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Abstract

The LSZ reduction formula is one of the key equations of QFT as it is used to reduce
S-matrix elements to scattering amplitudes, from which one obtains observables
such as cross sections. The reduction formula was originally obtained in the second
quantized quantum field theory, in which time dependent creation/annihilation op-
erators acting on the distant past/far future vacuum state are time evolved all the
way to the far future/distant past. Recently the reduction formula has been ap-
plied to the worldline formalism, a first quantized approach to the calculation of
Feynman diagrams and integrals. Then, derived, in the context of worldline path
integrals, in a recent reformulation of the binary inspiraling problem, the so-called
Worldline Quantum Field Theory (WQFT). In particular, the LSZ reduction for-
mula has been applied, in momentum space, to the worldline representation of the
Green function for a scalar particle propagating in a gravitational field, resumming
the irreducible part of the related Feynman diagrams, arising from the perturbative
expansion in the gravitational coupling constant. Then, based on such relation, a
configuration space path integral has been written to compute amplitudes, which,
however, are dressed with coherent wave-functions of the Poincarè group. This is
needed since this analysis aims at classical applications.

In this thesis we propose a method to LSZ reduce the worldline Green function
directly in position space, obtaining a position space path integral, without any
dressing with classical wave-functions, thus generating on-shell scattering ampli-
tudes with external asymptotic states. In particular, a position space representa-
tion of the Green function is obtained from the mixed position and momentum
space representation and path integrating out the momentum perturbation degrees
of freedom. Our proposal, thought shown to be equivalent to the usual one, allows
to write down, directly in configuration space, a worldline representation for the
half reduced dressed propagator, thus making explicit the pole structure of the di-
agrams with respect to the external lines, otherwise hidden in the standard phase
space formulation. As an application we present the Compton scattering ampli-
tude obtained from the reduced dressed propagator in the cases of ϕ3 and scalar
electrodynamics, and in addition, we study the classical limit of such amplitude,
reproducing known results in the literature.
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Chapter 1

Introduction

The original Reduction Formula was proposed by Lehmann, Symanzik and Zim-
mermann (LSZ) in 1955 [2] with the purpose to obtain a consistent Quantum
Field Theory (QFT) free from infinities. This celebrated LSZ formula is still used
nowadays to reduce S-matrix elements to amplitudes, see e.g. [3–6], from which
one can assemble predictions such as cross sections that can be measured. The
final formula for the reduction of a correlation function involving only real scalars
reads1

⟨f |i⟩ = in+n′∏
l′

∫
dDxl′ e

−ikl′xl′ (−□l′ +m2)
∏
l

∫
dDxle

iklxl(−□l +m2)

× ⟨Ω|Tϕ(xl′)ϕ(xl)|Ω⟩ (1.1)

which doesn’t show any presence of the creation/annihilation operators that are the
backbone of the second quantized QFT, only the inverse free propagator and the
time ordered product of fields. The latter is the Green functions of the interacting
theory, often represented by path integrals in the space of fields. One interesting
consequence of the absence of explicit second quantized creation/annihilation oper-
ators suggests that the Green functions may be instead represented by a worldline
path integral. This is shown in the main reference article [7], and applied, e.g. in
[8, 9]. The worldline formalism is a first quantized quantum-mechanical theory
on 0 + 1 spacetime dimensions embedded into some target space. First developed
by Feynman as a mathematical tool for perturbative QED in the early 50’s [10,
11] was shown to coincide with the infinite string tension limit of a first quantized
worldsheet theory, see e.g. [12–15]. More recently, string inspired vertex opera-
tors where adopted as a method to recast worldline path integrals into Gaussian
integrals [16, 17], see [18–20], in particular [21] for a comprehensive review.

1throughout this thesis the Minkowski metric signature is the one with mostly + signs.
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Chapter 1 – Introduction

1.1 Worldline formalism and scattering amplitudes
Worldline path integrals are representations of the Green function or one-loop ef-
fective action of interacting field theories. One way to introduce such path integrals
relies on the Schwinger exponentiation of differential operators, represented by the
interacting kinetic terms in some field theory. Then, the Schwinger parameter
[22], (see, e.g. Chapter 33 in [6]) is interpreted as the proper time of a relativistic
particle moving along the worldline, while the differential operator is interpreted
as a point particle Hamiltonian. Here is where the worldline enters the picture,
since the related transition amplitude, appearing in the Schwinger representation,
can be realized as a quantum-mechanical path integral. Thus, worldline path in-
tegrals are sums over all possible paths, given specific boundary conditions for the
trajectories. There are two main topologies of boundary conditions, the circle,
with which one computes effective actions (see e.g. [21, 23–27]) and the topology
of the line. In this thesis we will focus on the latter, whose path integral produce
un-reduced scattering amplitudes ([28–32]). The goal of this thesis is to propose a
worldline path integral in position space which evaluates sums of 1PI Feynman di-
agrams, with external propagators already on-shell and amputated, for the cases of
scalars moving through background fields. More specifically, such reduced dressed
propagators have been proposed in momentum space in [33, 34]. In particular, the
article [7] exemplifies the procedure in momentum space, highlighting the presence
of the correct poles structure. It constitutes the main reference.

Inspired by the mixed-position and momentum space representation of the
Green functions [35, 36], we build up a path integral representation of the Green
function fully in configuration space, which delivers directly the massive external
lines propagator, once using the procedure proposed in [7] −namely, a change
of coordinates−. We explicitly recover the same poles structure, which is then
amputated by the LSZ reduction. This is obtained firstly in the context of a ϕ3

theory and later on in the case of scalar Electrodynamics (sQED). The reduced,
on-shell dressed propagators are then tested, computing the vertices and Compton
scattering of the two theories. The sQED Compton amplitude is then studied
in the classical limit, employing the Kosover-Maybeee-O’Connel procedure [37].
The Compton amplitude in ϕ3 is also studied in the classical limit, this time
using the appropriate Worldline Quantum Field Theory (WQFT) Feynman Rules,
proposed in [38], and applied in the context of Hard Thermal Loops (HTL)( [39–
42]). Finally, employing the Kawai-Lewellen-Tye (KLT)([43]) like relation, straight
at the classical level [44], we obtain the classical gravitational Compton amplitude
as the double copy of the sQED Compton amplitude.
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Chapter 1 – Introduction

1.2 Organization of the thesis
The scope of this thesis is to review the LSZ reduction for momentum space dressed
propagators and propose a method to LSZ reduce the position space worldline path
integral. In Chapter 2 the reference paper [7] is reviewed, from action of the theory,
the derivation of the graviton dressed scalar propagator, to the reduction and the
derivation of Feynman rules. In Chapter 3 the same argument is applied to a ϕ3

toy model. In Chapter 4 the mixed position and momentum representation of the
Green function is introduced. We will see how out of this representation one can
obtain a Green function representation expressed in configuration space, for the
case of ϕ3. The LSZ reduction of this version of the position space representation
of the Green function is remarkably similar to the procedure reviewed in Chapters
2 and 3. The validity of the Green function introduced in Chapter 4 is tested
in Chapter 5, obtaining some simple amplitudes in ϕ3. In the same Chapter
we introduce the worldline path integral for a complex scalar propagating in an
Abelian background gauge field, first in the phase space representation and then
in configuration space. This path integral can be reduced in the same fashion as
the ϕ3 case. It is then tested, obtaining simple sQED amplitudes. Finally, the
KLT double copy is used to obtain the classical limit of gravitational Compton
scattering.
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Chapter 2

Review

In this Chapter the reduction procedure found in [7] is reviewed. The paper itself
is mainly concerned with the computation of graviton mediated scattering ampli-
tudes of two black holes, represented as differently flavoured scalars, in classical
limit. The worldline formalism is used to describe black holes as classical objects
[45], treating gravity as an EFT [46, 47]. Of particular interest for this review is
how the worldline action is used to obtain a positions space path integral, how
the dressed propagator looks like in momentum space, and how the latter is LSZ
reduced.

2.1 Worldline action and position space propaga-
tor

Let the action S describing the motion of a black hole coupled to gravity be

S = SEH + Sgf + Spm (2.1)

where SEH is the Einstein-Hilbert action

SEH = −2mD−2
Pl

∫
dDx

√
gR. (2.2)

The metric is taken as small fluctuations about Minkowski metric

gµν = ηµν + κhµν . (2.3)

The gauge fix is the De Donder gauge

Sgf =

∫
dDx

(
∂νh

µν − 1

2
∂µh

)2

. (2.4)
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Chapter 2 – Review

Spm is the worldline action, obtained as an EFT by expanding in powers of the
curvature tensor, for some Wilson coefficients {cR, cV , . . . } necessary to describe
an extended object [48], see [45, 49] for a review.

Spm = m

∫
dτ + cR

∫
dτR(x) + cV

∫
dτRµν(x)ẋ

µẋν + . . . (2.5)

where dτ =
√
gµν ẋµẋν is the proper time. The first term corresponds with

geodesics motion with respect to the metric gµν on the geodesic xµ. Usually,
up to 4th order in the Post Newtonian expansion, terms proportional to cR and cV
are removed by a field redefinition, as they don’t carry consequences for physical
observables [50]. Introducing the einbein e(τ) we can rewrite Equation (2.5) into
a Polyakov form

Spm =
m

2

∫ +∞

−∞
dτ
(
e−1gµν ẋ

µẋν + e
)
. (2.6)

Integrating out the einbein using its equation of motion

e2 = gµν ẋ
µẋν (2.7)

recovers Equation (2.5). We choose instead to gauge fix e = 1, which sets
gµν ẋ

µẋν = 1 and τ as the proper time. The action then reads:

Spm =
m

2

∫ +∞

−∞
dτ (gµν ẋ

µẋν + 1) . (2.8)

In the sequel we will use the action in Equation (2.8), as there are no square roots.
Let us now sketch the derivation of the Polyakov action to describe the black

hole scattering, starting from QFT arguments. We picture the black holes as two
different flavoured massive scalar fields. The QFT action for a scalar field coupled
to gravity is

S ′ = SEH + Sgf +
∑
i

Si

= SEH + Sgf +
∑
i

∫
dDx

√
g
(
gµν∂µϕ

†
i∂νϕi +m2ϕ†

iϕi − ξRϕ†
iϕi

) (2.9)

where the index i refers to the flavours and ξ is a non minimal, dimensionless cou-
pling with the Ricci scalar. Let us now introduce the graviton dressed propagator
G(x, x′) for the scalar field. It is defined to be the inverse of the interacting kinetic
term for the scalar, namely(

∇µ∇µ +m2 + ξR
)
G(x, x′) =

√
gδ(D)(x− x′) (2.10)
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Chapter 2 – Review

where ∇µ is the covariant derivative. We represent this Green function as a path
integral in field space, namely:

Gi(x, x
′) = Z−1

i

∫
Dϕi ϕi(x)ϕ

†
i (x

′)eiSi (2.11)

where the index i refers again to the flavour and Zi is a normalization constant.
Having introduced the dressed propagator, let us now go the the full four scalar
amplitude ϕ1ϕ2 −→ ϕ1ϕ2. As know, from QFT, amplitudes are Fourier transform
of amputated Green functions, thus, studying the amplitude in the classical limit
meas studying how the related correlator behaves in the classical limit. Let us
focus on the following time ordered correlation function

⟨Ω|Tϕ1(x1)ϕ
†
1(x

′
1)ϕ2(x2)ϕ

†
2(x

′
2)|Ω⟩ =

= Z̃−1

∫
D[ϕ1, ϕ2, hµν ] ϕ1(x1)ϕ

†
1(x

′
1)ϕ2(x2)ϕ

†
2(x

′
2)e

iS′

= Z−1

∫
Dhµν G1(x1, x

′
1)G2(x2, x

′
2)e

iSEH+iSgf

(2.12)

where in the last step the scalar degrees of freedom have been integrated, suppress-
ing all virtual loops including scalars, obtaining the product of G1G2. It should
be noticed that here, the dressed propagator must be amputated because we are
interested in the scattering amplitude. We then represent the Green functions
using worldline path integrals. A first guess for the Green function is

G(x, x′) ∼
∫ +∞

0

dT eim
2T

∫ x(T )=x′

x(0)=x

Dx(τ) exp

{
i

∫ T

0

dτ

[
1

4
gµν

dxµ

dτ

dxν

dτ
+ ξ̃R(x)

]}
.

