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Abstract

This thesis addresses the important topic of future networks and new tech-
nologies for cloud-native deployment and the exploitation of artificial intelli-
gence (AI) for characterizing microservice response times. In particular, the
characterization relies on the use mixture density networks (MDN), a feedfor-
ward neural network (FNN) architecture to approximate the distributions of
a phenomenon, applied to generalize microservices response time distributions
depending on system parameters.

The AI approach is motivated by the difficulty of using theoretical queueing
models to characterize the full service. The thesis also explores the possibility
of using the distributions obtained through MDN models to make simulations
with a digital twin of the system.

The experiments show the approximation effectiveness of this approach for
characterizing the response times and to make use of the results in a digital
twin.

Finally the thesis makes considerations about possible improvements and
future works in this direction.

vii
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Chapter 1

Introduction

1.1 Motivations

The advent of 5G technologies has opened the way for new applications and
services, but telecommunications research does not stop there. At the same
time cloud computing has become one of the most popular and requested
technology services in the world, making possible the availability of computing
resources on a large scale; this service has become possible thanks to virtualiza-
tion, which allows computing resources to be created and managed flexibly and
efficiently. Today, virtualization through containers has become a fundamental
tool to manage and deploy applications in the cloud.

The networks of the future will have several key characteristics, including:
higher speed, reliability, and sustainability. In fact, the networks of the fu-
ture will be able to offer even higher connection speeds than today’s networks,
which will enable them to support data-intensive applications such as aug-
mented and virtual reality, telemedicine, and more. Networks also will need
to be highly reliable, capable of handling large amounts of data and traffic
securely. Flexibility will be needed to adapt quickly to market changes and
new technologies.

Other key point will be sustainability and security: the networks of the
future will need to be sustainable, minimizing environmental impact and using
renewable energy sources, and they will need to ensure a high level of security,
protecting user data from cyber attacks, hacking and fraud.

With the evolution to 6G technology it is expected an increase in the
amount of data and applications that need to be managed and distributed,

1



2 CHAPTER 1. INTRODUCTION

bringing to new challenges and opportunities to address.

In this context, the adoption of machine learning and implementation of
digital twins could be the key to achieving superior performance and more
sophisticated and customized services.

Machine learning can provide predictive models for network performance,
while digital twin allows the network to be simulated virtually, providing a
secure and cost-effective testing environment.

The integration of these technologies could lead to better network manage-
ment and performance optimization, thereby increasing the efficiency and the
offered quality of services .

This thesis aims to explore the potential of implementing machine learning
and digital twin to telecommunications, in order to understand the challenges
and opportunities that these technologies can offer and contribute to their
implementation and development.

The remainder of this thesis is structured as follows. The next section
1.2 is a brief summary of inspirational articles for this thesis, then chapter 2
presents the main concepts and technologies related to the cloud-native de-
ployment. Chapter 3 introduces the notions concerning artificial intelligence
and the machine learning methodologies applied in the experimental part of
this thesis while chapter 4 gives a description of the system under analysis and
collects the experiments. Finally, chapter 5 summarizes the work and gives
suggestions for possible improvements and new approaches to be evaluated.

1.2 Related works

The literature provides a valuable perspective for evaluating the current state
of the art and identifying future opportunities.

In particular, [1] accounts for the importance of Kubernetes, an open-source
orchestration platform for automatic deployment, scaling and management of
containerized applications. Solutions for evaluating the behaviour of the sys-
tems with different configuration parameters in Kubernetes are needed to ef-
fectively deal with resources scheduling. In this direction [2] argues the perfor-
mance assessment during the investigation of possible alternative deployments,
requiring new service management tools providing what-if scenario analysis
functions. The use of simulations tools to drive decisions is experimented as a
solution to identify the most convenient options.
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Finally, [3] underlines the importance of dynamic and intelligent managing
of heterogeneous resources such as communication, computing, energy, and
storage to improve resource utilization efficiency and satisfy quality of service
requirements. Digital twin technology is proposed as a solution to achieve
this, indeed many components need to be emulated (e.g., processing nodes and
communication network devices) with requirements on latency and accuracy
to maintain real-time consistency with physical systems.
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Chapter 2

Overview

This chapter presents the main concepts and technologies related to cloud-
native computing, such as virtualization, virtualization with containers and
service composition.

2.1 Cloud-native deployment

Cloud-native service deployment refers to the practice of deploying applications
and services within a cloud environment using architectures and methodologies
that take advantage of cloud computing features. Specifically, cloud-native
deployment focuses on creating highly scalable, reliable and flexible services
that can be easily managed and updated in a cloud environment.

This requires the adoption of a number of specific development and man-
agement practices, including the use of microservices, service-oriented design,
virtualization, containerization, automation, error handling and self-healing.
In addition, the use of cloud-native technologies and platforms, such as Ku-
bernetes, enables greater agility and scalability, as well as the ability to deliver
services quickly and reliably.

The concept of DevOps is strictly related to the cloud-native context. In-
deed DevOps is an organizational and development culture that involves collab-
oration between development and operations teams to improve the efficiency
and quality of application development and deployment processes. DevOps
focuses on continuous integration (CI) and continuous release (CR) to ensure
the rapid and reliable release of applications.

5
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Figure 2.1: Cloud-native pillars. [4]

2.2 Virtualization

The virtualization is a technique aiming to create abstract versions of computer
hardware and network resources to make them available to a software as virtual
resources. This technique allows the implementation of virtual machines that
act like a real computer. As a matter of fact, a virtual machine is equipped
with its operating system and applications. The virtualization of hardware
requires an hypervisor, a software which manages the physical resources and
isolates them from the virtual environment; this task is reached by sharing the
resources.

In traditional virtualization there are two kind of hypervisors:

• Type 1 (native): in this paradigm the hypervisor directly schedules the
virtual machines (VM) resources to the hardware, no OS is present on
the host machine. An example of this kind of hypervisor is the KVM
(Kernel-based virtual machine).

• Type 2 (hosted): in this paradigm the hypervisor is a process executing
on a OS.

The benefits introduced by the use of the virtualization are:

• Cost reduction: virtualization allows to reduce the number of physical
computer by executing many virtual machines on a single physical one.
This reduces the capital expenditures, and the operational costs related
to cooling and maintenance.

• Flexibility: any virtual machine can be executed on any available server
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on the network, it is possible to move a VM from a server to another in
case of need. Moreover, it is possible to scale VM quickly.

• Reliability: it is possible to make checkpoints and backups of VM in such
a way any VM can be easily restored. This makes virtual system fault
resistant.

• Control independence and DevOps: developers can easily start a VM
without having an impact on the production environment since in virtu-
alization the VMs are independent.

2.3 Virtualization with containers

In the virtualization context, the use of containers is a effective technique to
manage applications and services in a shared environment. The definition of
container can be summarized in “a single executable package of software”.
Differently to traditional virtualization, where every VMs have their own OS,
the use of containers is based on the host kernel to run applications and so no
hypervisor is needed. To make containers work, the host kernel has installed
a runtime engine to enable containers to interact with it [5].

The use of host kernel makes the containers “lightweight”, meaning the im-
age of a container is typically in the order of megabyte, much smaller than the
image of a VM that is in the order of gigabyte. Moreover a container does not
embed anything bigger than an application and its running environment, for
this reason they are often used to implement only a single function performing
specific task, known as microservice.

The “lightweight” architecture of containers enables the possibility to easily
move and run an application in any environment or infrastructure’s operating
system. This property turns out to be very useful to deploy cloud-native apps
(i.e., collection of microservices whose composition provides a more complete
service).

An example of containerization technology is Docker, enabling the creation
and use of Linux containers.

The virtualization with containers extends the benefits introduced by the
traditional virtualization, with:

• Portability: possibility to run uniformly and consistently across any plat-
form or cloud being abstracted away from the host operating system;
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Figure 2.2: Virtualization vs. Containerization. The structure of container is
simpler and requires less overhead. [6]

• Speed and efficiency: the lightweight property of containers makes the
start-up faster;

• Easy management: a container orchestration platform can automate
the installation and handling of containers’ workloads and services (e.g.,
rolling out new versions of applications, provide logging and debugging).

2.3.1 Microservices and service composition

The microservice architecture is an approach to break a complex application
into a collection of many specialized services, called microservices.

The microservice architecture is opposed to the monolithic application ap-
proach where components such as user interface (UI), business logic and data
access functions are implemented in a single software application responsible
for every step needed to complete a service.

The main benefit introduced by the in microservice architecture is the
possibility to focus the development phase on a specific task, without having
an impact on the whole service, making the development, test and deployment
of applications faster.

Microservices works well if combined with containerization, since they can
inherit all the benefits of virtualization with containers.

A complete service is obtained by the composition of multiple microservices,
this objective is obtained through Application Program Interfaces (APIs) and
REST interfaces (such as HTTP).
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Figure 2.3: Monolithic vs microservices.[6]

In case of large compositions it is possible to adopt a service mesh, which is
a facility dedicated to the service-to-service communication between services
or microservices using proxies: when microservices needs to communicate the
requests are routed between them through proxies that are integrated in their
own infrastructure layer.

The service mesh captures every aspect of the inter-service communica-
tions, without it the communication needs to be defined with specific rules in
the implementation of the microservice itself, making the management more
difficult.

2.3.2 Kubernetes

In the scope of container orchestration, Kubernetes, known also as k8s, is a
popular open source framework that automates container-related functions[7].
It works with common containers engines, such as Docker, to schedule and
automate the deployment, management and scaling of containerized applica-
tions.

The Kubernetes software is made up by multiple components, including:

• Working nodes: they are working machines on which containers are ex-
ecuted.
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• Clusters: it is a set of working nodes;

• Control plane components: they make decisions about the cluster, detect
and respond to cluster event;

• Node components: they are the components running on each working
node, maintaining running pods (components of the application work-
load) and enabling the Kubernetes running environment.

Kubernetes features are:

• Service discovery;

• Load balancing;

• Automated rollouts and rollbacks;

• Self healing;

• Secret and configuration management.

2.4 6G

The Sixth Generation (6G) of mobile networks is currently at the conception
phase, this new technology is expected to improve the 5G networks with[8, 9]:

• Higher throughput;

• Ultra low-latency;

• Advanced security;

• Environmental sustainability.

In the context of cloud-native, it is expected that 6G will offer new advanced
applications thanks to network function virtualization and service orchestra-
tion. In particular, the virtualization with containers and the microservice
architecture introduce new opportunities to the development and provisioning
of applications on 6G networks.

In addition, it is expected that 6G will make use of artificial intelligence
(AI) to improve the efficiency of the network, for instance by optimizing net-
work resource usage, implementing new smart beamforming techniques and
customize the user experience based on its preferences.



Chapter 3

Methodologies

In this chapter the methodologies applied in the experimental part of the
thesis are introduced. Before dealing with model theory, some general concepts
related to artificial intelligence and machine learning are covered.

3.1 Artificial intelligence and machine learn-

ing

The artificial intelligence (AI) refers to the ability to design techniques that
enable machines to mimic human intelligence, meaning the ability to perceiving
and inferring information.

Machine learning (ML) is a field of studies of artificial intelligence, it ex-
ploits statistical methods to give computers the ability to learn without being
explicitly programmed.

ML algorithms are divided in different categories:

• Supervised learning;

• Unsupervised learning;

• Reinforcement learning.

Supervised machine learning is referred to algorithms that maps an input x
on an output label y. It learns from being given “right answer” examples. Ap-
plications of this category include speech recognition, translation, advertising,
self-driving cars etc. . .

11
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The most common algorithms of this class are:

• Regression, aiming to predict a number among infinitely many possible
outputs;

• Classification, aiming to predict a class/category among a small number
of possible outputs (classes/categories are not real number, they belong
to a finite set).

Unsupervised machine learning on the other hand works on data which
is not associated to any output label, this kind of ML aims to find hidden
structures in the data. Given some input data, the algorithm can group them
in different clusters (clustering applications, like google news, DNA microarray
types, marketing segmentation).

Examples of unsupervised ML algorithms are:

• Clustering, aiming to group similar data points together (e.g., Google
News, DNA microarray types, market segmentation);

• Anomaly detection, aiming to find unusual data inputs/events;

3.2 Neural networks and deep learning

Artificial neural networks (NN) are models to perform machine learning. The
name “neural network” derives from the fact this architecture is loosely in-
spired on mammal’s brain neural networks.

The architecture of NN is composed by a collection of processing nodes (or
units) that are densely interconnected. Units are organized in layers, whose
configuration provide a specific transformation of the input data. Data travel
from the first layer, the input layer, to the last one, the output layer, passing
through the intermediate layers. Data travelling in the NN can have different
types (e.g., real numbers or categorical data) and can be labelled (i.e., meaning
of data is known) or unlabelled (i.e., meaning of data is unknown). Units of
a layer are interconnected with the ones of the subsequent layer by means of
edges. Each edge is characterized by a weight, a coefficient that is multiplied
to the data passing through it and increasing or decreasing the impact of that
data on the final output. All units are characterized by an activation function
and a bias.
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The first and simplest model of NN representing a single unit is the Percep-
tron, demonstrated by Frank Rosenblatt in 1957. The aim of the Perceptron
was to perform binary classification.

Figure 3.1: Artificial neuron.

