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Introduction

In mathematics, it is useful to represent algebraic structures as linear
maps between vector spaces. This branch of algebra is called representation
theory and here is where this thesis is located. The concepts of induced
and produced representations of rings were introduced by D. G. Higman in
[2] and then further explored by R. J. Blattner in [1] in the context of Lie
algebras (which are closely related to rings through their universal enveloping
algebras).

There is a Realization Theorem proved by Guillemin and Sternberg (and
later extended by Rim) which embeds any transitive Lie algebra into the Lie
algebra of continuous derivations of the dual of a certain symmetric algebra
(which is isomorphic to an algebra of power series if the field has charac-
teristic 0). Blattner’s paper gives a stronger statement for the Realization
Theorem and it showcases analogous results to the ones already exposed by
G. W. Mackey on group representations. His work isn’t aimed at students
and is rather concise compared to the complexity of the subject, which re-
sults in many details being skimmed over or given for granted. Because
of this, directly approaching Blattner’s study might prove itself challenging
even for readers with reasonable knowledge of the concepts of Lie algebras
and their representations. This thesis tries to cover (most of) [1] as clearly
and thoroughly as possible, so that the reader’s effort may be reduced to the
minimum. The original work also includes results regarding Lie groups and
further expands on the topological structure of produced representations. We
will not cover these parts.

The first chapter is dedicated to introducing the notions of tensor prod-
ucts between modules over rings and universal enveloping algebras of Lie
algebras. This is not a very in-depth introduction and will only cover what
is needed for understanding the later chapters. In §2, we show important
properties and structures of induced and produced Lie modules. The next
two chapters are focused on produced representations: we showcase the
Guillemin-Sternberg-Rim theorem in §3 and give some results on systems
of imprimitivity in §4. The module produced from the field (regarded as a
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trivial Lie module) is of particular importance here. Lastly, in §5 we look at
induced representations and prove a theorem concerning irreducibility crite-
ria for certain Lie modules.

Despite the thesis not being targeted at experts only, readers are still
required to be familiar with the basic concepts of linear algebra and topology,
as well as the notions of rings, algebras, Lie algebras and modules over these
algebraic structures. We refer to [4] and [5] for these concepts.
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Chapter 1

The universal enveloping
algebra

The universal enveloping algebra of a Lie algebra is a central tool in this
work. Here we will only recall the most important results that will be needed
later on; many theorems and proofs will therefore be skipped and may be
found in [4] and [5].

1.1 Tensor products
Let R be aring. Let V' be a right R-module and let W be a left R-module.

Definition 1.1 (Tensor product of R-modules). A tensor product of V and
W is a pair (U, ) where U is an R-module, ¢ is an R-bilinear map ¢ :
V x W — U and the following universal property holds: for any other pair
(M, o) where M is an R-module and ¢ : V' x W — M is an R-bilinear map
then there exists a unique R-linear map 6 : U — M such that o = 6 o ¢.

VxW —2-U

|
\ : 0
o ¥

M

The tensor product of two R-modules V' and W exists and is unique up to
isomorphism (see [5]). Here is how to construct it: define the free R-module

RV = {5 1 (v, w) | 7oy € Rov € Vyw € W, T CVXW,|I| < o0}

(v,w)el
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as the direct sum of R over the set V' x W and let Z be its submodule
generated by the bilinear conditions, i.e. all elements of the form

(v, w1 + wg) — (v, w1) — (v, wy)
(v1 + v, w) — (v1,w) — (va, W)
(vr,w) — (v, w)
(v, rw) = r(v, w)
forallr € R, v,v; € V and w,w; € W, i=1,2. Set
VerW=R"W/Z

and let 7 : RV>W) — V @ W be the canonical projection. Write 7(v,w) =
v ®@ w so that we have the relations

V@ (wy + wa) =v @ w; + v R we
<U1+02>®wzv1®w+02®w
rlv@w) = (vr)@w=v® (rw)

for all r € R, v,v; € V and w,w; € W, 1 = 1,2. Define ®g to be the
restriction of 7 to V x W C RY>*W) which is bilinear by the above formulas.
Then the pair (V @ W, ®g) is the tensor product of V' and W. The elements
mapped into V ®r W by ®pg are called simple tensors.

1.1.1 Properties of tensor products

Tensor products are associative, i.e. if V;, 1 = 1,2, 3 are R-modules then
there is a canonical isomorphism

o:(VierVe) @r Vs = Vi @g (Vo ®g V3)
(V1 ® V) ® vz = V] ® (V2 @ v3)

where V;, V] ®p Vs are right R-modules, V5 @z V3, V3 are left R-modules and
V3 is both a left and right R-module. Other properties are commutativity

Vi®r Va2 Va@r V)
and distributivity with respect to the direct sum
Vi Va)@r Vs = (Vi®gVs) @ (Va®g Vs).

If R is a unitary ring and V is a left unitary R-module, i.e. 1v = v for each
v € V, we also have the isomorphism

VeorR=V.

See [5] for proofs and details.
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1.1.2 The tensor algebra

If R =K is a field, the R-modules V' and W are K-vector spaces. Let
{vi}ier and {w;}ic; be bases for V' and W respectively: then the tensor
product of V' and W is a K-vector space with the basis {v; ® w; }icr jes. We
will denote it by V ®x W or just V @ W equivalently.

For each i > 0 we define T%(V) =V ® ... ® V to be the tensor product
of i copies of V. If i = 0, set T°(V) = K. The vector space

V) =T

is called the tensor algebra of V. This is a unitary associative algebra with
the product

(21 ®...02) (N ®..QY) =11 @ .. 0L, QY1 V... Y,

defined on all z;,y; € V, i€ {1,...,p}, j € {1,..., ¢} and extended linearly
on T'(g). Now define J to be the (two sided) ideal in T'(V') generated by all
elements of the form * ® y — y ® x for all z,y € V. The quotient algebra

S(V)=T(V)/J

is called the symmetric algebra of V. It is a unitary associative and commu-
tative algebra by the definition of J. Moreover, if {z;};cs is a basis for V
then we have S(V) = K[z;]ier (see [4]).

1.1.3 Tensor product of modules over algebras

Let A be an associative K-algebra. Modules over A are K-vector spaces
with a module structure over the ring A. If V is a right A-module and W
is a left A-module, then we have two different tensor products: the K-vector
space V ® W and the A-module V ® 4 W. Moreover, we may also define the
K-vector space A ® A and give it the obvious product

(a®b)(c®d) = (ac) ® (bd)
for all a,b,c,d € A so that A® A also becomes an associative algebra. Then
we may regard V @ W as an (A ® A)-module with the action
(a®b)(vew)=(va)® (bw)

where a,b € A, v € V and w € W. This might be referred to as the external
tensor product of V and W. It will be denoted by V X W and its simple
tensors will also be written as v X w.
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For what concerns Lie algebras, things are obviously different as there
is no ring structure. If g is a K-Lie algebra, we recall that V is a (left) g-
module if it is a K-vector space and there is a bilinear action g x V. — V
which satisfies

[z, ylv = 2(yv) — y(zv)
for each z,y € gand v € V. If V and W are g-modules then V ® W is
well-defined as a vector space. We may give it a structure of g-module by
defining
r(v@w) = (2v) ®w+ v (2w)

for each x € g, v € V, w € W and extending this action linearly on V @ W.
We quickly show that this formula defines a module structure on V@ W. We
have

[Sv,y](v@w) = ([z,y]v) @ w + v ® ([z, y]w)

) 2v)) @ w+v @ (z(yw)) —v @ (y(aw))
xyv))®w+( v) @ (zw) = (y(av)) ® w - ( v) @ (yw)
+(2) ® (yw) +v @ (2(yw)) = (y) ® (2w) — v @ (y(zw))

((yo) ® w) —y((zv) @ w) +2(v® (yw)) — y(v ® (zw)
(Y @w)) —y(z@ @ w))
for each x,y € g, v € V and w € W. The g-module V ® W may be called
the internal tensor product of V and W.

)

1.2 Enveloping algebras

Recall that for any associative algebra A over a field K there exists a
corresponding Lie algebra Ap;. which is the same vector space as A equipped
with the bracket

[a,b] = ab — ba

for each a,b € A. If ¢ : A — B is an associative algebra homomorphism,
then ¢ : Ar;e — Brie is a Lie algebra homomorphism.
Let g be a Lie algebra over a field K.

Definition 1.2 (Universal enveloping algebra). A universal enveloping alge-
bra of g is a pair (U,7) where U is an associative unitary algebra, i : g — Up;e is
a Lie algebra homomorphism and the following universal property holds: for
any other pair (8, j) where 8 is an associative unitary algebra and j : g — R,
is a Lie algebra homomorphism then there exists a unique associative unitary
algebra homomorphism 6 : 1 — B such that j =60 o1.
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We may construct an enveloping algebra of g as follows: let T'(g) be the
tensor algebra of g. Define J as the (two sided) ideal in T'(g) generated by
all elements of the form 2 ® y — y ® © — [z, y] for all x,y € g and set

U(g) =T(g)/3J.

Let 7 : T'(g) — U(g) be the canonical projection map. Write 7(z;®...®x,) =
zy...xp forall z; € g, 1 € {1,...,p} so that the associative product in U(g)
between any two elements a and b is the juxtaposition ab. Define iy to be
the restriction of 7 to 7%(g) = g. Then the pair (U(g),4,) is an universal
enveloping algebra of g and i, : g — U(g) is injective (see [4]).

The universal property that comes from the definition ensures that U(g) is
unique up to isomorphism. Indeed, let (%, j) be another universal enveloping
algebra of g. We obtain unique homomorphisms ¢ : U(g) — 2 and 6, : 8 —
U(g) such that j =60, oiy and iy =650 7.

Pl

01 />T RN
e i

Then iy = (63 06,) o iy and obviously also iy = idyy(g) 0 4g, thus b3 00, = idyyy,
by the uniqueness of 6; and 5. Similarly, 6, o §; = idg and therefore 6y and
0y are algebra isomorphisms. We may then refer to the pair (u(g), ig) as the
universal enveloping algebra of g.

Remark 1. If g is abelian, then the ideal J is generated by elements of the
form x ® y — y ® x with z,y € g. Therefore U(g) is the symmetric algebra

S(g)-

1.2.1 Representation equivalence

Thanks to the existence of the universal enveloping algebra, we may study
g- and U(g)-modules equivalently. Indeed, if p : g — gl(V) is the represen-
tation map for the g-module V', then by universal property there exists a
unique unitary associative algebra homomorphism p : U(g) — End(V') such
that p = poiy.
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Therefore p defines a l(g)-module structure on V. Conversely, if V is a
U(g)-module and p is its representation map then the map p = poi, is a Lie
algebra homomorphism which defines a g-module structure on V.

Let V1, V5 be g-modules and let py, po be their representation maps.

Definition 1.3 (Representation equivalence). We write p; = po (p1 is equiv-
alent to py) if there exists a linear isomorphism ¢ : Vi — V5 such that
o p1(x) = pa(x) o p for each x € g.

Vi p1(x) Vi

| |#

v, p2(z) v

We may define equivalence of U(g)-representations in the same way. There-
fore, if p1, po are Lie representation maps and py, p2 are their associative cor-
respondents then we have p; =2 ps if and only if p; = po. Equivalently, if 1}
and V5 are the g-modules associated to p; and py then V; =V, as g-modules
if and only if V4 = V5 as U(g)-modules.

Remark 2. A Lie representation p : g — End(V) is irreducible if and only if
its correspondent associative representation p : U(g) — gl(V) is irreducible.

Indeed, assume p irreducible and p reducible. Then there exists {0} #
W G V such that p(z)W C W for each 2 € U(g). But g is canonically
immersed into U(g) through ¢;, therefore W is a proper g-submodule of V'
which is absurd. Conversely, assume p irreducible and p reducible. Again,
there exists {0} # W & V such that p(z)lW C W for each z € g. By the
construction of the enveloping algebra, each element of l(g) is a finite sum
of elements of the form ...z, where z; € g for i € {1,...,p}. For such
monomials we may write p(z;) = p(x;) for each i due to the immersion of g
into U(g). Then by virtue of p being an associative algebra isomorphism we
have

plzy...xp)W = p(z1)...p(x,)W CW

and this is true for all monomials, which implies the absurd consequence that
W is a U(g)-submodule of V.
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1.2.2 Filtered structure of U(g)

Let A be an algebra over the field K and let 2 = {4, },¢z be a collection of
vector subspaces of A such that |, ., A, =Aand A, C A, (or A, D A,p1)
for each p € Z.

PEL

Definition 1.4 (Filtered algebra, upward and downward filtration). The
pair (A, %) is called a filtered algebra it A,A, C A,,, for each p,q € Z.

If (A, 2() is a filtered algebra, 2 is called an upward filtration it A, C A, 44
for each p € Z and it is called a downward filtration if A, O A,.; for each
p € Z.

The enveloping algebra U(g) has a natural upward filtration given by
U,(g) =span{y: ...y, |y € gVie {1,...,q}, ¢ < p} for all p € Z. Note
that Up(g) = Span{l} = K and U,(g) = {0} for p < 0. Set Y = {U,(g)},ez.
It is easy to see that (U(g),ﬂ) is indeed a filtered algebra as the condition
U, (g)U,(g) € U,,(g) is obvious due to the product of monomials being their
juxtaposition.

Remark 3. For each a € U,(g) and b € U,(g), we have that
ab=ba (modulo U,,, 1(g)).

Indeed, assume a = a;...ap, and b = by...b, where a;,b; € g for i €
{1,...,p}, 7 €{1,...,q}. Then

ab:al...apbl...bq:al...ap_l(apbl)bg...bq

=ay... ap,l(blap)bg .. bq +ay... ap,l[ap, bl]bg c. bq
where clearly a; ... a,-1[a,, b1]by ... b, € Ui, _1(g), hence
ab=ay...a,_1b1aybs ... b, (modulo up+q_1(g)).

This process can be repeated any number of times in order to rearrange the
terms a; and b; until we reach the desired conclusion.

1.2.3 PBW Theorem

The following theorem (usually abbreviated with PBW Theorem) comes
in multiple forms. We give the one that is most useful in our work.

Theorem 1.2.1 (Poincaré-Birkhoff-Witt). Let I be a totally ordered set and
let {x;}icr be an ordered basis for g. Then

{xil...xip |Zl <... Sip,ij G[Vj S {17“"p}7p€ZZO}
is a basis for U(g).
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Proof. See [4]. O

Note that the unit 1 is an element of the basis given in the above theorem,
as it corresponds to the empty product obtained when p = 0.

