
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

DIPARTIMENTO DI INFORMATICA - SCIENZA E INGEGNERIA

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

A Data Mesh Implementation

Relatore: Prof. Marco Patella

Correlatori: Martino Ongaro, Matteo Marchiori

Anno Accademico: 2021-2022

Candidato: Luca Parigi

23 Marzo, 2023

Contents

1 Introduction 7
1.1 Bip Consulting . 9

2 Data Flow 11
2.1 Drinking Data . 11

2.1.1 Business Intelligence 12
2.1.2 Operational Data . 13
2.1.3 Data Warehouse . 13

2.2 Back to the source . 15
2.2.1 Machine Learning . 15
2.2.2 Analytical Data . 16
2.2.3 Data Lake . 17

2.3 Data Flood . 18
2.3.1 Next Gen Data Platforms 18
2.3.2 The bottleneck . 19

3 Mesh the Flow 21
3.1 Inspirations . 22

3.1.1 Domain-Driven Design 22
3.1.2 The mesh architecture 23

3.2 The four principles . 25
3.2.1 Domain Ownership . 25
3.2.2 Data as a Product . 26
3.2.3 Self-Serve Data Platform 29
3.2.4 Federated Computational Governance 31

3.3 When to Mesh? . 35

CONTENTS 2

4 A Data Mesh Implementation 36
4.1 Architecture development . 37

4.1.1 An overview of the project 37
4.1.2 Kubernetes . 38
4.1.3 YAML . 39
4.1.4 Terraform . 39
4.1.5 GitLab . 40
4.1.6 Argo Workflows . 43
4.1.7 Fast API . 44
4.1.8 Compute and Storage 44

4.2 User Experience of the Data Product 45
4.2.1 dbt - Building the Data Product 45
4.2.2 DataHub - discovering the Data Product 48
4.2.3 Dagster - orchestrating the Data Product 49
4.2.4 Grafana - monitoring the Data Product 50

5 Data Consumption 52
5.1 Trino . 53

5.1.1 Trino Cluster . 54
5.1.2 A connector-based architecture 55
5.1.3 Query execution model 55
5.1.4 Hive connector . 56
5.1.5 Hive Metastore . 56
5.1.6 Implementation and configuration 57
5.1.7 Compute Layer + Consumption 59
5.1.8 Apache Superset . 59
5.1.9 Build of a Data Product 60

6 Results 64
6.1 Theoretical Comparison . 64

6.1.1 Domain Ownerhsip . 64
6.1.2 Data as a Product . 65
6.1.3 Self-Serve Data Platform 65
6.1.4 Federated Data Governance 65

6.2 A view from the big companies 66
6.2.1 Amazon Web Services 67
6.2.2 Microsoft Azure . 68
6.2.3 Google Cloud Platform 70

CONTENTS 3

6.2.4 Summing up . 72

7 Conclusions 73
7.1 Challenges . 73
7.2 Learnings . 75
7.3 What’s Next . 76

7.3.1 Service Mesh . 76
7.3.2 Arrow Flight SQL . 77

7.4 Data Mesh . 78

8 Ringraziamenti 80

9 Bibliography 81

Keywords

� BI: Business Intelligence

� ML: Machine Learning

� DWH: Data Warehouse

� DL: Data Lake

� AWS: Amazon Web Services

� GCP: Google Cloud Platform

� BQ: BigQuery

� S3: Simple Storage System

� DP: Data Product

Abstract

I dati sono diventati centrali per l’economia di tutte le aziende, grazie a
strumenti BI di sempre più facile utilizzo e ai vantaggi forniti dai modelli di
ML. Le organizzazioni che operano in più settori, tuttavia, devono affrontare
il problema di gestire ed estrarre valore da una quantità enorme e diversi-
ficata di dati. L’architettura Data Mesh, teorizzata da Zhamak Dehghani
nel 2018, sta riscuotendo molto interesse perché promette una soluzione a
questi problemi favorendo la decentralizzazione dei dati, anziché ostacolarla
come è sempre avvenuto nelle strutture tradizionali di gestione dei dati. Il
lavoro svolto per questa tesi è suddiviso in due parti: una parte teorica sul
Data Mesh, perché è necessario, da cosa ha preso origine e i suoi principi;
una pratica, svolta nell’ambito di un progetto interno all’azienda Bip, che ha
visto l’implementazione da zero di un’architettura Data Mesh cross-cloud,
utilizzando vari strumenti open-source. Il mio contributo si è concentrato
sull’area specifica di Data Consumption, implementnado alcuni strumenti –
quali GCP Dataplex, Trino e Apache Superset – attraverso i linguaggi Ter-
raform e YAML. La tesi si conclude con un confronto dell’architettura creata
in Bip con la teoria e i servizi offerti da altre grandi aziende, come Google e
Microsoft.

Data has become central to the economy of all companies, thanks to increas-
ingly easy-to-use BI tools and the benefits of the insights provided by ML
models. Organizations with roots in multiple businesses, however, must deal
with the problem of organizing and extracting value from an overwhelm-
ing and diverse amount of data. The Data Mesh architecture, theorized by
Zhamak Dehghani in 2018, is gaining a lot of interest because it promises a
solution to these problems by embracing data decentralization, rather than
hindering it as has always been done in traditional structures. The work
done for this thesis has been divided into two parts: a theoretical part on

CONTENTS 6

Data Mesh, why it is necessary, what it originated from, and its principles;
a practical one done inside an internal project at Bip company, involving
the implementation of a cross-cloud Data Mesh architecture from scratch,
using many open-source tools. My contribution focused on the specific area
of Data Consumption, implementing some tools (GCP Dataplex, Trino and
Apache Superset) via Terraform and YAML languages. The thesis concludes
with a comparison of the architecture created in Bip against the theory and
services offered by other large companies, such as Google and Microsoft.

Chapter 1

Introduction

The amount of data is growing every day more, even overnight: in theData
Never Sleeps 10.0, a study conducted by Domo in 2022, we know the total
amount of data predicted to be created, captured, copied and consumed
globally in 2022 is 97 zettabytes. To be clearer, this is one zettabyte:
1,000,000,000,000,000,000,000 bytes. If every gigabyte in a zettabyte were
a meter, it could span the distance of the Amazon River (the world’s longest
river at 6,992 kilometers) more than 150,000 times [1]. Over the past ten
years, digital activities have grown exponentially, and the Covid-19 pandemic
has also played a significant role in this: we have seen an increase in the use
of digital tools to support our personal and work needs, from connecting and
communicating to conducting transactions and business [2].

Figure 1-1: How much data is generated every minute? 2013 vs. 2022 [2].

8

Data is ubiquitous. Data is the by-product of every digital action we take.
Everything, every system, every process, every sensor generates data [3].
Today’s processes are not efficient enough to keep up with all the data we
generate. It’s a flood of data, and the challenge is to turn it into a meaningful
and consumable stream of information in real time. Since this thesis has
been written on the work done during an internship, the context of data is
approached from the perspective of a business and an interesting question
to ask today is: what is the importance of data in a company today? Is
data the new gold? If we continue to view data as the byproduct of our
actions, then no: data is only a tool - a shovel - to dig up gold. That was
the scope of Business Intelligence: companies wanted to generate reports
and dashboards to manage operational risks, respond to compliance, and
ultimately make fact-based business decisions. But today, companies’ data
aspirations have evolved and they want to become data-driven, using Machine
Learning in product design, such as automated assistants, service design,
and customer experience, such as personalized health care. Large companies
need to process huge amounts of data intelligently and efficiently to provide
machine learning models with the near real-time data they need. They cannot
be satisfied with storing all the data generated in loosely organized data lakes
(swamps). Instead, if we begin to think of data as a product, as something
that has value on its own, independent from the source, reusable and central
to a company’s economy, then we could say that data is the new gold. To do
that we have to change the way we understand, structure and manage data;
this was Zhamak Dehghani’s idea in 2018, when studying how organizations
were trying to manage the complexity of mass digitization she conceived the
idea of Data Mesh.

1.1 Bip Consulting 9

Figure 1-2: The inflection point in the approach to analytical data management

[4].

Data Mesh is a decentralized sociotechnical approach to share, access, and
manage analytical data in complex and large-scale environments - within or
across organization [4]. It is a different way of understanding and composing
the technologies we already know and use.

1.1 Bip Consulting

Bip - Business integration partners S.p.A. is an Italian multinational consult-
ing company working for enterprises and public administration. Founded in
2003, it operates in the field of business strategy, information technology, and
human resources consulting. The economic sectors in which it operates are:
Industry, Finance, Automotive, Energy and Utilities, Telecommunications,
Public Administration, E-commerce, Sales and Consumer Goods, Health-
care, and Pharmaceuticals [5]. My internship at Bip took place over three
months in the xTech center of excellence, featuring multidisciplinary teams
in the areas: Data, Cloud, Platforms, Solutions [6]. I was included in a Cloud
Team and gave my contribution within an already started research that in-
volved the development of a Data Mesh infrastructure for testing purposes,

1.1 Bip Consulting 10

from scratch. In particular, my contribution was focused in the consumption
area of the data product. This project was initiated as a result of a growing
interest by Bip in this new data architecture, which is well suited for use
in managing the data of large companies such as banks. The goal was to
build a demo - and reusable artifacts - to show to potential customers: in
recent month companies have shown particular interest in this architecture,
but the negotiation phase and, if successful the subsequent implementation
and transformation, will require quite a long time (years). Below I provide
an overview of the structure of this thesis. The second chapter discusses
the nature of data and the history of the technological evolution to manage
it. The third chapter is about the theory of Data Mesh, what inspired this
architecture and its principles. The fourth chapter gives an overview of the
Data Mesh implementation done as Bip internal project. The fifth chapter
illustrates my contribution to the project. The sixth chapter discusses the
results of the project. The last chapter contains some reflections on what the
Data Mesh project has been and future developments.

Chapter 2

Data Flow

First, what is data? In the pursuit of knowledge, data is a collection of
discrete values that convey information, describing quantity, quality, fact,
statistics, other basic units of meaning, or simply sequences of symbols that
may be further interpreted [7]. Data can be used if they are first contex-
tualized and interpreted, and in the context of companies using the data
produced by their business activities, it is essential to know that not all data
are the same and there are different ways to store and classify them.

2.1 Drinking Data

Humankind has always used data and information for taking advantages. In
the history of companies, data has been essential for taking decisions and
keeping track of transactions: real-world interactions in which something
was exchanged - money, product, information, request for services, and so
on. But the definition of transaction in this context has expanded over the
years, especially since the advent of the Internet, to encompass any kind
of digital interaction or engagement with a business that can be triggered
from anywhere in the world and via any web-connected sensor [8]. At the
beginning of the Internet, for example, the focus was on transaction response
time. As operations grew on e-commerce sites, we also wanted to know who
was using the system, from where, what they were doing, for how long and
most importantly how one could offer more value to existing customers and
bring in new ones [9]. Precisely because of the need to use this kind of
data, the first Business Intelligence software solutions were created: tools

2.1 Drinking Data 12

to help businesses to make more informed decisions by providing them with
data-driven insights.

