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Abstract

We developed a highly optimized routine for the detection of clusters of
galaxies: AMICO-WL, that implements an improved version of the optimal
linear matched filter presented in Maturi et al. (2005) inside the computational
environment of AMICO (Bellagamba et al., 2018). The filter is optimized to
maximize the signal-to-noise ratio of the detections and minimize the number
of spurious detections caused by the superposition of large-scale structures.

Our goal is to detect the matter distribution of clusters, represented
mainly by their dark matter halos, through their weak gravitational lensing
signatures by applying the filter to a catalog of simulated galaxy ellipticities.
The simulated data represents the dataset quality expected for the Euclid
mission, we thus also provide a forecast for the filter performances on weak
lensing for this mission.

We investigated the sample in terms of completeness and purity by match-
ing the detections with the halos in the simulations. We found SNR ∼ 2.5
as a reliable threshold for the detection, in fact the purity is close to the "ex-
pected purity", 70% against the expected 80%. We studied the completeness
in the redshift-mass plane z−M200 of the halos. The completeness reaches al-
most 100% in the case of the halos with virial mass log10(M200/M⊙/h) > 14.4
and redshift in the range [0.2,0.4]. As expected we reach the higher com-
pleteness where the efficiency of the gravitational lensing effect is maximum,
i.e where the lens is located in between the sources and the observer.

We further refined the strategy by using only the galaxies with z > 0.6 to
remove most of the non-lensed foreground sources then compared the results
with the analysis performed with the full galaxy catalog. Using the truncated
dataset we detected 607 more objects and a consequent higher completeness
for the truncated catalog with respect to the complete one, 47% against 45%
for a fixed 65% purity in booth catalogs. Using the truncated catalog we
also increment the sensitivity to halos with smaller masses.

The ultimate goal is to build an optimized routine for the weak-lensing
detection of clusters that will work in complementary and possibly in combi-
nation with the photometric detection algorithm implemented in AMICO for
the analysis of KiDS, CHFTLens, DES, and the upcoming LSST and Euclid.

Keywords: cosmology:theory,dark matter, gravitational lensing
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Abstract

In questa tesi abbiamo sviluppato duna routine altamente ottimizzata per il rile-
vamento di ammassi di galassie: AMICO-WL, che implementa una nuova versione
del filtro adattivo lineare ottimale presentato in Maturi et al. (2005). Il codice è
stato sviluppato all’interno dell’ambiente computazionale dell’algoritmo AMICO
(Bellagamba et al., 2018).

Il nostro obiettivo è rilevare la distribuzione di materia degli ammassi di galassie,
rappresentata principalmente dai loro aloni di materia oscura, attraverso gli effetti
di weak-lensing applicando il filtro a un catalogo di ellitticità galattiche simulate.
I dati simulati rappresentano le carattereistiche dei dataset attese per la missione
Euclid, forniamo quindi anche una previsione delle prestazioni del codice per questa
missione.

Abbiamo investigato il campione in termini di completezza e purezza confrontando
le detezioni con gli ammassi simulati. Abbiamo trovato che un valore di SNR ∼ 2.5
costituisce una soglia affidabile per la rilevazione, infatti la purezza è vicina alla
"purezza attesa", pari al 70% rispetto all’80% atteso. Abbiamo studiato la com-
pletezza nel piano redshift-massa z−M200 degli ammassi. La completezza raggiunge
quasi il 100% nel caso degli ammassi con massa viriale log10(M200/M⊙/h) > 14.4
e redshift nell’intervallo [0.2,0.4]. Come ci si aspetta, si raggiunge la maggiore
completezza dove l’efficienza dell’effetto di lente gravitazionale è massima, ovvero
dove la lente si trova tra le sorgenti e l’osservatore.

Abbiamo ulteriormente affinato la strategia utilizzando solo le galassie con
z > 0, 6 per rimuovere la maggior parte delle sorgenti di foreground non lensate,
quindi abbiamo confrontato i risultati con l’analisi eseguita con l’intero catalogo
di galassie. Utilizzando il dataset troncato abbiamo rilevato 607 oggetti in più e
ottenuto una conseguente maggiore completezza per il catalogo troncato rispetto a
quello completo, del 47% rispetto al 45% per una purezza fissa del 65% in entrambi
i cataloghi. Utilizzando il catalogo troncato abbiamo anche aumentato la sensibilità
agli ammassi con masse più piccole.

L’obiettivo è costruire una routine ottimizzata per la detezione di ammassi
tramite weak-lensing che agirà in modo complementare e possibilmente in combi-
nazione con per la detezione in fotometria implementato in AMICO per l’analisi di
KiDS, CHFTLens, DES e i prossimi progetti LSST ed Euclid.

Keywords: cosmologia:teoria, materia oscura, lensing gravitazionale
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Introduction

Galaxy clusters are peculiar astrophysical objects whose detection is a crucial task
in Astrophysics and Cosmology. As the most massive structures that had the time
to form in the present-day Universe, clusters, and especially their dark matter halos,
are tracers of the density peaks in the large-scale matter distribution, and therefore
they are strongly coupled with the expansion history of the Universe, as well as with
the formation and evolution of structures, and it is with measuring their number
and spatial distribution that we can put constraints on cosmological models.
Galaxy cluster detection has been performed through the years with several successful
methods: the observation of the hot and highly ionized gas clusters are embedded in,
which makes them bright X-ray sources (e.g. Rosati et al. (2002)), the detection of
distortions in the cosmic microwave background spectrum (Sunyaev and Zeldovich
(1970); e.g. Bleem et al. (2015)) or the detection of clusters in optical and near-
infrared surveys (e.g AMICO algorithm; Bellagamba et al. (2011); Bellagamba et al.
(2018)).

In addition to those methods it is possible to detect galaxy clusters through
the study of the gravitational lensing effect of their matter distribution, i.e. dark
matter halos, on the background sources. Specifically, the detection is possible in
the context of the weak-lensing regime, in which the deflection of light is described
at the first-order approximation. Detecting dark matter halos with lensing is also
important because this method is dependent only on the matter distribution most
of which is dark matter. Thus it is possible to detect objects with a very low
electromagnetic emission that would be hidden from the other methods.

One of the main sources of error in these measurements is the fact that dark
matter distribution in the Universe is not a discrete distribution that contains
only the halos, but it can be thought as a continuous distribution where the halos
are peaks of mass density embedded into a lower density large-scale structure, the
cosmic web that connects them. Measuring the inhomogeneities of projected mass
distribution through lensing observations the signal of halos is overlaid by the
lensing signal of the large-scale structure in front of and behind the halos. Since it is
approximately a Gaussian random field, lensing by large-scale structure adds peaks
and troughs to the signal which can be mistaken for halos, so part of the detections
of candidates of dark matter halos can actually be maxima in the random weak
gravitational lensing signal of the large-scale structure.

These two types of signal are not possible to be strictly separated because there
is not a sharp boundary between the halos and the large-scale structure, but it is
possible to define a typical scale that helps to discriminate between their lensing
signals. The large-scale structure can be considered composed of dark-matter halos
of a broad and continuous mass range. At each cosmological epoch, it is possible to
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define the nonlinear scale, where the variance of the dark matter density contrast
becomes unity, which sets an operational definition of the lensing signal due to
the halos as the signal contributed by non-linear, gravitationally bound, virialized
structures; the lensing signal due to the large scale structure is instead the signal
contributed by the linearly evolved matter distribution beyond the non-linear scale.
It was first shown in Maturi et al. (2005) and Maturi et al. (2007) that is possible to
use these concepts to construct a linear matched filter capable to detect the weak
lensing signal of dark matter halos of galaxy clusters while also suppressing the signal
of the large scale structure. The result is that the spurious detections attributed to
random peaks in the projected mass density of large-scale structures are reduced.
The filter is then searching for those halos that do create the non-linear power
spectrum, while the linearly evolved structures are treated as a noise component
influencing the shape of the matched filter.

The goal of this Thesis is to produce a highly optimized routine for the detection
of clusters using the computational background of AMICO ( Bellagamba et al.
(2011); Bellagamba et al. (2018)), an algorithm that implements an optimal matched
filter for optical detection of clusters and adapting it for weak lensing detection
of dark matter halos in wide field surveys data. We want also to test the code
with a simulated ellipticity catalog, the observable of the weak-lensing, with the
characteristics of a wide field survey performed by the future ESA Euclid mission.
The outline of this Thesis is:

• Chapter 1 will give an introduction to the cosmological background and
elements of the theory of structure formation. The goal is to give a brief
overview to provide the reader with the tools to follow the discussion of the
following chapters;

• Chapter 2 will give the fundamentals of the theory of gravitational lensing and
the theoretical description of the aperture mass, the estimator of weak-lensing
signal used to detect halos;

• Chapter 3 will contain a description of the use of clusters of galaxies in
Cosmology and different methods to detect them in various observational
datasets;

• Chapter 4 will contain the description of AMICO-WL, the implemented
code, based on the theory of the optimal filter;

• Chapter 5 we will give the results of the AMICO-WL tests performed on
Euclid simulated data in terms of completeness and purity, used to define the
quality of an extracted sample of cluster candidates;

We will end the Thesis with the final Chapter 6 where we review and summarise
the main results of this Thesis, and discuss their relevance and the possible impact
on future works.



Chapter 1

The ΛCDM model and
structure formation theory

This Chapter contains an overview of the standard model of Cosmology and the
essential concepts that will be useful in the following chapters. The standard model
consists of a modelization for the cosmological background, which is a homogeneous
and isotropic solution of the field equations of General Relativity, and a theory
for structure formation. The background model is depicted by the Friedmann-
Lemâitre-Robertson-Walker metric, FLRW, where hypersurfaces of constant time
are homogeneous and isotropic three-dimensional spaces, either flat or curved, and
change with time according to a scale factor that depends on time only. Friedmann
provided the two equations that determine the dynamics of the scale factor, they
follow from Einstein’s field equations given the highly symmetric form of the metric.
Crucial to this Thesis is the evolution and the formation of structures, in particular
clusters, which current theories assume to be structures grown through gravitational
instability from initial seed perturbations, probably originating from cosmological
inflation. The inflation theory suggests that the statistics of the seed fluctuations
in the primordial density field are almost Gaussian. It is possible to use linear
perturbation theory for most of the evolutionary history of the fluctuations as their
amplitude is low until the late stages.

We will start in Section 1.1 with an introduction of the essential concepts needed
to construct a cosmological framework, and then we will focus on the currently
favored cosmological model, the so-called ΛCDM model, in Section 1.1.1 and the
core part will be the description of density perturbations, the structures that will
ultimately grow into the cosmic structures we observe today. The main references
for this Chapter are Bartelmann and Schneider (2001), Schneider (2006) and Carroll
(2004).

1.1 Cosmological framework
Cosmology is the branch of physics that has as its object of study the Universe as
its whole, the goal is to understand the origin and evolution through theoretical
and observational tools. The structure, content, and dynamic of the Universe are
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4 CHAPTER 1. INTRODUCTION TO COSMOLOGY

described using cosmological models that are based on a set of quantities called
cosmological parameters, which can be observationally constrained. In modern
cosmology, the assumption on which the models are based is the so-called cosmological
principle, which states that on scales typically larger than hundreds of Mpc the
Universe is homogeneous and isotropic. What follows the homogeneity is what
historically is called the copernican principle. There is no privileged position
or direction, matter distribution and properties of the Universe look the same
everywhere and in every direction. Fundamental evidence of these two principles is
the observation of the cosmic microwave background (CMB), the relic radiation of
the early stages of the Universe, measured for the first time by Penzias and Wilson
(Penzias and Wilson, 1965) in 1965, marking a cornerstone in Cosmology. The
isotropy of this radiation suggests that the principles are valid on scales larger than
Mpc.

The other pillar on which modern cosmological models rely is the theory of
General Relativity by Einstein (1916) that describes the gravitational force that
dominates on large scales. It is possible to prove that from the cosmological principles
and General Relativity the mathematical background of models, the metric of the
Universe, is constrained in the Friedmann-Lemâitre-Robertson-Walker (Friedmann
(1922);Friedmann (1924); Robertson (1935)), FLRW form:

ds2 = c2dt2 − a2(t)
[

1
1 −KR2 dR2 +R2(dθ2 + sin θ2dϕ2)

]
, (1.1)

that expresses an element of space-time in polar coordinates (R, θ, ϕ). We can
assume them to be adimensional, c is the speed of light, t is the proper cosmic
time, and a(t) is the scale factor : in fact, the spatial metric can only isotropically
contract or expand with the scale factor which must be a function of time only,
because otherwise, the expansion would be different at different places, violating
homogeneity. The constant K ∈ E is the curvature constant: if K = 0 the Universe
has a flat geometry; if K > 0, the Universe is closed with a spherical geometry; if
K < 0, the Universe is open with a hyperbolic geometry. Observational pieces of
evidence support the Euclidean geometry scenario (flat Universe) (see e.g. Planck
Collaboration Aghanim et al. (2020)).

Before the discovery of CMB, the main observational cornerstone of cosmology
has been the Hubble-Lemaître law first described theoretically by Lemaître (1927)
and then observed by Hubble (1929) on distances and velocities of a galaxy sample.
This was the first sign of the expansion of the Universe: in fact, the two quantities
were found to be proportional with a positive proportionality coefficient, meaning
that increasing separation between galaxies implies increasing receding velocity. The
coefficient of proportionality is the so-called Hubble parameter H(t), whose value
at the present time is referred to as H0. We should not intend this recession of
galaxies as a movement of the intrinsic position of galaxies in space but a movement
of fixed objects in space due to the expansion of space itself; often, it is called Hubble
flow. It becomes essential to use the co-moving coordinates and the associated
co-moving distance x as they do not depend on time, unlike the physical distance
r(t) does. Two are linked by the scale factor as x = r(t)/a(t). Therefore we have
the Hubble-Lemaître law:

v(t) = dr(t)
dt = x

da(t)
dt = da(t)/dt

a
r(t), (1.2)
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the Hubble parameter is then defined as the time derivative of the logarithm of the
scale factor:

H(t) ≡ d ln a(t)
dt = ȧ

a
(1.3)

The Hubble constant, the value of the Hubble parameter at the present time, is
expressed as a velocity over a distance, generally indicated with H0 ≡ H(t0) = 100h
km s−1 Mpc−1, being h a dimensionless constant also used to express observables
in a parameter-independent way, since the precise value of H0 is still on the debate
(see e.g. Freedman and Madore (2010), Schneider (2006)). The time scale for the
expansion of the Universe is the Hubble time H−1

0 ≈ 1010yrh−1, this is usually used
as a reference of the order-of-magnitude of the age of the Universe. However, all
measurements confirm that it is a positive quantity, so the Universe is expanding.
Due to the expansion of space, photons are redshifted while propagating from the
source to the observer; this effect is the cosmological redshift. The redshift of a
photon emitted with wavelength λem and observed with a wavelength λobs is given
by:

z ≡ λobs − λem
λem

= 1
a(tem) − 1. (1.4)

where we use a0 = 1. Redshift and scale factor mark distances and, therefore,
specific cosmic times. High-redshift objects are those whose photons crossed the
longest distances and were emitted the longest time ago from today. The redshift is
then also an observational proxy for the distance in space and time of the sources.
What we said is true only in the case of sufficiently distant extragalactic objects,
since on small scales the expansion of the Universe is not likely to dominate over
intrinsic proper motion.

It is possible to define two distance expressions by using the luminosity of a
source or its size. Starting from the relation between measured flux F and intrinsic
luminosity L of a cosmological source, we define the luminosity distance dL: L

4πd2
L

.
This distance is linked to the redshift as:

dL ≡ (1 + z)x, (1.5)

where x is the comoving distance. If we consider instead the intrinsic and measured
angular size of a source, l and θ, respectively, the angular diameter distance, dA,
can be defined as:

dA = l

θ
: (1.6)

this distance would take a great role in Section 2 when talking about gravitational
lensing theory.
The two cosmological distances are related by the redshift as:

dA = dL
(1 + z)2 , (1.7)

in a way that
dA = x

1 + z
. (1.8)

To complete the general theoretical framework of modern cosmological models,
we need a set of evolutionary equations for the scale factor that quantify how the
space scales with time given its geometry. Describing the content components of the
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Universe as a uniform "cosmic fluids" and General Relativity equations, Friedmann
(1922) (1924) derived two equations describing a(t)1:(

ȧ

a

)2
= 8πG

3 ρ− Kc2

a2 , (1.9)

ä

a
= −4πG

3

(
ρ+ 3p

c2

)
, (1.10)

where G is the gravitational constant and ρ and p are the density and the pressure
of the fluid, respectively. The Friedmann equations, when combined, yield the
adiabatic equation:

ρ̇+ 3ȧ
a

(
ρ+ p

c2

)
= 0. (1.11)

We can interpret this Equation as the first law of thermodynamics in the cosmological
context. Equations 1.9, 1.10 and 1.11 are not independent; thus, two of them are
sufficient for the description of the dynamics of a(t).