(2.13)
It must be noticed that in a gravitational background the trajectory-space measure
depends on the metric [51–53], namely

Dx = Dx
∏

0≤τ≤T

√
g[x(τ)]

=

∫
D[a, b, c] exp

{
−i

∫ T

0

dτ
1

4
gµν (a

µ
a
ν + bµcν)

} (2.14)

where Dx is the flat spacetime path integral measure

Dx =
∏
τ

dDx(τ) (2.15)
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Chapter 2 – Review

and aµ, bµ and cµ are the Lee-Yang ghost fields [54]; the first is Grassmann even,
the latter two are Grassmann odd. Reassembling the Green function:

G(x,x′) =

∫ +∞

0

dT eim
2T

∫ x(T )=x′

x(0)=x

Dx

∫
D[a, b, c]

exp

{
i

∫ T

0

dτ

[
1

4
gµν

(
dxµ

dτ

dxν

dτ
+ aµaν + bµcν

)
+

(
ξ − 1

4

)
R(x)

]} (2.16)

Equation (2.16) is a prime example to showcase why τ , T are rescaled to τ/2m
and T/2m specifically:

G(x, x′)

∣∣∣∣
rescaled

=

∫ +∞

0

dT

2m

∫ x(T )=x′

x(0)=x

Dx

∫
D[a, b, c] exp

{
i

∫ T

0

dτ
1

8m
gµν (a

µ
a
ν + bµcν)

}

exp

{
i

∫ T

0

dτ

[
m

2
gµν ẋ

µẋν +
m

2
+

1

2m

(
ξ − 1

4

)
R(x)

]}
(2.17)

where ẋ now does indicate the derivative with respect to proper time, in fact, the
factor 1/2 recovers the gauge fixed worldline action in Equation (2.8), up to the
not propagating ghosts fields.

2.2 Momentum space dressed propagator
Now that a position space representation of the propagator is available we can
Fourier transform to a momentum space representation D(p, p′; {pl}) so to ampu-
tate the external legs. We denote the initial momentum p and the final momentum
p′, both taken as ingoing into the worldline. Then

D(p, p′; {εl, pl}) =
∫

dD[x, x′] eip·x+ip′·x′
G(x, x′). (2.18)

Let us introduce an expansion in plane waves for the off-shell graviton field:

hµν =
N∑
l=1

ε(l)µνe
ipl·x(τl). (2.19)

We set the boundary conditions for the path integral in Equation (2.18):

xµ(τ) = xµ +
τ

T
∆xµ + qµ(τ), ∆xµ = x′µ − xµ (2.20)

7



Chapter 2 – Review

where qµ is a fluctuation around the straight line trajectory, obeying Dirichlet
Boundary Conditions (DBC). Inserting both the parameterization Equation (2.20)
and the field expansion, Equation (2.19), into the Fourier transform of the propa-
gator in Equation (2.16) we obtain

D(p, p′; {εl, pl}) =
(
iκ

4

)N ∫
dD[x, x′] eip·x+ip′·x′

∫ ∞

0

dT eim
2T ei

∆x2

4T

∫
DBC

D[q]

∫
D[a, b, c]

N∏
l=1

∫ T

0

dτl ε
(l)
µν

(
ẋµ(τl)ẋ

ν(τl) + a
µ(τl)a

ν(τl) + b
µ(τl)c

ν(τl)
)
eipl·x(τl)

× exp

{
i

∫ T

0

dτ
1

4
(q̇2 + a2 + bc)

}
.

(2.21)

The integral can be cast in Gaussian form, by completing the square. To do so, a
propagator on the worldline is required, such as:

∆(τ, τ ′) =
|τ − τ ′|

2
− τ + τ ′

2
+

ττ ′

T
(2.22)

with coincidence limit
∆(τ, τ) =

τ 2

T
− τ. (2.23)

Then the Wick contractions needed to compute the path integrals are:

⟨qµ(τ)qν(τ ′)⟩ = 2iηµν∆(τ, τ ′)

⟨aµ(τ)aν(τ ′)⟩ = −2iηµνδ(τ − τ ′)

⟨bµ(τ)cν(τ ′)⟩ = 4iηµνδ(τ − τ ′).

(2.24)

To proceed further let us introduce some more notation. Let O(q, a, b, c) be some
operator valued function of the worldline fluctuation and the ghosts, then we can
define the following unnormalized expectation value:

⟨O(q, a, b, c)⟩ =
∫
DBC

Dq

∫
D[a, b, c] O(q, a, b, c)ei

∫ T
0 dτ 1

4
(q̇2+a2+bc) (2.25)

Let us also define

D̃(l)
µν(x, x

′) =

[(
∆xµ

T
+ q̇µ(τl)

)(
∆xν

T
+ q̇ν(τl)

)
+ aµ(τl)a

ν(τl) + b
µ(τl)c

ν(τl)

]
eipl·q(τl)

(2.26)
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Chapter 2 – Review

then, using the parameterization in Equation (2.20) the relevant part of the
integral in Equation (2.21) can be rewritten as〈

N∏
l=1

∫ T

0

dτl ε
(l)
µν

(
ẋµ(τl)ẋ

ν(τl) + a
µ(τl)a

ν(τl) + b
µ(τl)c

ν(τl)
)
eipl·x(τl)

〉

=

〈
N∏
l=1

∫ T

0

dτl e
ipl·(x+

τl
T
∆x)ε(l)µνD̃µν(x, x

′)

〉 (2.27)

The integral on the fluctuation is performed by:∫
DBC

Dq ei
∫ T
0 dτ q̇2

4 = (4πiT )−D/2. (2.28)

Let us introduce an auxiliary scalar function F (ε, α, β, γ), for the "polarization"
vectors εµ, αµ which are Grassmann even and βµ and γµ which are Grassmann
odd;

F (ε, α, β, γ) =

〈
exp

{
N∑
l=1

εl · q̇(τl) + αl · a(τl) + βl · b(τl) + γl · c(τl)

}〉
(2.29)

which lets us cast Equation (2.27) as〈
N∏
l=1

∫ T

0

dτl ε
(l)
µν

(
ẋµ(τl)ẋ

ν(τl) + a
µ(τl)a

ν(τl) + b
µ(τl)c

ν(τl)
)
eipl·x(τl)

〉
=

N∏
l=1

∫ T

0

dτl

[(
∆xµ

T
+ ∂εµl

)(
∆xν

T
+ ∂ενl

)
+ ∂αµ

l
∂αν

l
+ ∂βµ

l
∂γν

l

]
F (ε, α, β, γ)

∣∣∣∣∣
ε=α=β=γ=0

.

(2.30)

Using the expectation value identity

e⟨O⟩ = (4πiT )−D/2 exp

{
1

2
⟨OO⟩

}
(2.31)

which in our case returns

F (ε, α, β, γ) = (4πiT )−D/2 exp

{
1

2

〈
N∑

l,l′=1

OlOl′

〉}
. (2.32)

In our case we will set

Ol = εl · q̇(τl) + αl · a(τl) + βl · b(τl) + γl · c(τl) + ipl · q(τl). (2.33)

9
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Using the Wick contractions in Equation (2.24), the expression of the worldline
Green function in Equation (2.22) and noticing the derivatives

•∆(τ, τ ′) =
1

2
sign(τ − τ ′) +

τ ′

T
− 1

2

∆•(τ, τ ′) = −1

2
sign(τ − τ ′) +

τ

T
− 1

2

•∆• =
1

T
− δ(τ − τ ′)

••∆(τ, τ ′) = δ(τ − τ ′)

(2.34)

we can compute

⟨OlOl′⟩ = 2δ(τ − τ ′) (εl · εl′ + αl · αl′ − 2γl · βl′ − 2γl′ · βl)

− 2

T
(iplτl + εl) · (ipl′τl′ + εl′) + ipl · (ipl′τl′ + εl′) + ipl′ · (iplτl + εl)

− i sign(τl − τl′) (εl · pl′ − εl′ · pl) + pl · pl′ |τl − τl′ |.
(2.35)

At this point one can promote the ∆xµ/T to the exponent of Equation (2.26) by
manually inserting

∑N
l=1 εl ·

∆x
T

on the r.h.s. in Equation (2.31). At this point
the integral in dx and dx′ can be taken, yielding a total momentum conservation δ
function and the Gaussian integral. Finally, the expression for the graviton dressed
scalar propagator in momentum space is:

D(p, p′; {εl, pl}) =
(
iκ

4

)N

δ(D)

(
p+ p′ +

N∑
l=1

pl

)∫ ∞

0

dT ei(p
′2+m2)T

×
N∏
l=1

∫ T

0

dτl ε
(l),µν

[
∂εµl ∂ε

ν
l
+ ∂αµ

l
∂αν

l
+ ∂βµ

l
∂ν

l

]

× exp

{
−(p− p′) ·

N∑
l=1

(iplτl + εl)− 2i
N∑

l,l′=1

[
|τl − τl′ |

2
pl · pl′ − i sign(τl − τl′)εl · pl′

]}

× exp{δ(τl − τl′) (εl · εl′ + αl · αl′ − γl · βl′)}

∣∣∣∣∣
εl=αl=βl=γl=0

.