2.1.1 Business Intelligence

The term Business Intelligence has been around since before the Internet and
refers to the set of business processes and technologies related to collecting,
organizing data, and extracting information from it. BI is used to understand
the capabilities available in the firm; the state of the art, trends and future
directions in the markets, the technologies, and the regulatory environment in
which the firm competes; and the action of competitors and the implications
of these actions [10]. Even today, BI tools are still common and are used to:

� Compactly visualize data from multiple sources through dashboards,
charts, graph, maps;

� Explore and analyze data to find patterns and trends, generating re-
ports to share with other team members and stakeholders (data mining
and reporting tools).

Figure 2-1: PowerBI dashboard example

2.1 Drinking Data 13

But where do these tools get their data from?

2.1.2 Operational Data

Operational data supports running the business and keeps the current state
of the business with transactional integrity [4], they are the data generated
and used in the day-to-day operations of an organization. This type of data
is typically transactional in nature, meaning it records the details of specific
business transactions or events. Examples of operational data include cus-
tomer orders, invoices, inventory records, and employee time sheets. Opera-
tional data is typically stored in operational databases, designed to support
the rapid insertion, updating, and retrieval of individual rows as needed for
the organization’s daily operations. These databases are usually optimized
for transactional processing, meaning they are designed to support high vol-
umes of read and write operations with low latency. In the 90s’ companies
started to manage multiple sources of data - such as transactional databases,
spreadsheets, and flat files - pulling and integrating data from them was time-
consuming and error-prone. There was the need for a central architectural
model to organize the flow of data from the operational systems to decision
support environments (BI tools).

2.1.3 Data Warehouse

Data Warehouse is a central repository of integrated data from one or more
heterogeneous sources [11]. The goal is to consolidate data, starting from
the data produced from day-to-day operations (operational data) to aggre-
gated data ready to be queried and analyzed by Business Intelligence [12].
Data from many different sources (like transactional databases, log files) are
extracted and transformed into a format that is suitable for analysis, then
loaded into the Data Warehouse (ETL process): a physical Data Storage
can be implemented with a Relational DB or NoSQL DB. The DWH has a
Schema: a logical structure which defines how the data is organized (tables,
columns, data entities, relationships between data entities) and how it can be
queried. Then the data stored can be analyzed through BI tools. A Security
Layer is also present, with governance controls to ensure that the data is
protected and used appropriately.

2.1 Drinking Data 14

Figure 2-2: - Flow of data, from sources to BI tools, through Data Warehouse.

So, a flow of data began from the Operational Systems to the DWHs, where
they were stored after a complex process of processing and transformation to
fit predefined data models designed to serve departmental BI and reporting
use cases. In the ‘90s this was experienced as a revolution, enabling IT
systems to support large-scale business decisions. Zhamak Dehghani, in her
book on Data Mesh [4], reflects on how the nomenclature regarding the data
world takes its cue from water: data lakes, data flows, data pipelines; it is
particularly the latter that convey data from the sources to the DWHs and
only here do they become meaningful and useful. The data flowing from the
springs were cleaned and bottled, ready for drinking and gaining insights on
the companies’ business.

2.2 Back to the source 15

Figure 2-3: Drinking Data, AI Art Generator.

2.2 Back to the source

Over the next decade, it was realized that operational data were not sufficient
to enable companies to make truly data-driven decisions. With the advent
of technologies such as Machine Learning there was a need for much more
raw data and in an unprecedented amount.

2.2.1 Machine Learning

ML is a method of teaching computers to learn and make decisions on their
own, without explicit programming. It is a subfield of AI that focuses on
the development of algorithms and models that can analyze and interpret
data and make predictions: this means it can be used in a variety of business
applications to improve decision-making, increase efficiency, and enhance the
customer experience. Today, for example, ML models are used to analyze
clients’ behaviors and trends, for personalizing the customer experience, but
also to identify suspicious activities and prevent frauds. With the spread of

2.2 Back to the source 16

this technology, however, the need for data changed: these models require a
huge amount of raw data to train and test them. As a result, DWHs, which
collect a relatively small amount of operational data, were not suitable for
this purpose. There was a need to go back to the data sources.

2.2.2 Analytical Data

Analytical data is the temporal, historic, and often aggregated view of the
facts of the business over time: it is the byproduct of running the business. It
is modeled to provide retrospective or future-perspective insight. Analytical
data is optimized for analytical logic: training machine learning models and
creating report and visualizations [4]. For example, analytical data inside
a commercial store can refer to the number of customers who visited the
store each day, the average amount they spent per purchase, and the types
of products they bought. With a certain amount of these information, we
can understand the behavior of the customers and make better decisions for
the business.

Figure 2-4: The two planes of data [4].

Therefore, by changing the type and amount of data, there was a need for
a different architecture from DWHs. Siloed paradigm brought a huge cost
to manage increased master data complexity and to implement cross domain

2.2 Back to the source 17

analytical use cases. Organization started collecting data of interest in cen-
tralized file systems regardless of their raw format to develop and deliver
data-driven applications.

2.2.3 Data Lake

Data Lakes can host heterogeneous and unstructured data: by reducing the
number of data operations and taking some of the quality out of the structure,
it was possible to find a place for the huge amount of data generated every
day by companies. The Data Lake is an amalgamation of all the various kinds
of data found in the corporation. It has become the place where enterprises
offload all their data, given its low-cost storage systems with a file API that
holds data in generic and open file formats, such as Apache Parquet and
ORC. The use of open formats also made data directly accessible to a wide
range of other analytics engines, such as machine learning systems [13]. The
Data Lake pattern starts with the Data Ingestion from a variety of sources
into a Data Storage, only after that data is eventually transformed (cleaning
and filtering) for analysis purposes. Data Lakes also presents features like:

� Data Catalog that holds metadata: information about the data sources,
the data schema and the transformations that have been applied;

� Data Access: making the data accessible to users and systems, usually
through APIs;

� Data Governance: involves the management and control of data,
usually including data quality, security and compliance.

2.3 Data Flood 18

Figure 2-5: Data Lake Pattern.

Thus, there was a shift from using bottled data to channeling all source data
into artificial lakes to collect all the necessary data for the company.

2.3 Data Flood

The companies soon realized that managing data storage in a single central-
ized architecture was expensive due to the increasing volume and number of
data sources. Data Lakes also lacked support for transactions, no enforce-
ment of data quality and poor performance optimizations. As a result, most
of the data lakes in the enterprise had become data swamps. But not only
that, they were not efficient enough to use AI and BI directly on the data
stored (also not many tools supported them): since all the data is stored
and managed as files, they do not provide fine-grained access control on the
contents of files, but only coarse-grained access governing who can access
what files or directories [14]. For these reasons, many companies started to
move subsets of data from Lakes into Data Warehouses, still with problems
in managing semi-structured data, and with limited support for ML.

2.3.1 Next Gen Data Platforms

In the next years new architectures started to be implemented, trying to
solve the problem of managing a big amount of data. Data Fabric is a
distributed data management architecture that enables data to be accessed

2.3 Data Flood 19

and shared across a variety of systems, devices and locations. It allows the
creation of a single, integrated view of data from multiple sources taking
advantage of virtualization techniques and frameworks. At the same time,
cloud service providers, such as AWS, GCP and Microsoft Azure, became
increasingly popular, supplying storage resources and computing power to
corporate clients to create their own “houses” of data, which can also be
processed through ETL and explored through ML and BI tools. As a result,
we had Data Lakehouses solutions: a hybrid data management platform that
combines the scalability of a Data Lake with the structured querying and data
governance capabilities of a Data Warehouse. It allows organizations to store
and manage both structured and unstructured data in a single, centralized
repository, and provides a consistent and unified view of data across the
organization.

2.3.2 The bottleneck

These new data management solutions are perfect for companies that run a
business with a certain size and a specific type of data. Instead, big com-
panies must manage a wide range of data: different in type (structured or
not) and domain (customer, financial, sales, operational, ...). The central
team responsible for managing data across the organization, typically a data
engineering one, has nothing to do with either the data producers or the
consumers. Because they do not have the same business skills to understand
the meaning of the data, they are struggling to create a structure to house
it and to ease the analysts’ work.

Figure 2-6: Teams with different skills working on data in company.

2.3 Data Flood 20

Data Fabrics and Lakehouses continue to have the same limitations: the
centralized data governance model they propose is a bottleneck. For these
systems that are complex and continuously changing, this centralized strat-
egy used since the ‘90s is not working and it won’t work. The levees that
we have been trying to build no longer hold, data is overflowing: a new
architecture is needed.

Chapter 3

Mesh the Flow

We live in an infodemic era: in our daily lives we struggle to manage this
continuous flow of information derived mainly from social networks. Continu-
ally distracted by few-second videos, superficial news, and clickbait posts, we
cannot manage this exaggerated amount of information, failing to translate
it into knowledge. The same is happening within companies: digitization has
led to an excessive number of data sources producing a quantity of informa-
tion that, without proper management, generates confusion. It is necessary
to select the data to be used. This is one of the foundations of the Data Mesh
thesis formulated by Zhamak Dehghani in 2018, after observing common fail-
ure patterns in getting value from data in large and technologically forward
companies that had made substantial investments in their data technologies.
As we have seen in the previous chapter, the ambitious goal of organizations
is becoming data-driven for:

� Providing the best customer experience based on data and hyper-
personalization.

� Reducing operational costs and time through optimizations.

� Giving employees “superpowers” with trend analysis and business in-
telligence [15].

The main problem is the centralized monolithically structure that organiza-
tions still use. The central data team and the monolithic architecture had
become a bottleneck in response to the proliferation of data sources - inside
and outside of the company - and the diversity of their use cases. We need

3.1 Inspirations 22

a new architecture that embraces the reality of ever present, ubiquitous and
distributed nature of data [15].

3.1 Inspirations

Zhamak Dehghani defines Data Mesh as a sociotechnological approach, mean-
ing that it does not imply a technological innovation because it does not
invent anything, but it is just a mix of already existing technologies, designs,
and architectures, also from neighbor tech fields such as Agile for IT. So, we
are still talking about Data Warehouses and Data Lakes, what changes is the
way of using them together with other tools. Here follows the description of
the two models that inspired this approach to data management.

