
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

SCHOOL OF ENGINEERING AND ARCHITECTURE

MASTER’S DEGREE
IN

TELECOMMUNICATIONS ENGINEERING

DATA PLANE PROGRAMMABILITY FOR
DYNAMIC SERVICE PROVISIONING

Master Thesis
in

Laboratory of Advanced Networking M

Supervisor
Prof. GIANLUCA DAVOLI

Co-supervisor
CHIARA GRASSELLI

Candidate
ANNA VANTI

SESSION III
ACADEMIC YEAR 2021/2022

Contents

Abstract v

1 Introduction 1

1.1 Related Work . 3

2 Overview 5

2.1 Network Programmability . 5

2.2 Data Plane Programmability . 6

2.3 The P4 Programming Language 8

2.3.1 Specification History . 9

2.3.2 P416 Design . 10

2.3.3 P416 Data Plane Model 12

2.3.4 V1Model Architecture 15

2.3.5 P416 Data Types . 17

2.3.6 Parser and Deparser in V1 Architecture 19

2.3.7 Match-Action Pipeline in V1 Architecture 24

2.3.8 Externs . 30

2.4 Dynamic Service Provisioning 33

3 P4 Basics and Use Cases 35

3.1 Automatic Procedure for VM
configuration . 36

3.2 Implementing Basic Forwarding 38

3.3 Implementing Basic Tunneling 46

3.4 Implementing a Control Plane
using P4Runtime . 55

iii

iv CONTENTS

3.5 Implementing Explicit Congestion
Notification . 64

3.6 Implementing Multi-Hop Route
Inspection . 71

3.7 Implementing A Basic Stateful Firewall 79

4 DoS Prevention Service Implementation 91
4.1 DoS prevention P4 Program . 93
4.2 P4Runtime Controller . 108
4.3 Interaction with the orchestration system 117

5 Performance Evaluation 119

6 Conclusion 133

Abstract

With a steady progression toward network softwarization, the new generation
of communication infrastructures have undergone drastic transformation in re-
cent years. Due to this, networks may now support higher levels of automation,
pervasiveness, flexibility, and efficiency. The newest generation of network ser-
vices must confront with the increasing needs of different application contexts.
For instance, it is frequently necessary to provide an extremely tight latency
(e.g. IoT and machine-to-machine communications). In contrast to cloud
computing, fog computing proposes an intermediary layer between network
infrastructure and end users, wherein clusters of fog nodes deliver services in
response to service requests. Fog nodes, in addition to computational needs
to the network, can offer a highly dynamic ecosystem by joining or removing
themselves from the Fog cluster. To handle the many service models in this
scenario and the associated resource monitoring and allocation challenges, a
service orchestration system is required.

In this thesis, a DoS prevention service is designed and implemented through
the P4 programming language and P4Runtime framework, and prepared for
integration with a resource management and service provisioning layer placed
between the service consumers and a Fog infrastructure. These tools enable the
effective softwarization and programmability of the Data Plane of network de-
vices. The complete system providing the DoS prevention service is described
in detail in each of the implemented layers, and the results of a performance
evaluation are presented.

v

vi ABSTRACT

Chapter 1

Introduction

In the last years, the new generation of communication infrastructures is radi-
cally transformed with a progressive evolution toward network softwarization.
This brings the networks to enable an increasing level of flexibility, efficiency,
pervasiveness, adaptability, and automation. Indeed, the different application
contexts have different needs in terms of networking and computing perfor-
mance, but what combines all of them is the growth of their critical needs.
The newest generation of network services must confront with these increas-
ing needs. In many cases, for example, a very tight latency experienced by
the end-user or machine-to-machine application has to be ensured. Therefore,
latency can be considered one of the most important parameters to take into
account for the performance evaluation process of service providers. In partic-
ular, with the growth of the Internet of Things (IoT) and machine-to-machine
communication, the devices require highly scalable approaches to massive pro-
cessing and storage [1]. Cloud applications based on microservice design are
widespread in softwarized networks for their high scalability and efficient life-
cycle manageability. Recently, indeed, the Cloud Computing Paradigm is ob-
taining great popularity. This approach consists in delegating the major part
of networking and computing functionalities to achieve the lowest possible la-
tency and it is often done at the expense of computing power. Fog Computing,
instead, proposes an intermediate layer between end-users and Cloud infras-
tructures, where clusters of Fog nodes provide services that are similar to those
offered by its larger counterpart (i.e., Cloud Computing) but focusing on the
needs of microservice-based and modular applications [1]. Fog Computing,
in addition to a tight latency, allows for having a highly dynamic ecosystem.

1

2 CHAPTER 1. INTRODUCTION

Fog nodes, that offer computation power to the network, can join or remove
themselves from the Fog cluster. In this way, the overall amount of resources in
the different Fog clusters can vary in time according to the specific needs. The
distributed and dynamic characteristics of the Fog Computing paradigm differ
from the traditional characteristics of the Cloud Computing paradigm, how-
ever, the offered services are similar. Therefore the Everything-as-a-Service
(XaaS) Cloud service model classification can be easily applied also to Fog
Infrastructures keeping the dynamism and the flexibility typical of a Fog envi-
ronment. In this scenario, a service orchestration system is needed to support
the different service models and the related resource monitoring and alloca-
tion issues. In particular, the orchestrator should manage the services that
are natively offered by a Fog node, and the services that can be configured
and deployed, and made available on a Fog node. Considering that, the or-
chestrator should be able to handle service requests coming from end-users
and machine-to-machine applications and to choose which node, if any, can be
employed to provide the requested service [1]. Then, it will configure the cho-
sen node according to the specific request, and inform the end-user about the
availability of the requested service. In this thesis, a system for Fog ORCHes-
tration (FORCH) is taken into account as a resource management and service
provisioning layer placed between the service consumers and a Fog infrastruc-
ture [1]. Under this layer, the proposed service (a DoS prevention service)
is programmed and implemented through the P4 programming language and
P4Runtime framework. These tools enable the effective softwarization and pro-
grammability of network devices Data Planes. In the following Chapters, an
overview of network programmability and the P4 language is provided, and the
implementation of the DoS prevention service is presented in detail. In Chap-
ter 2, after a brief overview of the Network Programmability concept, the P4
language is explained in all its aspects: specification history, data plane model,
the specific V1Model Architecture, and some more implementation details. In
Chapter 3, some of the P4 tutorials available at the GitHub P4 repository [2]
are presented starting from the setup of the work environment to the solutions
of the chosen exercises. In Chapter 4, the DoS prevention service is shown
in each implementation layer and in Chapter 5 the results of a performance
evaluation are presented through graphs and explanations.

1.1. RELATED WORK 3

1.1 Related Work

In this Section, a variety of works related to SDN and Fog computing are pre-
sented, paying close attention to works in which the P4 language is utilized.
In [3], is considered the fact that, with the advances of SDN and the P4 lan-
guage, there are new opportunities and challenges that next-generation SDN
has for Fog computing. It is, indeed, proposed a new mechanism of deploying
SDN control planes both locally and remotely to attend different challenges,
and lower the response time for locally deployed applications (local control
plane). A large part of past and current works focuses on the needs of IoT de-
vices and on the services that they can offer. In [4] a detecting data telemetry
based on P4 language and a preliminary Fog resource management based on
the collected data telemetry is presented to offer latency critical computation
and storage in the IoT scenario. Also, in [5], the technical challenges of the
design of an efficient, virtualized, context-aware, self-configuring orchestration
system for the Fog computing system are taken into account and a prototype
of an intelligent self-managed orchestrator for IoT applications and services
is proposed. In [6], the focus is on the P4 and P4Runtime to overcome the
difficulties imposed by other protocols (such as OpenFlow protocol) in SDN
Fog computing. Several works related to P4 language for Data Plane Program-
ming, [7] [8] [9], describes how this programming language, by specifying how
the switches should process packets, can reduce the overhead of the interaction
between Data Plane and Control Plane and allows a more flexible solution for
network monitoring. Moreover, intelligent resource monitoring and dynamic
service provisioning are enabled. Finally, in [10], a use case related to DDoS
attack prevention is proposed. This paper, indeed, presents microVNF, a Vir-
tualized Network Function (VNF) written in the P4 programming language
and running on a programmable Data Plane that aims to detect, prevent, and
mitigate DoS attacks directed at the connected IoT devices.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Overview

As summarized in Chapter 1, this thesis aims at presenting the P4 language
for Data Plane Programmability and a simple use case for DoS prevention.
In this Chapter, after a brief presentation of network programmability, the
P4 language is introduced with its history, benefits, abstract models, and im-
plementation details. Also, an introduction to dynamic service provisioning
achieved through P4 Data Plane Programmability is provided.

2.1 Network Programmability

The programmability of a device can be defined as the ability of the software
or the hardware to execute a processing algorithm. Thus, the term network
programmability is the ability to define the processing algorithm executed in a
network and in the individual processing nodes, such as switches, routers, etc.
Programming and reconfiguring the devices allows both the network equip-
ment vendors and the users to build networks ideally suited to their needs.
Active and programmable networks allow the creation, customization, deploy-
ment, and management of new services or applications that are configured
(programmed) dynamically into network nodes. Users can thus utilize these
programmable services to achieve their specific network requirements in terms
of performance (e.g., throughput and latency), reliability (e.g., fast failover),
flexibility and adaptability. The network efficiency is also improved due to the
ability to reconfigure, rearrange and adapt the network to the current work-
load (e.g., by scaling out/in resources in a demand-aware manner) or failover
mechanisms (e.g., in terms of fast failure detection, notification, and recovery).

5

6 CHAPTER 2. OVERVIEW

Traditionally, the algorithms executed by network devices, are split into three
distinct classes: the data plane, the control plane, and the management plane [11].
In this reference environment, a plane can be described as a group of algorithms
that process different kinds of traffic, have different performance requirements,
are designed using different methodologies, are implemented using different
programming languages, and run on different hardware. The traditional net-
work architecture consists, as introduced above, of three planes: the data
plane, the control plane, and the management plane. Every network device
must perform all three distinct activities: planning and regulating the forward-
ing process with the control plane protocols, processing the transit traffic and
actual message forwarding in the data plane, and interacting with its owner
(or NMS – Network Management System) through the management plane.
Traditional network devices are closed vertically integrated systems and their
functionalities are rigidly programmed into the embedded software and hard-
ware. A term commonly used nowadays in the industry is Network Operating
System (NOS), an execution environment for programmatic control of the
network [12]. Analogously to the read and write access interfaces to various
resources provided by Computer Operating Systems, a Network Operating
System provides the ability to observe and control a network. The Network
Operating System does not manage the network itself; it provides program-
ming interfaces with high-level abstractions of network resources that enable
network application programs to perform complicated tasks safely and effi-
ciently on a wide heterogeneity of networking technologies. In many modern
high-speed devices, the Data Plane is not yet part of the NOS; having a fixed
Data Plane with fixed devices for the different functionalities does not permit
a flexible and extendible design of the Management and Control Planes. In
order to program and manage the whole stack, the Network Operating System
should consist of Control Plane, Management Plane, and Data Plane.

2.2 Data Plane Programmability

As mentioned in Section 2.1, the Data Plane should be part of the Network
Operating System and, thus, can be defined and programmed by the users to
encounter the specific needs of the network. The Data Plane algorithms are re-
sponsible for processing all the packets that pass through a telecommunication
system, and they define the functionality, performance, and scalability of such

2.2. DATA PLANE PROGRAMMABILITY 7

systems. The possibility to program the Data Plane allows the users to build
custom network equipment without any compromise in terms of performance,
scalability, speed, or energy consumption [11].
The Data Plane Programmability entails multiple benefits:

• Full control and customization. By programming the Data Plane it is
possible to make the device behave exactly in the desired way and it is
possible to inspect and monitor the programs to control the behavior of
the device.

• Flexibility and ease of adding new features. Data plane programming
introduces full flexibility to network packet processing. Algorithms, pro-
tocols, and features can be easily added, modified, or removed by the
user, by simply changing, adding, removing, or modifying the programs.

• Reliability. With a programmable device, as mentioned above, it is pos-
sible to remove underused features in order to reduce the complexity of
the network. Having a program that does only what is needed, with-
out any unused functionality, reduces the risk to have bugs and network
failures.

• Ease of deployment. Compared to long development circles of new
silicon-based solutions, new algorithms can be programmed and deployed
in a matter of days.

• Exclusivity and differentiation. There is no need to share information
with the chip vendor, therefore it is possible to change the function-
ality of the network Data Plane without having to ask a third party.
Network equipment designers and even users can experiment with new
protocols and design unique applications; both are no longer dependent
on vendors of specialized packet processing devices to implement cus-
tom algorithms. Data plane programming is also beneficial for network
equipment developers that can easily create differentiated products de-
spite using the same packet processing device keeping their know-how
to themselves without the need to share the details with the chip ven-
dor. Therefore, the possibility of not sharing ideas allows for obtaining
a competitive advantage.

• Efficiency. With a fixed device, the features and the resource allocation
are defined at design time. If it’s used only a part of the implemented

8 CHAPTER 2. OVERVIEW

functions, there are a lot of unused resources that are still consuming
energy. A programmable device reduces energy consumption and ex-
pands scale by dedicating all the available resources just to the processes
that are needed or easily turning off unused resources in order not to
waste energy. In addition to improving the security and efficiency com-
pared to multi-purpose appliances, including in the code only the needed
components for a specific use allows for keeping the complexity low.

• Telemetry. The last advantage of using a programming language is the
ability to look inside and inspect the device (e.g. visibility of intermediate
results in the processing of packets) [12].

So far, modern Data Plane programs and programming languages have not
yet achieved the degree of portability attained by general-purpose program-
ming languages. However, expressing Data Plane algorithms in a high-level
language has the potential to make telecommunication systems significantly
more target-independent [11].
Moreover, Data Plane programming does not require but encourages full trans-
parency. Sharing the source code, all definitions for protocols, functionalities,
and behaviors can be viewed, analyzed, inspected, and tested so that Data
Plane programs benefit from community development and review [11].

2.3 The P4 Programming Language

Industry and academia are converging on a new data plane programming lan-
guage called P4 (Programming Protocol-Independent Packet Processors). The
P4 specification is open and public [13]. The P4 language is developed by the
p4.org consortium [14], which currently includes more than 60 companies in
the area of interest of networking, cloud systems, network chip design, and aca-
demic institutions. The P4 Language Consortium is composed of academic and
industry members, the scope is to produce an open-source, evolving, domain-
specific language.
P4 is a high-level language for programming network devices that allows spec-
ifying how data plane devices (switches, NICs, routers, filters, etc.) process
packets. Before the advent of the P4 language, chip vendors had total control
over the functionalities supported in the network, and since networking silicon
determined much of the possible behavior, silicon vendors controlled the roll-
out of new features, and rollouts could take years. The traditional design of a

2.3. THE P4 PROGRAMMING LANGUAGE 9

network system follows a bottom-up approach that starts from a fixed-function
chip and makes it difficult to add new features or modify the fixed function-
alities. P4 and the Programmable Data Plane concept turn the traditional
model upside down. Using a top-down approach it is possible to define at a
high level exactly how the chip should process packets, which is done by the P4
program. Thus, application developers and network system designers can now
use P4 language to implement specific behavior in the network, and changes
can be made in minutes instead of years.
Among the several benefits of using the P4 language, one of the most impor-
tant is, therefore, the ease of adding new features by changing the P4 program
and recompiling. In the same way, it is always possible to remove underused
features to reduce the complexity of the network or to replace old features
with newer and more efficient ones. With P4, it becomes therefore very easy
to reallocate resources after the deployment. Programmable devices guarantee
greater visibility into the network and give the possibility to have new diag-
nostic techniques, telemetry techniques, etc.
For the moment being, the P4 Language Design Working Group (LDWG) of
the P4 Language Consortium has standardized two distinct standards of P4:
P414 and P416.

2.3.1 Specification History

In May 2013 was proposed the initial idea and the name P4, which stands for
Programming Protocol-Independent Packet Processors, was coined. In July
2014 the first paper (SIGCOMM ACR) was published.
In August 2014 there was the first P414 draft specification (version 0.9.8) and
very soon in September 2014 the P414 specification was released (version 1.0.0).
Then, over the following years, many different versions of the P4 specification
are released with minor specification revisions and amendments. The language
was quite stable and it was supported on several different targets [13]. Around
April 2016 the first P4 commits went into the public repositories. In Decem-
ber 2016 the first P416 draft specification for public review was released and in
May 2017 the first P416 specification was published [13]. Once P416 started to
take shape, the original P4 language became P414 language. The Table 2.1 and
the Table 2.2 depict respectively the P414 specification history and the P416
specification history specifying the most important versions and their release
dates.

10 CHAPTER 2. OVERVIEW

In general, the programming languages that tend to have more independent
implementations often use the year in the name, while the programming lan-
guages with one dominant implementation tend to use numerical version names.
For P4 language, the version naming is based on the year of the original in-
ception and then it takes about a year to finalize the specification.
The references to the language can have two kinds of spelling: official spelling
P4 16 on terminals and P416 in publications.

Table 2.1: Specification history of P414

P414 versions

Version 1.0.1 01/2015
Version 1.0.2 03/2015
Version 1.0.3 11/2016
Version 1.0.4 05/2017
Version 1.0.5 11/2018

Table 2.2: Specification history of P416

P416 versions

Version 1.0.0 05/2017
Version 1.1.0 11/2018
Version 1.2.0 10/2019
Version 1.2.1 06/2020
Version 1.2.2 05/2021

2.3.2 P416 Design

P416 is supposed to be the logical evolution of P414 and it has been intro-
duced to address several P414 limitations that became apparent in the course
of its use [12]. Those include the lack of means to describe various targets and
architectures, weak typing and generally loose semantics, relatively low-level
constructs, and weak support for program modularity [11]. The idea behind
the P416 approach is basically to separate the notion of a P4 Target from the
notion of a P4 Architecture. A target is the embodiment of a specific hard-
ware implementation, while an architecture provides interfaces to program a

2.3. THE P4 PROGRAMMING LANGUAGE 11

target via some sets of P4 programmable components, externs, and fixed com-
ponents [12]. Externs are supplied by vendors and provide some functionality
that is not directly implemented by the P4 language. They are “black boxes”
providing an interface that can interact with or be invoked within P4 pro-
grams. A target can implement many different architectures. A P4 platform
is the P4 architecture implemented on a given P4 target [12].
One of the most important goals of P416 is to be target independent, therefore
to support a variety of different targets (ASICs, FPGAs, smart NICs, software
targets, etc.), and architecture dependent. The community develops and stan-
dardizes the language itself and the core library, so the specialized constructs
that every system should implement, and the vendors of the target devices
provide the architecture definitions for their platforms and the libraries of ex-
terns they support (as shown in Figure 2.1).

Figure 2.1: P416 Approach: community-developed and
vendor-supplied components.

Therefore, support for multiple different targets is the major contribution of
the P416 and is achieved by separating the core language from the specifics
of a given architecture. The structure, the capabilities, and the interfaces
of a specific pipeline are now encapsulated into an architecture description,
and the target-specific functions are accessible through an architecture library,
typically provided by the target vendor. The core components are further

12 CHAPTER 2. OVERVIEW

structured into a small set of language constructs and a P416 core library that
is useful for most P4 programs.
Compared to P414, P416 uses the same premises about how the packets are
processed in high-speed pipelines and it uses the same or similar concepts and
basic building blocks. P416 introduces strict typing, expressions, nested data
structures, and several modularity mechanisms. This language is specifically
designed to become much more expressive and convenient to use in both read-
ing and writing programs. The semantics of the language is more formally and
clearly defined and standardized.
The P416 model is designed to be very flexible in contrast to P414 which has
mandatory aspects and implementations in the Data Plane. Moreover, the de-
ployment of P416 doesn’t involve the integration of new constructs and doesn’t
intend to make P4 become a general-purpose programming language.

2.3.3 P416 Data Plane Model

P416 Data Plane Model is based on the abstract model of a high-speed packet
processing device, called PISA, which stands for Protocol-Independent Switch
Architecture. The PISA model incorporates some basic components:

1. Programmable Parser;

2. Programmable Match-Action Pipeline;

3. Programmable Deparser.

Firstly, the programmable parser allows programmers to specify the format
of the packet that should be processed. It determines which packet headers
will be recognized by the data plane program and their order in the packets.
It is designed as a simple, deterministic state machine, that processes packet
data and identifies headers. Essentially, it converts the stream of bytes into
the parsed representation, that is the set of headers. The transitions between
different states are typically performed by looking at specific fields in the pre-
viously identified headers and, depending on the extracted value, the parser
transitions to a specific state.
The central portion of the PISA architecture is a pipeline, consisting of a set
of Match-Action stages. It is where the actual algorithms are executed. Pro-
grammers can define the tables and the exact processing algorithm through
which some data are matched against a table containing several entries and

2.3. THE P4 PROGRAMMING LANGUAGE 13

the corresponding action is executed.
At the end of the pipeline, there is a programmable deparser that performs the
operation which is a reverse of the parsing. It re-assembles the packets back
(e.g., by serializing the headers) into the stream of bytes. Programmers can,
therefore, declare how the output packet will look at the end of the processing.
These components are connected through the so-called Metadata Bus, which
carries the intermediate results from one stage to the following one, as showh
in Figure 2.2.