Let I be a totally ordered index set such that |I| = dim g. Choose {x;}:er
as a basis for g. For every m € (Zs¢)! multi-index, we can define its height

as
Im| = Z m;.
iel
Set |m| = oo if the sum diverges. Define M = {m € (Zso)' | |m| < oo}, i.e.
the set of multi-indexes such that m; = 0 for all but a finite number of 7 € I.
If m € M, we will write
" = szm

iel
Since the above is a finite product and [ is totally ordered, x™ is a well-
defined element of U(g). By the PBW Theorem, {z™},,cp is a basis for

U(g).

1.2.4 The main antiautomorphism

Definition 1.5 (Antihomomorphism and antiautomorphism). Let A and
B be algebras over the field K. A linear map ¢ : A — B is called an
antihomomorphism of the algebra A into the algebra B if p(zy) = ¢(y)p(z)
for each z,y € A. If A = B and ¢ is bijective, we will say that ¢ is an
antiautomorphism of the algebra A.

The above definition can be applied to any Lie algebra g, in which case
the condition for ¢ will be that ¢([z,y]) = [¢(y), p(z)]. Now consider the
mapping x — —z of g into itself. It is clearly bijective and it is also a Lie
algebra antiautomorphism because

[z, yl = —[2,y] = [y, 2] = [y, —7]

for all x,y € g. Note that the fundamental property of the enveloping algebra
can be formulated analogously for antihomomorphisms so that this mapping
extends into an associative algebra antiautomorphism of U(g). We will call
this the main antiautomorphism of U(g) and it will be denoted by ’.
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Note that ' has period two, i.e. " o/ = idy ). This is because  — —x also

has period two.

1.3 The coproduct A

If g is a Lie algebra, let A : g — g @ g be the diagonal map A(z) =z dx
for each x € g.

Proposition 1.3.1. The diagonal map A is a Lie homomorphism.

Proof. The bracket in g is extended naturally to g & g by defining
(21 @ Y1, 72 D 1] = 11, 2] © [y1, 2]

for each x;,y; € g, 1 = 1,2. We have

A([z,y]) = [z,y] © [, Y]
A(z), Aly)l =z @2,y Dy| = [z,y] © [z, 9]

for each x,y € g. O]

Thanks to the universal property of the enveloping algebra, we may ex-
tend A to a homomorphism W(g) — W(g @ g) as shown below.

—)
g Ny g9
\[ ZUGBUOA \[ig@g

U(g) ----- 11(9 © g)

We will still use A to refer to the extended map.

Proposition 1.3.2. The enveloping algebra W(g @ @) is canonically isomor-
phic to U(g) ® U(g).

Proof. Let ¢ : g@g — U(g) @U(g) be the linear map p(x@y) =2@1+1®y
for all z,y € g. We have seen in §1.1.3 that the tensor product U(g) ® U(g)
is an associative algebra and thus it inherits the Lie algebra structure of
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(U(g) ® u(g))me. We show that ¢ is a Lie algebra homomorphism:

P([z1 ® y1, 22 ® ya]) = ([z1, 2] S [y1,42]) = [21,22] @1 +1® [y1, 2]

(o1 ®1y1), (2@ Y)] =[t1 @1+ 1Ry, 22 @1+ 1R o
=21 @@+ [11®0 1,1 @y + [l @y1, 22 ® 1]
+ 1@y, 1@y
=212 @1 — 21 @1+ 21 Qys — 11 QYo
+22@Y1 — 2@ U1 + 1@ y1y2 — 1 @ Yot
= (2122 — 2221) ® 1 + 1 ® (y1y2 — Y2th)
= [21,22) ® 1 + 1 ® [y1, ya)-

Therefore, by the universal property of the enveloping algebra ¢ extends to
an associative algebra homomorphism 6 which sends U(gég) into U(g)@U(g).

g0 g — U(g @ g)

U(g) @ U(g)

fr®1l+1®y =0 then x =y = 0, hence  is injective. Any element in
U(g) ®U(g) is a sum of elements of the form zy ... 2,®y; ...y, with z;,y; € g
fori e {1,...,p} and j € {1,...,q}. By observing that §(z ©0) =z ® 1 we
have

O((z1®0)... (2, ®0) 0B y1)...(0Dyy)) = (21 ®1)... (2, @)1 R@y1) ... (1 Ry,
=T1...0p QY1...Yq

because 6 is an algebra homomorphism. Therefore 6 is surjective and thus it
is an algebra isomorphism. It is canonical by the independence a basis choice
for g. O]

Through the above isomorphism, we will refer to the map

A lU(g) — U(g) @ U(g)

as the coproduct of U(g). Note that A(1) = 1 ® 1 as the extension must be
a unitary associative algebra homomorphism.

Let yi,...,y, € g and define y™ = y" ... y,"" € U(g), m being the multi-
index (mq,...,m,) € (Z>p)?. For each other k = (ky,...,k,) multi-index,

(- () ()
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Multi-indices are partially ordered in (Zs()? in the obvious way: k < m if
k’l Sml,...,kpgmp.

Lemma 1.3.3.

A™ = > (?)yk@ym"“.

0<k<m

Proof. First, assume m; = 1 for each i € {1,...,p}. Then all binomial terms
are 1. Remember that

Ay yp) =Ayr) . Alyy) = @14+10y1) ... (1, 1+ 1@ y,).

We show this case by induction on p. If p = 1, the lemma is clearly true.
Now assume our result to be true for a product of p elements of g.

Al ypr1) = (1 @1+ 1@ ) Z Yy @ TRy

0<ki<1
ie(2,...p+1}
. k‘2 k +1 17]{?2 17]{ +1
= E Yiye o Ypr1 T D Yo e Yprr 7
0<k;<1
ie(2,..p+1}
ko Kt 1—ko 1—kpia
+ E Y2 Ypr1 P @ Y2 ceYpyrr P
0<k;<1
ie{2,.pt1}
_ k1. ko Kepir I—k1, 1—ko 1—kpin
= E Y1y Yppt P @y e cUpyr PEE
0<k;<1
ie(1,...p+1}

This proves the lemma for a product of p+1 elements of g. To get the general
case, Set Zmyt. 4miy+1 = -+ = Zmy+..+m; = Yi for each i € {1,...,p} and
apply the previous result to zy ... 2y,

k ki, 1—k 1=k,
A(Zl...z|m|): E 217 2 ™ @ 217 L 2y

0<k; <1
ief{T,...|m|}

_ § ylkl o ylkml o ypk(m1+.A.+m,p,1+1) o ypk|m‘

0<k; <1
ief{1,...|m|}

1-k 1—k 1-k 1+l 1-k
@y oy Ty, et ) gy Pl
— § y1k1++km1 . ypk(ml+..4+mp_1+1)+”'+k\m|

0<k; <1
i€{L,eolml}

1—(k1+...4+km 1=Kkt 4m + ootk
Ry~ 1)...yp ((1++p_1+1) | \).
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Now let Ay = K(m,+...4mi_1+1) + - - - + K@ny4..4m,) for each i € {1,...,p}. Note
that h; € {0,...,m;}. Counting the terms in the sum that contain y;", we
observe that they are (’Z) in number. Collecting them in the above formula
proves the lemma:

Alg™ . yp™) = Z yi" gt ey Ly

0<k;i<1
i€{1,...,|m|}
mq m _ —
= Z (h > (hp)ylhl...yph"®y11 hl...yp1 ho |
0<hi<m; N1 P
i€{1,....,p}
O
Remark 4. By setting h = m — k, we may reformulate this identity as
Ay™ = D, vy
0<h,k<m
h+k=m
where m! = my!...m,! and similarly for h! and k!, consistently with the

previous definition of the binomial product for multi-indexes.
Proposition 1.3.4. The coproduct A is coassociative.
Proof. Coassociativity for A means that

(idu(g) ® A) ocA=0do (A ® idu(g)) oA
where o denotes the canonical isomorphism

o : (U(g) ® W(g)) ® U(g) — U(g) ® (W(g) ® U(g)).
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We can use the barycentric formula written in Remark 4 to show this fact.
Choose {x;}ics basis for g and define M, 2™ for m € M as in §1.2.3 so that
{2} menr is a basis for U(g). Then

m)

(6o (A®@idyg) o A) (™) = (Fo (A®idyg)) | > mxh ® "
O}Lgh];kgm T
+k=m

I
|
>
s
)
=
&
&?T‘

0<h,k<m
h+k=m
m)! h! . -
=7 E — E — | @
h! k! il j!
0<h,k<m 0<i,5<h
ht-k=m iti=h

! . .
=7| X gagted ed

£ il gl k!
0<i,j5,k<m
i+h+k=m
m)! . -
o 7 J k
Z TR Ak ® (27 @ z")
0<i,5,k<m
i+j+k=m

and

0<h,k<m
h+k=m
m/!
_ h A k
2. mt ©AEh
0<h,k<m
h+k=m
m)! k!
— h i J
aat © 2 garer
0<h,k<m 0<i,j<k
h+k=m z+]:k
m)! .
= E i ' ® (2f @ 2"
& 1! 7! h!
O<Zv]7h§m
i+j+h=m
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1. The universal enveloping algebra

One may find in literature that (u(g), A) is called a coalgebra if A is coas-
sociative and that (W(g),-,A) is called a bialgebra if (W(g),) is an algebra,
(W(g), A) is a coalgebra and A is an algebra homomorphism.



Chapter 2

Induction and production

We introduce the concepts of induced and produced representations. From
now on, the notation for modules will be left-sided unless otherwise specified.
Everything said in §1.1 still holds regardless.

Let K be a field and let A be an associative, unitary K-algebra. Let B
be a unitary subalgebra of A and let V' be a unitary B-module.

Definition 2.1 (Induced pair). A pair (U, ¢) where U is a unitary A-module
and ¢ : V — U is a B-homomorphism is said to be induced from V if the
following universal property holds: for every other pair (W, o) as above then
there exists a unique A-homomorphism 6 : U — W such that 0 = 6 o .

V 22U

|
\/4:9
N2

w

Definition 2.2 (Produced pair). A pair (U, ¢) where U is a unitary A-
module and ¢ : U — V' is a B-homomorphism is said to be produced from V'
if the following universal property holds: for every other pair (W, o) as above
then there exists a unique A-homomorphism 6 : W — U such that o = po#8.

Induced (respectively produced) pairs exist and are unique up to isomor-
phism (see [2]), thus we may refer to them as the pair induced (respectively
produced) from V. To construct the induced pair (U, ), regard A as a right

15
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B-module: we have U = A®p V and ¢(v) = 1® v for all v € V as our pair.
U is an A-module with the action

a(b®v) = (ab) @ v

for every a,b € A and v € V, extended linearly on all u € U. For another pair
(W, 0), 0 is defined by 8(b®v) = bo(v) for every b € A,v € V. For produced
pairs, we regard A as a left B-module instead and thus U = Hompg(A, V),
o(u) = u(l) for all u € U is our pair. The action on U is given by

(au)(5) = u(ba)

for all b € A and, for a pair (W, 0), we have (6(w))(b) = o(bw) for allw € W
and b € A. See [2] for proofs and details on the construction of these modules.

We can extend these definitions to a K-Lie algebra g with a subalgebra b,
obtaining equivalent notions for Lie-modules induced and produced from an
h-module V. Moreover, let U(g) and U(h) be the universal enveloping alge-
bras of g and b respectively, and regard U(h) as a unitary subalgebra of U(g):
since V' is an h-module, it is also a U(h)-module by the universal property
of the enveloping algebra, hence we know that the representations induced
and produced from V" are U(g) @y V and Homyg) (U(g), V') respectively, as
seen above. We will denote them by Z¢(V') and Py (V).

Induced and produced Lie representations are intertwined through dual-
ity. For any g-module W, let W* be its contragradient g-module. Recall that
W* = Homg (W, K) is given the action

() (w) = = (zw)

for all z € g, v € W* and w € W. We may reformulate the above as
(x¢)(w) = Y(2x'w), where ' is the main antiautomorphism introduced in
§1.2.4 and it coincides with the map x — —z on g. Then by extending this
action on U(g) we obtain that

(a)(w) = P(a'w)
for all a € U(g), v € W* and w € W.

Proposition 2.0.1. Let V be an h-module. Then PS(V*) = (Z3(V))".
Proof. Realize I (V') as W(g) @y, V and Pj(V*) as Homyy (U(g), V*). Let
(RS (Ig(V))* = (U(g) @ug) V))". For each a € U(g) define a map Ula): V —

K by R
(¥(a)) (v) = ¥(a' ® v)
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for all v € V. By the linearity of ¢» and the bilinear properties of the tensor
product, ¥(a) € V* and ¢ € Homg(U(g),V*). Now let z € U(h). The
restriction of ’ to U(h) is the main antiautomorphism of U(h), therefore

(¢ (20)) (v) = 9((z0) @ v) = P(a'z' ®v) = P(d' © 2'v) = ((a))("0)
= (29(0) (v)

because 1(a) € V*. Hence 1) € Py (V*). The map

(V) = PRV
Wb 1

is clearly linear by definition of sum and scalar multiplication in the Hom

spaces. If b € U(g) and ¢ € (Ig(V))*, we have

((b)(a)) (v) = (b)) (a’ @) = (V' (d ®v)) = ¥((ab) @)
= (¥(ab)) (v) = ((b¢)(a))(v)

for each a € U(g) and v € V. This implies that " is a U(g)-homomorphism.

If ©) = 0, then ¢ vanishes on a set of generators for Ig(V) and therefore
¢ = 0. So " is injective. Now let ¢ € PJ(V*). Define £ : U(g) x V — K by
&(a,v) = (¢(a))(v) for all a € U(g) and v € V. The map & is bilinear by the
linearity of ¢ and ((a’). Moreover, for all z € U(h) it is

§(az,v) = ((('d)) (v) = (#C(a) (v) = (¢(a)) (2v)
= ¢{(a, 2v)

because " has period two. This implies that £ is U(h)-bilinear. By the
universal property of the tensor product, there exists a unique linear map
¥ U(g) @y V' — K such that ¢(a ® v) = &(a,v) = (¢(a’))(v) for all
a€l(g)and v e V.

