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Abstract

Entanglement entropy is the core argument of this thesis. After a brief
introduction of its properties and a review of the leading theoretical methods
for its computation, it is studied in free fermion models, namely the hopping
and the SSH model in one dimension. During this preliminary part, a code has
been created to test numerically the main results. Reached a satisfactory level
of reliability for this latter, simulations are used to probe second order symme-
try resolved Rènyi entropies (SRRE) in the SSH model. This investigation is
carried out considering both finite and infinite subsystems. In the second sce-
nario, sharp patterns regarding the distribution of SRRE for different charge
sectors are obtained and discussed. Supported by numerical data, exact for-
mulae have been achieved to describe the outcomes. In the end, methods are
rephrased to extend the analysis to more generic free fermion models.
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Introduction

Physics at quantum level shows properties as fascinating as atypical. Unlike classi-

cal phenomena, a certain degree of uncertainty is in fact at the very core of quantum

behaviour, along with quantization of energy levels, wave-particle duality and entangle-

ment. Especially this latter is arguably the most controversial feature of the whole quan-

tum framework as it violates the cardinal principle of causality. Introduced in 1935 by

Dirac[1] and immediately questioned by Einstein, Podolsky and Rosen[2], entanglement

can be intuitively described quoting one of Einstein's letter to Born[3] as a"spooky action

at distance". A statement unfolding clear discomfort towards a phenomenon in severe

contrast with classical intuition.

It took almost three decades and the work of Bell[4] for entanglement to be undoubt-

edly recognized as an essential quantum property. Since then, it gained lot of attention

from very di�erent �elds of research, ranging from black hole[5][6] to quantum information

and computing[7][8] and quantum many-body theory[9]. Along with the rising awareness

it came the need for a quantitative measure of entanglement which does not increase under

local transformations and classical communications (LOCC). This urge led to the formu-

lation of entanglement monotones[10] with many measures being proposed and �nding

use in the literature depending on the context[11]. For the purpose of this thesis I will

investigate entanglement entropy(EE)[12].

Besides its simple de�nition, EE gained large popularity in recent years due to its

multiple properties. For instance, in gapped systems it obeys an area law[13] while in one-

dimensional systems, at criticality, it shows a logarithmic growth directly proportional to

the central chargeof the underlying theory[14], thus being able to spot quantum phase

transitions. In systems with internal symmetry this measure can be further characterized

for each charge sectors, hence taking the name of symmetry-resolved entanglement entropy

SREE [15][16]. In this case, equipartition is expected between di�erent sectors under

precise conditions[17].

In the present work I studied EE in the hopping and SSH model. The initial part

was devoted to the creation of a reliable code able to simulate numerically free fermionic

chains and reproduce theoretical predictions regarding EE. By making use of it, I then

probed entanglement equipartition in SSH model with exact computation of SREE.

Regarding the structure of the elaborate, Ch.(1) is meant to present the main theo-

retical elements and tools in order for the thesis to be self-consistent and let the reader

get acquainted with the topic. In the second chapter(2) a detailed analysis of the models

considered is provided with insights concerning the creation of the code that will serve
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as useful resource for Ch.(3), where the problem of symmetry-resolved EE is tackled and

the main results are discussed.



Chapter 1

Theoretical background

In this chapter an overview of the theoretical background of this thesis is provided. In

order, an essential introduction with the main notions to describe entanglement measures,

the correlation function method and, �nally, the replica trick, are presented.

1.1 Entanglement measures

Far from being a complete introduction of such a vast and vivid topic[18], main axioms

and properties of entanglement measures are reeled o� for bi-partite systems, Fig.(1.1).

A

B

Fig. 1.1: Sketch of a bi-
partition.

The problem of de�ning and quantifying entanglement �nds

many possible answers depending on the �eld of research.

From the quantum information point of view we are used to

think at entanglement in a very operational way as a quantity

due to quantum correlation that cannot be increased via lo-

cal operations and classical communication (LOCC). In this

framework entanglement measures were designed not only to

give an answer whether a system is entangled or not, but to

truly quantify how entangled a state is. To be consistent with

the above premises a measure must then satisfy the following:

ˆ Entanglement must not increase due to LOCC,

ˆ Separable states contain no entanglement,

ˆ There exist maximally entangled states.

Consider the case of a quantum system described by a pure statej i and the bi-partition

A-B. Assuming the Hilbert's space factorizes asH = H A 
 H B, one can write:

j i =
X

m;n
Amn j A

m i j  B
n i ; (1.1.1)

with the summation running over the elements of the basesfj  A
m ig , fj  B

m ig of the two

subsystems. Evidently, depending on the dimensions ofA and B, Am;n might not be a

square matrix as one is not forced to take two equal-sized partitions. Statej i also admits

4



1.1. Entanglement measures 5

a singular value decomposition with Eq.(1.1.1) turning into:

j i =
X

l

� l j� A
l i j � B

l i ; (1.1.2)

with fj � A
n ig , fj � B

n ig being two new orthonormal bases for the subsystems, coe�cients� i

real and positive de�nite and such that
P

l � l = 1 if the state is normalized. This result

goes under the name ofSchmidt decomposition[19] and represents a very immediate tool

to picture entanglement since coe�cients� l encode all the information about it. With

respect to these latter, a separable state is characterized by a single unitary coe�cient

� = 1 while maximally entangled states are those for which all coe�cients have the same

value � 1 = � � � = � D = 1p
D

. Being able to recastj i as in Eq.(1.1.2) might prove to

be a hard task using singular value decomposition but it can be achieved usingdensity

matrices.

Starting from the full density matrix:

� = j i h j ; (1.1.3)

one can de�ne reduced density matrices (RDM) for bipartite systems,� A and � B, tracing

out the degrees of freedom of the complementary part of the system:

� A = Tr B �;

� B = Tr A �:
(1.1.4)

Using Eq.(1.1.2), one can easily verify that their diagonal form must correspond to:

� � =
X

l

j� l j2 j� �
l i h� �

l j ; (1.1.5)

therefore, solving their eigenvalue problem automatically gives weights in Schmidt decom-

position. For this reason their spectrum is also associated with the name ofentanglement

spectrum[20]. From Eq.(1.1.5) one can further realize the two RDM actually share the

same spectrum, independently from their dimensions. Whereas entanglement spectrum

allows to oultine the entanglement content we still lack the de�nition of a measure. Tak-

ing advantage of RDM let me thus introduce theentanglement entropy, de�ned as the

Von Neumann entropy of� � :

S� = � Tr � � ln � � ; (1.1.6)

which is none but the limit for n ! 1 of a larger class of EE going under the name of

Rényi entropies:

S�; n =
1

1 � n
ln Tr � n

� : (1.1.7)

As it can be understood from its derivation, EE not only depends on quantum states but
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also on the partition considered, yet, once it is �xed, there is no di�erence in considering

one subsystem or its complementary asSA = SB = S. Coherently with the axioms

presented before, it can be proven that EE is null for separable state and is maximal

when all eigenvalues are identical. In this latter caseS = ln D.

As stated, many more measures enrich the framework but, in our case, Von Neumann

and Rényi EE will be the ones considered and under observation for the rest of the

elaborate.

1.2 Reduced density matrices and correlation func-

tion method

As anticipated in the above segment, to study and quantify entanglement, a key role is

that of RDMs, yet deriving an explicit expression for them usually is a very demanding

task, especially when many-body systems grow considerably in size. There are exceptions

though. This is the case of free lattice models[21][22] and, in particular, of free-fermion

chains[23]. The aim of this section is to revise the main steps for the computation of

RDMs for these latter using correlation functions.