3.1.1 Domain-Driven Design

Domain-Driven Design (DDD) is a major software design approach, focusing
on modeling software to match a domain according to input from that do-
main’s experts [16]. This design was described by Eric Evans in 2004, and
the purpose was to crunch knowledge into models. DDD has fundamentally
changed how technology teams form and has led to the alignment of business
and technology. It has greatly influenced how organizations scale, in a way
that a team can independently and autonomously own a domain capability
and digital services. DDD is based on multiple models each contextualized
to a particular domain, called a bounded context, meaning the delimited
applicability of a particular model gives members a clear and shared under-
standing of what has to be consistent and what can develop independently
[4]. A domain, in the context of software engineering, is the business on which
the application is built. Application logic, therefore, must be built around
the knowledge area of that business and models should describe aspects of
a domain reducing the distance between the reality of the business and the
code. This is translated into Data Mesh by dividing data into domains; there
will be, for example, a domain for user data, a domain for supply data, and a
domain for orders. The goal is to subdivide a complex system to achieve the
desired architectures (lighter, understandable, modular). The disadvantage
of this type of design is that requires professionals who have strong exper-
tise in the identified domains; in Data Mesh this results in the data being
processed by the data specialist and no longer by the data engineer, who

3.1 Inspirations 23

instead is more specialized in dealing with the structure that makes the data
products work transparently [17]. Once the various contexts are identified,
it is possible, and recommended, to create a map of these domains (context
mapping) to investigate how they are connected, the boundaries of the sys-
tem and to make decisions about the design deployment and the choice of
technology to adopt. Domains, moreover, can be decomposed into subdo-
mains (representing a specific business problem) to manage their complexity.
The concept of Ubiquitous Language is also present, in order to encapsulate
typical business terminology within the model (and code) and to make the
system easier for those not used to working with code.

Figure 3-1: Dividing data into domains.

3.1.2 The mesh architecture

In a mesh architecture, every node is connected to every other node in a
mesh-like lattice work of connections. An increase in the number of nodes
increases the quality of the mesh [17].

3.1 Inspirations 24

Figure 3-2: Mesh architecture.

In a centralized structure the most obvious problem is the waste of resources
generated by the flow of data between various teams: all data must con-
verge in a “single” point (like a Star Schema). The idea behind adopting a
Mesh Architecture is to keep the data as close as possible to their sources,
because the teams working on it may understand better the meaning of that
data. Data then will be reachable though APIs and not moved. It is there-
fore convenient to structure the data within different domains, as explained
in the previous section. The single node of the mesh is a Data Product,
an entity that is autonomous and self-contained (we will delve into this in
the next section). Data Products are then connected according to the do-
main they belong to, in this way it is possible to establish the federation
policies that allow them to be accessed. Data Warehouses, and later Data
Lakes, have imposed patterns on business domains, the latter chosen and
tailored to the technology adopted. Data Mesh reverses this trend: the idea
is first to identify business domains and then create an architecture consis-
tent with the structure of the company’s business. This concept was already
expressed decades ago by Conway’s Law: “any organization that designs a
system (defined broadly) will produce a design whose structure is a copy of
the organization’s communication structure”. Data Mesh, then, takes the
concepts expressed above to delineate a division, classification, and exchange
of data based on (sub)domains, which may cover a larger or smaller area of
business. This decentralized approach brings data ownership back to those
who have the expertise over them (Data Analysts), whereas previously it
had been moved away with the flow to the Lakes and centralized structures

3.2 The four principles 25

(whose expertise lies with the Data Engineer).

3.2 The four principles

Up to this point the history of the Cloud and Data world has been covered:
what architectures have been used, what has worked and what has not, and
consequently what has inspired the principles that Zhamak Dehghani defines
in her book in order to provide guidelines of a Data Mesh architecture.

3.2.1 Domain Ownership

The first principle is inspired from DDD, and it is based on decentralizing the
data ownership: giving the responsibility to create, model, maintain, trans-
form, and share the analytical data to the business (sub)domain - can be the
source (who produce the data) or the consumers. This principle is intended
to categorize data and delegate responsibility to teams: a first attempt to
bring order within large companies. In contrast to traditional architectures,
where there is a flow of data from operational systems to central collectors
of analytical data (whether lakes or warehouses), the data here remains at
the source, it is shared with ”neighbors” (aggregates) and transformations
are limited to fit multiple use cases. This way the teams are free to model
their data according to the context, embracing the complexity and continu-
ously changing reality of analytical data, refusing to search a single model
to describe all data domains (as it was traditionally). Inside a domain it is
possible to identify three big class of (analytical) data:

1. Source-Aligned Domain Data, created and shared by the teams
who own the source operational systems. They represent the facts
and reality of the business, are expected to be permanently captured
and made available, closely representing the raw data at the point of
creation and not modeled for a particular consumer.

2. Aggregate Domain Data, a composition of multiple data products,
since many systems are transversal to more domains, some source-
aligned data can make more sense if aggregated and used together.

3. Consumer-Aligned Domain Data, design to satisfy one or a small
group of closely related use cases, of course they are different in na-
ture with respect to the Source data, since they must go through

3.2 The four principles 26

changes and transformations (pipelines) to fit a particular use case
(fit-for-purpose) [4].

The result of applying the DDD to a Data Organization is to have multiple
models of shared entities (data products) that are linked to each other, while
removing the pipelines from the foundation of the architecture. Since it is
no longer necessary to move data, pipelines are not a central concern but are
hidden as an internal implementation of the data domain.

Figure 3-3: Example of domain data archetypes.

3.2.2 Data as a Product

The second principle of Data Mesh is born as a response to the data siloing
challenge that may arise from the distribution of data ownership to domains,
that can create frictions in using data, such as incompatibility between data
sets. This is the cardinal principle of the Data Mesh, as it expresses a shift
in the way to conceive data inside a company: it is no longer a byproduct

3.2 The four principles 27

of business processes, but a product essential to its business. Applying the
Product Thinking to data means creating something that should be feasible,
usable and valuable on its own: a Data Product to deliver to a user - ideally
data scientists and analysists inside the company. In order to guarantee the
best data user experience, a Data Product should meet some characteristics:

� Discoverable: the DP itself should provide information to consumers
and catalog, about its source of origin, owner, runtime and contribu-
tions made by the consumers, such use cases and applications.

� Addressable: the DP offers a permanent and unique address to the
user to access it.

� Understandable: the DP should provide documentation of the busi-
ness concept, the data, and the code to use it, so the user can un-
derstand the entities encapsulated in it, their relationships, and the
adjacent DPs.

� Trustworthy and Truthful: the DP should communicate and guar-
antee an acceptable level of quality and trustworthiness, through SLOs
(Service-Level Objectives) - objective measures that remove uncer-
tainty surrounding the data – plus cleansing and running automated
data integrity tests. Also, providing provenance and data lineage helps
consumers gain further confidence in the DP.

� Interoperable: the DP should follow some standards to link data,
so the user could easily correlate data across domains and stitch them
together in insightful ways – through join, filter, aggregate operations.

� Secure: the DP contains the policies that directly validate access con-
trol in the data flow, encryption of data, confidentiality levels, data
retention, regulations and agreements.

� Natively Accessible: the DP should be accessible by the authorized
data users with their native tools, since inside a big company there is
a large profile of users: analysts explore data in spreadsheets, analysts
visualize data through query languages, scientists structure data to
train their ML models, developers expect to pull data with APIs. This
can be implemented by building multiple read adapters on the same
data.

3.2 The four principles 28

� Valuable (on its own): the DP should be valuable and meaningful
on its own. For example, machine optimizations such as indices or fact
tables must be created by the platform and do not appear as DPs.

[4]

Figure 3-4: Attributes of a Data Product.

These characteristics make the Data Product directly usable, independent,
self-sufficient and a federable element of the mesh. It is the architectural
quantum of the Data Mesh, a single deployable unit made of code, data
and policies, that is structurally complete to do its job: providing the high-
quality data of a particular domain. Deploying data and code together is
not something new, since it is already present in Microservices, but here the
code serves the data: transforming it, maintaining its integrity, governing its
policies, and serving it. This principle accentuates the responsibility given
to the Data Domain Teams; for this reason, there is the need for two new
roles:

3.2 The four principles 29

1. Data Product Developer, who is responsible for developing, serving
and maintaining the domains’ Data Products for their entire lifecycles.

2. Data Product Owner, someone with an intimate understanding of
the domain’s data and its consumers, who is accountable for the success
of a domain’s data products in delivering value, satisfying and growing
the data users.

3.2.3 Self-Serve Data Platform

As explained in the previous chapter, existing platforms focus on centraliza-
tion: centralized pipelines orchestration tools, centralized catalogs, central-
ized warehouse schema, centralized allocation of compute/storage resources,
and so on. These solutions give too many responsibilities to a few teams,
and they become a bottleneck that slows down the speed of change. From
here the need for a decentralized view, that is introduced with the first two
principles. However such principles create a risk of duplication of efforts
in each domain, increasing costs and inconsistencies. For this reason, the
third principle focuses on the development and provisioning of a self-serve
data platform, where to store, compute, and exchange data: teams can share
their refined and structured data in the form of products with the rest of
the organization and the users can easily access and analyze them. Since
the Data Product is a self-contained entity - encapsulating data (with meta-
data), code (with pipelines), policy, and infrastructure dependencies - it can
be easily shared with the rest of the company and gives sense of the effort
produced by the data domain team which built it. This platform is designed
to be user-friendly, so that the consumer can easily extract insight from data
through data visualization tools and machine learning algorithms. To under-
stand how to structure this system, it is important to understand what are
the focuses of the two main involved roles.

1. Data Product Developers. Their focus is the creation of the data
product, so the platform must implement all the necessary capabilities
to allow him to build, test, deploy, secure, and maintain a data prod-
uct through continuous delivery, without worrying about the underly-
ing infrastructure provisioning (storage, compute, accounts, . . .). In
addition, the platform should abstract complexity: developers should
be able to express their domain-agnostic wants without specifying the

3.2 The four principles 30

low level implementation details; for example, the platform will take
care to create the data structures, provision the storage, perform the
encryption. A nice way to abstract complexity is through declarative
modeling of the target state, such as:

� Container orchestrators, like Kubernetes;

� Infrastructure provisioning tools, like Terraform;

� Query language, like SQL.

Other processes, like data verification, can be automated through Ma-
chine Learning techniques.

2. Data Product Users. Their focus is to discover, access, and explore
data products, so the platform should work as an organizational data
marketplace: exchanging value between data products (on the mesh)
but also end products (at the edge of the mesh), such as ML models,
reports, dashboards and DPs [4]. The platform should ease the user
work: access to data, for example, should be automatically evaluated
by the platform, without asking permission to the governance team;
continuously processing new data to keep the DPs up to date, useful
for users working on ML models. Also, the platform should provide a
standardized way of identifying, addressing, and connecting data prod-
ucts: creating a mesh of heterogeneous domains with homogeneous
interfaces. In this way it’s also possible to achieve interoperability with
external platforms and “scale out data sharing”. The implementation
of APIs inside the platform is important, since both the Developers
and the Users can deal with the Data Product as an object.

3.2 The four principles 31

Figure 3-5: Multiple planes of the self-serve data platform.