When Friedmann deduced these equations, the standard model involved a
static Universe; however, the static hypothesis, together with Eq. 1.9, leads to the
unphysical implication that density and pressure must have different signs. Rejecting
the possibility of a Universe in expansion, Einstein introduced in 1916 a term Λ, to
modify his gravity theory. The expansion was then confirmed with the observations
of the galaxy recession, and the Λ constant was discarded. Only in recent times, it
was re-introduced as representative of a new component of the Universe that would
explain its accelerated expansion, as first proved by distant supernova observations
(Perlmutter et al. (1999); Riess et al. (1998)). In modern models, the cosmological
constant Λ is associated with a form of dark energy, whose nature is still unknown.

The first Friedmann Eq. 1.9 can be written in a different form if we use the
definition of H(t) and as suggested we assume flat geometry (K = 0):

H2(t) = 8πG
3 ρ, (1.12)

which by isolating the mass density, gives the expression for the so-called critical
density

ρcrit ≡ 3H2(t)
8πG , (1.13)

which has a present-time value of ∼ 10−29h2gcm−3. This is the characteristic density
that defines a Universe with Euclidean geometry, K = 0.
We can now define the density parameter, which is useful to describe the amount of
density, and, therefore, energy that is contributed by each component that composes
the Universe today and with time dependence:

Ωs ≡ ρs(t)
ρcrit(t)

. (1.14)

We use s to indicate the different components of the Universe.

1for simplicity the time dependence of a(t) is made implicit
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parameter value

68% limits

Ω0,barh
2 0.0224 ± 0.0001

Ω0,DMh2 0.120 ± 0.001

H0[kms−1Mpc−1] 67.4 ± 0.5

t0[Gyr] 13.801 ± 0.024

Ω0,m 0.3111 ± 0.0056

Ω0,Λ 0.6889 ± 0.0056

Table 1.1 Cosmological parameters from Planck 2018 (Aghanim et al., 2020). Here
we report the density parameters for baryons and dark matter, the Hubble constant, the
age of the Universe, the matter density parameter, and the cosmological constant density
parameter.

1.1.1 The ΛCDM model
The currently favored cosmological model often refers to as the standard or the
concordance model, is known as the ΛCDM model. We are going to describe the
elements of the model. As a reference, we take the values of the main cosmolog-
ical parameters, derived from the most recent analysis of the Cosmic Microwave
Background Radiation data of the Planck mission (Aghanim et al., 2020) in table
1.1.

The model considers three main contributes to the energy, described as "cosmic
fluids" by Eq. 1.11:

• Matter or dust: they are massive non-relativistic particles at rest in the
comoving frame; the pressure of matter is thus negligible, from the adiabatic
Eq. 1.11 ρ ∝ a−3. This trend means that, as expected, density decreases only
because the volume increases.

• Radiation: this fluid is made up of photons or, more in general, relativistic
particles. In the models in which neutrinos are massless, they fall into this
category. We would have ρ ∝ a−4 for radiation. Photons also lose energy
because of the cosmological redshift, and thus density decreases more steeply
than matter.

• Dark energy: different from any other ordinary cosmic fluid that can only
decelerate the expansion of the Universe. The cosmological constant Λ is the
most basic form of dark energy and, in the standard model, is the preferred
one.

As said before, dark energy is introduced to justify the accelerated expansion
proved by distant supernovae observations. It is the cosmological constant that
represents dark energy (Λ in ΛCDM) in the concordance model; we have then the
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density parameter:

ΩΛ = Λc2

3H2(t) , (1.15)

and dominates the content of the Universe at the current time.
Considering the equations for a flat Universe and using the density parameters of

the different components and their scaling with redshift z, the Friedmann Equation
reads:

E2(z) ≡ H2(z)
H2

0
=

[
Ωm,0(1 + z)3 + Ωγ,0(1 + z)4 + ΩΛ,0

]
, (1.16)

where it was introduced the expansion function as E(z) ≡ H(z)/H0.
Along with dark energy, the main assumption for the standard model is the

nature of matter. Today we have evidence of two kinds of matter: ordinary or
baryonic matter, made up by the particles of the Standard Model of Particle Physics;
dark matter, made up by unidentified yet particles that interact only gravitationally
with each other and the baryons. We have now several observational evidence for
the existence of dark matter, for example, the rotation curves of neutral gas in spiral
galaxies, the mass estimate of clusters of galaxies thanks to optical, X, and lensing
observations, the theory of cosmic structure (see Section 1.2). What is still up to
study is the nature of dark matter particles. The basic property has to be the weak
interaction with the other content of the Universe; thus, the models differ in two
main characteristics: the prediction about the mass of the particle, which defines
the time in which dark matter stops to be relativistic, and the interaction with
radiation and other particles (decoupling time). The standard model predicts a Cold
Dark Matter (CDM), as opposed to Hot Dark Matter (or the intermediate models
of Warm Dark Matter), in which the particles are extremely weakly interactive and
with a high mass therefore non-relativistic. Studies of the large-scale structure of
the Universe suggest the cold nature of the dark matter, and this is consistent with
a bottom-up scenario for cosmic structure formation, where small halos were first to
be born and then merged into bigger halos by hierarchical aggregation. The content
of matter in the Universe, which produces a density parameter today of Ωm,0 ≈ 0.3,
is ≈ 85% dark matter and ≈ 15% baryonic matter.

As for the relativistic component, it is possible to define two candidates today,
photons and neutrinos (if massless as predicted by the standard particle model).
The energy density contributed by photons today is determined by the temperature
of the Cosmic Microwave Background, black-body radiation with temperature
TCMB,0 = 2.73 K. The density parameter of the radiation is Ωrad,0 = 2.4 × 10−5h−2.
The radiation energy content of the Universe today is negligible with respect to the
other components.

Like photons, neutrinos were produced in thermal equilibrium in the hot early
phase of the Universe. Interacting weakly, they decoupled from the cosmic plasma
when the temperature of the Universe was KBT ≈ 1 MeV. When the temperature
of the Universe dropped to KBT ≈ 0.5 MeV, electron-positron pairs annihilated to
produce gamma rays, The annihilation heated up the photons but not the neutrinos
which had decoupled earlier. Hence the neutrino temperature is lower than the
photon temperature by an amount determined by entropy conservation. It can
be shown Tν,0 =

( 4
11

) 1
3 TCMB,0 = 1.95 K. The density parameter of one neutrino

species (three species in total exist) is Ων,0 = 2.8 × 10−6h−2. On the other hand,
if neutrinos have a mass, they should be considered in the density parameter of
matter, Ωm. Some theoretical models suggest that neutrinos might be potential
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candidates for the elusive dark matter particle. If this is the case, they would belong
to the category of hot dark matter, due to their low mass. However, even assuming
the highest estimates available for neutrino’s mass, they would still contribute only
a small proportion to the energy content detected for dark matter.

Measurements from the CMB indicate that the total density parameter of the
Universe is consistent with being Ωtot,0 = 1. These measures and the evidence for
the acceleration of the Universe led to theorizing the existence of a Cosmological
constant with Ω0,Λ ≈ 0.7.

One of the main sources of debate around the standard model that is yet
uncertain is the value of the Hubble constant; it should, in general, be H0 ≈
70kms−1Mpc−1. Independent measurements of the constant yield different and
thus not consistent values arising from the so-called tension in the measures of
the Hubble constant. Planck analysis yields H0 = (67.4 ± 0.5)kms−1Mpc−1. Local
measurements based on the period-luminosity relation of the Cepheid yield H0 =
(74 ± 3)kms−1Mpc−1, therefore we have a discrepancy at the ∼ 2σ level. From
gravitational lensing, it is possible to estimate the Hubble constant by measuring
the time delay of multiple images: measurements of that kind produce H0 =
(79 ± 4)kms−1Mpc−1, for the details Schneider (2006).

1.2 Density perturbations and their evolution
The cosmological principle that states the homogeneity of the matter distribution
is actually valid only on a very large scale of the universe. On smaller scales, the
observations of galaxies show us that the distribution is not uniform or random.
Galaxy positions are correlated and grouped together in galaxy clusters, which
in turn have a correlated position and form superclusters. We refer to the three-
dimensional distribution of galaxies as the large-scale structure.

The standard cosmological model assumes as the origin of the structure formation
the small fluctuations in the metric tensor that caused, in turn, fluctuations also in
the potential gravitational field and in the density field that take place at some very
early initial time. Modern inflationary models suggest that the fluctuations have a
quantistic origin. In this case, the fluctuations are uncorrelated, and the distribution
of their amplitudes is Gaussian. It is thanks to the gravitational instability that
density fluctuations can grow in amplitude. We describe the density contrast field
as:

δ(x, t) ≡ ρ(x, t) − ρ̄(t)
ρ̄(t) , (1.17)

where the mean cosmic matter density at time t is ρ̄(t). From today’s observations
of galaxies, we have |δ| ≫ 1 but the study of temperature anisotropies in the CMB
suggests instead that at z ∼ 1000, |δ| ≪ 1. We are going to do an overview of
the theory of the evolution of density fluctuations using the concepts of the Jeans
theory that describes the evolution with linear perturbation theory. This description
holds while the density contrast is consistently lower than 1. We can describe the
evolution of density fluctuations only if we consider the history of the Universe
in its different cosmic epochs. one fundamental timestep is the equivalence (aeq)
that divides the period in which the density is dominated by radiation from the
domination of matter. After the equivalence, the Universe was dominated by weakly
interacting dark matter (when a ≫ aeq). Today it is the cosmological constant, i.e.
dark energy, to dominate in the density of the universe.
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At different timescales, the perturbations evolve differently according to their
nature (radiation, dark matter, or baryonic matter) but can act differently also
depending on the (comoving) wavelength of the perturbation itself, a relevant scale
length is the horizon scale, that is the scale of the causally connected regions in the
Universe:

λH(t) = a(t)
∫ t

0

c

a(t′)dt′. (1.18)

Its value depends deeply on the cosmological model and parameters, but in general,
it is inversely proportional to the Hubble parameter λH ∝ cH−1. A perturbation of
(comoving) wavelength λ is said to "enter the horizon" when λ = λH(a).
From perturbation theory for linear fluctuations (δ ≪ 1) we have that a perturbation
which has not entered the horizon at a time with scale factor a (λ > λH(a)) grows
like:

δ(a) ∝

{
a2 if a < aeq

a if a > aeq
(1.19)

The cosmic microwave background originated at a ≈ 10−2 ≫ aeq, thus, the evolution
of its fluctuations should go with a. Since the Sachs-Wolfe effect (Wolfe, 1967) states
that the temperature fluctuations reflect the density fluctuations δ at the same order
of magnitude, the observations of CMB temperature fluctuations of δT

T ≈ 10−5

on large scales means that at a ≈ 10−3 we had δ ≈ 10−5. We should have thus
density fluctuations of the level of 10−2 today, and the non-linear regime δ ∼ 1
should not have been reached. This discrepancy is resolved by considering that
the fluctuations studied with CMB observations are relative only to the baryonic
matter, which is a small part of all matter content. Dark matter, in fact, as a
component that only couples through weak interactions, has fluctuations that could
grow as soon as it decoupled from the cosmic fluid. This happened well before the
decoupling of the baryons that yields the CMB. Dark matter fluctuations could
therefore grow and reach easily the amplitudes observed today. The growth of
baryons fluctuations is then sped up by the existing potential of the already evolved
dark matter halos: this phenomenon is often referred to as baryon catch-up and
is one of the strongest pieces of evidence for the existence of dark matter. It is
impossible to generalize Eq. 1.19, defined in an Einstein-De Sitter universe (Einstein
and De Sitter, 1932) (Ωm,0 = 1), to a relation for a curved universe in a simple
analytical way. However, numerical simulations show that the effect of curvature is
negligible in the early universe and became effective only at a > aeq. In an open
universe Ωtot,0 < 1 and that leads to a gravitational pull of the density fluctuations
being weaker and the expansion of the Universe stronger with respect to the flat
Universe, then fluctuations at a > aeq evolve as δ(a) ∝ aq where q < 1. On the
contrary, if Ωtot,0 > 1 and the Universe is closed, the expansion is weaker and the
gravitational pull stronger, yielding δ(a) ∝ aq where q > 1 for fluctuations growing
after the equivalence.

We understood that for λ > λH(a), the perturbations grow for every a. When
they enter the horizon, this is not true in general because gravity is not the only
relevant interaction between particles, and other physical interactions must be
considered too. If λ < λH(aeq), the perturbation enters the horizon while radiation
is still dominating the expansion. The Hubble time τH = H−1, the time-scale of
the expansion, is determined by the radiation density ρrad, and is shorter than the
collapse time-scale of the dark matter, as (Gρrad)−1/2 < (GρDM )−1/2. Dark matter
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perturbations cannot collapse because the expansion driven by the radiation is faster
than the collapse of dark matter. The horizon size at the equivalence λH(aeq) is an
important scale for structure formation.

We define ahor as the scale factor at which the perturbation with comoving
wavelength λ enters the horizon and can be found by solving λ = λH(ahor). Then:

λ ∝ an

{
ahor ahor ≪ aeq

a
1/2
hor aeq ≪ ahor ≪ a0.

(1.20)

It is possible to decompose the density contrast δ into Fourier modes: this is
convenient as the Fourier components evolve independently in linear perturbation
theory. The Fourier transform of δ(x) is

δ̂(k) = 1
(2π)3

∫
R3
δ(x)e−ik·xd3k (1.21)

Let us note that the dimensions of δ̂(k) are the ones of a volume and that, since
δ ∈ R we must have δ̂(k)∗ = δ̂(−k). Remembering the definition and effect of the
three-dimensional Dirac’s delta distribution 2 , we have that the assumed Gaussian
density fluctuations δ(x) at the comoving position x can completely be characterized
by their Power Spectrum P(k), that we will properly define alongside the other
cosmological statistical properties in Section 1.2.1:

⟨δ̂(k)δ̂∗(k′)⟩ = (2π)3P(k)δ(3)
D (k − k′), (1.22)

where the asterisk denotes complex conjugation. The evidence of the curvature of
the universe being negligible at early times resolves the fact that the decomposition
is possible only in flat space. Moreover, at the late stages of the evolution, the scales
λ = 2π

k of the density perturbations are much smaller than the curvature radius of
the Universe. The power spectrum is proportional to the average square amplitude
of the perturbations with wave vector k, P(k ∝ ⟨|δ(k)|2)⟩. Averaging in the Fourier
space means averaging every wave vector k whose wave number is |k| = k. Let us
now consider the power spectrum when it was formed at the end of the inflation,
i.e. the primordial power spectrum: Pi(k) ∝ |δ(k)|2: if Eq. 1.19 holds, the power
spectrum grows as P(k; a) ∝ a2n. At the epoch ahor, Eq. 1.20 and the fact that
k ∝ λ−1 show that the primordial power spectrum has evolved in:

P (k; ahor) ∝ a2n
horPi(k) ∝

{
k−4Pi(k) ahor(k) < aeq

Pi(k) ahor(k) > aeq,
(1.23)

where ahor(k) < aeq describes the scales that enter the horizon before the equivalence
(thus with growth suppressed), and ahor(k) > aeq are the large scales (small k) not
reached by the horizon before the equivalence.

23-dimensional Dirac’s delta:

δ
(3)
D (k) = 1

(2π)3

∫
R3

eik·xd3x,

f(x) =
∫

R3
f(k)δ(3)

D (x − k)d3k.
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We can assume that the total power of the density fluctuations at ahor should be
scale-invariant, then k3P(k) = const. or P(k) ∝ k−3. This leads to the primordial
Harrison-Zel’dovich spectrum Pi(k) ∝ k (Harrison (1970), Zeldovich (1972)). Thus
Eq. 1.23 can be written as:

P(k; ahor) ∝

{
k−3 ahor(k) < aeq

k ahor(k) > aeq,
(1.24)

Different dark matter models that we introduced in 1.1.1 can be studied also
in relation to the evolved primordial power spectrum. When dark matter particles
have a velocity comparable to the speed of light, if the density perturbation does
not reach a certain minimum mass or a minimum size, the perturbation can be
damped away by these free streaming particles. At large k (small λ) the density
perturbation spectrum has an exponential cut-off. We have then models of hot
dark matter whose particles are light and damp away perturbations at small-scale
perturbations, while the cold dark matter models predict massive particles slow
enough to cause no significant damping.

1.2.1 Statistical tools for Cosmology
We introduced the power spectrum of the fluctuations to study the evolution of
their growth, which is a powerful tool that is defined in the context of the statistical
approach to Cosmology. We are now describing some essential statistical elements
in order to explore more in the detail the methods and the application of the
cosmological statistical analysis of the density contrast field δ(x).