(2.36)

10



Chapter 2 – Review

2.3 Cutting external legs
Now that we have a momentum space representation of the graviton dressed scalar
propagator, Equation (2.36) we may move on to the LSZ reduction. Notice how
the graviton legs in Equation (2.36) are already cut, in the sense that no poles in
p2l = 0 arise. Thus the only external scalar legs have to be put on-shell and to cut.
Let us begin with the outgoing external scalar leg, carrying momentum p′:

lim
on−shell

−i(p′2 +m2)D(p, p′; {εl, pl}) =

= lim
on−shell

−i(p′2 +m2)

∫ ∞

0

dT ei(p
′2+m2)TΩN(T )

= −
∫ ∞

0

dT
d

dT

(
ei(p

′2+m2)T
)
ΩN(T )

∣∣∣∣∣
on−shell

(2.37)

where ΩN is a radiative correction[36], defined as

ΩN(T ) =

(
iκ

4

)N

δ(D)

(
p+ p′ +

N∑
l=1

)
N∏
l=1

∫ T

0

dτlε
(l),µν

[
∂εµl ∂ε

ν
l
+ ∂αµ

l
∂αν

l
+ ∂βµ

l
∂ν

l

]

× exp

{
−(p− p′) ·

N∑
l=1

(iplτl + εl)− i
N∑

l,l′=1

[
|τl − τl′|

2
pl · pl′ − i sign(τl − τl′)εl · pl′

]}

× exp{δ(τl − τl′) (εl · εl′ + αl · αl′ − γl · βl′)}

∣∣∣∣∣
εl=αl=βl=γl=0

.

(2.38)

The integral in the last line of Equation (2.37) can be done by parts, and using
the on-shell limit:

lim
on−shell

−i(p′2 +m2)D(p, p′; {εl, pl}) = lim
on−shell

(ΩN(∞)− ΩN(0))

= lim
on−shell

ΩN(∞)
(2.39)

where we used the fact that ΩN(0) vanishes.
Now, ΩN(∞) must contain the incoming scalar external propagator, that is, it

must develop a simple pole in p2 = −m2. To show this let us perform a change of
coordinates for the proper times τl: defining the "center of mass" proper time τ+

11



Chapter 2 – Review

and the "relative" proper times τ̃l as

τ+ =
1

N

N∑
l=1

τl, τ̃l = τl − τ+

N∑
l=1

τ̃l = 0 τ̃l − τ̃l′ = τl − τl′

(2.40)

with this reparameterization the τl integrals may be rewritten as
N∏
l=1

∫ +∞

0

dτl . . . =
N∏
l=1

∫ +∞

−∞
dτ̃l′

∫ +∞

0

dτ+ . . . (2.41)

The radiative function ΩN(T ), Equation (2.38) only contains the difference τl− τl′
which is unchanged by the reparameterization, except for −i(p − p′) ·

∑N
l=1 plτl.

Hence the effect of the τ+ integration can be computed as∫ +∞

0

dτ+e
−i(p−p′)·

∑N
l=1 plτl = e−i(p−p′)·

∑N
l=1 plτ̃l

∫ +∞

0

dτ+e
i(p−p′)·(p+p′)τ+

=
ie−i(p−p′)·

∑N
l=1 plτ̃l

p2 +m2

(2.42)

where the total momentum conservation δ function has been used, as well as the
fact that the outgoing propagator with p′ is already on-shell.
The LSZ formula reduces the dressed propagator to a form factor F (p, p′|{εl, pl}).

Renaming τ̃l −→ τl:

F (p, p′|{εl, pl}) = lim
on−shell

i(p2 +m2 − iε)i(p′2 +m2 − iε)D(p, p′; {εl, pl})

=

(
iκ

4

)N

δ(D)

(
p+ p′ +

N∑
l=1

pl

)
N∏
l=1

∫ +∞

−∞
dτlε

(l),µν

[
∂εµl ∂ε

ν
l
+ ∂αµ

l
∂αν

l
+ ∂βµ

l
∂ν

l

]
δ

(
N∑
l=1

τl

)

× exp

{
−(p− p′) ·

N∑
l=1

(iplτl + εl)− i

N∑
l,l′=1

[
|τl − τl′ |

2
pl · pl′ − i sign(τl − τl′)εl · pl′

]}

× exp{δ(τl − τl′) (εl · εl′ + αl · αl′ − γl · βl′)}

∣∣∣∣∣ εl=αl=βl=γl=0
p2=p′2=−m2+iε

.

(2.43)

The authors of [7] point out that this reduction can be performed by hand: start
with the momentum space representation of the dressed propagator, Equation

12
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(2.36), then drop the overall T integral, insert a total proper time δ function and
let the proper time integrals run on R. Similar computations will be carried out
in Chapter 3, for the case of a scalar particle moving through a scalar background
in ϕ3 theory, obtaining a comparable result.
For the moment we will continue the review of [7].

2.4 Position space
Let us construct a normalized WQFT partition function, starting with the position
space representation of the propagator in Equation (2.16), except we drop the dT
integral, let the action in the exponential run on R, setting ξ = 1/4.

Ξ(b, v; {εl, pl}) =
∫ x′

x

D[x]

∫
D[a, b, c] exp

{
i

∫ +∞

−∞
dτ

[
1

4
gµν(ẋ

µẋν + aµaν + bµcν)

]}
.

(2.44)
We expand the graviton field as a collection of plane waves, Equation (2.19),
allowing us to construct again the vertex operator,

Ξ(b, v;{εl, pl}) =
(
iκ

4

)N ∫ x′

x

Dx

∫
D[a, b, c]

N∏
l=1

∫ +∞

−∞
dτlε

(l)
µν

(
ẋµ(τl)ẋ

ν(τl) + a
µ(τl)a

ν(τl) + b
µ(τl)c

ν(τl)

)
eiplx(τl)

× exp

{
i

∫ +∞

−∞
dτ

1

4

[
ẋ2(τ) + a2(τ) + b(τ)c(τ)

]}
.

(2.45)

Let the worldline trajectory be expressed as perturbations zµ about the straight
line trajectory

xµ(τ) = bµ + vµτ + zµ(τ) (2.46)

where bµ is the impact parameter for the black holes scattering (assumed to be
much larger than the radii of the black holes), vµ is the 4-velocity of a particle
moving along the worldline, zµ(τ) is the usual perturbation.

In order to evaluate the integral over the fluctuations and the ghosts we impose
Wick contractions in a similar form of those in Equation (2.24). The propagator
on the worldline is chosen to be time symmetric:

∆(τ, τ ′) =
|τ − τ ′|

2
(2.47)

which satisfies
•∆•(τ − τ ′) = −δ(τ − τ ′). (2.48)
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This choice of the propagator on the worldline is equivalent to the previous, Equa-
tion (2.22) and amounts to a shift of the background trajectory parameters bµ and
vµ. Imposing again the change of coordinates for the proper time, as in Equation
(2.40) we find that

Ξ(b, v; {εl, pl}) = Ξ0

(
iκ

4

)N

δ(D)

(
v ·

N∑
l1

pl

)
eib·

∑N
l=1 pl

N∏
l=1

∫ +∞

−∞
dτlε

(l),µν

[
∂εµl ∂ε

ν
l
+ ∂αµ

l
∂αν

l
+ ∂βµ

l
∂ν

l

]
δ

(
N∑
l=1

τl

)

× exp

{
v ·

N∑
l=1

(iplτl + εl)− i
N∑

l,l′=1

∆(τl − τl′)pl · pl′ − i •∆(τl − τl′)εl · pl′
]}

× exp{− •∆•(τl − τl′) (εl · εl′ + αl · αl′ − γl · βl′)}

∣∣∣∣∣
εl=αl=βl=γl=0

(2.49)

where Ξ0 is a measure factor.
By denoting qµ as the total momentum transferred then we can rewrite the

boundary conditions on xµ in terms of the momenta pµ and p′µ, recall that pµ =
−1

2
ẋµ2

pµ = −1

2
ẋµ(−∞) = −vµ

2
+

qµ

2
− p′µ = −1

2
ẋµ(+∞) = −vµ

2
− qµ

2
. (2.50)

Substituting pµ − p′µ = −vµ in Equation (2.49) then we recover the form factor:

Ξ(b, v; {εl, pl})
Ξ0

= δ(D)

(
v ·

N∑
l=1

pl

)
eib·

∑N
l=1 pl F (p, p′|{εl, pl}). (2.51)

The authors of [7] have shown classical observables can be recovered as WQFT
expectation values. The δ function and the plane waves multiplying the amplitude
show that the partition function Ξ is not resumming standard Feynman diagrams.
In [38] it is shown that those factors arise from having weighted the external states
in the Feynman diagrams with coherent wave-functions [55]. Based on such result,
the our aim is to find a configuration space path integral representation, which
might be similar to the above one, able to generate on-shell scattering amplitudes
(or 1PI Feynman diagrams) without any dressing with coherent wave-functions.

2to recover the canonical momentum simply rescale τ −→ τ/2m
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2.5 WQFT Feynman rules
We conclude this review of [7] by showcasing how one can work out the WQFT
Feynman rules for the emission of gravitons from the worldline. We introduce the
notation: ∫

k

=

∫
d4k

(2π)4

∫
ω

=

∫
dω

(2π)
(2.52)

having set D = 4. We start by going in momentum space for the graviton and in
energy space for the position-space fluctuations

hµν(x) =

∫
k

e−ik·xhµν(k) zµ(τ) =

∫
ω

e−iωτzµ(ω). (2.53)

The Einstein-Hilbert action, Equation (2.2) is integrated over all of spacetime,
imposing momentum conservation on all vertices. The point mass action on the
worldline, Equation (2.8) is integrated only in time, hence it imposes only energy
ω conservation on vertices. The graviton propagator in De-Donder gauge is the
usual:

µν ρσk
= iPµν;ρσ

∫
k

eik·(x−y)

k2 ± iε
(2.54)

where the tensor Pµν;ρσ is the usual, in 4 dimensions

Pµν;ρσ =
1

2
(ηµρηνσ + ηµσηρν − ηµνηρσ) (2.55)

Next we find the propagator for zµ. Starting from the worldline action, Equa-
tion (2.8), we insert the trajectory expansion Equation (2.46) and we set

Spm

∣∣∣∣
hµν=0

=

∫ +∞

−∞
dτ
(
m+mv · ż + m

2
ż2
)

(2.56)

where the spacetime indices are contracted using the Minkowski metric ηµν . We
can ignore the constant m and the boundary term mvż, then the third term gives
the propagator:

µ ν
ω

= −i
ηµν

m

∫
ω

eiω(τ1−τ2)

(ω ± iε)2
=

iηµν

2m
[|τ1 − τ2| ± (τ1 − τ2)] (2.57)

Where in both propagators, Equations (2.54) and (2.57) we remain agnostic on the
choice of Feynman prescription which implements the causality. We can proceed
to the interactions. Evaluating the graviton on the worldline, we get

hµν(x(τ)) =

∫
k

eik·(b+vτ+z(τ))hµν(−k) =
∞∑
n=0

in

n!

∫
k

eik(b+vτ)(kz)nhµν(−k)

=
∞∑
n=0

in

n!

∫
k,ω1,...,ωn

eik·bei(k·v+
∑n

l=1 ωl)τ

(
n∏

l=1

k · z(−ωl)

)
hµν(−k).

(2.58)
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then, plugging it back into the worldline action we get

Sint
pm = Spm − Spm

∣∣∣∣
hµν=0

=
m

2mPl

∫ +∞

−∞
dτhµν(x(τ)) ẋ

µ(τ)ẋν(τ)

=
m

2mPl

∫ +∞

−∞
hµν(x(τ))

(
vµvν + 2v(µżν)(τ) + żµ(τ)żν(τ)

)
=

m

2mPl

∞∑
n=0

in

n!

