ∀s ∈ [t, T ]

Proof. We divide the demonstration into steps:

step one We prove the existence of the solution of (1.1) on [t0, T ] with the deterministic
initial datum Xt0 = x ∈ RN . We use the method of successive approximations and
define recursively the sequence of Ito processes:

X
(0)
t ≡ x,

X
(n)
t = x+

∫ t

t0

b(s,X(n−1)
s )ds+

∫ t

t0

σ(s,X(n−1)
s )DWs, n ∈ N,

with t ∈ [t0, T ]. The sequence is well defined and X(n) is adapted to FW and
continuous a.s. for every n. Moreover, with an inductive argument in n we prove
that X(n)

t = X
(n)
t (x, ω) ∈ m(BN ⊗ FWt) for every n ≤ 0 and t ∈ [t0, T ]. We now

prove by induction the following estimate:

E = [ sup
t0≤t≤t1

|X(n)
t −X

(n−1)
t |2] ≤ cn(t1 − t0)

n

n!
, t1 ∈ (t0, T ), n ∈ N

with c = c(T, d,N, x, c1, c2) > 0 where c1 and c2 are the constants of the standard
hypotheses. Let n = 1: by (2.0.1) we have:

E[ sup
t0≤t≤t1

|X(1)
t −X(0)

t |2] = E[ sup
t0≤t≤t1

|
∫ t

t0

b(s, x)ds+

∫ t

t0

σ(s, x)DWs|2 ≤ c1(1+|x|2)(t1−t0)

for n = 1 the estimate is verified, let us assume it is valid for n and prove it for
n+ 1: we have
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E = [ sup
t0≤t≤t1

|X(n+1)
t −X

(n)
t |2] =

= E[ sup
t0≤t≤t1

|
∫ t

t0

(b(s,X(n)
s )− b(s,X(n−1)

s ))ds+

∫ t

t0

(σ(s,Xn
s )− σ(s,Xn−1

s ))DWs|2] ≤

for (2.0.1)

≤ cn+1

∫ t1

t0

(s− t0)
n

n!
ds

this proves the estimate. Combining Markov’s inequality with the estimate just
proved, we obtain:

P ( sup
t0≤t≤T

|X(n)
t −X

(n−1)
t | ≥ 1

2n
) ≤ 22nE[ sup

t0≤t≤T
|X(n)

t −X
(n−1)
t |2] ≤ (4cT )n

n!
, n ∈ N

Then, by the Borel-Cantelli Lemma we have

P ( sup
t0≤t≤T

|X(n)
t −X

(n−1)
t | ≥ 1

2n
i.o) = 0

that is, for almost every ω ∈ Ω there exists nω ∈ N such that

sup
t0≤t≤T

|X(n)
t (ω)−X

(n−1)
t (ω)| ≤ 1

2n
, n ≥ nω.

Being

X
(n)
t = x+

n∑
k=1

(X
(k)
t −X

(k−1)
t )

we have that, almost surely, X(n)
t converges uniformly in t ∈ [t0, T ] as n → ∞ to

a limit that we denote by Xt: as notation we will use : Xn
t ⇒ Xt a.s. We note

that X = (Xt)t∈[t0,T ] is a continuous a.s. process (due to uniform convergence)
and adapted to FW : moreover, Xt = Xt(x, ω) ∈ m(BN ⊗ FW

t ) for each t ∈ [t0, T ]

because this measurability property holds for X(n)
t for each n ∈ N. By the standard

assumptions and X being continuous a.s. it is clear that the condition∫ T

t0

|b(s,Xs)|ds+
∫ T

t0

|σ(s,Xs)|2dWs <∞
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is satisfied. To verify that, almost surely

Xt = x+

∫ t

t0

b(s,Xs)ds+

∫ t

t0

σ(s,Xs)dWs, t ∈ [t0, T ],

it is sufficient to observe:

• by the Lipschitz property of b and uniform σ in t, we have that

b(t,X
(n)
t ) ⇒ b(t,Xt) a.s

and
σ(t,X

(n)
t ) ⇒ σ(t,Xt) a.s

hence
lim

x−→∞

∫ t

t0

b(t,X
(n)
t )ds =

∫ t

t0

b(t,Xt)ds a.s

and
lim

x−→∞

∫ t

t0

|σ(t,X(n)
t )− σ(t,Xt)|2ds a.s

•
lim

x−→∞

∫ t

t0

σ(t,X
(n)
t )dWs =

∫ t

t0

σ(t,Xt)dWs

This concludes the proof of existence in the case of the deterministic initial
datum.

step two Let us now consider the case of a random initial Z ∈ mFt0 . Let f = f(x, ω) be
the function on RN × Ω defined by

f(x, ·) := sup
t0≤t≤T

|X t0,x
t − x−

∫ t

t0

b(s,X t0,x
s )ds−

∫ t

t0

σ(s,X t0,x
s )dWs|.

We note that f ∈ m(BN ⊗ FW
T ) because X t0,·

t ∈ m(BN ⊗ FW
t ) for each t ∈

[t0, T ]. Moreover, for each x ∈ RN we have f(x, ·) = 0 a.s. and thus also F (x) :=
E[f(x, ·)] = 0. Then we have

0 = F (Z) = E[f(x, ·)]|x=Z = E[f(Z, ·)|Ft0 ]

since Z ∈ mFt0 , f ∈ m(BN ⊗ FW
T ) with Ft0 and mathscrFW

t σ-algebras inde-
pendent and f ≥ 0.
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Applying the expected value we also have

E[f(Z, ·)] = 0

and therefore X t0,Z is a solution of the SDE (1.1) and is also a solution in the
strong sense because it is clearly adapted to FZ,W .

step three For t0 ≤ t ≤ s ≤ T , with equalities that almost surely hold, we have

X t0,Z
s = Z +

∫ s

t0

b(r,X t0,Z
r )dr +

∫ s

t0

σ(r,X t0,Z
r )dWr

= Z +

∫ t

t0

b(r,X t0,Z
r )dr +

∫ t

t0

σ(r,X t0,Z
r )dWr

+

∫ s

t

b(r,X t0,Z
r )dr +

∫ s

t

σ(r,X t0,Z
r )dWr

= X t0,Z
t

∫ s

t

b(r,X t0,Z
r )dr +

∫ s

t

σ(r,X t0,Z
r )dWr

i.e. X t0,Z is solution on [t, T ] of the SDE (1.1) with initial datum X t0,Z
t . On the

other hand, as far as proved in the second step, X t,X
t0,Z
t is also a solution of the

same SDE. By uniqueness, the processes X t0,Z and X t,X
t0,Z
t are indistinguishable

on [t, T ]. This proves X t0,Z
s = X

t,X
t0,Z
t

s and concludes the proof of the theorem.



Chapter 3

Existence and uniqueness for SDE

In the last chapter we analyse a very important result on the existence and uniqueness
under weaker than standard assumptions, i.e. with Hölder diffusion parameter and
measurable drift. This fact is very counterintuitive in the sense that, for ODS, the
uniqueness of the solution occurs with Lipschitz parameters, whereas, as we shall see
in SDEs, Hölder is sufficient. We shall also see an important corollary with the Hardy-
Littlewood operator, and some examples of SDEs.

Before we look at the theorem, let us see some estimates prove by Krylov

Theorem 3.0.1 (Krylov’s estimate). We consider the d-dimensional Ito process:

ξt = ξ0 +

∫ t

0

bsds+

∫ t

0

σsdWs

where ξ0 ∈ F0

For R > 0 define a stopping time:

τR =

{
t ≥ 0 such that | ξt | ∨

∫ t

0

| bs | ds ∨
∫ t

0

∥σs∥2ds > R

}
For any R, T > 0 there exist constants C1, C2 such that for all 0 ≤ t0 < t1 < T and

all f ∈ Ld+1
loc (Rd+1) and g ∈ Ld

loc(R
d)

then the following inequalities:

•
E

(∫ t1∧τR

t0∧τR
(det(σsσ

∗
s))

1
d+1f(s, ξs)

∣∣∣∣Ft0∧τR

)
≤ C1∥f∥Ld+1([t0,t1×BR]) (3.1)

22
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•
E

(∫ t1∧τR

t0∧τR
(det(σsσ

∗
s))

1
d g(ξs)

∣∣∣∣Ft0∧τR

)
≤ C1(t1 − t0)

d
2p∥g∥Ld([t0,t1×BR]) (3.2)

Theorem 3.0.2. Let R > 0 with BR := {x ∈ Rd s.t. |x| < R} suppose that there
exist a nonnegative measurable function F with∫ t

0

∫
BR

F (s, x)p det(σσ∗)−1(s, x)dxds <∞, (3.3)

for some p ≥ d+ 1 and such that for Lebesgue-almost all s, x, y :

2⟨x− y, b(s, x)− b(s, y)⟩+ ∥σ(s, x)− σ(s, y)∥2 ≤ |x− y|2(F (s, x)− F (s, y)).

Then the local pathwise uniqueness holds def the SDE (1.1). Moreover, is b and σ

are time-independent, then the above requirement p ≥ d+1 can be replaced with p ≥ d.

Proof. Let Xt and Yt, two solutions for SDE (1.1) with starting point x and y, respec-
tively.

For R > 0 define, a stopping time for process X:

τXR := inf

{
t > 0 s.t. |Xt| ∨

∫ t

0

|b(s,Xs)|ds ∨
∫ t

0

∥σ(s,Xs)∥2ds > R

}
and a stopping time for process Y :

τYR := inf

{
t > 0 s.t. |Yt| ∨

∫ t

0

|b(s, Ys)|ds ∨
∫ t

0

∥σ(s, Ys)∥2ds > R

}
.

Now define a new stocastic process as a combination of X and Y in this way:

Zt := Xt − Yt, τR := τXR ∧ τYR .
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By Itô’s formula and the assumption, we have:

|Zt∧τR |2 = |x− y|2 + 2

∫ t∧τR

0

⟨Zs, b(s,Xs)− b(s, Ys)⟩ds

+2

∫ t∧τR

0

⟨Zs, σ(s,Xs)− σ(s, Ys)⟩dWs

+

∫ t∧τR

0

∥σ(s,Xs)− σ(s, Ys)∥2ds

≤ |x− y|2 +
∫ t∧τR

0

|Zs|2(F (s,Xs) + F (s, Ys))ds

+2

∫ t∧τR

0

⟨Zs, σ(s,Xs)− σ(s, Ys)⟩dWs.

By stochastic Gronwall’s inequality (1.6), for any 0 < q < p < 1 and a stopping time
τ

′ , we have:

E

(
sup

t∈[0,T∧τ ′ ]
|Zt∧τR |2q]

)
≤ C|x− y|2

(
Ee

pAT∧τ′

(1− p)
)(1− p)

p
, (3.4)

where
At :=

∫ t∧τR

0

(F (s,Xs) + F (s, Ys))ds.

Now,we multiply and divide by det(σσ∗)(1/p)(s,Xs) > 0 and calculate the expected value
of At:

EAt = E

(∫ t∧τR

0

det(σσ∗)(1/p)(s,Xs)(F det(σσ∗)(−1/p)(s,Xs)ds

)
by Krylov’s estimate (3.1) and the assumption, we have:

EAt ≤
(∫ t

0

∫
BR

|F (s, x)|p det(σσ∗)(−1)(s, x)

)p

<∞.

In particular, t→ At in a continuous adapted process and if we define a new stopping
time:

τ
′

N := inf{t > 0 s.t. At > N}
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then
P

(
lim

N→∞τ
′
N=∞

)
= 1.

In (3.4), we replace τ′ by τ ′
N and let x = y, then

E

(
sup

t∈[0,T∧τ ′N ]

|Zt∧τR |2q]
)

= 0

Letting N,R → ∞, by Fatou’s lemma we get the pathwise uniqueness.
If b and σ are time-independent, we can use the Krylov’s estimate (3.2) instead of

(3.1) to derive the same result.