3.2.4 Federated Computational Governance

The fourth and last principle tries to solve the problem of making sure that
any data product complies with a set of common policies, without centralizing
all responsibilities on a single team - which has been seen to be a bottleneck
in all architectures. Traditionally, governance relied heavily on manual in-
terventions, complex central processes of data validation and certification,
and established global canonical modeling of data with minimal support for
change, often engaged too late after the fact [4]. Data Mesh, in contrast,
embraces change over constancy: change from the continuous arrival of fresh
data, change of data models, rapid change in use cases and users of the data,
new data products being created, and old data products being retired [4].
Still, there is the need for global standards to grant a certain level of secu-
rity, legal conformance, interoperability standards and other policies applied
to all data products, but without sacrificing local optimization. For achieving
this it is necessary to organize the Mesh as a Federation: every domain is a
division owning and controlling a certain number of data products. To also

3.2 The four principles 32

fulfill local optimization, the domain needs to have autonomy over modeling
and serving Data Products (as a consequence of the first principle) and over
the application of most of the policies like self-registration, observability, and
discoverability capabilities. However, there are a set of standards and global
policies – defined by the core team of the Federation – that all domains must
adhere to as a prerequisite to be a member of the Mesh. In this way, it is
possible to grant interoperability, security and a coherent experience of the
Data Products. These are a small set of cross-functional policies, such as
interconnectivity and data ownership, that must be defined globally, since
they have an impact over the whole Mesh. This core is a Federated Team
that takes the responsibility of deciding:

� what policies must be implemented by all data products;

� how the platform must support these policies computationally;

� how data products adopt the policies.

Given the different know-how these tasks require, the team must be cross-
functional, composed by figures like:

� Domain Representatives, contributing to the definition of policies that
govern the data products;

� Data Platform Representatives, designing the experience and imple-
mentation of computational policy configuration and execution;

� Subject Matter Experts, influencing prioritization and design of plat-
form features, having the knowledge about security, compliance and
legal concerns;

� Facilitators and Managers, supporting the process of governance under
the federated and computational model.

3.2 The four principles 33

Figure 3-6: Example of data mesh governance operating model.

The last, but difficult, goal is to make the governance function as invisible
as possible, automating it through the platform, that can manage the life
cycle of the Data Products and embed the execution of the policies. There
are different ways to implement governance policies computationally:

� Standard as Code, for standards categories that are expected to be
implemented in a consistent way across all data products, for example:
APIs to expose and discover data; modeling semantics and syntax of
the data and the query language; modeling lineage (traces of data flow
and operations across connected DPs).

� Policies as Code, for embedding policies like compliance, access control,
access audit, and privacy in all the Data Products.

� Automated Tests and Monitoring, to make sure that the Data Product

3.2 The four principles 34

complies with its guarantees in terms of data quality, integrity, global
policies, and rapidly detected errors (could be set in CI/CD pipelines).

As we have seen, the principles are closely interrelated: the Data as a Prod-
uct stems from the need to avoid data siloing caused by the decentralization
introduced in the Domain Ownership; the Self-Serve Data Platform gives
meaning to the efforts of domain teams who see themselves with increased
responsibilities because of the first two principles; the Federated Computa-
tional Governance guarantees a central core inside the architecture, which
must define global policies concerning quality and security that all Data
Products should adhere to be part of the Mesh.

Figure 3-7: Four principles of Data Mesh and their interplay.

3.3 When to Mesh? 35

3.3 When to Mesh?

Does it always make sense moving to a Data Mesh architecture? As described
in this chapter, the Data Mesh appears to be a rather complex system and the
transformation from current systems to this type of architecture can require
more than two years, since it involves:

� a good study of the company’s businesses and their division into do-
mains and subdomains;

� creation of new teams and roles, assigning responsibilities;

� studying the implementation of data products, an efficient exchange
platform, and an infrastructure that allows for the smoothest expe-
rience as well as including all the appropriate standards to make it
interoperable and secure (policies management).

For this reason, the Data Mesh architecture is not a good solution for all
companies, rather only for large ones that must deal with a wide variety of
data, produced by different types of businesses, or for companies involved
in a digital native medium. How to figure out whether it makes sense to
implement this new architecture? There are several factors to consider:

� Number of data sources;

� Size of the team(s) working on the data;

� Number of data domains: how many functional teams (marketing,
sales, operations) rely on different data sources to make decisions? Do
teams struggle to collaborate effectively?

� How often does the data engineering team turn out to be a bottleneck?

� How much priority is given to Data Governance? [18]

These questions give an indication of how complex and challenging the
requirements of the desired data infrastructure are: if the structure is very
complex, then it means that many teams work with a large amount of data
sources and need to experiment with the data (i.e., transform it at very high
speeds), which is one reason why the Data Mesh application might be a good
evolution of the system.

Chapter 4

A Data Mesh Implementation

This chapter is about the Data Mesh project in Bip, an overview of the
implementation and the tools used. The goal of the project is to design
and develop a self-service data platform for the development, cataloging,
and consumption of Data Products in a federated fashion, while exploiting
automation to govern its use. Such infrastructure will enable non-technical
end-users to develop new, trustworthy, and high-quality data products that
are ergonomic, business relevant and improve time and quality of business
decisions. Learnings from this project can be applied to current architectures,
to apply best practices as:

� Democratization of the data product development and deployment.

� Automated generation and ingestion of Data Products’ metadata into
data catalogs.

� Improved discoverability and observability of Data Products.

� Transparency and monitoring in usage and adoption.

Such best practices are best tailored to complex, multi-domain environments
in which many and different data professionals work on polyhedric data, for
example, the production of global reporting for the top management. The
implementation of this architecture has been designed on tools – mostly open-
sources – in order to grant the four principles outlined in the previous chapter
and to ensure the following six characteristics that have been identified as
essential to make a Data Product as a viable element of the Mesh:

4.1 Architecture development 37

1. Self-contained: it should be able to run without requiring external
tooling or infrastructure provisioning.

2. Stateless: compute and storage should be separated from the Data
Product runtime, to allow for versioning and resilience.

3. Self-descriptive: any metadata about the product should be served
by the Data Product itself through API.

4. Federable: the Data Product should execute in concert with other
DPs, in autonomy and without any centrally defined DAG.

5. Monitorable: execution, access and adoption to federated products
is to be monitored under standard governance.

6. Addressable: the Data Product should serve its produced data through
protocols, with an option for smart defaults.

4.1 Architecture development

4.1.1 An overview of the project

Two are the main repositories with the necessary configuration for the archi-
tecture:

1. mesh-infra: containing all the code necessary for building the ground-
level infrastructure, GitLab pipelines for deploying modules and ser-
vices, containers’ specifications, project’s variables and the workflows
to build a Data Product.

2. mesh-plane: containing the “blueprints” for cross Data Products –
Docker images and Helm charts – and an implementation of Fast API.

4.1 Architecture development 38

Figure 4-1: Structure of the project.

The other repositories are Data Products in the form of dbt projects.

4.1.2 Kubernetes

The infrastructure, with all its services, is deployed on Google Kubernetes
Engine, which enables the creation of clusters where Kubernetes applications
can run. A cluster is made up of:

� machines, called nodes, which run the services supporting the contain-
ers that make up the workloads;

� a control plan, which decides what runs on those nodes, including
scheduling and scaling [19].

The cluster will contain all the services needed for building, discovering,
accessing, and exploring the Data Products.

4.1 Architecture development 39

Figure 4-2: Data Mesh cluster on GCP.

Kubernetes (K8s) is a portable, extensible, open-source platform for man-
aging containerized workloads and services that facilitates both declarative
configuration and automation [20]. It enables the deployment of Pods: an
environment for running a group of one or more containers, with shared stor-
age and network resources, and a shared context – a specification for how to
run these containers. The configuration is often written in YAML.

4.1.3 YAML

YAML - Yet Another Markup Language - is a human-readable data-serialization
language, commonly used for configuration files in applications where data is
being stored or transmitted [21]. Right now, it is very popular in the DevOps
domain, and it is used for some tools present in this architecture, such as
Kubernetes and Terraform.

4.1.4 Terraform

Terraform is an open-source infrastructure-as-code software tool created by
HashiCorp. Users define and provide data center infrastructures using a
declarative configuration and human-readable language known as HashiCorp
Configuration Language (HCL), or optionally JSON [22]. In this project, it
has been used to manage Kubernetes resources. As seen in the third chapter,
Terraform and Kubernetes are useful tools for abstracting complexity while
building a platform and orchestrating containers, since they use a declarative
modeling of the target state. The Infrastructure as Code can be written
as modules, promoting reusability and maintainability, important concepts

4.1 Architecture development 40

for the implementation of Data as a Product and Self-Serve Data Platform
principles and through these we can achieve Self-contained data products.

4.1.5 GitLab

GitLab is an open-source platform published in 2011, and it has been used in
this project because it allows management of Git repositories, and so is very
useful for working in teams on different features, but also has Continuous
Integration/Continuous Delivery (CI/CD) and DevOps workflows built in.

Figure 4-3: The repositories at the end of the internship.

Implementing CI/CD in a project means continuously building, testing and
deploying iterative code changes. This iterative process helps reduce the
chance of developing new code based on buggy or failed previous versions.

4.1 Architecture development 41

This method strives to have less human intervention or even no intervention
at all, from the development of new code until its deployment [23]. Pipelines
have been implemented in order to

1. Build the platform:

a. A pipeline to create the cluster through Google Kubernetes En-
gine and loading the workflows for the Data Products in Argo
Workflows.

b. Pipelines for deploying the other services, such as DataHub for
discoverability of the DPs; Dagster and Grafana for monitoring
and Data Governance; Trino and Superset for virtualization and
consumption.

c. A pipeline for destroying all the deployments and the cluster.

2. Build the images:

a. Docker Images, a read-only template with instructions for creating
a Docker container.

b. Helm Charts, a collection of files that describe a related set of
Kubernetes resources.

c. Argo Workflows, configuration files for CI/CD pipeline manage-
ment.

Figure 4-4: Pipelines in GitLab.

4.1 Architecture development 42

The pipelines are defined inside the repository in a file called ‘gitlab-
ci.yml’; this file contains the default values for job keywords, the configura-
tion from other YAML files (include), the names and order of the pipeline
stages, the variables and workflows (what type of pipeline run). GitLab
allows to give a company a strong control over its infrastructure, building
a CI/CD foundation in which to script lifecycle events (build, deployment,
test, stop) and automatable tasks such as configuration and documentation,
enforcing standards, and best practices. Since the Data Product should be
stateless and balancing simplicity for user and full autonomy required by the
platform, Bip experimentation suggests introducing another layer, decoupled
from the CI/CD one, that grants a certain degree of freedom to the end user
through a Data Product Control API, created at the beginning of its life-
cycle. This represents a single point of contact with the Data Product, one
that accepts lifecycle requests and can address them with some degree of self-
awareness. As recommended in the principle of Self-Serve Data Platform, it
automates most data engineering tasks, freeing the user from learning the
job. This is achieved through Argo Workflows and Fast API.

Figure 4-5: Two decoupling layers.

4.1 Architecture development 43

4.1.6 Argo Workflows

Argo Workflows is an open-source container-native workflow engine for or-
chestrating parallel jobs on Kubernetes. It is implemented as a Kubernetes
CRD (Custom Resource Definition), allowing to:

� Define workflows (with YAML files) where each step is a container.