In the common sense, RDMs represent a basic tool of many-body theory in which they

describe the properties of few selected particles out of the whole system. In our interest

however, they acquire a slightly di�erent connotation as they refer to a �xed subset of

sites A . In this framework consider the case of a partition given by a compact sequence

of M sites as subsystem and a state described by a Slater determinantj i . For a generic

free hamiltonian of the form:

Ĥ =
1
2

X

m;n
hm;n cy

mcn ; (1.2.1)

describing the system, all many-particle correlation functions factorize in products of

two-point functions as a consequence of Wick's theorem[24] for free fermions. Readily:

hcy
� cy

� c
 c� i = hcy
� c� i hcy

� c
 i � h cy
� c
 i hcy

� c� i : (1.2.2)

The set of all possible one-particle correlation functions thus encodes the whole theory

content and it can be stored in a unique object constructing the so calledcorrelation

function matrix C, whose elements are de�ned as:

Cm;n = hcy
mcn i : (1.2.3)

At this point, constraining the indexes to subsystemA, id est m; n 2 A , one should

recover the same result using the corresponding reduced density matrix� A , according to
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the relation:

hcy
i cj i = Tr( � A cy

i cj ); for: i; j 2 A : (1.2.4)

This is guaranteed again by Wick's theorem if� A has the form of an exponential of a

free-fermion operator:

� A =
1
Z

e� Ĥ =
1
Z

exp
�

�
X

i;j 2A

~hi;j cy
i cj

�

; (1.2.5)

with Z being a normalization constant. HereĤ is usually known as theentanglement

hamiltonian and must not be confused with the hamiltonian in Eq.(1.2.1) reduced to

A : Ĥ is in fact an ad-hoc hamiltonian build to replicate the elements ofC. Its explicit

expression can be achieved considering its common diagonal representation withCA and

will allow us to determine the entanglement spectrum of the bipartition.

By being a density matrix, � A must be hermitian and so doesĤ as a consequence,

this implies the entanglement entropy always admits to be recasted in diagonal form:

Ĥ =
1
Z

X

p
� p~cy

p~cp: (1.2.6)

With respect to this new basef ~cpg, normalization factor Z can be derived from the

constraint Tr � A = 1 as:

Z = Tr( e� Ĥ ) =
X

f kg

hfkgj e�
P

p
� p ~np jf kgi =

Y

p

X

f kg

hfkgj e� � p ~np jf kgi =
Y

p
(1 + e� � p ):

(1.2.7)

Similarly, Eq.(1.2.4) becomes:

Cij = Tr( � A cy
i cj ) =

X

p;q
	 �

p(i )	 q(j ) Tr( � A ~cy
p~cq); (1.2.8)

and focusing onTr ( � A ~cy
p~cq) with H A being free, one derives non-trivial results only for

p = q, hence:

Tr ( � A ~np) =
X

f kg

hfkgj
1
Z

e�
P

q
� q ~nq ~npjf kgi =

X

f kg

hfkgj
1
Z

� @
@�p

e�
P

q
� q ~nq jf kgi =

=
1
Z

� @
@�p

X

f kg

hfkgje�
P

q
� q ~nq jf kgi = �

1
Z

@
@�p

Z = �
@

@�p
ln

Y

k

(1 + e� � k ) =

= �
@

@�p

� X

k

ln(1 + e� � k )
�

=
1

e� p + 1
:

(1.2.9)

This latter equation unfolds the relations between the eigenvalues of the reduced correla-
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tion matrix and the entanglement hamiltonian:

� p =
1

e� p + 1
; (1.2.10)

� p = ln
1 � � p

� p
; (1.2.11)

moreover, using Eq.(1.2.11),� A can be expressed explicitly as:

� A =
e� Ĥ

Z
=

Q
p e� � p n̂p

Q
q(1 � � q)� 1

=
Y

p
(1 � � p)

� � p

1 � � p

� n̂p

=

= 
 p2A

�

(1 � � p) j0i p h0jp + � p j1i p h1jp

�

:

(1.2.12)

From there, replacing it in Eq.(1.1.6), Von Neumann entropy simpli�es as:

SA = � Tr

"
e�

P
p

� p ~np

Z
ln

e�
P

p
� p ~np

Z

#

= � Tr
�

� � A ln(Z ) � � A (
X

p
� p~np

� �

=

= hln (Z ) +
X

p
� p~np i = ln

hY

p
(1 � � p)� 1

i
+

X

p
� p� p =

= �
X

p

h
ln(1 � � p) � � p� p

i
= �

X

p

h
ln(1 � � p) � � p ln

� 1 � � p

� p

� i
=

= �
X

p

�

(1 � � p) ln(1 � � p) + � p ln(� p)
�

:

(1.2.13)

At this point it is interesting to note how eigenvalues� p, as a direct consequence of their

de�nition in Eq.(1.2.11), belong to the interval [0; 1], ensuring Von Neumann EE is well

de�ned and always positive.

Code insights

Before proceeding to the next section let me quickly list and discuss some properties

regarding C, CA and their eigenvalues which have been useful during code writing as

intermediate checks. Correlation function matrixC is such that it squares to itself,

meaningC2 = C and all its eigenvalues must be either0s or 1s; further, its trace matches

the number of particles inside the subsystem. When the system is in a half-�lled state,CA

also bene�ts of speci�c properties. In this case its trace corresponds to half the number of

sites in the subsystem and it can be proven that its eigenvalues, if ordered by magnitude,

satisfy the special relation[21][25]:

� m = 1 � � M � m : (1.2.14)
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1.3 Replica trick

Theoretical interest for EE is further enriched by its universal scaling in one dimensional

systems at criticality. EE is in fact able to spot the location of quantum critical points

and it is a quantity sensible to their most characterizing trait: thecentral chargec of the

corresponding underlying theory. In numerical simulations these are extremely valuable

information since entropies can be easily measured and they can be exploited to test the

solidity of the code in use.

This preamble, although being very short, describes crucial predictions coming from

the domain ofconformal �eld theories which the reader might not be necessarily familiar

with. As the title suggests, the main method involved is the so calledreplica trick which I

will now illustrate and discuss in its main aspects. As this section will not cover the whole

state of the art, for a more historical and complete description let me refer the works of

Calabrese & Cardy[14][26][27] and the paper ofHolzhey, Larsenand Wilczek[5].

Starting from the unitarity of the trace,
P

i wi = 1, and positive de�niteness of RDMs,

wi � 0, eigenvalueswi must lie in the interval [0; 1]. The sum Tr � n
A =

P
i wn

i is thus

absolutely convergent for anyn > 1 and therefore analytical. This remains true even

promoting n to a real variable as long as it is bigger than one. At this point, if the

entropy SA = �
P

i wi ln wi is �nite, we can capitalize n 2 R and rephrase Von Neumann

entropy as:

SA = � lim
n! 1

@
@n

Tr � n
A = lim

n! 1
SA ; n : (1.3.1)

Here is where replica trick comes into play. Being able to determineTr � n
A is, in fact,

a di�cult task generally but considering the analytical continuation of n, the problem

reduces to the computation of a partition function on a speci�cRiemann surface, which

is achievable using tools ofquantum �eld theories. To be able to understand it however,

few intermediate concepts must be introduced.

1.3.1 Path integral formulation of reduced density matrices

Consider a well-de�ned lattice quantum theory in1 + 1 dimension with continuous time.

Lattice sites are labelled by a discrete variablex whose domain can be �nite, semi-in�nite

or in�nite. A complete set of observable is de�ned byf �̂ xg with corresponding eigenval-

ues and eigenstates represented respectively byf � xg and jf � xgi . A generic statej i for

the system is then given by a linear combination of
 x jf � xgi = j
Q

x f � xgi , which indeed

constitute a basis. Assuming the dynamics is ruled by the hamiltonianH and recalling

Eq.(1.2.5), one might note a similitude between� and the quantum time operatore� itH ,

especially if we move to an imaginary timet ! � i� . This analogy is indeed very mean-

ingful as it allows to rephrase density matrices using path integral formalism. In details,
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elements of� in a thermal state at inverse temperature� are given by:

� (� j� 0) � h
Y

x
f � xgj � j

Y

x0

f � 0
x0g)i = h

Y

x
f � xgj

e� �H

Z(� )
j
Y

x0

f � 0
x0g)i ; (1.3.2)

with Z (� ) = Tr( e� �H ) being the partition function. The same expression can be in fact

interpreted as the path integral for the imaginary time interval[0; � ]:

� (� j� 0) =
1
Z

Z
[d� (y; � )]

Y

x0

� (� (y; 0) � � 0
x0)

Y

x
� (� (y; � ) � � x )e� SE ; (1.3.3)

with SE =
R�

0 d�L being the euclidean action andL the euclidean lagrangian. In the

interest of clarity Eq.(1.3.3) is usually juxtaposed with its graphic counterpart. As can

be observed in Fig.(1.2), the path integral version of� can be imagined as the evolution

of the initial �eld, represented as a line on the x-axis, toward the �nal con�guration with

time on the y-axis. Accordingly, the partition function Z = Tr � is found setting � = � 0,

which has the e�ect of gluing together the two edges, forming a cylinder of circumference

� . Reasonably, in the limit for � ! 1 the cylinder becomes a plane.