Let us consider a random field g(x) whose expectation value is zero everywhere.
In the case of a non-null expectation value, we could consider the difference between
the field and the expectation value in each point of the space. The field could be
both real and complex and defined in a n-dimensional space of the coordinates x.
Moreover, the field can be:

• homogeneous if g(x) is statistically indistiguishible from g(x + r), where r is
an arbitrary translation vector;

• isotropic if g(x) is statistically indistiguishible from g(Rx), where R is an
arbitrary rotation matrix in n dimensions.

It is possible to describe the level of order of the field introducing the correlation
function, which depicts how variables are connected to each other and measures
how the field co-varies in average over space:

ξ(r) = Cgg(|x − x′|) = ⟨g(x)g∗(x′)⟩, (1.25)

which for a homogeneous field depends only on the absolute value of the difference
vector between the two points x and x′ = x + r.
The correlation function is actually averaged twice. First, we fix x and compute
g(x)g∗(x′) for every x′ = x + r that is distant r = |r| from x and average all these
values. Then, we repeat for every x and average again. When g is the density
contrast δ(x) defined in 1.17 the correlation function is the observable used in
clustering studies.
The correlation function is real, even if the field is complex: we can prove that by
taking the complex conjugate of Eq. 1.25, which is equivalent to interchanging x
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and x′, leaving the right-hand-side unaffected. Let us define the Fourier-transform
pair of g:

ĝ(k) =
∫
Rn

g(x)e−ik·xdnx. (1.26)

g(k) = 1
(2π)n

∫
Rn

ĝ(k)eik·xdnk. (1.27)

The correlation function in the Fourier space is then:

⟨ĝ(k)ĝ∗(k′)⟩ =
∫
Rn

e−ik·x
∫
Rn

⟨g(x)g∗(x′)⟩eik
′·x′

dnxdnx′. (1.28)

Using Eq. 1.25 and the fat that x′ = x + r, this becomes:

⟨ĝ(k)ĝ∗(k′)⟩ =
∫
Rn

e−ik·x
∫
Rn

Cgg(|r|)eik
′·x+rdnxdnx′ =

= (2π)nδ(n)
D (k − k′)

∫
Rn

Cgg(|r|)e−ik·rdnr =

= (2π)nδ(n)
D (k − k′)Pg(k).

(1.29)

In the final passage, we defined the power spectrum of the isotropic random field g
as

Pg(k) =
∫
Rn

Cgg(|r|)e−ik·rdnr, (1.30)

thus we have that the power spectrum is the Fourier transform of the two-point
correlation function. It is isotropy that allows Pg to depend only on the modulus of
k.

Gaussian random fields are characterized by the property that the probability
distribution of any linear combination for the random field g(x) is Gaussian. Thus
the joint probability distribution of a number M of linear combinations of the
random variable g(xi) is a multivariate Gaussian. That is equivalent to require
that the Fourier transform components ĝ(k) are mutually statistically independent
and that the probability densities for the ĝ(k) are Gaussian with dispersion Pg(k).
Thus, a Gaussian random field is fully characterized by its power spectrum.

1.2.2 The cosmological power spectrum
The statistical approach used in Cosmology and clustering studies relies on the
so-called ergodic hypothesis: the mean value of a given quantity, when averaged over
a large number of volumes (each representing a realization of the Universe), is equal
to the average of the mean values of the quantity averaged on many sub-volumes of
a single realization of the Universe. For the density contrast probability distribution,
the ergodic hypothesis is always verified as it is Gaussian. It is necessary to consider
sub-volumes that constitute a fair sample and are large, independent, and a good
representation of the Universe (isotropic). Let us now consider the actual expression
for the δ probability distribution and apply the tools we described in Section 1.2.1.
As a Gaussian distribution with zero mean, P (δ) is described only by its variance
σ2:

P (δ) = 1√
2πσ2

e− δ2
2σ2 (1.31)
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This is an approximation since for δ < −1, the distribution must be truncated.
From Eq. 1.30 and 1.29 we have the correlation function of density constrast field
δ(x) can be expressed as:

ξ(r) = 1
(2π)3

∫
R3

P(k)eik·rd3k, (1.32)

where in turn we can write the power spectrum as:

⟨δ̂(k)δ̂∗(k′)⟩ = (2π)3δ
(n)
D (k − k′)P(k), (1.33)

and it has the dimensions of a volume. It is important to notice that P(k) is a
power density while the actual "power" is Pd3k, i.e. the amplitude of the mode k of
the correlation function. We found that the power spectrum is proportional to the
average square amplitude of a perturbation with wave vector k:

P(k) ∝ ⟨δ̂(k)δ̂∗(k′)⟩ ∝ ⟨|δ̂(k)|2⟩, (1.34)

remembering Dirac’s delta properties. Expanding the Dirac’s delta, we find the
proportionality constant of the power spectrum representing the volume of the
Universe, i.e. an integral over all R3, and thus we have:

P(k) = ⟨|δ̂(k)|2⟩
V∞

(1.35)

The power spectrum is extremely important as it can give us the only parameter of
the δ probability distribution, the variance σ2. It can be verified that the variance
is the second moment of the power spectrum:

σ2 = 1
2π2

∫ ∞

0
P(k)k2dk. (1.36)

As we discussed in Section 1.2, the initial power spectrum given by the inflationary
expansion phase of the Universe is a power law that has no privileged scale:

P(k) = Akn. (1.37)

The amplitude must be constrained with the observations while the inflationary
model suggests that n = 1 is in the primordial power spectrum, defining the scale-
invariant Zel’dovich Spectrum. The evolution of the perturbations modifies the
power spectrum in a scale-dependent way so that it can usually be described as a
local power law with local index neff (k):

neff (k) = d ln P(k)
dk . (1.38)

From Eq. 1.23, the time evolution of the power spectrum is given by:

P(k, t) = Pi(k)δ2
+(t), (1.39)

where δ+ is equivalent to aqhor in Eq. 1.23.
It is very useful to see the variance of the distribution as a function of the mass

of the structures. In order to do this, we study the time evolution of the variance
itself:

σ2 ∝ δ2
+(t)kn+3 ∝ δ2

+(t)λ−(n+3) ∝ δ2
+(t)M− n+3

3 (1.40)
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where we used the power law spectrum of Eq. 1.37 in the definition of the variance
1.36, and the proportionality relation between M ∝ λ3 ∝ k−3.

The Zel’dovich spectrum can be obtained by considering that the inflation causes
perturbations in the spacetime metric that become perturbations in the gravitational
potential that have no privileged scale and have a constant mean amplitude (white
noise). For a fixed R the fluctuations of the potential are:

δΦ ∝ GδM

R
∝ GδρR3

R
∝ δρR2 ∝ σR2

δΦ ∝ σM
2
3 ∝ M− n+3

6 + 2
3 ∝ M

1−n
6

(1.41)

To have a constant amplitude, the power law index must be n = 1.
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Chapter 2

Gravitational lensing

This Chapterwill describe the fundamental aspects of the theory of Gravitational
lensing. In the context of this Thesis, we will pay particular attention to the weak-
lensing regime, as opposed to the strong-lensing regime, in which the strength of the
gravitational deflection of light is reduced, and is possible to use the mathematical
background at its first-order approximation. This introduction is divided into two
sections: Section 2.1 will revise some theoretical basics elements of the phenomenon,
from the lens equation to the E/B decomposition that is crucial to this work; while
in Section 2.2 we focus on the tools that are used in weak-lensing studies and in
particular on the statistics known as the Aperture mass. The main references for
this Chapter are Bartelmann and Schneider (2001) and Umetsu (2020).

The local universe appears to be highly inhomogeneous on a wide range of
scales, from galaxies, through galaxy groups and clusters, to forming superclusters,
large-scale filaments, and cosmic voids. Light rays from far background sources are
deflected when propagating through the gravitational field caused by such local
inhomogeneities along the line of sight. This phenomenon, the deflection of light,
was theoretically predicted by Einstein in the theory of General Relativity. Still,
several scientists already in the past had speculated about it, the most illustrious
example being sir Isaac Newton who deducted it in 1704. However, with Newtonian
gravitational physics, the computation of the deflection predicts an effect that is
half of the real effect computed with General Relativity. This was confirmed thanks
to a mission guided by Eddington having the goal of measuring the deflection of
light grazing the surface of the Sun during a solar eclipse (Dyson et al., 1920): from
Newton’s theory, the deflection would have been of 0.87 arcsecs while the value
predicted by General Relativity and confirmed by the observations is 1.75 arcsec.
Even though, for Einstein himself, the deflection of light at the rim of the Sun
marked a confirmation of his theory of General Relativity, he was sure that this
effect would hardly ever gain astrophysical relevance. Fritz Zwicky in 1937 proposed
the idea that clusters of galaxies could act as deflectors of light or gravitational
lenses after discovering the first indication of dark matter from the observation of
the Coma cluster (Zwicky, 1933).
Nonetheless, it took until 1979 for the first gravitational lens to be found: it was
discovered the first multiple image system, an effect peculiar of the strong lensing
regime (there may exist more than one null geodesic connecting the world-line of
a source with the observation event). Alongside the possibility of multiplying the

17
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images of background sources, gravitational lensing does not change the surface
brightness of a source, but it changes the effective solid angle under which its light
can be seen and increases its flux: this is the magnification, the property that
allows the use of gravitational lenses as "cosmic telescopes". The lensing effect on
which this Thesis is based is the deformation of the images of resolved sources. This
deformation can either be strong, as for gravitational arcs and Einstein rings or weak,
like a change in the source’s ellipticity. Although weak distortions in individual
images can hardly be recognized, and the net distortion averaged over an ensemble
of images can still be detected. This last possibility marks out the weak lensing
regime, which does not have evident effects, and all the measurements of its effect
are statistical in nature. Weak lensing measurements are based on the observation
of the galaxy shape, i.e. the ellipticity, in wide field surveys in order to constrain the
distortion pattern given by the lensing of generally large distribution of matter in
an intermediate position between the galaxies in the background and the observer.

Magnification and distortion effects due to weak lensing are used to probe the
statistical properties of the matter distribution between us and an ensemble of distant
sources. Moreover, since the deflection angle is determined only by the gravitational
field of the matter distribution along its path, thus light deflection probes the total
matter density. This led to the possibility of directly investigating the distribution
of dark matter and influenced our understanding of structure formation, supporting
hierarchical structure formation in cold dark matter (CDM) models.

2.1 Lensing theory
The deflection angle of a ray of light in position ξ′ in the presence of a point-like
mass M is (Bartelmann and Schneider, 2001) can be written as:

α̂(ξ) = 4GM
c2

ξ − ξ′

|ξ − ξ′|2
. (2.1)

We consider ξ the 2-dimensional position on a plane perpendicular to the line of
sight. If we consider instead a mass distribution characterized by a surface density
on the sky plane Σ(ξ′), then the deflection angle of a light ray passing in ξ in the
plane is

α̂(ξ) = 4G
c2

∫
R2

Σ(ξ′) ξ − ξ′

|ξ − ξ′|2
d2ξ′. (2.2)

This expression holds as long as the thin screen approximation (Meneghetti, 2021)
holds: even considering the case of lensing by galaxy clusters, the lens physical size
is generally much smaller than the distances between observer, lens and source, thus
we can approximate the lens by a planar distribution, the lens plane. A relevant
exception, in particular for this work, is the deflection by the large-scale structures.

The basic tool for the gravitational lensing theory is the lens equation that relates
the true position of the source to its observed position in the sky. In Figure 2.1,
the source and lens are identified by planes perpendicular to a straight line (optical
axis) from the observer to the lens at the distance of the source and of the lens,
respectively, let η be the 2-dimensional position of the source on its plane. We can
obtain geometrically:

η = DS

DL
ξ −DLSα̂(ξ) (2.3)
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Figure 2.1 Illustration of a typical lens system. The light ray propagates from the
source (S) at the position η in the source plane to the observer (O), passing the position ξ
in the lens plane (L), resulting in a bending angle α̂. The angular position of the source
(S) relative to the optical axis is denoted by β, and that of the image (I) relative to the
optical axis is denoted by θ. The quantities DL, DS , and DLS are the observer-lens,
observer-source, and lens-source angular diameter distances, respectively (Umetsu, 2020).

being DS , DL and DLS the angular diameter distances between observer and source,
between observer and lens and between lens and source, in general, DS ̸= DL+DLS ,
and the equality holds only in the local Universe, where we can ignore the expansion
of the Universe and the geometry is Euclidean. Introducing angular coordinates
η = DSβ and ξ = DLθ Eq. 2.3 becomes

β = θ − DLS

DS
α̂(DLθ) ≡ θ − α(θ), (2.4)

where we defined the reduced deflection angle in the last step.
A useful lensing quantity is the lensing potential of the lens, defined as a scaled

integral of the gravitational potential ψ of the lens on the line of sight (l.o.s.):

ϕ(θ) ≡ DLS

DLDL

2
c2

∫
R
ψ(DLθ, xlos)dxlos, (2.5)

where we consider the three-dimensional position of the lens ξ + xlos is the sum of
a vector ξ = DLθ on the lens plane plus a vector xlos on the l.o.s. .

The lensing potential is adimensional. A relation between reduced deflection
angle and lensing potential can be found:

α(θ) = ∇θψ(θ). (2.6)
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Then if we define the critical surface density of a lensing system

Σcrit ≡ c2

4πG
DS

DLSDL
, (2.7)

it is possible to define the convergence κ, an adimensional surface density:

κ(θ) ≡ Σ(θ)
Σcrit

. (2.8)

The Poisson equation projected on the lens plane is then:

∇2
θψ(θ) = 2κ(θ). (2.9)

It is possible to express the lensing potential as a convolution if we express the
deflection angle in Eq. 2.2 as:

α(θ) = 1
π

∫
R2
κ(θ′) θ − θ′

|θ − θ′|2
d2θ′; (2.10)

then using it in Eq. 2.6 we have:

ψ(θ) = 1
π

∫
R2
κ(θ′) ln |θ − θ′|d2θ′. (2.11)

2.1.1 First-order lens mapping and lensing regimes
The solutions θ of the lens equation yield the angular positions of the images of a
source at β. The shapes of the images will differ from the intrinsic shape of the source
because light bundles are deflected differentially. In general, the shape of the images
must be determined by solving the lens equation for all points within an extended
source. Liouville’s theorem and the absence of emission and absorption of photons
in gravitational light deflection imply that lensing conserves the surface brightness
(or specific intensity). Hence, if I(s)(β) is the surface brightness distribution in the
plane of the source, the observed surface brightness distribution in the lens plane
would be

I(θ) = I(s)[β(θ)]. (2.12)
If a source is much smaller than the angular scale on which the lens properties
change, the lens mapping can be linearised. The lens equation in the first-order lens
mapping is:

β = A(θ)θ, (2.13)
the distortion of the images is described by the Jacobian matrix

A(θ) = ∂β

∂θ
= (δij − ψij(θ)) =

(
1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)
, (2.14)

where ψij(θ) = ∂2ψ(θ)
∂θi∂θj

.
To understand the last passage, we need to remember that the lensing Jacobian is a
symmetric tensor, thus it can be decomposed as the sum of an isotropic part Aiso

ij (θ)
and an anisotropic one Aaniso

ij (θ). The first one is found using the Poisson Eq. 2.9:

Aiso
ij (θ) = 1

2TrA(θ)δij = 1
2[2 − (ψ11 + ψ22)]δij = [1 − κ(θ)]δij , (2.15)
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where the convergence is :

κ(θ) = 1
2 [ψ11(θ) + ψ22(θ)] . (2.16)

Therefore the isotropic deflection is just a rescale of the vectors in the source plane.
The anisotropic component is defined as
Aaniso
ij (θ) = Aij − 1

2 TrA(θ)δij and if we take the opposite we obtain the shear
tensor Γ:

Γij(θ) = −Aaniso
ij (θ) =

[ 1
2 (ψ11 − ψ22) ψ12

ψ12 − 1
2 (ψ11 − ψ22)

]
=

[
γ1 γ2
γ2 −γ1

]
. (2.17)

It is a symmetric tensor with null trace with two independent shear components:

γ1(θ) = 1
2 [ψ11(θ) − ψ22(θ)], (2.18)

γ2(θ) = ψ12(θ). (2.19)

We can define the shear as the complex number γ = γ1 + iγ2, its shear modulus
|γ| =

√
γ2

1 + γ2
2 , then detΓ = −|γ|2 and the eigenvalues of the shear tensor are ±|γ|.

We finally get Eq. 2.14.
If we consider a point θ0 within an image and the corresponding point β0 = β(θ0)

inside the source, we can use the locally linearised lens equation to write Eq. 2.12
as:

I(θ) = I(s) [β0 + A(θ0) · (θ − θ0)] . (2.20)

According to this equation, the images of a circular source become ellipses. The
ratios of the semi-axes of such an ellipse to the radius of the source are given by
the inverse of the eigenvalues of A(θ0), which are 1 − κ± |γ|, and the ratio of the
solid angles subtended by an image and the unlensed source is the inverse of the
determinant of A: this is possible because the jacobian is a symmetric tensor and
can be diagonalized. The fluxes observed from the image and from the unlensed
source are given as integrals over the brightness distributions I(θ) and I(s)(β),
respectively, and their ratio defines the magnification µ(θ0). From Eq. 2.20, we find:

µ(θ) = 1
detA(θ) = 1

[1 − κ(θ) − |γ|(θ)][1 − κ(θ) + |γ|(θ)] . (2.21)

The images are thus distorted in shape and size. The shape distortion is due to
the tidal gravitational field, described by the shear γ, whereas the magnification
is caused by both isotropic focusings caused by the local matter density κ and
anisotropic focusing caused by the shear. in Figure 2.2, it is shown the combined
effect of shear and convergence.