Figure 3.1 shows a network with a single hidden layer and one unit. The
output of the generic “j” unit is related to the inputs by the relationship:

oj = ϕ(θj +
n∑

i=1

wijxi)

Where:

• xi is the i-th input;

• wij is the weight of the i-th input edge;

• θj is the bias;

• ϕ(·) is the activation function.

Common choices for the activation function are:

• Logistic;

• Tanh;

• Sigmoid;
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• Step;

• Linear;

• Rectified linear unit.

The NN composed by multiple intermediate units and layers are known
as Deep Neural Networks (DNN) and the algorithm to train them is usually
referred as to Deep learning. The layers placed between the input layer and the
output layer are called hidden layers since their results can’t be seen directly.
Figure 3.2 represent a DNN.

Figure 3.2: DNN with 2 hidden layer of 4 units each, 3 units input and 1 unit
output.

3.2.1 Feedforward neural networks

Feedforward neural network (FNN) is an architecture of artificial neural net-
work where connections between the nodes do not form a cycle, this kind of
networks are the basis for most complex networks architecture . It is a general
model to approximate non-linear mappings between two sets of variables [10]:

ŷ = f(x̄) (3.1)
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Where:

• x̄ is a vector of inputs (or features);

• ŷ is the prediction for y (the target).

This model can be extended to multivariate prediction by implementing mul-
tiple output neurons. FNN can have multiple hidden layers; the number of
hidden layers and the approximation capability concern the Universal approx-
imation theorem [11]: a neural network with suitable number of hidden layers
and units is a “Universal approximator”.

The training of a NN is the process of determining the values of the weights
that minimize the error in the approximation. The training is performed on
a training set (a set of examples, previously collected, on which the task is
learned); feedforward NN are usually trained with the Back-propagation al-
gorithm. The error of a neural network is provided by the error function
(sometimes called cost function or loss), which is specific to the task to be
approximated. Once the network is trained, the network is able to process
new data.

Feedforward NN are suitable models to solve regression and classification
problems. In the regression case the task is learned by minimizing the mean-
square error function between the target and the prediction given features over
the training set.

The mean-square error function is defined as:

E(w̄) =
1

2m

m∑
i=1

[f(x̄(i); w̄)− t(i)]2 (3.2)

Where:

• x̄(i) is the i-th input vector in the training set;

• m is the cardinality of the training set;

• t(i) is the i-th target in the training set;

• f(x̄(i); w̄) is the prediction of the target in function of the i-th input and
weights w̄
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The larger is the training set, the less is the bias and variance of the model.
In the limit case of infinite training set the mean-squared error function turns
out to be:

E = lim
m→∞

1

2m

m∑
i=1

[f(x̄(i); w̄)− t(i)]2 =

∫∫
[f(x̄; w̄)− t]2p(t, x̄)dtdx̄ (3.3)

The error can be minimized in function of f(x̄; w̄) by differentiation:

∂E

∂f(x̄; w̄)
= 0 (3.4)

By substituting 3.3 in 3.4 and remembering p(t, x̄) = p(t|x̄)p(x̄) the approxi-
mating function that minimize the error (i.e., the optimal estimator) is:

f(x̄; w̄) = E[t|x̄] (3.5)

This means the network approximates the conditional average of the target
(conditioned to the input vector).

Figure 3.3: The MSE estimator function on a set of training points.[12]

In the case of classification, the task is learned by minimizing the cross-
entropy error function and the approximated average gives the posterior prob-
ability of a class conditioned on the input features.
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3.2.2 Mixture density networks

Feedforward conventional neural networks for regression (prediction of a con-
tinuous variable) sometimes provide a limited description of the approxima-
tion of the target value, the conditional average of several correct values is
not necessarily the correct prediction of a target but it only minimizes the
sum-of-squared error function. To have a more complete description of the
target, in particular for target with high variability, it is possible to model the
conditional probability distribution of the target data, given the input vector.

In order to model the conditional probability of the target, a model com-
bining a conventional FNN and a mixture density model can be adopted. This
model is called Mixture Density Network (MDN) [12] and provides a general
framework to approximate conditional density functions of targets by mod-
elling the probability parameters as functions of the features.

In case the target follows a Normal distribution the parameters of its dis-
tribution would be (µ, σ), it is possible to write:

p(t|x̄) = p(t|µ(x̄), σ(x̄)) (3.6)

The MDN aim to model the conditional probability density as a linear
combination (mixture model) of kernel functions:

p(t|x̄) =
C∑
c=1

αc(x̄)ϕc(t|x̄) (3.7)

Where:

• p(•) is the probability density function (pdf) of the target variable;

• C is the number of kernel components in the mixture;

• αc(x̄) is the mixing coefficient of the c-th kernel, it represents the prior
probability of that kernel conditioned on x̄;

• ϕc(t|x̄) is the c-th kernel, it represents the conditional density function
of the target t.

In the case of Normal kernel it is:

ϕc(t|x̄) =
1√

2πσ(x̄)
exp

{
|t− µc(x̄)|2

2σ2
c (x̄)

}
(3.8)
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Each kernel component is then characterized by a set of three parameters de-
pendent on x̄:

(
αc(x̄), µc(x̄), σc(x̄)

)
.

The assumption of Normal kernel allows to approximate every probability
density function with arbitrary accuracy [12]; this property is particularly
convenient in case of multivariate target where the hypothesis of statistical
independent component doesn’t hold. However, the model can be generalized
to different kernel choices (e.g., Exponential, Gamma or other distributions).

The mixture parameters, namely the mixing coefficients αc(x̄), the means µc(x̄)
and the standard deviations σc(x̄) are assumed to be unknown continuous func-
tions of x̄.

In order to model the unknown functions:

• the first stage of the model is a conventional FNN, with input x̄, weights
w̄ and providing a parameters’ vector ȳ(x̄; w̄) as output (3.1);

• the output vector of the first stage is provided as input of a second stage
represented by a mixture model.

In the mixture model the input parameters ȳ(x̄; w̄) are processed by means of
appropriate activation functions to model the mixture parameters (i.e., mixing
coefficients, means and std deviations). The final output of the model turns
out to be the conditional probability density (3.7). The combination of the two
stages is referred to as a Mixture Density Network (MDN).The basic structure
is represented in figure 3.4

Figure 3.4: Structure of a MDN

The adoption of this model requires the definition of some hyper-parameters
(i.e., fixed parameters defining the specific implementation of the NN, they are
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not learned during training) such as the number of mixture components C, the
kernel functions and the number of hidden layers and units.

The mixing coefficients αc(x̄) must satisfy the condition:

C∑
c=1

αc(x̄) = 1 (3.9)

It can be achieved by choosing the softmax activation function for these out-
puts and the generic i-th mixing coefficient is:

αi =
exp(yαi

)∑C
c=1 exp(yαc)

(3.10)

where yαi
represents the FNN output related to the i-th mixing coefficient.

The variances σc(x̄) must satisfy the condition:

σc(x̄) > 0 (3.11)

It can be achieved by using exponential activation function:

σi = exp(yσi
) (3.12)

where yσi
represents the FNN output related to the i-th variance.

The mean values µc(x̄) are not constrained by any condition, they can be
obtained by the FNN output with linear activation function:

µi = yµi
(3.13)

The parameters w̄ of ȳ(x̄; w̄) are learned during training of the MDN through
an examples set

{
x̄(q), t(q)

}
of cardinalitym. This can be obtained by maximum

likelihood estimation (MLE), indeed the objective of MLE is to find the set
of parameters for which the observed data (the training set) have the highest
joint probability. By assuming the training examples are drawn independently
from the pdf given by 3.8, the likelihood function of the set can be written as:

L =
m∏
q=1

p(t(q), x̄(q)) =
m∏
q=1

p(t(q)|x̄(q))p(x̄(q)) (3.14)
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The maximum likelihood estimate is:̂̄w = argmax
w̄

L(w̄) (3.15)

From the likelihood it is possible to derive the error function:

E = − logL(w̄) = −
m∑
q=1

log p(t|x̄(q)) (3.16)

The 3.16 is called negative log-likelihood (NLL), in its expression the p(x̄)
factor is neglected since it does not depend on the NLL parameters. Its mini-
mization is equivalent to the maximization of the likelihood.

By taking into account the mixture model 3.7, the NLL becomes:

E =
m∑
q=1

E(q) = −
m∑
q=1

log
C∑
c=1

αc(x̄
(i))ϕc(t

(i)|x̄(i)) (3.17)

where E(q) = − log
C∑
c=1

αc(x̄
(q))ϕc(t

(q)|x̄(i)) is the error contribution of the q-th

example.

Back-propagation procedure is used to minimize the error function, for this
purpose the gradient of the error function with respect to the FNN output
needs to be computed as reported in [10]. The software implementation of the
back-propagation algorithm for this model can be inspired on regression FNN
based on sum-of-squares error function. The modification of the error func-
tion is required to apply standard optimization procedures such as gradient
descent.

The derivative of the error on the q-th example with respect to a generic
weight w is:

∂E(q)

∂w
=

∑
i

∂E(q)

∂yi

∂yi
∂w

=
∑
i

δ
(q)
i

∂yi
∂w

(3.18)

where δ
(q)
i =

∂E(q)

∂yi
is the derivative of the error with respect to the i-th FNN

output that is back-propagated in the network. The partial derivative can be
approximated by finite difference

E(w + ϵ)− E(w)

ϵ
=

∂E

∂w
+O(ϵ) (3.19)
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At the end of the training, the MDN is able to approximate the conditional
density function of the target data given the input feature, allowing to have a
probabilistic description of the data generation process. The MDN results are
useful to derive the specific statistics. By exploiting the 3.7 and linearity the
conditional mean is given by

E[t|x̄] =
C∑
c=1

αc(x̄)

∫
t ϕc(t|x̄) dt =

C∑
c=1

αc(x̄)µc(x̄) (3.20)

and the conditional variance

Var(t|x̄) = E
[
(t− E[t|x̄])2 | x̄

]
(3.21)

=
C∑
c=1

αc(x̄)

{
σ2
c (x̄) +

[
µc(x̄)−

C∑
j=1

αj(x̄)µj(x̄)
]2}

(3.22)

3.3 Goodness of fit

The choice of a suitable model among several possibilities needs to be account-
ing its performance with a metric. The goodness of fit of a statistical model is
a measure of how well a model fits data, typically this measure allows a data
analyst to summarize the discrepancy between a sample of observed values and
the predictions made by the model under evaluation. Examples of goodness of
fit are Kolmogorov-Smirnov test (KS-test) and Bayesian information criterion
(BIC).

3.3.1 Kolmogorov-Smirnov test

Kolmogorov-Smirnov test is a non-parametric test used to compare a sample
with a reference probability distribution (one-sample K-S test), or to compare
two samples (two-sample K-S test)[13, 14]. The one-sample K-S test aims
to quantify the distance between the empirical cumulative distribution func-
tion (eCDF) of a sample and the cumulative distribution function (CDF) of a
reference distribution.



22 CHAPTER 3. METHODOLOGIES

For a random variable X with CDF F (x) and a sample (X1, X2, ..., Xn)
with eCDF Fn(x) the test’s hypothesis are:

H0 : F (x) = Fn(x), ∀x (3.23)

H1 : F (x) ̸= Fn(x), for some x (3.24)

where the eCDF is defined as:

Fn(x) =
number of (elements in the sample ≤ x)

n
(3.25)

The test’s statistic (K-S distance) is defined as:

Dn = sup
x

|Fn(x)− F (x)| (3.26)

Under the null hypothesis, the K-S distance (3.26) is distributed according to
the Kolmogorov distribution and converges to 0 in case n → ∞. For a large
sample (n > 50) goodness of fit test is made by setting a critical value Kα on
the Kolmogorov distribution and the null hypothesis is rejected at significance
level α if:

Dn >
Kα√
n

(3.27)

It is possible to perform the test with different variants of the null hypothesis,
as implemented in many software libraries.

3.4 Overfitting, underfitting and regularization

The overfitting is a problem coming out in machine learning when a model
becomes too specific to the training set, this leads to a model which seems very
accurate at the end of the training phase (low value of the error function), but
actually it shows a lack of generality being unable to fit new data. It is used
to say the model is characterized by a high variance since slight changes on
the training set alter the model very much.

The underfitting, as opposite to overfitting, is a problem coming out when
the model is not able to fit well the training set, showing a high value of the
cost function. It is used to say the model is characterized by a high bias.

In general underfitting happens when the model is too simple and it is not
able to extract the framework inside the training data, reflecting the same
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issue on the new data. For instance, underfitting happens when a model has
too few parameters. Overfitting happens when the model is too complex, for
instance, it occurs when the model has too many parameters.

Techniques to overcome overfitting and underfitting includes:

• Collection of more training examples: it reduce the variance but some-
times it is not practicable because collect more data could be expensive.

• Feature selection: when the training set includes few examples n but
a higher number of features m > n the overfitting may arise if all the
features are accounted in the model. In order to avoid overfitting it is
possible to select only the most relevant features (i.e., the ones show-
ing higher correlation with the target). The main disadvantage of this
technique is that possible important information may be lost.

• Regularization: in case a high number of features are included in the
training set, the regularization technique aims to shrink the parameters
related to the features that specialize too much the model, reducing their
effect without completely eliminating it.

3.5 AI model’s development environment

The experiments in the following parts of this thesis were developed by using
different tools available in the Python language environment.