� (� j� 0) =

Z

�

� 0
�

(a) Path integral of � (� j� 0).

Z =
�

(b) Partition function Z .

Fig. 1.2: Path integral visualization of density matrices. On the left the
generic element� (� j� 0) is pictured. On the right the partition function
is obtained for� = � 0, hence gluing the edges in (a). The circumference
of the �nal cylinder is equal to � .

Chosen a subsystemA consisting of a compact set of points,A = [ u; v], the corre-

sponding reduced density matrix� A is obtained form Eq.(1.3.3) gluing together all the

sites not included inA , thus leaving a cut open in the cylinder, Fig.(1.3). In principle

nothing forbids to take more exotic subsystems, for instance considering disjoint intervals

of points, but in practice this cause the rest of the procedure to be way more complicated,

sometimes not even solvable at the present stage. For the purposes of my thesis then,

only compact intervals are discussed.

� A =
�

A

(a) � A for �nite time � .

� A = A

(b) � A for in�nite time � ! 1 .

Fig. 1.3: Path integral of � A .
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1.3.2 Replicated target space and twist �elds

Given the de�nition of � A , the computation of Tr � n
A is secured by makingn copies of the

above structures, forn being any positive integer, and gluing them together imposing the

appropriate continuity equations:

� j (x; � = � � ) = � j +1 (x; � = 0+ );

� n (x; � = � � ) = � 1(x; � = 0+ ):
(1.3.4)

This procedure de�nes ann-sheeted Riemann surface. In Fig.(1.4) it is pictured for n = 3

and � both �nite and in�nite. Partition functions on these surfaces are denoted byZn (A )

and are such that:

Tr � n
A =

Zn (A )
Z n

; (1.3.5)

which allow to solve Eq.(1.3.1).

� 1 � 3

� 2

�

(a) 3-sheeted Riemann surfacefor �nite � .

� 1

� 3

� 2

(b) 3-sheeted Riemann surfacefor �
in�nite.

Fig. 1.4: Pictures of 3-sheeted Riemann surfacesfor a single compact
interval A .

Identi�ed an n-sheeted Riemann surfacewith R n , the corresponding partition function

Zn (A ) can be expressed as:

Zn (A ) =
Z

[d� ]R n e�
R

R n
dxd� L [� ]; (1.3.6)

with L [� ] being the local lagrangian density. At this point, since the only points with

non-trivial e�ects of R n are those located at the boundaries ofA , we are expected to

be allowed to rephraseZn (A ) in terms of the action of abstract�elds in u and v for a

theory de�ned on the complex planez = x + i� with proper boundary conditions. Such

�elds are indeed de�ned by the above equation which encodes their correlation functions.

Still, extracting them directly from Eq.(1.3.6) would result in the formulation of non-local
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�elds[28], which is something we generally prefer to avoid in physics. To recover local �elds

it is �rst necessary to re-adapt the topology of theRiemann surfaceto the target space

where they are de�ned. This is done considering a model formed byn independent copies

of the original one so the partition function in Eq.(1.3.6) can be rewritten as:

Zn (A ) =
Z

[u;v ]
[d� 1 � � � d� n ]e�

R
C

dxd� (L [� 1 ]+ ��� + L [� n ]) : (1.3.7)

The integration over [u; v] now indicates the restricted path integral with conditions:

� i (x; 0+ ) = � i +1 (x; 0� ) for: x 2 [u; v]; (1.3.8)

and we might introduce the Lagrangian density of the multi-copy model de�ned as:

L (n) [� 1 � � � � n ](x; � ) = L [� 1](x; � ) + � � � + L [� n ](x; � ): (1.3.9)

Fields described by Eq.(1.3.7) are now local and are associated to two opposite operations

schematized in Fig.(1.5):

Tn : � i (x) 7! � i +1 (x); (1.3.10)

~Tn : � i +1 (x) 7! � i (x); (1.3.11)

with the latter essentially coinciding to the inverse of the former.

� i

� i

� i

T

� i � i � i

� i� i +1 � i +1 � i +1 ~T

u v

Fig. 1.5: Scheme of twist �elds action.

They are calledbranch-point twist �elds and are such that the partition function on

the n-sheeted Riemann surfaceis proportional to their propagator in a replicated theory:

Zn (A ) / hT n (u) ~Tn (v)i L ( n ) ;C : (1.3.12)

More in general, this identi�cation holds for correlation functions inR n as:

h� (x; �; sheetj ) � � �i L ;R n
=

hTn (u1; 0) ~Tn (v1; 0)� j (x; � ) � � �i L ( n ) ;C

hTn (u1; 0) ~Tn (v1; 0)i L ( n ) ;C

; (1.3.13)

with � j �elds in the model L (n) coming from thej th copy of L .
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1.3.3 Von Neumann entropy in an in�nite chain

In the interest of clarity this section contains a detailed analysis to derive the main

formulae. The example of an in�nite chain is accompanied with explicit calculations.

Consider the case of a single interval[u; v] of length M = ju � vj in an in�nitely long

one-dimensional chain at zero temperature. Complex coordinates are here obtained from

R n after a double transformation. In the �rst place it is necessary to map the branch cut

[u; v] to the real axis, secondly, all Riemann surfaces must be squeezed in a unique plane.

Explicitly, one has, starting from w = x + i� :

w = x + i� ! � =
w � u
w � v

! z = �
1
n : (1.3.14)

For a better understanding, the scheme can be observed in Fig.(1.6) where branch cuts

are represented by wavy lines.

u v

w �

u v

z

u v1

v2

v3

Fig. 1.6: Scheme to mapR 3 in C. Wavy lines represent branch cuts: in
a 3-sheeted Riemann surfacewe have three planes glued together which
in the last step are squeeze inC.

At this point, we consider the holomorphic component of the stress-energy tensorT(w)

which, under conformal transformations, is related toT(z) according to[29]:

T(w) =
� dz

dw

� 2

T(z) +
c

12
f z; wg; (1.3.15)

with f z; wg being the Schwartzian derivative. Once there, knowinghT(z)i C must be zero

to preserve symmetries, one may write:

hT(w)i R n
=

c
24

�

1 �
1
n2

� (u � v)2

(w � u)2(w � v)2
; (1.3.16)

which, however, corresponds to the expectation value of just a single copy ofT and must

be then multiplied for n to �nd hT (tot ) i . Finally, recalling Eq.(1.3.13) and comparing it

with the conformal Ward identity[30]:

hT(z)� (z1)� (z2)i
h� (z1)� (z2)i

= �
(z1 � z2)2

(z � z1)2(z � z2)2
(1.3.17)
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everything boils down to:

� =
c

24

�

n �
1
n

�

; (1.3.18)

which is half of the conformal scaling dimension of our twist �elds. Indeed it can be

proven � = �� . Twist �elds thus act as primary �elds under conformal transformations

and their two-point function follows the usual rule:

hTn (u) �Tn (v)i / j u � vj � 4� : (1.3.19)

Replacing this result in Eq.(1.3.12) drive us to the explicit relation:

Zn (A ) = Tr � n
A = cn M � c

6 (n� 1
n ) ; (1.3.20)

wherecn is a constant and should not be confused with the central chargec.

Ultimately, taking the analytical continuation for n non-integer, the derivative in

Eq.(1.3.1) can be solved, leaving us with the �nal result:

SA =
c
3

ln M + c0
1: (1.3.21)

Changing slightly the initial setup and moving to the case of a �nite one-dimensional

chain at criticality, the whole machinery is still e�ective but needs few adjustments. Specif-

ically, assuming a system of sizeL, the RDM � A at zero-temperature takes the form of

a cylinder with L as circumference. When mapping theRiemann surfaceto the complex

plane it is thus necessary to stretch the cylinder into a plane �rstly and subsequently one

can apply the scheme in Eq.(1.3.14). The former step is achieved using a complex expo-

nential with initial coordinates y = � + ix going to w = e
2�y

L . Propagating the variation

in successive steps leads us to:

SA =
c
3

ln
� L

�
sin

�M
L

�

+ c0
1: (1.3.22)

Coherently, in the limit for the chain growing inde�nitely, L ! 1 , Eq.(1.3.22) replicates

Eq.(1.3.21). These latter formulae are of major importance for this work as they will serve

to both check the value of the central charge is correct and verify if numerical simulations

match the predictions.

In general, whenever the topology of theRiemann surfaceis equivalent to those in

Fig.(1.4), the problem can be addressed following the above procedure. Nonetheless, for

the purposes of my thesis I won't discuss further examples as Eqs.(1.3.21), (1.3.22) already

ful�ll my needs.