Figure 2.2: Protocol-Independent Switch Architecture (PISA).

These three components are analyzed more in detail in the following sections:
the programmable parser and deparser in Section 2.3.6 and the programmable
match-action pipeline in Section 2.3.7.
The way PISA operates is quite straightforwar, a basic processing scheme can
be summarised in a few steps.

1. The packet first arrives at the parser and is split into individual headers,
according to the parser program.

2. The extracted headers are passed to the programmable match-action
pipeline that matches the headers against match-action tables and per-
forms a variety of operations. For example, it can remove or add headers;
it can freely move the data between the headers, the intermediate results,
and the tables; it can perform both simple arithmetic operations or more
specialized operations; etc.

14 CHAPTER 2. OVERVIEW

3. Every time the match-action operation occurs, intermediate results are
generated and they can be used for the matching and by the actions in
the following stages.

4. This procedure goes on for as many stages as there are in the pipeline.
Intermediate results and metadata are transformed after each stage and
the output of the last stage of the match-action pipeline corresponds to
the headers that will be present in the packet after the processing.

5. The deparser serializes the headers into the packet byte stream.

Several extended non-standard pipeline models can be implemented as the
presented programmable components combined in different ways for different
needs. For example, two parsers can be very useful for tunnel processing or
other types of processing. Figure 2.3 shows an extended pipeline model with
two different parsers; one of them is placed between two consecutive match-
action stages and, therefore, it works on the intermediate metadata results.

Figure 2.3: Extended Non-Standard Pipeline Model.

Moreover, specialized components are available to be added inside the stages
of the pipeline to perform advanced functionalities. In Figure 2.4 these com-
ponents are represented through several different shapes and different colors
to make it easy to understand that they are architecture-specific (in contrast
to the general pipeline model) and that each one of them is used for a specific
functionality or a specific operation.

2.3. THE P4 PROGRAMMING LANGUAGE 15

Figure 2.4: Extended Model with Specialized Components.

2.3.4 V1Model Architecture

The V1Model architecture is not the only architecture that can be supported
by the BMv2 (Behavioral Model version 2) switch and does not exploit all
the possible capabilities of P416. The V1Model architecture is included in the
p4c compiler and was designed to be as much identical as possible to the P414
switch architecture, enabling ease of portability of P4 programs from P414 to
P416. The presence of just a few differences between P414 and V1Model (e.g.,
names of metadata fields) makes this architecture compatible with the P414
architecture.
The V1Model architecture consists of the following components (also depicted
in Figure 2.5):

• A programmable parser that extracts the packet headers;

• A programmable deparser that reconstructs the packet;

• Separate ingress and egress pipelines of match-action processing;

• A traffic manager that performs the task of packet queuing, scheduling,
and replication between the input and the output.

P416 has some categories of language elements that allow programming flexible
pipelines. A set of data types (bitstring, headers, structures, arrays, etc.) and
expressions (basic operations and operators) allows describing how the data
are transferred from one stage to the following one.
Parsers and Controls are the main programmable blocks that represent the ac-
tual data flow. Parsers are implemented as state machines and their purpose

16 CHAPTER 2. OVERVIEW

Figure 2.5: V1Model Architecture.

is to extract header fields from the packet in some user-defined way. Controls
are responsible for the main match-action processing and they are the actual
blocks where tables and actions are defined and applied to manipulate packet
headers and metadata.
The architecture description and eventually the extern libraries are also part
of these categories of language and are provided by the vendors of the P4
programmable targets. The architecture description specifies the specific con-
figuration of programmable parsers, control blocks, and vendor-specific blocks.
Extern libreries offer some functionality that is not implemented in P4 language
and provide interfaces that can interact with or be invoked by P4 programs.
The architecture description also includes a set of standard metadata fields
that are used by the P4 program to direct the packet through the BMv2
switch. The code below shows the standard metadata defined in the V1Model
Architecture [15]. The most commonly used fields are the ingress port (that
indicates the port on which the packets arrive), the egress spec (that indi-
cates the port to which the packet should be sent), the egress port (that
indicates the port that the packet will be sent out of and is only read in egress
pipeline), etc.

/* V1Model standard metadata ,

defined in v1model.p4 */

struct standard_metadata_t {

bit <9> ingress_port;

bit <9> egress_spec;

bit <9> egress_port;

bit <32> clone_spec;

bit <32> instance_type;

bit <1> drop;

2.3. THE P4 PROGRAMMING LANGUAGE 17

bit <16> recirculate_port;

bit <32> packet_length;

bit <32> enq_timestamp;

bit <19> enq_qdepth;

bit <32> deq_timedelta;

bit <19> deq_qdepth;

bit <48> ingress_global_timestamp;

bit <32> lf_field_list;

bit <16> mcast_grp;

bit <1> resubmit_flag;

bit <16> egress_rid;

bit <1> checksum_error;

}

2.3.5 P416 Data Types

P416 language, adopting the PISA approach, uses the concept of packet meta-
data. Packet metadata can be divided into packet headers, user-defined meta-
data, and intrinsic metadata.

• Packet headers correspond to the network protocol headers and are ex-
tracted during the parsing process.

• Intrinsic metadata are related to the fixed-function components and are
used by P4 programmable components to control their behavior.

• User-defined metadata are a kind of temporary storage, similar to local
variables in common programming languages. They are used by the
developers to pass pieces of information through the different stages of
the processing pipeline.

Figure 2.6 illustrates the information flow in the P416 processing pipeline that
comprises different blocks. Packet metadata (packet headers, user-defined
metadata, or intrinsic metadata) are used to pass the information between
consecutive processing blocks.
P416 language supports a rich set of data types for data plane programming,
that can be split into basic data types and derived data types [16]. Concerning
the first typology, P416 includes common basic types such as boolean (bool),
unsigned integer of arbitrary length (bit<n>), signed integer of arbitrary length
(int<n>), etc. It is possible to perform many different operations on unsigned

18 CHAPTER 2. OVERVIEW

Figure 2.6: V1Model Architecture Information Flow.

integers such as addition, subtraction and concatenation while signed integers,
simply called int in P4, support some, but not all, of the same basic opera-
tions. P416 includes also a bitstring type of variable length (varbit<n>, with
n the maximum possible width of the bitstring) that is mostly used for those
protocols that contain fields whose width is only known at runtime (e.g., the
Options field in the IPv4 protocol). Finally, P416 also supports enumeration
types that can be serializable or non-serializable, where the type representa-
tion is chosen by the compiler and hidden from the user.
Basic data types can be composed to construct derived data types. One of
the most commonly used and more important derived data types is the header
data type. It consists of an ordered collection of fields of the serializable types
previously described and it should be byte-aligned (the total length should be a
multiple of 8 bits). A header can be valid or invalid depending on whether the
header is part of the parsed packet. The validity field of the header is accessible
through methods such as setValid(), setInvalid(), and isValid(). Thus,
P4 programs can add and remove headers by manipulating their validity bits.
The code below shows an example of declaration of Ethernet and IPv4 headers
in a P4 program [12]. The typedef statement can be used to make the code
more readable by giving alternative names to some types. In the example
is possible to see how the fields of the headers are represented through the
different available data types.

typedef bit <48> macAddr_t;

typedef bit <32> ip4Addr_t;

header ethernet_t {

2.3. THE P4 PROGRAMMING LANGUAGE 19

macAddr_t dstAddr;

macAddr_t srcAddr;

bit <16> etherType;

}

header ipv4_t {

bit <4> version;

bit <4> ihl;

bit <8> diffserv;

bit <16> totalLen;

bit <16> identification;

bit <3> flags;

bit <13> flagOffset;

bit <8> ttl;

bit <8> protocol;

bit <16> hdrChecksum;

ipv4Addr_t srcAddr;

ipv4Addr_t dstAddr;

}

Another derived data type is the struct. Struct in P416 is an unordered
collection of fields, it does not have alignment restrictions and it can contain
any basic or derived data type including other structs, headers, and other
types. Structs can be used as intrinsic metadata to pass a set of data (e.g., a
collection of headers) from one component to another.
The last derived data type is the header stack which is an array of headers
and is typically used to define repeating headers. It supports several kinds of
operations to “push” headers onto the stack or to “pop” them from it.

2.3.6 Parser and Deparser in V1 Architecture

The basic idea of a parser is to extract from an input byte stream a set of header
data and metadata. Parsers are defined as Finite State Machines (FSM) with
three predefined states, an explicit Start state and two ending states (Accept
and Reject), to which custom states are added in between. On this last point,
P4 programmers can define custom non-mandatory states and it is common
to define one state for each header type that the parser will extract.
The process of parsing always starts in the Start state and then transitions
to other states, in which information from the packet is extracted according
to the defined header structure, until it encounters either the Accept or Reject
state. The state transitions may be either conditional, the transition depends

20 CHAPTER 2. OVERVIEW

on the value of an extracted field, or unconditional. The Reject state can be
reached explicitly or implicitly and it is defined by the architecture. Loops are
acceptable within the parser.
Figure 2.7 shows a scheme of the Finite State Machine with Start, Accept, and
Reject states and all the possible user-defined states in between.

Figure 2.7: Parser: Finite State Machine Scheme.

In all the possible architectures, there are two mandatory arguments in the
parser implementation: the input packet (packet in) and the struct of the
parsed headers (hdr). The first one is an input parameter, while the sec-
ond one is an output parameter. The user metadata and standard metadata
also pass through the parser and can be used if needed; in particular, the
V1 Architecture allows having, as additional input passed to the parser, the
ingress port. Figure 2.8 shows a scheme of the Parser with specified all the
input and output data while in the code below is presented an example of
parser implementation [12]. In the example, the Start state is defined and it
involves several different transitions based on the etherType field of the Eth-
ernet header and the default transition to the Accept state. Moreover, a state
relative to each transition should be defined (parse vlan tag, parse ipv4,

2.3. THE P4 PROGRAMMING LANGUAGE 21

parse ipv6, etc.).

Figure 2.8: Parser Model.

parser MyParser (packet_in packet ,

out headers_t hdr ,

inout metadata_t meta ,

in standard_metadata standard_metadata) {

/* states definition */

state start {

packet.extract(hdr.ethernet);

transition select (hdr.ethernet.etherType) {

0x8100 &&& 0xEFFF : parse_vlan_tag;

0x0800 : parse_ipv4;

0x86DD : parse_ipv6;

0x0806 : parse_arp;

default : accept;

}

...

state parse_ipv4 {

packet.extract(hdr.ipv4);

22 CHAPTER 2. OVERVIEW

transition select(hdr.ipv4.protocol) {

6 : parse_tcp;

17 : parse_udp;

default : accept;

}

}

state parse_ipv6 { }

...

}

Packet in is an extern defined in the core library (core.p4). The output
parameter hdr is the headers structure made of all parsed headers, metadata
is a parameter both in the input and in the output of the parser and, finally,
the additional input standard metadata is the mentioned above ingress port.
The extract method is the simplest parsing method and allows the extraction
of a fixed-size header from the packet. There are, anyway, other more advanced
parsing methods. To design parsers with many states is often used the select
statement, similar to a case statement in C or Java languages. Parsers usually
branch based on the value of the just extracted header fields (e.g., the Ethernet
etherType field represents the protocol encapsulated in the payload of the
Ethernet frame and, therefore, it is possible to distinguish between the different
parsing states depending on its value).
It is a good practice to implement in the parser a header verification algorithm
that can detect if the header is incorrectly formed and doesn’t follow the
protocol rules and then transitions directly to the Reject state. In order to do
that, in the core library, is defined a data type called error which indicates
all the parser errors (a semplified example is shown in the code below [16]).
Some standard conditions are defined in the core library, but P4 programmers
are allowed to improve this type by adding new exceptions and error codes.

/* Standard errors , defined in core.p4 */

error {

NoError , // no error

PacketTooShort , // not enough bits in the packet for

extract

NoMatch , // match expression has no matches

StackOutOfBounds , // reference to an invalid element of

a header stack

OverwritingHeader , // one header is extracted twice

2.3. THE P4 PROGRAMMING LANGUAGE 23

HeaderTooShort , // extracting too many bits in a varbit

field

ParserTimeout // parser execution time limit exceeded

}

Packet deparsing is a much simpler procedure. When the packet processing
performed by the match-action pipeline is finished, the deparser serializes the
packet. It reassembles the packet header and payload back into a byte stream,
in this way the packet can be sent out via an egress port or stored in a buffer.
Only the headers set to valid are added to the packet.
There are two mandatory arguments in the deparser implementation: the out-
put packet (packet out) and the struct of the valid headers (hdr). In the code
below is presented an example of deparser implementation [12].

control MyDeparser (packet_out packet ,

in headers_t hdr)

{

apply {

/* Layer 2 */

packet.emit(hdr.ethernet);

packet.emit(hdr.vlan_tag);

/* Layer 2.5 */

packet.emit(hdr.mpls);

/* Layer 3 */

packet.emit(hdr.arp);

packet.emit(hdr.ipv4);

packet.emit(hdr.ipv6);

/* Layer 4 */

packet.emit(hdr.icmp);

packet.emit(hdr.tcp);

packet.emit(hdr.udp);

}

}

Packet out is an extern defined in the core library (core.p4) and it represents
the byte stream that the deparser will assemble. The headers struct hdr in
this case is an input parameter.
The emit method is defined in the core library and serializes the header only
if it is valid, i.e. if the header is invalid or if it is not in the packet nothing
will happen (e.g., in layer 3 only one between ARP, IPv4, and IPv6 header is

24 CHAPTER 2. OVERVIEW

emitted).
The deparser is defined as a control block, a construct detailed in the next
Subsection 2.3.7.
In P416 the parser and the deparser are completely decoupled. The output
packet can be, therefore, assembled independently from how the parser ex-
tracted the packet headers.

2.3.7 Match-Action Pipeline in V1 Architecture

The match-action pipeline is executed after the successful parsing of a packet
and it expresses the packet processing algorithm [11].
It consists of three elements:

• control blocks;

• actions;

• match-action tables.

In P416 control blocks, or just control, are similar to C functions but without
loops and recursion. The algorithms of a control block, indeed, should be rep-
resentable as Direct Acyclic Graph (DAG), i.e. are implemented through a se-
quential execution. Not only match-action pipelines but also deparsers and ad-
ditional processing such as checksum updates are representable as DAGs [12].
Controls are interfaced with other blocks via either user-defined metadata or
intrinsic architecture-defined metadata. Figure 2.9 represents the V1 Architec-
ture control interfaces. Two parameters are both in input and output: headers
and user-defined metadata. Then there are some input standard metadata:

• ingress port,

• ingress timestamp,

• resubmit flag,

and there are standard metadata that serve as output:

• egress spec,

• egress queue,

2.3. THE P4 PROGRAMMING LANGUAGE 25

Figure 2.9: Control Block Scheme Interfaces.

• mcast grp (the multicast group),

• clone spec,

• resubmit flag.

The body of a control block contains the definition of variables, tables, ac-
tions, and externs that will be used for processing. Then, they are called by
an apply() method.

Figure 2.10: V1Model Architecture Pipeline Scheme.

26 CHAPTER 2. OVERVIEW

In V1Model Architecture the pipeline can be represented as in Figure 2.10
with an ingress pipeline, an egress pipeline, and a Packet Replication Engine
component in between.
The functionality of the PRE (Packet Replication Engine) component is not a
matter of P4 implementation, but it is described in the documentation of the
specific architecture and the interfaces of this component are standardized.
Actions are functions that can read and write packet headers and metadata.
They are similar to functions in other general-purpose programming languages
but they have no return value. Actions can be declared locally inside a con-
trol block or globally having, in this way, a different scope. In the V1Model
Architecture library are already defined several actions (e.g., mark to drop is
the action to drop packets).
Standard arithmetic and logical operations are supported:

• +, -, * ;

• &, |, >>,<< ;

• ==, !=, >,>=, <,<= ;

• no division/modulo (in order not to have exceptions);

• bit manipulation operations

– bit slicing;
– bit concatenation.

In actions, the main objective is to operate on headers in several ways:

• header validity bit manipulation through the methods such as setValid,
setInvalid, and isValid that, respectively, allows to add, remove or
check a header;

• header assignment from tuples or another header
header = f1, f2, ..., fn

header1 = header2

• several special operations on header stacks. For example, push front()

and pop front() methods allow to push or pop a single label into the
stack and shift all the others.

2.3. THE P4 PROGRAMMING LANGUAGE 27

The match-action tables (MATs) are the fundamental units of the match-
action pipeline and they are defined within control blocks. The structure of a
match-action table is declared in the P4 program, while its entries are added
by the control plane at runtime.
The declaration of a MAT specifies what to match on (match key and match
kind), a list of possible actions, and additional properties such as the size of
the table (e.g., the maximum number of entries that can be stored in the table)
or the default action that will be executed if there is no match.
The match key consists of one or more header and metadata fields, each with
its match kind specified. The P4 core library (core.p4) contains three stan-
dard match kind declarations: exact match, ternary match, and longest pre-
fix matching (LPM). The match kind is a special type in P4 (definition be-
low) [16].

/* core.p4 */

match_kind {

exact ,

ternary ,

lpm

}

Different architectures may support additional kind declarations into the match
kind type (in the architecture description files), and the V1Model Architec-
ture (v1model.p4) extends the list of match types with the range and the
selector types [12] as shown in the code below.

/* v1model.p4 */

match_kind {

range ,

selector

}

The list of actions includes the IDs and names of all the actions that can be
invoked by the table. Each table consists of one or more entries and each entry
contains a specific key to match on, the action to be invoked, and optional
action data that serve as parameters for the action invocation. Besides the
entries, usually in tables are specified also the default action and the default
action data that will be used in case no match is found in the table.
Figure 2.11 illustrates the match-action table structure and the match-action

28 CHAPTER 2. OVERVIEW

processing. For each packet, specific fields from the chosen set of metadata

Figure 2.11: Match-Action Processing.

and headers are selected to construct the lookup key that is matched against
all the entries of the match-action table. When the a match is found, the table
is hit, the corresponding action is invoked and the action data are passed to
the action as parameters to be used. If no match is found, the default action
is applied. The action execution unit receives two types of data: directionless
parameters that are provided directly by the table entries (therefore from the
control plane) and directional parameters that consist of headers and metadata
(therefore from the data plane). Finally, a new intermediate result is created
and is passed to the following match-action stage of the pipeline [12].
In a control block, tables and actions are declared at the beginning, then
there is the apply block that essentially performs the match-action processing
through the tables apply() method. When the match-action is performed by
this method, two results are generated: a meta-result that specifies if the table
found the match or not (a boolean value representing the hit) and the ID of
the chosen action.
In the following piece of code, it is possible to see an example of a Ingress
Processing control block called MyIngress [12].

control MyIngress (inout headers_t hdr ,

inout metadata_t meta ,

2.3. THE P4 PROGRAMMING LANGUAGE 29

inout standard_metadata_t standard_metadata)

{

/* action and tables declaration */

action l3_switch(bit <9> port ,

bit <48> new_mac_da ,

bit <48> new_mac_sa ,

bit <12> new_vlan) {

/* Forward the packet to the specified port */

standard_metadata.metadata.egress_spec = port;

/* L2 Modifications */

hdr.ethernet.dstAddr = new_mac_da;

hdr.ethernet.srcAddr = mac_sa;

hdr.vlan_tag [0]. vlanid = new_vlan;

/* IP header modification (TTL decrement) */

hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

action l3_l2_switch(bit <9> port) {

standard_metadata.metadata.egress_spec = port;

}

action l3_drop () {

mark_to_drop ();

}

...

table ipv4_host {

key = { meta.ingress_metadata.vrf : exact;

hdr.ipv4.dstAddr : exact:

}

actions = { l3_switch; l3_l2_switch;

l3_drop; noAction;

}

default_Action = noAction ();

size = 65536;

}

table ipv6_host {...}

...

30 CHAPTER 2. OVERVIEW

/* apply code */

apply {

if(hdr.ipv4.isValid ()) {

ipv4_host.apply ();

}

...

}

}

2.3.8 Externs

As described in Section 2.3.4, P416 introduces the concept of P4 architectures
as an intermediate layer between the core P4 language and the targets. P4
programs are developed for a specific P4 architecture and they can be deployed
on all targets that implement the same P4 architecture [11].
Each architecture can provide additional functionalities that are not part of
the P4 language core and with which the P4 programs can interact. Such func-
tionalities are made available by using the extern construct, which describes
the interfaces that are exposed to the data plane.
In P416, in contrast to P414, all the specialized objects and facilities are re-
moved from the core language to have a unified mechanism to express them all
through standardized interfaces. In P414, almost one-third of all the constructs
were dedicated to specialized processing.
In P4 there are two types of objects: stateless and stateful objects. The first
ones are reinitialized for each packet (e.g., variables, packet headers, packet in,
packet out, etc.).