∫
k,ω1,...,ωn

eik·bδ̄

(
k · v +

n∑
l=1

ωl

)
hµν(−k)

(
n∏

l=1

zρl(−ωl)

)

×
[(

n∏
l=1

kρl

)
vµvν +

n∑
l=1

ωl

(
n∏
l′

kρ′l

)
v(µδν)ρl +

n∑
l<l′

ωlωl′

(∏
j ̸=l,l′

kρj

)
δ(µρl δ

ν)
ρl′

]
(2.59)

where, in order to avoid the proliferation of powers of (2π) the reduced δ̄ is defined
as

δ̄ = (2π)Dδ(D) (2.60)

from which we can read the nth order in zµ, linear in hµν vertex

V WL,µν
ρ1,...,ρn

(k, ω1, ..., ωn) = in−1 m

2mPl

eik·bδ̄

(
k · v +

n∑
l=1

ωl

)
×

[(
n∏

l=1

kρl

)
vµvν +

n∑
l=1

ωl

(
n∏
l′

kρ′l

)
v(µδν)ρl +

n∑
l<l′

ωlωl′

(∏
j ̸=l,l′

kρj

)
δ(µρl δ

ν)
ρl′

]
.

(2.61)

As an example one can compute, at 0th order in zµ:

hµν(k)

= i
m

2mPl

eik·bδ̄ (k · v) vµvν . (2.62)

which allows to read out the scalar point particle stress-energy tensor, thus repre-
senting the classical limit of the three-point amplitude with two scalars sourcing
a graviton. Next, at 1st order in zµ one obtains the two point vertex, taking ω
outgoing:

hµν(k)

zρ(ω)

= − m

2mPl

eik·bδ̄ (k · v + ω)
[
2ωv(µδν)ρ + vµvνkρ

]
. (2.63)
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Finally, at 2nd order in zµ, the three-point vertex reads:

hµν(k)

zρ1(ω1)
zρ2(ω2)

=− i
m

mPl

eik·bδ̄(k · v + ω1 + ω2)×

(
1

2
kρ1kρ2v

µvν + ω1kρ2v
(µδν)ρ1 + ω2kρ1v

(µδν)ρ2 + ω1ω2δ
(µ
ρ1
δν)ρ2

)
.

(2.64)

Of course, one can have vertices with more fluctuations, but this is enough for our
purposes.

2.6 Remarks
Let us recap the results of the last Chapter. Starting from the worldline action it
was possible to construct a position space representation of the Green function for
the scalars propagating in a graviton background. Then we inserted the latter in
the LSZ reduction formula in lieu of the QFT path integral. The reduction itself
is preformed on the momentum space representation of the dressed propagator.

It is worth noting in fact that gravitons emitted by the dressed propagators
are already reduced, at least in the sense that no massless propagator with poles
in p2l = 0 arise from the dressed propagator of the scalar. The reduction has a net
effect on the dressed propagator in momentum space that can be implemented as a
simple procedure: remove the dT integration, insert a total proper time δ function
and let the integrals on proper time(s) run on R.

One can compute the dressed propagator with only one vertex operator, this
result can be found in [7], obtaining a reduced amplitude that may be compared
against the scalar-scalar-graviton vertex in the non-minimal coupling ξ = 1

4
.

Equation (2.51) is of central importance. On the l.h.s. the reduced dressed
propagator in positions space was reassembled as a partition function with which
to compute WQFT expectation values. On the r.h.s. we have the form factor
−the amplitude− dressed with coherent wave-functions. In the next Chapter we
will walk again those steps in a simpler theory, namely ϕ3, recovering the nice
properties discussed so far.

The WQFT Feynman rules that were obtained can be used in computing clas-
sical observables such as the momentum deflection and the eikonal phase [56–58],
see [7] itself, [8, 9] in which the same argument is applied to the graviton dressed
photon propagator and the photon dressed scalar propagator.
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Chapter 3

Application to ϕ3 theory

In this Chapter we will walk again the steps of the previous Chapter. In particular
the QFT and correspondent worldline actions are presented, then the position
space and momentum space representations of the dressed propagator. The latter
can be reduced by cutting the external scalar propagators. After the reduction,
the WQFT Feynman rules of the theory are discussed.

3.1 Worldline action and path integral
Let the QFT action for a real scalar field involving a three point self interaction
be:

SQFT [ϕ] =

∫
dDx

[
1

2
(∂µϕ)2 +

1

2
m2ϕ2 +

λ

3!
ϕ3

]
(3.1)

then, employing background field methods, the corresponding worldline action
reads:

S[x, ϕ] =

∫ T

0

dτ

[
ẋ2

4
+m2 + λϕ(x(τ))

]
(3.2)

from which we can obtain the Feynman-Schwinger representation of the propagator
reads:

G(x, x′) =

∫ ∞

0

dTeim
2T

∫ x(T )=x′

x(0)=x

Dx e
i
∫ T
0 dτ

[
ẋ2

4
+λϕ(x(τ))

]
. (3.3)

The background scalar field ϕ, appearing in the above path integral, can be ex-
panded as a sum of plane waves:

ϕ(x) =
N∑
l=1

eipl·x (3.4)
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then the interaction potential in the exponential of Equation (3.3) is expanded
to order λN , while keeping each plane wave exactly once. This defines the vertex
operator:

V [pl] =

∫ T

0

dτl e
ipl·x(τl). (3.5)

Hence the position space dressed propagator can be written as

G(x, x′) = (iλ)N
∫ ∞

0

dT eim
2T

∫ x(T )=x′

x(0)=x

Dx ei
∫ T
0 dτ ẋ2

4

N∏
l=1

V [pl]

= (iλ)N
∫ ∞

0

dT eim
2T

∫ x(T )=x′

x(0)=x

Dx ei
∫ T
0 dτ ẋ2

4

N∏
l=1

∫ T

0

dτl e
ipl·x(τl).

(3.6)

The path integral can be computed, imposing the boundary conditions of a straight
line:

xµ(τ) = xµ +
τ

T
∆xµ + qµ(τ), ∆xµ = x′µ − xµ (3.7)

then the propagator reads:

G(x, x′) = (iλ)N
∫ ∞

0

dT eim
2T ei

∆x2

4T

∫
DBC

Dq ei
∫ T
0 dτ q̇2

4

×
N∏
l=1

∫ T

0

dτl exp

{
N∑
l=1

[
ipl ·∆x

τl
T

+ ipl · x+ ipl · q(τl)
]}

.

(3.8)

In order to perform the integration in Equation (3.8) only one Wick contraction
is required. Using the finite Schwinger time T propagator on the worldline:

⟨qµ(τ)qν(τ ′)⟩ = 2iηµν∆(τ, τ ′)

∆(τ, τ ′) =
|τ − τ ′|

2
− τ + τ ′

2
+

ττ ′

T
.

(3.9)

We can cast the path integral into a Gaussian integral. Noticing that

∫ T

0

dτ
ẋ2

4
=

(∆x)2

4T
+

∫ T

0

dτ
q̇2

4∫
DBC

Dq ei
∫ T
0 dτ q̇2

4 = (4πiT )−D/2

(3.10)
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then we can write the path integral as:

G(x, x′) = (iλ)N
∫ ∞

0

dT eim
2T ei

∆x2

4T (4πiT )−D/2

×
N∏
l=1

∫ T

0

dτl exp

{
N∑
l=1

[
ipl ·∆x

τl
T

+ ipl · x
]}

× exp

{
i

N∑
l,l′=1

∆(τl, τl′)pl · pl′
}
.

(3.11)

Now we can take the Fourier transform of the position space dressed propagator,
that is

D(p, p′; {pl}) =
∫

dD[x, x′] eip·x+ip′·x′
G(x, x′). (3.12)

Let
2xµ

+ = x′µ + xµ (3.13)

be the center of mass x coordinate. The integration can then be performed with
respect to d[x+,∆x], noticing that this coordinate transformation has Jacobian
= 1. The integration over dx+ yields a total momentum δ function:

D(p,p′; {pl}) = (iλ)N(2π)Dδ(D)

(
p+ p′ +

N∑
l=1

pl

)
∫ ∞

0

dT eim
2T (4πiT )−D/2

∫
dD∆x ei

∆x2

4T

N∏
l=1

∫ T

0

dτl exp

{
i∆x ·

(
p′ +

N∑
l=1

τl
T
pl

)
+ i

N∑
l.l′=1

∆(τl, τl′)pl · pl′
}
.

(3.14)
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Performing the d∆x integral and inserting the worldline propagator ∆(τ, τ ′) in
Equation (3.9), we obtain a compact result:

D(p,p′; {pl}) = (iλ)N(2π)Dδ(D)

(
p+ p′ +

N∑
l=1

pl

)∫ ∞

0

dT
N∏
l=1

∫ T

0

dτl

exp

i

m2 +

(
p′ +

1

T

N∑
l=1

plτl

)2
T + i

N∑
l,l′=1

∆(τl, τl′)pl · pl′



= (iλ)N(2π)Dδ(D)

(
p+ p′ +

N∑
l=1

pl

)∫ ∞

0

dT exp
{
i(m2 + p′2)T

}

×
N∏
l=1

∫ T

0

dτl exp

{
2ip′ ·

N∑
l=1

plτl − i
N∑

l,l′=1

(
|τl − τl′ |

2
− τ + τl′

2

)
pl · pl′

}
.

(3.15)

The last version is the one that will be reduced.

3.2 Cutting external legs
Given the momentum space representation of the dressed propagator, Equation
(3.15) the reduction of the external legs proceeds as done before. As seen in the
graviton dressed propagator, Chapter 2 the background field lines, with momenta
{pl} are already reduced, in the sense that no p2l = −M2 poles arise from the
dressed propagator.

Starting from the outgoing external line, with momentum p′:

lim
on−shell

−i(p′2 +m2)D(p, p′; {pl}) = lim
on−shell

−i(p′2 +m2)

∫ ∞

0

dT ei(p
′2+m2)TΩN(T )

= −
∫ ∞

0

dT
d

dT

(
ei(p

′2+m2)T
)
ΩN(T )

∣∣∣∣∣
on−shell

= ΩN(∞)

∣∣∣∣∣
on−shell

(3.16)
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where, this time the radiative function ΩN(∞) is defined as

ΩN(∞) = (iλ)N(2π)Dδ(D)

(
p+ p′ +

N∑
l=1

pl

)

×
N∏
l=1

∫ ∞

0

dτl exp

{
2ip′ ·

N∑
l=1

plτl − i
N∑

l,l′=1

(
|τl − τl′ |

2
− τl + τl′

2

)
pl · pl′

}
.