Chapter 2

Analysis of free fermionic chains

In this chapter the hopping and the SSH models are studied. Starting with a brief

overview of the two, the attention is mostly drawn to describe their entanglement content.

2.1 Hopping model

Hopping models are a family of models describing systems whose dynamics is characterized

by discretized kinetics terms. This is the case, for example, of particles in discrete lattices.

They might present di�erent ranges of hopping, di�erent amplitudes and, sometimes, even

interactions and potentials are included. In the following sections I will consider arguably

the simplest among them with jumps being described by a unique hopping parameter and

occurring only between �rst neighbors in one-dimension. The analysis will treat both the

�nite and in�nite chain scenarios.

2.1.1 Finite dimensional chain

The hopping model for �rst neighbours with a single hopping parameterst is described

by the hamiltonian Ĥ :

Ĥ = � t
N � 1X

n=0

�

jni hn + 1j + jn + 1i hnj
�

; (2.1.1)

or, in second quantization formalism:

Ĥ = � t
N � 1X

n=0

�

cy
ncn+1 + cy

n+1 cn

�

: (2.1.2)

It describes the dynamics of fermions on a chain without the presence of any potential

or interaction and, precisely for this latter detail, Ĥ can be addressed either as a single-

particle or a many-body hamiltonian. N is a �nite integer and corresponds to the total

number of sites in the chain. Embedding the system on a ring, corresponding to the

introduction of periodic boundary conditionfor which we identify the sitesn and n + N ,

Ĥ commutes with the translational operatorT̂ :

T̂ =
X

m
jm + 1i hmj ; such that: [Ĥ; T̂ ] = 0: (2.1.3)

15
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Ĥ thus admits block-diagonal form. Such simpli�ed version can be derived introducing

plane waves, id est moving to momentum space. Eigenstates are then given by the discrete

Fourier transforms:

jk(q)i =
1

p
N

N � 1X

n=0

eik (q)n jni ; (2.1.4)

for k = 2�
N � q, q 2 [0; N � 1] and the prefactor 1p

N
in front to grant normalization. The

set fj k(q)igq=0 ;:::;N � 1 hence forms an orthonormal basis for the system. For completeness,

inverse transformations are eventually given by:

jni =
1

p
N

N � 1X

q=0

e� ik (q)n jk(q)i : (2.1.5)

Employing the lexical from solid state physics[31], one usually refers tok(q) aswavevector

and it either spans from [0; 2� [ or [� �; � [ depending on the domain of the quantum

number q: q 2 [0; N [ in the former case,q 2 [� N
2 ; N

2 [ in the latter. Wavevectors k(q)

are fundamental to study the energy spectrum as they identify a so calledBrilloiun zone,

where all quantum energy states are hosted.

Taking advantage of Eq.(2.1.5),Ĥ can be rephrased in momentum space, where it is

completely diagonal:

Ĥ = � t
N � 1X

n=0

�

jni hn + 1j + jn + 1i hnj
�

=

= �
t
N

N � 1X

n;q;p=0

�

eik (p)e� i [k(q)� k(p)]n jk(q)i hk(p)j + e� ik (q)e� i [k(q)� k(p)]n jk(q)i hk(p)j
�

=

= � t
N � 1X

q=0

�

eik (q) + e� ik (q)
�

jk(q)i hk(q)j =

=
N � 1X

q=0

� 2t cos [k(q)] jk(q)i hk(q)j �

0

B
B
B
@

~̂Hq=0 � � � 0
...

. . .
...

0 � � � ~̂Hq= N � 1

1

C
C
C
A

:

(2.1.6)

Once here, �xing the value of the hopping parametert in this latter expression allows

us to completely outline the energy spectrum. Few examples are provided in Fig.(2.1) in

which two essential features can be easily noted.In primis , the spectrum becoming �ner

and �ner the more sites the chain hosts.In secundis, the presence of null-energy states

for q = N
4 when N is indeed a multiple of4.

Knowing the spectrum, let me de�ne thegroundstateof the system as the zero tem-

perature �lled Fermi's sea, id est, the state with all negative eigenstates occupied. Using
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(a) Spectrum for N = 100. (b) Spectrum for N = 150.

Fig. 2.1: Spectra for two di�erent values of the hopping parameter
t = 1; 2 in a chain of: a) N = 100, b) N = 150.

ladder operators of momentum space it can be expressed as:

jgsi =
Y

jqj� qF

~cy
q j0i ; (2.1.7)

with qF = N
4 being the quantum number �xing the Fermi level. Clearly this is a many-

body state since the chain is half-�lled. At this point it is interesting to note the e�ects of

null-energy states which cause the groundstate to be degenerate. As a consequence, the

summation for jqj � qF might be improperly de�ned as states related toqF can be either

included or not in jgsi without changes in the total energy. During simulations, to avoid

any possible subtlety, a practical solution is to examine only systems withN not divisible

by 4: this way the summation immediately restricts tojqj < qF as no states related to

qF are present. With respect to Eq.(2.1.7) and tracing back the steps in Sec.(1.2), the

elements ofC in the hopping model read as:

Cmn = hgsjcy
mcn jgsi =

1
N

hgsj

2

4
N=2X

q= � N=2

e� ik (q)m ~cy
q

3

5

2

4
N=2X

p= � N=2

eik (p)n ~cp

3

5 jgsi =

=
1
N

N=2X

q;p= � N=2

e� i [k(q)m� k(p)n] hgsj~cy
q~cpjgsi =

=
1
N

X

jqj<q F

e� ik (q)( m� n) :

(2.1.8)

From there, indicating with �q the extremes forq, such that jqj < qF ! q 2 [� �q; �q], one
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can further manipulate the result as follows:

Cmn =
1
N

�qX

q= � �q

e� ik (q)( m� n) =
1
N

�qX

q= � �q

e� i 2�
N (m� n)q =

1
N

�qX

q= � �q

bq =

=
b� �q

N

2�qX

q=0

bq
� 1 � b

1 � b

�

=
b� �q

N (1 � b)
(1 � b2�q+1 ) =

=
b

1
2

Nb
1
2

b� (�q+ 1
2 ) � b+(�q+ 1

2 )

b� 1
2 � b

1
2

=
1
N

ei 2�
N (m� n)(�q+ 1

2 ) � e� i 2�
N (m� n)(�q+ 1

2 )

ei 2�
2N (m� n) � e� i 2�

2N (m� n)
=

=
1
N

sin [k(�q)(m � n) + �
N (m � n)]

sin [ �
N (m � n)]

:

(2.1.9)

Note that for m = n this expansion would be unde�ned. For this trivial case however it is

enough to consider the initial formula (2.1.8) as it becomes:

A

Fig. 2.2: Sketch of a com-
pact subsystem A for a
hopping model on a ring.

Cmm =
1
N

�qX

q= � �q

1 =
1
2

; (2.1.10)

at least as long as we consider a chain with an even number

of sites. At this point, selected a compact subsystemA as in

Fig.(2.2), which can be thought as the set of consecutive sites

A = [ i; i + M ] with M being its size, we aim to de�ne� A .

We thus reduce the correlation matrixC to CA , discarding

all the terms involving sites not belonging to the subsystem:

C =

0

B
B
B
@

C1;1 � � � C1;N
...

. . .
...

CN;1 � � � CN;N

1

C
C
C
A

; CA =

0

B
B
B
@

Ci;i � � � Ci;i + M
...

. . .
...

Ci + M;i � � � Ci + M;i + M

1

C
C
C
A

and then numerically compute its eigenvalues. In Fig.(2.3(a)) an example of entanglement

spectrum for a subsystem of sizeM = 30 is provided. As it can be noticed, eigenvalues

are no longer just zeros and ones but they still have the tendency of staying close to those

extremes. This is a consequence of the introduction of boundaries and the formation of

edge states while the bulk remain unchanged.

Finally, all unknown variables in Eqs.(1.2.12), (1.2.13) have been found so one can

determine the reduced density matrix and entanglement entropy of subsystemA. A plot

for this latter can be observed in Fig.(2.3(b)) for di�erent sizesM of the subsystem. What

emerges is the graph of a reversed parabola showing a maximum whenM corresponds

precisely to half the size of the chain. Over numerical results a �t has been performed using

the equation for Von Neumann entropy predicted by CFT, Eq.(1.3.22), which allowed us

to determine the two parametersc = 1 and c0
1 = 0:73. These results agree with the

expected values[27] with the former telling us that we are studying Dirac's fermions.
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(a) Eigenvalue spectrum forM = 30. (b) Von Neumann entropy for variable sizes.