A lens system that has a region with κ(θ) > 1 can produce multiple images for
certain source positions β, and such a system is referred to as being supercritical
because the surface density is greater than the critical density. Being supercritical
is a sufficient but not necessary condition for a general lens to produce multiple
images because the shear can also contribute to multiple imaging. Nevertheless,
this provides a simple criterion to broadly distinguish the regimes of multiple and
single imaging. Keeping this in mind, we refer to the region where κ(θ) ≳ 1 as the
strong-lensing regime and the region where κ(θ) ≪ 1 as the weak-lensing regime.
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Figure 2.2 Illustration of the effects of the convergence κ and the shear γ on the
angular shape and size of a hypothetical circular source. The convergence acting alone
causes an isotropic focusing (magnification) of the image (dashed circle), while the shear
deforms it to an ellipse (Umetsu, 2020).

2.1.2 Properties of the shear tensor
In this Section, we are going into the details of the shear tensor defined in Eq. 2.17.
Γ is a symmetric and trace-less tensor and can be expressed in terms of the Pauli
matrices as

Γ(θ) = γ1(θ)σ3 + γ2(θ)σ1 . (2.22)
It can also be expressed using the index notation as:

Γij(θ) =
(
∂i∂j − δij

1
2∇2

)
ψ(θ), (2.23)

where ∂i = ∂
∂θi

, ∇2 = ∂2
i + ∂2

j , δij is Kronecker’s delta.
If a rotation R(ϕ) is applied to the coordinate system, it is possible to show that

the isotropic part of the matrix does not change, and the shear tensor is modified
according to Γ′ = RT (ϕ)R(ϕ) and the shear components change as follows:(

γ′
1
γ′

2

)
= RT (2ϕ)

(
γ1
γ2

)
, (2.24)

or in an explicit way: {
γ′

1 = +γ1 cos 2ϕ+ γ2 sin 2ϕ
γ′

2 = −γ1 sin 2ϕ+ γ2 cos 2ϕ
. (2.25)

The shear components are mapped on themselves after a π rotation, so the shear
is not a vector, but a spin-2 field (a quantity has spin N if has the same value
after a rotation by 2π

N ). Therefore the Jacobian matrix can be diagonalized with a
rotation that makes γ′

1 = γ and γ′
2 = 0, which can be obtained if the rotation angle

is ϕ = 1
2 arctan γ1

γ2
.

For the weak-lensing regime, it is useful to study the first-order mapping of a
circular source centered in β = 0 with radius β. This means that β2 = β2

1 + β2
2 . Let
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us also suppose that our coordinate axes are the eigenvectors. From Eq. 2.13 we
have that: (

β1
β2

)
=

(
1 − κ− |γ| 0

0 1 − κ+ |γ|

) (
θ1
θ2

)
=

=
(

(1 − κ− |γ|)θ1 0
0 (1 − κ+ |γ|)θ2

)
.

(2.26)

This means that the circularity relation becomes:

β2 = β2
1 + β2

2 = (1 − κ− |γ|)2θ2
1 + (1 − κ+ |γ|)2θ2

2 : (2.27)

that is the equation of an ellipse; therefore, the circular source is mapped in an
elliptical map whose axes are directed along the eigenvectors, and the lengths of the
semiaxes are different because of the shear. If a and b are the semiaxis lengths, the
ellipticity e of the ellipse is:

e = a+ b

a− b
=

β
1−κ−|γ| + β

1−κ+|γ|
β

1−κ−|γ| − β
1−κ+|γ|

= 1 − κ+ |γ| − 1 + κ+ |γ|
1 − κ+ |γ| + 1 − κ− |γ|

= |γ|
1 − κ

. (2.28)

The ellipticity of the source is defined reduced shear modulus:

|g| = |γ|
1 − κ

. (2.29)

In general, we can define the Reduced shear tensor as a scaled version of the shear
tensor:

g(θ) = 1
1 − κ(θ)Γ(θ), (2.30)

and by analogy with the shear tensor, we can define the reduced shear components
g1 and g2 and thus the complex reduced shear g = g1 + ig2. This quantity is
crucial to the weak-lensing studies because, the observed ellipticity of an intrinsic
circular source, is a direct measure of the reduced shear and this is an effect of the
gravitational lensing only. However real galaxies are intrinsically elliptical and we
will see how to deal with that. Moreover, in the weak lensing limit where κ ≪ 1 we
have that g ≃ γ, and the reduced shear corresponds to the actual shear.

If we consider the expression for the lensing potential as a convolution, as in
Eq. 2.11, it is possible to show that also the complex shear can be written as a
convolution of the convergence, as:

γ(θ) = 1
π

∫
R2
κ(θ′)D(θ − θ′)d2θ′, (2.31)

with
D(θ) = θ2

2 − θ2
1 − 2iθ1θ2

|θ|4
= − 1

(θ1 − iθ2)2 . (2.32)

and the complex conjugate is:

D∗(θ) = θ2
2 − θ2

1 + 2iθ1θ2

|θ|4
= − 1

(θ1 + iθ2)2 . (2.33)
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In addition to this relation between shear and convergence, we can find another one
by considering that they are both linear combinations of the second derivatives of
the potential. We introduce the notation of the spin operators:

∂ = ∂1 + i∂2 spin rising operator (2.34)

∂∗ = ∂1 − i∂2 spin lowering operator , (2.35)
then we have ∇2 = ∂2

1 + ∂2
2 = ∂∂∗. Finally from Eq. 2.16, Eq. 2.18 and Eq. 2.19

some algebraic calculations show that

κ = 1
2∂∂

∗ψ(θ) (2.36)

γ = 1
2∂∂ψ(θ) (2.37)

∇2κ(θ) = ∂∗∂∗γ(θ) (2.38)

2.1.3 E and B mode decomposition
The shear tensor Γ can be expressed as a sum of two components corresponding
to the number of degrees of freedom. By introducing two scalar fields ψE(θ) and
ψB(θ), we decompose the shear matrix Γij (i, j = 1, 2) into two independent modes
as (Crittenden et al., 2002):

Γ(θ) =
(
γ1 γ2
γ2 −γ1

)
= Γ(E)(θ) + Γ(B)(θ), (2.39)

with
ΓEij(θ) =

(
∂i∂j − δij

1
2∇2

)
ψE(θ), (2.40)

ΓBij(θ) = 1
2(ϵkj∂i∂k + ϵki∂j∂k)ψB(θ), (2.41)

where ϵij is the Levi-Civita symbol in two dimensions, defined such that ϵ11 = ϵ22 = 0,
ϵ12 = −ϵ21 = 1. Here the first term associated with ψE is a gradient or scalar E
component and the second term with ψB is a curl or pseudoscalar B component.
The shear components (γ1, γ2) are written in terms of ψE and ψB as:

γ1 = +Γ11 = −Γ22 = 1
2(ψE,11 − ψE,22) − ψB,12 (2.42)

γ2 = Γ12 = Γ21 = ψE,12 + 1
2(ψB,11 − ψB,22). (2.43)

Now comparing the expression of the E-mode of the shear tensor in Eq. 2.40 with the
shear tensor in the general index notation in Eq. 2.23, and the two shear components
γ1 and γ2 in Eq. 2.42 and Eq. 2.43 were with the E-B components of ψ with the
corresponding general expressions in Eq. 2.18 and 2.19 we find that ψE(θ) = ψ(θ)
and ψB(θ) = 0. Hence, for a lensing-induced shear field, the E-mode signal is related
to the convergence κ, i.e. the surface mass density of the lens, while the B-mode
signal is identically zero. Figure 2.3 illustrates characteristic distortion patterns
from E-mode (curl-free) and B-mode (divergence-free) fields. Weak lensing only
produces curl-free E-mode signals so that the presence of divergence-free B-modes
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Figure 2.3 Illustration of shape distortion patterns from E-mode and B-mode fields.
The distortion pattern from E-mode is perfectly radial or tangential (Umetsu, 2020).

can be used as a null test for systematic effects. In the weak-lensing regime, a
tangential E-mode pattern is produced by a positive mass overdensity (e.g. halos),
while a radial E-mode pattern is produced by a negative mass overdensity (e.g.
cosmic voids).

Umetsu (2020) shows that gravitational lensing can induce B-modes, for exam-
ple, when multiple deflections of light are involved (multiple lenses on the line of
sight). However, these B-modes can be generated at higher orders, and the B-mode
contributions coming from multiple deflections are suppressed by a large factor
compared to the E-mode contributions. In real observations, intrinsic ellipticities
of background galaxies also contribute to weak-lensing shear estimates. Assuming
that intrinsic ellipticities have random orientations in projected space, such an
isotropic ellipticity distribution will yield statistically identical contributions to E
and B-modes. Therefore, the B-mode signal provides a useful null test for systematic
effects in weak-lensing observations.

2.2 A weak lensing estimator: the aperture mass
From Eq. 2.31, we know that is possible to express shear as a convolution of con-
vergence. This can be inverted with appropriate inversion algorithms (Bartelmann
and Schneider (2001); Kaiser and Squires (1993); Schneider (1996)).
Considering the Fourier transform of the convergence κ and the shear convolution
kernel D defined as Eq. 2.33:

κ̂(l) =
∫
R2
eiθ·lκ(θ)d2θ, (2.44)

D̂(l) = π
l21 − l22 + 2il1l2

|l|2
, (2.45)

D̂∗(l) = π
l21 − l22 − 2il1l2

|l|2
, (2.46)

let us note that D̂D∗ = π2, where the asterisk denotes again the complex conjugate.
Using the properties of the Fourier transform regarding the convolution, we have
that γ̂(l) = π−1κ̂(l)D̂(), from which we obtain κ̂(l) = 1

π γ̂(l)D̂∗(l). In the real space
this becomes:

κ(θ) − κ0 = 1
π

∫
R2
γ(θ′)D∗(θ − θ′)d2θ′ = 1

π

∫
R2

R[γ(θ′)D∗(θ − θ′)]d2θ′. (2.47)
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With the constant κ0 we can show that the shear does not change if we add a
sheet of constant convergence (i.e. mass sheet degeneracy). The symbol R refers to
the real part of the complex number, and the equality comes from the constraint
that the convergence is a real function. In practice, it is possible to use this relation
to estimate the convergence by using a dataset of measured complex ellipticities
ϵi = ϵ(θi) instead of the shear (equivalent to the reduced shear in the weak-lensing
limit). the estimator will be:

κ(θ) = 1
Nπ

N∑
i=1

R[ϵiD∗(θ − θi)]. (2.48)

This is one of the most basic estimators to reconstruct mass surface density from
shear measurements and analyze it to detect mass concentrations, but the relations
between galaxy ellipticities and the resulting mass maps are generally complicated.

The estimator we adopt in this Thesis and the most common one is the Aperture
Mass

Map(θ) =
∫
R2
κ(θ′)U(θ − θ′)d2θ′. (2.49)

Aperture mass is defined as the convolution of a convergence map with a weight
function U(θ − θ′); the weight function can be selected as an "aperture function"
that tends to zero when the distance |θ − θ′| increases. We have then that the
aperture mass becomes an average estimate of the convergence weighted within the
aperture with the weight function U . If we assume that the aperture is symmetric
U(θ − θ′) = U(|θ − θ′|). By inserting Eq. 2.48 in Eq. 2.49 we get:

Map(θ) =
∫
R2
U(|θ − θ′|)

[
1
π

∫
R2

R[γ(θ′′)D∗(θ′ − θ′′)]d2θ′′ + κ0

]
d2θ′

= 1
π
R

∫
R2
γ(θ′′)

∫
R2
U(|θ − θ′|)D∗(θ′ − θ′′)d2θ′d2θ′′+

+ κ0

∫
R2
U(|θ − θ′|)d2θ′.

(2.50)

The second integral can be written in polar coordinates as

κ0

∫
R2
U(|θ − θ′|)d2θ′ = κ02π

∫ ∞

0
U(x)xdx. (2.51)

Let us suppose that the weight function U is compensated, that is∫ ∞

0
U(x)xdx = 0. (2.52)

In this way the aperture mass will not depend on κ0; it can be expressed as:

Map(θ) = 1
π
R

∫
R2
γ(θ′′)

∫
R2
U(|θ − θ′|)D∗(θ′ − θ′′)d2θ′d2θ′′ =

= 1
π
R

∫
R2
γ(θ′′)

∫
R2
U(|θ′|)D∗(θ′ − θ′′ + θ)d2θ′d2θ′′ =

= 1
π
R

∫
R2
γ(θ′′)

∫ ∞

0
U(x)x

∫ 2π

0
D∗(X − Y )dϕdxd2θ′′ =

= − 1
π
R

∫
R2
γ(θ′′)

∫ ∞

0
U(x)x

∫ 2π

0

1
(xeiϕ − Y )2 dϕdxd2θ′′,

(2.53)
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with the conplex numbers X = θ′
1 + iθ′

2 = xeiϕ and Y = (θ′′
1 − θ1) + i(θ′′

2 − θ2). The
complex integral is solved by using dϕ = −idX

X , transforming it into a loop integral
and using the residual theorem:∫ 2π

0

1
(xeiϕ − Y )2 dϕ = π

Y 2 [2Θ(|Y | − |X|) − |Y |δ(|X| − |Y |)], (2.54)

where Θ is Heaviside’s step function and δ is Dirac’s delta. The aperture mass
becomes:

Map(θ) = 1
π
R

∫
R2
γ(θ′′)

∫ ∞

0

U(x)xπ
Y 2 [2Θ(|Y | − |X|) − |Y |δ(|X| − |Y |)]dxd2θ′′ =

= R

∫
R2

γ(θ′′)
Y 2

[
|Y |2U(|Y |) − 2

∫ |Y |

0
U(x)xdx

]
d2θ′′ =

= R

∫
R2

γ(θ + θ′)
(θ′)2

[
|θ′|2U(|θ′|) − 2

∫ |θ′|

0
U(x)xdx

]
d2θ′ =

=
∫
R2

[
−|θ′|2 γ(θ + θ′)

(θ′)2

] [
2

|θ′|2

∫ |θ′|

0
U(x)xdx− U(|θ′|)

]
d2θ′ =

=
∫
R2

[
−|θ′ − θ|2R

(
γ(θ′)

(θ′ − θ)2

)] [∫ |θ′−θ|

0

2U(x)x
|θ′ − θ|2

dx− U(|θ′ − θ|)
]

d2θ′,

(2.55)

where we have introduced the complex numbers θ′ = θ′
1 + iθ′

2 and θ = θ1 + iθ2
corresponding to the vectors θ′ and θ. The aperture mass can be written in a more
immediate way if we define the tangential shear component at the position θ′ with
respect to θ:

γ+(θ′; θ) = −|θ′ − θ|2R
(

γ(θ′)
(θ′ − θ)2

)
= −R

(
γ(θ′)(θ′ − θ)∗

(θ′ − θ)

)
, (2.56)

and a filter function, a real function of a real variable t:

Q(t) = 2
t2

∫ t

0
U(t′)t′dt′ − U(t). (2.57)

The aperture mass can thus be written as:

Map(θ) =
∫
R2
γ+(θ′; θ)Q(|θ′ − θ|)d2θ′. (2.58)

This equation allows us to express the aperture mass, a U−weighted integral of the
convergence, as an integral over the tangential shear weighted by the filter function
Q. Different filters have different properties; generally, they have compact support
so that Map(θ) can be expressed as an integral of the tangential shear over a finite
area around θ, and with a suppression in the aperture center so that the tangential
shear does not diverge and the weak lensing approximation (κ ≪ 1, |γ| ≪ 1) does
not break down. It is generally possible to create a signal-to-noise ratio map of the
mass aperture statistic with a chosen filter Q, in which sufficiently strong lenses will
appear as significant peaks. This method has been tested on synthetically generated
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data, and it is shown in several works that it lives up to the expectations ( Maturi
et al. (2005); Pace et al. (2007)). The signal-to-noise ratio map is not corrupted
by small-scale deflectors (such as individual galaxies), nor by large-scale deflectors.
This method can then be used to search for mass concentrations (dark halos of
galaxy clusters) given wide-field images of ellipticities.