W(g) x V —== U(g) @y V

|
\ 1P
I3 +

K

Since Y(a®@v) = (iﬁ(a’))(v) then ¢) = ¢, therefore ~is surjective. This proves
that ~ is an U(g)-isomorphism. O
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2.1 Filtered structure of Z7(V') and Pg(V)

In §1.2.2, we have seen that the enveloping algebra l(g) has a natural
upward filtration ${ = {U,(g)},ez. This filtration gives rise to an upward
filtration for Z§ (V) and a downward one for Pg(V): we have

Z3(V), = Span{a ®@v | a € U,(g), v € V'}
Py(V)p={uePg(V) |ulu, ) =0}

Now consider the quotient space g/h and regard it as an abelian Lie
algebra, so that U(g/h) is the symmetric algebra S(g/h). The singleton {0}
is obviously a subalgebra of g/h and its action on V' is trivial, thus U({0})
acts on V like the scalar multiplication (the action is unitary). Replacing
A with S(g/h) and B with U({0}) = K in our definitions, we obtain that
S(g/h) ®@x V and Homg(S(g/h), V) are, respectively, the modules induced
and produced by the {0}-module V', so we have

(V) = S(g/h) @x V
P (V) = Homx (S(g/h), V).

We may give them the filtrations seen above.

Let I be a totally ordered index set such that |I| = dim (g/h). Choose
{Z;}ier basis for g/b and, for every i € I, choose a class representative
x; € T; € g. Define M, 2™ for m € M as in §1.2.3 and define 2™ € S(g/b)
analogously to ™. By the PBW Theorem, {Z™},cs is a basis for S(g/h)
and thus we can define 7 : S(g/h) — U(g) as the linear map ™ +— z™. Let’s
consider the following maps

v S(g/h) @k V — U(g) @y V
a®uv—T(a)®v
7 : Homyp,) (W(g), V) — Homg(S(g/h), V')

(mu)(a) = u(r(a))

where a € S(g/h), v € V and u € Homy ) (U(g), V). Note that
L I(V) = (V)
T Pe(V) — P%?(V)

hence these are maps between filtered spaces as seen earlier.
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Proposition 2.1.1. The maps ¢ and © are filtration preserving linear iso-
morphisms.

Proof. The map ¢ is defined by linear extension on S(g/h) ®x V and = is
clearly linear from the notion of sum and scalar multiplication in the pro-
duced module Homy)(U(g), V).

The injectivity of ¢ comes from the obvious injectivity of 7. For the
surjectivity, consider g = g/h @ h. Complete {z;};c; to a basis of g and
call this completion {x;,y;}ier jes, where {y;};es is a basis for h and J is
a totally ordered index set. We order I U J by saying that ¢ < j for all
i €1, je J. Thanks to the PBW Theorem, we know that a basis for U(g)
is given by {2™y"}memnen where N = {n € (Zso)’ | |n] < oo}, |n| and
y" being defined analogously to |m| and z™. {y"}.en is a basis for U(h),
thus {2 },enr is a basis for U(g) as a U(h)-module. This proves that ¢ is
surjective, as 2My" Qv = 2™ Qy"v = 1(Z" ®y"v). Thus, ¢ is an isomorphism.

To prove the same for 7, assume 7mu = 0: then (7u)(a) = u(r(a)) =0
for all a € S(g/b), i.e. 7(S(g/h)) C keru. Since {z™}en is a basis for
the left U(h)-module U(g), for all z € U(g) we may write z = >/ Y™,
Ym € W(h) and only a finite amount of them being non-zero. Since u is a
U(h)-homomorphism, we have

u(:) = 3 g™ = 3 pulr(E) =0
meM meM
which means © = 0 and 7 is injective.
Let ¢ € Homg(S(g/h),V) be a linear map such that z™ — v,,. Let
u € Homy,, (U(g),V) be the map 2™ — v,,, extended to U(g) as an U(h)-
homomorphism. Then (7u)(z™) = u(7(2™)) = u(z™) = v,,, which means
mu = . Therefore, 7 is an isomorphism.

We will now prove that ¢« preserves the filtration. It is clear that ¢ (Ig/ f (V)p) -

{0}
Z5(V)p. Let u € Z5(V),. From the PBW Theorem, it follows that

u= Y Y@= Y. 2" @Y Unn

meM, neN meM, neEN
Im|+|n|<p Im|+|n|<p

=> 2"® Y Y Vmn
meM neN
Im|<p [n|<p—|m|

_ —m n a/b

= E T(@") ® E Y Vmn € ULy, (V)y)
meM neN
Im|<p In|<p—|m|

where v,,,, € V and all zero except for a finite amount. Hence Ig(V)p -

L(I?é;)(‘/)p)‘
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As for m, let u € P(V), and a € S, 1(g/h). Clearly 7(a) € U, 1(g), so

we have (mu)(a) = u(7(a)) = 0 which means 7(P§(V),) C P%f(V)p.

Let v € Pfo/f(V)p be a linear map ¢(z") = v,, € V. We know that v,, = 0 if
Im| < p — 1. By setting u(z™) = v,, for each m € M and extending u as an
U(h)-homomorphism of U(g) into V', we showed that 7u = ¢. For |m| < p—1,
w(x™) = 0; since {z™ | |m| < p—1}mem is a W(h)-basis for U,_1(g), it follows

that u € PJ(V),. This implies P%?(V)p Ca(PI(V)y). O

2.1.1 Filtration topology in Pg(V)

The filtration {P§(V),}pez induces a topology on the vector space Py (V)
by providing a basis of open neighbourhoods of 0; neighbourhoods of any
u € Py (V) are defined through translation. Similarly, the enveloping algebra
also has the filtration topology where the neighbourhoods of 0 are 1,,(g), but
since U,(g) = {0} for all p < 0 this coincides with the discrete topology. If V/
is given the structure of a topological vector space, then we may also consider
the finite-open topology on P¢(V') defined through the basis {U(F, A) # 0 |
F CWUg),|F| < 0o, A C V open} where U(F, A) = {u € PJ(V) | u(F) C
A}. Regard V as a discrete topological space.

Proposition 2.1.2. The finite-open topology is weaker than the filtration
topology on Pg(V). If dim (g/h) < oo then the filtration and finite-open
topologies coincide.

Proof. To prove that the finite-open topology is weaker than the filtration
topology, we show that for any F finite subset of U(g) and any A C V
such that U(F, A) # () there exists an open neighbourhood in the filtration
topology contained into U(F, A). Let p = min{m > —1| F C U,,(g)} and
let u € U(F, A). Then u+P(V),11 CU(F, A). Now assume dim (g/h) < oo
and let p € Z. Let F be a basis for U,_1(g) as an U(h)-module (choose
F ={0}if p <0) and let A = {0}. Since dim (g/h) < oo, the basis F' is
finite. Then we have U(F, A) € Pg(V), and therefore the filtration topology
is weaker than the finite-open topology. O

Proposition 2.1.3. The g-module P(V') is filtration complete.

Proof. Convergence for a sequence {uy, },>o in the filtration topology of 735 (V)
is obtained by saying that {u,},>o converges to 0 if for every p € Z there
exists N, > 0 such that u,, € P,f(V)p for all n > N,. Convergence to any ele-
ment u € Py (V) is defined through the sequence {u — u, },>¢ and the notion

of a Cauchy sequence is also given analogously. We may write u, —— u as
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is standard to denote convergence. Now we show that ¢ (V') is complete with
respect to this convergence. Let {un},>o be a Cauchy sequence in Pg(V).
Then for every p > 0 there exists N, > 0 such that u, — u, € PV ),
for each n,m > N,. This implies u,(a) = u,(a) for all a € U,(g) and
n,m > Np; in other words, for each a € U,(g) the sequence {uy(a)}n>n, is
stationary in V. Therefore we can define u(a) = uy,(a) for all a € U,(g).
Note that if p; < p; we may choose N,, to satisfy N, < N,,, so that if
a € Uy, (g) € U,,(g) we have uy, (a) = uy,,(a). We may then repeat the
process for all p to obtain a well-defined function u : U(g) — V. Since
u is defined in terms of u, it also holds all of its properties, hence u is a
U(h)-homomorphism which means u € P(V)). Now consider the sequence
{u — up}tn>o: for any p > 0, there exists N, > 0 such that u,(a) = u(a)
for all @ € W,(g) and n > N,, which implies u, —u € PJ(V),41 for all
n > N,. Therefore {u, }nez., converges to u € P (V) and P(V) is filtration
complete. O

2.2 Multiplicative structure of produced rep-
resentations

By 1.3.2, we can treat U(g) ® U(g) and U(g @ g) representations inter-
changeably. Let Vi and V; be h-modules and thus U(h)-modules. Now con-
sider the tensor product of these vector spaces: as seen in §1.1.3, it has
multiple module structures. Indeed, we may consider the external tensor

product V; X V4, which is a U(h) ® U(h)-module with the action
(a®b)(vXKw)=(av) X (bw)

for all a,b € U(h), v € V; and w € V. However, there is also the internal
tensor product V7 ® V5, which is an h-module with the action

h(v®@w) = (hv) ® w+ v ® (hw)

forallh € h, v € V3 and w € V5. It is possible to establish a relation between
these representations as follows.

Proposition 2.2.1. h(v@w) = A(h)(v®w) for eachh € b, v € Vi, w € Va.

Proof. By Lemma 1.3.3 we immediately see that

A(h) =h®1+1®hell(h) @U(h)
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for all h € . Hence
Ah)(vBw) =(h®1+1@h)(vRw) = () KRw+ v K (hw)
= (hv) @w+v® (hw) = h(v® w)

remembering that V3 X V5 and V] ® V, are the same vector space. O

2.2.1 The external multiplication X

Let u; € Pg(V;) for i = 1,2. PJ(Vi) and F](V;) are produced by V;
and V5 respectlvely, hence they are U(g)-modules and Pg(V1) X Pf(V2) is a
U(g) @ U(g)-module. u; Muy is an element of B'(V1) X F(V3). Now consider

Pooe (Vi B Va) = Homyy ey (Mg @ g), V2 B V3).

This is the (g® g)-module produced by V; X V5, hence it is also a U(g) @ U(g)-
module. Define

u Mug : U(g) @ U(g) = Vi K14

as the linear map (u; M us)(a ® b) = uy(a) K uy(b) for each a,b € U(g). This
is clearly a U(h) ® U(h)-homomorphism, hence u; X uy € ngfg(vl X V3). By
the fundamental property of the tensor product, the bilinear map (uy, us) +—

uy M uy gives rise to a linear map

TP (V) KPE(Va) — PIEE (VI K VR)

which sends u; X uy — uy M us, as shown in the diagram below.

PIVL) x PE(Va) —— PL(V1) RPE(Va)

~—

Pioy (Vi B12)

Proposition 2.2.2. The map is a W(g) ® W(g)-homomorphism.
Proof. For each a,b,a, 3 € U(g) and u; € PJ(Vi) with i = 1,2 we have

((a®b)(u1 Kus)) (@ ® B) = (aug Kbus)(a® B) = ((aur)(a)) B ((bua)(B))
= uy(aa) Rug(Bb) = (u; K uy)(aa ® Bb)
= (u1 Mup) ((a ® B)(a @)
= ((a®b)(u1 Muy))(a @ B).
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It may be useful to think of  as the map which sends a formal object in
Py (Vi)XPJ(V3) to its realization in ngg(\/l X V5) while preserving the action
of U(g) ® U(g). Abusing the notation, from now on we shall omit writing
~ and we will directly write u; X us to denote the realized homomorphism,
unless otherwise specified.

2.2.2 The internal multiplication &

Define u; ® ug : W(g) — V4 K V5 by

(u1 @ uz)(a) = (u; Kug)(Ala)) (2.1)
for each a € U(g) and w; € PJ(V;), i = 1,2.
Lemma 2.2.3. u; ® uy € Pg(V; @ Va).
Proof. Note that
Py (Vi @ Vo) = Homyy (U(g), Vi & V2).
Let a € U(g),z € U(h). Then
(11 ® up)(2a) = (us R up) (A(za)) = (uy B uz) (A(2)A(a)) =

= A(2)((w ® u2><A< ) = A) (w1 ® w)(a)) =
= 2((u1 ® ug)(a)).

The last identity comes from 2.2.1, considering (u; ® us)(a) as an element of

Vi® Vs, ]

Let Z(g,b) be the class consisting of all U(h)-modules Pé’(V), V running
over every h-module. Equation (2.1) defines a multiplication ® on | J (g, b).

Proposition 2.2.4. The multiplication ® is associative.

Proof. Let ¢ be the canonical isomorphism (V; ® V5) @ V3 — V1 @ (Vo ®@ V3).
By saying that ® is associative, we mean that the identity

oo (w1 ®u) ®uz) =us ® (up @ ug)
must hold for each u; € P(V;), i =1,2,3.
(u1®u2)®us
Ug) ———— V1oV eV

u1 ®@(u2®u3) la
Vi® (Vo® Vi)



24

2. Induction and production

By 1.3.4, the coproduct A is coassociative. If & is the canonical isomorphism
(W(g) @ U(g)) ® U(g) — U(g) ® (U(g) ® U(g)), then it is evident that

(le(UQ&U;;))O&ZOO((U1®UQ)XU3)
for each u; € P(V;), 1 =1,2,3.

(u1Xug)Xus

(W(g) ® U(g)) @ U(g) VieWh) eV,

| l

U(g) ® (Wg) @ U(g) ——— V1 @ (Vo ® V3)

w1 X(uaXug)

Let a € U(g). We obtain

50 (A®idyy) o A)(a))
o ) (A ®idyg)) o A)(a ))
= (00 ((uy @ ug Kug)) (A(a))
oo )(@).

]

Proposition 2.2.5. Let x € g. =z acts as a derivation on Z(g,h), i.e.
(U ® ug) = (zuy) @ ug + uy ® (xug) for each u; € Ph( Vi), i=1,2.

Proof. Let a € W(g) and u; € Pg(V;), i = 1,2. Then

((u1 ® us))(a) = (u1 @ us)(a ) (Ul X us) (A(ax))

= (u1 K up) (A(a)A(z)) = (A(z) (w1 Kus)) (Ala))
r®1+1® )( X us)) (A(a))

(M)

(a).