Fig. 2.3: a) Eigenvalue distribution for a subsystem of sizeM = 30 on
a ring of sizeN = 150, b) Von Neumann entropies comparison from a
numerical and a CFT approach.

2.1.2 In�nite dimensional chain

A

Fig. 2.4: Sketch of a subsystem in the in�nite chain.

Extending the analysis to an in�nite chain is straightforward but it needs the proper

expedients. First of all, as one might expect from what claimed beforehand about

Fig. 2.5: Energy spectrum for an in�nite chain.

energy eigenvalues getting denser and

denser, in this case the system devel-

ops a continuous energy band as it can

be observed in Fig.(2.5). Thereafter,

de�ned once more the groundstate as

a �lled Fermi sea, the goal is to derive

C. Nonetheless, for an in�nite chain,

this would be an impossible task asC

would be an in�nite dimensional ma-

trix. Taking a look back, one might

realize this is not really necessary as

to de�ne the reduced density matrix

� A the correlation function method, in

reality, only makes use ofCA . Thus,
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picked a subsystemA as sketched in Fig.(2.4) and starting from Eq.(2.1.8), it is just a

matter of studying the limit for N going to in�nite of:

Cmn =
1
N

sin [k(�q)(m � n) + �
N (m � n)]

sin [ �
N (m � n)]

���!
N !1

1
� (m � n)

sin
� �

2
(m � n)

�

: (2.1.11)

and let the code run for all pair of indexesm; n 2 A . In Fig.(2.6) the evolution of

Von Neumann entropy is plotted for a subsystem of sizeM ranging from 1 to 300 sites.

As anticipated, this time SA has a di�erent behaviour and shows a logarithmic growth.

Fitting numerical results with CFT predictions, Eq.(1.3.21), we recover the same values

for the central chargec = 1 and the constantc0
1 = 0:73, proving once more the reliability

of the code.

Fig. 2.6: Von Neumann entropy evolution for subsystem sizeM varying
from 1 to 300.

2.2 SSH model

The follow-up in the analysis of free fermionic chains is the 1-dimensionalSSH model[32],

once more assuming in the �rst place �nite dimension and periodic boundary condition.

A

B

n
t1

t2

Fig. 2.7: SSH model.

A very detailed analysis is provided

in this case as this is the model I

will focus on for the remaining part

of the elaborate. SSH describes a so

called dimerized chain consisting in

an hopping model with alternating
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parameterst1 6= t2. The limit case for t1 = t2 just relates to the previous sections.

2.2.1 Finite dimensional chain

Starting from the �nite dimensional case, SSH chains are described by hamiltonians of

the form:

Ĥ =
N � 1X

n=0

"

t1

�

j2ni h2n + 1j
�

+ t2

�

j2n + 1i h2n + 2j
�

+ h:c:

#

; (2.2.1)

or, in second quantization formalism:

Ĥ =
N � 1X

n=0

"

t1

�

cy
2nc2n+1 + cy

2n+1 c2n

�

+ t2

�

cy
2n+1 c2n+2 + cy

2n+2 c2n+1

� #

: (2.2.2)

There exists even a third formulation involving the notion of sub-lattices. Sub-lattices

can be observed in Fig.(2.7) and using them the hamiltonian becomes:

Ĥ =
N � 1X

n=0

"

t1

�

jn; Ai hn; B j
�

+ t2

�

jn; B i hn + 1; Aj
�

+ h:c:

#

(2.2.3)

. Note that, independently from the formulation chosen,n is no longer a site index as

before but it turned in a cell index essentially. The process to diagonalize the hamiltonian

this time is more articulated but still crucial to be able to determine the groundstate in

a similar fashion as before. In the following lines I summarized it by providing the main

results.

Acknowledging SSH also enjoys a translational symmetry, this time brought in by a

slightly di�erent operator:

T̂ =
N � 1X

n=0

�
jn + 1; Ai hn; Aj + jn + 1; B i hn; B j

�
; (2.2.4)

we are prone to move again to momentum space. In this case, however, it is necessary to

introduce 2 sets of plane waves, one localized on sub-latticeA and one onB:

j~k(q)+ i =
1

p
N

N � 1X

n=0

eik (q)n jn; Ai ; (2.2.5)

j~k(q)� i =
1

p
N

N � 1X

n=0

eik (q)n jn; B i : (2.2.6)

RecastingĤ in terms of Eqs.(2.2.5),(2.2.6) results in matrix blocks~̂Hq 2 M 2x2 of the

form:

~̂Hq =

0

@
0 t1 + t2 e� ik (q)

t1 + t2 eik (q) 0

1

A for q = 0; � � � ; N � 1: (2.2.7)

Evidently additional manipulations are required to fully diagonalize the problem but, from
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matrices (2.2.7), it is already possible to derive the relation for eigenvalues and outline

the energy spectrum. Readily one has:

Eq = �
q

t2
1 + t2

2 + 2t1t2 cos[k(q)]; (2.2.8)

and, expressing staggered parameters as:

t1 = t(1 + � );

t2 = t(1 � � );
(2.2.9)

allows us to plot the energy bands for di�erent� as in Fig.(2.8(a)). Looking at them, it

straightforward to realize how the introduction of a parameter� 6= 0 causes the presence

of a gap between the two bands of width4� . Systems with a similar energy spectrum are

in fact known as gapped system and are generally used to model insulators.

(a) Energy spectrum for N = 100. (b) Energy spectrum limit for an in�nite chain.

Fig. 2.8: SSH model's energy spectra evolution towards the limit for
N going to in�nite for t = 1 for � = 0:5; 0:3; 0:1.

The de�nition of a brand new set of operators is then required to ful�ll diagonaliza-

tion, let us therefore introducef � q; � qgq=1 ;��� ;N � 1. Such operators must satisfy the usual

canonical anti-commutation relations in order to preserve the fermionic nature of the

underlying theory and are obtained from the transformations:

0

@
~cq+

~cq�

1

A = Uq

0

@
� q

� q

1

A  ����������!
complex conjugation

0

@
~cy

q+

~cy
q�

1

A = U�
q

0

@
� y

q

� y
q

1

A ; (2.2.10)
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with Uq being the unitary matrix that diagonalizes ~̂Hq:

Uq =

0

B
B
@

1p
2

�
r

� q�
2� q+r

� q+
2� q�

1p
2

1

C
C
A for: � q+ = t1 + t2 eik (q) = � �

q�
: (2.2.11)

According to this formulation, it can be proven� y
q=� q are the operators related to positive

energy states while� y
q=� q to negative ones. The de�nition of the groundstate, intended

again as the zero temperature �lled Fermi's sea, thus follows as:

jgsi =
N � 1Y

q=0

� y
q j0i ; (2.2.12)

and will serve once more as the reference state to construct the correlation matrixC.

Recallingn plays the role of cell index for the SSH model, each elementCmn actually

counts 4 di�erent terms as it keeps in account all possible interactions between the particles

of the m� th ; n� th cells. Intuitively, this can be sketched in a clear way using matrix

representation:

Cmn = hgsjcy
mcn jgsi =

0

@
hcy

m;A cn;A i hcy
m;A cn;B i

hcy
m;B cn;A i hcy

m;B cn;B i

1

A : (2.2.13)

Finding their direct expressions for everyA-B combination is thus our next goal. For a

matter of clarity, let me �rst disclose explicitly the decomposition rules for momentum

operators:

8
>><

>>:

~cy
q+

= 1p
2

�

� y
q �

r
� q+
� q�

� y
q

�

~cy
q�

= 1p
2

� r
� q�
� q+

� y
q + � y

q

�  ��!
c.c.

8
>><

>>:

~cq+ = 1p
2

�

� q �
r

� q�
� q+

� q

�

~cq� = 1p
2

� r
� q+
� q�

� q + � q

� (2.2.14)

as an helpful intermediate step to refer in the upcoming computations.