Python is a high-level object-oriented programming (OOP) language. The
open-source, general-purpose and simplicity properties of this language are the
strengths which have ensured its diffusion in many scientific fields, such as data
science and machine learning. The Python’s tools applied in the thesis belongs
to different libraries such as:

• NumPy for scientific computing [15];

• Scipy for statistical functions [16];

• Matplotlib for graphical visualizations [17];

• Pandas for data manipulation [18];
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• TensorFlow for machine learning [19].

In the work the major contribution is given by TensorFlow. It is an open
source framework developed by Google for building machine learning models,
such as neural networks, decision trees, and regression tasks [19]. This tool
offers many functionalities for the training and validation of models as well as
instruments for the elaboration of results.

In TensorFlow deep networks are developed with the Keras API. The first
step in the development requires the definition of the structure (i.e., number
of layers, neurons and activation functions). Then it is necessary to make
available data (i.e., import data in a ”dataframe” structure) defining features
and targets and performing features normalization to optimize the convergence
of the model during training. When data is available, it is necessary to divide
the dataset in three disjointed groups:

• Training set: the portion of the dataset used to train the model;

• Validation set: the portion of the dataset used to check the absence of
overfitting during training;

• Test set: the portion of the dataset used after the training to check the
generalization performance.

When results are available, they can be elaborated and summarized with charts
and tables. The results of the thesis work are manipulated with the help of
TensorFlow Probability, a library containing probabilistic tools that can be
integrated in the models.



Chapter 4

Experiments

This chapter aim to show the application of methodologies described in the 3
on a real system. A description of the real system and its properties is provided
to clarify the context of the work.

4.1 Cloud-native deployment scenario under

analysis

4.1.1 System description

The cloud-native deployment scenario under analysis in the experimental work
of this thesis is represented by means of a multi-layered queue system. As a
matter of fact, cloud service provisioning can be efficiently implemented using
a multi-layered system approach.

The general implementation of a multi-layered queue system can be de-
scribed by:

• requests : the system is fed with incoming requests sent by users which
can be summarized by their average request rate λ[req/s].

• replicas : they are multiple processing entities providing a microservice
(i.e., an independent portion of processes related to a more complete
service); as they are able to operate in parallel, a section with nrep replicas
can contemporary execute up to nrep instances of microservices. The
processing time related to a microservice performed by a replica is a
random variable Tms with unknown distribution.

25
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• queues : each replica in the system has its own queue in which requests
are queued in case they can’t be immediately served.

• load balancer : it distributes the incoming requests to the replicas in case
many replicas are present; the simplest way to do it is performing equal
balancing.

In a cloud-native deployment a service is obtained through the chaining of
several microservices, this composition is strictly related on the kind of service
provided to the users.

With reference to a particular service, the structure described above can be
stacked as many times as the number of microservice that make up the overall
service, where each layer is responsible for a specific microservice. Figure 4.1
shows an example.

Figure 4.1: Example: a two-layered queue system with nrep replicas for both
layers. In the first layer, on average, the load balancer (LB) equally distributes
requests among replicas.

The multi-layered queue system during its operations (e.g., load balancing,
queuing, microservices processing) introduces a random response time to the
users, this is referred as to TTR (time-to-resolution). The distribution of the
time-to-resolution is unknown and it depends on the kind of service and the
structure of the system.

The specific implementation of the system under analysis in the experi-
ments’ part is given by a two-layered queue system with different values of
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nrep ∈ {1, 2, 3, 4}. The system is made up by using the Kubernetes platform
and the replicas are deployed by means of containers distributed on a cluster.

The designated service for that system is an image processing application,
in particular:

• the first layers is dedicated to an image pre-processing microservice (ms1)
to simplify the operations of the second microservice;

• the second layer is dedicated to the actual image processing microservice
(ms2).

The random processing times of a generic replica in the first and second layers
are indicated as Tms1 and Tms2 respectively.

4.1.2 System data collection

The described system has been tested on different conditions to collect data
about time-to-resolutions and microservices processing times. The data col-
lection is fundamental to characterize the system and aim to model its target
quantities exploiting machine learning.

Data were collected performing multiple experiments on the system with:

• different number of replicas nrep ∈ {1, 2, 3, 4}

• for each number of replicas were produced n = 5000 incoming requests
to the system with average request rate λ ∈ {1, 2, . . . , 30 ∗ nrep}[req/s]
in order to compare cases with different number of replicas but with the
same average request rate per replica.

At the end of the experiment 300 data sets of 5000 samples were obtained for
every target.
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4.2 Motivations of the AI-based approach

The multi-layered queue system modelling and, in particular, the characteriza-
tion of the response times can be done with two different approaches: adoption
of theoretical-analytical queue modelling or data-based modelling [20].

The analytical approach aims to model the system exploiting queuing the-
ory, which is a set of mathematical results that can be applied to the compo-
nents of the system to obtain a characterization of its behavior. This approach
is still an open field of research in telecommunications engineering; it is suitable
to study simplified cases (e.g., stationary conditions and exponential service
time), but can become hard to deal with in the study of more complex systems.
The limitation of this approach justify the interest in data-based methods such
as machine learning algorithms and the exploitation of simulations.

4.3 Models

In this section the models for the characterization of the system described
in the section 4.1.1 with the application of the methodologies described the
Chapter 3 are presented.

4.3.1 Model 1: characterization of microservice
ms1 response time

The first proposed model aim to characterize by means of a mixture density
network (MDN) the microservise ms1 response time, given the knowledge of
the request rate to the system and the number of available replicas.

Mathematically the objective of the model is to approximate:

p(tms1|λ, nrep) (4.1)

Where:

• p(•) indicates the probability density function (pdf);

• tms1[s] is the ms1 response time;

• (λ, nrep) are respectively the request rate [req/s] and number of available
replicas for ms1.
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The approximation given by the model is useful to generalize the behaviour
of the replicas in the first layer, perform analysis and exploit the pdf to make
simulations.

The model is a DNN implemented with a Keras sequential model and
TensorFlow probability, with the following characteristics:

• 2 input neurons: one input neuron for λ and one for nrep;

• 4 mixture components: the approximated pdf is the superposition of 4
Gamma’s pdfs;

• 12 output neurons: the outputs represent the parameters of the compo-
nents in the mixture model, every Gamma’s pdf is characterized by 3
parameters (the weight in the superposition, the concentration and the
rate)

• 2 hidden layer: each hidden layer has 7 neurons.

The hidden neurons are set with ReLU (Rectified Linear Unit) activation func-
tion. The activation functions for the output neurons depend on the parameter
they represent.

The Gamma pdf is:

ϕ(x, a, b) =
xa−1e−bxba

Γ(a)
(4.2)

where a > 0 is the concentration and b > 0 is the rate.
During initial trials the Gamma and Normal pdfs were tried. The Gamma

pdf was chosen because it provided the best fit among the two, this best fit
can be explained by the fact that the Gamma distribution generalizes the Ex-
ponential distribution, often used to model times. In particular the Gamma
distribution has support on the positive time axis, instead the Normal distribu-
tion has support on the whole real axis and so its tails considers also negative
times that can’t exists

At the end of the training process the ms1 response time is characterized
in the following way:

p(tms1|λ, nrep) =
4∑

c=1

αc(λ, nrep)ϕ
(
tms1, ac(λ, nrep), bc(λ, nrep)

)
(4.3)
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1 InputLayer = Input ( shape=(2 ,) ) # 2 input neurons
2

3 Norm layer = Normal izat ion ( ax i s = −1)
4 Layer 1 = Dense (7 , a c t i v a t i o n=”ReLU” ) ( Norm layer ( InputLayer ) )
5 Layer 2 = Dense (7 , a c t i v a t i o n=”ReLU” ) ( Layer 1 )
6 alpha = Dense (4 , a c t i v a t i o n=”softmax” ) ( Layer 2 )
7 concent ra t i on = Dense (4 , a c t i v a t i o n=lambda x : t f . nn . e lu (x ) + 1 + 1

e−15) ( Layer 2 ) # The constant term 1e−15 avo ids nu l l va lue s
that l e ad s to ’NaN ’ l o s s

8 s c a l e = Dense (4 , a c t i v a t i o n=lambda x : t f . nn . e lu (x ) + 1 + 1e−15) (
Layer 2 )

9 y r e a l = Input ( shape=(1 ,) )
10 r a t e =1/ s c a l e
11 l o s sF = gammanl l loss ( y r ea l , alpha , concentrat ion , r a t e )
12 mdn ms1 model = Model ( inputs=[ InputLayer , y r e a l ] , outputs=[alpha ,

concentrat ion , r a t e ] )
13 mdn ms1 model . add l o s s ( l o s sF )
14 # Learning ra t e s chedu l e r with keras . op t im i z e r s . s chedu l e s
15 l r s c h e du l e =t f . keras . op t im i z e r s . s chedu l e s . PolynomialDecay (
16 i n i t i a l l e a r n i n g r a t e=i l r , e nd l e a r n i n g r a t e=e l r ,

decay s t eps=10000
17 )
18 adamOptimizer = opt im i z e r s .Adam( l e a r n i n g r a t e=l r s c h e du l e )
19 mdn ms1 model . summary ( )
20 mdn ms1 model . compi le ( opt imize r=adamOptimizer )

Listing 4.1: MDN model implementation
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The neurons related to the weights αc are set with ”Softmax” activation
functions, the neurons related to the concentrations and the rates are set both
with ”Exponential” activation functions. Before the training, the dataset was
shuffled and split in the following way:

• 70% is dedicated to the training;

• 20% is dedicated to the validation;

• 10% is dedicated to testing.

(a) Training history (b) Zoom on the last 150 epochs

Figure 4.2: Training history of model 1. The final error is NLL=-4.775 on the
validation set

As reported in figure 4.2a the NLL converged after 500 epochs of training,
with a batch size of 512 samples. The procedure required approx. 30 min on
a laptop with Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz and 8GB RAM
(GPU acceleration not exploited).

The error function is the Negative Log-likelihood (NLL), in the software it
is defined thanks to the eqs. 4.6 and 3.17, during the training its derivative
with respect to the weights of the network is approximated by means of finite
differences.
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1 # Cost f o r the mu l t ip l e components MDN using GAMMA d i s t r i b u t i o n
2 de f gammanl l loss (y , alpha , concentrat ion , r a t e ) :
3 ””” Computes the mean negat ive log−l i k e l i h o o d l o s s o f y g iven

the mixture parameters .
4 ”””
5

6 gm = t fd . MixtureSameFamily (
7 mix tu r e d i s t r i bu t i on=t fd . Ca t ego r i c a l ( probs=alpha ) ,
8 component s d i s t r ibut i on=t fd .Gamma(
9 concent ra t i on=concentrat ion ,

10 r a t e=ra t e ) )
11 # Evaluate log−p r obab i l i t y o f y
12 l o g l i k e l i h o o d = gm. log prob ( t f . t ranspose (y )+1e−15)
13

14 re turn −t f . reduce mean ( l o g l i k e l i h o o d , ax i s=−1)

Listing 4.2: Implementation of the Gamma error function

For a first evaluation of the generalization performance of this model, figure
4.3 shows two examples of output belonging to the test set.

To summarize the performance figure 4.4 shows the Kolmogorov-Smirnov
(KS) test on the entire test set: 18 out of 30 distributions shows a p-value
greater than 0.05 (possible to conclude that the MDN is able to fit these
distributions).



4.3. MODELS 33

(a) p(tms1|λ = 27, nrep = 1)

(b) p(tms1|λ = 33, nrep = 4)

Figure 4.3: Two test pdfs
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Figure 4.4: KS test for ms1, the dashed line marks the 0.05 p-value

1 f o r rep in range (1 , n rep + 1) :
2 f o r rps in range (1 , n rep ∗30 + 1) :
3 df=da t a t e s t [ ( d a t a t e s t [ ’ rp s r ep avg ’ ] == rps / rep ) & (

da t a t e s t [ ’ rep ’ ] == rep ) ]
4 i f not df . empty :
5 ms1 test = df . pop ( ’ms1 ’ )
6 alpha pred , conc pred , r a t e p r ed = mdn ms1 model .

p r ed i c t ( l i s t ( ( np . array ( [ rps / rep , rep ] ) , np . array
( [ 8 , 1 ] ) ) ) )

7 gm = t fd . MixtureSameFamily ( m ix tu r e d i s t r i bu t i on=t fd .
Cat ego r i c a l ( probs=alpha pred ) ,
component s d i s t r ibut i on=t fd .Gamma( concent ra t i on=
conc pred , r a t e=ra t e p r ed ) )

8 t e s t r e s=s t a t s . k s t e s t ( ms1 test , cd f=mixture cdf , a rgs=(
rps / rep , rep ) , a l t e r n a t i v e=’ l e s s ’ )

9 k s d i s t an c e . append ( t e s t r e s . s t a t i s t i c )
10 ks p . append ( t e s t r e s . pvalue )
11 r p s p l . append ( rps )

Listing 4.3: Implementation and plot of KS test
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It is worth noting the distributions showing p-values less than 0.05 have
maximum KS distance of 0.1 and KS test results are always pessimistic since it
accounts for the maximum distance between data distributions and predictions,
a more fair goodness of fit metric accounting for the could be used (e.g., a
metric accounting for the average distance).