((
((xul ) X ug + uy X (zus
((

)
)

$U1 R Uz +uU X JTUQ

Remark 5. A useful consideration involves the dual coproduct

A" : Homyy(ye (H(g @ g), V1 B V2) — Homy g ((g), V1 @ V2)
ur—uoA

which maps Pgf (Vi ) V3) into P(V; ® V). Indeed, thanks to Lemma 2.2.3,
it now follows that u; ® us = A* (u1 X ug) for each u; € Ph( i), i =1,2.
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It is interesting to note that, while A* is only a linear map at first glance,

one may define an action of U(g) on each u € ngg(vl X Vs) by au = A(a)u,

where a € U(g). Due to A being an algebra homomorphism, this definition

turns Piee (Vi K V3) into a U(g)-module, here denoted by APIE (V1K V5). In

general, this process may be done for any (g @ g)-module U in order to turn
it into the g-module AU. It follows that, for the h-modules V; and V5, we
will have V; ® V5 = A(V; ¥ V,). The dual map

A APER (VIR V) — P (V1 © Va)
becomes then a U(g)-homomorphism, since for each a,a € U(g) we have

(A*(au)) (@) = (au) (A(e)) = (Ala)u) (A(a)) = u(A(w)A(a)) = u(A(aa))
= (A%(w))(ea) = (a(A"(w))) ().

Moreover, this action also turns the realization map
i PR(VA) @ PR(Va) = APR(VI R VR)

into a U(g)-homomorphism. Thanks to the fundamental property of the
tensor product, the multiplication ® gives rise to a linear map

v:Py(Vi) @ Py (Vo) — P(Vi @ Va)
u Mg — up ® us

where u;Xus is here regarded as a formal object. This argument assumes that
the operation ® is bilinear, which directly comes from the obvious bilinearity
of the multiplication X.

Py(Vi) x Pg(Va) —— P(Vi) @ P(V2)

|
\ : v
® <+

Py(Vi @ Va)

We obtain a result analogous to 2.2.2.
Proposition 2.2.6. The map v is a W(g)-homomorphism.

Proof. As seen in Remark 5, we have ® = A*ol. The diagram below shows
that v = A*o  for every simple tensor, which implies the identity holds true
for all elements of Pg(V1) @ Pg(V2) by linearity.
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Po(Vi) x Pp(Vo) ———— Pp(Vi) @ Py (Va)

I
|
|
|
v
I
I
3

APERVIRVy) ————— PH(Vi @ V)

Both A* and  are U(g)-homomorphisms, therefore v also is. ]

2.2.3 Filtered structure of X and ®

The multiplications X and ® can be put in relation with the filtrations
introduced in §2.1. We note that, for each p € Z, Lemma 1.3.3 directly
implies the following.

Corollary 2.2.7.
p
AU,(g) €D Wi(g) ® Uyi(g).
k=0

Proposition 2.2.8. Let u; € Pg(Vl)p and uy € Pg(Vg)q. Then u; M uy €
ngg(vl X Va)pig, ur @ ug € Pg(Vi @ Va)piq and zuy € Py(Vi),-1 for each
T €g.

Proof. By the isomorphism U(g) ® U(g) = U(g & g), we have
W(g®g) = lek ) @ U, (g).

Remember that Pﬁgg(% X V2)prg = {u € ngg(Vl X V3) | u|up+q71(g@g) = 0}.
Then from 2.2.7 it is

(1 W) (Uprg1(g © 9)) = (11 Kup) ( Z U (g) ® up+q—1—k(9)>
p+q—1
= ) ui(Uk(g)) @ ua(Uprgo1-k(g)) =0

k=0

because u; (uk(g)) =0 for k < p and uy (upﬂ,l,k(g)) = 0 for k£ > p. This
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shows that u; K uy € Pgﬁgg(vl X V3)piq- By 2.2.7 we get
(u1 @ ug) (Uprq-1(g)) = (uy Bug) (A(Upsg—1(9)))

ptg—1
Q U1 &UQ ( Z uk ®up+q1k(g)>

p+qg—1

- Z L (uk(g)) ® ug (uerqflfk(g)) -0

k=0

from the same argument as before, which means u; ® us € 77,? (V1 @ Va)pig-
Finally, let a € U,_5(g); then ax € U,_4(g), hence (zuy)(a) = u;(az) = 0.
This proves that zu; € Pf(Vl)p_l. O

Remark 6. If U and V are filtered g-modules then U ® V' is the g-module
filtered by

UeV)e= Y U,V

pt+q=n
P.qEZL

Clearly the same holds when regarding U ® V' as the external tensor product
UNXYV. By 2.2.8, the maps

_:Ph( )@Pb( 5) — Pb@h(vlﬁvg)
1/:77( )®Ph( )—)Ph(V1®V2)

become filtered homomorphisms between g & g and g-modules respectively.
Moreover, P (Vi), € Py (V1),-1 for each = € g.
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Chapter 3

The Guillemin-Sternberg-Rim
realization theorem

In the previous chapter, we have defined a multiplication u; ® us between
elements of produced h-modules. Now regard K as a trivial h-module and
set I = Py (K). Give F the filtration § = {F}, }mez introduced in §2.1. Let
V be any h-module and assume that u; € F, uy € Pg(V). By identifying
K ® V with V through the natural isomorphism k ® v — ko, it follows that
uy @ ug € Pg(V). In this case we will denote the multiplication by ujug. If
V' =K, this operation is internal in F'.

Proposition 3.0.1. The pair (F,§) is a filtered unitary associative algebra.

Proof. By 2.24, F = Phg(K) is an associative algebra with the multiplication
mentioned above. Choose {x;};c; basis for g so that {z™},,cas is a basis for
U(g), M and 2™ defined as in §1.2.3. Define e as the linear map U(g) — K

such that
1 ifm=0
e(z™) = .
0 ifm#0.

The trivial action of h on K ensures this is a well-defined element of F'. Let
u € F. From Lemma 1.3.3 we have

(eu)(z™) = (e R u)(A(z™)) = Z (k‘) (e X u)(z" @ 2™ ")

0<k<m
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and
(we)a™) = W @) = 3 (7Bt s

which means that e is the identity of F'. Finally, let u; € Fj,,us € F, and
a €W, 1(g). Then
(urug)(a) = (u1 Mug)(Aa) =0

p+g-1

because Aa € > Wi(g) ® Uyyq—k—1(g) by 2.2.7 but k > p implies
k=0
ptq—k—-1<p+q—p—-1<gq-—-1

Therefore ujuy € Fpyy, ie. F Iy C F,py. O

Proposition 3.0.2. For each h-module V', the produced module P (V') is a
unitary F-module.

Proof. Let uy € F and uy € P(V). As stated earlier, ujuy € Pg(V). The
associativity that comes from 2.2.4 guarantees that this multiplication defines
a module structure on Pr? (V). By repeating the previous proof and supposing
that u € P¢(V), we obtain eu = u, hence the action is unitary. O

3.1 Separated filtrations

Definition 3.1 (Separated filtration). Let A be an algebra and let {A,},cz
be a (downward) filtration on A. {A,},cz is said to be separated if () _, A, =

{0}.
Proposition 3.1.1. The filtration § is separated.
Proof. Let uw € () ., F, = {0}. Then v = 0 on U,(g) for all p € Z and

pEZ

peEZ ~ P
therefore u = 0 on |, Up(g) = U(g). O
We introduce a filtration on the Lie algebra g as follows:
g ifp<O
g =1b ifp=0 (3.1)

{regp.|[y,x] €gp1 Vyeg} ifp>0.
Let 6 - {gp}pez.
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Proposition 3.1.2. The pair (g, ®) is a filtered Lie algebra.

Proof. Clearly g, C g,—1 by definition. We will prove that [g,, g,] C gp+4 for
each p,q € Z. Set n = p + ¢: the result is trivial for n < 0, so let’s assume
n > 0. If p < —1 then ¢ > 1, hence we have [g,, 9,] = [9,94] C 95-1 C Gp+q
by definition of g,. We can thus suppose p,q > 0 and proceed by induction
on n. If n = 0 then it must be p = ¢ = 0, therefore [h,h] C b is trivially
true. Now suppose inductively that [g,, g,] C g, for a certain n > 0 and all
p,q € {0,...,n} such that p + ¢ = n; this is equivalent to assuming that
[8p, On—p] C gn for each p € {0,...,n}. Let p € {0,....,n+ 1}, = € g1y
and y € g,: we will show that [y, z] € g,41, i.e. that [z, [y, z]] € g, for each
z € g. Since € gn11-p C Gn—p, by induction hypothesis it is [y, z] € g,.
Moreover, from the Jacobi identity we have

2 lys ] = [z, gl 2] = [, [y, 2]] = [y, [, 2]

By definition of g, and g,+1-, respectively, we see that [y,z] € g,-1 and
[z,2] € gn—p, therefore both [z, [y, 2]] and [y, [z, z]] are in g,, thanks to the
induction hypothesis. Hence [z, [y, z]] € g,, and [gp, On+1—p] C Gnt1- O

Proposition 3.1.3. The filtration & is separated if and only if b contains
no nontrivial g-ideals.

Proof. Let i C h be a non-trivial g-ideal. We shall show the inclusion i C g,
for each p € Z by induction on p. This is trivial for p < 0, so let p > 0 and
assume i C g,; then [g,i] C i C g,, which means i C g,;1. This concludes
the proof by induction, which gives us i C ﬂpez gp, 1.6. § is not separated.

Conversely, let {0} #i=,c; 8,- Then i C g, for each p € Z (in particular
we have i C B), hence [g,i] C g,_1; this is also true for every p € Z, implying

[ga 1] g mpGZ 9p = i. O

For the rest of this chapter, & will be assumed to be separated. Let D,
be the subspace of der(F') containing all derivations d such that dF,,, C F,, 1,
for each m € Z. Let D = ., Dy and © = {D, }pez.

Proposition 3.1.4. The pair (D,®) is a filtered Lie algebra.

Proof. Let d € D,. Then dF,, C F,y, C F,y1 for each m € Z, i.e.
d € D,_y which implies D, C D,_; for each p € Z. We will show that
[D,, D,] € D,, for every p,q € Z. Let dy € D,, dy € D, and u € F,,: we
have [dy, dsJu = di(dau) — do(dyu). Both terms on the right are in Fy,ypiq,
hence [dy,ds] € Dpyy. O

Proposition 3.1.5. The filtration © s separated.
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Proof. Let d € NpezD,. Then we have dF = dFy, C F, for all p € Z, i.e.
dF C NpezF, = {0} by 3.1.1. It follows that d = 0. O

If L is a Lie subalgebra of D, we will filter L in the obvious way, i.e.
L, = LN D, for each p € Z. This filtration on L is also separated.

Remark 7. Note that F' = Ke + F} and DoF C F;. Moreover, u = u(l)e
(modulo Fy) for all u € F.

The identity F' = Ke + F} clearly comes by the fact that e is nonzero only on
the constant terms while F} contains 1(h)-homomorphisms that are zero on
K C U(g). To show that DoF C Fy, let d € Dy. Then dF = d(Ke) + dF; C
Kde + Fi. Since e is the identity element of F', we have

d(e) = d(e*) = d(e) e+ ed(e) = 2d(e)

which implies d(e) = 0. Hence dFF C F;. Finally, since F' = Ke + F} it is
u = ke (modulo F}) for some k € K, but

u(l) = (ke)(1) = e(k) = ke(l) = k.

3.2 Embedding theorem

Let v be the representation map for the g-module F i.e.

v g — gl(F)
z — y(z)

where y(z)u = zu for each uw € F. We remind that v can be extended to
an associative algebra homomorphism of U(g) into Homg (F, F') through the
fundamental property of the enveloping algebra and thus (zu)(a) = u(ax)
for all a € U(g).

We show that the representation « is faithful (i.e.: injective) and essen-
tially unique up to isomorphism in the hypothesis of a separated filtration
for the Lie algebra g.

Theorem 3.2.1. The map ~ s a filtered Lie algebra isomorphism of g with
a subalgebra of D. For every Lie algebra homomorphism v, : ¢ — D such
that y1(x) — vy(z) € Dy for each x € g, there exists a unique filtered algebra
automorphism 0 : F — F such that 0 o v1(x) = v(x) 0 0 for all x € g.
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Proof. By 2.2.5 we have y(x) € der(F). Moreover, it is v(z) € D_;: if
u € F,,, then zu € F,,_; directly from 2.2.8. In particular, this shows that
v :g— D. We shall split the rest of the proof in some steps.

Step 1. We prove that v(h) € Dy if and only if h € b.

Let h € h,u € F,, and a € U,,,_1(g). Then (y(h)u)(a) = (hu)(a) = u(ah).
As seen in Remark 3, we have ah = ha + b where b € U,,_1(g). Since u is a
U(h)-homomorphism we obtain that u(ha) = hu(a) = 0, also u(b) = 0 hence
v(h)u € F,, and y(h) € Dy. Now suppose h ¢ b and consider its equivalence
class h € g/b C S(g/h). Obviously h # 0, thus we may regard it as an
element of a basis for g/h. Consider the maps 7 and 7 defined in §2.1: we

can say that 7(h) = h. Choose w € Homg(S(g/h),K) such that w(h) # 0
and set u = 77! (w). Remember that 7 is bijective by 2.1.1. Then

(v(R)u)(1) = (hu)(1) = u(h) = u(r(h)) = (wu)(h) = w(h) # 0

which means y(h)u ¢ F;. From Remark 7, it follows immediately that
v(h) & Do,

Step 2. The map v is a Lie algebra isomorphism.

We show the injectivity of 7. Let t = kery and let € t. Then v(x)F,, =
{0} C F,,, hence y(z) € Dy and thus x € h as seen above, which means
that t C bh. Since the filtration is separated and t is a g-ideal, it must be
t = {0}, i.e. 7y is injective. This is enough to show that + is isomorphic to a

subalgebra of D, as v : g — v(g) C D and [y(g),v(9)] = (g, g])-

Step 3. The map - is filtered.

We shall prove that v(g,) = v(g) N D, for each p € Z. Remember that
(v(g))p = v(g) N D, by definition. If p < 0 then g, = g, also we have already
shown that v(g) € D_; which implies

Y(gp) =(8) =v(g) N D_1 =~(g) N D,.

If p > 0, we proceed by induction on p. If p = 0 then go = b and we have
seen that y(h) € Dy if and only if h € b, which proves that v(h) = v(g) N Dy.
Suppose that v(g,) = v(g) N D, for some p > 0: we show that y(g,+1) =
7(8) N Dy

Let * € gp+1; then we have z,[y,z] € g, for each y € g and also
v(x),v([y,z]) € D, by induction hypothesis. To prove that vy(z) € D1,
we need to show y(z)F,,—1 C F,4, for all m € Z: we proceed with a sec-
ondary induction on m. If m < —p, then F,,,_y O F_, 1 DO Fy = F and
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Foip 2O F_,y, = Fy = F, so the inclusion becomes just y(x)F C F, which
is trivially true. Now assume 7(z)F,,—1 C F,4, for some m > —p and let
u€ Fy, a€l,,, 1(g) and y € g. Then

(v(@)u)(ay) = (zu)(ay) = u(ayz) = u(aly, z]) + u(azy)
= ([y, 2]u)(a) + (zyu)(a) = (v([y, 2])u)(a) + (y(zy)u)(a)

= (7(ly, zD)u) (@) + (v(2)7(y)u) ().