/* From core.p4 */

extern packet_in {

void extract <T>(out T hdr);

void extract <T>(out T variableSizeHeader ,

in bit <32> variableFieldSizeInBits);

T lookahead <T>();

void advance(in bit <32> sizeInBits);

bit <32> length ();

}

2.3. THE P4 PROGRAMMING LANGUAGE 31

The code above shows the definition of the packet in type from the P4 core li-
brary. This type has several methods that are useful in writing the parser [16].
The externs belong to the second category, the stateful objects, along with
the tables. Indeed, they keep their state between packets. Some examples of
widely used externs are counters, meters, registers, selectors, etc.
In the following code is shown an example of a counter definition (V1 archi-
tecture) [12].

/* definition in v1model.p4 */

extern counter {

counter(bit <32> instance_count , CounterType type);

void count(in bit <32> index);

}

enum CounterType {

packets ,

bytes ,

packets_and_bytes

}

The extern definition always contains the instantiation method, which has the
same name as the extern and it can take some parameters, and other methods
to access the extern. In the case of the counter, there is a single method,
count(), without any return value.
The code below shows an example of a register definition (V1Model architec-
ture) [12]. It includes, as explained before, the instantiation method and the
read and write methods to access a value in the register at the specified index.

/* Definition in v1model.p4 */

extern register <T> {

register(bit <32> instance_count);

void read(out T result , in bit <32> index);

void write(in bit <32> index , in T value);

}

Externs are part of the architecture definition, but they can be used even if
their implementation is not known. Most of them must be explicitly instan-
tiated in P4 programs and then other methods are provided to be invoked on
the given extern instance.
In P416 tables can have architecture-specific properties and it is possible to

32 CHAPTER 2. OVERVIEW

use specific externs, for example the direct counter, to extend them. Using
the extern direct counter, quite similar to the previously described counter,
it is possible to invoke the method count() within the actions related to the
table to count packets or bytes of a given type.
In V1Model architecture, there are also a few stateless externs, such as hashes
(hash) and random numbers (random), that can be used to perform some cus-
tom computations. The code below shows the description oh the extern hash

and the enumeration type HashAlgorithm that lists the possible available hash
algorithms.

/* Definition in v1model.p4 */

enum HashAlgorithm {

crc32 ,

crc32_custom ,

crc16 ,

crc16_custom ,

random ,

identity

}

extern void hash <T, D>(out T result ,

in HashAlgorithm algo ,

in T base ,

in D data ,

in T max);

This extern allows to calculate a hash function of the value specified by the
data parameter. The value written into the output parameter named result

must be in the range [base, base + max-1] inclusive.
Finally the example below shows the definition of the extern random in the
V1Model Architecture. It allows geterating a random number in the range
[lo, hi] inclusive and writing it in the result parameter.

/* Definition in v1model.p4 */

extern void random <T>(out T result , in T lo , in T hi);

2.4. DYNAMIC SERVICE PROVISIONING 33

2.4 Dynamic Service Provisioning

Fog Computing, with respect to typical Cloud solutions, can facilitate the
adoption of the Xaas (Everything-as-a-Service) paradigm extending it towards
a more dynamic and adaptable scenario. The Network Programmability and
the Data Plane Programmability play an important role in enhancing the flex-
ibility of the network. Indeed, with the advances of SDN (Software Defined
Networking) and the P4 language, there are new challenges and opportunities
that the new generation SDN has for Fog computing. In particular, P4 is a lan-
guage to define the Data Plane behavior for forwarding devices, and therefore
it is possible to define how packets are parsed, how they are processed (cus-
tomized matching criteria and actions), and how they are sent again into the
network. The possibility to develop new pipelines allows the network devices
to change their behavior and extend their functionalities, and the control-to-
data plane programming protocols (e.g. P4Runtime) allows to perform these
changes in a dynamic way depending on the needed services. P4 language can
be a good option in a Fog scenario for the following reasons:

• Customized protocols can be utilized. The P4 language allows the defi-
nition of both standardized and custom protocols. The definition of the
headers, tables, and actions, indeed, provides the means to build custom
protocols.

• Protocol translation. As a consequence of being able to program which
headers are parsed and which actions are executed, the pipeline can also
enable and disable headers on demand [3].

• Monitoring. Having a custom data plane enables new telemetry pro-
tocols (e.g. Inband telemetry (INT) [17]) to monitor the behavior and
performance of packets within P4-programmable devices [3]. Moreover,
to monitor the data plane, information via metadata are available at
each unit of the programmable pipeline. This can be a beneficial use
case to monitor packets at the Fog nodes, exporting information to Fog
managers.

• Data plane partition. Being able to create tables (define maximum entry
size, keys to match, actions and parameters, etc.) also brings new ways
to distribute data plane functionality [3]. For example, one table can be
used to prevent possible attacks while other tables can perform L2/L3

34 CHAPTER 2. OVERVIEW

forwarding. This concept is tightly related to the use case presented in
Chapter 4.

A system that consists of a Fog infrastructure, a Fog Orcheatration System
able to act as a resource management and service provisioning layer placed
in between the service consumers and the Fog infrastructure [1], and a pro-
grammable Data Plane that can be reconfigured and managed in a simple
and dynamic way, should be therefore capable to perform a dynamic service
provisioning.

Chapter 3

P4 Basics and Use Cases

Reference implementations for compilers, simulation, and debugging tools are
available at the GitHub P4 repository [2]. The public repository contains a
rich set of tutorials and exercises. These tutorials are created as hands-on lab-
oratories and contain everything needed to experiment in P4: an overview of
the language, sets of exercises that include different aspects of P4 data plane
programmability including lecture slides and references to useful documenta-
tion, and a Virtual Machine with all the needed software.
A set of exercises is proposed to get started with P4 programming. These
exercises are organized into several modules that increase in complexity and
some of them are described in the following sections.

1. Introduction and Language Basics

• Basic Forwarding [Section 3.2];
• Basic Tunneling [Section 3.3];

2. P4Runtime and the Control Plane

• P4Runtime [Section 3.4];

3. Monitoring and Debugging

• Explicit Congestion Notification [Section 3.5];
• Multi-Hop Route Inspection [Section 3.6];

4. Advanced Behavior

• Source Routing;

35

36 CHAPTER 3. P4 BASICS AND USE CASES

• Calculator;
• Load Balancing;
• Quality of Service;

5. Stateful Packet Processing

• Firewall [Section 3.7];
• Link Monitoring;

Several pre-installed tools are already present in the available Virtual Machine
and are used while performing the tutorials: the BMv2 software switch, the p4c
reference P4 compiler, and the network emulation environment Mininet. The
BMv2 (Behavioral Model version 2) framework is a software switch developed
by the P4 Language Consortium that allows network developers to implement,
test and debug several P4 data plane and control plane programs [18]. The p4c
is a reference compiler for the P4 language, it supports both P414 and P416.
It provides a standard frontend and “mid-end” which can be combined with a
target-specific backend that can be easily added or removed at the need [19].
Mininet is a network emulator through which it is possible to create a network
of virtual hosts, switches, controllers, and links. The Mininet CLI (and API)
allows to easily interact with the network, therefore Mininet is a useful tool for
the development, testing, and debugging in a complete virtual experimental
network. Mininet is also a great way to develop, share, and experiment with
Software-Defined Networking (SDN) systems using OpenFlow and P4 [20].
In the tutorials described in the following sections, it is used a specific archi-
tecture which is implemented on top of the BMv2 switch targets, the V1Model
Architecture (explained in detail in Section 2.3.4). The available documenta-
tion on the repository, indeed, includes the commented file v1model.p4.

3.1 Automatic Procedure for VM

configuration

To perform the P4 exercises, a Virtual Machine with all the useful software
is needed. The Github P4 repository [2] contains all the tools that allow
performing an automatic configuration of the P4 Virtual Machine using Git,
Vagrant, and VirtualBox.

3.1. VM CONFIGURATION 37

• Git is an open-source Distributed Version Control System (DVCS) used
to track changes and modifications of the public repository. It allows
downloading a local copy of the last version of the code.

• Vagrant is an open-source software that allows for building, maintaining,
and managing development environments. The focus is on automation
trying to simplify the configuration of reproducible and portable work
environments. All the software requirements are written in the so called
Vagrantfile and, through the command vagrant up, all the steps needed
to create a development-ready machine are executed.
In this case, the Vagrantfile contains all the configurations that are nec-
essary to automatically build the P4 Virtual Machine. It runs some
scripts, contained in the repository, to load the whole environment.
In particular, after configuring the Virtual Machine through the box
bento/ubuntu-20.04, the script root-common-bootstrap.sh creates
the two users and the script user-common-bootstrap.sh installs Mininet,
downloads the repository with all tutorial files and some other applica-
tions that can be useful during the development of all the exercises.

• VirtualBox is a virtualization tool that runs on Windows, Linux, and
several other hosts and supports a large number of guest operating sys-
tems. Each guest OS can be managed independently within its Virtual
Machine.

The first step, after the installation of Vagrant and VirtualBox, is cloning the
repository simply using the following command:

$ git clone https :// github.com/p4lang/tutorials

Then, the building and the configuration of the effective Virtual Machine are
performed by running in the right directory the command:

$ vagrant up

This command creates a Virtual Machine that includes P4 software installed
from pre-compiled packages and all the necessary dependencies. In this way,
it is possible to directly perform all the exercises.

38 CHAPTER 3. P4 BASICS AND USE CASES

3.2 Implementing Basic Forwarding

The first exercise aims to write a P4 program that implements basic forwarding.
For simplicity, just the IPv4 forwarding is taken into consideration [21].
Figure 3.1 represents the topology used in the exercise. It is a single pod of a
fat-tree topology and it is described in the file topology.json.

Figure 3.1: Network topology of the
tutorial Implementing Basic Forwarding.

Concerning IPv4 forwarding, the switch has to perform the following actions
for each incoming packet:

• updating the source and destination MAC addresses in the IP header of
the packet;

• decrementing the tome-to-live (TTL) field in the IP header of the packet;

• forwarding the packet through the appropriate output port.

3.2. IMPLEMENTING BASIC FORWARDING 39

The data plane and control plane work together to perform IP routing. The
P4 data plane defines the format of the routing table, it specifies fields to
match on and the possible actions to invoke. It performs the table lookup and
it executes the chosen action. The control plane is responsible for populating
the table with entries.
To build this simple IP forwarding, a table must be defined in each switch.
The control plane populates the table with static rules and each rule maps an
IP address to the MAC address and the output port for the next hop. The
control plane rules are defined in the files sX-runtime.json (where X corre-
sponds to each switch number. X=1, 2, 3, 4).
A skeleton P4 program, basic.p4, is available to be extended and modified to
implement the data plane logic of forwarding IPv4 packets. The initial behav-
ior implemented in the predisposed file is to drop all packets. It is possible to
compile the incomplete basic.p4 file and bring up the topology of Figure 3.1
with Mininet and test this initial behavior.
The command:

$ make run

compiles the basic.p4 file and starts the Mininet topology configuring all
the switches with the P4 program installed on and all the hosts with the
appropriate network configurations. The command also installs the packet-
processing static rules in the tables of each switch.
Through the Mininet CLI, it is possible to make some tests.

mininet > h1 ping h2

mininet > pingall

Given that the test is executed with the not-yet-complete basic.p4 file, the
ping fails because each switch is programmed according to the initial simple
behavior which drops all packets on arrival.
The complete basic.p4 file contains the following components:

• header type definitions for Ethernet (ethernet t) and IPv4 (ipv4 t);

• parsers for Ethernet and IPv4 that populate ethernet t and ipv4 t

fields;

• an action (drop) to drop a packet. It can be done using mark to drop(),
a primitive action defined in the file v1model.p4 that modifies the field
standard metadata.egress spec to an implementation-specific value

40 CHAPTER 3. P4 BASICS AND USE CASES

that causes the packet to be dropped at the end of ingress or egress
processing;

• an action (ipv4 forward) that sets the egress port for the next hop,
updates the Ethernet destination address with the address of the next
hop, updates the Ethernet source address with the address of the switch,
and decrements the time-to-live;

• a control that defines a table (ipv4 lpm) that matches on an IPv4 desti-
nation address and invokes either drop or ipv4 forward, and an apply

block that applies the table;

• a deparser that selects the order of the fields inserted into the outgoing
packet [21].

The Ethernet and IPv4 headers (ethernet t and ipv4 t) are defined at the
beginning of the P4 program and they are added to the headers struct.

header ethernet_t {

macAddr_t dstAddr;

macAddr_t srcAddr;

bit <16> etherType;

}

header ipv4_t {

bit <4> version;

bit <4> ihl;

bit <8> diffserv;

bit <16> totalLen;

bit <16> identification;

bit <3> flags;

bit <13> fragOffset;

bit <8> ttl;

bit <8> protocol;

bit <16> hdrChecksum;

ip4Addr_t srcAddr;

ip4Addr_t dstAddr;

}

struct headers {

ethernet_t ethernet;

ipv4_t ipv4;

}

3.2. IMPLEMENTING BASIC FORWARDING 41

The implementation of the checksum computation block is provided in the
starter code, so the parser, the ingress control logic, and the deparser need
to be implemented. This example does not need any egress control block
processing.
Parsers must always start in the Start state, then a state for the Ethernet
header parsing, as well as a state for the IPv4 header parsing (parse ethernet

and parse ipv4), have to be defined. The incoming packets are parsed starting
from the Ethernet header, therefore the first transition is from the Start state
to the parse ethernet state. In this second state (parse ethernet), the
Ethernet header is extracted and the transition branches to different states
based on the etherType field of the Ethernet header using the select statement.
If the etherType field is equal to the IPV4 TYPE value defined at the top of
the file, then it transitions to the parse ipv4 state, otherwise, the packet does
not contain an IPv4 header so it transitions to the Accept state (default). In
the parse IPv4 state, the IPv4 header is extracted and, finally, the transition
to the Accept state is performed.
The code below shows the parser implementation.

const bit <16> TYPE_IPV4 = 0x800;

parser MyParser(packet_in packet ,

out headers hdr ,

inout metadata meta ,

inout standard_metadata_t standard_metadata) {

state start {

transition parse_ethernet;

}

state parse_ethernet {

packet.extract(hdr.ethernet);

transition select(hdr.ethernet.etherType) {

TYPE_IPV4: parse_ipv4;

default: accept;

}

}

state parse_ipv4 {

packet.extract(hdr.ipv4);

transition accept;

}

}

42 CHAPTER 3. P4 BASICS AND USE CASES

Figure 3.2 represents the scheme of the parser in this exercise as a Finite State
Machine (FSM).

Figure 3.2: Parser state diagram.

In the Ingress Processing control block, the table ipv4 lpm is defined. The
match key is the IPv4 destination address and the match type is lpm (longest
prefix match). The second table property is the list of all possible actions
that can be invoked. In this case, the list includes three possible actions:
ipv4 forward, drop, and NoAction. NoAction is defined in core.p4. In the
table implementation the table size is also specified and the default action

should be NoAction.
The code below is the implementation of the ipv4 lpm table.

table ipv4_lpm {

key = {

hdr.ipv4.dstAddr: lpm;

}

actions = {

ipv4_forward;

3.2. IMPLEMENTING BASIC FORWARDING 43

drop;

NoAction;

}

size = 1024;

Default_action = NoAction ();

}

For example, the table of the switch s1, once the static rules are installed, can
be represented as follows (Figure 3.3).

Figure 3.3: Forwarding table of switch s1.

The ipv4 forward action must perform the following operations:

• setting the egress port to the port number provided by the control plane.
In the exercise, this is done by setting the egress spec field of the
standard metadata;

standard_metadata.egress_spec = port;

• updating the packet’s source MAC address with the MAC address of the
switch (packet’s current destination MAC address);

hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;

44 CHAPTER 3. P4 BASICS AND USE CASES

• updating the packet’s destination MAC address with the address of the
next hop, so the address provided by the control plane;

hdr.ethernet.dstAddr = dstAddr;

• decrementing the TTL field of the ipv4 header.

hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

The code below shows the ipv4 forward action complete implementation.

action ipv4_forward(macAddr_t dstAddr , egressSpec_t port) {

standard_metadata.egress_spec = port;

hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;

hdr.ethernet.dstAddr = dstAddr;

hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

At the end of the Ingress Processing control block the validity of the IPv4
header is verified and the table ipv4 lpm is applied.

apply {

if (hdr.ipv4.isValid ()) {

ipv4_lpm.apply ();

}

}

For the implementation of the deparsing logic, the only thing to do is to emit
the Ethernet header and the IPv4 header into the packet in the right order as
shown in the code below.

control MyDeparser(packet_out packet , in headers hdr) {

apply {

packet.emit(hdr.ethernet);

packet.emit(hdr.ipv4);

}

}

By completing the basic.p4 file, a fully functional data plane for basic IPv4
routing is correctly implemented.

3.2. IMPLEMENTING BASIC FORWARDING 45

The simple IP router is, indeed, able to perform the following functions:

• parsing the Ethernet and IPv4 headers from the packet;

• matching the destination address in the IPv4 routing table;

• setting the egress port;

• updating the source and destination MAC addresses;

• decrementing the TTL;

• deparsing the headers to construct the final packet.

Running the final basic.p4 file, it is possible to successfully perform ping
between any two hosts in the topology. It is also possible to use the two
available python scripts receive.py and send.py that allow sending a message
from one host to each other host showing all connection details (addresses,
TTL, etc.).

46 CHAPTER 3. P4 BASICS AND USE CASES

3.3 Implementing Basic Tunneling

Tunneling, also known as “port forwarding”, is a communication protocol that
allows for the secure movement of data from one private network to another
and it allows private network communications to be sent across a public net-
work, such as the Internet, through a process called encapsulation. Tunneling
is done by encapsulating the private data and protocol information within
the public network transmission units, in this way the exclusive information
appears to the public network simply as data. Therefore, through the encapsu-
lation process, the private data packets can appear as though they are public
and they can pass through a public network unnoticed.
In the second tutorial, the support for a basic tunneling protocol should be
added to the IP router implemented in the previous assignment. The basic
switch forwards packets based on the destination IP address but, in this case,
a new protocol is added and a new header type is defined (myTunnel) to en-
capsulate the IP packets and modify the switch behavior. Figure 3.4 shows

Figure 3.4: Network topology of the
tutorial Implementing Basic Tunneling.

3.3. IMPLEMENTING BASIC TUNNELING 47

the topology set up by Mininet in this exercise. It consists of three switches
connected in a triangle topology and one host attached to each switch.
The myTunnel header should include two fields:

• the proto id field is used to determine the type of packet being encap-
sulated. In this exercise, only IPv4 packets are taken into account;

• the dst id field is the ID of the destination host.

The new behavior of the switch should be the following: if an encapsulated IP
packet arrives, it should perform forwarding using the destination ID field in
the myTunnel header; if a normal unencapsulated IP packet arrives, it should
perform IP routing as usual.
The available basic tunnel.p4 file contains the implementation of the basic
IP router while the new functionalities should be added. The complete imple-
mentation of the basic tunnel.p4 switch should be able to forward based on
the content of the custom encapsulation header as well as perform normal IP
forwarding if the encapsulation header does not exist in the packet [22].
More in detail, the implementation should contain:

• a new header type, called myTunnel t, that contains two 16-bit fields:
proto id and dst id. The myTunnel header should then be added to
the headers struct.

• an updated parser able to extract either the myTunnel header or IPv4
header based on the etherType field in the Ethernet header. The ether-
Type corresponding to the myTunnel header is 0x1212 and it is defined
at the beginning of the file. If the proto id field of the mytunnel header
is equal to the TYPE IPV4 value, the parser should also extract the IPv4
header.

• a new action myTunnel forward that sets the egress port to the port
number provided by the control plane.

• a new table myTunnel exact that performs an exact match on the dst id

field of the myTunnel header. This table should invoke either the myTun-
nel forward action if there is a match in the table or the drop action
otherwise.

48 CHAPTER 3. P4 BASICS AND USE CASES

• an updated apply statement in the Ingress Processing control block that
applies the newly defined myTunnel exact table if the myTunnel header
is valid, otherwise, it invokes the ipv4 lpm table if the IPv4 header is
valid.

• An updated deparser that emits the Ethernet, myTunnel, and IPv4 head-
ers.

• the static rules for the new table so that the switches can correctly for-
ward packets for each possible value of dst id [22].

The new type (TYPE MYTUNNEL) is defined at the beginning of the P4 file to-
gether with the definition of the IPv4 type (TYPE IPV4) and the new header
type (myTunnel t) is defined and it is added to the headers struct.

const bit <16> TYPE_MYTUNNEL = 0x1212;

const bit <16> TYPE_IPV4 = 0x800;

header myTunnel_t {

bit <16> proto_id;

bit <16> dst_id;

}

struct headers {

ethernet_t ethernet;

myTunnel_t myTunnel;

ipv4_t ipv4;

}

The parser should be able to recognize, besides the Ethernet and the IPv4
headers, the mytunnel header if it’s present in the incoming packet. An extra
case to the select statement in the parse ethernet state is added: if the
etherType field is equal to TYPE MYTUNNEL, the transition should be to the
state parse myTunnel. In the code below, the parse ethernet state is shown.

state parse_ethernet {

packet.extract(hdr.ethernet);

transition select(hdr.ethernet.etherType) {

TYPE_MYTUNNEL: parse_myTunnel;

TYPE_IPV4: parse_ipv4;

default: accept;

}

}

3.3. IMPLEMENTING BASIC TUNNELING 49

The new state called parse myTunnel is defined and, in this state, the my-
Tunnel header is extracted. After extracting the mytunnel header, the se-
lect statement is used to transition to either the parse ipv4 state or the Ac-
cept state based on the value of the proto id field. In the code below, the
parse myTunnel state is shown.

state parse_myTunnel {

packet.extract(hdr.myTunnel);

transition select(hdr.myTunnel.proto_id) {

TYPE_IPV4 : parse_ipv4;

default : accept;

}

}

Figure 3.5 represents the scheme of the parser in this exercise as a finite state
machine (FSM).