(3.17)

We introduce the same center of mass proper time coordinates as in Equation
(2.40). Focusing on the exponent in Equation (3.17) we can single out from the
double sum the case where l = l′. Then the effect of this coordinate transformation
is:

N∑
l=1

(
2p′ · pl + p2l

)
τl −

N∑
l ̸=l′

(
|τl − τl′ |

2
− τl + τl′

2

)
pl · pl′

=
N∑
l=1

(
2p′ · pl + p2l

)
(τ̃l + τ+)−

N∑
l ̸=l′

(
|τ̃l − τ̃l′ |

2
− τ̃l + τ̃l′

2
− τ+

)
pl · pl′

=
N∑
l=1

(
2p′ · pl + p2l

)
τ̃l −

N∑
l ̸=l′

(
|τ̃l − τ̃l′ |

2
− τ̃l + τ̃l′

2

)
pl · pl′

+
N∑
l=1

(
2p′ · pl + p2l +

N∑
l ̸=l′

pl · pl′
)
τ+

(3.18)

thus, the effect of this change of coordinates is to create a duplicate of the original
exponent plus a term proportional only to τ+. The latter can be recognized to be:

N∑
l=1

(
2p′ · pl + p2l +

N∑
l ̸=l′

pl · pl′
)

=

(
p′ +

N∑
l=1

pl

)2

− p′2

= p2 − p′2

= p2 +m2

(3.19)

where in the first line the conservation of total momentum δ function has been
used and in the second line the on-shell condition for p′2 = −m2 has been used.

Reassembling the reduction formula as was done in Equation (2.43), reintro-
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ducing the Feynman prescription and dropping the tildes

F (p, p′|{pl}) = lim
on−shell

i(p2 +m2 − iε)i(p′2 +m2 − iε)D(p, p′; {pl})

= (iλ)N(2π)Dδ(D)

(
p+ p′ +

N∑
l=1

pl

)
N∏
l=1

∫ +∞

−∞
dτl δ

(
N∑
l=1

τl

)

exp

{
2ip′ ·

N∑
l=1

plτl − i
N∑

l,l′=1

(
|τl − τl′ |

2
− τl + τl′

2

)
pl · pl′

} (3.20)

where we notice that the total proper time δ function cancels the contribution
from the double sum of τl + τl′ .

Moreover the reduction can be carried by hand, at the level of the dressed
propagator: remove the dT integration, insert a total proper time δ function and
let the dτl integrals to run on R.

We can perform similar operations on the position space path integral, obtain-
ing the partition function:

Ξ(b, v; {pl}) =
∫

Dx e
i
∫+∞
−∞ dτ

(
ẋ2

4
+λϕ(x(τ))

)
. (3.21)

We can insert N vertex operators, the boundary condition in Equation (2.46).
To perform the Wick contraction, Equation (3.9), we choose the time symmetric
worldline propagator, ∆(τ, τ ′) = |τ−τ ′|

2
. After some computations we arrive to

Ξ(b, v; {pl})
Ξ0

= δ(D)

(
v ·

N∑
l=1

pl

)
eib·

∑N
l=1 pl F (p, p′|{pl}) (3.22)

which has the same structure as for the result obtained in the previous Chapter.
The partition function Ξ generates the dressed propagator, with in addition the
usual factors arising when dressing the external scattering states with coherent
wave-functions.

3.3 ϕ3 WQFT Feynman Rules
Let us end this Chapter with a presentation of the WQFT Feynman Rules for
a scalar coupled to a background field ϕ. Recalling the notation introduced in
Equation (2.52), the position space and time space representation of the external
field ϕ and the worldline perturbation zµ read:

ϕ(x) =

∫
k

e−ik·xϕ(k) zµ(τ) =

∫
ω

e−iωτzµ(ω). (3.23)
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The propagator for the background field is the usual

k
= i

∫
k

eik·(x−y)

k2 +M2 ± iε
(3.24)

where M is the mass of the external scalar field. Starting from the worldline action
in Equation (3.2), rescaling τ −→ τ/2m. Extending the integration domain to R
we obtain:

S[x, ϕ] = Sfree + Sint

=
m

2

∫ +∞

−∞
dτ

(
ẋ2 + 1 +

2λ

m
ϕ(x(τ))

)
.

(3.25)

Expanding the trajectory around the straight line, Equation (2.46) we obtain the
same action in Equation (2.56), out of which the propagator for the perturbation
zµ is the same as that in Equation (2.57), here reported for convenience:

µ ν
ω

= −i
ηµν

m

∫
ω

eiω(τ1−τ2)

(ω ± iε)2
= i

ηµν

2m
[|τ1 − τ2| ± (τ1 − τ2)]. (3.26)

We can insert the trajectory from Equation (2.46) in the representation of the field
in Equation (3.23), obtaining:

ϕ(x(τ)) =

∫
k

eik·(b+vτ+z)ϕ(−k) =
∞∑
n=0

in

n!

∫
k

eik·(b+vτ)(k · z)nϕ(−k)

=
∞∑
n=0

in

n!

∫
k,ω1,...ωn

eik·bei(k·v+
∑n

l=1 ωl)τ

(
n∏

l=1

k · z(−ωl)

)
ϕ(−k).

(3.27)

Feeding this expression back in the interaction action we obtain:

Sint = S − Sfree = λ

∫ +∞

−∞
dτ ϕ(x(τ))

= λ

∞∑
n=0

in

n!

∫
k,ω1,...ωn

eik·bδ̄

(
k · v +

n∑
l=1

ωl

)
ϕ(−k)

(
n∏

l=1

k · z(−ωl)

)
.

(3.28)

Out of this action we can read infinitely many Feynman rules, all linear in the
background field ϕ. At order 0 in the perturbation zµ we have:

ϕ(k)

= iλeik·bδ̄ (k · v) (3.29)
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at first order in the perturbation zµ we obtain:

ϕ(k)

zµ(ω)

= −λeik·bδ̄ (k · v + ω) kµ. (3.30)

The last example, the 2nd order in the perturbation zµ vertex, linear in the back-
ground field reads:

ϕ(k)

zµ(ω1)
zν(ω2)

=− iλeik·bδ̄(k · v + ω1 + ω2)kµkν . (3.31)

Such Feynman rules are in agreement with the ones derived in [38] for the bi-adjoint
scalar, once stripping off the color factors.

3.4 Remarks
It is worth to remark that, despite the differences between ϕ3 and the theory
for a scalar non-minimally coupled to gravity, the reduction of the momentum
space dressed propagator is performed the same way in both cases. Indeed this is
expected, as the LSZ reduction formula, cuts the external lines independently of
the interactions of the theory.

The WQFT Feynman rules are a novelty, they where proposed for the first time
in [7], where expanded upon and used to compute classical observables in [59–64]
in gravity. See also [9] for rules in the case of Scalar QED, [38] where a connection
between WQFT and the classical limit is established.
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Chapter 4

LSZ reduction in position space

The Green functions in Equation (3.11) is the position space representation of the
worldline propagator, already path integrated. Its dependence on the initial and
final coordinate xµ

i and xµ
f is explicit, hence,hence, one could act with (□f −m2)

and (□i−m2) on the dressed propagator to achieve an on-shell formulation. How-
ever we found this to be hard to pursuit thus we choose instead a different path.
We begin by introducing the mixed position and momentum representation of the
path integral, see [36], although we will follow the derivation in [35].

4.1 Position-momentum representation of the Green
function

Let the Green function of the KG operator, G(x, y) satisfy:

(□x −m2)G(x, y) = −iδD(x− y) (4.1)

where the iε prescription has been ignored. Writing the Green function using the
Schwinger representation:

G(xi, xf ) =

∫ ∞

0

dβ ⟨xf |e−iβĤ |xi⟩ (4.2)

where β is the Schwinger proper time, and

Ĥ =
1

2
(p̂2 +m2 − λϕ(x)) (4.3)

is the ϕ3 Hamiltonian on the worldline. The operator e−iβĤ is the time evolution
operator. It satisfies Schrödinger’s equation:

i
d

dβ
e−iβĤ = Ĥe−iβĤ (4.4)
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Chapter 4 – LSZ reduction in position space

and coincides with the identity at β = 0. Let pµf be the 4-momentum on the
outgoing worldline, we can insert the resolution of the identity in Equation (4.2):

G(xi, xf ;ϕ) =

∫ ∞

0

dβ

∫
dDpf
(2π)D

⟨xf |pf⟩ ⟨pf |e−iβĤ |xi⟩ . (4.5)

The scalar product reads:

⟨xf |pf⟩ =
eipf ·xf

(2π)D
. (4.6)

In order to evaluate the matrix element we introduce states in the Hilbert space
|x⟩ and |p⟩, which are continuous eigenstates of the operators x̂ and p̂, then we
cast the Hamiltonian in the form:

Ĥ(x̂, p̂) =
∞∑
n=0

p̂µ1 . . . p̂µnH
µ1...µn
ν1...νn

x̂ν1 . . . x̂νn (4.7)

then, for a small time parameter ∆t the matrix element

⟨p|e−iĤ∆t|x⟩ = e−iH∆t+O[(∆)t]2 ⟨p|x⟩ (4.8)

where H is a c-number. We can slice the matrix element corresponding to the full
time variable into N steps of duration ∆t, inserting the resolution of the identity
for both momentum and position states at each step:

⟨p|e−iβĤ |x⟩ =

=

∫
dDx1 . . . d

DxN

∫
dDp0 . . . d

DpN−1e
−i

∑N−1
k=0 H(pk,xk)∆t

N∏
k=0

⟨pk|xk⟩
N−1∏
k=0

⟨xk+1|pk⟩

(4.9)

where powers of 2π have been absorbed in the measure. We can take the continuous
limit, obtaining the path integral:

⟨pf |e−iβĤ |xi⟩ =
∫ p(β)=pf

x(0)=xi

D[x, p] exp

{
−ip(β) · x(β) + i

∫ β

0

dτ(p · ẋ−H(p, x))

}
.

(4.10)
Reassembling the Green function from Equation (4.5):

G(xi, xf ;ϕ) =

∫ ∞

0

dβ

∫
dDpf eipf ·xf

∫ p(β)=pf

x(0)=xi

D[x, p] exp

{
−ip(β) · x(β) + i

∫ β

0

dτ(p · ẋ−H(p, x))

}
(4.11)
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where powers of 2π have been absorbed in the measure. Notice the presence of
p(β) ·x(β), it is a rather unusual term which arises from the fact that we evaluated
the time evolution matrix element between a position eigenstate and a momentum
eigenstate. For further details on quantum-mechanical path integrals see e.g. [4].
The sum on the trajectories can be performed around the straight line background:

xµ(τ) = xµ
i + pµfτ + ξµ(τ)

pµ(τ) = pµf + πµ(τ)
(4.12)

where ξµ(τ) and πµ(τ) are perturbations on the trajectory and on the momentum
respectively. Then the path integral may be recast into:∫ p(β)=pf

x(0)=xi

D[x, p] =

∫ π(β)=0

ξ(0)=0

D[ξ, π]. (4.13)

Under this expansion the relevant exponent in Equation (4.11) reads:

pf · xf − p(β) · x(β) +
∫ β

0

dτ [p · ẋ−H(p, x)] =

=pf · xf − pf · (xi + pfβ + ξ(β)) +

∫ β

0

dτ

[
(pf + π) · (pf + ξ̇)− 1

2
(pf + π)2 − m2

2
+

λϕ

2

]

=pf · (xf − xi)−
1

2
β(p2f +m2) +

∫ β

0

dτ

(
π · ξ̇ − π2

2
+

1

2
λϕ(xi + pfτ + ξ(τ))

)
.