Since v([y,z]) € D,, we have y([y,z])u € Fu, and (y([y,z])u)(a) = 0;
analogously, v(y) € D_; implies v(y)u € Fy,—1 and v(z)y(y)u € F,4p by
induction hypothesis (on m), thus it is also (y(z)v(y)u)(a) = 0. Therefore
Y(z)u = 0 on U,,4,(g) and y(z)u € F,4p41; this proves the secondary in-
duction so that y(x)F,,—1 C F,4, for all m € Z, i.e. y(x) € Dy1. We have
shown that v(gy+1) € Dpt1.

Conversely, suppose y(z) € D, for some z € g and let u € F,,, y €
g- Naturally y([y,z]) = [y(y),7(z)], but v(z) € Dpy1 and y(y) € Dy
imply that v([y,z]) € D, thanks to 3.1.4. By induction hypothesis both
z,[y,z] € gp, thus € g,+1 and y(g) N Dpy1 € ¥(gp+1). This proves that
v:g— (g) N D is a filtered Lie algebra isomorphism.

Step 4. Existence of 6.

Let 71 : g — D be a Lie algebra homomorphism such that v, (z) —y(z) €
Dy for each x € g. Observe that v, is a representation map and as such
it defines another action on F' as a (left) g-module by (z,u) — 7 (x)u for
each z € g and u € F. From the results obtained earlier for v, we have
that v1(g) € D_; and v1(h) € Dy. Regard F' as a g-module with the action
given by v, and define ¢ : F — K by o(u) = u(1l) for each u € F. We
obtain o o y(h) = g ovy(h) = 0 for h € bh: indeed, Remark 7 tells us that
y(h)u,y1(h)u € F; for all uw € F, however clearly o F; = {0}. This implies
that o : F' — K is a h-homomorphism, as for every v € F and h € b it is

a(n(h)u) = (o 0y (h))(u) =0=ho(u)

due to the trivial h-module structure of K. Since ' = P{(K), we know
that the map o : Pé’ (K) — K defined as above is also the h-homomorphism
produced from K, as seen at the start of §2. Therefore, there exists a unique
g-homomorphism ¢ : F' — PJ(K) such that ¢ = ¢ o6, as shown in the
diagram below.
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Then for each z € g, u € F we have (v (x)u) = x(0u) = v(x)(0u), ie.
0oy (x)=(x)od.

Step 5. The map 6 is filtered.

The Lie algebra homomorphism v, can be extended to an associative
algebra homomorphism of U(g) into Homg (F, F), just like v. From §2 we
also know that 6 is defined by (6u)(a) = o(y1(a)u) = (y1(a)u)(1) for each
u € F and a € U(g). Since v1(g) C D_y then v1(g)F,, C F,,—1 for all m € Z;
for any product y; ...y, of p elements of g, we have

YW1 Yp) F =) - W) Fon € (1) -1 (Yp-1) Fona
C...CFn,

hence 1 (U,(g)) Fr C F—p for all m and p. Let u € F,, and a € U,,_1(g).
Then vi(a)u € Fy—m-1y = F1 and therefore (6u)(a) = (y1(a)u)(1) = 0.
It follows that u € F,, which implies 6F,, C F,,, i.e. 8 € Homg(F,F) is
filtration preserving.

Step 6. The map 6 is bijective.

Let u € F,, and y € g. Since v1(y) —7(y) € Do we have (11(y) —~(y))u €
Fo, ie. 71(y)u =7v(y)u (modulo F,,,). Now let y1,...,y, € g. We show that
(Y1 yp)u = Y(y1...yp)u (modulo F,,_,11) by induction on p. We have
already proven the case p = 1, so assume our result to be true for a product
of p > 1 elements of g. Then

modulo 1 (y1) Fin—pt1)

( )
V(Y2 - Ypt1)u (modulo F,,_,)
(modulo F,,_,) (3.2)
( )

modulo Fj,_,

where identity (3.2) holds because ¥(ys . .. yp1)u € Fp—pp and hence (71 (y) —
y(y)) (v(yQ . .ypH)U) € Fi,—p. Therefore it is also v (a)u = y(a)u (modulo
F—pt1) for each a € U,(g). Moreover, the identity 6 o v (y) = v(y) o 0 for
y € g shown in step 4 gives us

9(71(91 x .yp)u) = 9(71(3/1) x .'yl(yp)U) = (9 o ’Yl(yl))(’Yl(yz) - -’Yl(yp)u)
= (Y1) 2 0) (11 (y2) - - (wp)u) = v(w1) 0 (7 (w2) - . Y (yp)u)
=...=7y1) - v(Yp)(Bu)
=71 .- yp)(0u)
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for any product y; ...y, of p elements of g. This clearly implies 6 o v, (a) =
v(a) o @ for each a € U(g). Now let a € U,,(g) so that vi(a)u = y(a)u + v
with v € F}. Then by definition of 8 we have

(Ou)(a) = o(m(a)u) = (m(a)u)(1) = (y(a)u+v)(1)
= (v(@)u)(1) = u(a)

which means fu = u on U,,(g). Therefore, for all u € F,, it is Qu —u € F, 1
or, in other words, fu = u (modulo F,41).

It follows that @ is injective: indeed, assume that fu = 0 for some u € F.
If u € F,, for a certain m € Z, then u = u — Qu € F,,,, therefore u €
Nimez Fm = {0} because the filtration is separated, hence u = 0 and 6 is
injective.

To prove that 6 is surjective, let u € F. Set ug = u and define u,; =
U, — Bu, € F,1 inductively for all n > 0. From the notion of convergence
seen in 2.1.3, we have u, 27200, Let Uy = Z?:o u; for each n > 0. For any
p > 0 choose N, = p and let n,m > N, while also assuming n > m without
losing of generality. Then

n m n
vn—vng ui—g u;p = 5 u; € Finp1 C Fpia
=0 =0

1=m+1

which implies that {v, },>0 is a Cauchy sequence in F: by 2.1.3 there exists
v € F such that v,, —— v. Using the same argument and remembering that
0 is filtration preserving, the sequence {6v,},>¢ is also a Cauchy sequence,
therefore it must be v, —— v. By definition of u, we see that

U= uy = Uy + 0ug = us + Ou; + Oug

n
:--':Un+1+ E Oul
1=0

= Upy1 + evn

for any n > 0. Therefore v — 0v,, = u, 1 + 0v,, — OV, = Upiq LA 0, i.e.
Ov,, == 4. Hence u = 6v.

Step 7. The map 0 is an automorphism.

We finally show that 6(ujus) = 6(u1)0(uz) for each uy,us € F. Note that
F is a D-module with the obvious action du = d(u) for all d € D and u € F,
therefore FIX F and F® F are W(D) ® W(D) and W(D)-modules respectively
as reminded in §2.2. By the fundamental property of the tensor product, the
multiplication in F' gives rise to a linear map v : FF'® F' — F.
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FXF — FQF

i

F

Observe that the identification F = P§(K @ K) implies v is indeed the map
seen in 2.2.6, which is a U(g)-homomorphism. Since D C der(F'), for each
d € D and uy,us € F we have

therefore v is also a W(D)-homomorphism. To avoid confusion with the
previous notations, we remark that u; ® us is here regarded as a formal
element of FF ® F, as the multiplication in F' has been denoted with wujus
instead. The same holds true for uy M uy € F'X F' through the rest of the
proof. Put in terms of v mapping F' X F' — F', the map v intertwines the
action of Al on F'X F' with the action of [ on F for each [ € W(D) as follows:

l(uyug) = l(l/(u1 ® Uz)) = y(l(u1 ® U2))

We will extend the Lie algebra homomorphisms ~,~v; : ¢ — D into associative
algebra homomorphisms U(g) — U(D) through the fundamental property of
the enveloping algebra.

u
Then v X~ and v; X v, are homomorphisms U(g) @ U(g) — W(D) ® W(D).
For each x € g, we have

A(y(z)) = y(2) ® lup) + Lupy @ ()
(YR y)(Az) = (YK ) (2 @ 1y + lug) @ 2) = v(2) @ v(lug)) +7(lug) @ v(z)
=7(z) @ lypy + lup) @ y(z)

because v must map 1y — lypy. The same holds for 7, and we know
that A also extends to an associative algebra homomorphism, therefore the



38

3. The Guillemin-Sternberg-Rim realization theorem

identities
Aoy=(yKy)oA
Aoy =1 Ky )oA
hold on U(g). Be mindful that we are (ab)using the symbol A to denote both

maps U(g) — U(g) ® U(g) and W(D) — W(D) @ W(D) as their action on any
enveloping algebra is the same.

Ug) —2> Wg@Ug UG —=— U(g) @ U(g)

’Yl l’y@y Vll l"/l Xy
(

WD) —2— WD) WD) WD) —2= WD) WD)

(3.4)

For each a € U(g) identities (3.3) and (3.4) imply
(@) ov =voA(y(a) =vo ((yR7v)(Ad))

and the same is also true swapping v with ~;. Since 6 intertwines v; with
v through the identity € o v;(a) = v(a) o 0 for each a € U(g), then the map
OXO: FXF — FX F intertwines 7, X y; with v X v through the identity

(050) 0 (v1(a) @1 (b)) = (v(a) @ 7(b)) o (I K)

for each a,b € U(g). Let o : FF — K be defined as previously. By identifying
K ® K with K through field multiplication, the map ¢ X ¢ acts as follows:

cXo: FXF — K
U1 X Uy > Ul(l) UQ(].)
for each uy,us € F. Note that 0 Ko = ¢ o v because
O'(V(Ul X UQ)) = O'(U1U2) = <U1UQ)(1) = (u1 X UQ)(A(l)) = (u1 X Ug)(l X 1)
= u1(1) uz(1)
for each ui,us € F. Remembering that ¢ = ¢ o # and therefore 0 X o =
(cXo)o (X)), we have
cgovy(a)ofov=co0foy(a)orv=0covy(a)ov
=0govo ((71 X 71)(Aa)) =(cXo)o ((71 X 71)(Aa))
= (cNWo)o (BKE) o ((y1 Ky)(Aa))
=(cXo)o ((7@7)(Aa)) o (AX0)
=covo ((y®7)(Aa))o (I K 0)
=coy(a)ovo (X0

for every a € U(g), as shown in the diagram below.
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FRF o6 y FRF
AN yd
(11%y1)(Aa) (v™®7y)(Aa)

N e

FRF 66 sy FRF
AN /
oXo oo
NS

v v K v v

e AN

~1(a) v(a)
Ny 9 AN

F s F

Note that if u € F and a € U(g) then

(0707(@) (u) = (o(au)) = (au)(1) = u(a)

therefore if the identity (oo07(a))(u1) = (c07(a))(uz) holds for all a € U(g),
then it must be u; = up € F. This implies fov = v o (§ K ), i.e. for each
uy, uz € F we have 0(ujug) = 0(uq)8(us). O

Corollary 3.2.2. Let vy, be as in 3.2.1. Then v, : g — 1(9) is a filtered Lie
algebra isomorphism.

Proof. 1t is sufficient to prove that 71 is injective and filtered. Let ~;(z) = 0.
From the theorem, 6~ o v(x) 0 # = 0 which implies y(z) = 0. Since 7 is an
isomorphism, z = 0.

Let z € g,. Then y(x) € D,, also

()P = (67 0 7(2) 00) Py € (6 03(2))Fr € 0~ Frny C Fnsy

for each m € Z due to 3.2.1. Hence v, (z) € D,. O

3.3 The dual symmetric algebra S(g/h)*

Theorem 3.2.1 gives a canonical embedding of g into the filtered Lie al-
gebra D of derivations of the produced g-module F'. We will use this result
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to realize g into the algebra of derivations of S(g/h)*. In the hypothesis that
char K = 0, the dual symmetric algebra S(g/h)* is isomorphic to the algebra
of formal power series on dim g/h variables.

Proposition 3.3.1. Let u; € PJ(V;), i = 1,2. Then
71'(161 & UQ) = U] ® TU2.

Proof. Choose an ordered index set I, a basis {Z;};c; for g/b, a set of class
representatives {x;}ics, define the multi-indices set M and the monomials
™, ™ for m € M as in §2.1. Remember that the map 7: S(g/h) — U(g) is
defined by 7(z™) = 2™ for each m € M. By Lemma 1.3.3, we have

A(r(@™) =A™ = Y (TZ) P

(ron)(AF™) = (re7) (O;m (Z)x Q" ’“) :O;m (TZ):U © 2™k

for each m € M, ie. AoT=(T®7)0A.

S(g/h) —————— U(g)

al |a

S(g/h) ® S(g/b) —z We) ® U(g)

Remember that for any h-module V, the map 7 : PJ(V) — P%? (V) is defined
by (ru)(a) = u(ra) for each u € PJ(V) and a € S(g/h). Then

(ru; R 7ug)(a @ b) = (muy)(a) @ (mug)(b) = ui(ra) @ us(7d)
= (u3 K uy)(Ta ® 7b)
(

:(u1®u2)(( T) a®b))

for each a,b € S(g/h), which means mu; X wuy = (ug Kug) o (1@ 7).

S(g/h) ® S(g/h) — U(g) @ U(g)

w1 Xug
ﬂum l

Vi®Vs
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Therefore
(m(ur @ ug))(a) = (ur @ ug)(7a) = (uy Muy)(A(ra))
(ur Mup)((7 @ 7)(Aa))
= (muy X 7ug)(Aa)
= (mu; @ Tug)(a)
for each a € S(g/h). O

Corollary 3.3.2. The filtered associative algebras F' and S(g/h)* are isomor-
phic. If charK = 0, then F is isomorphic to the filtered algebra K[[Z;]]ics,
where {T; }ier s a basis for g/h.

Proof. By considering V;, = V5, = K in 3.3.1 we have that = maps F —
S(g/h)* and it satisfies w(ujug) = (wuq)(mug) for each uj,uy € F, ie. the
filtered linear isomorphism 7 is also an algebra isomorphism.