2.2.1 Tangential and cross shear components
As we have seen in Section 2.1.2, the spin-2 shear components γ1 and γ2 are
coordinate-dependent, defined relative to a reference Cartesian coordinate frame. It
is useful to consider components of the shear that are coordinate-independent with
respect to a given reference point, such as the cluster center. We already introduced
in Eq. 2.56 the tangential shear component as the real part of a given complex
number. If we consider the imaginary part, we can define the equivalent cross shear
component at position θ′ with respect to θ:

γ×(θ′; θ) = −|θ′ − θ|2I
(

γ(θ′)
(θ′ − θ)2

)
= −I

(
γ(θ′)(θ′ − θ)∗

(θ′ − θ)

)
. (2.59)

The tangential and cross shear components can also be expressed as explicit functions
of the cartesian components of ∆θ = θ′ − θ = ∆θ1 + i∆θ2 as:

γ+(θ′; ∆θ) = − 1
∆θ2

1 + ∆θ2
2

[
γ1(θ′)(∆θ2

1 − ∆θ2
2) + 2γ2(θ′)(∆θ1∆θ2)

]
(2.60)

γ×(θ′; ∆θ) = − 1
∆θ2

1 + ∆θ2
2

[
γ2(θ′)(∆θ2

1 − ∆θ2
2) − 2γ1(θ′)(∆θ1∆θ2)

]
(2.61)

It is important to note that the cross shear is equivalent to computing the tangential
shear on a map where each galaxy shear has been rotated by π/4, which according
to Eq. 2.25 means using a new shear γ′ whose components are:

γ′
1 = γ2, γ′

2 = −γ1. (2.62)

The tangential and cross shear can also be expressed as a function of the radial
coordinates of ∆θ = ϑ(cosϕ+ i sinϕ) as:{

γ′
+(θ′;ϕ) = +γ1(θ′) cos 2ϕ+ γ2(θ′) sin 2ϕ
γ′

×(θ′;ϕ) = −γ1(θ′) sin 2ϕ+ γ2(θ′) cos 2ϕ
. (2.63)

These quantities are directly observable in the weak-lensing limit where κ ≪ 1,
γ ≪ 1. Let us fix the reference point of the tangential and cross components θ and
let us compute their average value on a circle around θ′ that has a fixed radius ϑ.
Using the two-dimensional version of Gauss’ theorem, it is possible to show:

⟨γ+⟩(ϑ; θ) = 1
2π

∮
γ+(θ + ϑeiϕ)dϕ = Σ̄ − Σ

Σcrit
= ∆Σ

Σcrit
(ϑ; θ) (2.64)

⟨γ×⟩(ϑ; θ) = 1
2π

∮
γ+(θ + ϑeiϕ)dϕ = 0, (2.65)

where ∆Σ(ϑ; θ) is the excess surface mass density around θ; it is the azimuthally
averaged surface density profile in a circle of radius ϑ around θ (Umetsu, 2020).
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Eq. 2.65 shows that the cross shear component averaged around the loop measures
the B-mode distortion pattern since it is expected to be statistically consistent with
zero if the signal is due to weak lensing. Therefore, a measurement of the B-mode
signal provides a useful null test against systematic errors. Eq. 2.64 shows that
given an arbitrary circular loop of radius around the chosen center θ, the tangential
shear component averaged around the loop extracts a signal that is only due to the
convergence; it thus extracts the E-mode distortion pattern (see Section 2.1.3). It
is interesting to notice that if one rotates its shear map by π/4 the E-mode and
B-mode are swapped.

2.2.2 Observable galaxy ellipticities
In the real Universe the background sources of gravitational lensing events are never
circular, thus the distortion observed is partially due to weak lensing and partially
due to their intrinsic shape. In the case of galaxies, we can define an intrinsic
complex ellipticity ϵ(s).
There is a link between the reduced shear g, the intrinsic complex ellipticity ϵ(s) for
a source and the complex ellipticity of its image ϵ. For an elliptical source with axis
ratio r ≤ 1 the complex ellipticity has modulus |ϵ(s)| = |1−r|

|1+r| and a phase given by
twice the angle between the major axis and the positive θ1-direction. Schneider and
Seitz (1994) showed that the relationship between intrinsic and observed complex
ellipticities is

ϵ(s) =


ϵ− g

1 − g∗ϵ
if |g| ≤ 1,

1 − gϵ∗

ϵ∗ − g∗ if |g| > 1.
(2.66)

The inverse transformation is obtained by interchanging the source and the image
ellipticity and making the substitution g → −g. If we make the assumption that
the source galaxies are randomly oriented, so that ⟨ϵ(s)⟩ = 0, when averaging over a
sufficiently large number of them, then Eq. 2.66 tells us that

⟨ϵ⟩ =
{
g if |g| ≤ 1,
1/g∗ if |g| > 1,

(2.67)

i.e. the expectation value of the image ellipticity is the reduced shear. If we consider
the sub-critical lenses in the weak lensing approximation κ ≪ 1:

⟨ϵ⟩ = g ≈ γ. (2.68)

Thus, in the case of weak lensing, the ellipticity of a galaxy image is an unbiased
estimate of the local shear plus the intrinsic shape dispersion of background galaxies
that we can assume null almost always.

Let us now suppose we have a dataset of complex galaxy ellipticities ϵi with
positions θi, with a number density of galaxy images ng. We can define the
observational version of Eq. 2.56 as the complex tangential ellipticity of the image
in position θi with respect to θ as

ϵ+(θi; θ) = ϵ+i(θ) = −R

(
ϵi(θi − θ)∗

(θi − θ)

)
, (2.69)
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and the observational estimator of the mass aperture 2.58 as:

Map(θ) = 1
ng

∑
i

ϵ+i(θ)Q(|θi − θ|), (2.70)

where the sum extends over all galaxy images within the aperture, i.e., within the
support of the filter Q (where Q ̸= 0). It can be shown that the variance of this
estimator is given by:

σ2
Map

(θ) = 1
2n2

g

∑
i

|ϵ+i(θ)|2Q2(|θi − θ|). (2.71)

The noise produced by the intrinsic galaxy ellipticities can be taken as the square
root of this variance, and the signal-to-noise ratio can then be computed; it is
independent of the normalization of the weight function.



Chapter 3

Galaxy clusters: detection
and their use in comsology

The hierarchical model of cosmic structure formation is at the moment considered
the standard model. As described in Section 1.2 the small overdensities are the first
to collapse against the cosmic expansion and form the first "halos". Then, through
a sequence of mergers and aggregation, driven only by gravity and dark matter,
bigger structures are formed. Galaxy clusters are the results of this process given
by the aggregation of the smaller galaxy-size halos. They are the biggest virialized
structures in the Universe and thus they represent the peaks of the dark matter
density field.

These structures can include different amounts of galaxies spanning from a few
to thousands. In literature, aggregations of galaxies are commonly called clusters or
groups. A clear threshold does not univocally define the distinction between the two,
but it usually consists of a difference in mass or richness, i.e. the number of galaxies
in the structure. Assemblies of galaxies that have characteristic masses lower than
1014M⊙ and host less than ∼ 50 member galaxies have characteristic size ≲ 1 Mpc
and are usually referred to as groups.

Zwicky noted in 1933 that the galaxies in the Coma cluster and other rich
clusters move so fast that the clusters required to keep the galaxies bound about 10
to 100 times more mass than the luminous galaxies themselves could account for
that. This was the earliest indication that there is invisible mass, or dark matter, in
at least some objects in the Universe.

When X-ray telescopes became available after 1966, it was discovered that
clusters emit ≈ 1013−15ergs−1. The source of this powerful X-ray emission (thermal
bremsstrahlung, free-free radiation) is a hot, plasma with temperature in the range
107−8K and density of 10−3cm−3. Based on the assumption that this intra-cluster
gas is in hydrostatic equilibrium with a spherically symmetric gravitational potential
provided by the total cluster matter, the X-ray temperature and flux can be used
to estimate the cluster mass. Typical results approximately agree with the mass
estimates from the kinematics of cluster galaxies exploiting the virial theorem. Today
we know that about 85% of the cluster’s mass is dark matter, and about 15% is the
intra-cluster medium ICM (the hot gas). The X-ray emission thus independently
confirms the existence of dark matter in galaxy clusters.

Later, luminous arc-like features were discovered in galaxy clusters. Their light
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is typically bluer than that from the cluster galaxies, and their length is comparable
to the size of the central cluster region. These arcs are the signatures of strong
gravitational lensing, which we briefly introduced in Chapter 2. They are the image
of background galaxies that are strongly distorted by the gravitational tidal field
close to the centres of the clusters. At larger distances from the centre, the clusters
can only weakly deform images of background galaxies since the lens is subcritical
and the effect enters the weak regime.

In Section 3.1 we will explain some aspects of the exploitation of clusters
in cosmology and why cluster studies through weak lensing measures are crucial
(Bartelmann and Schneider (2001); Schneider (2006)). Then Section 3.2 will present
an overview of the methods of clusters’ detection with a focus on weak-lensing
detection in Section 3.2.4 with main reference Bartelmann and Maturi (2016).

3.1 Cluster cosmology
In Chapter 1, we described the evolution of the density fluctuations through the
history of the Universe. However, we focused only on the concepts that come up from
the linear approach of the perturbation theory, which is valid while δ < 1, which is
only true for the early stages of cosmic history or very large scales today. At late
stages of cosmic history and on small scales, the growth of density fluctuations begins
to depart from the linear regime. When density fluctuations grow in a non-linear
way, fluctuations of different sizes interact, and the evolution of P(k) becomes so
complicated that it needs to be evaluated numerically. The non-linear growth of
the density fluctuations is crucial for accurately calculating weak lensing effects by
large-scale structures and, thus, crucial to this work. When δ > 1, the perturbation
becomes non-linear. The fluctuations are no longer fully characterized by the power
spectrum, as seen in Section 1.2.2 only because they develop non-Gaussian features.
The non-linear regime is approached first by the small-scale perturbations (large
k). In Eq. 1.40 we showed that σ2 ∼ δ2, so when δ ∼ 1 then also σ2 ∼ 1. We can
obtain from the Eq. 1.40 a characteristic scale length, wave number or mass, the
non-linear scale, at which the variance of matter density contrast becomes 1, at
each cosmological epoch. The mass scale is:

M ∼ δ
6

n+3
+ (t). (3.1)

Non-linear perturbations evolved to form the structures we observe in the present-day
Universe, the largest of which are the clusters of galaxies. They hold then a peculiar
role in large-scale structures; thus they are very powerful tools for cosmological
studies; they depend only weakly on baryon physical processes but they are closely
coupled with extreme sensitivity to the expansion history of the Universe and
structure formation as they are the ultimate product of the hierarchical standard
model (Allen, Evrard, and Mantz, 2011).

We already said that the normalization of the power spectrum is not fixed
by theoretical models but must be measured from observations. One way is to
measure the normalization of the anisotropies of the CMB. Another way involves the
(mass) variance of the density fluctuations. With this method, the normalization is
described by the well-known cosmological parameter σ8. The mass variance is not
directly observable, but we can pass through the variance of galaxy counts: in fact,
most of the matter, i.e. the dark matter, is not visible, and therefore the spatial
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clustering of the observable matter is not directly described by the matter power
spectrum Pm(k, a) but by a modified or biased version of it (Kaiser, 1984):

Pobs(k, a) = b2(M,a)Pm(k, a), (3.2)

where the bias factor b(M,a) accounts for this modification that depends on mass
and cosmic epoch. By measuring the local variance of galaxy counts within certain
volumes and assuming an expression for b(M,a), the amplitude of dark matter
fluctuations can be inferred. Conventionally it is measured σ8,gal whithin spheres of
8h−1Mpc, and the result is σ8,gal ≈ 1 at the present time. Then with the expression
of the bias it is possible to pass from σ8,gal to the variance σ8 of matter, thus
discovering the power spectrum normalization.

More than galaxies, clusters of galaxies are highly biased, and the power spectrum
associated with them results strongly enhanced over the matter spectrum ( Allen
et al. (2011);Desjacques et al. (2018); Tinker et al. (2010)).

The statistical study of the distribution of structures relies on the mathematical
background given by the Press-Schecter formalism Press and Schechter (1974), which
has as a core concept the mass function. This function, expressing the mean number
density of a population of structures with a given mass per co-moving volume, is
given by

dn
d lnM = ρ̄

M
f(σ)

∣∣∣∣ d ln σ
d lnM

∣∣∣∣ , (3.3)

where ρ̄ is the mean background matter density, σ2 the variance and f(σ) a model-
dependent function of it, also known as multiplicity function.

It is possible then to connect theory with observations by introducing actual
counts of clusters, the main goal of most of the modern wide clusters surveys like
Euclid or KiDS. The counts can be expressed as N , the number of clusters expected
for a bin in mass and redshift in a solid angle Ω:

N(M, z) = Ω
4π

∫
dzdV

dz

∫
d lnM dn

d lnM , (3.4)

where the cosmological background comes into play both in the dV
dz term, the co-

moving volume element that has a dependence on the scale factor, and of course
with the mass function 3.3 dn

d lnM . The mass function is sensitive to the density
parameter of matter Ωm and on σ that constrains the parameters of the linear power
spectrum.

Galaxy clusters, as the most massive bound structures in the LSS, define the
high-mass end of the mass function and are, therefore, extremely sensitive to the
choice of the cosmological model. In complementarity with CMB observations,
galaxy clustering and weak lensing measurements, studying the abundance of galaxy
clusters provides a unique tool to constrain cosmological parameters. The best-
constrained parameters from cluster studies, Ωm and σ8 (e.g. Abdullah, Klypin,
and Wilson (2020); Lesci et al. (2022); Sartoris et al. (2016)) have degeneracies that
are different with respect to other methods, and therefore they help to interpret
parameter measurements and uncertainties (e.g. Rosati, Borgani, and Norman
(2002); Rozo et al. (2009); Vikhlinin et al. (2009)).
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3.2 Cluster detection

There are several methods to detect galaxy clusters in observational data that
depend on the different properties and components (e.g. ICM, dark matter, galaxies,
etc.) of these peculiar objects. Here we describe the main methods to accomplish
this task.

3.2.1 Optical and NIR observations

Galaxy clusters can be detected from the observation of the galaxies they are
composed of through optical and near-infrared (NIR) wavelengths. This technique
is subject to projection effects, for which field galaxies along the line of sight could
be mistakenly identified as members of a cluster.

A solution to this problem is to exploit the photometric properties characterizing
the galaxies which are members of a cluster. Galaxy clusters contain a well-defined,
highly regular population of elliptical and lenticular galaxies, observed in optical
and NIR bands. These member galaxies in a color-magnitude diagram dispose along
a sequence, called red-sequence (Bower et al., 1992). In particular, there is a tight
linear relationship between color and magnitude, showing that the redder galaxies
are brighter. Therefore this relation plays a considerable role in the identification of
galaxy clusters.

There are other detection algorithms that for optical and NIR observations that
do not rely on the red-sequence. For example, the AMICO algorithm (Bellagamba
et al. (2011); Bellagamba et al. (2018)) assumes a model for the density and lumi-
nosity profiles of galaxy clusters and identifies them by finding galaxy overdensities
and matching them with the defined model. In particular, in this case, each galaxy
has an assigned probability to be a member of a cluster or to be part of the field.
In this Thesis, we use the structure of this technique and adapt it for weak lensing
data analysis.

3.2.2 X-ray observations

Despite galaxy clusters are optically localized via the emission of the galactic compo-
nent, in terms of mass the dominant baryonic component is the ICM. Given its high
temperature, the ICM is responsible for a powerful thermal free-free bremsstrahlung
emission. This is the main origin of the typical luminosities of the order of
1043 erg s−1 ≤ LX ≤ 1045 erg s−1 (Rosati, Borgani, and Norman, 2002).

Observationally speaking, the X-ray emission of galaxy clusters is a powerful
tool to detect them. Moreover, X-ray observations also give the opportunity to carry
out spectral analyses that shed light on the density and temperature distributions
of clysters and their metal content (thanks to the presence of emission lines in the
X-ray spectra).

The main advantages of the X-ray identification of clusters are the availability
of sufficiently precise and simple relations between observables (e.g. luminosity,
temperature) and mass (Mantz et al., 2010) and the fact that is a technique nearly
insensitive to projection effect, for the nature of the emission itself (Allen, Evrard,
and Mantz, 2011).
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3.2.3 Sunyaev Zel’dovich effect
Galaxy clusters are also detectable in the microwaves (Bleem et al., 2015), thanks to
the so-called Sunyaev and Zeldovich effect ( 1970), SZ for short. The effect consists
basically of the Inverse Compton between the CMB photons and the free electrons
in the ICM. The CMB radiation is well described by a black-body emission with
temperature TCMB ≃ 2.726 K (Fixsen, 2009). The CMB photons are much less
energetic than the cluster electrons, so the interaction between the two and the
consequent energy gain performed by the CMB photon become visible as a distortion
in the black-body CMB spectrum at the respective cluster location. In particular,
this distortion consists of a shift with a consequent lower intensity for frequencies
ν < 217 GHz and higher intensity for ν > 217 GHz.