Once trained, the MDN is used to generalize the behaviour of the system
and make comparisons. The figures 4.5a and 4.5b shows the comparisons of
the mean and the 99-th percentile of ms1 response time in function of the

average request rate per replica (defined as rps rep avg =
λ

nrep

), and nrep.

A first evidence is the mean response time is a decreasing function of the
average request rate per replica, and this applies for all the cases. This be-
haviour can be indicated as a speed-up of the processors depending on the
request rate. The second evidence is the mean response time tends to be lower
when multiple replicas are available with respect the case with only one replica.
The same comparison on the 99-th percentile of the response time shows that
the 99-th percentile is a decreasing function of the average request rate per
replica as well, however the cases with multiple replicas shows higher 99-th
percentiles than the case with only one replica, this trend is opposite with
respect to what seen in the mean.
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(a) MS1 mean response time

(b) MS1 99-th percentile of response time

Figure 4.5: MS1 response time comparison for different cases of nrep



4.3. MODELS 37

Figure 4.6: Comparison of some pdfs of ms1 response time

Focusing on the pdfs (figure 4.6) the comparison shows a bimodal tendency.
In particular:

• For low values and high values of rps rep avg the bimodal tendency is
weak, the response times are mainly distributed around the main mode.

• For intermediate values of rps rep avg the bimodal tendency is stronger,
the ms1 processing tends to behave in two different ways (i.e., two main
clusters of processing). Moreover, for cases with multiple replicas, the bi-
modal tendency start to arise for lower rps rep avg with respect the case



38 CHAPTER 4. EXPERIMENTS

of one replica and is more focused on the cluster with lower processing
times. and this focus is emphasized increasing rps rep avg.

A possible explanation for this phenomenon is an unequal and variable balanc-
ing of requests on replicas with a dynamic allocation of resources depending
on the balancing: replicas fed with higher request rates belongs to the cluster
with lower response times, on the other hand replicas fed with lower request
rates belongs to the cluster of higher response times.
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4.3.2 Model 2: characterization of microservice
ms2 response time

This second model aim to characterize the microservice ms2 response time,
similarly to what was done for ms1, to complete the characterization of the
microservices of the system.

The objective is to approximate:

p(tms2|λ, nrep) (4.4)

The structure of the MDN and the division of the dataset for training,
validation and testing is the same of model 1. For what concern the training,
the MDN required 500 epochs, performed in 30 minutes with a batch size of
512 samples.

(a) Training history (b) Zoom on the last 60 epochs

Figure 4.7: Training history of model 2. The final error is NLL=-4.337 on the
validation set

The performance are summarized in figure 4.8. The KS test on the entire
test set gives 29 out of 30 distributions showing a p-value greater than 0.05
(possible to conclude that the MDN is able to fit these distributions).
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Figure 4.8: KS test for ms2, the dashed line marks the 0.05 p-value

The figure 4.9 shows the ms2 mean response time, the chart allows to do
the same consideration on the speed-up made on ms1.

Figure 4.9: MS2 mean response time

Even for ms2 the bimodal tendency is present (figure 4.10) and the same
considerations of ms1 can be done.
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Figure 4.10: Comparison of some distributions of ms2 response time
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4.3.3 Considerations about model 1 and model 2

The two models previously discussed are intended to characterize the response
times of microservices ms1 and ms2. The properties of these response times
have been investigate to:

• generalize the behaviour of the replicas of ms1 and ms2;

• perform analysis;

• obtain the probability density functions to make simulations.

The following conclusions may be drawn:

• The ms1 and ms2 average response times depends on the request param-
eters (λ, nrep);

• The MDN capture and generalize the dependency by means of probabil-
ity density functions;

• In case the speed-up is significant, additional considerations on the trade-
off between speed-up and number of replicas can be done;

• The causes of the dependency needs to be investigated, for instance ad-
ditional inputs can be identified and added in the model (e.g., the ones
related to the resource allocation) to reduce the uncertainty (e.g., to
separate the clusters of processing).

The pdfs produced by the model are suitable to get samples of the replicas
response time that can be exploited in simulations of the overall system.

A way to perform simulations of cloud-native environments is the imple-
mentation of a Digital twin (DT), this software component make possible the
real-time optimization and diagnostic of the system developed with Kubernetes
(k8s).

The figure 4.11 shows a work in progress about the inference procedure of
the time-to-resolution of the real K8S system by its digital twin KubeTwin,
using the pdfs obtained through the model 1 and model 2.
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Figure 4.11: K8S system performance and predicted performance by the DT

The ability of the DT to emulate the K8S are accurate up to λ = 20 in
terms of mean TTR and its 99-th percentile.
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4.3.4 Model 3: characterization of time-to-resolution

This third model of MDN aims to characterize the time-to-resolution (TTR)
experienced by users making requests on the system.

Mathematically, the model approximate:

p(ttr|λ, nrep) (4.5)

Where:

• p(•) indicates the probability density function (pdf);

• ttr[s] is the time-to-resolution;

• (λ, nrep) are respectively the request rate [req/s] and the number of avail-
able replicas in each layer of the system.

The model is a DNN implemented with a Keras sequential model and Tensor-
Flow probability, with the following characteristics:

• 2 input neurons: one input neuron for λ and one for nrep;

• 3 mixture components: the approximated pdf is the superposition of 3
Gamma’s pdfs;

• 9 output neurons: the outputs represent the parameters of the compo-
nents in the mixture model, every Gamma’s pdf is characterized by 3
parameters (the weight in the superposition, the concentration and the
rate)

• 2 hidden layer: each hidden layer has 6 neurons.

The architecture is similar to the previous models, the only difference is given
by one less component in the mixture that has an impact on the number of
hidden neurons too.

At the end of the training process the time-to-resolution is characterized
in the following way:

p(ttr|λ, nrep) =
3∑

c=1

αc(λ, nrep)ϕ
(
ttr, ac(λ, nrep), bc(λ, nrep)

)
(4.6)
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1 InputLayer = Input ( shape=(2 ,) )
2 Norm layer = Normal izat ion ( ax i s = −1)
3 Layer 1 = Dense (6 , a c t i v a t i o n=”ReLU” ) ( Norm layer ( InputLayer ) )
4 Layer 2 = Dense (6 , a c t i v a t i o n=”ReLU” ) ( Layer 1 )
5 alpha = Dense (3 , a c t i v a t i o n=”softmax” ) ( Layer 2 )
6 concent ra t i on = Dense (3 , a c t i v a t i o n=lambda x : t f . nn . e lu (x ) + 1 + 1

e−15) ( Layer 2 ) # The constant term 1e−15 avo ids nu l l va lue s
that l e ad s to ’NaN ’ l o s s

7 r a t e = Dense (3 , a c t i v a t i o n=lambda x : t f . nn . e lu (x ) + 1 + 1e−15) (
Layer 2 )

8 y r e a l = Input ( shape=(1 ,) )
9 l o s sF = gammanl l loss ( y r ea l , alpha , concentrat ion , r a t e )

10 mdn ttr model = Model ( inputs=[ InputLayer , y r e a l ] , outputs=[alpha ,
concentrat ion , r a t e ] )

11 mdn ttr model . add l o s s ( l o s sF )
12

13 # Learning ra t e s chedu l e r with keras . op t im i z e r s . s chedu l e s
14 l r s c h e du l e =t f . keras . op t im i z e r s . s chedu l e s . PolynomialDecay (
15 i n i t i a l l e a r n i n g r a t e=i l r , d ecay s t eps =100000 ,

e nd l e a r n i n g r a t e=e l r , power=1.0 ,
16 cy c l e=False , name=None
17 )
18 adamOptimizer = opt im i z e r s .Adam( l e a r n i n g r a t e=l r s ch edu l e ,

c l i p v a l u e =1.0 , c l ipnorm=1.) # cl ipnorm=1 avoid grad i en t
exp l o s i on ( r e j e c t a l l g r ad i en t s with norm >1)

19 mdn ttr model . summary ( )
20 mdn ttr model . compi le ( opt imize r=adamOptimizer )
21 Norm layer . adapt ( f e a t u r e s )

Listing 4.4: Model 3 implementation
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(a) Training history (b) Zoom on the last 4 epochs

Figure 4.12: Training history of model 2. The final error is NLL=-1.7162 on
the validation set

As reported in figure 4.12 the NLL converged after 40 epochs of training,
requiring approx. 38 min on the previously used laptop (GPU acceleration not
exploited) with a batch size of 32 samples.

A first graphical evaluation of the generalization performance of this model
is shown in figure 4.13 shows two examples of output belonging to the test set.
The figure 4.13a shows a bad fit of the distribution.

(a) p(ttr|λ = 26, nrep = 1) (b) p(ttr|λ = 75, nrep = 4)

Figure 4.13: Two test pdfs
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To summarize the performance figure 4.14 shows the Kolmogorov-Smirnov
(KS) test on the entire test set: 19 out of 30 distributions shows a p-value
lower than 0.05 (possible to conclude that the MDN is not able to fit these
distributions). The model is characterized by an high bias. In particular, the

Figure 4.14: KS test for ttr, the dashed line marks the 0.05 p-value

maximum KS distance is 33% and it is related to the case λ = 26, nrep = 1).
An analysis on the data highlighted the following issues:

• Non-stationarity

• Strong autocorrelation

These two properties arise for time-series related to requests parameters close

to the condition rps rep avg =
λ

nrep

= 25.

A possible explanation for this phenomenon can be that the system for this
particular configuration of request parameters works in unstable conditions,
meaning the service response time exceeds the inter-requests time and this
bring to congestion with the queues in the system starting to grow rapidly.

To clarify, the non-stationaorty and high autocorrelation properties of an
experiment with (λ = 26, nrep = 1) are reported.

The figure 4.15 shows the time-series of the time to resolution with pa-
rameters (λ = 26, nrep = 1) and the moving average, both in function of the
request identifier (”rid”), a progressive number identifying the requests during
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Figure 4.15: Time-series ttr(λ = 26, nrep = 1) and its moving-average com-
puted on a window of 50 samples. The time is accounted by the request
identifier.

experiments. From the figure it is possible to see the variation of the mean
value of TTR during the experiment, that is an indicator of non-stationarity.

The upwards trends in the time-series are probably related to the instability
condition in the system, vice versa the downward trends are related to the
achievement of a stability condition due to the speed-up of the replica. The
trends in the time-series turns out in a high autocorrelation (figure 4.16).

Figure 4.16: Autocorrelation function of time-series ttr(λ = 26, nrep = 1)

The considered MDN model can’t fit these data, since it characterize the
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TTR as a random variable and its training relies on the hypothesis of indepen-
dent and identically distributed samples (i.i.d.) and this hypothesis doesn’t
hold due to non-stationarity and high autocorrelation.

A new model able to characterize {TTRi}i∈N as a random process needs to
be implemented.

4.3.5 Model 3-bis: characterization of time-to-resolution

The model 3 was extended to exploit the autocorrelation in the time-to-
resolution random process. In order to implement the new model, the input
space is extended with additional features representing the previous realiza-
tions of the random process; as this architecture works with previous realiza-
tion, it needs to have a temporal knowledge of the system.

Mathematically, the model approximates:

p(ttri | ttri,h=5, λ, nrep) (4.7)

Where:

• p(•) indicates the probability density function (pdf);

• ttri[s] is the ttr experienced by the i-th request;

• ttri,h=5 = (ttri−1, . . . , ttri−5) is the history vector, containing the five
previously experienced ttrs;

• (λ, nrep) are respectively the request rate [req/s] and number of available
replicas for ms1.

The approximation given by the model is useful to make predictions about
the ttr experienced by users given the previous five realizations. The model
can be extended to larger history vector (in principle up to the maximum lags
showing high autocorrelation).

The structure of the MDN requires the extension of the input layer and
this have an impact on the other layers too.

The implementation is given by:

• 7 input neurons: two input neurons for λ and nrep parameters, then other
5 neurons are for the history samples;
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• 3 mixture components: the approximated pdf is the superposition of 3
Gamma’s pdfs;

• 9 output neurons: the outputs represent the parameters of the compo-
nents in the mixture model, every Gamma’s pdf is characterized by 3
parameters (the weight in the superposition, the concentration and the
rate);

• 2 hidden layer: each hidden layer has 8 neurons.