Choose an ordered index set I, a basis {Z;};cs for g/b, define the multi-
indices set M and the monomials ™ for m € M as in §2.1. For each
u € S(g/h)*, set u,, = u(z™) for all m € M. Let ® be the map

¢ S(g/h)" — K[[Z:]]ier

U
m!

meM

We show that ¢ is an associative algebra isomorphism. The map & is clearly
linear by the definition of the linear operations on S(g/h)* and K][[Z;]];c;.
Since char K = 0, if ®(u) = 0 then it must be u,, = 0 for all m € M, which
implies u = 0. Now let a € K[[Z;]];er: since a is a formal series in the variables
{#; }ier with coefficients in K, then it is a =), @, T™ where a,, € K for
allm e M. If u € S(g/h)* is the linear map u(z™) = m! a,, for each m € M,
then ®(u) = a. Therefore ® is bijective. Now let u,v € S(g/h)*. By Lemma
1.3.3, we have

(uv) = (uw)(Z™) = (LX) (AZ™) = (uX v) ( Z (7;) * x”—k)

0<k<m

-y (Z)u(xk)mm—k): 3 (Tg)ukvm_k.

0<k<m 0<k<m
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which means that ® is an algebra isomorphism.

Lastly, we show that @ is filtered. If a = >,/ @™ define dega =
min {|m| | a,, # 0,m € M} and consider the downward filtration {K,,}mez
on Kl[#;]]ier where K., = {a € K[[Z;]]ic; | dega > m}. Since deg (ab) =
deg a + degb then K[[Z]]ics is a filtered associative algebra. If u € S(g/b);
then u(a) = 0 for each a € S,_1(g/h), therefore u,, = 0 for each m € M such
that [m| < p— 1. Hence deg ®(u) > p and ®(u) € K, i.e (S(g/h);) C K.
Conversely, if ®(u) € K, then u,, = 0 for each m < p— 1 which immediately
implies that u(a) = 0 for each a € S, 1(g/bh). Therefore u € S(g/h); and

K, C @(S(g/b);). L

Thanks to 3.3.2, we may transfer the action of v to £ = S(g/h)* through
7. Rename the Lie subalgebra D C der(F') to D(F') and define D(F) analo-
gously for derivations of E such that E,, — E,,, for some p and all m. By
the same arguments seen in 3.1.4, D(E) is a filtered Lie algebra.

Remark 8. Since 7 is a filtered map, we have that d € D,(F') if and only if
modon ! € D,(F) for any p € Z as is shown below.

r, ——— E,,

dl lﬂ'OdOﬂ'71

i
Pty —" Buay

For each z € g, define J(z) = moy(x) o L.

Proposition 3.3.3. The map 7 : ¢ — D(E) N ~7(g) is a filtered algebra
1somorphism.
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Proof. For each z,y € g and v € E it is

(@), 3y)u = [roy(z) o mor(y) om u

= (@) my(y)r e — wy(y) Tty (e)
= my(x)y ()7 u — my(y)y(z)m u

= 7(y(@)(y) —v(yy(2) T u (3.5)
=m([y(@), (W) u
= (y(fz,y]))7 u
=3[z, y])u
so 74 is a Lie algebra homomorphism. We have 7(z) = 0 if and only if

~v(xz) = 0, which by 3.2.1 only happens if z = 0 so 7 is injective. Finally,
Remark 8 shows that vy(z) € D,(F') if and only if 4(z) € D,(F) for any
p € Z and x € g. Therefore 7 is filtered because 7 is. O

3.3.1 Realization theorem

For each y € g, let g be its equivalence class in g/h. Remember that
E = Pg/h( K) is a g/h-module with the action (yu)(a) = wu(ay) for each
ye€g,ue Eandae S(g/h). Let § be the corresponding representation, i.e.
d(y)u = yu for ally € g, u € E. We can substitute v with § in Theorem 3.2.1

to find that ¢ is a filtered Lie algebra isomorphism of g/ into a subalgebra of
D(FE). Note that g/b is abelian, hence §(z)d(y) = §(y)d(z) for each =,y € g.

Proposition 3.3.4. Let y € g. Then Y(y) — 6(y) € Do(E).

Proof. Choose an ordered index set I, a basis {Z;};c; for g/b, a set of class
representatives {x;}ics, define the multi-indices set M and the monomials
™, 2™ for m € M as in §2.1. Let ¢ € I and define r € M by r; = d;; where
d;; is the Kronecker delta. Let u € Ey and w = 7~ (u). If m € M is such
that |m| < k — 1, then

(F(zi)u) (@™) = ((Toy(z:) o7 Hu) (™) = ((7T ° v(fcz))W) (™)
(V(zow) (rz™) = (y(zi)w) (=™ w) (™)

= w(z™z;)

(6(z)u) (™) = (Tu)(Z™) = u(@™z;) = w(@™") = u(r2™"")

m—i—r)

=w(x
because g/b is abelian. By the PBW Theorem, we have

M = g (modulo u\m\(g))



44

3. The Guillemin-Sternberg-Rim realization theorem

and therefore (y(z;)u)(z™) = (6(&)u)(@™), as w = 0 on U, (g). This
implies that 5(z;)u = 6(&;)u on Sy_1(g/h), i.e. (¥(z;)—6(%;))u € Ey and thus
3(z;)—0(x;) € Do(E). Since this is true for any i € I, it must be y(z)—4§(Z) €
Dy(E) for all z € g/h. But 7 is a filtered Lie algebra isomorphism, so we have
(k) — 6(h) = Y(h) € Do(E) for all h € b and therefore J(y) — d(y) € Dy(E)
for all y € g. O]

Corollary 3.3.5 (Guillemin-Sternberg-Rim). There ezists a Lie algebra ho-
momorphism [ : g — D(E) such that 3(y) — 6(jj) € Do(E) for ally € g. If
a,B : g — D(E) satisfy the previous conditions then there exists a unique
filtered algebra automorphism 0 : E — E such that 0 o a(y) = B(y) o 6 for
all y € g, also & and 3 are filtered Lie algebra isomorphisms of g with a

subalgebra of D(E).

Proof. By 3.3.4, choosing f =7 : g — D(FE) satisfies the requirement of a
Lie algebra homomorphism such that 5(y) = 0(y) (modulo Dy(E)) for all
y € g. Moreover, if &, § are as such, then

a(y) = Bly) =6(y) =4(y) (modulo Dy(E))

for all y € g. Define a(y) = 7' oa(y) ow and B(y) = 7' o B(y) o 7 for
each y € g. By computations equivalent to those seen in (3.5), the maps
a,f g — D(F) are Lie algebra homomorphisms.

F "> F F "> F
oc(y)l l&(y) B(y)l lﬁ_(y)
F "+ F F " F

Thanks to Remark 8, it follows that a(y) = 8(y) = 7(y) (modulo Dy(F))
for all y € g. By Theorem 3.2.1, there exist unique 6,65 filtered algebra
automorphisms of F' such that 6; o a(y) = v(y) 061 and O30 B(y) = y(y) o O,
for each y € g. Therefore v(y) = 6, o a(y) o 6, and Y(y) = 0y 0 B(y) 0 6,
which imply the following identities:

broaly)oby’ =by0pB(y) o0y
from toaly)omold =bon o B(y)omoby’

7T002_100107T_10d(y):6(y)oﬂ-002—10910ﬂ_—1‘
Define 9_1:77'091077'_1 and 9_2:7'('09207'{'_1, Then
0y' 001 0a(y) =B(y) o' o6

for all y € g. Since 7 is also multiplicative by 3.3.1, the maps 0,,0,: E— E
are filtered algebra automorphisms. Define § = ;' o §;. We obtain that
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¢ : E — E is the unique filtered algebra automorphism such that ¢ o a(y) =
B(y) o @ for each y € g.

F a(y) 2

Moreover, by 3.2.2 it follows that « and [ are filtered Lie algebra isomor-
phisms of g with a subalgebra of D(F'), therefore we may substitute 4 with
@ and f3 in 3.3.3 to obtain that & and /3 are filtered Lie algebra isomorphisms
of g with a subalgebra of D(E). O
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Chapter 4
Systems of imprimitivity

Let g be a Lie algebra over a field K and let h be a subalgebra of g. Let
I =P§(K) and let W be a g-module.

Definition 4.1 (System of imprimitivity). A system of imprimitivity based
on g/b for W is an F-module structure on W such that

2(fw) = (afyw + f(ow)
foreachzxeg, fe FandweW.

Proposition 4.0.1. Let V' be an h-module and let W = Pé’(V). Let F' act
on W as shown in 3.0.2. This F-module structure on W 1is a system of
imprimitivity based on g/b for W.

Proof. The proposition is immediate by 2.2.5. O

Therefore systems of imprimitivity based on g/h exist for any Lie algebra
g with a subalgebra b.

4.1 Filtered structure of imprimitivity

Let W be a g-module with a system of imprimitivity based on g/h. Set
W, = F,W for each p € Z and let 20 = {W,},ez. Since F,, = F for all p <0
and obviously FW = W, then 20 is a filtration on W such that W, = W for
all p < 0. Moreover, we have F,,W, C W, directly by 3.0.1. Theorem 3.2.1
implies gF, C F,_; and hF, C F, (v is a filtered map and g = g_;) therefore
gW, € W, and hW, C W,,.

Lemma 4.1.1. Let w € W, for some p > 1. If gw € W, then w € W, 44.

47
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Proof. Since w € W, we may write

k
w = Z fjw; (modulo W,1)
=1

where f; € F, for all j € {1,...,k} and {w;};cq1,.. k) is linearly independent
in W (modulo Wh), i.e. {w;};cq,. xy is linearly independent in Wy/W; with
w; € w, for each 7. To obtain such a form for w, simply replace elements w;
as linear combinations of the others until it is no longer possible or the result
is null (in which case it is w € W41 and the proof concluded), then collect
the coefficients f;. As seen earlier, g\, C W,_; and thus

k

yw = Z(yfj)wj (modulo W,)

j=1

for any y € g. However, by hypothesis we know that yw € W, hence

M;r

(yfij)w; =0 (modulo W,).

7=1
By iterating, we have

k
O=y;...yw= Z(yl Yo fi)w;  (modulo W,_,11)

j=1
for any product of ¢ elements of g. Therefore

k

0=aw= Z(afj)wj (modulo W)

Jj=1

for any a € U,(g). Note that af; = f;(a) e (modulo Fy) for all j € {1,...,k}
by Remark 7, as (af;)(1) = fj(a). Then (af;)w; = f;(a)w; (modulo W),

hence
k

Z afj)w ij w; (modulo W)

j=1
which imply f;(a) = 0 for all j € {1,...,k} by the linear independence
(modulo Wy) of {w;}. Since this holds for all a € U,(g), then f; € F,,; for
all j € {1,...,k} and so w € W;. O
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Assume the filtration 20 on W is separated. Define V' = W, /W;. Ignoring
the trivial case W = {0}, then V # {0}. Indeed, if Wy = W; then glW; C
Wo = Wj and therefore Wy = Wy C W5 by Lemma 4.1.1, which would imply
W =W, for all p € Z by iteration. But this is absurd if 2U is separated.

Proposition 4.1.2. The quotient space V is an h-module and the projection
o: W —V is an h-homomorphism.

Proof. For each h € h and w € W, define ho(w) = o(hw). If wy,wy € W
are such that w; — wy € Wy, then h(w; — wy) € Wy and therefore o(hw,) =
o(hw,y). Moreover, if h,k € h and w € W then

[h, klo(w) = o([h, klw) = o(hkw — khw) = o(hkw) — o(khw)
= ho(kw) — ko(hw) = (hk — kh)o(w)

which means that the Lie module action of h on V' is well-defined. Then the
projection ¢ is an h-homomorphism by its own definition. O]

4.2 An imprimitivity embedding theorem

For the rest of this section, we will set U = P§(V'). By denoting with ¢
the h-homomorphism produced by V' (which maps U into V' and is defined
by p(u) = u(l) for each u € U), there exists a unique g-homomorphism
0 such that 0 = 6 o p, as seen in §2. We also know that 6 is defined by
(Qw)(a) = o(aw) for all w € W and a € U(g).

Lemma 4.2.1. For each w € W, w € W, if and only if 0w € U,.

Proof. Let w € W,. For each a € U, 1(g) we have aw € W, so that
(bw)(a) = o(aw) = 0, therefore w € U,. This implies that 6 is a fil-
tered g-homomorphism. Now let w € U,. We show by induction on p that
w € W, for all p € Z. This is trivial for p < 0 and also true for p = 1, as
Ow € Uy implies (Qw)(1) = o(w) = 0, i.e. w € W;. Suppose our result to be
true for some p > 1 and let 6w € U,1;. Then w € U, and w € W, by induc-
tion hypothesis. Since  is a g-homomorphism, we have f(zw) = z(0w) € U,
for all z € g. By induction hypothesis again, zw € W, for any « € g, thus
w € Wyy1 by Lemma 4.1.1. O

Corollary 4.2.2. The map 0 is injective.

Proof. If w = 0, then clearly (fw)(a) = 0 for all a € U(g), i.e. w € U,
for all p € Z. By Lemma 4.2.1, w € W, for all p € Z, which means w = 0
because the filtration 207 is separated. O
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Lemma 4.2.3. The map 0 is an F-homomorphism.

Proof. Similarly to Step 7 of the proof for Theorem 3.2.1, consider the 1(g)®
U(g)-modules FXW and FIXU, also define v : FXW — W by v(fNw) = fw
for each f € F,w € W. Since the F-module structure on W is a system of
imprimitivity based on g/h, we have z(fw) = (xf)w + f(zw) for any z € g,
f € F and w € W. This relation might be written in terms of v and the
coproduct A as follows:

wol(f B w) = a(fw) = (zf)w + flew) = v((ef) Bw) +v(f & (@)
=v((@f)Rw+ fR(2w)) =v(ze 1+ 10 z)(f Kw))
=v(A(z)(f Kw))

foreach z € g, f € F and w € W. Then av(g) = y((AQ;)g) for all z € g and
g € FXW. Moreover, we have

wyv(g) = 2v(A(y)g) = v(A()A(y)g)
=v(A(zy)g)
for all z,y € g and g € F WKW, therefore av(g) = v(A(a)g) for any a € U(g)
and g € FXIW. By Remark 7, for any f € F' it is f = f(1)e (modulo F}),

which means that fw = f(1)w (modulo W;) and thus o(fw) = o(f(1)w) for
any w € W. Then

(f@(é’w))(a )((9?1) ) = f(a)o(bw a( a) )
= ((af)(l)( ))=a(af w)) = o ( (af X bw))
= o(v((a@b)(f Kw)))

for all a,b € U(g), f € F and w € W. Hence (f K 6w)(c) = o(v(c(f Rw)))
for any ¢ € U(g) ® U(g) and therefore

(f(0w))(a) = (f R Ow)(A(a)) = o (v(Aa)(f Bw)))
= a(cw (f Kw ) (a )
= (0(fw))(a)

for all a € U(g), f € Fand w e W. O

Lemma 4.2.4. Let X C U be such that FX C X and ¢(X) = V. Suppose
one of the following hypotheses:

(1) X is closed in the finite-open topology of U;

(2) dimV < oo.