Now let’s see a corollary that follows from the theorem that uses the Hardy-Littlewood
one as an operator Let us first give the definition of the Hardy-Littlewood operator:

Definition 3.1 (Local Hardy-Littlewood maximal function). The operator takes a lo-
cally integrable function:

ϕ : Rd −→ R

and return a function MRϕ.
For each x ∈ Rd, it returns the maximum value by considering the average of the

values of the function ϕ over all balls of radius r, regardless of their size. Defined:

MRϕ(x) = sup
0<r<R

1

| Br |

∫
Br

ϕ(x+ y)dy

Corollary 3.0.3. Suppose that σ : Rd −→ Rd ⊗ Rm satisfies that for some p ≥ d,∫
BR

(MR | ∇σ | (x))p det(σσ∗)−1(x) <∞ (3.5)

where ∇σ stands for the generalized gradient, and MR | ∇σ | is the local Hardy-
Littlewood maximal function.

Then the local pathwise uniqueness holds for SDE

Let’s also look at some examples
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Example 3.0.4. Let d > 2n with n ∈ N and α ∈ [0, 1], β ∈ [α, 1]. Consider the
following diffusion matrix σ(x):

σ(x) :=



|x|α · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · |x|α 0 · · · 0

0 · · · 0 |x|β + 1 · · · 0
... . . . ...

... . . . ...
0 · · · 0 0 · · · |x|β + 1


we can then see matrix σ as a block matrix:(

A 0

0 B

)

where A is a n× n matrix and B is a (d− n)× (d− n) matrix. One can check that
(3.5) holds.

We now compute the det(σσ∗):

det(σσ∗)(x) = |x|2nα(|x|β + 1)2n(d−n) ≥ |x|2nα.

Remark 3.0.5. We can see for γ ∈ (0, 1) that the (3.5) operator can be estimated as
follows:

1

|Bs|

∫
Bs

|x+ y|−γdy ≤

 1
|Bs|

∫
Bs

||x| − |y||−γdy ≤ 2γ|x|−γ, s < |x|
2

1
|Bs|

∫
4Bs

|y|−γdy ≤ cs−γ ≤ c|x|−γ, s ≥ |x|
2

(3.6)

where c = c(d, γ) is a costant.

So, we can see the following fact:

sup
s>0

1

|Bs|

∫
Bs

|x+ y|−γdy ≤ c|x|−γ

Let’s calculate:
∇σ(x) = (α|x|α−1sgn(x), β|x|β−1sgn(x))
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Now:
|∇σ|(x) = |α|x|α−1 + β|x|β−1|

So substituting inside the integral (3.5) and using the above estimate with −γ = α − 1

and with d > 2n and for any R > 0 we get:∫
BR

(MR | ∇σ | (x))d det(σσ∗)−1(x) ≤ C

∫
BR

|x|(α−1)d−2nαdx <∞.

Notice that the function x 7−→ |x|α is only α-Hölder continuous at point 0.

Example 3.0.6. Let d = 3 and m1,m2,m3 ≥ 2. Let α ∈ (0, 1) and yij ∈ Rd, i = 1, ,mj

, j = 1, 2, 3. Consider the following σ(x):

σ(x) :=


∑m1

i=1 |x− yi1|α 0 0

0
∑m2

i=1 |x− yi2|α 0

0 0
∑m3

i=1 |x− yi3|α


As above, one can check that (3.5) holds. Notice that σ is Hölder continuous at points

yij.
We show that the integral∫

BR

(MR | ∇σ | (x))p det(σσ∗)−1(x) <∞

We have

∇σ(x) =
(
α

m1∑
i=1

sign(x−yi1)|x−yi1|α−1, α

m2∑
i=1

sign(x−yi2)|x−yi2|α−1, α

m3∑
i=1

sign(x−yi3)|x−yi3|α−1
)

Next, we can compute the norm of the gradient:

|∇σ(x)| = α

3∑
j=1

(
mj∑
i=1

|x− yij|α−1

)
.