(4.14)

Finally, reassembling into the path integral from Equation (4.11) we obtain:

G(xi, xf ;ϕ) =

∫ ∞

0

dβ

∫
dDpf eipf ·(xf−xi)e−

i
2
β(p2f+m2)

∫ π(β)=0

ξ(0)=0

D[ξ, π] exp

{
i

∫ β

0

dτ

[
π · ξ̇ − π2

2
+

1

2
λϕ(xi + pfτ + ξ(τ))

]}
.

(4.15)

So far the path integral representation of the Green function is still in the mixed
position ξµ and momentum πµ representation, however the integration in Dπ can
be performed as a Gaussian integral, obtaining a path integral representation in
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position space. Rescaling β −→ 2T we obtain the path integral:

G(xi, xf ;ϕ) =

∫ ∞

0

dT

∫
dDpf eipf ·(xf−xi)e−iT (p2f+m2)

∫
ξ(0)=0

Dξ exp

{
i

∫ T

0

dτ

[
ξ̇2

2
+ λϕ(xi + pfτ + ξ(τ))

]}

=

∫
dDpf e

ipf (xf−xi)f(xi, pf )

(4.16)

where, in the last line, we emphasize that the Green function in position space is
an inverse Fourier transform of the off-shell current f(xi, pf ). This version of the
path integral can be compared with that in Equation (3.2).

4.2 Cutting external legs
The position space representation of the path integral in Equation (4.16) shows
an explicit dependence on xµ

f , out of which we can take derivatives and eventually
the KG operator.

∂

∂xµ
f

G(xi, xf ;ϕ) = i
〈
pµf
〉
G

(4.17)

□fG(xi, xf ;ϕ) = −
〈
p2f
〉
G

(4.18)

where the subscript G refers to the fact that expectation values are taken with
respect to the path integral in Equation (4.16).

The full KG operator then reads:

−i(□f −m2)G(xi, xf ;ϕ) = i
〈
p2f +m2

〉
G

=

∫
dDpf eipf ·(xf−xi)

(
−
∫ ∞

0

dT
d

dT

(
e−iT (p2f+m2)

)
Ω(T )

)
.

(4.19)

The term in brackets is a one leg amputated off-shell current i.e. (p2f+m2)f(xi, pf ).
So, we continue by performing the LSZ reduction on the outgoing leg, directly at
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the level of such current, which is really the quantity we are interested in

(p2f +m2)f(xi, pf ) =−

[
e−iT (p2f+m2)Ω(T )

∣∣∣∣∣
∞

0

−e−iT (p2f+m2)(Ω(∞)− Ω(0))

]

=−
[
−Ω(0)− e−iT (p2f+m2)(Ω(∞)− Ω(0))

]
−−−−−→
on−shell

Ω(∞)

(4.20)

where in the last line the on-shell condition p2f = −m2 has been taken and Ω(T )
is the radiative function in position space:

Ω(T ) =

∫
ξ(0)=0

Dξ exp

{
i

∫ T

0

dτ

[
ξ̇2

2
+ λϕ(xi + pfτ + ξ(τ))

]}
. (4.21)

Let us know move on to the amputation of the incoming leg directly in position
space. To achieve this, we propose here a path integral representation for the half
reduced Green function and later on, we show that it reproduces the correct result
for the scattering amplitude. Such representation we propose is based on the
above amputation. We start by sending pµf to an arbitrary momentum kµ, and we
redefine the background split point particle trajectory as

xµ(τ) = xµ
i − (k + pi)

µτ + ξµ(τ). (4.22)

In this way, we propose the following path integral representation, for the half
reduced Green function in position space

Ḡ(xi, xf ;ϕ) =

∫
dDk eik·(xf−xi)

∫
ξ(0)=0

Dξ exp

{
i

∫ ∞

0

dτ

[
ξ̇2

2
+ λϕ(xi − (k + pi)τ + ξ(τ))

]}
(4.23)

where the meaning of this redefinition of the trajectory coupled to the external
field will become clear in a moment. Let us now show that the above path integral
generates the half-reduced current. We start by plane wave expanding the external
background field. At order N in the coupling constant the half reduced Green
function reads:

Ḡ(xi, xf ;ϕ) =(iλ)N
∫

dDk eik·(xf−xi)

∫
ξ(0)=0

Dξ ei
∫∞
0 dτ ξ̇2

2

N∏
l=1

∫ ∞

0

dτl exp{ipl · [xi − (k + pi)τl + ξ(τl)]}.
(4.24)
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Now we move to momentum space for the Green function in Equation (4.24):

D̄(pi, pf ;ϕ) =

∫
dD[xi, xf ]e

ipi·xx+ipf ·xf Ḡ(xi, xf ;ϕ)

=(iλ)N
∫

dDk δ̄

(
pi − k +

N∑
l=1

pl

)
δ̄ (pf + k)

×
N∏
l=1

∫ ∞

0

dτl exp

{
−i(pi + k) ·

N∑
l=1

plτl + i
N∑

l,l′=1

∆ll′pl · pl′
} (4.25)

where ∆ll′ is the time symmetric propagator on the worldline from Equation (2.47).
Here, as a consequence of having considered τ ∈ [0,∞], we are implicitly assuming
pf to be on-shell. At this point the integration in dDk can be performed:

D̄(pi, pf ;ϕ) =(iλ)Nδ̄

(
pi + pf +

N∑
l=1

pl

)

×
N∏
l=1

∫ ∞

0

dτl exp

{
i(pf − pi) ·

N∑
l=1

plτl + i
N∑

l,l′=1

∆ll′pl · pl′
}
.

(4.26)

We can introduce the same change of coordinates as in Equations (2.40) and
(2.41):

D̄(pi, pf ;ϕ) =(iλ)Nδ̄

(
pi + pf +

N∑
l=1

pl

)

×
N∏
l=1

∫ +∞

−∞
dτ̃l

∫ +∞

0

dτ+δ

(
N∑
l=1

τ̃l

)
exp

{
i(pf − pi) ·

N∑
l=1

pl(τ̃l + τ+) + i
N∑

l,l′=1

∆ll′pl · pl′
}
.

(4.27)

Again, the only exponential that couples to dτ+ is∫ ∞

0

dτ+e
i(pf−pi)·

∑N
l=1 plτ+ =

−1

i(pf − pi) ·
∑N

l=1 pl

=
1

i(pf − pi) · (pf + pi)

=
−1

i(p2i +m2)

(4.28)
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where the fact that pµf was set on-shell in Equation (4.19) was used. This explicitly
shows that our proposal generates exactly the half reduced current, because of
the appearance of the above propagator in the current, related to the incoming
line. Finally, simply amputating such propagator leads to the momentum space
representation of the fully reduced current

Dc(pi, pf ;ϕ) =(iλ)Nδ̄

(
pi + pf +

N∑
l=1

pl

)

×
N∏
l=1

∫ +∞

−∞
dτl δ

(
N∑
l=1

τl

)
exp

{
i(pf − pi) ·

N∑
l=1

plτl + i
N∑

l,l′=1

∆ll′pl · pl′
}
.

(4.29)

which is in agreement with (3.20), but obtained from a path integral representation
written directly in position space.

4.3 Remarks
As seen in this Chapter a position space representation of the Green function,
Equation (4.16) can be obtained by path integrating the momentum perturbation
out of the mixed position-momentum space representation, Equation (4.15). In
particular, the reduction of the incoming external line requires to fix the worldline
trajectory of the point particle, Equation (4.22), tuning the momentum term so
that the KG operator generates the correct inverse propagator. In the next Chap-
ter we will test the reduced, partially on-shell, Equation (4.29) and the boundary
conditions in Equation (4.12). The dressed propagator in Equation (4.29) is par-
tially on-shell in the sense that the external scalars which couple to the worldline
are off-shell.
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Applications

In this Chapter some straightforward tests are shown for the ϕ3 theory, namely the
three and four point 1PI diagrams. The latter coincides with the result obtained
by summing Feynman diagrams, up to a overall constant factor 1/2 which can be
absorbed in the definition of the dressed propagator.

Later in this Chapter the dressed propagator for a complex scalar coupled to
a U(1) background gauge field (sQED) is derived, reduced and put on-shell using
the same procedure as in the previous Chapter. The reduced sQED propagator is
tested against the 3-point vertex and the Compton amplitude. Out of the latter,
we take the classical limit via the KMOC method [37].

Finally, we use the KLT relations to obtain the gravitational Compton ampli-
tude as the double copy of sQED amplitudes.

5.1 ϕ3 Amplitudes
Equipped with the dressed propagator in Equation (4.29) we can begin the testing
with the simplest possible amplitude: the ϕ3 vertex:

Aϕ3 = pi pf
iλ

p1

= iλ. (5.1)
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The reduced dressed propagator recovers this result, in fact, inserting one vertex
operator in Equation (4.29), it is straightforward to verify:

Dc(pi,−pf ;−p1) = −iλ δ̄ (pi − pf − p1)

∫ +∞

−∞
dτ1 δ(τ1)e

−i(pf+pi)·p1τ1

= −iλ δ̄ (pi − pf − p1)

= δ̄(pi − pf − p1)Aϕ3 .

(5.2)

which is the correct vertex, coupled to the total momentum conservation δ function.
We can move on to the 4-point amplitude. Diagrammatically the amplitude is the
sum of the t and u channels:

Aϕ3 = pi pf

p1 p2

pi − p1
+ pi pf

p1 p2

pi − p2
(5.3)

inserting two vertex operators in the reduced on-shell dressed propagator in Equa-
tion (4.29) and assigning the signs of the momenta according to the momentum
flow in Equation (5.3) one obtains:

Dc(pi,− pf ;−p1,−p2) = (iλ)2δ̄(pi − pf − p1 − p2)∫ +∞

−∞
d[τ1, τ2]δ(τ1 + τ2) exp

{
i(pf + pi) · (p1τ1 + p2τ2)− i

2∑
l,l′=1

∆ll′pl · pl′
}
.

(5.4)

The integral in dτ2 can be performed immediately using the total proper time δ
function:

Dc(pi,− pf ;−p1,−p2) = (−iλ)2δ̄(pi − pf − p1 − p2)∫ +∞

−∞
dτ1 ei(pf+pi)·(p1−p2)τ1−2i|τ1|p1·p2 .

(5.5)

In order to evaluate |τ1| we can perform a branch cut on the integral:

Dc(pi,−pf ;− p1,−p2) = (iλ)2δ̄(pi − pf − p1 − p2)

×
[∫ 0

−∞
dτ1 ei(pf+pi)·(p1−p2)τ1+2ip1·p2τ1

+

∫ +∞

0

dτ1 ei(pf+pi)·(p1−p2)τ1−2ip1·p2τ1

] (5.6)
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both integrals can be performed immediately, each producing its respective channel
shown in Equation (5.3):

Dc(pi,−pf ;− p1,−p2) = (iλ)2δ̄(pi − pf − p1 − p2)

×
[

−i

(pf + pi) · (p1 − p2) + 2p1 · p2
+

i

(pf + pi) · (p1 − p2)− 2p1 · p2

]
.