� Model workflows as a sequence of tasks or capture the dependencies
between tasks using a directed acyclic graph (DAG).

� Run CI/CD pipelines natively on Kubernetes [24].

Figure 4-6: Example of an Argo workflow interface.

It was decided to use Argo to manage the lifecycle of the Data Product.

4.1 Architecture development 44

4.1.7 Fast API

Fast API is a modern, fast (high-performance), web framework for building
APIs with Python 3.7+ based on standard Python type hints [25]. The use
of APIs is strongly recommended for building an effective Self-Serve Data
Platform, as their common scope is to simplify programming by abstract-
ing the underlying implementation and only exposing objects or actions the
developer needs [26], and it is a good way to simplify the life of the data
user. In this implementation, it facilitates interaction with Argo, and can be
extended to other tools.

4.1.8 Compute and Storage

Compute can be any technology required by the domain (DWH, analytics
engines, streaming, . . .), both ephemeral or always-on. For storage, it was
decided to follow a Data Lake or Data Lakehouse pattern, because raw and
unstructured data are both present. Since this first implementation is de-
signed on GCP services, the computing is based on Big Query, while the
storage is based on Google Cloud Services.

Figure 4-7: How the tools described work together.

4.2 User Experience of the Data Product 45

4.2 User Experience of the Data Product

4.2.1 dbt - Building the Data Product

Data Build Tool is an open-source command line tool that helps analysts
and engineers transform data in their warehouses more effectively, by writing
select statements into tables and views [27]. It enables anyone who knows
SQL to build production-grade data pipelines, clean and prepare data for
analytics purposes.

Figure 4-8: dbt capabilities.

The choice to implement dbt in this Data Mesh experiment is because users
can define a Data Product by requiring as a prerequisite only knowledge of
SQL, which is now recognized in the data world as a “lingua franca”. Here is
the example of a Data Product built as a dbt project: a collection of SQL and
YAML files, that informs dbt about the context and how to transform the
data and build the data sets. By design, dbt applies the top-level structure
of a dbt project, such as the ‘dbt project.yml’ file, the ‘models’ directory, the
‘snapshots’ directory, and so on [28].

4.2 User Experience of the Data Product 46

Figure 4-9: Repository of a Data Product as a dbt project.

The core is ‘dbt project.yml’, a configuration file containing:

� project name;

� profiles that dbt uses to connect to the data platform;

� destination directory for the compiled SQL files;

� project variables to be used for data compilation.

4.2 User Experience of the Data Product 47

Figure 4-10: dbt project configuration file.

A dbt project can contain different types of files containing blocks of reusable
code (macros) or ways to define metrics, but, among others, the more im-
portant are models. Each model lives in a single file and contains logic that
either transforms raw data into a dataset that is ready for analytics or, more
often, is an intermediate step in such a transformation. More in detail, it
contains:

� A models.yml file containing the name of the table and its columns;

� A sources.yml file containing the source of data - with name of the
table, location and format;

� One or more .sql files containing the logic to transform data.

4.2 User Experience of the Data Product 48

Summarizing, a user can define the Data Product via modular SQL code,
then the infrastructure will deploy computing and storage needed to build
and publish it on the Mesh.

Figure 4-11: define DP with dbt and YAML.

dbt is not the only way to build a Data Product, this architecture can be
extended to more complex modeling use-cases with Python or PySpark.

4.2.2 DataHub - discovering the Data Product

DataHub is an open-source metadata platform for the modern data stack
[29]. It is a modern data catalog built to enable end-to-end data discovery,
data observability, and data governance. This extensible metadata platform
is built for developers to tame the complexity of their rapidly evolving data
ecosystems and for data practitioners to leverage the total value of data
within their organization [30].

DataHub grants an optimal data user’s experience through search and
discovery features, like:

� Unified search of results across databases, Data Lakes, BI platforms,
orchestration tools.

� End-to-end lineage across platforms, datasets, charts, . . .

� Dependencies make easier to identify which entities may be impacted
by a breaking change.

4.2 User Experience of the Data Product 49

DataHub has been chosen because it supports both push and pull based
integrations. In this implementation DataHub extract metadatafrom dbt
and expose them, allowing to build Self-descriptive Data Products.

Figure 4-12: dbt + Datahub.

4.2.3 Dagster - orchestrating the Data Product

Dagster is a next-generation open-source orchestration platform for the de-
velopment, production, and observation of data assets [31]. Each Data Prod-
uct, aiming at full autonomy, will contain a local orchestration component (a
client, with methods defined inside a Python script) to manage the execution
of any internal process bound to an output port. The same component will
then communicate its metadata (i.e., pipeline and trigger definitions, as well
as past jobs results) to a central instance of the orchestrator. The central in-
stance will provide a complete overview on the execution of the entire mesh,
enabling monitoring and tracing over the entire data product lineage. In this
way, each Data Product can be a federable element of the Mesh, as intended
in the Data as a Product principle.

4.2 User Experience of the Data Product 50

Figure 4-13: Dagster orchestration interface.

4.2.4 Grafana - monitoring the Data Product

Grafana is a multi-platform open-source analytics and interactive visualiza-
tion web application. It provides charts, graphs, and alerts for the web when
connected to supported data sources [32]. It is currently a service yet to be
implemented within the infrastructure. Once a Data Product has been de-
ployed, it should make itself available to Grafana, which will monitor it and
visualize the results through Prometheus, another open-source technology.
This will make the Data Product monitorable.

4.2 User Experience of the Data Product 51

Figure 4-14: Data Mesh implementation, missing the consumption of the Data

Product.

At this point of the development of the infrastructure, the only thing
missing is the implementation of a tool for the consumption of Data Product,
such as Microsoft PowerBI and Superset, and a virtualization tool enabling
the Addressability of the Data Product. These topics will be explored in
more detail in the next chapter.

Chapter 5

Data Consumption

The implementation activity as the focus of the thesis involved the deploy-
ment and testing of the consumption part within the Data Mesh architecture
exposed in the previous chapter. We talk about data consumption to high-
light the difference with data ingestion: the subtle difference is that the
upstream data is already cleansed, processed and served ready for the user
to analyze with BI tools or notebooks. The change of language creates a new
cognitive framing that is more aligned with the principle of serving Data as
a Product. The challenge of the Consumption is to make it federated, while
maintaining the autonomy and heterogeneity of Data Products, through a
unique user interface. This problem is quite complex and to solve it, these
three requirements must be met:

1. Abstract away the specific backend of each Data Product;

2. Allow consumption though any access pattern;

3. Allow access according to the role of the user.

Any candidate tool must therefore provide a virtualization layer over the
individual backend, both for warehouses, streaming platforms and special-
ized databases (i.e. document, graph, and timeseries DBs) and Data Lakes
(i.e. parquet, iceberg over buckets). For an appropriate consumption, this
virtualization layer must be directly accessible from the users’ preferred en-
vironment and tools: SQL, Python, BI dashboards or streaming platforms.
Lastly, the tool must also support user impersonation using a federated iden-
tity provider such as Google and AWS IAM or Azure AD, to avoid replication

5.1 Trino 53

of rules and synchronization issues. In this way, the Data Product would be
Addressable. The experimentation was held with two tools:

� Dataplex, which proved to be not very fit for the purpose, and will be
explored further in the next chapter;

� Trino, a SQL federated compute engine also offered as SaaS.

5.1 Trino

Trino is an open-source, distributed SQL query engine designed to query
large data sets distributed over one or more heterogeneous data sources, be
Distributed Object Storages, RDBMS or NoSQL; basically, Trino is a SQL-
on-Anything system. Its original name was Presto, designed and developed
at Facebook.

Figure 5-1: Trino is basically a SQL-on-Anything system [33].

Trino was conceived to address the problem of accessing increasingly decen-
tralized data, a process that will continue in the coming years, with data

5.1 Trino 54

stored all over different systems. Trino is not an operational database, since
it is designed to represent the compute layer of a a data management archi-
tecture, while the underlying data sources represent the storage layer. This
decoupling allows to scale up and down the compute resources for query pro-
cessing basing it on analytics demand to access data, independently from
storage. Trino supports a lot of different use cases: in this project the goal of
using it was having one SQL Analytics Access Point, exposing all databases
in one location. In this way all the BI and analytics tools can point to Trino
to have access to all data in the organization. With Trino it is also possible
to do a federated query, i.e. an SQL query that references and uses databases
and schemas from entirely different systems in the same statement.

Trino leverages techniques for distributed query processing, like:

� In-memory parallel processing;

� Pipelined execution across nodes in the cluster;

� Multithreaded execution model to keep all the CPU cores busy;

� Efficient flat-memory data structures to minimize Java garbage collec-
tion;

� Java bytecode generation [33].

5.1.1 Trino Cluster

Trino is able to distribute all processing across a cluster of servers hori-
zontally. A cluster is made up of multiple nodes running Trino, which are
configured to collaborate with each other:

� Coordinator, a server that handles incoming queries and manages
the workers. It is also responsible for fetching results from workers and
returning the output to the client.

� Worker, a server responsible for executing tasks assigned by the co-
ordinator, including retrieving data through connectors and processing
them.

A discovery service runs on the coordinator: when a worker starts up, it
advertises itself to this service, which registers it into the cluster and makes

5.1 Trino 55

it available for task execution. All communication and data transfer be-
tween clients, coordinator and workers uses REST-based interactions over
HTTP/HTTPS.

5.1.2 A connector-based architecture

At the heart of the separation of storage and compute in Trino is the connector-
based architecture. A connector provides Trino with an interface to access
an arbitrary data source. Each connector provides a table-based abstraction
over the underlying data source and is used by a catalog configuration to
access a specific data source. A catalog is associated with a specific connec-
tor, defines the details for accessing a data source and contains schemas –
exposed by the data source – that are a way to organize tables. Each schema
contains tables that provide the data as set of unordered rows, which are
organized into names columns with data types.

Figure 5-2: A catalog and a schema together define a set of table that can be

queried.

5.1.3 Query execution model

The request for a query can be done by a user through CLI (Communication
Line Interface) or by a client using the ODBC (Open DataBase Connectivity)
or JDBC (Java ...) driver. The coordinator accepts a SQL statement, then
parses and analyzes it to create a query plan. Using metadata (about tables,

5.1 Trino 56

columns and data types), data statistics (row counts, table sizes), and data
location, the coordinator can break up the query plan in one or more stages:
each stage contains tasks that are planned and scheduled across the workers.
Each task works on a unit of data called split, that is fetched by the worker
though a connector, then processed and provided to the coordinator.

Figure 5-3: Task management performed by the coordinator [33].

5.1.4 Hive connector

Trino uses connectors to reach the data located in different storages and
specifically it uses the Hive connector to read data from distributed object
storages that are organized according to the rules laid out by Hive – including
GCS, HDFS, Amazon S3, Azure Storage – without using the Hive runtime
code [34]. To use this connector, therefore, it is not necessary to implement
Hive, but the presence of Hive Metastore is required, along with an associated
relational DB. Before Trino could be deployed within the infrastructure, it is
necessary for these two services to be active.