The big advantage of the SZ detection method is that is very weakly dependent
on redshift, being the source of photons in the CMB, so it is particularly suited for
the detection of massive high-z clusters but it is less sensitive to low masses than
X-ray and optical detections. The main observable is the Compton parameter y,
which is proportional to gas density and temperature.

3.2.4 Gravitational lensing
Galaxy clusters, as the largest self-gravitating systems in the universe, act as
powerful cosmic lenses, producing a variety of detectable lensing effects from strong
to weak lensing, including deflection, shearing, and magnification of the images of
background sources as described in Chapter 2. The critical advantage of cluster
gravitational lensing is its ability to study the mass distribution of individual and
ensemble systems independent of assumptions about their physical and dynamical
state, as, for instance, it is for X-ray measurements (Bartelmann, 2010).

Galaxy clusters imprint a coherent weak distortion pattern onto the many
faint and distant galaxies in their background. Since those distant galaxies reach
number densities of ≃ 40 per square arc minute in typical images taken with large
ground-based telescopes, typical galaxy clusters thus cover of order 103 background
galaxies.

As shown in Chapter 2, shear and convergence are both related through the
scalar lensing potential. Knowing the shear thus allows the scaled surface-mass
density to be reconstructed. Cluster convergence maps can be obtained by convolving
the measured shear with a simple kernel, opening the way to systematic, parameter-
free, two-dimensional cluster studies (Kaiser and Squires (1993); Hoekstra (2014);
Okabe and Umetsu (2008)). The weakness in this convolution algorithm, mainly
due to the non-locality of the convolution, was identified and could be removed.
The inversion techniques for matter distribution in galaxy-cluster lenses have been
applied to numerous objects. For most of them, the mass-to-light ratios turned out
to be M/L ≃ (250 − 300)hM⊙/L⊙ in blue and M/L ≃ (150 − 200)hM⊙/L⊙ in red
light, respectively. Similar to weak lensing by galaxies, the masses quoted here are
typically derived from parametrized density profiles adapted to the measured lensing
signal and integrated to a fixed radius of order 1 h−1Mpc. Statistically combining
the weak-lensing signal of galaxy groups, the mass range in which mass-to-light
ratios can be probed could be extended towards lower masses. For galaxy groups
with masses around ≈ 1013−14M⊙, values of M/L ≃ 180hM⊙/L⊙ in blue and
M/L ≃ 250hM⊙/L⊙ in red spectral ranges have been obtained.

Using a similar statistical analysis of gravitational lensing together with the



36 CHAPTER 3. GALAXY CLUSTERS

optical light distribution, the mass-to-light ratio of the central brightest galaxies
in galaxy clusters was found to be M/L ≃ 360hM⊙/L⊙. Mass and light generally
appear well correlated in weak lensing clusters.

Several detections of clusters with very high mass-to-light ratios have been
claimed and raised the question of whether cluster-sized dark matter halos may exist
which are so inefficient in producing stellar or X-ray emission that they are invisible
to anything but gravitational lensing (e.g. Fischer (1999); Gray et al. (2001)).

Weak gravitational lensing also provides a powerful way to detect galaxy clusters
regardless of their directly observable signatures. The Aperture Mass estimator,
introduced in Section 2.2, is used in the methods developed for this purpose.
Numerical simulations show that these methods are highly efficient in finding
suitably massive matter concentrations if parameters and weight functions are
optimally chosen to balance the completeness against the frequency of spurious
detections carefully (Pace et al., 2007). One of the major challenges of this kind of
technique is the requirement of separating the weak-lensing signal of dark-matter
halos from that of the large-scale structures (LSS) they are embedded in. That is
the goal of this Thesis, and the main feature of the algorithm we implement.



Chapter 4

The implementation of an
optimal filter to weak lensing:
AMICO-WL

The main purpose of this Thesis is to build an optimized method for weak-lensing
detection of clusters of galaxies by extending the computational environment of
AMICO (Adaptive Matched Identifier of Clustered Objects) (Bellagamba et al. 2011
(Bellagamba et al., 2011); 2018 (Bellagamba et al., 2018)). The code extension is
called AMICO-WL, where WL stands for weak-lensing.

The core of AMICO is based on an Optimal Matched Filtering approach spe-
cialized for weak-lensing aperture mass measures (Bellagamba et al. (2011), 2018;
Maturi et al. (2005)). An important advantage of the Optimal Matched Filtering
formalism over other kinds of methods is its extreme flexibility, instead of being
tailored for a specific signal and/or data sets (e.g. photometry, weak-gravitational
lensing, SZ effect, and X-ray observations) for a wide range of redshifts. The algo-
rithms developed should then weight the features in the data which are relevant for
the cluster detection. The original implementation of AMICO can extract a specific
signal from a set of data affected by noisy background, such as galaxy clusters or
groups in a photometric catalog of galaxies, allowing to maximize the signal-to-noise
ratio of the detected structures.
Another important feature of AMICO augmenting standard optimal filtering ap-
proaches is its ability to extract and remove the imprint of a detected cluster
iteratively to highlight the presence of clusters with smaller SNR (signal-to-noise
ratio) blended with other larger structures. This deblending technique is, of course,
a point of crucial importance, especially in deep survey analysis, where a high
number of detected clusters can be found per square degree.

AMICO has been successfully applied to photometric catalogs of galaxies for
cosmological analyses (AMICO galaxy clusters in KiDS-DR3: Maturi et al. Maturi
et al. (2019), Bellagamba et al. (2019); Giocoli et al. (2021); Cosmos: Toni et al. in
prep.; HSC: Sartoris et al. in prep.) and simulations. As already mentioned, the
versatility of Optimal Matched Filtering offers the possibility to implement other
observables such as weak-gravitational lensing. In this work, we modified AMICO
to adapt it to the gravitational lensing signal of galaxy clusters from the ellipticity
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measurements of background galaxies. The filter was first developed by Maturi
et al. (2005) where it was applied to simulated data and then applied to real data
in Maturi et al. (2007).
Here, the filter assumes a mean radial profile of the halo shear pattern and a power
spectrum for the noise; it is defined in the Fourier domain as proportional to their
ratio so that the modes attributed to the clusters signal are amplified, and the modes
due to the noise are suppressed. To separate dark matter halos from spurious peaks
caused by the large-scale structure, the noise is composed of three contributions:
Poisson noise from galaxy counts, noise from the intrinsic ellipticities of galaxies,
and noise related to the weak lensing signal of the large scale structures.

The details of the optimal filter theory and the assumptions about the noise
and the model adopted in the optimal filter will be discussed in Section 4.1 while
Section 4.2 will present the full implementation of AMICO-WL.

4.1 The theory of the optimal filter
The matter distribution of the Universe, often described as the cosmic web, is
composed of a continuous distribution of matter, the large-scale structure (LSS),
usually with filamentary features, where the dark matter halos represent the peaks of
mass density. In these peaks galaxy clusters are formed. When we measure the inho-
mogeneities of the projected mass distribution through weak lensing observations, i.e.
galaxy ellipticity measures (see Section 2.2.2), the signal of halos is overlaid by the
lensing signal of the LSS in front and behind the halos. In weak-lensing detections of
clusters of galaxies, it is possible to mistakenly identify as clusters those peaks that
are instead given by the large-scale structure lensing effect producing a spurious
detection. It is not possible to strictly separate these two types of signal, however, a
typical scale can be defined to discriminate theme. The large-scale structure can be
considered as composed of dark-matter halos of broad and continuous mass range.
Chapter 1 described the so-called non-linear scale as the scale at which the variance
of the dark matter density contrast becomes unity: this scale separates the collapsed
objects from the linear regime where the matter density can be considered as a
linear superposition of linearly evolved perturbation modes.
Here, we model the contribution of virialized objects by assuming a radial profile for
the shear signal and a power spectrum to represent the properties of the LSS. For
the clusters, we assume the shear signal produced by a Navarro-Frenk-White (NFW)
profile. For the large-scale structures, we adopt the expected shear power spectrum
for a fiducial ΛCDM model. This definition was first used in Maturi et al. (2005) and
Maturi et al. (2007) to construct a linear matched filter to detect the weak lensing
signal of dark matter halos corresponding to galaxy clusters by suppressing the
contamination of the large-scale structures, thus reducing the number of spurious
detections.

The weak gravitational lensing signal of dark matter halo, S(θ), is given by
an amplitude, A, and angular shape, τ(θ). The data we measure, D(θ), are
contaminated by the noise, N(θ), so that they can be written as:

D(θ) = S(θ) +N(θ) = Aτ(θ) +N(θ). (4.1)

In this application, the signal will be the shear tangential components. The noise is
made up of several contributions, which will be described in Section 4.1.2.
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4.1.1 Definition of the optimal filter
The linear filter is defined as the convolution kernel, Ψ(θ), applied to the data,
D(θ), such to yield an optimal estimate, Aest, of the amplitude, A, of the signal at
the position θ,

Aest(θ) =
∫
R2
D(θ′)Ψ(θ − θ′)d2θ′. (4.2)

This filter used in this linear estimator must satisfy two constraints. First, Aest
must be unbiased, i.e its average over many realizations, b, has to vanish (b = 0):

b ≡ ⟨Aest −A⟩ = A

[∫
R2
τ(θ′)Ψ(θ′)d2θ′

]
. (4.3)

Second, the measurement noise σ, determined by the mean-squared deviation of the
estimate from its true value,

σ2 = ⟨(Aest −A)2⟩ = b2 + 1
(2π)2

∫
R2

|Ψ̂(k)|2PN (k)d2k

= b2 + 1
2π

∫ ∞

0
|Ψ̂(k)|2PN (k)dk

(4.4)

has to be minimal. In order to find the function Ψ that satisfies these two conditions
simultaneously, we combine them by means of a Lagrangian multiplier λ, carry out
the variation of L = σ2 + λb with respect to Ψ and thus find the filter Ψ minimizing
L. The solution to this constrained minimization in the Fourier domain is given by

Ψ̂(k) = 1
(2π)2

[∫
R2

|τ̂(k)|2

PN (k) d2k

]−1
τ̂(k)
PN (k) , (4.5)

where τ is the expected shear profile of a NFW halo and PN is the noise power
spectrum, on which we will focus on Section 4.1.2. The filter is therefore constructed
to be most sensitive for those spatial frequencies where the signal τ̂ is large and
the noise PN is low. A back-Fourier transform must be applied to Ψ̂(k) since the
convolution to compute the estimator is done in the real domain.

It must be emphasized that when the signal is the tangential shear the estimator
4.2 is mathematically similar to the Aperture mass as defined in Eq. 2.49:

Aest(θ) =
∫
R2
γ+(θ′; θ)Ψ(θ − θ′)d2θ′ . (4.6)

Their difference is that the optimal weak lensing filter is not defined from an arbitrary
compensated weight function according to Eq. 2.57, but defined so that it maximizes
the signal-to-noise ratio and minimizes the contamination induced by the large-scale
structure; the properties of the signal-to-noise ratio differ from that of the aperture
mass.

4.1.2 Noise properties
It is convenient to describe the statistical properties of the noise contributions in
the Fourier space through the power spectrum PN (k):

⟨N̂(k)N̂∗(k′)⟩ = (2π)2δ
(2)
D (k′ − k)PN (k). (4.7)

It is possible to identify three main noise components:



40 CHAPTER 4. AMICO-WL

• Poisson shot noise proportional to the number density of galaxies ng. This
noise arises because the galaxy ellipticities are measured at random discrete
positions. It is constant in the Fourier domain (white noise).

• White noise due to intrinsic ellipticities of galaxies. This noise arises because
the determination of a single galaxy ellipticity is a very noisy measurement
of the shear. Such contribution is proportional to the variance of the in-
trinsic galaxy ellipticity σ2

ϵs
and it is independent from the scale k. In first

approximation, the background galaxies are randomly positioned and oriented.

• Noise caused by the large-scale structures. When the matter distribution of
the LSS is projected along the line of sight, random peaks are contaminating
the signal. We model such contribution through the linear dark-matter power
spectrum Pγ(k), discussed in the introduction of this chapter. Weak lensing
by the large-scale structures is well described by an isotropic Gaussian random
field.

We can assume these components to be random with zero mean and isotropic such
that their statistical properties are independent of the position in the sky. The
ellipticity power spectrum Pϵ models the first two noise components combined, the
total noise power spectrum is thus:

PN (k) = Pϵ + Pγ(k) = 1
2
σ2
ϵs

ng
+ 1

2Pκ(k). (4.8)

The cosmic shear power spectrum is equal to the power spectrum of the convergence
Pκ generated by large-scale structure, and the factor 1/2 arises because only one
component of the ellipticity (the tangential shear γ+) contributes to the measurement,
thus Pγ = 1

2Pκ. This power spectrum is given by (Umetsu, 2020):

Pκ(k) = 9H4
0 Ω2

m

4c4

∫ χs

χs,i

W̄ (χ;χs)
a2(χ) Pδ

(
k

fK(χ) ;χs
)

dχ , (4.9)

where χ is the comoving distance, χs the comoving distance of the sources and
χs,i is the minimum comoving distance of the sources in the dataset, a is the scale
factor of the Universe, W̄ is a weight function, Pδ is the three-dimensional matter
power spectrum, K is the spatial curvature, fK(χ) is the comoving angular diameter
distance. As for the weight function W̄ , it is defined from the (normalized) source
distance distribution G(χ) we have:

W̄ (χ;χs) ≡
∫ χH

χ

G(χs)
fK(χs − χ)
fK(χs)

, (4.10)

where χH is the horizon distance defined as the comoving distance obtained for
infinite redshift. The comoving distance distribution can be derived from the redshift
distribution: G(χ)dχ = pz(z)dz. In our analysis, we selected a distribution with
the functional form p(z) = za+zab

zb+c .
For the computation of this power spectrum, we used the CosmoBolognalib, a

large set of Open Source C++ numerical libraries for cosmological calculations (Marulli
et al., 2016). The power spectrum is computed given a source redshift, its value
represents a typical redshift of the sources, for instance, the mean or median redshift
of the source galaxies. The code that computes the cosmic shear power spectrum
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inside the CosmoBolognalib uses the function cbl::cosmology::Cosmology::Pk_DM
to compute Pδ, and it assumes a ΛCDM cosmology with the following cosmological
parameters: h = 0.7 for the normalized Hubble constant and Ωm,0 = 0.27, ΩΛ,0 =
0.73, Ωbar,0 = 0.046, Ωrad,0 = 0.0 for the density parameters of total matter,
cosmological constant, baryons and radiation respectively.

4.1.3 Halo lensing signal model
For the signal required to build the filter we first assume that galaxy clusters are on
average axially symmetric thus τ(θ) = τ(|θ|) and possess a Navarro-Frenk-White
(NFW) density profile (Navarro et al. (2004); Navarro (1996)). The profile is given
by

ρ(r) = ρs(
r
rs

) (
1 + r

rs

)2 , (4.11)

where rs represents the characteristic scale radius where logarithmic slope d lnρ
d lnr

equals -2. The normalization ρs = 4ρ(rs) is a characteristic density. When r ≪ rs
the density decrease as ρ ∝ r−1, when r ≫ rs as ρ ∝ r−3. The two parameters
of the NFW profile are not independent, this profile actually depends only on one
parameter. This parameter is the overdensity mass M∆, defined by integrating
Eq. 4.11 up to the overdensity radius r∆ at which the mean internal density is
∆ times the critical density of the Universe at halo redshift ρc(zh) as defined in
Eq. 1.13. For a NFW halo the concentration parameter is defined as c∆ ≡ r∆

rs
; the

typical density is then:

ρs = ∆
3

c3
∆

ln(1 + c∆) − c∆
1+c∆

ρc(zh). (4.12)

The NFW profile thus depends only on the concentration parameter c∆. By
convention we choose ∆ to be 200. The gravitational lensing properties of the NFW
lens have been widely explored (Meneghetti et al., 2003). Its lensing potential is:

ψ(x) = 4κsh(x), (4.13)

with x = r
rs

(adimensional projected distance from the lens center in units of the
distance scale),

h(x) = 1
2 ln2

(x
2

)
+


−2arctanh2

√
1−x
1+x (x < 1)

0 (x = 1)
2arctanh2

√
x−1
x+1 (x > 1)

(4.14)

and κs = ρsrsΣ−1
crit. The shear profile can be computed from the potential by using

Eq. 2.18 and Eq. 2.19, the convergence using Eq. 2.8, and the reduced shear profile
with Eq. 2.30 (Wright and Brainerd, 2000). The Fourier transform of the reduced
shear profile g(x),

τ̂(k) = ĝ(k) =
∫
R2
g(x)eix·kd2x , (4.15)

is the halo signal necessary to compute the filter. The reduced shear of a NFW halo
is shown in real space g(|x|) in the left panel of Figure 4.1, while on the top right
panel of Figure 4.2 we have ĝ(|k|), the profile in the Fourier space.
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Figure 4.1 On the left panel we show the optimal filter Ψ and the reduced shear profile
from a NFW halo on the right panel, both in real space. The filter is built taking the
model of a NFW halo of virial mass 1015 M⊙/h at redshift 0.4. The filter in real space is
actually obtained from Eq. 4.5 with a Fourier transform. In the left panel it is possible
to see the central peak of the optimal filter, responsible for creating signal spots in the
output maps where the halos create peaks of lensing signal; in most of the optimal filters
we should find outside the peak a negative region, responsible for the throughs of signal,
but the optimization applied to the filter we used resolved this problem. In the right
panel we show the signal profile τ of the NFW halo equivalent to the reduced shear g(x).