(5.7)

Recall that τ1 was originally the proper time corresponding to the emission of the
scalar with momentum pµ1 , if this emission happens in the past with respect to
the center of mass proper time coordinates (the negative proper time domain of
the integral in Equation (5.6)) means that it happened before the emission of the
other scalar, with momentum pµ2 . Following this reasoning we can interpret the
first integral and the corresponding fraction to the propagator in the t channel,
while the other integral and corresponding fraction must yield the u channel. With
this insight, using the total momentum conservation δ function we can remove pµ2
from the the first fraction and pµ1 from the second:

Dc(pi,−pf ;− p1,−p2) = (iλ)2δ̄(pi − pf − p1 − p2)

×
[

−i

(pf + pi) · (pi − pf ) + 2(pf + pi) · p1 + 2p1 · pi − 2p1 · pf − 2p21

+
i

(pf + pi) · (pi − pf )− 2(pf + pi) · p2 − 2p2 · pi + 2p2 · pf + 2p22

]
.

(5.8)

Since both pµi and pνf are on-shell, the difference of the squares p2f − p2i vanish in
each case. What is left is:

Dc(pi,−pf ;−p1,−p2) = (iλ)2δ̄(pi − pf − p1 − p2)

[
−i

4p1 · pi − 2p21
+

i

−4p2 · pi + 2p22

]

= (iλ)2δ̄(pi − pf − p1 − p2)
1

2

[
i

(pi − p1)2 +m2
+

i

(pi − p2)2 +m2

]
=

1

2
δ̄(pi − pf − p1 − p2)Aϕ3 .

(5.9)

The factor 1/2 multiplying the scattering amplitude can be reabsorbed in the path
integral.
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5.2 Scalar electrodynamics Amplitudes
We begin by obtaining the mixed position and momentum representation of the
Green function as done in the previous Chapter. In particular, up to the path
integral in Equation (4.11) and the boundary conditions in Equation (4.12) the
Hamiltonian was never specified. Let us set the Hamiltonian to

2H(p, x) = (p− A(x))2 +m2. (5.10)

The relevant exponent in the path integral reads:

pf · xf − p(β) · x(β) +
∫ β

0

dτ [p · ẋ−H(p, x)] =

=pf · xf − pf · (xi + pfβ + ξ(β)) +

∫ β

0

dτ

[
(pf + π) · (pf + ξ̇)− 1

2
(pf + π − A)2 − 1

2
m2

]

=pf · (xf − xi)−
β

2
(p2f +m2) +

∫ β

0

dτ

[
π · ξ̇ − 1

2
π2 − 1

2
A2 + π · A+ pf · A

]

=pf · (xf − xi)−
β

2
(p2f +m2) +

∫ β

0

dτ

[
π · ξ̇ − 1

2
(π − A)2 + pf · A

]

=pf · (xf − xi)−
β

2
(p2f +m2) +

∫ β

0

dτ

[
(π − A) · ξ̇ − 1

2
(π − A)2 + pf · A+ ξ̇

]

=pf · (xf − xi)−
β

2
(p2f +m2) +

∫ β

0

dτ

[
(π − A) · ξ̇ − 1

2
(π − A)2 + ẋ · A

]
(5.11)

where the minimal coupling between πµ and Aµ has been put in evidence. The last
line follows from the boundary conditions in Equation (4.12). Since the measure
is invariant under translation

Dπ = D(π − A) (5.12)

we can use the Gaussian integration to path integrate over the momentum pertur-
bation, obtaining

G(xi, xf ;A) =

∫ ∞

0

dβ

∫
dDpf eipf ·(xf−xi)e−iβ

2
(p2f+m2)

∫
ξ(0)=0

Dξ exp

{
i

∫ β

0

dτ

[
ξ̇2

2
+ ẋ · A(x(τ))

]}
,

(5.13)
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rescaling β −→ 2T and restoring the electric charge e we arrive to

G(xi, xf ;A) =

∫ ∞

0

dT

∫
dDpf eipf ·(xf−xi)e−iT (p2f+m2)

∫
ξ(0)=0

Dξ exp

{
i

∫ T

0

dτ

[
ξ̇2

2
+ eẋ · A(x(τ))

]}
.

(5.14)

The reduction of the external legs proceeds exactly as seen in the previous Chapter
(see e.g. Equations (4.19), (4.28)). We write a representation similar to (4.23), by
introducing a momentum kµ, and allowing τ ∈ [0,∞]. Then, going in momentum
space in Equation (5.14) we arrive to the momentum space representation of the
dressed propagator, which, when LSZ reduced as before reads as

Dc(pi,pf ; {εl, pl}) = (ie)Nδ̄

(
pi + pf +

N∑
l=1

pl

)
e(pf−pi)·

∑N
l=1 εl

×
N∏
l=1

∫ +∞

−∞
dτl exp

{
i(pi − pf ) ·

N∑
l=1

plτl − i
N∑

l,l′=1

∆ll′pl · pl′
}

× exp

{
−2

N∑
l,l′=1

•∆ll′εl · pl′ + i
N∑

l,l′=1

•∆•
ll′εl · εl′

}
δ

(
N∑
l=1

τl

)∣∣∣∣∣
m.l.

(5.15)

where the propagator on the worldline is chosen to be time symmetric:

∆(τ, τ ′) =
|τ − τ ′|

2

•∆(τ, τ ′) =
1

2
sign(τ − τ ′)

−•∆•(τ, τ ′) = δ(τ − τ ′)

(5.16)

while the |m.l. prescription means

Dc,µ1...µN (pi, pf ; {pl})
∣∣∣∣
m.l.

=
N∏
k=1

∂εµkk
Dc(pi, pf ; {εl, pl})

∣∣∣∣
ε=0

. (5.17)

Again, we can start testing the validity of the reduced dressed propagator in
Equation (5.15) by comparing with QFT amplitudes. The first test is the 3-point
vertex:

Aµ
sQED = pi pf

ie

p1, µ

= ie(pi + pf )
µ (5.18)
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with p1 taken outgoing. Specializing the reduced dressed propagator to one vertex
operator, with momenta assigned as in the amplitude, Equation (5.18) we obtain:

Dc(pi,−pf ; ε1,−p1) =ie δ̄(pi − pf − p1) e
−(pf+pi)·ε1

×
∫ +∞

−∞
dτ1 exp{i(pf + pi) · p1τ1}δ(τ1)

∣∣∣∣∣
m.l.

(5.19)

where the singular term proportional to ε21 has been eliminated by the |m.l. pre-
scription. The integral is straightforward since the proper time δ function sets the
integral to 1. Finally, taking the |m.l. prescription as in Equation (5.17) one finds:

Dc(pi,−pf ; ε1,−p1) = ie δ̄(pi − pf − p1) (pi + pf )
µ = δ̄(pi − pf − p1)Aµ

sQED (5.20)

which is the expected result, up to a redefinition of the charge e −→ −e.
The amplitude at the next order in the charge, O(e2) can be expressed in terms

of Feynman diagrams as

Aµν
sQED = pi pf

µ ν

pi − p1
+ pi pf

µ ν

pi − p2
+ pi pf

µ ν

.

(5.21)
At this point we specialize the reduced dressed propagator in Equation (5.15) to
the case of two vertex operators, assigning the momenta in the fashion of Equation
(5.21) (the photon momenta are taken outgoing):

Dc(pi,−pf |ε1, ε2;−p1,−p2) = (ie)2δ̄(pi − pf − p1 − p2)e
−(pi+pf )·(ε1+ε2)

×
∫ +∞

−∞
d[τ1, τ2] exp

{
i(pf + pi) · (p1τ1 + p2τ2)− i

2∑
l,l′=1

∆ll′pl · pl′
}

× exp

{
2

N∑
l,l′=1

•∆ll′εl · pl′ + i
N∑

l,l′=1

•∆•
ll′εl · εl′

}∣∣∣∣∣
m.l.

.

(5.22)

Inserting the worldline propagator from Equation (5.16) in the reduced dressed
propagator in Equation (5.22) and performing the dτ2 integration using the total
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proper time δ function we obtain:

Dc(pi,−pf |ε1, ε2;−p1,−p2) = (ie)2δ̄(pi − pf − p1 − p2)e
−(pi+pf )·(ε1+ε2)

×
∫ +∞

−∞
dτ1 exp{i(pf + pi) · (p1 − p2) τ1 − 2i|τ1|ip1 · p2}

× exp{sign(τ1) · (ε1p2 − ε2p1)− 2iδ(τ1)ε1 · ε2}

∣∣∣∣∣
m.l.

.

(5.23)

At this point the |m.l. prescription can be taken as in Equation (5.17), which, at
order O(e2) reads:

Dc,µν(pi,−pf ;−p1,−p2)

∣∣∣∣
m.l.

= ∂εµ1∂εν2D
c(pi,−pf |ε1, ε2;−p1,−p2)

∣∣∣∣
ε1=ε2=0

. (5.24)

In flat space the partial derivatives commune, hence without loss of generality the
explicit |m.l. prescription reads:

Dc, µν(pi,−pf ;−p1,−p2) = (ie)2δ̄(pi − pf − p1 − p2)

×
∫ +∞

−∞
dτ1 exp{i(pf + pi) · (p1 − p2) τ1 − 2i|τ1|ip1p2}

× ∂εµ1∂εν2 e−(pi+pf )·(ε1+ε2)+sign(τ1)(ε1·p2−ε2·p1)−2iδ(τ1)ε1·ε2

∣∣∣∣∣
ε1=ε2=0

= (ie)2δ̄(pi − pf − p1 − p2)
〈
∂εµ1∂εν2

〉
Dc

(5.25)

where the expectation value ⟨(. . . )⟩Dc in the last line of Equation (5.25) is taken
with respect to the reduced dressed propagator in the same Equation. Ignoring
for now the charge and the total momentum conservation δ function, the following
equalities hold:

Dc,µν(pi,−pf ;−p1,−p2) =
〈
∂εµ1∂εν2

〉
Dc

=
〈
∂εµ1 [−(pf + pi)

ν + sign(τ1)p
ν
1 − 2iε1,µη

µνδ(τ1)]
〉
Dc

= ⟨−2iηµνδ(τ1) + [−(pf + pi)
ν − sign(τ1)p

ν
1][−(pf + pi)

µ + sign(τ1)p
µ
2 ]⟩Dc

= ⟨−2iηµνδ(τ1) + (pf + pi)
µ(pf + pi)

ν + sign(τ1)[(pf + pi)
µpν1 − pµ2(pf + pi)

ν ]

− sign2(τ1)p
µ
2p

ν
1⟩Dc .

(5.26)
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The proper time δ function immediately yields the correct 4-point vertex shown in
Equation (5.21). In order to evaluate the absolute value |τ1| and the sign functions
one can perform the branch cut. Explicitly, the reduced dressed propagator reads:

Dc,µν(pi,−pf ;−p1,−p2) = (ie)2δ̄(pi − pf − p1 − p2)
{
− 2iηµν

+

∫ 0

−∞
dτ1 ei[(pi+pf )·(p1−p2)+2p1·p2]τ1

×
[
(pf + pi)

µ(pf + pi)
ν + (pf + pi)

µpν1 − pµ2(pf + pi)
ν − pµ2p

ν
1

]

+

∫ +∞

0

dτ1 ei[(pi+pf )·(p1−p2)−2p1·p2]τ1

×
[
(pf + pi)

µ(pf + pi)
ν − (pf + pi)

µpν1 + pµ2(pf + pi)
ν − pµ2p

ν
1

]}
.