ˆ A-A correlation term, Cmn;AA :

Cmn;AA = hcy
m;A cn;A i =

"
1
N

N � 1X

q;p=0

e� i [k(q)m� k(p)n]

#

h~cy
q+

~cp+ i =

=

"
1
N

N � 1X

q;p=0

e� i [k(q)m� k(p)n]

#"
1
2

#

h� y
q� pi =

"
1

2N

N � 1X

q;p=0

e� i [k(q)m� k(p)n]

#

� q;p =

=
1

2N

N � 1X

q=0

e� ik (q)[m� n] = 0:

(2.2.15)

Di�erently from the result obtained for the hopping model, in this case the series
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sums over all possible values ofq = 0; � � � ; N � 1, ending in a trivial outcome.

ˆ B-B correlation term Cmn;BB behaves precisely as the previous one since its decom-

position leads to the very same expression:

Cmn;BB = hcy
m;B cn;B i =

"
1
N

N � 1X

q;p=0

e� i [k(q)m� k(p)n]

#

h~cy
q�

~cp� i =

=

"
1
N

N � 1X

q;p=0

e� i [k(q)m� k(p)n]

#"
1
2

#

h� y
q� pi = 0:

(2.2.16)

ˆ A-B correlation term Cmn;AB :

Cmn;AB = hcy
m;A cn;B i =

"
1
N

N � 1X

q;p=0

e� i [k(q)m� k(p)n]

#

h~cy
q+

~cp� i =

=

"
1
N

N � 1X

q;p=0

e� i [k(q)m� k(p)n]

#"

�
1
2

s
� q+

� q�

#

h� y
q� pi =

= �
1

2N

N � 1X

q=0

e� ik (q)[m� n]

s
t1 + t2 eik (q)

t1 + t2 e� ik (q)
:

(2.2.17)

The opposite correlation termCmn;BA can be derived from Eq.(2.2.17) upon complex

conjugation of the terms inside the square root. As a matter of factCmn;AB =

Cnm;BA must hold.

Before moving on with the analysis of entanglement entropy, let me point out how, com-

putationally wise, the workload already increases a lot here: mixed terms from the corre-

lation matrix can be in fact only esteemed summing every single contribute at time as no

further simpli�cation have been spotted. Looking at Figs.(2.9(a)),(2.9(b)) very di�erent

behaviours arise compared to hopping model. Clearly, both of them can be traced back

to the introduction of the half-gap parameter� .

Commencing from the so calledsaturation phenomenon, this is a consequence of the

system not being at criticality. As soon as this happens, correlation functions lose their

power law nature and start to decay exponentially with a �nite correlation length� 1.

In such condition CFT's methods are no longer applicable. More details can be found

in the introduction of [33]. Still, it can be observed how, before reaching aplateau, SA

follows very accurately the trend of the system at criticality within a certain interval.

Such circumstance can be explained in relation to the dimension of the subsystem: ifM

is small enough with respect to the correlation length the exponential decay does not drop

su�ciently fast inside the partition and the subsystem behaves like it is still at criticality.

In Fig.(2.9(a)) this is the case for� = 0:001 for which SA never splits from the critical

1Recalling the usual notation for correlation lengths, here� should not be confused with the eigen-
vanlues ofCA .
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(a) SA saturation phenomenon.

(b) SA in di�erent cut scenarios.

Fig. 2.9: Relevant traits of Von Neumann for a �nite SSH model.

prediction. Analyzing the exponential decay in relation to� , Fig.(2.10), it can be stated

correlation length scales approximately as� / � � 1. No need to mention, the more� is

close to zero, the more Von Neumann entropy resembles Fig.(2.3(b)).

Pointing the attention at Fig.(2.9(b)) the strong dependence of Von Neumann entropy

on subsystem boundaries emerges. It should not surprise, in fact, how performing a double
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(a) Exponential decay for � = 0 :5. (b) Exponential decay for � = 0 :1.

(c) Exponential decay for � = 0 :05. (d) Exponential decay for � = 0 :01.

Fig. 2.10: Correlation lengths for � = 0:5; 0:1; 0:05; 0:01.

cut on two strong links t1 (SS) instead of two weak onest2 (WW) results in completely

di�erent values of SA , regardlessM being the same. Such fact should appear even more

reasonable considering the limit for� = 1. In this case one usually says the chain is

completely dimerized: weak links no longer exist thus performing a cut ont2 would

contribute with no entanglement at all.

2.2.2 In�nite dimensional chain

As for the hopping model, lettingN ! 1 allows us to move to the in�nite chain scenario.

While the energy spectrum can be derived rather straightforwardly and was already pro-

vided aside its discrete counterpart in Fig.(2.8(b)), adapting the formulae to derive the

correlation matrix is quite challenging. First of all, starting from Eq.(2.2.17), one must
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recast the series into an integral to be able to compute it. In particular, since the extremes

of integration would go to in�nite, for the sake of simplicity it is simpler to consider as

variable of integration the wavevectork given its domain is �nite. It thus follows:

Cmn;AB = �
1

2N

N � 1X

q=0

e� ik (q)[m� n]

s
t1 + t2 eik (q)

t1 + t2 e� ik (q)

q! k(q)
����!
N !1

�
Z �

� �

dk
4�

e� ik (m� n)

s
t1 + t2eik

t1 + t2e� ik
:

(2.2.18)

This formula would be already acceptable to build a code around it but very costly com-

putationally. With few manipulations however, it is possible to achieve a very satisfactory

result to reduce the execution time. To not interrupt abruptly the �ow of the thesis, here

I just provided the �nal result, relegating the whole procedure in appendix(A):

Cmn;AB �
1
2

an� m =
1
2

ar =

8
>><

>>:

� r

2

�
� 1

2
r

�
� +

�( 1
2 )2

Z 1

0
dt t r � 1

2 (1� t ) � 1
2

(1� zt) � 1
2

if: r > 0;

� � r

2

� 1
2

� r

�
�

�( � 1
2 )�( 3

2 )

Z 1

0
dt t � r � 3

2 (1� t )
1
2

(1� zt)
1
2

if: r < 0:
(2.2.19)

Using the above result it is possible to completely determineCA and thus derive its

eigenvalues.

At this point, following the modus operandifor the �nite SSH chain, Von Neumann

Entropy is analyzed with an eye on saturation and di�erent cut possibilities. In Fig.(2.11)

the evolution ofSA for di�erent subsystem sizesM and various� is plotted. For an in�nite

chain the subsystem has no theoretical limitation concerning its sizeM : this allows to

simulate also very big subsystems and thus appreciate the e�ect of saturation even for

considerably small values of� as � = 10� 3 or � = 10� 4. Starting from the left picture,

Fig.(2.11(a)), saturation is only visible for� down to 10� 2 asM ranges just from[0; 160].

However, extending its range toM 2 [0; 1000], Fig.(2.11(b)) on the right, compels also

the gap for � = 10� 3 to become signi�cant whileSA (10� 4) slightly separates from critical

behaviour only at the very end . All in all, saturation is again expected whenM / � � 1.

Regarding di�erent cut scenarios, no further comments are needed since the outcomes

are essentially identical to the one observed for a �nite chain. In this regard, plots in

Fig.(2.9(b)) and Fig.(2.12) are very relatable with Von Neumann entropy splitting in 3

di�erent branches.
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(a) SA saturation phenomenon forM 2 [0; 160]. (b) SA saturation phenomenon forM 2 [0; 1000].

Fig. 2.11: Von Neumann entropy saturation for a �nite subsystem in
an in�nite SSH chain for di�erent values of � .

Fig. 2.12: SA in di�erent cut scenarios.



Chapter 3

Symmetry resolved entanglement

entropies

Symmetries always played a crucial role in understanding physics and sorting out its

complexity. One cannot help but acknowledging their importance as they are studied in

a vast majority of �elds, varying from classical to quantum domains, including entangle-

ment measures. In this latter case, taking advantage of symmetries, allows us to better

characterize entanglement.

To understand how, consider the example of a quantum many body system with

an internal symmetry U(1). Let � be its density matrix and Q̂ the operator for the

conserved quantity, it follows[�; Q̂] = 0. Identi�ed a bipartition of the total system A-B

and assuming the charge operator splits aŝQ = Q̂A + Q̂B, relation [�; Q̂] = 0 can be traced

out over B �nding [� A ; Q̂A ] = 0. This implies � A also admits a block-diagonal form as a

direct consequence of the above premises. In particular, with respect to the eigenbase of

Q̂A , it can be expressed as:

� A = � q �̂ q� A = � q [p(q)� A (q)]; (3.0.1)

with �̂ q being the projector on the charge sector related to the eigenvalueq, � A (q) the cor-

responding collapsed version of the RDM andp(q) the charge distribution in A . Formally

p(q) � Tr(� q� A ) and is known asfull counting statistics FCS in the literature[34][35].