Then X =U.
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Proof. Choose an ordered index set I, a basis {Z;};c; for g/b, a set of class
representatives {z; };c;, define the multi-indices set M and the monomials =™
for m € M asin §2.1. Remember that {2 },,car is a basis for U(g) as a U(h)-
module, as seen in 2.1.1. For any m € M, define f,, € F by f.(2!) = &, for
all [ € M, where 0y, is the Kronecker delta. If u € U, we have

(Fu)(a') = (e (A = (£ B ) ( > ()" x)

- (KZM ( ]i ) F(@)u(a ) = 0;:?,{) (')

for all I,m € M. The above formula imply that (f,,,u)(z') = 0 unless m <1,
in which case it is (f,u)(2!) = (Tfl)u(:vl’m) In particular, (f,u)(x™) = u(1).

Now let {tp}tmer € U. Be mindful that M is partially ordered and
I has any cardinality, therefore {u,,}men is not a sequence. Consider the

unordered sum )\ fntim: for every 2! with [ € M, we have

meM m<l

where the sum on the right is finite. We can thus define the element u* € U
by u*(z') = >, <) (fmum)(at) for all I € M. We will show that the unordered
sum » .o fmtm converges to u*. For an unordered sum to converge in a
topological vector space, it must happen that for any neighbourhood of 0
there exists a finite index subset L C M such that for any other finite index
subset H where L C H C M we have that

belongs in the neighbourhood. Any neighbourhood of 0 in the finite-open
topology is of the form U(K,A) = {u € U | u(K) C A} where K C U(g) is
finite and {0} C A C V, so we may assume that K = {y;,...,y,}. For each
j € A{l,...,p} we can write y; = ZmeMj a'? 2™ where a¥) € U(h) and the
M are finite subsets of M. Let M* = Jj_, M; andlet L={m e M |3l ¢
M* :m <}. Clearly M* and therefore L are both finite. For any H finite
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such that L C H C M and for any [ € L we have

@) = 3 ) @) = 3 Gonton) @) = 3 (Fratin) ()

meH m<l meH
= Z(fmUM)<$l> - Z (fontim) ()
m<l meH
- m<l
= Z (fmum)(xl) =0

because the last sum is empty. Therefore

w () = Y (fntim)(y3) = 0

meH

for all 7 € {1,...,p}, which implies that

ut =Y ftim € UK, A)

meH

for all H finite where L € H C M. Hence the unordered sum Zme ar fmltim
converges in the finite-open topology to some u* € U for any {u;, }menm C U.

Choose a linear map « : V' — X where ¢ o a = idy. Such a map always
exists, since p(X) = V by hypothesis implies that for any v € V' there exists
a linear map in X that sends 1 — v and thus we may choose a(v) € X to be
said map. Clearly we will have (p o a)(v) = p(a(v)) = (a(v))(1) = v. Let
u € U. Proceeding inductively on p > 0, we will define a family {w,, }mer C
aV and a sequence {u,},>0 in U such that

Up = U — Z fmWm € Uppq

|m|<p

for all p > 0. As shown earlier, the unordered sum in the expression converges
and therefore this is always a well-defined element of U. If p = 0, set wy =
a(u(1)) so that wy(1) = (wy) = ¢(a(u(1))) = u(1). Then

up(1) = u(l) = (fowo)(1) = u(l) —wo(1) =0
hence uy € U;. Now suppose that {w,, }men € aV have been defined for

|m| < p in such a way that u, € U,;;. For |m| = p+ 1, set w,,, = a(u,(z™))
so that wy, (1) = uy(z™). Then for any k& € M such that |k| < p+1 it must be
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(finwi ) (%) = g win (1) = G up(z™) because m < k if and only if m = k.
Therefore

s (2¥) = u(@®) = Y (fmwin)(z¥)

|m|<p+1

= up(xk) + Z (fmwm)(xk) - Z (fmwm)(xk)
[m|<p Im|<p+1

) = T )@ ) = ) = T Bty (e™)
|m|=p+1 |m|=p+1

= uy(a*) — up(a) = 0

for any &k < p + 1, which implies up41 € U,yo. It follows that wu, 70
in the filtration topology and therefore also in the finite-open topology by
2.1.2. Hence if v, = Z|m|§1’ fmwy, then the sequence {v,},>0 converges to
u in the filtration and finite-open topologies. Moreover, the unordered sum
Y men JmWn also converges to u as

D () (@) = vp(a) = u(@®) = up(2*) = u(2*)

meM

for any k € M with |k| = p.

Suppose hypothesis (1) is true. Then X is closed in the finite-open
topology of U, which implies that the limit of any convergent sequence
in X belongs to X. Since w,, € aV C X and FX C X, we have that
{fmWm}tmen C X and therefore {v,},>0 is a sequence in X. It follows that

p—o0
u € X because v, — u.

Now suppose hypothesis (2). Then dimV < oo, which implies that
dimaV < dimV < oo. Choose a basis {w(), ..., we)} for aV and write

q
W = Y At
j=1

for all m € M, where \j,, € K for any j and m. Define fu,..., f) € F by
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fi)(@™) = Nj, for each j € {1,...,¢} and m € M. It follows that

i (fiyw ZZ( ) oMwg (@)

Jj=1 7=1 k<m

,;,;( et
=3 (et = X (™)

= (frwp) (™) = u(a™)

for each m € M. Therefore u = Y77 | fiw(), but wyy € oV C X and
FX CX, hence u € X. O

Thanks to this lemma, we reach the following main result on imprimitiv-
ity.

Theorem 4.2.5. The map 6 : W — U 1is an injective g- and F-homomorphism.
Moreover, suppose one of the following hypotheses:
(1) dim (g/h) < oo and W is filtration complete;
(2) dimV < oo.

Then 0 s bijective.

Proof. By 4.2.2 and 4.2.3, € is an injective g- and F-homomorphism. Let
X = 0W. We have FX = F(OW) = 0(FW) = W = X, also pX =
e(OW) =W =V.

Suppose hypothesis (1) is true. Then dim(g/h) < oo and W is filtra-
tion complete. This means that each Cauchy sequence {w,},>0 in W must
converge to some w € W in the filtration topology. Since 6 is filtration
preserving by Lemma 4.2.1, this implies that 6w, —— fw in the filtration
topology of U. In other words, X = W is closed in the filtration topology
of U and therefore also in the finite-open topology by 2.1.2. Hypothesis (1)
of Lemma 4.2.4 is satisfied and thus W = X = U, i.e. 6 is surjective.

Now suppose hypothesis (2). Then X = U by case (2) of Lemma 4.2.4
and @ is surjective. O



Chapter 5

An irreducibility theorem for
induced representations

In this chapter we will reach a result concerning irreducibility criteria
for certain induced representations. Theorem 5.2.4 given at the end may
be dualized thanks to 2.0.1 to obtain an analogous proposition for produced
representations, however the result obtained is primarily of topological nature
and therefore it will not be included in this work. The dual version may be
found in [1].

5.1 Absolute irreducibility

Let g be a Lie algebra.

Definition 5.1 (Absolute irreducibility). A g-module V is called absolutely
wrreducible if it is irreducible under arbitrary extensions of the field K, i.e. if
the (L ®k g)-module L ®k V' is irreducible for any field extension K C L.

Note that for any field extension K C L, the K-vector space L ®x g is
an [L-Lie algebra with the following operations of scalar multiplication and
bracket:

l(koz)=(k)®x
@z l®yl = (kl)® [z,vy]

for any k,l € L and =,y € g. The extended module L. ®x V' is defined by
regarding L as a right K-module and it is a (L ®k g)-module with the action

(k) (l®v)=(kl)® (zv)
forall k,le L,z €gandveV.

95
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Remark 9. For the enveloping algebra, we have W(L®g g) = L®k W(g) where
the multiplication on L ®x U(g) is the obvious one defined by (k®x)(I®y) =
(kl) @ (zy) for all k,l € L and x,y € g. The canonical isomorphism is given
by (h®z1)...(l[,®xp) = (l1...1,) ® (x1...2,) for all [; € L and z; € g,
jed{l,...,p}

Example 5.1. Let K = R and g = gl,,(R) where n € Z<,. Let L = C and
V =R". Then since C = R & iR we have

C®rgl,(R) = (R®R) @ gl,(R) = (R®g gl,(R)) ® (iR @ gl,(R))
=~ gl (R) @ igl,(R) = gl,,(C)
CoxR" = (R®iR) ®x R" = (R®x R") @ (iR ®& R")
>~ R" @p iR" = C"

congruently with the intuitive idea of field extension for a Lie algebra and
module.

Example 5.2. We give an example of a g-module which is irreducible but
not absolutely irreducible. Let K = R and g = spang{( % §)}. This is
clearly an abelian subalgebra of gly(R). Let V = R? be a g-module with the
inherited natural action. To show that R? is irreducible, we must prove that
there is no W C R? such that {0} # W # R? and giW C . Nontrivial
submodules of R? must be 1-dimensional because dimg R? = 2, therefore
there must be a nonzero v € R? such that for each x € g there exists A, € R
which satisfies xv = A v. This implies that v is an eigenvector of (_01 (1))

But
-2 1Y\
det (_1 _/\) =N+1

which is a polynomial with no roots for A € R, hence (_01 é) has no eigen-
values and therefore no eigenvectors. So R? is an irreducible g-module. Now
let L = C. As seen earlier in Example 5.1 we have C ®g g = spanc{( % §)}
and C ®g R? = C2. The polynomial A2 + 1 has roots A = %i in C, therefore
there exists a nonzero v € C? such that (% §)v = iv (choose v = (1) for
example). Hence W = spanc{v} is a subspace of C? such that dim¢ W = 1
and (C ®g g)W C W, so C? is not an irreducible (C ®g g)-module.

5.1.1 Schur’s Lemma and Chevalley-Jacobson density
theorem

We give a couple of results on irreducible representations that will be
needed later in this chapter.
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Lemma 5.1.1 (Schur). Let A be an algebra over an algebraically closed field
K and let V' be an irreducible A-module. If p € Enda(V) then ¢ = A1dy for
some X\ € K.

Proof. Since K is algebraically closed, there exists a nonzero v € V eigen-
vector for ¢ of eigenvalue A. Denote with V), = {v € V | p(v) = Av} the
eigenspace for \. We show that V) is an A-submodule of V. For each a € A
and v € V, we have

p(av) = ap(v) = alv = Aav

which implies av € V). Since V is irreducible, it must be V = V) and
therefore ¢ = A 1dy. O

Theorem 5.1.2 (Chevalley-Jacobson). Let R be a ring and let V' be an
irreducible R-module. Set D = Endg(V') and let vy, ... v, € V be D-linearly
independent. Then for any wy,...,wy € V there exists z € R such that
zvj =w; forall j € {1,... k}.

Proof. See [3]. O

Remark 10. If K is algebraically closed and V' is a module over the K-algebra
A, by Schur’s Lemma we may replace the hypothesis of zi,...,x; being
End4(V)-linearly independent in 5.1.2 with xy,...,x; being linearly inde-
pendent.

Corollary 5.1.3. Let g be a Lie algebra and let V' be an absolutely irre-
ducible g-module. Let vy, ... v € V be linearly independent. Then for any
wy, ..., wg € V there exists z € W(g) such that zv; = w; forallj € {1,... k}.

Proof. The g-module V' is absolutely irreducible, therefore by considering the
algebraic closure K of K we have that K ®g V is an irreducible (K QK U(g))—
module. Clearly vy, ..., v linearly independent in V' implies 1®Qwvy, ..., 1 Qv
linearly independent in K®g V. By Theorem 5.1.2 and Remark 10 there exists
z € K ®x U(g) such that z2(1 ®@ v;) = 1 @ w; for all j € {1,...,k}. Choose
{k;}ieq basis for K as a K-vector space and let iy € I be the index such that
ki, = 1. Then z = ), ., k; ® a; where only a finite number of a; € U(g) are
nonzero. This implies that

<Zkz®az> (1®'Uj):Zki®aﬂ}j:1®wj

iel

for all j € {1,...,k} and therefore it must be a; = 0 for i # 7y. Hence if
z = a;, then Z=1® z so that 1 ® zv; = 1 ®@w; for all j € {1,...,k}, which
implies our desired result due to the isomorphism 1 ®@ V = V. O
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5.2 Extended representations

In this section, g will be a Lie algebra with an ideal t and V' will be a
t-module. Define h = {y € g | 3 s € Homg(V, V) : [y, k]Jv = skv — ksv Yv €
Vi k et}

Proposition 5.2.1. The set by is a Lie subalgebra of g such that t C .

Proof. Since V' is a t-module, for any z € t we have [z, k|v = zkv — kzv for
all k € tand v € V. If p : t — Homg(V,V) is the representation map of
V', then zv = p(2)v for any v € V| hence the previous formula implies that
t Ch. Now let z,y € h and let A € K. Then there exist s,t € Homg(V, V)
such that

[z, k]v = skv — ksv
ly, kv = thv — ktv

for all v € V and k € t. Since t is an ideal, [z, k], [y, k] € t. Therefore

[z +y, klv = [z, kv + [y, k]lv = skv — ksv + tkv — ktv
=(s+t)kv—k(s+t)v
Az, klv = Az, k]Jv = Askv — Aksv
= (As)kv — k(As)v
([, y], ko = [, [y, Ko = [y, [, Kllv = sly, klv = [y, k]sv = (t[z, k]v — [z, k]tv)
= (stkv — sktv) — (tksv — ktsv) — (tskv — tksv) + (sktv — kstv)
= stkv + ktsv — tskv — kstv = (st — ts)kv — k(st — ts)v
= [s, t}kv — k[s, t]v

for all v € V and k € t. Hence b is a Lie subalgebra of g. O
For each = € g and k € t, define §(x) € Homg(t,t) by é(x)k = [k, x].

Proposition 5.2.2. The map ¢ : g — der(t) is a Lie algebra antihomomor-
phism.