5.1.5 Hive Metastore

Data is stored in a multitude of different formats, in different locations, un-
der different access restrictions, with different structures. It is necessary to
be aware of them all, so it is needed to have one place managing all the
information about the data stores. Hive Metastore is this place: a service
that stores metadata - like table columns, file locations, file formats - related

5.1 Trino 57

to Apache Hive and other services, in a backend RDMBS, such as MySQL
or PostgreSQL. Trino — and other clients — communicates with the Hive
Metastore Thrift server to retry information about the underlying data stor-
ages.

Figure 5-4: Trino + Hive Metastore architecture [34].

5.1.6 Implementation and configuration

Hive Metastore and Postgres were implemented as containers via declara-
tion in Terraform, and some configurations were defined in the ‘metastore-
site.xml’ file, such as the Thrift URI to access the metastore, the connector
to PostgreSQL (JDBC driver), any credentials (username and password), the
connector to GCS, the project ID, and the secret access key.

5.1 Trino 58

Figure 5-5: Hive Metastore terraform declaration.

To implement Trino within the infrastructure, a Helm Chart has been used,
that is a collection of files that describes a related set of Kubernetes resources
[35]. This Chart uses ConfigMaps, an API object used to store nonconfiden-
tial data in key-value pairs, to perform configurations and define certain
properties, and then deploy a chosen number of coordinators and workers.
These configurations can be defined within the ‘values.yaml’ file. In this case,
it has been necessary to define the catalogs to be used: for example, a Hive
catalog, defining the Hive connector, the HMS URI and the key to access
GCS.

Figure 5-6: Configuration of catalogs for Trino.

5.1 Trino 59

5.1.7 Compute Layer + Consumption

Trino proved useful not only to serve as a storage access point for various
consumer tools, but it has also been used as the execution engine for the SQL
statements defined with dbt, making it possible to define, within the Data
Product, its own catalog, schemas, and tables, automating work that would
have had to be done manually by the user through Trino’s CLI and reinforcing
the concept of self-description. Also, Trino and dbt are complementary when
one needs to access different sources from a single SQL query [36]. Although
this functionality is not currently exploited within the implementation (using
only GCS as the storage service), it is possible to define a Data Product with
dbt with values from different storages, and the query is made possible by
the Trino engine. The federated query, a feature of Trino, references and uses
databases and schemas from entirely different systems in the same statement.

5.1.8 Apache Superset

After implementing Trino, it was sufficient to implement a service to connect
to it and consume the data. It was decided to deploy Superset as the first BI
tool because it is open-source, is widely used, and supports Trino. Superset
is fast, lightweight, intuitive, and loaded with options that make it easy for
users of all skill sets to explore and visualize their data, from simple line charts
to highly detailed geospatial charts [37]. In order to implement Superset, it
has been used a Helm Chart.

5.1 Trino 60

Figure 5-7: Full Data Mesh architecture with Trino.

5.1.9 Build of a Data Product

After the implementation of Trino, Hive Metastore, and Superset, the last
part of the work for this project involved the development of an Argo Work-
flow for the creation and deployment of a Data Product that would be auto-
matically linked to Trino and Superset via the Rest API. The build of a Data
Product defined through dbt is assigned to an Argo Workflow, composed of
many tasks.

5.1 Trino 61

Figure 5-8: dp-build-dbt tasks.

The Terraform task is responsible for the plan and apply of a terraformed
environment, which builds any needed infrastructure. The Spec-Dag-Build is
a docker-in-docker task, allowing the client side of Dagster present in the Data
Product to have it orchestrated. It builds a self-contained, fully functional
data product image as artifact. The dbt task connects to gcs, executes .sql
files, and generates documents and other information needed by Mesh. The
Datahub task does ingestion of the metadata generated by the precedent
task. The Superset task is itself composed of three tasks:

� Login: via API Rest, logs in to Superset and saves the access token,
which is needed in subsequent tasks - username and password also
distinguish access rules.

� Database: a database with the name of the DP is created via link to
Trino, which queries the data in the location indicated by the DP. If
such a database already exists, this task retrieves the id from the name
and passes it to the next task.

5.1 Trino 62

Figure 5-9: Two databases on superset representing two different data

products.

� Dataset: a dataset is created for each table in the Data Product. Now
it is possible to execute SQL queries on data and create visuals.

Figure 5-10: Datasets on Superset, representing tables from data products.

In this first and limited implementation, since BigQuery and GCS are
the backends, the catalog identifies the Hive connector, while the schema

5.1 Trino 63

identifies the individual Data Product, as ‘orders-raw-data’ and ‘supply-raw-
data’. Another Argo workflow is then executed to deploy the Data Product,
where it is connected to Dagster and orchestrated together with the other
ones.

Chapter 6

Results

In the previous chapters, the implementation of the Data Mesh as a Bip
project was exposed in some detail. This chapter sets out the results of this
experimentation and a direct comparison with theory to verify if the four
principles described by Zhamak Dehghani have been met. In a second phase
other Data Mesh implementations will be presented, made by big companies
in the Cloud industry.

6.1 Theoretical Comparison

In general, the implementation achieves many of the principles and goals set
out by Zhamak Dehghani in her book about Data Mesh [4].

6.1.1 Domain Ownerhsip

Data remain “at the source”: via the virtualization offered by Trino, they
are not moved from the storage systems where they are saved, while only
the expertise teams can build them together into Data Products, whether
they are Source-Aligned, Aggregated or Consumer-Aligned. dbt allows Data
Products to be modeled at will by defining schemas, while preserving inter-
operability, and to perform transformations or aggregations (via federated
queries): pipelines are then removed from the center of the architecture and
the task is left to the teams who can easily define them via SQL.

6.1 Theoretical Comparison 65

6.1.2 Data as a Product

The tools presented in the previous chapters serve to facilitate users in de-
veloping Data Products conforming to the characteristics that make them of
central value in a company’s economy. DataHub, using the metadata and
the YAML documentation provided by dbt awhen a DP is built, serves as a
catalog and first point of scouting of the data in an organization’s structure,
making the DP discoverable and understandable. The virtualization layer
introduced by Trino allows the data to be accessed without moving it from
the various source backends, the DP is therefore addressable. Together with
the configurations made possible by dbt, the Data Product is moldable and
yet interoperable (being a SQL-on-Anything system) and Native Accessible,
as it can potentially be explored by any BI or ML tool. It also currently cov-
ers a small part of security, in that roles can be defined to access and modify
data, but that is not enough. Dagster, Grafana, and the metrics on DataHub
will make the DP trustworthy and truthful, while it will be a responsibility
of the team working on it to make the DP valuable on its own.

6.1.3 Self-Serve Data Platform

The platform is deployed on Kubernetes clusters via CI/CD tools such as
GitLab, and IaC such as Terraform, enabling:

� The DP Developer to not worry about the details of provisioning,
as computing resources are managed independently as needed, or of
the DP life cycle, as build and deploy are automated through Argo
workflows.

� The DP User to easily discover the data she needs through DataHub
and consume it through BI tools and notebooks. The DP does not have
to be “loaded”, rather it is ready to use.

6.1.4 Federated Data Governance

This fourth principle has only been partially realized and will be the subject
of future development. The presence of APIs encourages Standard as Code,
making Data Products federated members of the Mesh. Metrics will be pro-
vided to tools such as Grafana and Prometheus when they are implemented,
which will take care of the overall infrastructure situation, automatic tests,

6.2 A view from the big companies 66

and monitoring. The biggest problem remains data access policies, now par-
tially covered by the role definition made available by Trino, but this is an
interim measure, as it does not easily scale.

6.2 A view from the big companies

Because the conception of the Data Mesh is very recent, there are no ar-
chitectures prepared for this approach from start to finish, partially because
technologies may be needed to exploit the full potential of the Mesh, particu-
larly at the federation level. Since its conception in 2018, the Data Mesh has
attracted a lot of attention, particularly within the online discussion, on sites
such as Medium [46], has been filled with articles discussing the benefits of
adopting this architecture or discussing implementations and suitable tools.
In the past two years, large companies have shown interest in this architec-
ture, creating implementations for customers with special data management
needs. For example, Zalando already in 2020 realized that accessibility and
availability at scale can only be guaranteed when moving more responsibili-
ties to those who pick up the data and have the respective domain knowledge
– the data owners – while keeping only data governance and metadata in-
formation central [38]. With the company Databricks they, implemented an
architecture non-technically called Bring Your Own Bucket, which features
a central platform playing the role of a self-serve data platform with:

� A Data Lake Storage, where teams can share buckets (Amazon S3),
with refined data from their (sub)domain.

� A Processing Platform, where to run queries on data.

� A Metadata Layer, playing the role of the catalog.

6.2 A view from the big companies 67

Figure 6-1: Bring Your Own Bucket, Zalando.

Data Users can search and use the data in the way they prefer, be a Rela-
tional Database, Redshift or other. There are rules for organizing the buckets
to be shared: it is necessary to choose the data to be included, following a
ranking of the most used datasets. In 2021 the three big companies offer-
ing Cloud-as-a-Service, started providing guides for implementing the Data
Mesh architecture on their platforms and offering new services to exploit its
potential.

6.2.1 Amazon Web Services

Amazon published an article [39] on how to approach an implementation of
Data Mesh using their Web Services enabling lines of business to operate
autonomously (like Domains) and providing a central data discovery, gover-
nance, and auditing for the organization at large (Self-Serve Data Platform
and Federation). Amazon propose to use replication of the Lake House Ar-
chitectures for implementing Data Domains and Products in a scalable way:
the producers can store raw and transformed data into Amazon Simple Stor-
age Service (S3), and with AWS Glue do the ETL processes to prepare the
data products that can be cataloged into a Lake Formation Data Catalog.
Data Domains then must expose a set of interfaces that make data consum-
able through analytics and machine learning services like Athena, Redshift

6.2 A view from the big companies 68

and SageMaker. The Lake Formation service also offers the ability to en-
force data governance, granting security. It is important to note that sharing
is done through metadata linking alone. Data is not copied to the central
account, and ownership remains with the producer [39].

Figure 6-2: High level view of the Data Mesh implementation through AWS.

The company JPMorgan adopted this pattern to build its own Data Mesh
architecture [40].

6.2.2 Microsoft Azure

Microsoft has not only published some articles on the benefits of the Data
Mesh and how to implement it through its services, but in the first quarter
of 2022 released Cloud-scale analytics: a scalable, repeatable framework that
meets the organizations’ unique need for building modern data platforms

6.2 A view from the big companies 69

[41]. The goals this framework aims to achieve are the ones of the Data Mesh.
Its architecture is built upon Azure Landing Zones, whose scope is to bring
data closer to users, enabling self-service and guaranteeing scalability through
replication – they embody the first three principles of Data Mesh. Inside this
architecture a central core is also present, called Data Management Landing
Zone, that maintains common management and governance – it embodies
the Federated Computational Governance principle of Data Mesh.

Figure 6-3: High level architecture of Azure Cloud-scale analytics.