Rephrasing� A in charge sectors allows us to readily re�ne Von Neumann entropy:

SA = � Tr[ � A ln � A ] = �
X

q
h� qj� A ln � A j� qi =

= �
X

q
p(q) ln p(q) �

X

q
p(q)SA (q) =

� Sf + Sc;

(3.0.2)

where the de�nition of symmetry resolved entanglement entropySREE has been intro-

duced for:

SA (q) = Tr[ � A (q) ln � A (q)]: (3.0.3)

In Eq.(3.0.2) the �rst contribution, Sf , is the Shannon entropylinked to charge �uctua-

tions while the second,Sc, is calledcon�gurational entanglement entropy[36] and measures

29



30 Chapter 3. Symmetry resolved entanglement entropies

the total entropy due to each sector, each respectively weighted byp(q).

In parallel, the de�nition extends to symmetry resolved Rényi entropiesSRRE accord-

ing to:

Sn;A (q) =
1

1 � n
ln Tr[ � n

A (q)]; for n > 1: (3.0.4)

EE are expected to spread evenly between charge sectors whenq� h Q̂A i is much smaller

then the standard deviation ofQ̂A itself. Such result is known asentanglement equipar-

tition and has been proved for multiple systems.

The aim of this �nal chapter is that of studying SRRE for the SSH model, providing

results able to match simulations' outcomes. Still, before proceeding, an additional piece

of theory is necessary as evaluating symmetry resolved quantities using the equations

above generally requires severe e�orts. In the present case, starting from Eq.(3.0.4),

SREE can be rephrased as:

Sn;A (q) =
1

1 � n
ln Tr

�� �̂ q� A

p(q)

� n �

=
1

1 � n
ln

Tr[( �̂ q� A )n ]
p(q)n

=
1

1 � n
ln

� Zn (q)
Z1(q)n

�

; (3.0.5)

with the quantities Zn (q) corresponding to:

Zn (q) � Tr[( �̂ q� A )n ]: (3.0.6)

Note p(q) coincides exactly withZ1(q) and can be evaluated through its characteristic

function:

Z 1(� ) = hei� Q̂A i = Tr( ei� Q̂A � A ); (3.0.7)

via Fourier transform:

Z1(q) =
Z + �

� �

d�
2�

e� i�q Z 1(� ): (3.0.8)

Generalizing the notion of characteristic function to any ordern:

Z n (� ) = Tr( ei� Q̂A � n
A ) (3.0.9)

it is possible to determine allZn (q) and thus fruitfully address the computation of SRRE

without the need to extract the projectors� q. Objects in Eq.(3.0.9) are calledcharged

momentaand will have therefore a central role in the upcoming sections.
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3.1 SRRE in a �nite subsystem in SSH

Charge operatorQ̂ in a free fermion chain generally corresponds to the number operator

since the total number of particle is conserved. This means:

Q̂ =
N � 1X

j =0

n̂j ���������!
restricting to A :

Q̂A =
X

j 2A

n̂j ; (3.1.1)

but, for convenience, we will use:

~QA = Q̂A � h Q̂A i =
X

j 2A

(n̂j �
1
2

); (3.1.2)

as it allows to considerably facilitate future expressions. Yet, some caution is needed as

these advantages do not come completely for free: whenM is odd, translatingQ̂ according

to Eq.(3.1.2) implies it will turn into an half-integer. Replacing ~QA in the equation for

charged momenta, Eq.(3.0.9), along with the corresponding RDM, one derives:

Z n (� ) = Tr
�


 j 2A

�

(1 � � j )n j0i h0j j + � n
j j1i h1j j

�

ei� ~QA

�

=

=
Y

j 2A

�

(1 � � j )ne� i �
2 + � n

j ei �
2

�

:
(3.1.3)

Setting A = [1; M ] and recalling the identity for the eigenvalues ofCA in Eq.(1.2.14), the

above equation becomes:

Z n (� ) =
M=2Y

j =1

�

(1 � � j )2n + � 2n
j + 2(1 � � j )n (� j )n cos(� )

�

� � (M %2)
�� 1

2n

�

2 cos
� �

2

��

;

(3.1.4)

with the � (M %2)-term being there only when the size of the sub-system is odd. Let me

point out how, in this latter case, charged momenta become anti-periodic. Once charged

momenta are known, the problem is basically solved. It is then interesting to look at the

behaviour of charge distribution FCS and SRRE, at di�erent orders, and especially to

consider how those quantities vary with respect to sub-system size.

On general groundsp(q) is a gaussian distribution centered in zero with variance

strongly conditioned by both � and M . When the subsystem is taken to be close to

criticality, Fig.(3.1), variance is given by the relation:

� 2 =
1
� 2

ln
M
2

+ const; (3.1.5)

and reasonably no di�erences emerge if cuts are performed on two weak (WW), two

strong (SS) or mixed links (WS). In the example provided for� = 10� 4, the value of the
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constant has been esteemed performing the �t in Fig.(3.1(b)). Replacingconst = 0:314

in Eq.(3.1.5) and consideringM = 400 one immediately recovers the variance� 2 = 0:848

of Fig.(3.1(a)). This latter plot also highlights how, for di�erent cuts, we obtain the very

same distribution as all data can be �tted by a single gaussian.

(a) Independence ofp(q) from cut edges. (b) Logarithmic growth of variance � 2.

Fig. 3.1: Behaviour ofp(q) and � 2 in conditions resembling criticality.
In (a) neutrality of p(q) with respect to cutting conditions appear evi-
dent as all numerical data can be �tted by the same gaussian. In(b)
the �t of Eq.(3.1.5) is plotted.

As the subsystem loses its critical-like behaviour, bothp(q) and � 2 start feeling e�ects

related to cuts. This can be observed in Fig.(3.2(a)) where distributions for WW, SS

and WS no longer coincide and, for each of them, a di�erent gaussian can be delineated.

Concerning variance, Fig.(3.2(b)), again a phenomenon of saturation takes place.

Drawing the attention to symmetry resolved Rényi entropiesSn;A (q), depending on

their order n, the corresponding charged momenta and Fourier transforms must be com-

puted. In Fig.(3.3) a sketch of the variousZn (q) for n ranging from 1 to 5 is provided.

As it can be observed, these functions behave in a similar way and tend to drop very

quickly as soon as one moves from the origin. Also, the higher is the ordern, the smaller

is the distributions. When it comes to simulations, this turns out to be a strong lim-

iting factor since the Zn (q), even forq just few units away from the origin, are already

smaller than a �oat datatype precision, causing Eq.(3.0.5) to be unusable. To overcome

such constraint the more natural solution would be to use a more precise datatype but

this has considerable consequences on execution times. To prevent such circumstance the

focus has been thus directed uniquely to Rényi entropies of second order since, as it will

be shown, without changing datatype it is already possible to compute their values in

enough charge sectors to derive appreciable results. Second order SRRE (S2;A (q)) will

thus be the main quantity under investigation from now on.
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(a) Distinct charge distributions for WW, SS, WS. (b) Saturation of � 2.

Fig. 3.2: Behaviour of p(q) and � 2 in conditions far from criticality.
in (a) charge distributions in the three scenarios, WW, SS, WS, are
plotted. For each of them a di�erent gaussian is derived as proof of
their distinction. In (b) saturation phenomenon for variance is plotted.

(a) Fourier transform for � = 10 � 2. (b) Fourier transform for � = 10 � 4.

Fig. 3.3: Plots of Fourier transforms with the ordern varying from 1
to 5 for: (a) � = 10� 2, (b) � = 10� 4.

By simulating and plotting S2;A (q) varying parameters� and M for all possible cutting

scenarios WW, SS and WS; the presence of few recurrent patterns might be spotted.

Fig.(3.4) and Fig.(3.5) are the some up of this process for which the most signi�cant and

understandable plots have been picked.

The �rst crucial aspect, recognizable even after a quick glance, is how the parity of

M a�ects the behaviour of S2;A (q). When M is odd, Fig.(3.4), Rényi entropies have a
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regular behaviour while, when is odd, Fig.(3.5), they display an oscillating trend. Further,

comparing WW and SS, another detail emerges: SRREs oscillate for both but with a

complete opposite phase upon charge sector.