Figure 3.5: Parser state diagram.

50 CHAPTER 3. P4 BASICS AND USE CASES

The Ingress Processing control block is updated by adding the action myTunnel

forward and the table myTunnel exact. The new table myTunnel exact

matches on the dst id field of the myTunnel header with an exact match.
The list of possible actions includes the new action myTunnel forward, the
drop action, and NoAction. The myTunnel forward action looks very similar
to the ipv4 forward action but it is simpler. It simply receives an egress port
number from the control plane and set the standard metadata egress spec

field to be equal to the provided port number. In the code below both the
myTunnel forward action and the myTunnel exact table are shown.

action myTunnel_forward(egressSpec_t port) {

standard_metadata.egress_spec = port;

}

table myTunnel_exact {

key = {

hdr.myTunnel.dst_id: exact;

}

actions = {

myTunnel_forward;

drop;

NoAction;

}

size = 1024;

default_action = drop ();

}

Also, the control flow is updated: the ipv4 lpm table is applied if the IPv4
header is valid and the myTunnel header is not valid (processing only the non-
tunneled IPv4 packets) and the new table is applied whenever the myTunnel
header is valid (processing only the tunneled packets).

apply {

if (hdr.ipv4.isValid () && !hdr.myTunnel.isValid ()) {

ipv4_lpm.apply ();

}

if (hdr.myTunnel.isValid ()) {

myTunnel_exact.apply ();

}

}

The updated deparser emits the myTunnel header into the packet after the
Ethernet header and before the ipv4 header.

3.3. IMPLEMENTING BASIC TUNNELING 51

control MyDeparser(packet_out packet , in headers hdr) {

apply {

packet.emit(hdr.ethernet);

packet.emit(hdr.myTunnel);

packet.emit(hdr.ipv4);

}

}

Some static rules are added in the files sX-runtime.json (one for each switch,
X=1, 2, 3) where also the static forwarding rules of the previous exercise are
defined. These new static rules are then inserted in the new tables by the con-
trol plane so that the switches can correctly forward packets for each possible
value of dst id. Figure 3.6 shows the IPv4 forwarding table and tunneling
table of switch s1 and the code below describes the static rules that are written
in the file s1-runtime.json and that are added to these tables: the first three
are forwarding rules and the other three are tunneling rules.

{

"target ": "bmv2",

"p4info ": "build/basic_tunnel.p4.p4info.txt",

"bmv2_json ": "build/basic_tunnel.json",

"table_entries ": [

{

"table ": "MyIngress.ipv4_lpm",

"match ": {

"hdr.ipv4.dstAddr ": ["10.0.1.1" , 32]

},

"action_name ": "MyIngress.ipv4_forward",

"action_params ": {

"dstAddr ": "08:00:00:00:01:11" ,

"port": 1

}

},

{

"table ": "MyIngress.ipv4_lpm",

"match ": {

"hdr.ipv4.dstAddr ": ["10.0.2.2" , 32]

},

"action_name ": "MyIngress.ipv4_forward",

"action_params ": {

"dstAddr ": "08:00:00:00:02:00" ,

"port": 2

}

52 CHAPTER 3. P4 BASICS AND USE CASES

},

{

"table ": "MyIngress.ipv4_lpm",

"match ": {

"hdr.ipv4.dstAddr ": ["10.0.3.3" , 32]

},

"action_name ": "MyIngress.ipv4_forward",

"action_params ": {

"dstAddr ": "08:00:00:00:03:00" ,

"port": 3

}

},

{

"table ": "MyIngress.myTunnel_exact",

"match ": {

"hdr.myTunnel.dst_id ": [1]

},

"action_name ": "MyIngress.myTunnel_forward",

"action_params ": {

"port": 1

}

},

{

"table ": "MyIngress.myTunnel_exact",

"match ": {

"hdr.myTunnel.dst_id ": [2]

},

"action_name ": "MyIngress.myTunnel_forward",

"action_params ": {

"port": 2

}

},

{

"table ": "MyIngress.myTunnel_exact",

"match ": {

"hdr.myTunnel.dst_id ": [3]

},

"action_name ": "MyIngress.myTunnel_forward",

"action_params ": {

"port": 3

}

}

]

}

3.3. IMPLEMENTING BASIC TUNNELING 53

Figure 3.6: Forwarding table and Tunneling table of switch s1.

Also for this second exercise, a couple of python scripts are provided for the
testing. In this case, the send.py script involves the use of the tag --dst id

(in addition to the parameters like the IP address and the message to be sent)
to specify the dst id field of the myTunnel header.
It is possible to test the normal IP routing in the same way as for the previous
exercise with ping or with the python scripts send.py and receive.py through
which all the transmission details are displayed (e.g., the TTL is decremented
by one for each crossed switch). Moreover, it is possible to test the actual
tunneling by using the two previously described scripts: changing the destina-
tion IP in any IP address and adding the tag --dst id with the right ID the

54 CHAPTER 3. P4 BASICS AND USE CASES

switch forwards the packet considering the port ID and not the IP address.
It is possible to see the fields of the MyTunnel header (proto id and dst id)
displayed during the transmission. For example, launching the command:

./ receive.py

from the CLI of the host h2 and the command:

./send.py 10.0.3.3 "msg" --dst_id 2

from the CLI of the host h1, the packet is received at the host h2, even though
the IP address is the address of the host h3. Due to the presence of the
myTunnel header, the switch is no longer using the IP header for routing but
it uses the dst id MyTunnel header field.

3.4. IMPLEMENTING A CONTROL PLANE USING P4RUNTIME 55

3.4 Implementing a Control Plane

using P4Runtime

In the first two exercises, a static controller is used to install static flow rules
that are specified in a runtime.json file. More in detail, the p4c compiler com-
piles the P4 program and generates a target-specific (BMv2) JSON configura-
tion file that is loaded into the Data Plane and a special file called p4info that
is needed to install the table entries. The static rules, in the previous tutorials,
are specified in the sX-runtime.json files and are installed while bringing up
the Mininet instance with the make run command.
There are a few approaches to achieving runtime control:

• The P4 compiler auto-generated runtime APIs. These are C++ APIs
that provide functionality such as add/remove table entries etc. This
approach is program-dependent: if the P4 program changes, the APIs
should change too and the controller should be restarted.

• The BMv2 CLI (used in the previous exercises). This approach is pro-
gram independent but target-specific (BMv2), therefore the control plane
is not portable between different targets.

• OpenFlow. It is target-independent but protocol-dependent. Indeed, the
supported set of protocols is baked-in the specification and it’s not trivial
to extend it.

• OCP (Open Compute Project) SAI (Switch Abstraction Interface). As
OpenFlow, this approach is target-independent and protocol-dependent.

• P4Runtime. It provides a target-independent and protocol-independent
interface between the control plane and the data plane [15].

P4Runtime is a framework for runtime control of P4 targets, it is an open-
source project that includes the API definitions and the server implementa-
tion. P4Runtime is one of the most commonly used data plane APIs and is
standardized in the P4 API WG (Working Group) [23] of the P4 Language
Consortium [14]. As shown in Table 3.1, P4Runtime is target-independent
and protocol-independent and it allows to push new P4 programs without
recompiling the deployed switches.

56 CHAPTER 3. P4 BASICS AND USE CASES

Table 3.1: Runtime control APIs.

API Target-Independent Protocol-Independent

P4 compiler auto-generated ✓ ✗

BMv2 CLI ✗ ✓

OpenFlow ✓ ✗

SAI ✓ ✗

P4Runtime ✓ ✓

Figure 3.7 depicts the P4Runtime operating principle using a P4 program
called test.p4. P4 targets always include a gRPC server and controllers im-
plement a gRPC client for the connection between the Control Plane and
the Data Plane. The P4Runtime server interacts with the P4-programmable

Figure 3.7: Semplified P4Runtime workflow.

components via the BMv2 driver that has access to all the P4 entities (Match-
Action Tables, externs, etc.).

3.4. IMPLEMENTING A CONTROL PLANE 57

The P4Runtime APIs define the messages and semantics of the interface be-
tween the client and the server. The API structure of P4Runtime is described
within the p4runtime.proto Protobuf file which is available on GitHub as part
of the standard [24] [25]. The controller can access the P4 entities which are de-
clared in the P4Info metadata. The P4Info structure is defined by p4info.proto,
another Protobuf file available as part of the standard [24]. This file is part
of the P4Runtime but it can be extended to use custom data structures, e.g.,
to implement interaction with target-specific externs. For each P4 entity, read
and write accesses are provided to the controller at runtime.
In the represented workflow, a P4 source program is compiled to produce both
a P4 device configuration file and P4Info metadata. Metadata in the P4Info
describes, as introduced before, both the overall program itself as well as all
entity instances derived from the P4 program. Each entity instance has an
associated numeric ID assigned by the P4 compiler which serves as a concise
“handle” used in API calls [24]. The target-specific configuration is directly
loaded onto the P4 target so that the P4 entities can be accessed. The P4Info
file, generated by the p4c compiler, is shared between the Control Plane and
the Data Plane. It captures P4 program attributes needed at runtime:

• IDs for tables, actions, parameters, etc;

• Table structure, action parameters, etc. [15].

These P4Info metadata specify the P4 entities which can be accessed via
P4Runtime APIs and, therefore, they have a one-to-one correspondence with
instantiated objects in the P4 source code [24].
The P4Info schema is designed to be target and architecture-independent, al-
though the specific contents are likely to be architecture-dependent [24]. The
P4Info file, in any case, is target-independent. Therefore, the compiler, given
the same P4 program, generates the same file for all possible different targets.
In this tutorial, P4Runtime is used to send flow entries to the switches in-
stead of installing static table entries by using the switches’ CLI. To define
the packet-processing pipeline, the same P4 program of the previous exercise
is built, renamed to advanced tunnel.p4, and modified by adding new func-
tionalities. More in detail, two counters are defined in the Ingress Processing
control block (ingressTunnelCounter and egressTunnelCounter), the two
actions myTunnel ingress and myTunnel egress are implemented and the
myTunnel exact table is modified by adding these actions.

58 CHAPTER 3. P4 BASICS AND USE CASES

The myTunnel ingress action validates the myTunnel header, sets the dst id

and proto id parameters and updates the relative ingressTunnelCounter

value. The myTunnel egress action sets the output port, destination MAC
address, and the etherType field of the Ethernet header; then it invalidates
the myTunnel header and increments the egressTunnelCounter value rela-
tive to the dst id parameter. The myTunnel exact table is simply modified
by adding the above-mentioned actions to the list of possible actions to be
invoked.

const bit <32> MAX_TUNNEL_ID = 1 << 16;

counter(MAX_TUNNEL_ID , CounterType.packets_and_bytes)

ingressTunnelCounter;

counter(MAX_TUNNEL_ID , CounterType.packets_and_bytes)

egressTunnelCounter;

action myTunnel_ingress(bit <16> dst_id) {

hdr.myTunnel.setValid ();

hdr.myTunnel.dst_id = dst_id;

hdr.myTunnel.proto_id = hdr.ethernet.etherType;

hdr.ethernet.etherType = TYPE_MYTUNNEL;

ingressTunnelCounter.count((bit <32>) hdr.myTunnel.dst_id);

}

action myTunnel_egress(macAddr_t dstAddr , egressSpec_t port) {

standard_metadata.egress_spec = port;

hdr.ethernet.dstAddr = dstAddr;

hdr.ethernet.etherType = hdr.myTunnel.proto_id;

hdr.myTunnel.setInvalid ();

egressTunnelCounter.count((bit <32>) hdr.myTunnel.dst_id);

}

table myTunnel_exact {

key = {

hdr.myTunnel.dst_id: exact;

}

actions = {

myTunnel_forward;

myTunnel_egress;

drop;

}

size = 1024;

default_action = drop ();

}

3.4. IMPLEMENTING A CONTROL PLANE 59

Figure 3.8 shows the topology (the same as the previous tutorial Implementing
Basic Tunneling, Section 3.3) with three switches (s1, s2, s3) configured in a
triangle, each connected to one host (h1, h2, h3).

Figure 3.8: Network topology of the
tutorial Implementing a Control Plane.

The control plane, in this exercise represented by the script mycontroller.py,
has the following responsibilities:

• establishing a gRPC (Remote Procedure Call) connection to the switches
s1 and s2 for the P4Runtime service;

• pushing the P4 program to each switch;

• writing the tunnel forwarding rules:

– myTunnel ingress rule on the ingress switch in the ipv4 lpm table
to encapsulate packets into a tunnel with the specified ID;

60 CHAPTER 3. P4 BASICS AND USE CASES

– myTunnel forward rule, a transit rule, on the ingress switch to for-
ward packets based on the specified ID;

– myTunnel egress rule on the egress switch to decapsulate packets
with the specified ID and send them to the host.

• reading the tunnel ingress and egress counters (ingressTunnelCounter
and egressTunnelCounter) every two seconds [26].

A few helper libraries are present in the p4runtime lib directory:

• helper.py

– contains the P4InfoHelper class which is used to parse the p4info
files;

– provides translation methods from entity names to and from ID
numbers;

– builds P4 program-dependent sections of P4Runtime table entries.

• switch.py

– contains the SwitchConnection class which grabs the gRPC client
stub, and establishes connections to the switches;

– provides methods that construct the P4Runtime protocol buffer
messages and makes the P4Runtime gRPC service calls.

• bmv2.py

– contains Bmv2SwitchConnection class which extends the SwitchCon-
nections class and provides the BMv2-specific device payload to
load the P4 program.

• convert.py

– provides methods to encode and decode from friendly strings and
numbers to the byte strings required for the protocol buffer mes-
sages;

– is used by helper.py [26].

The P4 compiler generates the interface between the switch pipeline and the
control plane. This interface is defined in the advanced tunnel.p4info file.
The table entries built in mycontroller.py refer to specific tables, keys, and
actions by name, and through the P4InfoHelper class, it is possible to convert

3.4. IMPLEMENTING A CONTROL PLANE 61

the names into the IDs that are required for P4Runtime.
The incomplete starter code mycontroller.py installs only some of the rules
needed to tunnel the traffic between two hosts. In the writeTunnelRules

function, there are the tunnel ingress and egress rules.

SWITCH_TO_HOST_PORT = 1

def writeTunnelRules(p4info_helper , ingress_sw , egress_sw ,

tunnel_id , dst_eth_addr , dst_ip_addr):

table_entry = p4info_helper.buildTableEntry(

table_name =" MyIngress.ipv4_lpm",

match_fields ={

"hdr.ipv4.dstAddr ": (dst_ip_addr , 32)

},

action_name =" MyIngress.myTunnel_ingress",

action_params ={

"dst_id ": tunnel_id ,

})

ingress_sw.WriteTableEntry(table_entry)

print (" Installed ingress tunnel rule on %s"

% ingress_sw.name)

table_entry = p4info_helper.buildTableEntry(

table_name =" MyIngress.myTunnel_exact",

match_fields ={

"hdr.myTunnel.dst_id ": tunnel_id

},

action_name =" MyIngress.myTunnel_egress",

action_params ={

"dstAddr ": dst_eth_addr ,

"port": SWITCH_TO_HOST_PORT

})

egress_sw.WriteTableEntry(table_entry)

print (" Installed egress tunnel rule on %s"

% egress_sw.name)

In the main function of the controller, after the switch connection creation
and the installation of the P4 program on the switches, two tunnels are cre-
ated through the writeTunnelRules function: one tunnel is from h1 to h2
(tunnel id = 100), with s1 the ingress switch and s2 the egress switch, and

62 CHAPTER 3. P4 BASICS AND USE CASES

one tunnel from h2 to h1 (tunnel id=200), with s2 the ingress switch and s1
the egress switch.

Write the rules that tunnel traffic from h1 to h2

writeTunnelRules(p4info_helper , ingress_sw=s1 , egress_sw=s2 ,

tunnel_id =100, dst_eth_addr ="08:00:00:00:02:22" ,

dst_ip_addr ="10.0.2.2")

Write the rules that tunnel traffic from h2 to h1

writeTunnelRules(p4info_helper , ingress_sw=s2 , egress_sw=s1 ,

tunnel_id =200, dst_eth_addr ="08:00:00:00:01:11" ,

dst_ip_addr ="10.0.1.1")

It’s possible to test the initial behavior. Two terminal windows are needed:
one for the data plane network and one for the controller program.
In the first one, the command

make

starts the Mininet instance with the topology described in Figure 3.8. Starting
a ping between the hosts h1 and h2, no packets arrive at the receiver because
no rules are installed on the switches yet.
In the second terminal window, the command

./ mycontroller.py

installs the advanced tunnel.p4 program on the switches and pushes the ini-
tial rules. The program prints the counters every two seconds, therefore it is
possible to inspect the ingressTunnelCounter value. In this case, starting
a ping between the hosts h1 and h2 it is possible to see the ingress tunnel
counter for the switch s1 increasing and the other counters remaining at zero.
In this first test, each switch is mapping traffic into tunnels based on the
IP address, the complete mycontroller.py file should contain also the tran-
sit rule that allows the switches to forward the traffic between the switches
based on the tunnel ID. The tunnel transit rule should be written in the
writeTunnelRules function, it should be added to the myTunnel exact ta-
ble, and it should match on tunnel ID (hdr.myTunnel.dst id). In this way,
the traffic is forwarded using the myTunnel forward action on the right port.
In the simple topology taken into account, the switches s1 and s2 are con-
nected using a link attached to port 2 on both switches. Therefore a variable
SWITCH TO SWITCH PORT is defined at the top of the file and it is used as the
port parameter for the action.

3.4. IMPLEMENTING A CONTROL PLANE 63

SWITCH_TO_SWITCH_PORT = 2

def writeTunnelRules(p4info_helper , ingress_sw , egress_sw ,

tunnel_id , dst_eth_addr , dst_ip_addr) :

...

table_entry = p4info_helper.buildTableEntry(

table_name =" MyIngress.myTunnel_exact",

match_fields ={

"hdr.myTunnel.dst_id ": tunnel_id

},

action_name =" MyIngress.myTunnel_forward",

action_params ={

"port": SWITCH_TO_SWITCH_PORT

})

ingress_sw.WriteTableEntry(table_entry)

print (" Installed transit tunnel rule on %s" % ingress_sw.name)

Using the described topology, a single transit rule and a fixed port are sufficient,
but in general, a transit rule for each switch in the path is needed and the port
should be selected dynamically along the path. While the Mininet network is
running, by simply following the same procedure as before, the controller adds
the new rule to the switches table. In this case, starting a ping between the
hosts h1 and h2, it is possible to see that the values of all counters start to
increment.

64 CHAPTER 3. P4 BASICS AND USE CASES

3.5 Implementing Explicit Congestion

Notification

This tutorial aims to extend the basic L3 forwarding with the implementa-
tion of Explicit Congestion Notification (ECN). ECN is an extension to the
Internet Protocol and Transmission Control Protocol and allows end-to-end
notification of network congestion without dropping packets. Explicit Con-
gestion Notification, indeed, is an optional feature that can be used between
two ECN-enabled endpoints when the underlying network supports it: if an
end-host supports ECN, it sets consequently the value of the ipv4.ecn field
and each switch can modify this value accordingly to the size of the queue with
respect to a threshold. The receiver, at this point, can copy the final value
and send it back to the sender to make it lowering the transmission rate.

Figure 3.9: IPv4 Header Structure.

Figure 3.9 describes the IPv4 header emphasizing the TOS (Type Of Service)
8 bits field. The first 6 bits represent the DiffServ field and the last 2 bits
represent the ECN field.

3.5. IMPLEMENTING ECN 65

The ECN field can have four different values that correspond to different states:

• 00 (0): Non ECN-Capable Transport, Non-ECT ;

• 01 (1): ECN Capable Transport, ECT ;

• 10 (2): ECN Capable Transport, ECT ;

• 11 (3): Congestion Encountered, CE.

Figure 3.10: Network topology of the
tutorial Implementing ECN.