1 InputLayer = Input ( shape=(7 ,) )
2 Norm layer = Normal izat ion ( ax i s=−1)
3 Layer 1 = Dense (8 , a c t i v a t i o n=”ReLU” ) ( Norm layer ( InputLayer ) )
4 Layer 2 = Dense (8 , a c t i v a t i o n=”ReLU” ) ( Layer 1 )
5

6 alpha = Dense (3 , a c t i v a t i o n=”softmax” ) ( Layer 2 )
7 concent ra t i on = Dense (3 , a c t i v a t i o n=lambda x : t f . nn . e lu (x ) + 1 + 1

e−15) ( Layer 2 ) # The constant term 1e−15 avo ids nu l l va lue s
that l e ad s to ’NaN ’ l o s s

8 r a t e = Dense (3 , a c t i v a t i o n=lambda x : t f . nn . e lu (x ) + 1 + 1e−15) (
Layer 2 )

9 y r e a l = Input ( shape=(1 ,) )
10 l o s sF = gammanl l loss ( y r ea l , alpha , concentrat ion , r a t e )
11 mdn ttr model = Model ( inputs=[ InputLayer , y r e a l ] , outputs=[alpha ,

concentrat ion , r a t e ] )
12 mdn ttr model . add l o s s ( l o s sF )
13

14 # Learning ra t e s chedu l e r with keras . op t im i z e r s . s chedu l e s
15 l r s c h e du l e =t f . keras . op t im i z e r s . s chedu l e s . PolynomialDecay (
16 i n i t i a l l e a r n i n g r a t e=i l r , d ecay s t eps=1e6 , e nd l e a r n i n g r a t e

=e l r , power=1.0 ,
17 cy c l e=False , name=None
18 )
19 adamOptimizer = opt im i z e r s .Adam( l e a r n i n g r a t e=l r s ch edu l e ,

c l i p v a l u e =1.0 , c l ipnorm=1.) # cl ipnorm=1 avoid grad i en t
exp l o s i on ( r e j e c t a l l g r ad i en t s with norm >1)

20 mdn ttr model . summary ( )
21 mdn ttr model . compi le ( opt imize r=adamOptimizer )

Listing 4.5: MDN model 3-bis implementation

The network training required 40 epochs, corresponding to a training time of
44 minutes with a batch of 32 samples.
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Figure 4.17: Training history of model 3-bis. The final error is NLL=-1.9266
on the validation set

1 epochs = 40
2 ba t ch s i z e = 32
3 v a l s p l i t =0.22
4 h i s t o r y c a ch e = mdn ttr model . f i t ( [ f e a tu r e s , t t r ] , #us ing an input

to pass the r e a l va lue s to compute the NLL
5 verbose=1,
6 epochs=epochs ,
7 v a l i d a t i o n s p l i t=v a l s p l i t ,
8 ba t ch s i z e=ba t ch s i z e )
9 pr in t ( ’ F ina l co s t : { 0 : . 4 f } ’ . format ( h i s t o r y c a ch e . h i s t o r y [ ’ l o s s ’

] [ −1 ] ) )

Listing 4.6: MDN model code for training
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At the end of the training the model, the eq. 4.7 allows to define two
functions of prediction:

• The estimator for the time-to-resolution:

T̂ TRi = E[TTRi | ttri,h=5, λ, nrep] (4.8)

• The upper-bound, corresponding to the 95-th percentile.

1 de f ge t mean pred i c t i on ( a ) :
2 a= np . array ( a )
3 alpha pred , conc pred , r a t e p r ed = mdn ttr model . p r ed i c t ( l i s t

( ( a , a ) ) )
4 gm = t fd . MixtureSameFamily ( m i x tu r e d i s t r i bu t i on=t fd .

Cat ego r i c a l ( probs=alpha pred ) , component s d i s t r ibut i on=t fd .
Gamma( concent ra t i on=conc pred , r a t e=ra t e p r ed ) )

5 re turn gm.mean ( )
6

7 de f quant i l e m ix tu r e (p , gm) :
8 ( lambda x : gm. cd f ( x ) )
9 re turn i nv e r s e f unc ( ( lambda x : gm. cd f ( x )+10e−10∗np . l og (x ) ) ,

y va lue s=p , image =[0 ,1 ] ) # logar i tm makes the CDF
s t r i c t l y monotonic

10

11 de f get upper bound ( a ) :
12 a= np . array ( a )
13 alpha pred , conc pred , r a t e p r ed = mdn ttr model . p r ed i c t ( l i s t

( ( a , a ) ) )
14 gm = t fd . MixtureSameFamily ( m i x tu r e d i s t r i bu t i on=t fd .

Cat ego r i c a l ( probs=alpha pred ) , component s d i s t r ibut i on=t fd .
Gamma( concent ra t i on=conc pred , r a t e=ra t e p r ed ) )

15 re turn quant i l e m ix tu r e ( 0 . 9 5 , gm)

Listing 4.7: Estimator and upper bound functions definitions
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Differently to what done in the previous models, now the output is given by
the two quantities: the estimation and the upper bound. The performance of
the model can’t be evaluated in the same way of the previous case because now
the datasets are treated as time-series rather than i.i.d. samples (not possible
to perform KS tests and plot pdf vs. data distribution).

The performance are thus evaluated through the computation of the MSE
(Mean Square Error) and MAE (Mean Absolute Error) on predictions.

As an example, figure 4.18 shows the application of the model on the time-
series of ttr for parameters (λ = 26, nrep = 1)

Figure 4.18: Prediction of ttr with (λ = 26, nrep = 1) and upper bound.
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Figure 4.19: Performance (MAE and MSE) in the prediction of ttr with (λ =
26, nrep = 1)

Finally, the figure 4.19 shows the performance of the model on the same
example. The performance are given by MSE = 0.00395 s2 and MAE =
0.05023 s. The MAE corresponds to a mean absolute percentage error of 9%.
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4.3.6 Considerations about model 3 and model 3-bis

The models 3 and 3-bis are intended to characterize the time-to-resolution (ttr)
of the cloud-native system. The ttr can’t be characterized like the response
times of the microservices due to the issues described in the previous sections;
as well the model 3-bis performance can’t be evaluated with KS test. The
conclusions after the implementation of these two models are:

• a degradation of the performance of the model is expected if the hypoth-
esis of i.i.d. data doesn’t hold;

• the MDN can exploit the autocorrelation:

– the ttr can be predicted based on its history if it is available;

– the approach accounts for the time and allow the modelling of ttr
as a random process;

– the history vector can be extended;

– the performance of the predictions are measured in terms of MAE
and MSE.

4.3.7 Summary of models

This section provide a recap of the presented models.

Name Input Output
Model 1 (λ, nrep) p(tms1|λ, nrep)
Model 2 \\ p(tms2|λ, nrep)
Model 3 \\ p(ttr|λ, nrep)
Model 3-bis ttri,h=5, λ, nrep p(ttri | ttri,h=5, λ, nrep)
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Chapter 5

Conclusion and future work

In conclusion, cloud-native has become an important paradigm for large-scale
application deployment, enabling efficient management of infrastructures, mi-
croservices, and distributed applications. A cloud-native deployment can be
described as a multi-layered queue system, where the management with plat-
forms such as Kubernetes is critical to ensure service availability and system
scalability.

However, theoretical queueing models have limitations, which can be over-
come through the use of AI models. Indeed, the use of AI can be the way to
analyze the performance of microservices more precisely and generalize their
behavior, as well as to use the results to do simulations in a digital twin.

In the approach proposed in this thesis, it is shown that the use of AI,
applied to the system with a MDN model, can lead to adequate performance
in analyzing the microservices response times and in the use of results in a
digital twin. In the specific case of the digital twin, accuracy up to a rate of
requests in the system not exceeding 20 [req/s] is shown.

In addition, the same kind of model to characterize the microservice re-
sponse time is applied to the time-to-resolution to have a description of the
service time experienced by the users; this approach results inadequate since
the i.i.d. assumption does not hold. The models is then adapted to the new
case, extending the input space with collection of previous experienced time-
to-resolution, allowing an estimate of time-to-response and an upper bound
with good performance.

However, the future direction could be to improve the models by expanding
the space of input variables (e.g., by adding the variables related to resource

57
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allocation of the replicas) and the adoption of other ML architectures, such as
reinforcement learning models, or using ensemble learning techniques.

In conclusion, the use of AI in the cloud-native context offers many oppor-
tunities to improve the efficiency and scalability of distributed systems, and it
is a field of research that could be widely explored in the future.



Appendix A

Some more code

A.1 Code for models 1 and 2

1 import numpy as np
2 import pandas as pd
3 import t en so r f l ow as t f
4 import s c ipy . s t a t s as s t a t s
5 from ten so r f l ow import keras
6 from t e n s o r f l ow p r ob ab i l i t y import d i s t r i b u t i o n s as t fd
7 import matp lo t l i b . pyplot as p l t
8 from sk l ea rn . u t i l s import s h u f f l e
9 import keras

10 from keras import op t im i z e r s
11 from keras . models import Sequent ia l , Model
12 from keras . l a y e r s import Dense , Act ivat ion , Layer , Input ,

Concatenate , Normal izat ion , BatchNormal izat ion
13 import g lob
14

15 from sc ipy . s t a t s import norm , ks t e s t , gamma
16 from sk l ea rn . ne ighbors import KernelDensity
17 from pynverse import i nv e r s e f unc
18

19 # Data import
20

21 #Import the datase t
22

23

24 # Data import o f r e p l i c a 1
25 path = ’ ’

59
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26 f i l enames = glob . g lob ( path )
27 i=1
28

29 ms1 l i s t= [ ]
30

31 rep=1
32

33 f o r f in f i l enames :
34 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
35 rps=in t ( f l o a t ( f [ i ndex rps : i ndex rps +2]) )
36 pr in t ( f )
37 df = pd . r ead c sv ( f , i nd ex c o l=False , sep=”\ t ” , header = None ,

names=[” r i d ” , ”ms1” ] )
38 df . i n s e r t (1 , ’ rp s r ep avg ’ , rps / rep )
39 df . i n s e r t (2 , ’ rep ’ , rep )
40 df . i n s e r t (3 , ’MA’ , df . get ( ’ms1 ’ ) . r o l l i n g (window=200) .mean ( ) ) #

adding moving average
41 ms1 l i s t . append ( df )
42

43 f i l enames = glob . g lob ( path )
44

45 rep=2
46

47 f o r f in f i l enames :
48 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
49 rps=in t ( f l o a t ( f [ i ndex rps : i ndex rps +2]) )
50 pr in t ( f )
51 df = pd . r ead c sv ( f , i nd ex c o l=False , sep=’ \ t ’ , header = None ,

names=[ ’ r i d ’ , ’ms1 ’ ] )
52 df . i n s e r t (1 , ’ rp s r ep avg ’ , rps / rep )
53 df . i n s e r t (2 , ’ rep ’ , rep )
54 df . i n s e r t (3 , ’MA’ , df . get ( ’ms1 ’ ) . r o l l i n g (window=200) .mean ( ) ) #

adding moving average
55 ms1 l i s t . append ( df )
56

57 f i l enames = glob . g lob ( path )
58

59 rep=3
60

61 f o r f in f i l enames :
62 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
63 rps=in t ( f l o a t ( f [ i ndex rps : i ndex rps +2]) )
64 pr in t ( f )
65 df = pd . r ead c sv ( f , i nd ex c o l=False , sep=’ \ t ’ , header = None ,

names=[ ’ r i d ’ , ’ms1 ’ ] )
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66 df . i n s e r t (1 , ’ rp s r ep avg ’ , rps / rep )
67 df . i n s e r t (2 , ’ rep ’ , rep )
68 df . i n s e r t (3 , ’MA’ , df . get ( ’ms1 ’ ) . r o l l i n g (window=200) .mean ( ) ) #

adding moving average
69 ms1 l i s t . append ( df )
70

71 f i l enames = glob . g lob ( path )
72

73 rep=4
74

75 f o r f in f i l enames :
76 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
77 rps=in t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) )
78 pr in t ( f )
79 df = pd . r ead c sv ( f , i nd ex c o l=False , sep=’ \ t ’ , header = None ,

names=[ ’ r i d ’ , ’ms1 ’ ] )
80 df . i n s e r t (1 , ’ rp s r ep avg ’ , rps / rep )
81 df . i n s e r t (2 , ’ rep ’ , rep )
82 df . i n s e r t (3 , ’MA’ , df . get ( ’ms1 ’ ) . r o l l i n g (window=200) .mean ( ) ) #

adding moving average
83 ms1 l i s t . append ( df )
84

85 da t a t r a i n v a l = pd . concat ( ms1 l i s t , ax i s =0, i gno r e i ndex=False )
86

87

88

89 f e a t u r e s = s h u f f l e ( d a t a t r a i n v a l )
90

91

92 r i d = f e a t u r e s . pop ( ’ r i d ’ )
93 ms1 = f e a t u r e s . pop ( ’ms1 ’ )
94 MA ms1 = f e a t u r e s . pop ( ’MA’ )
95

96

97 de f p l o t l o s s ( h i s to ry , zoom=False ) :
98 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ l o s s ’ ] , l a b e l=’ l o s s ’ , )
99 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ v a l l o s s ’ ] , l a b e l=’ v a l l o s s ’ )

100 p l t . x l ab e l ( ’Epoch ’ )
101 p l t . y l ab e l ( ’NLL − Negative Log−Like l ihood ’ )
102 i f zoom :
103 p l t . xl im (350 , 500)
104 p l t . yl im (min ( h i s t o r y . h i s t o r y [ ’ l o s s ’ ] ) , h i s t o r y . h i s t o r y [ ’ l o s s ’

] [ 3 5 0 ] )
105 p l t . l egend ( )
106 p l t . g r i d (True )
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107

108 de f gammanl l loss (y , alpha , concentrat ion , r a t e ) :
109 ””” Computes the mean negat ive log−l i k e l i h o o d l o s s o f y g iven

the mixture parameters .
110 ”””
111

112 gm = t fd . MixtureSameFamily (
113 mix tu r e d i s t r i bu t i on=t fd . Ca t ego r i c a l ( probs=alpha ) ,
114 component s d i s t r ibut i on=t fd .Gamma(
115 concent ra t i on=concentrat ion ,
116 r a t e=ra t e ) )
117