(5.27)

On top of the 4-point vertex −the seagull− which we can immediately recognize
that the remaining integrals produce the correct propagators as done in Equation
(5.9). All which is left is to check whether the numerators match the correct
vertices from sQED.
Let us discuss them separately, starting with the t channel (the first integral in
Equation (5.27)). We can use the total momentum conservation δ function to
remove pµf :

(pf + pi)
µ(pf + pi)

ν + (pf + pi)
µpν1 − pµ2(pf + pi)

ν − pµ2p
ν
1 =

(2pi − p1 − p1)
µ(2pi − p1 − p2)

ν + pµ2(2pi − p1 − p2)
ν − (2pi − p1 − p2)

µpν1 − pµ2p
ν
1 =

(2pi − p1 − p2)
µ(2pi − p1 − p2)

ν + pµ2(2pi − 2p1 − p2)
ν =

(2pi − p1)
µ(2pi − 2p1 − p2)

ν .

(5.28)

The u channel numerator is studied similarly, removing again pµf :

(pf + pi)
µ(pf + pi)

ν − (pf + pi)
µpν1 + pµ2(pf + pi)

ν − pµ2p
ν
1 =

(2pi − p1 − p2)
µ(2pi − p1 − p2)

ν − pµ2(2pi − p1 − p2)
ν + (2pi − p1 − p2)

µpν1 − pµ2p
ν
1 =

(2pi − p1 − p2)
µ(2pi − p2)

ν − pµ2(2pi − p2)
ν =

(2pi − 2p2 − p1)
µ(2pi − p2)

ν .

(5.29)
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Finally, the reduced dressed propagator can be reassembled:

Dc,µν(pi,−pf ;−p1,−p2) = ie2δ̄(pi − pf − p1 − p2)

{
2ηµν

− (2pi − p1)
µ(2pi − 2p1 − p2)

ν

(pi − p1)2 +m2
− (2pi − 2p2 − p1)

µ(2pi − p2)
ν

(pi − p2)2 +m2

}

= δ̄(pi − pf − p1 − p2)Aµν
sQED.

(5.30)

5.3 Classical limit à la KMOC
As a further application we can apply the KMOC procedure [37] to obtain the clas-
sical limit of the sQED Compton amplitude, (5.30). The procedure is essentially a
power counting for the Planck constant ℏ. The constant ℏ can be reintroduced in
the amplitude by means of dimensional analysis3, expressing the photon momenta
pl in terms of wavenumbers

pl = ℏql (5.31)

which have dimensions of [L]−1. We can revisit the total momentum conservation
δ function which appears in Equation (5.30), making the wavenumbers explicit:

δ̄(pi − pf − ℏq1 − ℏq2) (5.32)

then, denoting pµi = pµ we get that pf = p+ℏq1+ℏq2. Then squaring such relations
and neglecting subleading ℏ terms, we get that

p · q2 = −p · q1, (5.33)

which, as we will see, will be automatically produced when using the WQFT to
evaluate such classical result. In addition, we take the photon momenta to be
off-shell. Performing a Laurent expansion in ℏ we get that

1

−2ℏp · ql + ℏ2q2l
=

1

−2ℏp · ql
(
1− ℏq2l

2p·ql

)
=

1

−2ℏp · ql

∞∑
n=0

(
ℏq2l
2p · ql

)n

=
1

−2ℏp · ql

[
1 +

ℏq2l
2p · ql

+O(ℏ2)
]
.

(5.34)

3restoring ℏ the correct dimensionless electric charge is e/
√
ℏ but since we are interested only

in the channels terms of the amplitude this is ignored
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Dropping for now the prefactor and the seagull term, ηµν which are trivial the
remaining t and u channels can be expanded to

4pµpν − 4ℏpµqν1 − 2ℏpµqν2 − 2ℏqµ1 pν

2ℏp · q1

(
1 +

ℏq21
2p · q1

)

+
4pµpν − 2ℏpµqν2 − 4ℏqµ2 pν − 2ℏqµ1 pν

2ℏp · q2

(
1 +

ℏq22
2p · q2

)
+O(ℏ).

(5.35)

On the support of the δ function in Equation (5.33) we can write

4pµpν − 4ℏpµqν1 − 2ℏpµqν2 − 2ℏqµ1 pν

2ℏp · q1

(
1 +

ℏq21
2p · q1

)

−4pµpν − 2ℏpµqν2 − 4ℏqµ2 pν − 2ℏqµ1 pν

2ℏp · q1

(
1− ℏq22

2p · q1

)
+O(ℏ)

(5.36)

from which we immediately see that the superclassical terms pµpν cancel. After
some algebraic manipulations and reintroducing the seagull term ηµν we arrive to

Aµν
sQED = 2ie2δ̄(p·(q1+q2))

[
ηµν − qµ1 p

ν

p · q1
+

qµ2 p
ν

p · q1
+

1

2

pµpν(q21 + q22)

(p · q1)2

]
+O(ℏ). (5.37)

Finally, using momentum conservation we arrive to

Aµν
sQED = 2ie2δ̄(p · (q1 + q2))

[
ηµν − qµ1 p

ν

p · q1
+

qµ2 p
ν

p · q1
− pµpνq1 · q2

(p · q1)2

]
(5.38)

which reproduces the result found in [38], computed by setting up the WQFT
for scalar electrodynamics. The same calculation can be performed by using the
results from ϕ3 cube. In such a case we present the calculation of the 2-point
HTL-current ([38]) both from Feynman diagrams and from a WQFT perspective.
Using the same procedure as above, to take the classical limit of the 1PI sum of
Feynman diagrams in (5.3), we get the following answer

Āϕ3 = lim
ℏ→0

Aϕ3 = −iλ2 q1 · q2
2 (p · q1) 2

(5.39)

while, on the WQFT side, we just have one diagram, namely

ϕ(q1) ϕ(q2)

ω
= −λ2

∫ ∞

−∞
dω δ(q1 · p+ ω)δ(q2 · p− ω)

i

ω2
q1 · q2

= δ(p · (q1 + q2))

(
−iλ2 q1 · q2

2 (p · q1) 2

)
= δ(p · (q1 + q2))Āϕ3

(5.40)
which matches the result obtained above using Feynman diagrams.
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5.4 Gravitational Compton amplitude from double
copy

In addition to the above applications, here, using the KLT relation showed in [38],
at the classical level, we generate the classical limit of the gravitational Compton
amplitude, describing the scattering of linearized gravitational waves off massive
scalar particles. Such a scenario holds when the wave length of the gravitational
waves is much bigger than the Schwarschild radius of the black holes, thus described
as massive scalar particles.

To generate the Compton current, we use the double copy relation

Mµ1ν1,µ2ν2 =
(q1 · p)2

q1 · q2
Aµ1µ2

sQEDA
ν1ν2
sQED (5.41)

then, contracting with trace-less and transverse polarization tensors, written as a
copy of two null photon polarizations i.e. ϵhµν(q) = ϵhµ(q)ϵ

h
ν(q), we get the on-shell

gravitational Compton as

Mh1h2(q1, q2) = Mµν,αβ(q1, q2)ϵ
h1
µ (q1)ϵ

h1
ν (q1)ϵ

h2
α (q2)ϵ

h2
β (q2)

= −κ4q1 · q2 (p · ϵ1) 2 (p · ϵ2) 2

16ω2
− κ4 (p · ϵ1) 2p · ϵ2q1 · ϵ2

8ω
+

κ4p · ϵ1 (p · ϵ2) 2q2 · ϵ1
8ω

+
κ4ωϵ1 · ϵ2p · ϵ1q1 · ϵ2

8q1 · q2
− κ4ωϵ1 · ϵ2p · ϵ2q2 · ϵ1

8q1 · q2
− κ4 (p · ϵ1) 2 (q1 · ϵ2) 2

16q1 · q2

− κ4 (p · ϵ2) 2 (q2 · ϵ1) 2

16q1 · q2
+

κ4p · ϵ1p · ϵ2q1 · ϵ2q2 · ϵ1
8q1 · q2

+
1

8
κ4ϵ1 · ϵ2p · ϵ1p · ϵ2 −

κ4ω2 (ϵ1 · ϵ2) 2

16q1 · q2
(5.42)

where we defined ω = p · q1 being the classical limit of the t−channel propagator
in the QFT calculations. The above amplitude is gauge invariant by construction,
given that the sQED classical amplitude is gauge invariant by itself, and correctly
reproduces the known results from the literature.

43



Conclusion

The Worldline formalism is a powerful tool to compute Green functions and effec-
tive actions. In Chapters 2 and 3 we have seen how momentum space represen-
tations of dressed propagators can be reduced and put on-shell. In particular, in
[7] the net effects of the reduction on the momentum space dressed propagator is
derived. Then, an extension was performed in configuration space for classical ap-
plications. However it does not evaluates on-shell Green functions in vacuum, but,
such correlators are dressed with coherent wave-functions of the Poincarè group.
This has an effect on the worldline action, now integrated over all real values of
the proper time. Out of this infinitely extended worldline action one can compute
WQFT Feynman Rules, which are a novelty in the literature of scattering am-
plitudes and thus, quickly became influential. The main goal of this thesis is to
show that the reduction can be performed directly at the level of the path integral
in configuration space, without dressing the amplitude with such wave-functions.
So to be able to evaluate on-shell Feynman diagrams, with external asymptotic
states, from a worldline formulation.

To do so the mixed position and momentum space representation of the Green
function is presented, and out of the latter a path integral fully in position space
is obtained, see Equations (4.16) and (5.14), and in general Chapters 4 and 5.
This position space Green function includes and integration in the outgoing mo-
mentum, which turns □ operators into squares of momenta: it is a position space
representation of the Green function compatible with the LSZ reduction proposed
in [7].
One can investigate whether this procedure of obtaining a fully position space
representation of the Green function out of the mixed position and momentum
representation and its subsequent reduction, can be extended to other theories,
e.g. the bi-adjoint scalar, Scalar Chromodynamics, gravity theories; as well as
having fermions propagating on the worldline, e.g. fermion QED [65, 66], fermion
QCD and fermion-gravity; having vectors propagating on the worldline, recovering
e.g. the dressed propagator in [8]. Our representation allows to generate on-shell
Feynman diagrams very easily, since it only boils down to the calculation of un-
bounded Schwinger integrals which are easier to perform with respect to the purely
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off-shell case. In addition our formulation gives a very compact expression for a
Feynman diagram re-summation, which is quite remarkable. In addition such am-
plitudes can also be used to study on-shell features of the double copy construction
for matter lines [67, 68], recently extended, straight at the classical level by [44].
Such double copy constructions might boost the efficiency in the generation of
classical integrands needed for applications to classical black hole scattering since
they allows to generates integrands for spinning particles, reproducing a multipole
expansion of Kerr black holes observables [69].
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