Data Landing Zones are composed of several layers:

� Core Services: including all the services that allow to ingest, store,
analyze, and transform data, plus monitoring and connectivity.

� Data Application that builds Data Products.

� Visualization for consuming data.

Data Management Landing Zone is responsible for the governance of the en-
tire platform, via crawlers, which connect to data lakes and polyglot storage
in data landing zones. It contains services like: Data Catalog, Data quality

6.2 A view from the big companies 70

management, Data modeling repository, API catalog, Data sharing and con-
tracts. Azure, therefore, allows one to create her own architecture through
the replication of these Data Landing Zones, that already contain all the
services to implement the Data Mesh principles.

6.2.3 Google Cloud Platform

Like Microsoft, Google has also shown interest in Data Mesh by proposing
a new service called Dataplex, which allows data from Google Cloud Stor-
age and Big Query buckets to be organized together. Dataplex presents a
hierarchical organization that interprets the principle of Domain Ownership:

� Lakes: represent a company’s domains.

� Zones represent subdomains, for example a logical group of data man-
aged by a team. They can be: Raw with ingested and unstructured
data; Curated with cleaned, formatted, ready for analytics data.

� Assets: can be GCS buckets or BQ tables.

Figure 6-4: Dataplex hierarchical organization.

An example of how it can be used in a Data Mesh perspective is to inte-
grate data from the various sources into untended zones that are “privately”
managed by the team concerned. The goal is to transfer as little data as
possible, through transformations that keep them within curated zones, and
then publish them to the metastore provided by GCP (Data Proc) so that
different teams in the company can access the Data Products and consume
them through notebooks, graphs, and BI tools, some of which have been
implemented within Dataplex’s Explore.

6.2 A view from the big companies 71

Figure 6-5: GCP Data Mesh Implementation.

Since the Bip implementation has been designed on GCP services, the first
candidate chosen for the Data Consumption part has been Dataplex, but the
problem with this service is that it does not make possible to build a cross-
cloud architecture, failing the challenge of abstracting the backend of any
Data Product. Using Dataplex, one will also have to rely on the other tools
to implement the functionality needed for the Mesh, such as the Data Catalog
for Data Product discovery. Such services have, however, a much higher cost
than would be achieved with an identical structure built with open-source
tools, such as those presented in previous chapters. Figure 6-6 represents the
cost of the Data Mesh cluster during October 2022: Dataplex was tested on
four data products for a total of ten days and costed about ¿50, half of the
bill for the Compute Engine, in charge of keeping up the infrastructure for
the entire month. Rather than implementing expensive GCP services such
as Dataplex, it is more cost-effective to implement open-source tools with
similar functionality.

6.2 A view from the big companies 72

Figure 6-6: GCP Data Mesh Implementation.

Building a Data Mesh architecture using GCP services, however, solves the
federation problem, as the Identity and Access Management (IAM) service
allows data access policies to be managed through the definition of roles and
contexts.

6.2.4 Summing up

Concluding this section, it is possible to state that, while Amazon’s approach
to Data Mesh is still quite immature, the architecture developed in Bip does
not differ much from those designed by Microsoft and Google: they have in
common the adoption of blueprints for creating scalable distributed systems
hosting Data Products, whether they contain structured or unstructured
data, and the presence of a central platform where Data Products can be
shared, accessed, and consumed. The services of the two large companies
work very well in their own ecosystem, but are not cross-cloud oriented,
whereas the goal of the Bip project was to have an architecture ready to work
with data from any system, universal. Obviously, this leads to accessibility
and security issues because of the increased complexity.

Chapter 7

Conclusions

The internal project at Bip presented in this thesis has been quite articulate
as it concerned the construction of a Data Mesh architecture from scratch,
and even the consumption part alone required the study of different tools,
services and architectures. This last chapter presents the difficulties, learn-
ings from this project and future developments.

7.1 Challenges

Working on a Data Mesh project revealed a variety of challenges. The first
one was to move from understanding the theory to putting it into practice:
what a Data Product actually is, how to build it, how to implement a self-
service data platform, which tools best embrace the concept of a Data Mesh
among the many ones available.

7.1 Challenges 74

Figure 7-1: MAD landscape 2023, Infrastructure tools [42].

A second type of difficulty turned out to be the technical complexity of
implementing this architecture, due to:

� Deploying an infrastructure via CI/CD and managing dependency is-
sues – innovative products release new versions, very often causing
conflicts;

� Dependencies over outdated services, such as Hive Metastore;

� DP management and consumption with data distributed across multi-
ple external repositories;

� Terraforming and configuring all the tools is time-consuming, more

7.2 Learnings 75

demanding than deploying services born integrated from one individual
cloud provider, such as GCP.

A third type of difficulty involved the planning of migrations and transforma-
tions to the Data Mesh for client companies: this point proved to be the most
complicated, because, unlike a technical challenge, the effort put in does not
guarantee a result, since some compromises are necessary when dealing with
companies: concretizing the Data Mesh means making changes at the level of
personnel organization, introducing and modifying roles and responsibilities,
fundamental levels in the internal relationships. Another issue emerges from
the fact that there are still no native platforms for the Data Mesh, but only
services – as seen in the last chapter – that help building it: the result is a
high degree of system integration, which presents risks for large companies.
Throughout this project, it has been possible to work with different types of
companies, which highlighted the complexity of the approach:

� The first type of company is already well organized with teams of an-
alysts divided by data domain, in which case a transition to a Data
Mesh architecture could bring benefits very quickly;

� A second type of company does not have such a defined organization,
but can leverage capabilities at the technical level, such as terraforming
its infrastructure and using sandbox environments;

� A third type of company had a path that did not include integration
of data and cloud platforms, so moving to a Data Mesh architecture
would be premature.

� A fourth type of company, with a good know-how on data, has ex-
panded greatly over the years, but no strategy has been developed to
integrate the data analysis of acquired companies; it would be necessary
to create a data strategy context, before migrating to Data Mesh.

A company’s readiness for a Data Mesh architecture therefore depends on
many factors, and it is therefore difficult to convey to a customer the advan-
tages of a transition to Data Mesh despite the costs and time involved.

7.2 Learnings

The project was important to explore concepts such as:

7.3 What’s Next 76

� Employ declarative logic to build infrastructure and data products is
very powerful;

� Make this foundation transparent, hiding its complexity from the user
via API;

� Decoupling storage and computing, via a virtualization layer;

� Make the data product valuable, easy to discover and use.

Particularly, it was important to gain a deeper understanding of the inte-
gration level of a modern data stack. The use of modern tools has led us to
positively value a best-of-breed approach, that is, to choose to implement the
instrument, among the many in the ecosystem, that best performs a specific
task. The problem of this approach is the lack of standards: new protocols
and interfaces are needed to make compatible the countless tools composing
the Machine Learning, AI and Data ecosystem.

7.3 What’s Next

Building a cross-cloud architecture has brought some complexity to data
governance and federation management, so future developments will focus
on these aspects, both with the implementation of monitoring and a policy
management model.

7.3.1 Service Mesh

As seen in previous chapters, the problem of security, access to data prod-
ucts and policy management remains an open issue: a possible solution is
represented by service mesh, a dedicated infrastructure layer, that could be
very useful to implement routing, security, resilience, and other policies on
a service’s inbound and outbound calls. A service mesh consists of network
proxies paired with each service in an application and a set of task manage-
ment processes. The proxies are called the data plane and the management
processes are called the control plane. The data plane intercepts calls be-
tween different services and “processes” them; the control plane is the brain
of the mesh that coordinates the behavior of proxies and provides APIs for
operations and maintenance personnel to manipulate and observe the entire
network [43]. For example, Istio, an open-source implementation of a service

7.3 What’s Next 77

mesh, embeds the configuration of traffic routing policies in each endpoint of
every single service and executes them locally right at the time of making a
request [4].

Figure 7-2: Service Mesh high level structure.

7.3.2 Arrow Flight SQL

On the virtualization side, Trino may not be the perfect solution as it has a
high computational cost regarding the data discovery in the various backends;
in particular, it could be a bottleneck for aggregation and join operations,
which would be quite frequent in a decentralized architecture such as Data
Mesh. A better alternative might be the Arrow Flight SQL, a protocol for
interacting with SQL databases using the Arrow in-memory format and the
Flight RPC framework [44]. This recently released protocol (February 2022)
makes data collection faster because it can transport data without having
to convert it into a row-based form and allowing the data to be transferred
from server to client without the delay of serialization and deserialization.

7.4 Data Mesh 78

Figure 7-3: Arrow way skips conversion steps, making the process faster.

An architecture that implements both technologies could involve a scalable
container that adopts communication protocols (such as Arrow Flight) and
hosts a proxy Service Mesh with policies. This would create an intermediate
layer that would ensure interoperability between the tools and federation of
the data products.

7.4 Data Mesh

”When I first developed the concept of data mesh in 2018, I understood the
magnitude of the change I was proposing [...] the idea took on a life of its own.
It’s become the subject of countless conferences and articles. Hundreds of
organizations from a variety of industries have attempting it.” [45] - Zhamak
Dehghani.

The great attention currently being reserved to Data Mesh finds a reason
in how it solves the problem of data decentralization, which for decades has
been tried to be contained by flowing data into centralized structures that
were unable to handle the ever-increasing amount of information. As result
of this interest a further tool innovation is expected in this 2023:

7.4 Data Mesh 79

� At the Data Product level, something even more intuitive than dbt
could emerge, perhaps with the ability to define DPs through no-code
interfaces.

� At the data catalog level, we expect an evolution of metrics, observ-
ability and discovery made more effective by semantic search and NLP.

� A native Data Mesh platform that facilitates access management and
interoperability among custom tools.

Regarding the latter point, on January 16, 2023, Zhamak Dehghani an-
nounced Nextdata, a company that will focus on decentralizing data. Their
first project is Nextdata OS, “a data networking toolset” that will introduce
the concept of Data Product Containers, a new unit of data value designed
to be shared and used responsibly at scale [45].

We will continue to hear about Data Mesh for some time.

Chapter 8

Ringraziamenti

Ringrazio chi ha contribuito a questa tesi: al relatore Marco Patella per la
disponibilità e l’interesse dimostrati, al tutor Riccardo per avermi seguito
durante il tirocinio, a Martino, Matteo e Andrea per la fiducia e l’aiuto che
mi hanno dato. Ringrazio tutti i colleghi di Bip che stanno contribuendo a
creare un ambiente amichevole in ufficio.
La conclusione della laurea magistrale è anche un buon momento per guardarsi
indietro ed essere grati delle persone e dei momenti che hanno reso questi
anni cos̀ı belli.
Un primo ringraziamento va a mia mamma e mio papà, su cui so di poter
contare in qualsiasi momento e parte del mondo io sia.
Un ringraziamento a tutta la famiglia: ai nonni che hanno sempre una rac-
comandazione, agli zii che mi hanno trasmesso passioni e interessi, ai cugini
con cui sono cresciuto.
Un ringraziamento va agli amici.
Ai cavalli dell’Ippodromo per i capodanni in montagna, le grigliate al lago, i
palidani, i concerti, le nottate semplicemente a parlare: a quante ne abbiamo
vissute e a quanto siamo cambiati, insieme.
Ai “modenesi” per le lezioni in ultima fila, lo studio in biblioteca, le birre e
le serate: con la vostra spensieratezza mi ricordate quanto faccia bene non
prendersi troppo sul serio.
To the Erasmus guyze (eccoli qua!), we made Idun great again with (af-
ter)parties, kasespatzle, carbonare, sunrises on the beach: you gave me so
much in a short time.
Un ringraziamento particolare ai quei fratelli e sorelle che in questi anni mi
hanno ascoltato, consigliato e condiviso con me il loro mondo.