118 l o g l i k e l i h o o d = gm. log prob ( t f . t ranspose (y )+1e−15) # Evaluate
log−p r obab i l i t y o f y

119

120 re turn −t f . reduce mean ( l o g l i k e l i h o o d , ax i s=−1)
121

122

123 InputLayer = Input ( shape=(2 ,) ) # 2 input neurons
124

125 Norm layer = Normal izat ion ( ax i s = −1)
126

127 Layer 1 = Dense (7 , a c t i v a t i o n=”ReLU” ) ( Norm layer ( InputLayer ) ) #3
128 Layer 2 = Dense (7 , a c t i v a t i o n=”ReLU” ) ( Layer 1 )
129 alpha = Dense (4 , a c t i v a t i o n=”softmax” ) ( Layer 2 )
130 concent ra t i on = Dense (4 , a c t i v a t i o n=lambda x : t f . nn . e lu (x ) + 1 + 1

e−15) ( Layer 2 ) # The constant term 1e−15 avo ids nu l l va lue s
that l e ad s to ’NaN ’ l o s s

131 s c a l e = Dense (4 , a c t i v a t i o n=lambda x : t f . nn . e lu (x ) + 1 + 1e−15) (
Layer 2 )

132 y r e a l = Input ( shape=(1 ,) )
133 r a t e =1/ s c a l e
134 l o s sF = gammanl l loss ( y r ea l , alpha , concentrat ion , r a t e ) #

gammanl l loss ( y r ea l , alpha , mu, sigma )
135 mdn ms1 model = Model ( inputs=[ InputLayer , y r e a l ] , outputs=[alpha ,

concentrat ion , r a t e ] )
136 mdn ms1 model . add l o s s ( l o s sF )
137

138 # Learning ra t e s chedu l e r with keras . op t im i z e r s . s chedu l e s
139 l r s c h e du l e =t f . keras . op t im i z e r s . s chedu l e s . PolynomialDecay (
140 i n i t i a l l e a r n i n g r a t e =0.00007 , e nd l e a r n i n g r a t e =0.00003 ,

decay s t eps=10000
141 ) #de f i n e the ra t e s chedu l e r −> i f we i n c r e a s e the number o f

l a y e r s we have to dec r ea se the end l e a rn i ng ra t e ( high
complexity in the network )
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142

143 adamOptimizer = opt im i z e r s .Adam( l e a r n i n g r a t e=l r s c h e du l e ) #
cl ipnorm=1 avoid grad i en t exp l o s i on ( r e j e c t a l l g r ad i en t s with
norm >1)

144 mdn ms1 model . summary ( )
145 mdn ms1 model . compi le ( opt imize r=adamOptimizer )
146

147 epochs = 500
148

149 h i s t o r y c a ch e = mdn ms1 model . f i t ( [ f e a tu r e s , ms1 ] , #no t i c e we are
us ing an input to pass the r e a l va lue s due to the inner
workings o f keras

150 verbose=1, # wr i t e =1 i f you wish to see
the p rog r e s s f o r each epoch

151 epochs=epochs ,
152 v a l i d a t i o n s p l i t =0.22 ,
153 ba t ch s i z e =64)
154 pr in t ( ’ F ina l co s t : { 0 : . 4 f } ’ . format ( h i s t o r y c a ch e . h i s t o r y [ ’ l o s s ’

] [ −1 ] ) )
155

156 p l t . rcParams [ ” f i g u r e . f i g s i z e ” ] = [ 8 , 8 ]
157 p l o t l o s s ( h i s t o ry cache , zoom=True )
158

159

160 #Test import
161

162 f i l enames = glob . g lob ( path )
163 i=1
164

165 ms1 test= [ ]
166

167 rep=1
168 f o r f in f i l enames :
169 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
170 rps=in t ( f l o a t ( f [ i ndex rps : i ndex rps +2]) )
171 pr in t ( f )
172 df = pd . r ead c sv ( f , i nd ex c o l=False , sep=”\ t ” , header = None ,

names=[” r i d ” , ”ms1” ] )
173 df . i n s e r t (1 , ’ rp s r ep avg ’ , rps / rep )
174 df . i n s e r t (2 , ’ rep ’ , rep )
175 df . i n s e r t (3 , ’MA’ , df . get ( ’ms1 ’ ) . r o l l i n g (window=200) .mean ( ) ) #

adding moving average
176 ms1 test . append ( df )
177

178 f i l enames = glob . g lob ( path )
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179

180 rep=2
181

182 f o r f in f i l enames :
183 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
184 rps=in t ( f l o a t ( f [ i ndex rps : i ndex rps +2]) )
185 pr in t ( f )
186 df = pd . r ead c sv ( f , i nd ex c o l=False , sep=’ \ t ’ , header = None ,

names=[ ’ r i d ’ , ’ms1 ’ ] )
187 df . i n s e r t (1 , ’ rp s r ep avg ’ , rps / rep )
188 df . i n s e r t (2 , ’ rep ’ , rep )
189 df . i n s e r t (3 , ’MA’ , df . get ( ’ms1 ’ ) . r o l l i n g (window=200) .mean ( ) ) #

adding moving average
190 ms1 test . append ( df )
191

192 f i l enames = glob . g lob ( path )
193

194 rep=3
195

196 f o r f in f i l enames :
197 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
198 rps=in t ( f l o a t ( f [ i ndex rps : i ndex rps +2]) )
199 pr in t ( f )
200 df = pd . r ead c sv ( f , i nd ex c o l=False , sep=’ \ t ’ , header = None ,

names=[ ’ r i d ’ , ’ms1 ’ ] )
201 df . i n s e r t (1 , ’ rp s r ep avg ’ , rps / rep )
202 df . i n s e r t (2 , ’ rep ’ , rep )
203 df . i n s e r t (3 , ’MA’ , df . get ( ’ms1 ’ ) . r o l l i n g (window=200) .mean ( ) ) #

adding moving average
204 ms1 test . append ( df )
205

206

207

208 f i l enames = glob . g lob ( path )
209

210 rep=4
211

212 f o r f in f i l enames :
213 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
214 rps=in t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) )
215 pr in t ( f )
216 df = pd . r ead c sv ( f , i nd ex c o l=False , sep=’ \ t ’ , header = None ,

names=[ ’ r i d ’ , ’ms1 ’ ] )
217 df . i n s e r t (1 , ’ rp s r ep avg ’ , rps / rep )
218 df . i n s e r t (2 , ’ rep ’ , rep )
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219 df . i n s e r t (3 , ’MA’ , df . get ( ’ms1 ’ ) . r o l l i n g (window=200) .mean ( ) ) #
adding moving average

220 ms1 test . append ( df )
221

222 da t a t e s t = pd . concat ( ms1 test , ax i s =0, i gno r e i ndex=False )
223

224

225 de f mixture pdf (x , rps rep avg , rep ) :
226

227 ””” pdf func t i on o f mixture i s the weighted super impos i t i on o f
the pdfs ”””

228

229 alpha pred , conc pred , r a t e p r ed = mdn ms1 model . p r ed i c t ( l i s t
( ( np . array ( [ rps rep avg , rep ] ) , np . array ( [ 1 , 1 ] ) ) ) ) # The
second array i s dummy

230 pdf = 0
231 f o r i in range (0 , a lpha pred . shape [ 1 ] ) :
232 pdf = pdf + alpha pred [ 0 ] [ i ]∗ s t a t s . gamma. pdf (x , a=

conc pred [ 0 ] [ i ] , s c a l e=1/ ra t e p r ed [ 0 ] [ i ] )
233 re turn pdf
234

235 de f mixture cd f (x , rps rep avg , rep ) :
236

237 ””” cd f func t i on o f mixture i s the weighted supe r impos i t i on o f
the cd f s ”””

238

239 alpha pred , conc pred , r a t e p r ed = mdn ms1 model . p r ed i c t ( l i s t
( ( np . array ( [ rps rep avg , rep ] ) , np . array ( [ 1 , 1 ] ) ) ) ) # The
second array i s dummy

240 cd f = 0
241 f o r i in range (0 , a lpha pred . shape [ 1 ] ) :
242 cd f = cdf + alpha pred [ 0 ] [ i ]∗ s t a t s . gamma. cd f (x , a=

conc pred [ 0 ] [ i ] , s c a l e=1/ ra t e p r ed [ 0 ] [ i ] )
243 re turn cd f
244

245 # Let ’ s t ry to p l o t the pred i c t ed d i s t r i b u t i o n f o r an a rb i t r a r y
rps and rep and compare i t with the d i s t r i b u t i o n given in the
t e s t s e t

246

247 rps =27 # The rps
248 rep= 1 # The rep
249

250 p l t . rcParams [ ” f i g u r e . f i g s i z e ” ] = [ 9 , 6 ]
251
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252 df=da t a t e s t [ ( d a t a t e s t [ ’ rp s r ep avg ’ ] == rps / rep ) & ( da t a t e s t [ ’
rep ’ ] == rep ) ]

253

254 ms1 test = df . pop ( ’ms1 ’ )
255 ms1 min = ms1 tes t . min ( )
256 ms1 max = ms1 tes t .max( )
257

258 bw = ms1 test . s td ( ) ∗0 .182 # Compute sub−optimal bandwidth f o r the
histogram

259 bins = np . arange (ms1 min , ms1 max ,bw)
260

261

262 # Plot PDF.
263 x p = np . l i n s p a c e ( 0 . , 0 . 025 , i n t (1 e5 ) , dtype=np . f l o a t 3 2 )
264 X r=x p . reshape (−1 , 1)
265

266 p l t . h i s t ( ms1 test . va lues , b ins=bins , f c=’ g ’ , alpha = 0 . 5 , dens i ty=
True , l a b e l = ’Data d i s t r i b u t i o n ’ )

267 alpha pred , conc pred , r a t e p r ed = mdn ms1 model . p r ed i c t ( l i s t ( ( np .
array ( [ rps / rep , rep ] ) , np . array ( [ 1 , 1 ] ) ) ) ) # The second array i s
dummy

268 gm = t fd . MixtureSameFamily ( m i x tu r e d i s t r i bu t i on=t fd . Ca t ego r i c a l (
probs=alpha pred ) , component s d i s t r ibut i on=t fd .Gamma(
concent ra t i on=conc pred , r a t e=ra t e p r ed ) )

269 #pl t . p l o t ( x p , mixture pdf ( x p , rps / rep , rep ) , l a b e l = ”Pred ic ted
PDF” , c o l o r = ’b ’ )

270 p l t . p l o t ( x p , gm. prob ( x p ) , l a b e l = ”Pred ic ted PDF” , c o l o r = ’b ’ ,
l i n ew id th=2)

271 #fo r i in range (0 , a lpha pred . shape [ 1 ] ) :
272 #gm = t fd . MixtureSameFamily ( m i x tu r e d i s t r i bu t i on=t fd .

Cat ego r i c a l ( probs=[ a lpha pred [ 0 ] [ i ] ] ) ,
component s d i s t r ibut i on=t fd .Gamma( concent ra t i on=[ conc pred
[ 0 ] [ i ] ] , r a t e =[ ra t e p r ed [ 0 ] [ i ] ] ) )

273 #pl t . p l o t ( x p , gm. prob ( x p ) , l a b e l = ”Pred ic ted PDF” + s t r ( i )
+ ”component” + ”prob = ” + s t r ( [ a lpha pred [ 0 ] [ i ] ] ) )

274 p l t . t i t l e ( ’MS1 pdf f o r ( rps=’ + s t r ( rps ) + ’ , rep=’ + s t r ( rep ) +
’ ) ’ , f o n t s i z e =18)

275 p l t . x l ab e l ( ”ms1 [ s ] ” )
276 p l t . y l ab e l ( ”PDF” )
277

278 p l t . l egend ( )
279

280 # Perform KS−t e s t
281 p l t . rcParams [ ” f i g u r e . f i g s i z e ” ] = [ 2 0 , 7 ]
282
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283 n rep = 4
284

285 r p s p l = [ ]
286 k s d i s t an c e = [ ]
287 ks p =[ ]
288 f i g , ax1 = p l t . subp lo t s ( )
289

290 ax2 = ax1 . twinx ( )
291

292 f o r rep in range (1 , n rep + 1) :
293 f o r rps in range (1 , n rep ∗30 + 1) :
294 df=da t a t e s t [ ( d a t a t e s t [ ’ rp s r ep avg ’ ] == rps / rep ) & (

da t a t e s t [ ’ rep ’ ] == rep ) ]
295 i f not df . empty :
296 ms1 test = df . pop ( ’ms1 ’ )
297 alpha pred , conc pred , r a t e p r ed = mdn ms1 model .

p r ed i c t ( l i s t ( ( np . array ( [ rps / rep , rep ] ) , np . array
( [ 8 , 1 ] ) ) ) )

298 gm = t fd . MixtureSameFamily ( m ix tu r e d i s t r i bu t i on=t fd .
Cat ego r i c a l ( probs=alpha pred ) ,
component s d i s t r ibut i on=t fd .Gamma( concent ra t i on=
conc pred , r a t e=ra t e p r ed ) )

299 t e s t r e s=s t a t s . k s t e s t ( ms1 test , cd f=mixture cdf , a rgs=(
rps / rep , rep ) , a l t e r n a t i v e=’ l e s s ’ )