The provided skeleton P4 program ecn.p4 implements L3 forwarding and
should be extended to properly set the ECN bits and implement the Explicit
Congestion Notification. It is possible to compile the incomplete P4 program.
The command

make

66 CHAPTER 3. P4 BASICS AND USE CASES

starts a Mininet instance with three switches (s1, s2, and s3) configured in
a triangle and five hosts (h1, h11, h2, h22, and h3). As it is possible to see
in Figure 3.10, the hosts h1 and h11 are connected to s1, the hosts h2 and
h22 are connected to s2 and the host h3 is connected to s3. The previous
command also installs the routing static rules based on the configuration files
sX-runtime.json (where X corresponds to each switch number, X=1, 2, 3).
To test the initial behavior, low-rate traffic is sent from h1 to h2 (through the
scripts send.py and receive.py) and high-rate traffic is sent from h11 to h22
(through the iperf tool, which creates a constant bit rate UDP stream). In
Figure 3.10, the two kinds of traffic are represented respectively with the blue
and the red lines. The link between s1 and s2 is common between the two
flows and it can represent a bottleneck.
Four terminals are needed respectively for h1, h11, h2, and h22. The command
below in the Mininet CLI allows to open the needed terminals.

mininet > xterm h1 h11 h2 h22

In h2 terminal, the receive.py script should be started to capture incoming
packets and store the output in the h2.log file.

./ receive.py > h2.log

In h22 terminal, the iperf UDP server should be started through the following
command.

iperf -s -u

In h1 terminal, the script send.py sends one packet per second for 30 seconds
and the message should be received at h2 terminal.

./send.py 10.0.2.2 "msg" 30

Finally in h11 terminal, the iperf client should be started, through the com-
mand below, to send packets for 15 seconds.

iperf -c 10.0.2.22 -t 15 -u

In this first test, the ECN logic in the switches is not implemented yet there-
fore the ipv4.tos field of the IPv4 header is always set to 1 as shown in
Figure 3.11.

3.5. IMPLEMENTING ECN 67

Figure 3.11: Screenshot of the TOS field during the test connection.

A complete ecn.p4 program implements the ECN logic and is able to properly
set the ECN flag. It should contain the following components:

• header type definitions for Ethernet (ethernet t) and IPv4 (ipv4 t);

• parsers for Ethernet and IPv4 that populate ethernet t and ipv4 t

fields;

• an action to drop a packet (drop) and an action to forward packets
(ipv4 forward);

68 CHAPTER 3. P4 BASICS AND USE CASES

• an ingress control block that performs the lookup of the table ipv4 lpm

and invokes either drop or ipv4 forward.

• an egress control block that checks the ECN and, based on the presence
or not of congestion, properly sets the hdr.ipv4.ecn;

• a deparser that selects the order in which fields are inserted into the
outgoing packet [27].

The IPv4 header should be modified by splitting the TOS field into DiffServ
and ECN fields to obtain hdr.ipv4.diffserv and hdr.ipv4.ecn fields. The
checksum block must be updated accordingly.

header ipv4_t {

bit <4> version;

bit <4> ihl;

bit <6> diffserv;

bit <2> ecn;

bit <16> totalLen;

bit <16> identification;

bit <3> flags;

bit <13> fragOffset;

bit <8> ttl;

bit <8> protocol;

bit <16> hdrChecksum;

ip4Addr_t srcAddr;

ip4Addr_t dstAddr;

}

control MyComputeChecksum(inout headers hdr ,

inout metadata meta) {

apply {

update_checksum(

hdr.ipv4.isValid(),

{ hdr.ipv4.version ,

hdr.ipv4.ihl ,

hdr.ipv4.diffserv ,

hdr.ipv4.ecn ,

hdr.ipv4.totalLen ,

hdr.ipv4.identification ,

hdr.ipv4.flags ,

hdr.ipv4.fragOffset ,

hdr.ipv4.ttl ,

hdr.ipv4.protocol ,

3.5. IMPLEMENTING ECN 69

hdr.ipv4.srcAddr ,

hdr.ipv4.dstAddr },

hdr.ipv4.hdrChecksum ,

HashAlgorithm.csum16);

}

}

In this way, in the P4 program, it is possible to read and write the ECN bits
through the hdr.ipv4.ecn field of the IPv4 header.
The parsing logic, the deparsing logic, and the Ingress Processing control block
are the same implemented in the first tutorial Implementation Basic Forward-
ing [section 3.2].
In the Egress Processing control block, the queue length should be compared
with a threshold value defined at the top of the P4 file (ECN THRESHOLD). The
logic should be the following: if the ECN value in the packet header is equal to
1 or 2 (ECT), the switch should compare the queue length with the threshold
and if it is larger than the threshold, the ECN flag is set to 3 (CE).
The standard metadata for the V1 Architecture includes the queue depth
field that is measured by the Traffic Manager and made available in the
Egress Match-Action Pipeline (architecture in Figure 2.5, standard metadata
of V1Model Architecture in Section 2.3.4):
The code below shows the definition of the threshold value and the implemen-
tation of the Egress Processing control block.

const bit <19> ECN_THRESHOLD = 10;

control MyEgress(inout headers hdr ,

inout metadata meta ,

inout standard_metadata_t standard_metadata) {

action mark_ecn () {

hdr.ipv4.ecn = 3;

}

apply {

if (hdr.ipv4.ecn == 1 || hdr.ipv4.ecn == 2){

if (standard_metadata.enq_qdepth >= ECN_THRESHOLD){

mark_ecn ();

}

}

}

}

70 CHAPTER 3. P4 BASICS AND USE CASES

When the same test described before is performed, the behavior is different
this time. With the command

./ receive.py > h2.log

in the h2 terminal, it is possible to track the tos value from the log file. In
particular, with the complete P4 program ecn.p4, the value of TOS changes
from 1 to 3 as the queue builds up and changes back to 1 when iperf finishes
and the queue depletes [27] as shown in Figure 3.15.

Figure 3.12: Screenshot of the TOS field during the test connection.

3.5. IMPLEMENTING MRI 71

3.6 Implementing Multi-Hop Route

Inspection

Explicit Congestion Notification (Section 3.5) only shows that there is con-
gestion somewhere in the network without specifying exactly where it is and
the extent of the congestion. An optimization of this logic can include the
possibility for the switches to modify the packet header to let the network
know what happens when it passed through the switch itself. For example,
each switch can include its switch ID and queue depth in the packet header or
any other statistics that can be useful in network monitoring. In this way, the
end host sees network information from several switches and knows if there is
congestion, which switch is congested, and its queue depth. The objective of
this tutorial is to implement this kind of logic, called Multi-Hop Route Inspec-
tion (MRI). In order to track the path and the queue length of switches that
every packet travels through, a P4 program that appends an ID and queue
length to the header stack of each packet is needed. At the destination host,
the sequence of switch IDs corresponds to the path and each ID is followed by
the queue length of the switch port [28].
The IPv4 header includes two parts: a fixed part and a variable part. The
variable part comprises the Option field that can be a maximum of 40 bytes
and it is used for network monitoring and testing.

Figure 3.13: IPv4 Option format.

Figure 3.13 shows the format of the Option field. The Option Type field
is divided into three subfields: the Copy Flag field is set to 1 if the option

72 CHAPTER 3. P4 BASICS AND USE CASES

is intended to be copied in all fragments when a datagram is fragmented; the
Option Class field specifies the general purpose of the option; the Option Num-
ber field defines the type of option. The Option Length field defines the total
length of the option including the type field and the length field itself. Finally,
there are the data to be sent as part of the option.
In this tutorial, the Option field of the IPv4 header is used to carry the MRI
information. Two new header types are defined and added at the end of the
header after the Option Type and Option Length fields. The ipv4 option t,
mri t, and switch t headers are defined as shown in the following code and
are added to the headers struct.

header ipv4_option_t {

bit <1> copyFlag;

bit <2> optClass;

bit <5> option;

bit <8> optionLength;

}

header mri_t {

bit <16> count;

}

header switch_t {

switchID_t swid;

qdepth_t qdepth;

}

struct headers {

ethernet_t ethernet;

ipv4_t ipv4;

ipv4_option_t ipv4_option;

mri_t mri;

switch_t[MAX_HOPS] swtraces;

}

The mri t header has just one field that shows how many switches the packet
has encountered. If this header is not present in the packet, the switch simply
forwards it. The switch t header contains the actual statistic records of each
switch hop the packet goes through (the switch ID and the queue depth). The
header struct can not have a dynamic size, therefore it must be specified a
maximum value for the size of the stack of switch t headers.
A new type of error is defined (IPHeaderTooShort) to be thrown if the header

3.6. IMPLEMENTING MRI 73

is not correctly formed. Through the verify function, the parser can check
the length of the header and behave consequently: it transitions to the Reject
state if it is too short, to the Accept state if the length is compatible with the
absence of the Option field, and to the parse ipv4 option if it is longer. This
is done by looking at the hdr.ipv4.ihl field, which specifies the number of
32-bit words in the header (the minimum value is 5).

error { IPHeaderTooShort }

state parse_ipv4 {

packet.extract(hdr.ipv4);

verify(hdr.ipv4.ihl >= 5, error.IPHeaderTooShort);

transition select(hdr.ipv4.ihl) {

5 : accept;

default : parse_ipv4_option;

}

}

The initial behavior of the provided skeleton P4 program mri.p4 is simply
performing L3 forwarding. It should be extended to properly manage the MRI
custom headers.
The command

make

compiles the incomplete mri.p4 program, starts a Mininet instance, and in-
stalls packet-processing rules in the tables of each switch (defined in the sX-
runtime.json files, where X corresponds to the switch number). The topology
is the same as the previous tutorial and the first test can be done by following
the same steps (section 3.5). The received packets do not contain any infor-
mation about the path they followed.
The complete mri.p4 program contains the following components:

• header type definitions for Ethernet (ethernet t), IPv4 (ipv4 t), IP
Options (ipv4 option t), MRI (mri t), and Switch (switch t);

• parsers for Ethernet, IPv4, IP Options, MRI, and Switch that will pop-
ulate ethernet t, ipv4 t, ipv4 option t, mri t, and switch t;

• an action to drop a packet (drop) and an action to forward packets
(ipv4 forward);

74 CHAPTER 3. P4 BASICS AND USE CASES

• an ingress control that performs the lookup of the table ipv4 lpm and
invokes either drop or ipv4 forward;

• an action (called add swtrace) that adds the switch ID and queue depth
values to the header;

• an egress control that applies the table swtrace to store the switch ID
and queue depth, and calls the action add swtrace;

• a deparser that selects the order in which fields are inserted into the
outgoing packet [28].

One of the biggest challenges in implementing MRI is handling the recursive
logic for parsing the new headers. A parser metadata field, called remaining,
is used to keep track of how many switch t headers we need to parse [28].
This field should be set to the value of hdr.mri.count in the parse mri state,
while it should be decremented in the parse swtrace state. In this way, it
is possible for the parser to transition from the parse swtrace state to itself
until remaining is equal to 0. Below is shown the parser code.

const bit <5> IPV4_OPTION_MRI = 31;

state parse_ipv4_option {

packet.extract(hdr.ipv4_option);

transition select(hdr.ipv4_option.option) {

IPV4_OPTION_MRI: parse_mri;

default: accept;

}

}

state parse_mri {

packet.extract(hdr.mri);

meta.parser_metadata.remaining = hdr.mri.count;

transition select(meta.parser_metadata.remaining) {

0 : accept;

default: parse_swtrace;

}

}

state parse_swtrace {

packet.extract(hdr.swtraces.next);

meta.parser_metadata.remaining =

meta.parser_metadata.remaining - 1;

3.6. IMPLEMENTING MRI 75

transition select(meta.parser_metadata.remaining) {

0 : accept;

default: parse_swtrace;

}

}

Figure 3.14: Parser state diagram.

Figure 3.14 depicts the parser states (parse ethernet, parse ipv4, parse ipv4

options, parse mri, and parse swtrace) and all the transitions.

76 CHAPTER 3. P4 BASICS AND USE CASES

In the Egress Processing control block the table swtrace and the action
add swtrace should be added to increment the hdr.mri.count field and ap-
pend a switch t header. More in detail, as shown in the code below, the
push front() method is used on the swtrace header stack and, then, it is
validated and the ID and queue depth values are added. Moreover, the total
length and the option length should be modified according to the addition of
the just mentioned data. The apply statement should simply check if the mri
header is present and apply the swtrace table.

action add_swtrace(switchID_t swid) {

hdr.mri.count = hdr.mri.count + 1;

hdr.swtraces.push_front (1);

hdr.swtraces [0]. setValid ();

hdr.swtraces [0]. swid = swid;

hdr.swtraces [0]. qdepth =

(qdepth_t)standard_metadata.deq_qdepth;

hdr.ipv4.ihl = hdr.ipv4.ihl + 2;

hdr.ipv4_option.optionLength =

hdr.ipv4_option.optionLength + 8;

hdr.ipv4.totalLen = hdr.ipv4.totalLen + 8;

}

table swtrace {

actions = {

add_swtrace;

NoAction;

}

default_action = NoAction ();

}

apply {

if (hdr.mri.isValid ()) {

swtrace.apply ();

}

}

Static rules are added ar compile time in the table swtrace of each switch
through the sX-run-
time.json files. For example, the code below shows the static rule added in
the switch s1. This entry is added to the table swtrace of swith s1, the action
to be invoked is the add swtrace and the parameter that is passed to the
action is the ID of the switch itself (equal to 1).

3.6. IMPLEMENTING MRI 77

"table_entries ": [

{

"table ": "MyEgress.swtrace",

"default_action ": true ,

"action_name ": "MyEgress.add_swtrace",

"action_params ": {

"swid": 1

}

},

...

]

The deparser, finally, should emit the ipv4 option, mri, and swtraces head-
ers after the Ethernet and IPv4 ones.

control MyDeparser(packet_out packet , in headers hdr) {

apply {

packet.emit(hdr.ethernet);

packet.emit(hdr.ipv4);

packet.emit(hdr.ipv4_option);

packet.emit(hdr.mri);

packet.emit(hdr.swtraces);

}

}

Running the same steps as before, using the modified mri.p4 program, it is
possible to see the sequence of switches through which the packet has traveled
and the corresponding statistics. Therefore, when a message is delivered from
h1 to h2 through the send.py and receive.py scripts, all the MRI details are
displayed and it is possible to see that the queue length at the common link
(from switch s1 to switch s2) is higher when the high rate traffic is traveling [28].
Figure 3.15 shows the details of a packet sent from h1 to h2 in these conditions.

78 CHAPTER 3. P4 BASICS AND USE CASES

Figure 3.15: Example of connection details of the
tutorial Implementing MRI.

3.7. IMPLEMENTING A BASIC STATEFUL FIREWALL 79

3.7 Implementing A Basic Stateful Firewall

This tutorial involves the implementation of a basic stateful firewall. The
topology utilized is the one in Figure 3.16 which consists of four hosts con-
nected to four switches. In the switches s2, s3, and s4 the basic IPv4 router pro-
gram (basic.p4, explained in section 3.2) is running. The switch s1, instead,
is configured with a P4 program that implements the firewall (firewall.p4).

Figure 3.16: Network topology of the
tutorial Implementing a Firewall.

The firewall.p4 program should have the following functionalities:

• hosts h1 and h2 are on the Internal Network and can always connect one
to the other;

• hosts h1 and h2 can freely connect to h3 and h4 on the external network;

80 CHAPTER 3. P4 BASICS AND USE CASES

• hosts h3 and h4 can only reply to connections once they have been es-
tablished from either h1 or h2, but they cannot initiate new connections
to the hosts in the Internal Network [29].

As for previous tutorials, a skeleton P4 program is present in the directory and
it is possible to compile it and test its initial behavior.
The command

make run

compiles the firewall.p4 file, starts the topology in Mininet, and correctly
configures all hosts and switches.
In the Mininet CLI, it is possible to try some iperf TCP flows between the
hosts to see the actual flow traffic between the different hosts.

mininet > iperf h1 h2

mininet > iperf h2 h1

Through the commands shown above, it can be seen that TCP flows between
the hosts h1 and h2 (inside the Internal Network) work.

mininet > iperf h1 h3

mininet > iperf h1 h4

mininet > iperf h2 h3

mininet > iperf h2 h4

In the same way, TCP flows from hosts in the Internal Network (h1 and h2)
to the outside hosts (h3 and h4) also work.

mininet > iperf h3 h1

mininet > iperf h3 h1

mininet > iperf h4 h2

mininet > iperf h4 h2

TCP flows from outside hosts (h3 and h4) to hosts inside the Internal Network
(h1 and h2) should not work, but since the firewall is not implemented yet, in
this first test they work [29].
To implement the basic stateful firewall in the data plane, a bloom filter is
used. This filter has two functionalities: checking if a packet is coming into
the Internal Network from the outside and verifying if it is part of an al-
ready established TCP connection. It is implemented through two registers:
bloom filter 1 and bloom filter 2.

3.7. IMPLEMENTING STATEFUL FIREWALL 81

The complete firewall.p4 program should contain the following components:

• header type definitions for Ethernet (ethernet t), IPv4 (ipv4 t) and
TCP (tcp t);

• parsers for Ethernet, IPv4 and TCP that populate ethernet t, ipv4 t

and tcp t fields;

• an action to drop a packet, using mark to drop();

• an action (called compute hashes) to compute the bloom filter’s two
hashes using hash algorithms crc16 and crc32. The hashes are computed
on the packet 5-tuple consisting of IPv4 source and destination addresses,
source and destination port numbers, and the IPv4 protocol type;

• an action (ipv4 forward) and a table (ipv4 lpm) that performs basic
IPv4 forwarding (section 3.2);

• an action (called set direction) that simply sets a one-bit direction
variable;

• a table (called check ports) that reads the ingress and egress port of a
packet (after IPv4 forwarding) and invokes set direction. The direc-
tion is set to 1 if the packet is incoming into the internal network. Other-
wise, the direction is set to 0. To achieve this, the file s1-runtime.json
contains the appropriate entries for the check ports table.

• a control that:

– applies the table ipv4 lpm if the packet has a valid IPv4 header;
– if the TCP header is valid, applies the check ports table to deter-

mine the direction;
– applies the compute hashes action to compute the two hash values

which are the bit positions in the two register arrays of the bloom
filter (reg pos one and reg pos two). When the direction is 1, i.e.
the packet is incoming into the Internal Network, compute hashes

is invoked by swapping the source and destination IPv4 addresses
and the source and destination ports. This is to have an unique
value representing the couple sender-receiver and to check against

82 CHAPTER 3. P4 BASICS AND USE CASES

the bloom filter’s set bits when the TCP connection was initially
made from the internal network;

– if the TCP packet is going out of the internal network and it is a
SYN packet, sets to 1 both the bloom filter registers at the computed
bit positions (reg pos one and reg pos two);

– if the TCP packet is entering the internal network, read both the
bloom filter registers at the computed bit positions and drop the
packet if at least one is not set to 1;

• a deparser that emits the Ethernet, IPv4, and TCP headers in the right
order [29].

In this exercise, the parser scheme is the one shown in Figure 3.17. Apart from
the standard states, the three custom states parse ethernet, parse ipv4,
and tcp are implemented to extract respectively the ethernet, IPv4, and TCP
headers.
In the following code, the tcp t header and the tcp parser state are shown.

header tcp_t{

bit <16> srcPort;

bit <16> dstPort;

bit <32> seqNo;

bit <32> ackNo;

bit <4> dataOffset;

bit <4> res;

bit <1> cwr;

bit <1> ece;

bit <1> urg;

bit <1> ack;

bit <1> psh;

bit <1> rst;

bit <1> syn;

bit <1> fin;

bit <16> window;

bit <16> checksum;

bit <16> urgentPtr;

}

state tcp {

packet.extract(hdr.tcp);

transition accept;

}

3.7. IMPLEMENTING STATEFUL FIREWALL 83

Figure 3.17: Parser state diagram.

At the beginning of the Ingress Processing control block the two registers are
defined, as well as the following variables: positions variables that are used
as register indices (reg pos one and reg pos two), values to be write on and
read from the registers (reg val one and reg val two) and the one-bit value
representing the direction (direction).

#define BLOOM_FILTER_ENTRIES 4096

#define BLOOM_FILTER_BIT_WIDTH 1

register <bit <BLOOM_FILTER_BIT_WIDTH >>(BLOOM_FILTER_ENTRIES)

bloom_filter_1;

register <bit <BLOOM_FILTER_BIT_WIDTH >>(BLOOM_FILTER_ENTRIES)

84 CHAPTER 3. P4 BASICS AND USE CASES

bloom_filter_2;

bit <32> reg_pos_one; bit <32> reg_pos_two;

bit <1> reg_val_one; bit <1> reg_val_two;

bit <1> direction;

The compute hashes action exploits the extern hash, defined in the V1Model
Architecture file v1model.p4. This action, shown in the code below, computes
two hash values with two different hash algorithms: crc16 and crc32, and stores
them respectively in the res pos one and reg pos two variables. Later they
are used as unique indices in the two registers and they represent the specific
connection. Indeed, these values are computed starting from the packet 5-tuple
made of IPv4 source and destination addresses, source and destination ports,
and the IPv4 protocol.

action compute_hashes(ip4Addr_t ipAddr1 , ip4Addr_t ipAddr2 ,

bit <16> port1 , bit <16> port2) {

//Get register position

hash(reg_pos_one , HashAlgorithm.crc16 , (bit <32>)0, {ipAddr1 ,

ipAddr2 , port1 , port2 , hdr.ipv4.protocol},

(bit <32>) BLOOM_FILTER_ENTRIES);

hash(reg_pos_two , HashAlgorithm.crc32 , (bit <32>)0, {ipAddr1 ,

ipAddr2 , port1 , port2 , hdr.ipv4.protocol},

(bit <32>) BLOOM_FILTER_ENTRIES);

}

The table check ports matches in the egress and ingress ports (exact match)
and calls the set direction action that simply set the one-bit value passed
as an action parameter. In the following piece of code, these implementations
are shown.

action set_direction(bit <1> dir) {

direction = dir;

}

table check_ports {

key = {

standard_metadata.ingress_port: exact;

standard_metadata.egress_spec: exact;

}

actions = {

set_direction;

3.7. IMPLEMENTING STATEFUL FIREWALL 85

NoAction;

}

size = 1024;

default_action = NoAction ();

}

Figure 3.18: check port table of switch s1.