We can see for γ ∈ (0, 1) that the (3.5) operator can be estimated as follows:

1

|Bs|

3∑
j=1

mj∑
i=1

∫
Bs

|x− yij + y|−γdy ≤
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≤

 1
|Bs|
∑3

j=1

∑mj

i=1

∫
Bs

||x− yij| − |y||−γdy ≤ C
∑3

j=1

∑mj

i=1 |x− yij|−γ, s <
|x−yij |

2

1
|Bs|
∑3

j=1

∑mj

i=1

∫
4Bs

|y|−γdy ≤ c
∑3

j=1

∑mj

i=1 |x− yij|−γ, s ≥ |x−yij |
2

We now calculate the determinant of σσ∗:

det(σσ∗)(x) ≤ (
3∏

j=1

mj∑
i=1

|x− yij|2α)

As in the previous example we analyze:∫
BR

(MR | ∇σ | (x))d det(σσ∗)−1(x)

Now imposing γ = α− 1,R > 0 and substituting the we obtain:

∫
BR

(MR | ∇σ | (x))3 det(σσ∗)−1(x) ≤ K
3∑

j=1

mj∑
i=1

∫
BR

|x− yij|3(α−1)

3∏
j=1

|x− yij|−2αdx =

= K
3∑

j=1

mj∑
i=1

∫
BR

3∏
j=1

|x− yij|−3+3α−2αdx <∞

because α− 3 ≤ −2.
Notice that the function x 7−→ |x− yij|α is only α-Hölder continuous at point yij.

Example 3.0.7. Let α ∈ (0, 1). Consider the following one-dimensional equation:

dZt = (|Zt|α + |W (2)
t |α + |W (3)

t |α)dW (1)
t

Z0 = z z ∈ R

where (W
(1)
t ,W

(2)
t ,W

(3)
t ) is a three dimensional standard Brownian motion. The

above SDE can be written as a three dimensional SDE with Xt = (Zt,W
(2)
t ,W

(3)
t )) and

σ(x) :=


(|x1|α + |x2|α + |x3|α) 0 0

0 1 0

0 0 1


One can verify that (3.5) holds for the above σ. It should be observed that the Hölder
continuity index can be less than 1/2 compared with Yamada-Watanabe’s classical result
due to the regularization effect of Brownian noises.
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To verify the integrability condition (3.5) we need to compute the matrix ∇σ and
the function det(σσ∗)−1, and then check that the resulting integral is finite.

The matrix ∇σ is the Jacobian matrix of the function σ : R3 → R3×3 with entries
σi,j(x), 1 ≤ i, j ≤ 3, given by

|x1|α + |x2|α + |x3|α, i = j = 1,

1, i = j = 2 or i = j = 3,

0, otherwise.

The Jacobian matrix is therefore

∇σ(x) =


α|x1|α−1sign(x1) α|x2|α−1sign(x2) α|x3|α−1sign(x3)

0 0 0

0 0 0

 .

The matrix σσ∗ is the product of σ and its transpose, and it’s determinant is given by

det(σσ∗)(x) = det


(|x1|α + |x2|α + |x3|α)2 0 0

0 1 0

0 0 1


= (|x1|α + |x2|α + |x3|α)2 ≥ |x1|2α + |x2|2α + |x3|2α ≥ |x|2α

|∇σ(x)| = α|x1|α−1 + α|x2|α−1 + α|x3|α−1

Similarly to inequality (3.6) we can estimate our operator (3.5) and obtain with
−γ = α− 1:

∫
BR

(MR | ∇σ | (x))3 det(σσ∗)−1(x) ≤ K

∫
BR

(|x1|α−1+|x2|α−1+|x3|α−1)3|x2α1 +x2α2 +x2α3 |−1dx

≤ K

∫
BR

|x|3(α−1)|x|−2α <∞

We have just verified that this integral is finite, so thanks to corollary 3 we have a unique
solution for each Holder parameter.
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