Proof. The map ¢ is linear by the bracket’s bilinearity. We show that § maps
g into der(t). For each x € g and h, k € t we have

5(1‘)[]1, k] = [[h7 k‘],l‘] = [h [kvx] - [k’ [h7 ZL’H = [hvé(x)k] - [k75(x)h]
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by the Jacobi identity, which proves that (x) is a derivation of t. For each
x,y € g and k € t we have

= [[k,y], 2] = [[k. 2], y] = [, [y, k]] = [y, [=, k]|

= [[z,y]. k]
by the Jacobi identity again. Since [6(y), d(x)] = —[d(x),0(y)] = —[[z, y], k] =
[k, [z,y]], we obtain that 6([z,y])k = [0(x),0(y)]k for any z,y € g and k € t.
Therefore ¢ is a Lie algebra antihomomorphism. O]

For each € g we may extend 6(z) to U(t) by means of derivation: for
any ki, ko € t define

and do the same iteratively for any product £; ...k, of p elements of t, so
that d(z) € der(U(t)). The degenerate case is 6(x)1 = 0 as constants must
be null under derivation. We can then extend 0 to be an associative unitary
algebra antihomomorphism U(g) — Homg (1(t),1(t)) by defining

6(yr---Yp) = 0(yp) ... (1)

for all products y; ...y, of p elements of g (and obviously 6(1) = Idy,y)).

Remark 11. Note that zx = xz + d(z)z for all z € U(t) and = € g.
Indeed, for any zi,...,2, € tand « € g then

2 g = 2 B 182y 21 Zge1]2g, X

=21...2g 182 + 21 .. 2g-1(0(2) )
= =221...2¢+ Z 2125 1 Zl)Zi+1 .. Zq

=x21...2¢+0()(2 1...zq)

which implies the desired result.
Let z € U(t) and vy, ...,y, € g. For any multi-index m = (my,...,m,) €
(Zp)? define y™ = y™ ...y € U(g) like in Lemma 1.3.3.

Lemma 5.2.3.

"= ) (Z)yk@(ym"“)Z)-

0<k<m
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Proof. We show the identity holds for the case m; = ... = m, = 1. The
general result will follow by identifying the elements y; and collecting terms
exactly as in Lemma 1.3.3. Proceed by induction on p. If p = 0 the identity
holds trivially as z = 6(1)z, however this is a degenerate case. If p = 1 we
have

2y1 = 12+ 0(y1)z = 110(1)z + 5(y1)2

by Remark 11. Now suppose the result holds for some p > 1. Then

ZY1 - Ypr = Y122 - Ypir + (0(01)2) Y2 - Ypia
k _ 1-k
=y Y w6 ™))

0<k;<1
if2,p 1)
kp - 1—k,
+Y R 0wy ) (n)z)
0<k; <1
1€{2,...,p+1}
_ ko kp+1 5 1—-1, 1—ko 1—kpi1
= > oy O ey ™)2)
0<k;<1
1€{2,...,p+1}
k - 1k
Y st By t)2)
0<k; <1
1€{2,...,p+1}
k k1 1k
= > sy O ™ )?)
0<k;<1
ie{1,...,p+1}
because d(y;)z € U(t) and § is an antihomomorphism. O

5.2.1 Irreducibility theorem

Theorem 5.2.4. (1) If b # t then Z{ (V) is reducible.

(2) Suppose charK = 0 and V' is absolutely irreducible. Let W be an irre-
ducible (respectively absolutely irreducible) h-module such that W = @ . 4 Va
as a t-module, where V, =V for all . Then Ig(W) is irreducible (respec-
tively absolutely irreducible).

Proof. (1) Assume bh # tand set U = Z¥ (V) = W(g) @y V. Choose y € h~t
so that its equivalence class gy € g/t is nonzero. Choose an ordered index set
I, a basis {Z;}ie for g/t and {x;}ie; C g such that z; € z; for each i € I.
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We may reorder I so that it has an highest element iy and since § # 0 we
may also assume y = z;,. Define the multi-indices set M, the monomials
x™ for m € M and filter U as in §2.1. Let s € Homg(V, V) be such that
[y, k]Jv = skv — ksv for all k € t and v € V, as in the definition of h. Define
r € M by r; = 4y, for each ¢ € I, where d;;, is the Kronecker delta. Let
T = span{z""" @v—a"®sv | m € M,v € V}. We show that T"is a non-{0}
subspace of U such that TN Uy = {0}. The map ¢ : S(g/t) ® V — U is a
filtration preserving linear isomorphism by 2.1.1 and {Z"™},,car is a basis for
S(g/t), therefore if {v;} ;e is a basis for V then {&""" ®@v; — 2™ ® sv; }menmjes
is a basis for T. Clearly 2" ® v; # ™ ® sv; for any m and j, hence
2" @ v; — 2™ ® sv; # 0 so that T' # {0}. Remember that

UO :u()(g) ®u(t) V = {1®U | NS V}

We may write 1 @ V = {1 ® v | v € V} for convenience, so that 1 ® V
coincides with the internal tensor product between K (regarded as a trivial
t-module) and V. If w € T N U, then

k
w = Z A (@O @ v, — 2™ @ su;))
j=1
w=1®uv
where \; € K, m(;y € M, v;; € V and v € V. Both writings are unique by
the argument above and since my;) + 7 # 0 for any m(;y € M then it must

be w = 0. Therefore T'N Uy = {0}, which also implies that T" is a proper
subspace of U.

We finish by showing that U(g)T C T'. If k € t, we have
k(zi, @v—1® sv) =k, @V — k@ sv =2,k @v + [k, 25,] v — k ® sv
=T, @ kv —1& (ksv + [x;,, k]v)
=2, ® kv —1® skv
because y = x;, and [y, k]Jv = skv —ksv. Thus S = {z;,@v—1®sv |v €V}

is t-invariant and hence it is U(t)-invariant. But {z;};c; is a basis for U(g) as
an W(t)-module, therefore U(g) = >  _,, ™U(t). It follows that

Wg)S =) a™(HS=> a"S=T
meM meM

because 2" x;, = ™" for all m € M. We then have

We)T =Ug) Y a"S=> a™ig)S= > a"T=T

meM meM meM
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and therefore 7" is a nontrivial U(g)-submodule of U. So U is reducible.

(2) Assume that char K = 0, V' is an absolutely irreducible t-module, W
is an irreducible h-module and W = @ae 4 Va as a t-module with V,, = V.
Set U = Z)(W) = U(g) ®u) W. Choose an ordered index set I, a basis
{Z;}ier for g/b, a set of class representatives {z; };cs, define the multi-indices
set M, the monomials 2™ for m € M and filter U as in §2.1. Let T be a
non-{0} U(g)-invariant subspace of U: we show that 7" = U, which implies
that U is irreducible.

Case I. Suppose T'N Uy # {0}. Remember that Uy = 1 ® W. We have
h(l@w)=h®@w=1& hw for all h € h and w € W, therefore Uy is 1(h)-
invariant. Since 7" is U(g)-invariant it is also U(h)-invariant, hence T'N Uy is
a non-{0} W(h)-submodule of 1 ® W = W. By the irreducibility of W, it is
TNUy=1®W. Therefore

T=WgT2Wg)(1aW)= Y 2"ih)(leW)=> "W

=U

thanks to the isomorphism ¢ : S(g/h) ®x W — U seen in 2.1.1.

Case II. Now suppose T'N Uy = {0}. We will show that this case leads to
an absurd. Let p > 1 be the smallest integer such that 7'N U, # {0}, which
must exists as {0} # T C U. Let u be a nonzero element of TNU,. By 2.1.1,
the map ¢ is a filtration preserving isomorphism and therefore we can write

with wy,, € W. By hypothesis, W = @, .4 Vo = {Z?Zl v; | vy € Vo, €
A,k € Zso}. Therefore only a finite number of the w,, in the expression of u
are nonzero and the w,, have components only in a finite number of the V.
Let’s denote these with V,,,...,V,,. Foreachn € {1,...,q¢} let (" : W =V
be a t-homomorphism which vanishes on P, Loy Vo and is an isomorphism
on V,, i.e. (" is the composition between an isomorphism V,, — V and the
projection of W into its a,,-th coordinate.

Tan
W —1V,,

RN

Vv
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If z € U(t) then zw,, = 0 if and only if z("w,, =0 for all n € {1,...,q}.

Let v be a nonzero element of V. Without loss of generality, we may
assume that ("w,, = Ay for all n € {1,...,q} and |m| = p, where AW e K.
In fact, let 3 be a maximal linearly independent subset of {("w,, | |m| =
p,n € {1,...,q}}. By 5.1.3 there exists zy € U(t) such that zo¢"w,, = Ay
for all ("w,, € 3, these coefficients A being chosen freely in K. Writing
every ("w,, as a linear combination of elements in 3 gives the above result
for some A\ € K and all n € {1,...,q}, |m| = p. We can assume that the
)\57?) are not all zero, thus the zyw,, are not all zero either and so it is zgu # 0.
From Lemma 5.2.3 we have

202" Q@ w,, = Z (7:) " (5(:Bm_k)zo) ® Wy = Z (TZ) F ® (5(:vm_k)zo)wm

0<k<m

=2 ® 2Wm + Z (7;) z* @ (6(z™*)20) wi,

0<k<m

0<k<m

where the sum on the right always belongs to U,_;. It follows that

ZoU = Z ™" ® ZgWm, (modulo Up,l).

|m|=p

Since T is U(g)-invariant we obtain that zou is a nonzero element of € T'NU,,
therefore we may choose zyu instead of our original u to find an element that
satisfies the above assumptions.

For all z € W(t) and |m| = p we have ("(zw,,) = 2("w,, = A 2.,
Therefore w,,, = 0, |m| = p if and only if A = 0 for each n € {1,...,q}.
Moreover, if w,, # 0, then zw,, = 0 if and only if zv = 0. Now choose m such
that |m| = p and w,, # 0. For each i € I, define the multi-index 7(z) = ¢;;
for all j € I, where §;; is the Kronecker delta. Let iy € I be an index such
that m;, > 0 and set [ = m —r(iy). Observing that |l| = p — 1 we may write

u:Zxk®wk+ka®wk

|k|=p |kl<p
= Zxk®wk+xl®wl—l— Zxk®wk
|k|=p |k|<p
k#l
— le—&-r(i) & Wit (4) =+ Z ZL‘k X wy, + ZL’l &® w; + Z LEk & Wy
icl |k|=p |k|<p

k#l kil
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Our objective is to find the coefficient of x! in +7*(zu). We apply Lemma
5.2.3 to zu written as below:

Zu = Z 2270 Wigr(i) + Z zaF @ wy, + 22t @ w, + Z z2* @ wy.

el |k|=p Ikl <p
k#l k£l

Clearly the sums over k # [ and k # [ will not contain the term 2!, therefore
they can be discarded. For each i € I, we have

(i) _ <l +l7"(i))xz (5(xl+r(i)—l)z) n Z (l +]:(2)):Bk (5(xl+r(i)—k)z>

0<k<l+r(i)
k£l
[+ r(i .
SGRECOORD SN (R EIUED
0<k<l+r(i)
k£l

so we may discard the sum over k # [ written above. Similarly, since it is

we will also discard the sum over k£ < [. Hence we have

2u = Z(ZZ + )2t (6(2:)2) ® wiprpy + 22 @ wy + Z F @ wy

el |k|<p
k£l
=7 ® (zwl + Z(lZ + 1) (6(2)2) wisrii ) Z " @ Wy,
el |k;|<p
k£l

for some w;, € W and therefore the coefficient of 2! in zu is

2wy + Z i + 1 )wl+r(z) (5.1)

el

Choose ng € {1,...,q} such that Ano) # 0. As explained earlier, this is
always possible because we assumed w,, # 0. We apply (" to (5.1) to
obtain

zC"Owl + Z l + ]. ) )Q Wigr(i) = Zgnowl + Z l + 1 5( ) )AI(Z(;“)(Z)U

i€l el
= zvg + (0(y)z)v
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where vy = ("™ w; and

Yy = Z(ll + 1))‘l(+r)(z)xz € g.

iel

Since char K = 0 and A2 # 0, the coefficient of z;, in y is not zero. There-
fore the equivalence class of y in g/b is not zero, i.e. y ¢ b.

At last we prove that y € h, which contradicts the above argument and
thus implies that Case II is void. By 5.1.3, we know that every element of
V' is of the form zv for some z € U(t). Suppose zv = 0: as seen earlier, this
means zwy = 0 for all |k| = p. Since we have already proven

2u = Z 7% ® 2w, (modulo U,_;)
|kl=p
then zu € T'NU,_1, but due to the minimal choice of p it must be zu = 0.

Hence (5.1) vanishes and therefore zvy + (6(y)z)v = 0. So we may define an
operator s € Homg(V, V') by

szv = zvg + (6(y)z)v

for each z € U(t). This expression is linear in z and so s is well-defined as a
linear operator. Let k € t. Because 6(y) € der(l(t)), then

sk(zv) — ks(zv) = kzvg + (6(y)(kz))v — (kzvo + k(d(y)2)v)
= ((0)k)z + k(6(y)2))v = k(3(y)2)v
= (0(w)k)zv = [k, y|zv

for any z € U(t). It follows that y € b, which leads to an absurd.

To show absolute irreducibility for Z§(WW) in (2) we just need to repeat
the above proof for any field extension K C IL. We obtain that the W(L®x g)-
module IIL@f) (L ®x W) is irreducible, but

2L @x W) = WL ®@x 8) O ey (L ©x W)
= (L @k W(g)) @ragpu (L @x W)
= L @x (We) @up W) = Lox Zj(W)

by Remark 9 and the isomorphism (I} ® a) ®@ (lo @ w) — (lils) ® (a ® w)
for each l,l € L, a € U(g) and w € W. That the above map defines an
isomorphism comes from the fact that the tensor product is associative and

Loy L=L. [l
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Example 5.3. We give an example for case (1) of the theorem. Let K = C,
g = glg(n) and t = slg(n). Let V' be an slc(n)-module. We know that
gle(n) = slg(n) & Cld,, and Cld,, commutates with any k € t. Therefore, for
any y = Ald,, with A € C the condition [y, k|v = skv—ksv is trivially satisfied
for all k € slg(n) and v € V by setting s = 0. As CId,, is 1-dimensional,
this must imply b = gls(n) so that h # slc(n). Then the assumptions for (1)
are satisfied and therefore the induced representation Zfllg))(\/) is reducible.
Indeed, we have

- sle(n)

and therefore by the isomorphism ¢ : ISI((%)(V) — S(CId,) ®c V we obtain

T50(V) = S(Cld,) ® V = @) (Si(Cld,) © V)

=0

because S(Cld,) = @;°, S:(Cld,) (remember that S(CId,) = C[Id,]).
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