Finally, observing more carefully picture by picture, a recursive trait unfolds forM

getting bigger asS2;A (q) seems to converge to precise limits. Speci�cally, whenM is even,

Rényi entropy's oscillations sort of stabilize between two �xed extremes, viceversa, when

M is odd,S2;A (q) appears to �atten towards a constant value. This latter remark is what

inspired us to consider subsystems of in�nite dimension looking for a method to predict

exactly SRRE in this limit.

(a) WS cuts for � = 0 :1. (b) WS cuts for � = 0 :01.

(c) WS cuts for � = 0 :001.

Fig. 3.4: Second order SRRE behaviour for� = 10� 1; 10� 2; 10� 3 in
cutting scenario WS.
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(a) WW cuts for � = 0 :1. (b) SS cuts for � = 0 :01.

(c) WW cuts for � = 0 :01. (d) SS cuts for � = 0 :01.

(e) WW cuts for � = 0 :001. (f) SS cuts for � = 0 :001.

Fig. 3.5: Second order SRRE behaviour for� = 10� 1; 10� 2; 10� 3 in
cutting scenarios WW and SS.
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3.2 SRRE in an in�nite subsystem in SSH

Thinking about it, this problem shows up as an impossible one to solve, at least with the

elements of theory discussed in previous chapters. To an in�nite subsystem, in fact, it

corresponds an in�nite dimensional reduced correlation matrixCA 2 M 1�1 for which

solving the eigenvalue problem numerically is just an helpless task. Still, SSH model

admits another procedure to determine its entanglement spectrum and, in particular, this

is an analytical one[37]. Before outlining the machinery behind it, let me point out how,

unlike for �nite subsystem, this time even a single cut can be enough to isolateA as the

other end of the chain just goes to in�nite.

Introducing the quantities:

� = exp
�

� �
I (k0)
I (k)

�

with: I (k) =
Z 1

0

dt
q

(1 � t2)(1 � k2t2)
(3.2.1)

and:

k =

8
><

>:

� if: � 2 < 1 $ � > 0

� � 1 if: � 2 > 1 $ � < 0
;

k0 =
p

1 � k2;

(3.2.2)

Fig. 3.6: Sketch of� as a function of� .

eigenvalues� m of CA are then given by:

� m =
1

1 + � m
with:

8
><

>:

m odd if: � > 0;

m even if: � < 0:
(3.2.3)

Note that no restrictions applies tom which

can be also negative and in fact, eigenvalues

� m still satisfy the relation � m = 1 � � � m . In

the interest of clarity, it should be pointed out

Eq.(3.2.3) speci�cally generates eigenvalues for

an half-in�nite chain with a single cut on (1� � )

and not the other way around. Such distinc-

tion is supported by the following analysis of the limits� ! � 1:

ˆ For � < 0, as a consequence ofm = 0, one always has� 0 = 0:5. Taking the limit

for � ! � 1, this eigenvalue becomes the only non-trivial one as all others reduce to

either 0's or 1's. Such eventuality is none but having a single cut taken in a dimer

of a fully dimerized chain, id est, on its strong link S.

ˆ On the other hand when� > 0, one has to use odd integers and shall consider
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the opposite limit case. For� ! 1 one gets� = 0 and thus ends up with � m

being only 0's or 1's. Recalling Eq.(1.2.13), those are linked to a non-production of

entanglement entropy for the subsystem which, in a dimerized chain, corresponds

to performing a cut between two adjacent dimers, hence the weak link W of an SSH

chain.

To eventually compose the full spectrum of an in�nite subsystem with two edges it is

enough to consider two sets of eigenvalues instead of one, paying attention to the types of

cuts characterizing the partition. Taking as an example the case of subsystems with one

boundary on a weak and one on a strong link (WS), one should combine the� m 's coming

from the use of both even and odd integers. Similarly, if boundaries are two of the same

type, one should just take a double copy of each� m .

As a solidity check, we compared the entanglement spectra obtained analytically ac-

cording to Eq.(3.2.3) with numerical results obtained using reduced correlation matrix

method in a SSH chain far from criticality but with a �nite size. In this latter case in

fact, choosing a subsystem withM greater than � � 1 of few orders of magnitude, implies

that the two boundaries barely communicate one with the other thus, up to exponentially

small corrections, the subsystem is expected to behave as if it has in�nite length. By

virtue of completeness, an agreement up to the13th digit has been recorded for eigenval-

ues simulated withM = 1000 and � = 0:05.

Before moving on with the analysis of second order SRRE let me just make one

last comment. Being analytical, this method would generate in�nite many eigenvalues

populating the spectrum. Nonetheless when it comes to coding only a bunch of them

are really relevant as all the others are just close to either0 or 1 beyond �oat precision.

Speaking of this set of relevant eigenvalues, as� becomes smaller and smaller, it counts

more and more elements. This is a consequence of the variation of� , Eq.(3.2.1), whose

plot can be found in Fig.3.7(a). Accordingly, powers� m in Eq.(3.2.3) also increase causing

the corresponding eigenvalues to detach from extreme values0 or 1. Such activation of

eigenvalues can be clearly observed in Fig.3.7(b),3.7(c) for few positive even indexes. All

in all, the closer the system is to criticality, the wider the set of relevant eigenvalues

get. Coherently with what we claimed before this is to be expected as to replicate this

result via simulations we would need a bigger subsystem in order for the two edges not

to communicate.

Using this analytical approach with explicit expressions for eigenvalues of the entangle-

ment spectrum opens to the possibility of rephrasing Von Neumann entropy, Eq.(1.2.13).
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(a) Evolution of � (� ) plotted in reversed logarithmic scale
for � .

(b) Evolution of few � 2n (� ) powers plotted in reversed
logarithmic scale for � .

(c) Eigenvaluesactivation for � (� ) increasing.

Fig. 3.7: Plots of � and eigenvalues activation� 2m for � varying from
10� 8 to 10� 1.

Depending on the edge scenario one starts with:

S = �
X

m2 Z

�

� m ln � m + (1 � � m ) ln(1 � � m )
�

if WS ; (3.2.4)

S = � 2
X

m

�

� m ln � m + (1 � � m ) ln(1 � � m )
�

with:

8
><

>:

m odd, if WW;

m even, if SS;
(3.2.5)

with the presence of a prefactor2 in WW-SS scenarios to remind� m are two-fold degen-
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erate when identical cuts are taken. From there, given the following identity:

� m ln � m + (1 � � m ) ln(1 � � m ) =
� m ln(� m )

1 + � m
� ln (1 + � m ); (3.2.6)

and recalling the relation for� m and � � m , we might reduce above formulae as:

S = ln(2) � 2 ln(� )
� X

m2 Z +

� m� m

1 + � m

��

+ 2 ln
� Y

m2 Z +

(1 + � m )
�

if WS ; (3.2.7)

S =

8
>>>><

>>>>:

� 4 ln(� )

"
P

m> 0

�
m� m

1+ � m

� #

+ 4 ln

"
Q

m> 0(1 + � m )

#

WW, m odd;

2 ln 2 � 4 ln(� )

"
P

m> 0

�
m� m

1+ � m

� #

+ 4 ln

"
Q

m> 0(1 + � m )

#

SS,m even;

(3.2.8)

with 2 ln 2 being the term due to m = 0 which has been taken out from sequences

cause it has no counterpart� � 0 or, to be the more precise, it is its own counterpart.

Eq.(3.2.7),(3.2.8) have been tested comparing their results with numerical outcomes.

3.2.1 SRRE for an in�nite half-chain

Addressed the problem of computing entanglement spectrum we can �nally draw back the

attention to second order SRRE. Recalling the equation for charge momenta, Eq.(3.1.4),

the �rst task is to understand whether the dimension of our system is even or odd.

However, sinceM is in�nite, answering this question is a subtle point and we can only

try to solve it using theoretical arguments.

Assuming the limit of a fully dimerized SSH we proved for an in�nite half-chain with

boundary on a strong link, that its entanglement spectrum becomes completely trivial

except for � 0 = 1
2 . Being this the only relevant term we might conjecture that from the

other end no contributions to entanglement entropy arise which implicitly implies the

partition must end between two dimers, on a weak link. As a consequence, when the

half-chain has the cut on S,M has to be treated as odd while, as soon as we include or

remove an adjacent site, moving the cut on W,M turns even.

The analysis of the 2 cases follows. An additional index� has been added toZ (� )
n (� )

to distinguish them: � = 0 when the cut is on W,� = 1 vice versa. The former will be

identi�ed as odd casewhile the latter as even casedue to the integers used to create their

entanglement spectra.
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