In Figure 3.18, an example of check ports table entries of switch s1 is repre-
sented, while in the following code are shown the corresponding entries, written
in the s1-runtime.json file.
As it is possible to see from the graphical table representation and from the
implemented rules described by the code, the direction is set to 1 when the
packet is incoming into the internal network, while it is set to 0 if the packet

86 CHAPTER 3. P4 BASICS AND USE CASES

is directed from the internal network to the external hosts.

{

"target ": "bmv2",

"p4info ": "build/firewall.p4.p4info.txt",

"bmv2_json ": "build/firewall.json",

"table_entries ": [

{

"table ": "MyIngress.check_ports",

"match ": {

"standard_metadata.ingress_port ": 1,

"standard_metadata.egress_spec ": 3

},

"action_name ": "MyIngress.set_direction",

"action_params ": {

"dir": 0

}

},

{

"table ": "MyIngress.check_ports",

"match ": {

"standard_metadata.ingress_port ": 1,

"standard_metadata.egress_spec ": 4

},

"action_name ": "MyIngress.set_direction",

"action_params ": {

"dir": 0

}

},

{

"table ": "MyIngress.check_ports",

"match ": {

"standard_metadata.ingress_port ": 2,

"standard_metadata.egress_spec ": 3

},

"action_name ": "MyIngress.set_direction",

"action_params ": {

"dir": 0

}

},

{

"table ": "MyIngress.check_ports",

"match ": {

"standard_metadata.ingress_port ": 2,

"standard_metadata.egress_spec ": 4

3.7. IMPLEMENTING STATEFUL FIREWALL 87

},

"action_name ": "MyIngress.set_direction",

"action_params ": {

"dir": 0

}

},

{

"table ": "MyIngress.check_ports",

"match ": {

"standard_metadata.ingress_port ": 3,

"standard_metadata.egress_spec ": 1

},

"action_name ": "MyIngress.set_direction",

"action_params ": {

"dir": 1

}

},

{

"table ": "MyIngress.check_ports",

"match ": {

"standard_metadata.ingress_port ": 3,

"standard_metadata.egress_spec ": 2

},

"action_name ": "MyIngress.set_direction",

"action_params ": {

"dir": 1

}

},

{

"table ": "MyIngress.check_ports",

"match ": {

"standard_metadata.ingress_port ": 4,

"standard_metadata.egress_spec ": 1

},

"action_name ": "MyIngress.set_direction",

"action_params ": {

"dir": 1

}

},

{

"table ": "MyIngress.check_ports",

"match ": {

"standard_metadata.ingress_port ": 4,

"standard_metadata.egress_spec ": 2

},

88 CHAPTER 3. P4 BASICS AND USE CASES

"action_name ": "MyIngress.set_direction",

"action_params ": {

"dir": 1

}

}

]

}

Finally, the apply block of the Ingress Processing control block implements the
actual firewall behavior. After the verification of the headers, the check ports

table is applied and, depending on the direction, the action compute hashes

takes as input parameters the addresses and port numbers in the right order:
source and then destination addresses and ports if the packet is going outside
the internal network (if direction is equal to 0) and the opposite order if the
packet is coming into the internal network (if direction is equal to 1).
When a packet comes from the internal network, if the SYN flag is set to
1, the registers are updated and in the respective positions, reg pos one for
bloom filter 1 and reg pos two for bloom filter 2, the one-bit value is set
to 1. In this way, when one host in the internal network starts a connection,
the relative register value is set to 1 and it is readable while processing the
successive packets of the same connection that, therefore, are not discarded.
When a packet comes from outside, the values are read from the registers at
the relative indices and, if both values are equal to 1, the flow is allowed to
pass, otherwise, the packet is dropped.

apply {

if (hdr.ipv4.isValid ()){

ipv4_lpm.apply ();

if (hdr.tcp.isValid ()){

direction = 0; // default

if (check_ports.apply (). hit) {

if (direction == 0) {

compute_hashes(hdr.ipv4.srcAddr ,

hdr.ipv4.dstAddr ,

hdr.tcp.srcPort ,

hdr.tcp.dstPort);

}

else {

compute_hashes(hdr.ipv4.dstAddr ,

hdr.ipv4.srcAddr ,

hdr.tcp.dstPort ,

hdr.tcp.srcPort);

3.7. IMPLEMENTING STATEFUL FIREWALL 89

}

if (direction == 0){

if (hdr.tcp.syn == 1){

bloom_filter_1.write(reg_pos_one , 1);

bloom_filter_2.write(reg_pos_two , 1);

}

}

else if (direction == 1){

bloom_filter_1.read(reg_val_one ,

reg_pos_one);

bloom_filter_2.read(reg_val_two ,

reg_pos_two);

if (reg_val_one != 1 || reg_val_two != 1){

drop ();

}

}

}

}

}

}

After having extended the firewall.p4 file, it is possible to test the correct
behavior by following the same steps as before. This time, by launching the
commands

mininet > iperf h3 h1

mininet > iperf h3 h1

mininet > iperf h4 h2

mininet > iperf h4 h2

the TCP flows from outside hosts (h3 and h4) to hosts inside the internal
network (h1 and h2) should be blocked by the firewall.

90 CHAPTER 3. P4 BASICS AND USE CASES

Chapter 4

DoS Prevention Service
Implementation

In this Chapter, after a brief introduction about DOS attacks and how to
prevent them, the implemented service for DoS prevention is presented. TCP
SYN Flood is a common type of Denial-of-Service (DoS) or Distributed-Denial-
of-Service (DDoS) attack that can target any system connected to the Internet
and that provides Transmission Control Protocol (TCP) services (for example
web servers, email servers, etc). This form of DoS attack exploits part of the
normal TCP three-way handshake to consume all available server resources
and, therefore, to make the target server unresponsive and unavailable to le-
gitimate traffic. Essentially, the attacker sends TCP connection requests faster
than the target server can process them, causing network saturation. When a
client and server establish a normal TCP collection, the so-called “three-way
handshake” process is performed, and the messages exchange looks like this:

• the client requests a connection by sending a SYN (synchronize) message
to the server, therefore a TCP message with the SYN flag set and the
aim to start a new connection;

• the server acknowledges by sending a SYN-ACK (synchronize-acknowledge)
message back to the client, therefore a TCP message with both the SYN
flag and the ACK flag set;

• the client finally responds with an ACK (acknowledge) message, therefore
a TCP message with the ACK flag set, and the connection is established.

91

92 CHAPTER 4. DOS PREVENTION SERVICE

(a) Three-way handshake. (b) TCP SYN Flood attack.

Figure 4.1: TCP messages.

The listed steps are graphically represented in Figure 4.1a, while Figure 4.1b
represents the case in which an attacker exploits the fact that after the initial
SYN packet has been received, the server responds back with one or more
SYN/ACK packets and it waits for the final step in the handshake. In the
second case, the message exchange looks like this:

• the attacker sends a high volume of SYN messages to the target server;

• the server responds to each connection request and keeps the port open
in order to receive the client’s response;

• the attacker never sends any responses and the server keeps waiting for
the final ACK packets.

• in this way, while waiting for the arrival of each new SYN packet, the
server is maintaining a new open port connection, and, when a client
tries to connect to the server, the server is unable to correctly provide
the requested service.

In the next Sections, a simple P4 program and a P4 controller are proposed to

4.1. DOS PREVENTION P4 PROGRAM 93

be integrated into the FORCH (Fog Orchestration) System and dynamically
provide a service for DoS Prevention.

4.1 DoS prevention P4 Program

In this first Section of Chapter 4, the P4 program is presented. The network
topology utilized for testing this program is the one shown in Figure 4.2.

Figure 4.2: Network Topology.

It includes one switch s1 and two hosts, h1 and h2, connected to it. In par-
ticular, the host h1 represents the one that needs to be protected during a
DoS attack performed by the host h2. Therefore, in switch s1, the P4 pro-
gram antiDOS.p4 is running and the proper flow rules are installed in order
to protect host h1. The code below is written in the topology.json file, used
to build up the topology of Figure 4.2 with Mininet. The JSON file includes
the configuration of both the hosts, the switch, and the links connecting these
three components.

{

"hosts ": {

"h1": {"ip": "10.0.1.1/24" , "mac": "08:00:00:00:01:11" ,

"commands ":[" route add default gw 10.0.1.10 dev eth0",

"arp -i eth0 -s 10.0.1.10 08:00:00:00:01:00"]} ,

"h2": {"ip": "10.0.2.1/24" , "mac": "08:00:00:00:02:22" ,

"commands ":[" route add default gw 10.0.2.20 dev eth0",

"arp -i eth0 -s 10.0.2.20 08:00:00:00:02:00"]}

},

"switches ": {

"s1": { "runtime_json" : "pod -topo/s1-runtime.json" }

94 CHAPTER 4. DOS PREVENTION SERVICE

},

"links ": [

["h1", "s1-p1"], ["h2", "s1 -p2"]

]

}

The P4 program antiDOS.p4 should contain the following components:

• header type definitions for Ethernet (ethernet t), IPv4 (ipv4 t) and
TCP (tcp t);

• parsers for Ethernet, IPv4 and TCP that populate ethernet t, ipv4 t

and tcp t;

• an action to drop a packet (drop) that uses the primitive mark to drop()

action, defined in the file v1model.p4;

• an action (ipv4 forward) and a table (ipv4 lpm) that performs basic
IPv4 forwarding;

• an action, called calc hash, that calculates a unique value starting from
the 4-tuple consisting of destination IP address, destination port number,
source IP address, and source port number of the considered packet;

• a table, called protected server, that matches on the destination IP
address and destination port number, invokes one action among NoAc-
tion and calc hash, does not includes any action parameters, and which
default action is NoAction;

• an ingress control that:

– if the packet has a valid IPv4 header, performs the lookup of the
table ipv4 lpm and invokes either the drop or the ipv4 forward

action;
– if the packet has a valid TCP header, performs the lookup of the

table protected server and invokes the action calc hash;
– if the protected server table is hit, increments a connection spe-

cific counter, implemented through a P4 register, with the aim to
keep track of the number of connections established from the packet
source to the packet destination;

4.1. DOS PREVENTION P4 PROGRAM 95

– when the counter reaches a predefined threshold, blocks the succes-
sive attempts to establish a new connection from the same source
IP address and port number;

– after a predefined amount of time from the locking of new connec-
tions, resets the counter in order to allow again the establishment
of connections from the IP address and port number;

• a deparser that selects the order in which the headers are inserted into
the outgoing packet.

The headers used by this P4 program are the Ethernet header, the IPv4 header,
and the TCP header. They are defined as follows and are added to the headers
struct.

header ethernet_t {

macAddr_t dstAddr;

macAddr_t srcAddr;

bit <16> etherType;

}

header ipv4_t {

bit <4> version;

bit <4> ihl;

bit <8> diffserv;

bit <16> totalLen;

bit <16> identification;

bit <3> flags;

bit <13> fragOffset;

bit <8> ttl;

bit <8> protocol;

bit <16> hdrChecksum;

ip4Addr_t srcAddr;

ip4Addr_t dstAddr;

}

header tcp_t{

bit <16> srcPort;

bit <16> dstPort;

bit <32> seqNo;

bit <32> ackNo;

bit <4> dataOffset;

bit <4> res;

bit <1> cwr;

bit <1> ece;

96 CHAPTER 4. DOS PREVENTION SERVICE

bit <1> urg;

bit <1> ack;

bit <1> psh;

bit <1> rst;

bit <1> syn;

bit <1> fin;

bit <16> window;

bit <16> checksum;

bit <16> urgentPtr;

}

struct headers {

ethernet_t ethernet;

ipv4_t ipv4;

tcp_t tcp;

}

Through the defined headers, it is possible to access all the specific fields of
each header during the processing of packets. The parser, in addition to the
three standard states (Start, Accept, and Reject), is composed of the follow-
ing states: parse ethernet, parse ipv4, and parse tcp. From the Start
state, the parser transitions to the parse ethernet state where, if the field
hdr.ethernet.etherType corresponds to the TYPE IPV4 value, it transitions
to the parse ipv4 state. Here, the hdr.ipv4.protocol field of the IPv4
header is inspected and, if it is equal to the TYPE TCP value, it transitions
to the parse tcp state. The final transition is made to the Accept state.
The transitions to the Reject state are implicit and they happen each time
a packet is not well-formed therefore packet processing is not feasible. The
values TYPE IPV4 and TYPE TCP are defined at the beginning of the P4 pro-
gram and they correspond to two specific values defined in the Ethernet and
IPv4 protocol specifications. In particular, the etherType field (16 bits) of
the Ethernet header is used to indicate which protocol is encapsulated in the
payload of the Ethernet frame and, if it is equal to 0x800 (hexadecimal value),
the payload encapsulates the IPv4 protocol. The protocol field (8 bits) of the
IPv4 header defines the protocol used in the data portion of the IP datagram
and, if it is equal to 0x06 (hexadecimal value, corresponding to the protocol
number 6), the encapsulated protocol corresponds to the Transmission Control
Protocol (TCP).
The code below shows the parser implementation.

4.1. DOS PREVENTION P4 PROGRAM 97

const bit <16> TYPE_IPV4 = 0x800;

const bit <8> TYPE_TCP = 6;

parser MyParser(packet_in packet ,

out headers hdr ,

inout metadata meta ,

inout standard_metadata_t standard_metadata) {

state start {

transition parse_ethernet;

}

state parse_ethernet {

packet.extract(hdr.ethernet);

transition select(hdr.ethernet.etherType) {

TYPE_IPV4: parse_ipv4;

default: accept;

}

}

state parse_ipv4 {

packet.extract(hdr.ipv4);

transition select(hdr.ipv4.protocol){

TYPE_TCP: parse_tcp;

default: accept;

}

}

state parse_tcp {

packet.extract(hdr.tcp);

transition accept;

}

}

Figure 4.3 represents the scheme of the parser as a finite state machine (FSM)
with the explicit states and transitions.
In the Ingress Processing control block, the tables and the actions are imple-
mented. For the computations included in this control block, some user-defined
metadata are needed: pkt hash is a variable used to store the unique value
calculated through the hash function that is used as an index register later
on; count is a variable used to store the incrementing number of attempts to
establish new connections. The other two fields of the struct, timemaxsyn and

98 CHAPTER 4. DOS PREVENTION SERVICE

Figure 4.3: Parser state diagram.

interval, are exploited in the apply block and, therefore, are explained later
this Section.

struct metadata {

bit <32> pkt_hash;

bit <32> count;

bit <48> timemaxsyn;

bit <48> interval;

}

The drop action is implemented simply by exploiting the mark to drop func-
tion. This primitive function is defined in the file v1model.p4 and it modi-
fies the field standard metadata.egress spec to an implementation-specific
value that causes the packet to be dropped at the end of ingress processing.

4.1. DOS PREVENTION P4 PROGRAM 99

The ipv4 forward action performs the following operations: setting the egress
port to the port number provided by the control plane, updating the packet’s
source MAC address with the MAC address of the switch (packet’s current
destination MAC address), updating the packet’s destination MAC address
with the address of the next hop provided by the control plane, and decre-
menting the TTL field of the IPv4 header.
The ipv4 lpm Match-Action Table is the actual forwarding table. It matches
on the destination IP address with an LPM (Longest Prefix Match) type match.
In particular, the table entries specify the IP addresses with the relative sub-
net masks and the match is found with the longest prefix among all the ta-
ble entries. The list of actions that can be invoked includes the described
ipv4 forward action, drop action, and NoAction. The drop action is also the
default action, therefore it is invoked any time there is no hit.
The action calc hash uses the V1Model Architecture predefined function
hash(). This function is defined in the v1model.p4 file and it is a mathe-
matical function capable of converting an input, possibly made of more than
one parameter, into a unique output of fixed length. It takes as input parame-
ters the variable into which the result is stored (meta.pkt hash), the algorithm
utilized to calculate the hash value (HashAlgorithm.crc32), the first and last
values of the range of possible results and the 4-tuple that has to be converted
into a single value. Moreover, this action reads from the register mycounter
the value corresponding to the index just calculated. This value, stored in the
meta.count variable, represent the number of attempts of establishing a new
connection counted until this moment.
The protected server Match-Action Table is the one responsible for the DoS
prevention logic and it is applied to the inserted target hosts. The declaration
protected server MAT specifies what to match on (destination IP address
and destination port number), a list of possible actions (the previously de-
scribed calc hash and NoAction), and additional properties such as the size
of the table and the default action that will be executed if there is no match.
When an entry is added to this MAT, the relative host is protected from DoS
attacks in the way specified in the P4 program.
The following code shows the implementation of the ipv4 forward action, the
ipv4 lpmMatch-Action Table, the calc hash action, and the protected server

Match-Action Table.

100 CHAPTER 4. DOS PREVENTION SERVICE

control MyIngress(inout headers hdr ,

inout metadata meta ,

inout standard_metadata_t standard_metadata){

action drop() {

mark_to_drop(standard_metadata);

}

action ipv4_forward(macAddr_t dstAddr , egressSpec_t port){

standard_metadata.egress_spec = port;

hdr.ethernet.dstAddr = dstAddr;

hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

table ipv4_lpm {

key = {

hdr.ipv4.dstAddr: lpm;

}

actions = {

ipv4_forward;

drop;

NoAction;

}

size = 1024;

default_action = drop ();

}

action calc_hash () {

hash(meta.pkt_hash , HashAlgorithm.crc32 , (bit <32>)0,

{hdr.ipv4.dstAddr ,

hdr.tcp.dstPort ,

hdr.ipv4.srcAddr ,

hdr.tcp.srcPort}, (bit <32 >)8192);

mycounter.read(meta.count , (bit <32>) meta.pkt_hash);

}

table protected_server {

key = {

hdr.ipv4.dstAddr: exact;

hdr.tcp.dstPort : exact;

}

actions = {

calc_hash;

NoAction;

4.1. DOS PREVENTION P4 PROGRAM 101

}

size = 1024;

default_action = NoAction;

}

...

}

At the end of the Ingress Processing control block, after the definition of all
the tables and actions, the apply block performs the actual program logic.
After the verification of IPv4 and TCP headers validity, the SYN flag of the
TCP header is inspected. This flag, pointed out in Figure 4.4, represents the

Figure 4.4: TCP Header Format.

synchronization flag and it is used to establish a three-way handshake between
two hosts. Only the first packet from both the sender and receiver should
have this flag set. Therefore, when the SYN flag is set to 1, the source host is
trying to establish a new connection with the destination host. As explained
in the initial part of this Chapter, the TCP SYN flood (or SYN flood) is a

102 CHAPTER 4. DOS PREVENTION SERVICE

type of Denial of Service (DoS) attack that exploits part of the normal TCP
three-way handshake to consume resources on the targeted server and make
it unavailable. The P4 program antiDOS.p4 has the aim to prevent these
types of attacks. If the SYN flag is set to 1, the lookup is performed on the
protected server MAT. If a match is found, the processed SYN packet is
directed towards a protected server and consequently the calc hash action is
invoked. The hash index is computed and the relative value is read from the
register mycounter. This value is, then, compared with a threshold (MAX SYN)
that, for the sake of simplicity, is set to 3. When the counter value, incre-
mented for each connection, reaches the threshold, the packets are directly
dropped. In this way, they never arrive at the end host and there isn’t a waste
of resources. Moreover, when the counter value corresponds to the thresh-
old value, the ingress global timestamp standard metadata field is stored
in the meta.timemaxsyn variable and it is written in a time last maxsynpkt

register in order to be compared with the timestamps of the following packets.
The V1Model Architecture standard metadata have already been presented
in Chapter 2. The ingress global timestamp field represents the timestamp
relative to the moment in which the switch starts processing the packets, and
it is measured in microseconds. For each following arriving packet, the time
interval between the current timestamp and the timestamp stored in the reg-
ister at the right index is computed and when this interval (meta.interval)
reaches the predefined time threshold (RESET INTERVAL), the counter value
at the index specific for the couple sender-receiver is reset. By resetting the
counter, the source host can try to establish a new connection with the desti-
nation host without any blocking policy. The time last maxsynpkt register
has the purpose of keeping track of the ingress timestamp of the last packet
corresponding to the achievement of the MAX SYN threshold for a specific couple
sender-receiver.
In the following code is implemented the just described apply block.

apply {

if (hdr.ipv4.isValid ()) {

ipv4_lpm.apply ();

}

if(hdr.tcp.isValid ()) {

if(hdr.tcp.syn == 1) {

if(protected_server.apply (). hit) {

if (meta.count == MAX_SYN) {

meta.count = meta.count + 1;

4.1. DOS PREVENTION P4 PROGRAM 103

mycounter.write ((bit <32>) meta.pkt_hash ,

meta.count);

meta.timemaxsyn = standard_metadata.

ingress_global_timestamp;

time_last_maxsynpkt.write((bit <32>)

meta.pkt_hash , meta.timemaxsyn);

drop ();

} else if (meta.count < MAX_SYN) {

meta.count = meta.count + 1;

mycounter.write ((bit <32>) meta.pkt_hash ,

meta.count);

time_last_maxsynpkt.write((bit <32>)

meta.pkt_hash ,

standard_metadata.

ingress_global_timestamp);

} else if (meta.count > MAX_SYN) {

time_last_maxsynpkt.read(meta.timemaxsyn ,

(bit <32>) meta.pkt_hash);

meta.interval = standard_metadata.

ingress_global_timestamp -

meta.timemaxsyn;

if (meta.interval > RESET_INTERVAL) {

meta.count = 0;

mycounter.write ((bit <32>) meta.pkt_hash ,

meta.count);

meta.interval = 0;

drop ();

}

else {

meta.count = meta.count + 1;

mycounter.write ((bit <32>) meta.pkt_hash ,

meta.count);

drop ();

}

}

}

}

}

}

The deparser, finally, should emit the Ethernet header, the IPv4 header, and
the TCP header into the outgoing packet. In the code below the deparser,
called MyDeparser is shown.

control MyDeparser(packet_out packet , in headers hdr) {

104 CHAPTER 4. DOS PREVENTION SERVICE

apply {

packet.emit(hdr.ethernet);

packet.emit(hdr.ipv4);

packet.emit(hdr.tcp);

}

}

For an initial test, some static rules are added at compile time in the ipv4 lpm

table and the protected server table. In the s1-runtime.json the following
rules are written: the first ones are inserted in the ipv4 lpm table while the
last one is inserted in the protected server table and represents the host to
be protected from DoS attacks (host h1).