300 k s d i s t an c e . append ( t e s t r e s . s t a t i s t i c )
301 ks p . append ( t e s t r e s . pvalue )
302 r p s p l . append ( rps )
303 ax1 . bar ( rp s p l , k s d i s t ance , l a b e l = ”KS Distance f o r #rep=” +

s t r ( rep ) , alpha = 0 . 5 )
304 ax2 . s c a t t e r ( rp s p l , ks p , l a b e l = ”KS p−value f o r #rep=” + s t r

( rep ) , alpha = 0 . 7 )
305 r p s p l . c l e a r ( )
306 k s d i s t an c e . c l e a r ( )
307 ks p . c l e a r ( )
308 ax2 . p l o t (np . arange (1 , 121) , np . f u l l (120 , 0 . 05 ) , ’ k−− ’ )
309 p l t . x t i c k s (np . arange (1 , 120 , 4 . 0 ) )
310 p l t . g r i d ( v i s i b l e=True )
311 p l t . t i t l e ( ’ Test s e t ’ )
312 ax1 . s e t x l a b e l ( ”RPS [ req / s ] ” )
313 ax1 . s e t y l a b e l ( ”KS Distance ” )
314 ax2 . s e t y l a b e l ( ”KS p−value ” )
315 ax1 . l egend ( l o c=’ upper l e f t ’ )
316 ax2 . l egend ( l o c=’ upper r i g h t ’ )
317 p l t . show ( )
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Listing A.1: Code for ms1 characterization

A.2 Code for model 3

1 import numpy as np
2 import pandas as pd
3 import t en so r f l ow as t f
4 import s c ipy . s t a t s as s t a t s
5 #from ten so r f l ow import keras . l a y e r s
6 from ten so r f l ow import keras
7 from t e n s o r f l ow p r ob ab i l i t y import d i s t r i b u t i o n s as t fd
8 import matp lo t l i b . pyplot as p l t
9 from sk l ea rn . u t i l s import s h u f f l e

10 from keras import op t im i z e r s
11 from keras . models import Sequent ia l , Model
12 from keras . l a y e r s import Dense , Act ivat ion , Layer , Input ,

Concatenate , Normal izat ion , BatchNormal izat ion
13

14 import g lob
15

16 from sc ipy . s t a t s import norm , ks t e s t , gamma
17 from sk l ea rn . ne ighbors import KernelDensity
18 from pynverse import i nv e r s e f unc
19

20 # Train data import
21

22 #Import the datase t
23

24

25 d a t a l i s t= [ ]
26

27 i=1
28 # Data import o f r e p l i c a 1
29

30 path=’ ’
31

32 f i l enames = glob . g lob ( path )
33

34 f o r f in f i l enames :
35 pr in t ( f )
36 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
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37 df = pd . r ead c sv ( f , i nd ex c o l =0)
38 df . i n s e r t (1 , ’ rps ’ , i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) ) #

Add in the f i r s column the corre spond ing rps
39 pr in t ( i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) )
40 df . i n s e r t (2 , ’ rep ’ , 1 ) # Add in the second column the

corre spond ing number o f r e p l i c a s
41 d a t a l i s t . append ( df ) # Append the dataframe conta in ing the

va lue s f o r each rps in the d a t a l i s t
42 i=i+1
43

44

45 # Data import o f r e p l i c a 2
46 f i l enames = glob . g lob ( path )
47

48 i=1
49 f o r f in f i l enames :
50 pr in t ( f )
51 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
52 df = pd . r ead c sv ( f , i nd ex c o l =0)
53 df . i n s e r t (1 , ’ rps ’ , i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) ) #

Add in the f i r s column the corre spond ing rps
54 pr in t ( i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) )
55 df . i n s e r t (2 , ’ rep ’ , 2 ) # Add in the second column the

corre spond ing number o f r e p l i c a s
56 d a t a l i s t . append ( df ) # Append the dataframe conta in ing the

va lue s f o r each rps in the d a t a l i s t
57 i=i+1
58

59 # Data import o f r e p l i c a 3
60 f i l enames = glob . g lob ( path )
61

62 i=1
63 f o r f in f i l enames :
64 pr in t ( f )
65 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
66 df = pd . r ead c sv ( f , i nd ex c o l =0)
67 df . i n s e r t (1 , ’ rps ’ , i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) ) #

Add in the f i r s column the corre spond ing rps
68 pr in t ( i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) )
69 df . i n s e r t (2 , ’ rep ’ , 3 ) # Add in the second column the

corre spond ing number o f r e p l i c a s
70 d a t a l i s t . append ( df ) # Append the dataframe conta in ing the

va lue s f o r each rps in the d a t a l i s t
71 i=i+1
72
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73 # Data import o f r e p l i c a 4
74 f i l enames = glob . g lob ( path )
75

76 i=1
77 f o r f in f i l enames :
78 pr in t ( f )
79 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
80 df = pd . r ead c sv ( f , i nd ex c o l =0)
81 df . i n s e r t (1 , ’ rps ’ , i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) ) #

Add in the f i r s column the corre spond ing rps
82 pr in t ( i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) )
83 df . i n s e r t (2 , ’ rep ’ , 4 ) # Add in the second column the

corre spond ing number o f r e p l i c a s
84 d a t a l i s t . append ( df ) # Append the dataframe conta in ing the

va lue s f o r each rps in the d a t a l i s t
85 i=i+1
86

87

88 da t a t r a i n v a l= pd . concat ( d a t a l i s t , ax i s =0, i gno r e i ndex=True ) #
Concatenate the d a t a l i s t in a dataframe f o r s emp l i c i t y

89

90 #da t a t r a i n v a l . head ( )
91

92 # Make a copy
93 t r a i n v a l c opy = da t a t r a i n v a l . copy ( ) # make a copy
94

95 f e a t u r e s = s h u f f l e ( d a t a t r a i n v a l )
96

97

98 r i d = f e a t u r e s . pop ( ’ r i d ’ )
99 t t r = f e a t u r e s . pop ( ’ t t r ’ )

100

101

102 de f p l o t l o s s ( h i s to ry , zoom=False ) :
103 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ l o s s ’ ] , l a b e l=’ l o s s ’ , )
104 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ v a l l o s s ’ ] , l a b e l=’ v a l l o s s ’ )
105 p l t . x l ab e l ( ’Epoch ’ )
106 p l t . y l ab e l ( ’NLL − Negative Log−Like l ihood ’ )
107 i f zoom :
108 p l t . xl im (35 , 39)
109 p l t . yl im (min ( h i s t o r y . h i s t o r y [ ’ l o s s ’ ] ) , h i s t o r y . h i s t o r y [ ’ l o s s ’

] [ 3 5 ] )
110 p l t . l egend ( )
111 p l t . g r i d (True )
112
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113

114 # GNLL l o s s f o r mu l t ip l e components MDN using the Gaussian
d i s t r i b u t i o n s

115 de f g n l l l o s s (y , alpha , mu, sigma ) :
116 ””” Computes the mean negat ive log−l i k e l i h o o d l o s s o f y g iven

the mixture parameters .
117 ”””
118

119 gm = t fd . MixtureSameFamily (
120 mix tu r e d i s t r i bu t i on=t fd . Ca t ego r i c a l ( probs=alpha ) ,
121 component s d i s t r ibut i on=t fd . Normal (
122 l o c=mu,
123 s c a l e=sigma ) )
124

125 l o g l i k e l i h o o d = gm. log prob ( t f . t ranspose (y ) ) # Evaluate log−
p r obab i l i t y o f y

126

127 re turn −t f . reduce mean ( l o g l i k e l i h o o d , ax i s=−1)
128

129

130

131

132

133 InputLayer = Input ( shape=(2 ,) )
134 Norm layer = Normal izat ion ( ax i s = −1)
135 Layer 1 = Dense (6 , a c t i v a t i o n=”ReLU” ) ( Norm layer ( InputLayer ) )
136 Layer 2 = Dense (6 , a c t i v a t i o n=”ReLU” ) ( Layer 1 )
137

138 alpha = Dense (3 , a c t i v a t i o n=”softmax” ) ( Layer 2 )
139 concent ra t i on = Dense (3 , a c t i v a t i o n=lambda x : t f . nn . e lu (x ) + 1 + 1

e−15) ( Layer 2 ) # The constant term 1e−15 avo ids nu l l va lue s
that l e ad s to ’NaN ’ l o s s

140 r a t e = Dense (3 , a c t i v a t i o n=lambda x : t f . nn . e lu (x ) + 1 + 1e−15) (
Layer 2 )

141 y r e a l = Input ( shape=(1 ,) )
142 l o s sF = gammanl l loss ( y r ea l , alpha , concentrat ion , r a t e )
143 mdn ttr model = Model ( inputs=[ InputLayer , y r e a l ] , outputs=[alpha ,

concentrat ion , r a t e ] )
144 mdn ttr model . add l o s s ( l o s sF )
145

146 # Learning ra t e s chedu l e r with keras . op t im i z e r s . s chedu l e s
147 l r s c h e du l e =t f . keras . op t im i z e r s . s chedu l e s . PolynomialDecay (
148 i n i t i a l l e a r n i n g r a t e=i l r , d ecay s t eps =100000 ,

e nd l e a r n i n g r a t e=e l r , power=1.0 ,
149 cy c l e=False , name=None
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150 )
151

152 adamOptimizer = opt im i z e r s .Adam( l e a r n i n g r a t e=l r s ch edu l e ,
c l i p v a l u e =1.0 , c l ipnorm=1.) # cl ipnorm=1 avoid grad i en t
exp l o s i on ( r e j e c t a l l g r ad i en t s with norm >1)

153 mdn ttr model . summary ( )
154 mdn ttr model . compi le ( opt imize r=adamOptimizer )
155 Norm layer . adapt ( f e a t u r e s )
156

157

158 epochs = 40 #20
159

160 h i s t o r y c a ch e = mdn ttr model . f i t ( [ f e a tu r e s , t t r ] , #no t i c e we are
us ing an input to pass the r e a l va lue s due to the inner
workings o f keras

161 verbose=1, # wr i t e =1 i f you wish to see
the p rog r e s s f o r each epoch

162 epochs=epochs ,
163 v a l i d a t i o n s p l i t =0.22 ,
164 ba t ch s i z e =32)
165 pr in t ( ’ F ina l co s t : { 0 : . 4 f } ’ . format ( h i s t o r y c a ch e . h i s t o r y [ ’ l o s s ’

] [ −1 ] ) )

Listing A.2: Code for ttr characterization

A.3 Code for model 3-bis

1 import warnings
2 warnings . f i l t e rw a r n i n g s ( ’ i gno r e ’ )
3

4 import numpy as np
5 import pandas as pd
6 import t en so r f l ow as t f
7 import s c ipy . s t a t s as s t a t s
8 from ten so r f l ow import keras
9 from ten so r f l ow . keras import l a y e r s

10 from t e n s o r f l ow p r ob ab i l i t y import d i s t r i b u t i o n s as t fd
11 import matp lo t l i b . pyplot as p l t
12 from sk l ea rn . u t i l s import s h u f f l e
13 from sk l ea rn import metr i c s
14 from keras import op t im i z e r s
15 from keras . models import Sequent ia l , Model
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16 from keras . l a y e r s import Dense , Act ivat ion , Layer , Input ,
Concatenate , Normal izat ion

17 import keras
18 import g lob
19

20 from sc ipy . s t a t s import norm , ks t e s t , gamma
21 from pynverse import i nv e r s e f unc
22

23 p l t . rcParams . update ({ ’ f on t . s i z e ’ : 18})
24

25 # Data import
26

27 #Import the datase t
28

29 path=’ ’
30 d a t a l i s t= [ ]
31

32 i=1
33 h=5
34 # Data import o f r e p l i c a 1
35

36 f i l enames = glob . g lob ( path )
37 f o r f in f i l enames :
38 pr in t ( f )
39 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
40 df = pd . r ead c sv ( f , i nd ex c o l=None )
41 df . i n s e r t (1 , ’ rps ’ , i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) ) #

Add in the f i r s column the corre spond ing rps
42 pr in t ( i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) )
43 df . i n s e r t (2 , ’ rep ’ , 1 ) # Add in the second column the

corre spond ing number o f r e p l i c a s
44 df1 = df . copy ( )
45 f o r j in range (1 , h+1) :
46 df . i n s e r t (3 + j , ’ t t r i − ’ + s t r ( j ) , df1 . get ( ’ t t r ’ ) . s h i f t ( j

) ) #Add in the columns from 4 to 8 the TTRs
exper i enced in the prev ious h r eque s t s

47 df = df . drop ( index=range (0 , h ) )
48 d a t a l i s t . append ( df ) # Append the dataframe conta in ing the

va lue s f o r each rps in the d a t a l i s t
49 i=i+1
50

51

52 # Data import o f r e p l i c a 2
53 f i l enames = glob . g lob ( path )
54
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55 i=1
56 f o r f in f i l enames :
57 pr in t ( f )
58 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
59 df = pd . r ead c sv ( f , i nd ex c o l=None )
60 df . i n s e r t (1 , ’ rps ’ , i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) ) #

Add in the f i r s column the corre spond ing rps
61 pr in t ( i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) )
62 df . i n s e r t (2 , ’ rep ’ , 2 ) # Add in the second column the

corre spond ing number o f r e p l i c a s
63 df1 = df . copy ( )
64 f o r j in range (1 , h+1) :
65 df . i n s e r t (3 + j , ’ t t r i − ’ + s t r ( j ) , df1 . get ( ’ t t r ’ ) . s h i f t ( j