Chapter 9

Bibliography

[1] The Zettabyte Era Officially Begins (How Much is That?), Thomas
Barnett Jr., https://blogs.cisco.com/sp/the-zettabyte-era-officially-begins-how-much-is-that

[2] Data Never Sleeps 10.0, https://www.domo.com/data-never-sleeps

[3] Data Mesh—Thoughtworks, https://www.thoughtworks.com/what-we-do/
data-and-ai/data-mesh

[4] Z. Dehghani, Data mesh: delivering data-driven value at Scale. Seab-
stopol, CA: O’Reilly Media, 2022

[5] Business integration partners - Wikipedia, https://it.wikipedia.

org/wiki/Business_integration_partners

[6] xTech - Bip Consulting (bip-group.com), https://www.bip-group.

com/it/who-we-are/practices/x-tech/

[7] Data - Wikipedia, https://en.wikipedia.org/wiki/Data

[8] What is Online Transaction Processing (OLTP) — Oracle , https:
//www.oracle.com/database/what-is-oltp/

[9] The Evolution Of Data (forbes.com), https://www.forbes.com/sites/
forbestechcouncil/2018/07/17/the-evolution-of-data/?sh=2621d6f0c95f

[10] https://www.researchgate.net/publication/228765967_Business_
Intelligence

https://blogs.cisco.com/sp/the-zettabyte-era-officially-begins-how-much-is-that
https://www.domo.com/data-never-sleeps
https://www.thoughtworks.com/what-we-do/data-and-ai/data-mesh
https://www.thoughtworks.com/what-we-do/data-and-ai/data-mesh
https://it.wikipedia.org/wiki/Business_integration_partners
https://it.wikipedia.org/wiki/Business_integration_partners
https://www.bip-group.com/it/who-we-are/practices/x-tech/
https://www.bip-group.com/it/who-we-are/practices/x-tech/
https://en.wikipedia.org/wiki/Data
https://www.oracle.com/database/what-is-oltp/
https://www.oracle.com/database/what-is-oltp/
https://www.forbes.com/sites/forbestechcouncil/2018/07/17/the-evolution-of-data/?sh=2621d6f0c95f
https://www.forbes.com/sites/forbestechcouncil/2018/07/17/the-evolution-of-data/?sh=2621d6f0c95f
https://www.researchgate.net/publication/228765967_Business_Intelligence
https://www.researchgate.net/publication/228765967_Business_Intelligence

82

[11] Data Warehouse Testing — QuerySurge, https://www.querysurge.
com/solutions/data-warehouse-testing

[12] The Difference Between Operational and Analytical Data Systems (arkat-
echture.com), https://www.arkatechture.com/blog/the-difference-between-operational-and-analytical-data-systems

[13] Evolution to the Data Lakehouse - The Databricks Blog , https://
www.databricks.com/blog/2021/05/19/evolution-to-the-data-lakehouse.

html

[14] What Is a Data Lakehouse and Answers to Other Frequently Asked
Questions - The Databricks Blog, https://www.databricks.com/blog/
2021/08/30/frequently-asked-questions-about-the-data-lakehouse.

html

[15] How to Move Beyond a Monolithic Data Lake to a Distributed Data
Mesh (martinfowler.com), https://martinfowler.com/articles/data-monolith-to-mesh.
html

[16] Vernon, Vaughn (2013). Implementing Domain-Driven Design. Upper
Sadle River, NJ: Addison-Wesley. p. 3. ISBN 978-0-321-83457-7

[17] Scott R. Ellis EnCE, RCA, in Network and System Security (Second
Edition), 2014, https://www.sciencedirect.com/book/9780124166899/
network-and-system-security

[18] What is a data mesh and how not to mesh, https://towardsdatascience.
com/what-is-a-data-mesh-and-how-not-to-mesh-it-up-210710bb41e0

[19] https://cloud.google.com/kubernetes-engine?hl=en

[20] https://kubernetes.io/it/docs/concepts/overview/what-is-kubernetes/

[21] https://en.wikipedia.org/wiki/YAML

[22] https://en.wikipedia.org/wiki/Terraform_(software)

[23] https://docs.gitlab.com/ee/ci/introduction/index.html

[24] https://argoproj.github.io/argo-workflows/

[25] https://fastapi.tiangolo.com/

https://www.querysurge.com/solutions/data-warehouse-testing
https://www.querysurge.com/solutions/data-warehouse-testing
https://www.arkatechture.com/blog/the-difference-between-operational-and-analytical-data-systems
https://www.databricks.com/blog/2021/05/19/evolution-to-the-data-lakehouse.html
https://www.databricks.com/blog/2021/05/19/evolution-to-the-data-lakehouse.html
https://www.databricks.com/blog/2021/05/19/evolution-to-the-data-lakehouse.html
https://www.databricks.com/blog/2021/08/30/frequently-asked-questions-about-the-data-lakehouse.html
https://www.databricks.com/blog/2021/08/30/frequently-asked-questions-about-the-data-lakehouse.html
https://www.databricks.com/blog/2021/08/30/frequently-asked-questions-about-the-data-lakehouse.html
https://martinfowler.com/articles/data-monolith-to-mesh.html
https://martinfowler.com/articles/data-monolith-to-mesh.html
https://www.sciencedirect.com/book/9780124166899/network-and-system-security
https://www.sciencedirect.com/book/9780124166899/network-and-system-security
https://towardsdatascience.com/what-is-a-data-mesh-and-how-not-to-mesh-it-up-210710bb41e0
https://towardsdatascience.com/what-is-a-data-mesh-and-how-not-to-mesh-it-up-210710bb41e0
https://cloud.google.com/kubernetes-engine?hl=en
https://kubernetes.io/it/docs/concepts/overview/what-is-kubernetes/
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/Terraform_(software)
https://docs.gitlab.com/ee/ci/introduction/index.html
https://argoproj.github.io/argo-workflows/
https://fastapi.tiangolo.com/

83

[26] https://en.wikipedia.org/wiki/API

[27] https://en.wikipedia.org/wiki/Data_build_tool

[28] https://docs.getdbt.com/docs/build/projects

[29] https://datahubproject.io/docs/introduction

[30] https://datahubproject.io/docs/features/

[31] https://dagster.io/platform

[32] https://en.wikipedia.org/wiki/Grafana

[33] Matt Fuller, Manfred Moser, Martin Traverso, Trino: The Definitive
Guide. Sebastopol, CA: O’Reilly Media, 2021

[34] https://trino.io/blog/2020/10/20/intro-to-hive-connector.html

[35] https://helm.sh/docs/topics/charts/

[36] https://trino.io/episodes/21.html

[37] https://superset.apache.org/

[38] https://www.databricks.com/session_na20/data-mesh-in-practice-how-europes-leading-online-platform-for-fashion-goes-beyond-the-data-lake

[39] https://aws.amazon.com/blogs/big-data/design-a-data-mesh-architecture-using-aws-lake-formation-and-aws-glue/

[40] https://aws.amazon.com/blogs/big-data/how-jpmorgan-chase-built-a-data-mesh-architecture-to-drive-significant-value-to-enhance-their-enterprise-data-platform/

[41] https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/
scenarios/cloud-scale-analytics/

[42] https://mattturck.com/mad2023/

[43] Rahul Sharma; Avinash Singh (2019). Getting Started with Istio Ser-
vice Mesh: Manage Microservices in Kubernetes. Apress. p. 103.
ISBN 9781484254585.

[44] https://arrow.apache.org/docs/format/FlightSql.html

[45] https://medium.com/@zhamakd/why-we-started-nextdata-dd30b8528fca

[46] https://medium.com/

https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Data_build_tool
https://docs.getdbt.com/docs/build/projects
https://datahubproject.io/docs/introduction
https://datahubproject.io/docs/features/
https://dagster.io/platform
https://en.wikipedia.org/wiki/Grafana
https://trino.io/blog/2020/10/20/intro-to-hive-connector.html
https://helm.sh/docs/topics/charts/
https://trino.io/episodes/21.html
https://superset.apache.org/
https://www.databricks.com/session_na20/data-mesh-in-practice-how-europes-leading-online-platform-for-fashion-goes-beyond-the-data-lake
https://aws.amazon.com/blogs/big-data/design-a-data-mesh-architecture-using-aws-lake-formation-and-aws-glue/
https://aws.amazon.com/blogs/big-data/how-jpmorgan-chase-built-a-data-mesh-architecture-to-drive-significant-value-to-enhance-their-enterprise-data-platform/
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/cloud-scale-analytics/
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/cloud-scale-analytics/
https://mattturck.com/mad2023/
https://arrow.apache.org/docs/format/FlightSql.html
https://medium.com/@zhamakd/why-we-started-nextdata-dd30b8528fca

	Introduction
	Bip Consulting

	Data Flow
	Drinking Data
	Business Intelligence
	Operational Data
	Data Warehouse

	Back to the source
	Machine Learning
	Analytical Data
	Data Lake

	Data Flood
	Next Gen Data Platforms
	The bottleneck

	Mesh the Flow
	Inspirations
	Domain-Driven Design
	The mesh architecture

	The four principles
	Domain Ownership
	Data as a Product
	Self-Serve Data Platform
	Federated Computational Governance

	When to Mesh?

	A Data Mesh Implementation
	Architecture development
	An overview of the project
	Kubernetes
	YAML
	Terraform
	GitLab
	Argo Workflows
	Fast API
	Compute and Storage

	User Experience of the Data Product
	dbt - Building the Data Product
	DataHub - discovering the Data Product
	Dagster - orchestrating the Data Product
	Grafana - monitoring the Data Product

	Data Consumption
	Trino
	Trino Cluster
	A connector-based architecture
	Query execution model
	Hive connector
	Hive Metastore
	Implementation and configuration
	Compute Layer + Consumption
	Apache Superset
	Build of a Data Product

	Results
	Theoretical Comparison
	Domain Ownerhsip
	Data as a Product
	Self-Serve Data Platform
	Federated Data Governance

	A view from the big companies
	Amazon Web Services
	Microsoft Azure
	Google Cloud Platform
	Summing up

	Conclusions
	Challenges
	Learnings
	What's Next
	Service Mesh
	Arrow Flight SQL

	Data Mesh

	Ringraziamenti
	Bibliography