Figure 4.5: Match-Action Tables entries.

Figure 4.5 depicts the tables described above as well as the code below, that
is written in the s1-runtime.json file.

4.1. DOS PREVENTION P4 PROGRAM 105

{

"target ": "bmv2",

"p4info ": "build/antiDOS.p4.p4info.txt",

"bmv2_json ": "build/antiDOS.json",

"table_entries ": [

{

"table ": "MyIngress.ipv4_lpm",

"default_action ": true ,

"action_name ": "MyIngress.drop",

"action_params ": { }

},

{

"table ": "MyIngress.ipv4_lpm",

"match ": {

"hdr.ipv4.dstAddr ": ["10.0.1.1" , 32]

},

"action_name ": "MyIngress.ipv4_forward",

"action_params ": {

"dstAddr ": "08:00:00:00:01:11" ,

"port": 1

}

},

{

"table ": "MyIngress.ipv4_lpm",

"match ": {

"hdr.ipv4.dstAddr ": ["10.0.2.1" , 32]

},

"action_name ": "MyIngress.ipv4_forward",

"action_params ": {

"dstAddr ": "08:00:00:00:02:22" ,

"port": 2

}

},

{

"table ": "MyIngress.protected_server",

"match ": {

"hdr.ipv4.dstAddr ": ["10.0.1.1"] ,

"hdr.tcp.dstPort ": [65000]

},

"action_name ": "MyIngress.calc_hash",

106 CHAPTER 4. DOS PREVENTION SERVICE

"action_params ": { }

}

]

}

A simple way to test the behavior of the antiDOS.p4 program inside the net-
work topology represented in Figure 4.2 is the network tool hping3. hping3

is a network tool able to send custom TCP/IP packets and display target
replies like ping program does with ICMP replies. It allows simply performing
monitoring and testing of firewalls and networks by generating and analyzing
manipulated packets for the TCP/IP protocol.
To install hping3 on Debian and its based Linux distributions including Ubuntu,
it is possible to use the apt packages manager as shown below.

sudo apt install hping3 -y

A simple DoS attack can be performed by launching the following command
in the h2 terminal:

hping3 -S --flood -s 65001 -k -p 65000 10.0.1.1

This command includes several useful options:

• -S : it is part of the TCP-related options and it is used to set the SYN
flag to 1;

• --flood : it allows to send packets as fast as possible and replies will be
ignored;

• -s source port : it represents the port number of the host from which
the traffic is sent;

• -k : usually the shown command is used with a baseport that is increased
by one for each packet, while this option allows keeping the same source
port for each sent packet;

• -p destination port : it represents the port number of the destination
host towards which the traffic is directed;

• the destination IP address.

4.1. DOS PREVENTION P4 PROGRAM 107

The output does not show replies because they were ignored, but the s1.log

file contains trace messages describing how the switch processes each packet.
By inspecting the s1.log file it is, therefore, possible to verify the correct
behavior of the switch s1. Figure 4.6 depicts the flowchart of the antiDOS.p4
P4 program.

Figure 4.6: Flowchart.

108 CHAPTER 4. DOS PREVENTION SERVICE

4.2 P4Runtime Controller

The P4Runtime framework, already introduced in Section 3.4, is a control
protocol for P4-defined data planes. Therefore, it includes control plane speci-
fications for controlling the data plane elements of devices defined or described
by a P4 program [24]. Figure 3.7 is proposed again in this Section with more
details. Figure 4.7, indeed, represents a more detailed P4Runtime Reference
Architecture. The device or target to be controlled is at the bottom, and one
or more controllers are at the top of the schematized architecture. In the use
case presented in this thesis, a single controller is implemented therefore Fig-
ure 4.7 shows only one entity with the role of controlling the target device.
The P4Runtime APIs are target-independent, so the platform drivers and the

Figure 4.7: P4Runtime Reference Architecture.

specific target on which the controller is running are irrelevant from the point
of view of the controller itself. For example, the messages utilized for insert-
ing new table entries in the Data Plane are the same across multiple different

4.2. P4RUNTIME CONTROLLER 109

targets as long as the P4 program is the same.
By running the P4 compiler, a P4Info file and a JSON file are generated. The
second one is specifically generated in the case of a BMv2 target, therefore it
is target-specific, and it is used to configure BMv2 at runtime. The P4Info file,
instead, is a target-independent compiler output that only depends on the P4
program. The P4Info file consists of a set of metadata that specifies the P4
entities which can be accessed via P4Runtime. These entities (Match-Action
Tables, Actions, Externs, etc.) have a one-for-one correspondence with the
instantiated objects in the P4 source code, and the P4Info file shares all their
details and properties between the Data Plane and the Control Plane.
Figure 4.8, shows the piece of the antiDOS.p4.p4info file related to the
calc hash action and the protected server table while in Figure 4.9 is shown
the piece related to the registers mycounter and time last maxsynpkt.

Figure 4.8: P4info metadata related to protected server and calc hash.

110 CHAPTER 4. DOS PREVENTION SERVICE

Figure 4.9: P4info metadata related to the registers.

As shown in Figure 4.7, P4 targets always include a gRPC Server and con-
trollers should implement a gRPC Client for the connection between the Con-
trol Plane and the Data Plane.
The represented p4runtime.proto and p4info.proto are two protobuff files
that describe respectively the API structure of P4Runtime and the P4Info file
structure.
The implemented controller uses the same p4runtime lib library already pre-
sented in Section 3.4, and therefore the previously described files helper.py,
switch.py, bmv2.py, and convert.py. In particular, the script switch.py

contains the SwitchConnection class that establishes connections to the switch
and provides methods that construct the P4Runtime messages and makes the
actual gRPC service call. Some of the utilized methods are listed in the fol-
lowing:

• MasterArbitrationUpdate: it establishes this controller as a master,

4.2. P4RUNTIME CONTROLLER 111

operation required by P4Runtime before performing any other write op-
eration;

• SetForwardingPipelineConfig(): it installs the P4 program on the
switch;

• WriteTableEntry: it builds the P4Runtime message needed to add a
new table entry;

• DeleteTableEntry: it builds the P4Runtime message needed to remove
an existing table entry;

• ReadTableEntries: it displays all the table entries.

In the implemented script controller.py three functions are defined:
updateForwardingRules, readTableRules, and updateAntiDOSRules. All of
them are shown in the code below.

def updateForwardingRules(mode , p4info_helper , sw , dst_ip_addr ,

dst_eth_addr , egress_port):

"""

Installs the antiDOS rule

:param mode: add or del

:param p4info_helper: the P4Info helper

:param sw: the switch that performs the forwarding

:param dst_ip_addr: the destination IP address to match on

:param dst_eth_addr: ethernet address for next hop

:param egress_port: egress port for next hop

"""

Forwarding Rule

table_entry = p4info_helper.buildTableEntry(

table_name =" MyIngress.ipv4_lpm",

match_fields ={

"hdr.ipv4.dstAddr ": (dst_ip_addr , 32)

},

action_name =" MyIngress.forward",

action_params ={

"dstAddr ": dst_eth_addr ,

"port": egress_port

})

112 CHAPTER 4. DOS PREVENTION SERVICE

if mode == "add":

sw.WriteTableEntry(table_entry , False)

print(" Installed forwarding rule on %s" % sw.name)

elif mode == "del":

sw.DeleteTableEntry(table_entry , False)

print(" Deleted forwarding rule on %s" % sw.name)

def updateAntiDOSRules(mode , p4info_helper , sw , dst_ip_addr ,

dst_port):

"""

Installs the antiDOS rule

:param mode: add or del

:param p4info_helper: the P4Info helper

:param sw: the switch connected to the protected server

:param dst_ip_addr: the destination IP address to match on

:param dst_port: the port number to match on

"""

AntiDOS Rule

table_entry = p4info_helper.buildTableEntry(

table_name =" MyIngress.protected_server",

match_fields ={

"hdr.ipv4.dstAddr ": (dst_ip_addr),

"hdr.tcp.dstPort ":(dst_port)

},

action_name =" MyIngress.calc_hash",

action_params ={

})

if mode == "add":

sw.WriteTableEntry(table_entry , False)

print(" Installed antiDOS rule on %s" % sw.name)

elif mode == "del":

sw.DeleteTableEntry(table_entry , False)

print(" Deleted antiDOS rule on %s" % sw.name)

def readTableRules(p4info_helper , sw):

"""

Reads the table entries from all tables on the switch.

:param p4info_helper: the P4Info helper

4.2. P4RUNTIME CONTROLLER 113

:param sw: the switch

"""

print(’\n--- Reading tables rules for %s ---’ % sw.name)

for response in sw.ReadTableEntries ():

for entity in response.entities:

entry = entity.table_entry

table_name = p4info_helper.

get_tables_name(entry.table_id)

print(’%s: ’ % table_name , end=’ ’)

for m in entry.match:

print(p4info_helper.get_match_field_name(

table_name , m.field_id), end=’ ’)

print(’%r’ % (p4info_helper.

get_match_field_value(m),),

end=’ ’)

action = entry.action.action

action_name = p4info_helper.get_actions_name(

action.action_id)

print(’->’, action_name , end=’ ’)

for p in action.params:

print(p4info_helper.get_action_param_name(

action_name , p.param_id), end=’ ’)

print(’%r’ % p.value , end=’ ’)

print()

The updateForwardingRules function can be exploited to add or remove one
or more entries from the ipv4 lpm Match-Action Table depending on the pa-
rameter called mode. The updateAntiDOSRules function, in the same way, can
be exploited to add or remove one or more entries from the protected server

Match-Action Table. In both the functions a table entry is built using the
needed parameters (the match fields, the list of actions, and the action data)
and then it is passed to the WriteTableEntry or the DeleteTableEntry func-
tion depending on the mode input parameter.
Through these functions it is possible, therefore, to reconfigure the switch at
runtime by adding or removing table entries from the available Match-Action
Tables. Finally, in the code below, the main function of the controller.py

is shown and performs the following operations:

• instantiating a P4Runtime helper from the antiDOS.p4.p4info file. The
P4InfoHelper provides translation methods from entity names to ID num-
bers and vice versa and therefore is used to parse the P4Info file.

114 CHAPTER 4. DOS PREVENTION SERVICE

• creating the P4Runtime gRPC connection to the switch s1.

• establishing the controller as master and, in this way, enabling the con-
troller to write new entries in the tables.

• simply installing the P4 program on the switch, when the mod parameter
is equal to init or it is not present.

• adding the three needed rules (two for forwarding purposes and one for
protection purposes) when the mod parameter is equal to add.

• removing the rules mentioned above when the mod parameter is equal to
del.

def main(p4info_file_path , bmv2_file_path , mod):

Instantiate a P4Runtime helper from the p4info file

p4info_helper = p4runtime_lib.helper.P4InfoHelper

(p4info_file_path)

try:

Create a switch connection object for s1;

s1 = p4runtime_lib.bmv2.Bmv2SwitchConnection(

name=’s1 ’,

address = ’127.0.0.1:50051 ’ ,

device_id=0,

proto_dump_file=’logs/s1-p4runtime -requests.txt ’)

Establish this controller as master

s1.MasterArbitrationUpdate ()

if mod == "init":

Install the P4 program on the switches

s1.SetForwardingPipelineConfig(p4info=p4info_helper

.p4info , bmv2_json_file_path=bmv2_file_path)

print(" Installed P4 Program using

SetForwardingPipelineConfig on s1")

4.2. P4RUNTIME CONTROLLER 115

elif mod == "add":

Write the forwarding rules in the s1 switch

updateForwardingRules ("add", p4info_helper , sw=s1,

dst_ip_addr ="10.0.1.1" ,

dst_eth_addr ="08:00:00:00:01:11" ,

egress_port =1)

updateForwardingRules ("add", p4info_helper , sw=s1,

dst_ip_addr ="10.0.2.1" ,

dst_eth_addr ="08:00:00:00:02:22" ,

egress_port =2)

Write the antiDOS rules in the s1 switch

updateAntiDOSRules ("add", p4info_helper , sw=s1,

dst_ip_addr ="10.0.1.1" ,

dst_port =65000)

elif mod == "del":

Delete the forwarding rules from the s1 switch

updateForwardingRules ("del", p4info_helper , sw=s1,

dst_ip_addr ="10.0.1.1" ,

dst_eth_addr ="08:00:00:00:01:11" ,

egress_port =1)

updateForwardingRules ("del", p4info_helper , sw=s1,

dst_ip_addr ="10.0.2.1" ,

dst_eth_addr ="08:00:00:00:02:22" ,

egress_port =2)

Delete the antiDOS rule in the s1 switch

updateAntiDOSRules ("del", p4info_helper , sw=s1,

dst_ip_addr ="10.0.1.1" ,

dst_port =65000)

except KeyboardInterrupt:

print (" Shutting down .")

except grpc.RpcError as e:

printGrpcError(e)

ShutdownAllSwitchConnections ()

116 CHAPTER 4. DOS PREVENTION SERVICE

if __name__ == ’__main__ ’:

parser = argparse.ArgumentParser(

description=’P4Runtime Controller ’)

parser.add_argument(’--p4info ’, help=’p4info proto in

text format from p4c ’, type=str ,

action =" store", required=False ,

default =’./ build/antiDOS.p4.p4info.txt ’)

parser.add_argument(’--bmv2 -json ’, help=’BMv2 JSON file

from p4c ’, type=str , action =" store",

required=False ,

default =’./ build/antiDOS.json ’)

parser.add_argument(’--mod ’, help=’updating mode ’,

type=str , action =" store", required=False ,

default=’init ’)

args = parser.parse_args ()

if not os.path.exists(args.p4info):

parser.print_help ()

print ("\ np4info file not found: %s\nHave you run

’make ’?" % args.p4info)

parser.exit (1)

if not os.path.exists(args.bmv2_json):

parser.print_help ()

print ("\ nBMv2 JSON file not found: %s\nHave you run

’make ’?" % args.bmv2_json)

parser.exit (1)

main(args.p4info , args.bmv2_json , args.mod)

4.3. INTERACTION WITH THE ORCHESTRATION SYSTEM 117

4.3 Interaction with the orchestration system

In this last Section, the complete implemented system is presented. Figure 4.10
shows all the implementation layers.

Figure 4.10: Complete system.

Starting from the bottom, the Data Plane layer consists of the P4 program
antiDOS.p4 installed on the switch (or switches) taken into account. The P4
program allows having installed in the switch the tables and the actions needed
in order to perform the service that guarantees protection from DoS attacks.
Through the P4Runtime APIs, the Data Plane can communicate with the Con-
troller (the controller.py script) presented in Section 4.2. The Controller
exhibits three main available functions: updateForwardingRules for adding a
new table entry (into the ipv4 lpm forwarding table) or removing an existing
table entry (from the ipv4 lpm forwarding table), updateAntiDOSRules for
adding a new table entry (into the protected server table) or removing an
existing table entry (from the protected server table), and readTableRules

for reading all the table entries.

118 CHAPTER 4. DOS PREVENTION SERVICE

Finally, the controller can be integrated into the FORCH system (a system for
Fog ORCHestration) described in Section 2.4.
The complete system is, in this way, able to dynamically reconfigure the
targeted switches and, therefore, to provide in an efficient and flexible way
new services whenever they are needed. In the presented use case, the sys-
tem can dynamically provide the DoS prevention service for any connected
target servers, at any moment, and in an efficient and fast way by sim-
ply calling the updateAntiDOSRules function of the Controller program with
the correct parameters. In particular, for adding a new table entry in the
protected server Match-Action Table, the needed parameters to be passed
to the updateAntiDOSRules function are the following: the mode parameter
(that should be equal to "add"), the switch on which the rule has to be added,
and the IP address and port number of the server that needs protection. It
is also possible to dynamically remove the table entries, and therefore to dis-
able the DoS prevention service for the targeted servers. In this case, the first
parameter should be equal to "del" and the other ones remain the same.

Chapter 5

Performance Evaluation

This Chapter aims at presenting the performance evaluation of the system
previously described in Chapter 4. The resources used to test the system
behavior are: the Virtual Machine presented also in Chapter 3, the network
emulation system Mininet, the BMv2 (Behavioral Model version 2) software
switch and the p4c reference compiler.
Figure 5.1 depicts the behavior of the antiDOS.p4 P4 program. In particular,
the graphical representation of the program performance shows the packet rate
captured on the two interfaces of switch s1: the packet rate of traffic incoming
at the eth2 interface (arriving from host h2) and the packet rate of traffic
outgoing from the interface eth1 (directed to host h1). The test performed to
output the graph above is made by capturing on the two interfaces while the
command

hping3 -S --interval 1 -V -s 65001 -k -p 65000 10.0.1.1

is running in the host h2 terminal.
This command includes the following options:

• -S : it is part of the TCP-related options and it is used to set the SYN
flag to 1;

• --interval sec : it allows specifying the amount of time (in seconds)
between which each packet is sent. In this test, the host h2 sends one
SYN packet per second;

• -V : it enables verbose output. TCP replies will be shown with several
details (e.g. IP address, flags, TTL, etc.);

119

120 CHAPTER 5. PERFORMANCE EVALUATION

Figure 5.1: antiDOS.p4 Program Performance.

• -s source port : it represents the port number of the host from which
the traffic is sent;

• -k : usually the shown command is used with a baseport that is increased
by one for each packet, while this option allows keeping the same source
port for each sent packet;

• -p destination port : it represents the port number of the destination
host towards which the traffic is directed;

• the destination IP address of the host h1.

One packet per second is sent by the host h2 and it is captured on the eth2
interface of the switch, behavior represented by the blue dots in Figure 5.1.
At the same time, only a part of the packets is forwarded to the host h1 and
captured on eth1 interface, as it is possible to see by the trend of the orange
crosses in Figure 5.1.
The parameters of the antiDOS.p4 program are set as follows:

121

• The MAX SYN parameter is set to 3. Therefore, after three SYN packets
arrived from a certain IP address and port number and directed to the
target IP address and port number, the traffic is not forwarded anymore
toward the host h1. The successive packets which are characterized by
the same 4-tuple (source IP address, source port number, destination
IP address, and destination port number) are directly dropped by the
switch.

• The RESET INTERVAL parameter is set to 15000000 microseconds, which
correspond to 15 seconds. After this amount of time, the packet counter
is reset and host h2 is enabled again to establish new connections with
host h1.