We presented all the components that participate in the construction of the
optimal filter. We can finally look at the profiles: the left panels of Figure 4.1
and 4.2 show the optimal filter in the real and the Fourier space. In real space, it
shows a central peak, responsible for creating signal spots in the output maps where
there are halos, and a negative region outside the peak, responsible for creating
troughs with lower signals outside the spots. In a typical weak-lensing amplitude
map (Figure 4.3), thus when the signal processed by the filter is the tangential shear,
the typical signature of a halo detection is a spot with high signal-to-noise ratio
SNR. In the bottom panel of 4.2 we have the optimal profile of the filter in the
Fourier space. We can see that the filter has a peak around those spatial frequencies
with a high ratio between the reduced shear of the NFW halo τ̂ and the noise power
spectrum PN as described in 4.5.

4.2 Augmenting AMICO for weak-gravitational
lensing measures

In the first part of Chapter 4 we illustrated the advantages of matched filter tech-
niques and in particular of AMICO: the code can be applied to any catalog of
galaxies describing arbitrary properties so that the routines and the classes of the
library, on which the code is based on, can be adopted for different data sets and
observables.
We implemented a new weak-lensing branch in AMICO by exploiting the polymor-
phism of C++ to minimize the modifications of the well-tested existing routines.
AMICO-WL follows the layout of the optical routine that can be broken down into
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Figure 4.2 We show the reduced shear profile from a NFW halo τ̂ on the top-left
panel, on the top-right panel the power spectrum of the noise PN (k) and on the bottom
the optimal filter Ψ̂. The filter is built taking the model of an NFW halo of virial mass
1015 M⊙/h at redshift 0.4. The background sources are assumed at redshift z = 1.0, used
to compute the noise power spectrum of the large-scale structure Pγ . The galaxy white
noise is Pϵ = 1.88 × 10−10. These quantities allow us to compute the filter in the Fourier
space Ψ̂ we have in bottom panel, where we can see that the filter has a peak around
those spatial frequencies with a high ratio between the reduced shear of the NFW halo τ̂
and the noise power spectrum PN as described in 4.5. In the top-right panel we show PN

with the solid line that is composed of the white noise of galaxies (shot noise and intrinsic
ellipticity noise) Pϵ and the power spectrum of large-scale structure Pγ , the dashed lines.
In the top-left panel we have τ̂ was obtained with a Fourier transform from the NFW
profile in real space (right Fig. 4.1).
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three main steps:

1. Initialization. The code sets up the environment for the application of
the algorithms reading instructions from the input files (e.g. survey’s galaxy
catalog).

2. Map creation. The optimal filter technique is applied and both the amplitude
and variance maps are produced.

3. Detection. The SNR map is computed and the peaks are detected through
the cleaning procedure.

After discussing briefly the necessary input of the program, in Sections 4.2.2 and
4.2.3 we are going into the details of the maps creation and the detection procedure
explaining the implementation of the weak-lensing data analysis.

4.2.1 Input of AMICO-WL
The first and fundamental file that AMICO-WL needs is the data set, the catalog of
galaxies with all properties measured that comes from surveys or simulations. In the
cluster detection through weak-gravitational lensing, the properties that AMICO
needs for each galaxy are: two sky coordinates of the galaxy, they could be cartesian
coordinates or sky coordinates (RA, Dec), and the two components of the ellipticity
g1 and g2 (i.e. the expected values of the reduced shear). These four quantities are
mandatory for the detection but other additional properties can be read as well, for
example, the redshift of the galaxy zs and the weak lensing weight w of the galaxy,
generally defined as the inverse-variance weight of the ellipticity.

The second input file is the initialization file which contains all the parameters
necessary for the execution of AMICO-WL. This is passed through a command
line argument to the executable, every line has a standard layout for the input
parameters with format (parameter = value).

The third and last input file contains the optimal filter Ψ in the real domain.
The file must contain three columns: (1) one for the radial distances r in degrees
at which the filter is evaluated, (2) one for the value of the filter Ψ(r) evaluated
at the radial distance r. The radial values must be sampled regularly and linearly
to ensure a correct interpolation of the filter function. Finally, (3) a third column
must contain the value of the reduced shear of the chosen NFW halo g(r) at the
radial distance r. This column is used during the cleaning procedure that will be
discussed in Section 4.2.3. The filter file is produced separately with a code that
implements Eq. 4.5 and its Fourier transform. This program requires the following
input parameters:

• File with the cosmological parameters to set the fiducial cosmological param-
eters.

• Mass of the fiducial NFW dark matter halo used as a template in units of
M⊙h

−1.

• Redshift of the typical halo we want to detect.

• Average redshift of the sources.

• White noise amplitude: the contribution of the power spectrum given by the
galaxies, defined as Pϵ in Section 4.1.2.
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• Instrumental beam FWHM: the resolution of the filter definition computed
as the inverse of the surface number density of galaxies.

• File containing the cosmic shear power spectrum of the convergence Pγ to be
used for the noise definition.

• Optional: scale radius to set the angular size of the template halo. This
overrides the size set through the choice of the halo mass.

The following Sections 4.2.2 and 4.2.3 discuss the execution of AMICO-WL and
explain the creation of the signal maps and the cleaning procedure to identify the
detections.

4.2.2 Creation of the weak-lensing signal maps
For the creation of the signal maps, the algorithm must identify all galaxies falling
in each pixel: in order to speed up this operation, galaxies are first sorted in a linked
list.

The contribution of each galaxy on all pixels is then summed to the amplitude
map accounting for the weight provided by the filter. At the same time, the variance
signal is evaluated.

The estimator 4.2 is computed by using the tangential component of the ellipticity
ϵ+ (which is a good estimator of the tangential shear γ+) as

Emap(θ) ≡ Aest(θ) = 1
ng

∑
k

ϵ+(θ; θk)wkΨ(|θk − θ|) , (4.16)

where the sum is extended to all galaxies within a circular area centered on θ⃗ and
extending up to a cut radius which is a user defined parameter. If the lensing weights
wk are not used, they are all set equal to the default value: 1. The normalization
factor ng is the effective number density of galaxies given by the sum of their weights.
The tangential shear is computed by using Eq. 2.60. Eq. 4.16 implements the aperture
mass estimator defined in Eq. 2.70 when the filter function is the optimal linear
filter in the real domain. Along the amplitude map, the code produces the variance
map, i.e. the map noise estimate for the variance obtained as σ2 = ⟨(Aest −A)2⟩ :

σ2
Emode

(θ) ≡ σ2
Aest

(θ) = 1
2n2

g

∑
k

|ϵ+(θ; θk)|2w2
kΨ2(|θk − θ|) . (4.17)

This noise estimate is only due to galaxy noise. To get the complete noise (with the
LSS component) we must add the constant:

CLSS = 1
2π

∫ ∞

0
|Ψ̂(k)|2Pγ(k)kdk . (4.18)

The sum of Eqs. 4.17 and 4.18 is the actual map of the noise variance. Since the
large-scale structure contributes to the variance with a constant, it is applied to all
pixels at the end of the process.

The same algoritmic infrastructure is also used to evaluate the B-mode of the
lensing signal which is given by

Bmap(θ) = 1
ng

∑
k

γ×(θ; θk)wkΨ(|θk − θ) (4.19)
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Figure 4.3 Part of an output map from a set of simulated data we are going to describe
in Chapter 5. The map is related to the E-mode of the shear, thus the true lensing signal.
It is possible to catch several peaks of the signal, one of the major ones is selected inside
the white circle and represents a large cluster.

to produce the B-mode amplitude map. The only difference with respect to Eq. 4.16
is the use of the cross shear γ× defined in Eq. 2.61. Such B-mode can be used to
estimate the noise fluctuations as they do not contain any lensing contribution by
construction. The corresponding variance map of the B mode can be obtained by:

σ2
Bmap

(θ) = 1
2n2

g

∑
k

|γ×(θ; θk)|2w2
kΨ2(|θk − θ|) , (4.20)

to which Eq. 4.18 must be added to include the LSS contribution.

4.2.3 Detection algorithm and cleaning procedure for the
weak-lensing case

The halos with the largest signal are visible as clear peaks surrounded by a circular
region with values that are slightly smaller than the background, as it can be seen in
Figure 4.3. This is the typical signature of the weak lensing filter radial dependency,
which is characterized by a central peak (that produces the maxima) and a slightly
negative region just outside the peak (responsible for the minima). The values in the
amplitude map can either be positive or negative because of the noise and because
the cosmic shear signal is also characterized by voids leading to "depressions" in the
signal.

Once the amplitude and variance maps have been created, the code identifies
the peaks. The detection is not carried out on the amplitude map but on the
signal-to-noise ratio which has to be computed first. The algorithm identifies the
"relevant pixels", i.e. those pixels whose signal-to-noise ratio value is above a certain
threshold provided by the user.
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The procedure then identifies the maximum which is marked as the first detection to
be stored together with its properties: the ID in order of detection (order of SNR),
the X and Y pixel position, the physical position in RA and Dec, the SNR and the
value of the amplitude map. Then the algorithm removes the signal contribution of
this detection from the amplitude map.

At the same time, the depressions caused by the filtering procedure that sur-
rounds the detection are also removed. The practical procedure to implement this
cleaning involves the creation of a dummy galaxy for each real galaxy in the catalog
with the same position but with the two components of the shear effect produced
by the modeled lensing signal associated with the detection that is then removed
from the amplitude map: in this way, the map is "cleaned" from all lensing effect of
the detections.

This is done by removing the filtered lensing signal modeled with the same
template adopted for the filter construction. Here, the shear modulus is modeled at
the position θd as

|γd(θ; θd)| = A · τ(θ; θd) , (4.21)
with a shear profile, τ(θ), normalized by the detection amplitude, A. We can write
the complex shear attributed to the detection as:

γd = γd,1 + iγd,2 = |γd|(cos 2φ+ i sin 2φ) . (4.22)

In Section 2.2.1 we have shown that the shear effect given by gravitational lensing
exists only in the γ+ components, thus the shear is tangential or radial with respect
to the line connecting the center of the detection (assumed radially symmetric) and
the considered sky position centered on a galaxy, see Figure 4.4, which shows the
two possible geometrical configurations of the galaxy shear.

This simple geometric consideration sets the two components of the tangential
shear:

γd,1(θ; ∆θ) = |γd(θ; ∆θ)| · cos 2φ = −|γd(θ; ∆θ)| · cos 2ϕ

γd,2(θ; ∆θ) = |γd(θ; ∆θ)| · sin 2φ = −|γd(θ; ∆θ)| · sin 2ϕ .
(4.23)

Since on small angles, the flat sky approximation is valid, the galaxy position
with respect to the detection center can be safely expressed in a cartesian frame
as ∆θ = θ − θd = ∆θ1 + i∆θ2 and the shear can be expressed in two ways, explicit
functions of the cartesian components and using the trigonometric equations:

γd,1(θ; ∆θ) = −|γd(θ; ∆θ)| · ∆θ2
1 − ∆θ2

2
∆θ2

1 + ∆θ2
2

= −|γd(θ; ∆θ)| · cos
(

2 arctan ∆θ1

∆θ2

)

γd,1(θ; ∆θ) = −|γd(θ; ∆θ)| · 2 ∆θ1∆θ2

∆θ2
1 + ∆θ2

2
= −|γd(θ; ∆θ)| · sin

(
2 arctan ∆θ1

∆θ2

) .

(4.24)

The routine implements the trigonometric expressions (last passage of Eq. 4.24) that,
thanks to the optimized sin, cos and arctan functions in C++, are more efficient
from a computational point of view.

After the removal of the detection contribution, the SNR is re-evaluated and
the algorithm continues by considering the next maximum in the relevant pixels
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Figure 4.4 The diagram represents the geometrical configuration of the distortion
applied on a background galaxy from a gravitational lens. For the sake of clarity we use
fake proportions of the dimensions. We show the system of reference comoving with the
lens (Θ1, Θ2) and comoving with the galaxy (θ1, θ2). The system (θ′

1, θ′
2) is the coordinate

system obtained from a rotation R(ϕ) that diagonalizes the lensing jacobian matrix, that
is true because ϕ is the angle relative to the connecting line between lens and galaxy.
The shear components in this coordinates system yield the tangential and cross shear
components Eq. 2.63). We have then γ+ > 0 when the distortion is perfectly tangential
(blue galaxy) and the shear angle is φ = ϕ, and γ+ < 0 when the distortion is perfectly
radial (red galaxy) and the shear angle is φ = ϕ + π

2 .
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reiterating the process. It may happen that after the cleaning, some peaks that
initially had a SNR value below the detection threshold can be boosted such to
be detectable. An example is given in Figure 4.5 where it is shown the cleaning
procedure applied to the detection of 4 objects in a region of the map: following the
sequence of detection/cleaning it is possible to see the change in the amplitude values
of the peaks. Therefore the detections are not identified with a perfect monotonic
decrease in their value of SNR.

At the end of the procedure, the algorithm reaches the minimum signal-to-noise
ratio threshold fixed by the user and the iteration stops. With the catalog of
detections, the code outputs the amplitude map removed of all the lensing signals
from the dark-matter halo candidates. This map is useful to test the results as it
should resemble the B-mode map where no lensing signal, apart from a uniform
contribution of the LSS, is present.
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Figure 4.5 Example of the cleaning procedure on a small region with 4 signal peaks.
The circles in the figures are centered in the pixel with the maximum amplitude value
reported on the bottom left, while the identifying letter is on the top right. The map before
any cleaning (Fig. 4.5i) shows 4 peaks with maximum amplitudes of 0586 (a), 0.428 (b),
0.386 (c), and 0.382 (d). The algorithm thus finds first (a) and removes the expected shear
effect from the map (Fig. 4.5ii), the other peaks find themself with an increased amplitude
(b, c, d with respectively 0.436, 0.388, and 0.392). Then it is the time of (b) to be detected
and cleaned (Fig. 4.5iii), increasing peaks (c) and (d) to 0.395 and 0.386 respectively. In
Fig. 4.5iv we have the map after the third peak (c) is detected and removed, at this point
(d) has increased its amplitude again to 0.401 and it is finally detected and removed leaving
this region of the map as pure background (Fig. 4.5v).



Chapter 5

Analysis of the Euclid
simulations with AMICO-WL

In this chapter, we describe the results of the application of the AMICO-WL
algorithm, discussed in Chapter 4, to a simulated catalog of galaxies ellipticities
lensed by dark matter halos and by large-scale cosmic structure. The simulation,
see Section 5.2.1 reproduce the characteristics of the data expected for the Euclid
mission.

Section 5.1 will describe Euclid and its scientific goals; Section 5.2.1 will provide
a description of the data sets used to test AMICO-WL; in Section 5.3 we will analyze
the application of AMICO-WL to the simulated data; in Section 5.4 it is described
the matching procedure applied to test the code; in Section 5.5 we will study the
results of the matching in terms of purity and completeness of the sample; in the
final Section 5.6 we will compare the results of two simulated datasets.

5.1 The Euclid mission
Euclid (Laureijs et al. (2011);Scaramella et al. (2022)) is a visible-to-near-infrared
space telescope currently under development by the European Space Agency (ESA)
and the Euclid Consortium; the launch is scheduled to occur in July 2023, see the
EUCLID website 1. The goal of Euclid mission is in fact, to better characterize
dark energy and dark matter, which make up most of the energy content of the
Universe, as seen in Chapter 1. For that purpose, the mission will investigate the
distance-redshift relationship and the evolution of cosmic structures by measuring
shapes (i.e. ellipticities) and redshifts of galaxies and clusters of galaxies out to
redshifts ∼ 2 (a look-back time of ≈ 10 Gyr). In this way, Euclid will cover the
entire period over which dark energy played a significant role in accelerating the
expansion of the Universe. Some main topics that Euclid is going to help investigate
are:

• Dark matter distribution in the Universe
• History of the expansion of the Universe
• The nature of dark energy and the evolution of its equation of state
1https://www.esa.int/Science_Exploration/Space_Science/Euclid
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Figure 5.1 We present the sky coverage of Euclid surveys. Inside the blue lines, we
have the field of view (FOV) of the Wide Survey of 17 354 deg2 while the three yellow
patches represent the FOVs of the Euclid Deep Surveys which coverage goes from 10 to
23 deg2. Credits: ESA/Euclid Consortium. Acknowledgment: Euclid Consortium Survey
Group

• Large-scale structure formation in the Universe

Euclid is optimized for two primary cosmological probes:

• Weak gravitational Lensing by measuring distortions of galaxy images
by mass inhomogeneities along the line-of-sight to map the dark matter
distribution and determine the impact of dark energy.