) ) #Add in the columns from 4 to 8 the TTRs
exper i enced in the prev ious h r eque s t s

66 df = df . drop ( index=range (0 , h ) )
67 d a t a l i s t . append ( df ) # Append the dataframe conta in ing the

va lue s f o r each rps in the d a t a l i s t
68 i=i+1
69

70 # Data import o f r e p l i c a 3
71 f i l enames = glob . g lob ( path )
72

73 i=1
74 f o r f in f i l enames :
75 pr in t ( f )
76 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
77 df = pd . r ead c sv ( f , i nd ex c o l=None )
78 df . i n s e r t (1 , ’ rps ’ , i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) ) #

Add in the f i r s column the corre spond ing rps
79 pr in t ( i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) )
80 df . i n s e r t (2 , ’ rep ’ , 3 ) # Add in the second column the

corre spond ing number o f r e p l i c a s
81 df1 = df . copy ( )
82 f o r j in range (1 , h+1) :
83 df . i n s e r t (3 + j , ’ t t r i − ’ + s t r ( j ) , df1 . get ( ’ t t r ’ ) . s h i f t ( j

) ) #Add in the columns from 4 to 8 the TTRs
exper i enced in the prev ious h r eque s t s

84 df = df . drop ( index=range (0 , h ) )
85 d a t a l i s t . append ( df ) # Append the dataframe conta in ing the

va lue s f o r each rps in the d a t a l i s t
86 i=i+1
87

88 # Data import o f r e p l i c a 4
89 f i l enames = glob . g lob ( path )
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90

91 i=1
92 f o r f in f i l enames :
93 pr in t ( f )
94 i ndex rps=f . f i nd ( ’ rps ’ ) + 3
95 df = pd . r ead c sv ( f , i nd ex c o l=None )
96 df . i n s e r t (1 , ’ rps ’ , i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) ) #

Add in the f i r s column the corre spond ing rps
97 pr in t ( i n t ( f l o a t ( f [ i ndex rps : i ndex rps +3]) ) )
98 df . i n s e r t (2 , ’ rep ’ , 4 ) # Add in the second column the

corre spond ing number o f r e p l i c a s
99 df1 = df . copy ( )

100 f o r j in range (1 , h+1) :
101 df . i n s e r t (3 + j , ’ t t r i − ’ + s t r ( j ) , df1 . get ( ’ t t r ’ ) . s h i f t ( j

) ) #Add in the columns from 4 to 8 the TTRs
exper i enced in the prev ious h r eque s t s

102 df = df . drop ( index=range (0 , h ) )
103 d a t a l i s t . append ( df ) # Append the dataframe conta in ing the

va lue s f o r each rps in the d a t a l i s t
104 i=i+1
105

106

107 da t a t r a i n v a l= pd . concat ( d a t a l i s t , ax i s =0, i gno r e i ndex=True ) #
Concatenate the d a t a l i s t in a dataframe f o r s emp l i c i t y

108

109 #da t a t r a i n v a l . head ( )
110

111 # Make some cop i e s
112 t r a i n v a l c opy = da t a t r a i n v a l . copy ( ) # make a copy
113

114 f e a t u r e s = s h u f f l e ( d a t a t r a i n v a l )
115

116 r i d = f e a t u r e s . pop ( ’ r i d ’ )
117 t t r = f e a t u r e s . pop ( ’ t t r ’ )
118 s t = f e a t u r e s . pop ( ’ s t ’ )
119

120

121 # Cost f o r the mu l t ip l e components MDN using GAMMA d i s t r i b u t i o n
122 de f gammanl l loss (y , alpha , concentrat ion , r a t e ) :
123 ””” Computes the mean negat ive log−l i k e l i h o o d l o s s o f y g iven

the mixture parameters .
124 ”””
125

126 gm = t fd . MixtureSameFamily (
127 mix tu r e d i s t r i bu t i on=t fd . Ca t ego r i c a l ( probs=alpha ) ,
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128 component s d i s t r ibut i on=t fd .Gamma(
129 concent ra t i on=concentrat ion ,
130 r a t e=ra t e ) )
131

132 l o g l i k e l i h o o d = gm. log prob ( t f . t ranspose (y )+1e−15) # Evaluate
log−p r obab i l i t y o f y np . c l i p ( t f . t ranspose (y ) , 1e−8, 100 . )

133

134 re turn −t f . reduce mean ( l o g l i k e l i h o o d , ax i s=−1)
135

136 de f p l o t l o s s ( h i s to ry , zoom=False ) :
137 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ l o s s ’ ] , l a b e l=’ l o s s ’ )
138 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ v a l l o s s ’ ] , l a b e l=’ v a l l o s s ’ )
139 p l t . x l ab e l ( ’Epoch ’ )
140 p l t . y l ab e l ( ’NLL − Negative Log−Like l ihood ’ )
141 i f zoom :
142 p l t . yl im (min ( h i s t o r y . h i s t o r y [ ’ l o s s ’ ] ) , min ( h i s t o r y . h i s t o r y [ ’

l o s s ’ ] ) + 100)
143 p l t . l egend ( )
144 p l t . g r i d (True )
145

146

147 any nan = np . any (np . i snan ( t t r ) ) | np . any (np . i snan ( f e a t u r e s . get ( ’ rps ’
) ) ) | np . any (np . i snan ( f e a t u r e s . get ( ’ rep ’ ) ) )

148 f o r j in range (1 , h+1) :
149 any nan = any nan | np . any (np . i snan ( f e a t u r e s . get ( ’ t t r i − ’ +

s t r ( j ) ) ) )
150

151 pr in t ( ’ Presence o f NaN: ’ + s t r ( any nan ) )
152

153

154 InputLayer = Input ( shape=(7 ,) ) # 7 input neurons
155

156

157

158 Norm layer = Normal izat ion ( ax i s=−1)
159

160 Layer 1 = Dense (8 , a c t i v a t i o n=”ReLU” ) ( Norm layer ( InputLayer ) ) #2
161 Layer 2 = Dense (8 , a c t i v a t i o n=”ReLU” ) ( Layer 1 ) #2)
162

163 alpha = Dense (3 , a c t i v a t i o n=”softmax” ) ( Layer 2 )
164 concent ra t i on = Dense (3 , a c t i v a t i o n=lambda x : t f . nn . e lu (x ) + 1 + 1

e−15) ( Layer 2 ) # The constant term 1e−15 avo ids nu l l va lue s
that l e ad s to ’NaN ’ l o s s

165 r a t e = Dense (3 , a c t i v a t i o n=lambda x : t f . nn . e lu (x ) + 1 + 1e−15) (
Layer 2 )
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166 y r e a l = Input ( shape=(1 ,) )
167 l o s sF = gammanl l loss ( y r ea l , alpha , concentrat ion , r a t e ) #

gammanl l loss ( y r ea l , alpha , mu, sigma )
168 mdn ttr model = Model ( inputs=[ InputLayer , y r e a l ] , outputs=[alpha ,

concentrat ion , r a t e ] )
169 mdn ttr model . add l o s s ( l o s sF )
170

171 # Learning ra t e s chedu l e r with keras . op t im i z e r s . s chedu l e s
172 l r s c h e du l e =t f . keras . op t im i z e r s . s chedu l e s . PolynomialDecay (
173 i n i t i a l l e a r n i n g r a t e =0.0003 , decay s t eps =20,

e nd l e a r n i n g r a t e =0.00003 , power=1.0 ,
174 cy c l e=False , name=None
175 ) #de f i n e the ra t e s chedu l e r −> i f we i n c r e a s e the number o f

l a y e r s we have to dec r ea se the end l e a rn i ng ra t e ( high
complexity in the network )

176

177 adamOptimizer = opt im i z e r s .Adam( l e a r n i n g r a t e=l r s ch edu l e ,
c l i p v a l u e =1.0 , c l ipnorm=1.) # cl ipnorm=1 avoid grad i en t
exp l o s i on ( r e j e c t a l l g r ad i en t s with norm >1)

178 mdn ttr model . summary ( )
179 mdn ttr model . compi le ( opt imize r=adamOptimizer )
180

181 Norm layer . adapt ( f e a t u r e s ) # Perform norma l i za t i on o f input
f e a t u r e s to improve the convergence o f the MDN

182

183 epochs = 40 #epochs = 30
184 ba t ch s i z e = 32
185 h i s t o r y c a ch e = mdn ttr model . f i t ( [ f e a tu r e s , t t r ] , #us ing an input

to pass the r e a l va lue s to compute the NLL
186 verbose=1,
187 epochs=epochs ,
188 v a l i d a t i o n s p l i t =0.22 ,
189 ba t ch s i z e=ba t ch s i z e )
190 pr in t ( ’ F ina l co s t : { 0 : . 4 f } ’ . format ( h i s t o r y c a ch e . h i s t o r y [ ’ l o s s ’

] [ −1 ] ) )
191

192 de f quant i l e m ix tu r e (p , gm) :
193 re turn i nv e r s e f unc ( ( lambda x : gm. cd f ( x )+10e−7∗np . l og (x ) ) ,

y va lue s=p , image =[0 ,1 ] ) # logar i tm makes the CDF
s t r i c t l y monotonic

194

195 de f ge t mean pred i c t i on ( a ) :
196 a= np . array ( a )
197 alpha pred , conc pred , r a t e p r ed = mdn ttr model . p r ed i c t ( l i s t

( ( a , a ) ) )
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198 gm = t fd . MixtureSameFamily ( m i x tu r e d i s t r i bu t i on=t fd .
Cat ego r i c a l ( probs=alpha pred ) , component s d i s t r ibut i on=t fd .
Gamma( concent ra t i on=conc pred , r a t e=ra t e p r ed ) )

199 re turn gm.mean ( )
200

201 de f get upper bound ( a ) :
202 a= np . array ( a )
203 alpha pred , conc pred , r a t e p r ed = mdn ttr model . p r ed i c t ( l i s t

( ( a , a ) ) )
204 gm = t fd . MixtureSameFamily ( m i x tu r e d i s t r i bu t i on=t fd .

Cat ego r i c a l ( probs=alpha pred ) , component s d i s t r ibut i on=t fd .
Gamma( concent ra t i on=conc pred , r a t e=ra t e p r ed ) )

205 re turn quant i l e m ix tu r e ( 0 . 9 5 , gm)
206

207

208 p l t . rcParams [ ” f i g u r e . f i g s i z e ” ] = [ 1 6 , 6 ]
209 rps = 26
210 rep= 1
211

212 f i l ename=’ ’
213

214 d f p l t = pd . r ead c sv ( f i l ename , i nd ex c o l=None )
215 s t t e s t =d f p l t . pop ( ’ s t ’ )
216 t t r t e s t = d f p l t . pop ( ’ t t r ’ )
217

218 p l t . p l o t (np . arange (600 ,800) , t t r t e s t [ 6 0 0 : 8 0 0 ] , l a b e l = ’Ground
truth ’ )

219 p l t . p l o t (np . arange (600 ,800) , t t r pred mean [ 6 0 0 : 8 0 0 ] , l a b e l = ’TTR
est imat ion , h=5 ’ )

220 p l t . p l o t (np . arange (600 ,800) , t t r upper bounds [ 6 0 0 : 8 0 0 ] , l a b e l = ’
95−pe r c en t i l e , h=5 ’ , marker=’ ’ , alpha =0.7)

221

222 p l t . x l ab e l ( ” req . id ” )
223 p l t . y l ab e l ( ’TTR [ s ] ’ )
224 p l t . t i t l e ( ’TTR f o r ( rps =’ + s t r ( rps ) +’ , rep =’+ s t r ( rep ) + ’ ) ’ )
225 p l t . l egend ( )
226

227

228 p l t . f i g u r e ( f i g s i z e =(7 ,7) )
229 p l t . s c a t t e r ( t t r t e s t [ 5 : 8 0 0 ] , t t r pred mean [ 0 : 7 9 5 ] , c=’ crimson ’ ,

l a b e l=”Test data” )
230

231

232 p1 = max(max( ttr pred mean [ 0 : 7 9 5 ] ) , max( t t r t e s t [ 5 : 8 0 0 ] ) )
233 p2 = min(min ( ttr pred mean [ 0 : 7 9 5 ] ) , min ( t t r t e s t [ 5 : 8 0 0 ] ) )
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234 p l t . p l o t ( [ p1 , p2 ] , [ p1 , p2 ] , ’b− ’ )
235 p l t . x l ab e l ( ’ True Values ’ , f o n t s i z e =18)
236 p l t . y l ab e l ( ’ P r ed i c t i on s ’ , f o n t s i z e =18)
237 p l t . ax i s ( ’ equal ’ )
238 t=(”MAE= ” + s t r ( round (mae mean , 5) ) + ” s ” ”\nMSE= ” + s t r ( round (

mse mean , 5) ) + ” s ˆ2” )
239 p l t . t ex t ( 0 . 0 2 , 1 . 1 , s=t )
240 p l t . l egend ( )
241 p l t . t i t l e ( ” Pred i c to r : mean given h i s t o r y ” )
242 p l t . show ( )

Listing A.3: Code for ttr with history characterization
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