#define MAX_SYN 3

#define RESET_INTERVAL 15000000

/* microseconds -> 15 s*/

By launching the previously described command in these conditions, a cyclic
behavior is exhibited: three packets are forwarded to host h1, then for 15 sec-
onds all packets are dropped and never arrive to host h1, then three packets are
forwarded to host h1, etc. This behavior is perfectly described by the graph
in Figure 5.1.
A second test is performed in order to analyze the performance of the Con-
troller. By modifying the code of the controller.py program as shown in
the following pieces of code, the time needed to add, delete or reconfigure a
rule or a set of rules is measured. The first test is made by measuring the time
needed by the controller to insert one or more table entries in the different
Match-Action Tables.
In Figure 5.2 the time needed to insert a forwarding rule into the ipv4 lpm

table is measured for one hundred different rules. In the controller.py pro-
gram this is achieved through the following changes to the code presented in
Section 4.2. One hundred table entries are created and added to the forward-
ing table while the program stores the time before and after each table entry is
inserted. As shown in Figure 5.2, the mean needed time to install a forwarding
rule is 2.49 milliseconds.

timelist =[]

for n in range(1, 101):

starttime = perf_counter_ns ()

updateForwardingRules ("add", p4info_helper , sw=s1,

122 CHAPTER 5. PERFORMANCE EVALUATION

dst_ip_addr=f"10.0.1.{n}",

dst_eth_addr=f"08:00:00:00:{n:02x}:11",

egress_port =1)

timelist.append(perf_counter_ns () - starttime)

print(timelist)

with open(str(pathlib.Path(__file__). parent.joinpath (" results",

"addforwsingle.txt")), "xt") as f:

f.write ("\n".join(str(t) for t in timelist))

Figure 5.2: Insertion of a Forwarding Rule.

In Figure 5.3 the time needed to insert a DoS prevention rule into the protected
server table is measured for one hundred different rules. Also in this case
some changes are made in the controller.py program. One hundred table
entries are created and added to the protected server table while the pro-
gram stores the time before and after each table entry is inserted. As shown
in Figure 5.3 the mean needed time to install a DoS prevention rule is 2.75
milliseconds.

timelist =[]

for n in range(1, 101):

starttime = perf_counter_ns ()

updateAntiDOSRules ("add", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.1.{n}", dst_port =65000)

123

timelist.append(perf_counter_ns () - starttime)

print(timelist)

with open(str(pathlib.Path(__file__). parent.joinpath (" results",

"addantiDOSsingle.txt")), "xt") as f:

f.write ("\n".join(str(t) for t in timelist))

Figure 5.3: Insertion of a DoS Protection Rule.

In Figure 5.4 the time needed to insert a set of three rules is measured for
one hundred different sets of rules. In particular, two forwarding entries are
added to the ipv4 lpm table and one entry is added to the protected server.
Also in this case some changes are made in the controller.py program. One
hundred sets of the three table entries are created and added to the two tables
while the program stores the time before and after each set of table entries is
inserted. As shown in Figure 5.3, the mean needed time to install a set made
of the just mentioned rules is 4.02 milliseconds.

timelist =[]

for n in range(1, 101):

starttime = perf_counter_ns ()

updateForwardingRules ("add", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.1.{n}",

dst_eth_addr=f"08:00:00:00:01:{n:02x}",

egress_port =1)

124 CHAPTER 5. PERFORMANCE EVALUATION

updateForwardingRules ("add", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.2.{n}",

dst_eth_addr=f"08:00:00:00:02:{n:02x}",

egress_port =2)

updateAntiDOSRules ("add", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.1.{n}", dst_port =65000)

timelist.append(perf_counter_ns () - starttime)

print(timelist)

with open(str(pathlib.Path(__file__). parent.joinpath (" results",

"addcomplete.txt")), "xt") as f:

f.write ("\n".join(str(t) for t in timelist))

Figure 5.4: Insertion of a set of three Rules.

The same test is performed to measure the time needed to delete one or more
table entries.
In Figure 5.5 the time needed to remove a forwarding rule from the ipv4 lpm

table is measured for one hundred different rules. The controller.py pro-
gram is modified as follows. One hundred table entries are deleted from the
forwarding table while the program stores the time before and after each table
entry is deleted. As shown in Figure 5.5 the mean needed time to remove a
forwarding rule is 2.38 milliseconds.

timelist =[]

125

for n in range(1, 101):

starttime = perf_counter_ns ()

updateForwardingRules ("del", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.1.{n}",

dst_eth_addr=f"08:00:00:00:{n:02x}:11",

egress_port =1)

timelist.append(perf_counter_ns () - starttime)

print(timelist)

with open(str(pathlib.Path(__file__). parent.joinpath (" results",

"delforwsingle.txt")), "xt") as f:

f.write ("\n".join(str(t) for t in timelist))

Figure 5.5: Removal of a Forwarding Rule.

In Figure 5.6 the time needed to remove a DoS prevention rule from the
protected server table is measured for one hundred different rules. Also
in this case some changes are made in the controller.py program and they
are shown in the code below. One hundred table entries are removed from the
protected server table while the program stores the time before and after
each table entry is deleted. As shown in Figure 5.6 the mean needed time to
delete a DoS Protection rule is 1.25 milliseconds.

timelist =[]

for n in range(1, 101):

126 CHAPTER 5. PERFORMANCE EVALUATION

starttime = perf_counter_ns ()

updateAntiDOSRules ("del", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.1.{n}", dst_port =65000)

timelist.append(perf_counter_ns () - starttime)

print(timelist)

with open(str(pathlib.Path(__file__). parent.joinpath (" results",

"delantiDOSsingle.txt")), "xt") as f:

f.write ("\n".join(str(t) for t in timelist))

Figure 5.6: Removal of a DoS Protection Rule.

In Figure 5.7 the time needed to remove a set of three rules is measured
for one hundred different sets of rules. In particular, two forwarding en-
tries are removed to the ipv4 lpm table and one entry is removed from the
protected server. The changes made in the controller.py program are
shown in the code below: one hundred sets of the three table entries are
deleted from the two tables. As shown in Figure 5.7 the mean needed time to
delete set of three rules is 8.75 milliseconds.

timelist =[]

for n in range(1, 101):

starttime = perf_counter_ns ()

updateForwardingRules ("del", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.1.{n}",

127

dst_eth_addr=f"08:00:00:00:01:{n:02x}",

egress_port =1)

updateForwardingRules ("del", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.2.{n}",

dst_eth_addr=f"08:00:00:00:02:{n:02x}",

egress_port =2)

updateAntiDOSRules ("del", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.1.{n}", dst_port =65000)

timelist.append(perf_counter_ns () - starttime)

print(timelist)

with open(str(pathlib.Path(__file__). parent.joinpath (" results",

"delcomplete.txt")), "xt") as f:

f.write ("\n".join(str(t) for t in timelist))

Figure 5.7: Removal of a set of three Rules.

Finally, the same test is made while reconfiguring table entries by removing
and adding them again in the tables.
In Figure 5.8 the time needed to reconfigure a forwarding rule in the ipv4 lpm

table is measured for one hundred different rules. The controller.py pro-
gram is modified as follows. One hundred table entries are deleted from the
forwarding table and added again to the same table. As shown in Figure 5.8
the mean needed time to reconfigure a forwarding rule is 4.27 milliseconds.

128 CHAPTER 5. PERFORMANCE EVALUATION

timelist =[]

for n in range(1, 101):

starttime = perf_counter_ns ()

updateForwardingRules ("del", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.1.{n}",

dst_eth_addr=f"08:00:00:00:{n:02x}:11",

egress_port =1)

updateForwardingRules ("add", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.1.{n}",

dst_eth_addr=f"08:00:00:00:{n:02x}:11",

egress_port =1)

timelist.append(perf_counter_ns () - starttime)

print(timelist)

with open(str(pathlib.Path(__file__). parent.joinpath (" results",

"deladdforwsingle.txt")), "xt") as f:

f.write ("\n".join(str(t) for t in timelist))

Figure 5.8: Reconfiguration of a Forwarding Rule.

In Figure 5.9 the time needed to reconfigure a DoS prevention rule in the
protected server table is measured for one hundred different rules. Also in
this case some changes are made in the controller.py program and they are
shown in the code below. One hundred table entries are removed and added

129

again in the protected server table. As shown in Figure 5.9 the mean needed
time to reconfigure a DoS Protection rule is 4.57 milliseconds.

timelist =[]

for n in range(1, 101):

starttime = perf_counter_ns ()

updateAntiDOSRules ("del", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.1.{n}", dst_port =65000)

updateAntiDOSRules ("add", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.1.{n}", dst_port =65000)

timelist.append(perf_counter_ns () - starttime)

print(timelist)

with open(str(pathlib.Path(__file__). parent.joinpath (" results",

"deladdantiDOSsingle.txt")), "xt") as f:

f.write ("\n".join(str(t) for t in timelist))

Figure 5.9: Reconfiguration of a DoS Protection Rule.

In Figure 5.10 the time needed to reconfigure a set of three rules is measured for
one hundred different sets of rules. The changes made in the controller.py

program are shown in the code below. One hundred sets of the three table
entries are deleted and added again in the two tables. As shown in Figure 5.9
the mean needed time to reconfigure set of three rules is 16.20 milliseconds.

130 CHAPTER 5. PERFORMANCE EVALUATION

Figure 5.10: Reconfiguration of a set of three Rules.

timelist =[]

for n in range(1, 101):

starttime = perf_counter_ns ()

updateForwardingRules ("del", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.1.{n}",

dst_eth_addr=f"08:00:00:00:01:{n:02x}",

egress_port =1)

updateForwardingRules ("del", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.2.{n}",

dst_eth_addr=f"08:00:00:00:02:{n:02x}",

egress_port =2)

updateAntiDOSRules ("del", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.1.{n}", dst_port =65000)

updateForwardingRules ("add", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.1.{n}",

dst_eth_addr=f"08:00:00:00:01:{n:02x}",

egress_port =1)

updateForwardingRules ("add", p4info_helper , sw=s1,

dst_ip_addr=f"10.0.2.{n}",

dst_eth_addr=f"08:00:00:00:02:{n:02x}",

egress_port =2)

updateAntiDOSRules ("add", p4info_helper , sw=s1,

131

dst_ip_addr=f"10.0.1.{n}", dst_port =65000)

timelist.append(perf_counter_ns () - starttime)

print(timelist)

with open(str(pathlib.Path(__file__). parent.joinpath (" results",

"deladdcomplete.txt")), "xt") as f:

f.write ("\n".join(str(t) for t in timelist))

132 CHAPTER 5. PERFORMANCE EVALUATION

Chapter 6

Conclusion

The adoption of the Data Plane Programmability paradigm can be an opti-
mal solution in the Fog Computing scenario, allowing for great flexibility and
adaptability in deploying services and managing resources.
In this thesis, a system for dynamic service provisioning is proposed, where the
available resources may vary over time thanks to a Fog Orchestration system
able to act as a resource management and service provisioning layer placed
in between the service consumers and the Fog infrastructure. Moreover, the
presented P4 program and the implemented controller guarantee a high degree
of flexibility in reconfiguring the Data Plane devices, and therefore the devices
functionalities and offered services.
The simple use case implementation presented in the previous Chapters demon-
strates the feasibility of this dynamic service provisioning system, along with
some experimental measurements. The implementation layers and all the com-
ponents are described and discussed in detail, as it is for the final performance
of each of them. As a result of this work, it is possible to notice that the inser-
tion, deletion, and reconfiguration of one or more rules in the network devices
(that corresponds to the effective service provisioning or service disabling) can
be performed in a matter of few milliseconds. It is also shown a graphical
representation of the traffic captured by a device on which the P4 program
was installed, in order to demonstrate the operating principle and the effective
performance.
The DoS prevention use case presented in this thesis is just an example of a ser-
vice that can be dynamically deployed and deactivated depending on the needs
of the network. This architecture can be further extended to many different

133

134 CHAPTER 6. CONCLUSION

services in order to face the different needs of several application contexts.

Bibliography

[1] Gianluca Davoli, Walter Cerroni, Davide Borsatti, Mario Valieri, Daniele
Tarchi, and Carla Raffaelli. “A Fog Computing Orchestrator Architec-
ture With Service Model Awareness”. In: IEEE Transactions on Network
and Service Management (Aug. 2022).

[2] P4Tutorial. June 2022. url: https://github.com/p4lang/tutorials.

[3] Eder Ollora Zaballa, David Franco, Marina Aguado, and Michael Stübert
Berger. “Next-Generation SDN and Fog Computing: A New Paradigm
for SDN-Based Edge Computing”. In: 2nd Workshop on Fog Comput-
ing and the IoT (Fog-IoT 2020). Ed. by Anton Cervin and Yang Yang.
Vol. 80. OpenAccess Series in Informatics (OASIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020, 9:1–9:8. isbn:
978-3-95977-144-3. doi: 10 . 4230 / OASIcs . Fog - IoT . 2020 . 9. url:
https://drops.dagstuhl.de/opus/volltexte/2020/12003.

[4] Zifan Zhou, Eder Ollora Zaballa, Michael Stübert Berger, and Ying Yan.
“Detection of Fog Network Data Telemetry Using Data Plane Program-
ming”. In: 2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020).
Ed. by Anton Cervin and Yang Yang. Vol. 80. OpenAccess Series in
Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2020, 12:1–12:11. isbn: 978-3-95977-144-3. doi:
10.4230/OASIcs.Fog-IoT.2020.12. url: https://drops.dagstuhl.
de/opus/volltexte/2020/12006.

[5] Duy Thanh Le, Marcel Großmann, and Udo R. Krieger. Cloudless Re-
source Monitoring in a Fog Computing System Enabled by an SDN/NFV
Infrastructure. workingpaper. 2022. doi: 10.25972/OPUS-28072.

135

https://github.com/p4lang/tutorials
https://doi.org/10.4230/OASIcs.Fog-IoT.2020.9
https://drops.dagstuhl.de/opus/volltexte/2020/12003
https://doi.org/10.4230/OASIcs.Fog-IoT.2020.12
https://drops.dagstuhl.de/opus/volltexte/2020/12006
https://drops.dagstuhl.de/opus/volltexte/2020/12006
https://doi.org/10.25972/OPUS-28072

136 BIBLIOGRAPHY

[6] Amirah Alomari, Shamala K. Subramaniam, Normalia Samian, Rohaya
Latip, and Zuriati Zukarnain. “Resource Management in SDN-Based
Cloud and SDN-Based Fog Computing: Taxonomy Study”. In: Symmetry
13.5 (2021). issn: 2073-8994. doi: 10.3390/sym13050734. url: https:
//www.mdpi.com/2073-8994/13/5/734.

[7] Bowei Guan and Shan-Hsiang Shen. “FlowSpy: An efficient network mon-
itoring framework using P4 in software-defined networks”. In: 2019 IEEE
90th Vehicular Technology Conference (VTC2019-Fall). IEEE. 2019, pp. 1–
5.

[8] Takuji Tachibana, Kazuki Sawada, Hiroyuki Fujii, Ryo Maruyama, Tomonori
Yamada, Masaaki Fujii, and Toshimichi Fukuda. “Open Multi-Access
Network Platform with Dynamic Task Offloading and Intelligent Re-
source Monitoring”. In: IEEE Communications Magazine 60.8 (2022),
pp. 52–58.

[9] Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi Arashloo, Jennifer
Rexford, and David Walker. “Modular switch programming under re-
source constraints”. In: USENIX NSDI. 2022, pp. 1–15.

[10] Aldo Febro, Hannan Xiao, Joseph Spring, and Bruce Christianson. “Edge
security for SIP-enabled IoT devices with P4”. In: Computer Networks
203 (2022), p. 108698. issn: 1389-1286. doi: https://doi.org/10.
1016/j.comnet.2021.108698. url: https://www.sciencedirect.
com/science/article/pii/S1389128621005612.

[11] Frederik Hauser, Marco Häberle, Daniel Merling, Steffen Lindner, Vladimir
Gurevich, Florian Zeiger, Reinhard Frank, and Michael Menth. “A sur-
vey on data plane programming with P4: Fundamentals, advances, and
applied research”. In: The Journal of Network and Computer Applica-
tions (Dec. 2022). doi: 10.1016/MCOM.2022.103561.

[12] Introduction to P416 presentation. url: https://opennetworking.org/
wp-content/uploads/2020/12/p4_d2_2017_p4_16_tutorial.pdf.

[13] P4 Language and Related Specifications. url: https://p4.org/specs/.

[14] P4 Language Consortium. url: https://p4.org/.

[15] P4 Language Tutorials. url: https://docs.google.com/presentation/
d/1zliBqsS8IOD4nQUboRRmF_19poeLLDLadD5zLzrTkVc/edit#slide=

id.g37fca2850e_6_141.

https://doi.org/10.3390/sym13050734
https://www.mdpi.com/2073-8994/13/5/734
https://www.mdpi.com/2073-8994/13/5/734
https://doi.org/https://doi.org/10.1016/j.comnet.2021.108698
https://doi.org/https://doi.org/10.1016/j.comnet.2021.108698
https://www.sciencedirect.com/science/article/pii/S1389128621005612
https://www.sciencedirect.com/science/article/pii/S1389128621005612
https://doi.org/10.1016/MCOM.2022.103561
https://opennetworking.org/wp-content/uploads/2020/12/p4_d2_2017_p4_16_tutorial.pdf
https://opennetworking.org/wp-content/uploads/2020/12/p4_d2_2017_p4_16_tutorial.pdf
https://p4.org/specs/
https://p4.org/
https://docs.google.com/presentation/d/1zliBqsS8IOD4nQUboRRmF_19poeLLDLadD5zLzrTkVc/edit#slide=id.g37fca2850e_6_141
https://docs.google.com/presentation/d/1zliBqsS8IOD4nQUboRRmF_19poeLLDLadD5zLzrTkVc/edit#slide=id.g37fca2850e_6_141
https://docs.google.com/presentation/d/1zliBqsS8IOD4nQUboRRmF_19poeLLDLadD5zLzrTkVc/edit#slide=id.g37fca2850e_6_141

BIBLIOGRAPHY 137

[16] The P416 Language Specification (v1.2.3). The P4 Language Consortium.
July 2022. url: https://p4.org/p4-spec/docs/P4-16-v1.2.3.pdf.

[17] In-band Network Telemetry (INT) Dataplane Specification. The P4 Lan-
guage Consortium. Nov. 2020. url: https://p4.org/p4-spec/docs/
INT_v2_1.pdf.

[18] BEHAVIORAL MODEL (bmv2). url: https://github.com/p4lang/
behavioral-model.

[19] p4c. url: https://github.com/p4lang/p4c.

[20] Mininet. An Instant Virtual Network on your Laptop. url: https://
mininet.org/.

[21] Implementing Basic Forwarding. url: https://github.com/p4lang/
tutorials/tree/master/exercises/basic.

[22] Implementing Basic Tunneling. url: https://github.com/p4lang/
tutorials/tree/master/exercises/basic_tunnel.

[23] P4.org API Working Group Charter. url: https://p4.org/p4-spec/
docs/P4_API_WG_charter.html.

[24] The P4Runtime Specification (v1.3.0). The P4 Language Consortium.
Dec. 2020. url: https://p4.org/p4- spec/p4runtime/v1.3.0/
P4Runtime-Spec.pdf.

[25] p4lang/p4Runtime repository:P4Runtime Protobuf Definition Files and
Specification. url: https://github.com/p4lang/p4runtime.

[26] Implementing a Control Plane using P4Runtime. url: https://github.
com/p4lang/tutorials/tree/master/exercises/p4runtime.

[27] Implementing ECN. url: https://github.com/p4lang/tutorials/
tree/master/exercises/ecn.

[28] Implementing MRI. url: https://github.com/p4lang/tutorials/
tree/master/exercises/mri.

[29] Implementing a Basic Stateful Firewall. url: https://github.com/
p4lang/tutorials/tree/master/exercises/firewall.

https://p4.org/p4-spec/docs/P4-16-v1.2.3.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/p4c
https://mininet.org/
https://mininet.org/
https://github.com/p4lang/tutorials/tree/master/exercises/basic
https://github.com/p4lang/tutorials/tree/master/exercises/basic
https://github.com/p4lang/tutorials/tree/master/exercises/basic_tunnel
https://github.com/p4lang/tutorials/tree/master/exercises/basic_tunnel
https://p4.org/p4-spec/docs/P4_API_WG_charter.html
https://p4.org/p4-spec/docs/P4_API_WG_charter.html
https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.pdf
https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.pdf
https://github.com/p4lang/p4runtime
https://github.com/p4lang/tutorials/tree/master/exercises/p4runtime
https://github.com/p4lang/tutorials/tree/master/exercises/p4runtime
https://github.com/p4lang/tutorials/tree/master/exercises/ecn
https://github.com/p4lang/tutorials/tree/master/exercises/ecn
https://github.com/p4lang/tutorials/tree/master/exercises/mri
https://github.com/p4lang/tutorials/tree/master/exercises/mri
https://github.com/p4lang/tutorials/tree/master/exercises/firewall
https://github.com/p4lang/tutorials/tree/master/exercises/firewall

	Abstract
	Introduction
	Related Work

	Overview
	Network Programmability
	Data Plane Programmability
	The P4 Programming Language
	Specification History
	P416 Design
	P416 Data Plane Model
	V1Model Architecture
	P416 Data Types
	Parser and Deparser in V1 Architecture
	Match-Action Pipeline in V1 Architecture
	Externs

	Dynamic Service Provisioning

	P4 Basics and Use Cases
	Automatic Procedure for VM configuration
	Implementing Basic Forwarding
	Implementing Basic Tunneling
	Implementing a Control Plane using P4Runtime
	Implementing Explicit Congestion Notification
	Implementing Multi-Hop Route Inspection
	Implementing A Basic Stateful Firewall

	DoS Prevention Service Implementation
	DoS prevention P4 Program
	P4Runtime Controller
	Interaction with the orchestration system

	Performance Evaluation
	Conclusion