• Baryonic Acoustic Oscillations, wiggle patterns imprinted in the spectro-
scopic clustering of galaxies on large scales, which provide a standard ruler to
measure the expansion of the Universe and the acceleration caused by dark
energy.

Euclid will survey the sky in a "step and stare" mode: the telescope will point
to a position in the sky and perform imaging and spectroscopic measurements on
an area of ∼ 0.5 deg2 around this position. The visual imager is characterized
by a sensitivity of 25 mag for the visual imager and 24 mag for the near-infrared
photometer. The sky coverage is driven by the wide-survey requirement to cover
15,000 deg2 of the extragalactic sky (more than 35% of the celestial sphere) during
the mission lifetime of 6 years. Additionally, a deep survey will be performed in
three deep fields (40 deg2 in total), reaching two magnitudes deeper than the wide
survey. In Figure 5.1 we show the Euclid fields of view, both wide and deep.
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5.2 Simulated Euclid catalogs
The catalog of ellipticities onto which we applied the code derives from a parent
cosmological simulation produced by Carlo Giocoli, while the noise in the catalog
of ellipticities was added by Sandrine Pires. These simulated data were created as
a part of a "test challenge" organized inside the Euclid SWG Clusters of Galaxies
and more specifically as a part of the activities of WP 10, "Weak Lensing Selected
Clusters". The idea is to evaluate the performance of different methods for detecting
galaxy clusters through weak lensing that could be implemented alongside the ones
based on photometric information, which are already implemented in the official
Euclid data analysis pipeline. These algorithms, selected through a similar challenge
(Adam et al., 2019), are AMICO (Bellagamba et al., 2018) and the PZWav (Gonzalez,
2019), code based in an adaptive wavelet approach. We are now going into the
details of the simulated ellipticity catalog and the parent cosmological simulation
from which it has been extracted.

5.2.1 The numerical simulations
The cosmological simulation is the result of a dark-matter-only N-body run, carried
out with GADGET-2 (Springel (2005); Springel et al. (2001b)). The simulation
assumes a flat ΛCDM model with normalized Hubble constant h = 0.67, dark
matter density parameter ΩCDM = 0.27, baryon density parameter Ωbar = 0.05,
amplitude of the density fluctuations As = 2.1265 × 10−9 (used instead of σ8, the
r.m.s. density fluctuations in spheres of 8 h−1Mpc as in Sect. 3.1), spectral index
of the power spectrum of the initial density fluctuations ns = 0.96.

Initial conditions have been created at redshift z = 99 using N-GenIC and
assuming the corresponding power spectra rescaled at that redshift using CAMB. It
follows the evolution until z = 0 of 10243 collisionless dark matter particles in a
periodic cube with 1 h−1Gpc on a side. At each snapshot, halos and subhaloes have
been identified sing SUBFIND (Springel et al., 2001a). Simulating shear measurements,
i.e. ellipticities in the galaxies, means being able to reproduce and investigate the
propagation of light through the inhomogeneous universe. In order to do so, several
snapshots of the simulation – at different redshifts have been piled together to
construct simulated past-light cones for the ray-tracing analysis. Those have been
built using the MapSim routines :iMapSim and ray-MapSim (Giocoli et al. 2018,
2015); that have been validated by comparison with other algorithms (Hilbert et al.,
2020). iMapSim requires to set the desired field of view, chosen to be a light cone
with a 10 deg aperture, and the number of snapshots ahead of time; the authors
saved 43 snapshots from redshift 4 to 0. The value of redshift z = 4 was chosen to
investigate where the dynamical evolution of the matter-energy components of the
Universe starts to leave a mark in the weak lensing observables (Giocoli et al., 2015).
Each snapshot consists of a cubic volume containing one realization of the matter
distribution at a given redshift. The snapshots are obtained from the same initial
conditions, thus, the volumes contain the same cosmic structures at different stages
of their evolution, approximately at the same positions in each box. It is necessary
to avoid repetitions of the same cosmic structures along one line of sight, thus the
snapshots need to be randomized as they cannot be stacked as a consecutive sequence.
The randomization is described in (Roncarelli et al., 2007). Then the snapshots
are converted from 3-dimensional volumes into 2-dimensional mass distribution by
projecting the particle positions to the nearest pre-determined plane, maintaining
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their angular positions. Finally, the ray-tracing, in Born approximation, is performed
using ray-MapSim considering the 43 planes defined before as lens planes. Lens
equations are solved on the two-dimensional grid using the MOKA (Giocoli et al., 2012)
libraries, which allows going from the convergence to the corresponding shear maps.
The light cone has been populated with sources assuming random right ascension
and declination, with a redshift distribution that resembles the one expected for the
Euclid wide-field survey, peaked at z ∼ 1. The analyses done in this work use the
shear catalogs produced by these simulations, which also provide the distribution of
intrinsic ellipticity for the galaxies.

5.2.2 The simulated data
The test of AMICO-WL has been performed on two simulated catalogs of shear
measurements, i.e. ellipticity components. The first simulated catalog consists
of around 10 million galaxy positions with ellipticities and redshift, randomly
distributed in one field of 10 deg × 10 deg, with right ascension and declination
both in the range [0.0,10.0] deg. The second catalog is a subset of the first obtained
by cutting out all the galaxies with a redshift smaller than 0.6. This is done to
attempt a cleaning of the data set from the noise that foreground galaxy ellipticities
produce on the weak lensing measures. In fact, since we expect to detect galaxy
clusters mainly below z ≈ 0.6, by cutting the data below that value it is possible
to select those galaxies that are almost exclusively background galaxies, and thus
lensed sources, for the dark-matter halos we are trying to detect. The galaxies at
redshifts below 0.6 can be background sources for some clusters but also foreground
galaxies for others and thus noise for the constraining of the lensing signal. Therefore
with the second catalog of galaxies, we expect to find more halos and increase the
signal-to-noise ratio.
In Figure 5.2 we show the dstributions of the main properties of the galaxies: redshift
and ellipticity. The distributions of the two ellipticity components are Gaussian
with 0 mean and standard deviation 0.26 (see Fig. 5.2i). The redshift distribution
is in Fig. 5.2ii, galaxies are within a range of [0,3] with a median redshift of 0.8.
One of the main differences between the simulated data and what we expect from
Euclid is the fact that in the future real data, we will have galaxies up until z ∼ 2.
We introduced in Section 4.2.2 that the noise component related to the large-scale
structure is computed through an external algorithm that we use before launching
the AMICO-WL algorithm. Here we present the value of the noise constant from
the LSS lensing effect, CLSS , and other properties related to the catalogs, computed
as additional outputs of the code:

• LSS noise component CLSS : 3.9 × 10−4;

• galxy number surface density: 30.0 arcmin−2;

• Total number of galaxies: 10 801 552;

• Average galaxy separation on the sky: 0.182′;

• Mean shear modulus: 0.33;

• Root mean square of the shear modulus: 0.36;

• White noise from galaxies (see Eq. 4.8): Pϵ = 1.88 × 10−10rad2.
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Figure 5.2 Distributions of ellipticities and redshift of the simulated sources in the
"Euclid test challenge" shear catalog. In the left panel we show the distribution of the
two ellipticities components (in blue and purple) that are almost equivalent being both
simulated with mean 0 (vertical line) and standard deviation 0.26 (dashed vertical lines).
In right panel the redshift distribution of the simulated galaxies is shown. With the
vertical lines, we show the median 0.8±0.6 of the complete catalog (red) and the median
1.0±0.5 of the truncated catalog (orange). We show with an orange band the range of
galaxies cut out in the truncated catalog.

The second catalog is composed of about 7 million galaxies, in the same FOV;
the distributions of ellipticities components are equivalent to the ones of the complete
catalog (left panel of Fig. 5.2); in the right panel of Figure 5.2 it is visible the
clean cut on z = 0.6 and the consequent increase in the redshift median. The other
interesting properties of this second catalog:

• LSS noise component CLSS : 6.1 × 10−4

• galxy number surface density: 20.0 arcmin−2;

• Total number of galaxies: 7 449 910;

• Average galaxy separation on the sky: 0.220′;

• Mean shear modulus: 0.33;

• Root mean square of the shear modulus: 0.36;

• White noise from galaxies Pϵ = 2.74 × 10−10rad2.

It is interesting to notice that even though the noise of the signal in the E-mode
map should decrease, as we will see in the next sections, by cleaning the catalog from
the foreground galaxies, the white noise attributed to the distribution of intrinsic

galaxy ellipticity increases; we defined this noise component in Eq. 4.8 as Pϵ = 1
2
σ2
ϵs

ng
,

thus as the number surface density of galaxies decreases and the standard deviation
of the intrinsic ellipticity stays the same, Pϵ will increase.

We shall refer to the original catalog as the complete catalog and to the redshift
cut catalog as the truncated catalog. The summary of the two catalogs’ properties
can be found in table 5.1.
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complete truncated

N [106] ∼ 10.8 ∼ 7.4

σϵ 0.26 0.26

ng [arcmin−2] 30.0 20.0

z [range] [0.0,3.0] [0.6,3.0]

∆̄g [arcmin] 0.182 0.220
¯|γ| 0.33 0.33

|γ| r.m.s. 0.36 0.36

Pϵ [10−10rad2] 1.88 2.74

CLSS [10−4] 3.9 6.1

Table 5.1 Summary table of the main properties of the simulated ellipticity catalogs.
In the table, we show the number of galaxies N , the standard deviation of the ellipticity σϵ,
the surface number density of the galaxies ng, the redshift z range, the average separation
of the galaxies in the sky ∆̄g, the mean and r.m.s. of the shear modulus |γ|, the white
noise contributed by the galaxies Pϵ (shot noise and intrinsic ellipticity noise) and finally
the noise constant related to the lensing effect of large-scale structure CLSS .

From the construction of the simulation described in Section 5.2.1 we have the
catalogs of dark matter halos that acted as gravitational lenses for the ray-tracing
algorithm. In Section 5.4 we will use this catalog as a reference for the matching
procedure, in order to test the reliability of the code. We will need to apply a
selection on the structures, in fact, they are given with a set of properties (mass,
virial mass, virial radius, position, redshift, comoving distance) that cover large
ranges of values, far from the values expected from a dark matter halo associated to
a cluster of galaxies. For example the virial mass (M200) goes from a minimum of
4.13 × 1011 h−1M⊙ to a maximum of 1.39 × 1015 h−1M⊙.

5.3 Application of AMICO-WL to the mock cata-
logs

We applied AMICO to the two catalogs introduced in Section 5.2.2, one including
all galaxies and one with all galaxies above z > 0.6 only. For each data set we
optimized the filter according to its specific properties. At this end the cosmic shear
power spectrum and the effective density of galaxies have to be adapted. Table 5.1
summarizes the properties of the two filters.

For the template halo we assume a standard set of parameters, used for instance
in Maturi et al. (2007), meant to detect high-mass halos that have an intermediate
distance between observer and sources, a condition for which the lensing effect is
maximized because of the geometrical dependencies of the lensing strength (Pace
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complete truncated

lens mass Ml [h−1M⊙] 1 × 1015 1 × 1015

lens redshift zl 0.4 0.6

source redshift zs 1.0 1.0

white noise Nϵ 1.27 × 10−10 1.81 × 10−10

beam FWHM bF W HM [arcmin] 0.55 0.65

Table 5.2 Summary table of the parameters used to compute the filters. We show the
mass of the typical lens Ml (i.e. the expected dark matter halo), the redshift of the typical
lens zl, the redshift of the typical source zs (i.e. the background galaxies), the white noise
of the catalog of galaxies Nϵ and the beam FWHM bF W HM .

et al., 2007). Figure 5.3 shows the profile of the filters in real space and normalized
for the maximum value to better compare them. It is clear that the two filters
are almost identical, the parameters that define mainly the shape of the filters, i.e.
lens properties, are the same. More importantly, their value is very small at radial
distances larger than 0.3 deg. This fact allows to impose a cut-off at that radius
reducing the computational costs.

A zoom in of the resulting E-mode and B-mode maps (see Eq. 4.16 and Eq. 4.19)
based on the truncated catalog is shown in Figure 5.4. Several peaks are clearly
visible in the E-mode map while the B-mode map appears more homogeneous and
with a similar distribution of the absolute values of the positive and negative peaks.

In the next sections, we are focusing on the analysis performed on the truncated
catalog, the one that we expect to produce the best results, leaving the essential
of the analysis of the complete catalog to the Appendix A. In Section 5.6 we will
compare the performance of the code with the truncated catalog with the results
obtained with the complete catalog.

5.3.1 Criteria for the choice of the detection threshold
We tested four different methods to establish the SNR threshold to be used in the
sample selection. Two of them rely on the analysis of the signal-to-noise distribution,
the other two instead are based on the statistics of the maxima and/or minima of
the maps.

The distribution of values of the E-mode and of the SNR maps (see top panel
of Figure 5.5) is a nearly symmetric distribution centered around 0 (if there are
no systematic errors). The tail extending toward positive high values is due to the
contribution of halos to the lensing signal. In contrast the B-mode map is perfectly
symmetric with respect to zero as it contains only the noise fluctuations (shot noise
and scatter due to the intrinsic ellipticity of galaxies) and no lensing signal. Thus,
the B-mode map provides the statistics of the amplitude values associated to the
noise only.
Pixels E − B method: based on these considerations we compute the ratio
between the distributions of the pixels SNR of the E- and B-mode maps (bottom
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Figure 5.3 Radial profile of the used filters in real space. They are built using the
parameters reported in Table 5.2 and normalized to their maximum value. In blue we have
the filter for the complete catalog, while in red the one for the truncated catalog: it is
possible to notice that the two filters are very similar.

panel in Fig. 5.5). Such ratio provides an estimate of the expected sample purity
against pure measurement of noise as a function of SNR. The sample purity,
based on this criterion, of 80% is obtained with a SNR threshold of SNR = 1.60.
Pixels E−Ê method: the previous method is sensitive to the measurement noise
fluctuations but it ignores the lensing effect due to the LSS. Looking again at the
top panel of Figure 5.5 it is possible to notice an excess in the negative values
distribution of the E-mode map with respect to those in the B-mode map. This
excess is due to the lensing effect of the LSS where underdensities produce negative
lensing peaks and we expect the same absolute value distribution for the positive
peaks, which pollute the catalogs because linear density fluctuations can be well
represented by a Gaussian random field as discussed in Section 2.1.3. We compare
the absolute value of the negative part of the distribution of the E-mode map (see
top panel of Figure 5.6) with the distribution of the positive values of the same map
and compute the ratio between the two (see bottom panel of Figure 5.6). We obtain
again the estimate of the expected purity but in this case against both measurement
noise and LSS noise. Considering the same expected purity of 80%, we obtain a
threshold of SNR = 2.0. The third and fourth methods are a variation of the
previous two, where the statistics of all pixels in the map is replaced by the statistics
of maxima, i.e. positive and negative peaks, see Figure 5.7. Differently from the
pixel distribution, the distribution of the maxima (in the top panel of Figure 5.7) is
not symmetric with respect to the zero but the E-mode map presents again a tail
extending toward high values with respect to the maxima in the B-mode map. This
statistics should be better suited for cluster detection because also in that case we
are dealing with peaks rather than in the properties of all pixels in the map.
Peaks E − B method: the peaks, i.e. a maximum-SNR pixel, of the E- and
B-mode maps are identified by AMICO through the cleaning process down to very
small signal-to-noise ratios (SNR = 1.0); then we evaluate the values frequency
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Figure 5.4 Zoom in of the output maps in the region RA∈[3.0,7.0] deg and
Dec∈[6.0,10.0]: the E-mode and the B-mode are shown in the top and bottom pan-
els, respectively. They are plotted with the same color scale. In the E-mode map, it is
possible to see the typical signatures of the presence of halos: white high-value spots.
These are not present in the B-mode map, that only contains the noise from galaxies.
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Figure 5.5 Pixels E − B method: comparison of the SNR distribution of the pixels
of the E-mode and B-mode amplitude maps, and difference of the histograms relative to
the truncated catalog. In the top panel we show the SNR distribution of the pixels of
the E-mode map (empty histogram) and the B-mode map (full histogram): the B-mode
map, caused only by noise, is symmetrical around 0, while the E-mode map distribution
has the same symmetrical component and an additional high-value tail attributed to the
lensing signal. In the bottom panel we have the difference of the counts in each bin of the
E-mode map minus the counts of the same bin of the B-mode map, normalized over the
E-mode counts. We define the threshold (red vertical line) with a given expected purity,
80%, as the SNR value in which the E-mode map counts become the 80% of the total
(horizontal line); we plot the threshold also in the top Figure.
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Figure 5.6 Pixels E − Ê method: comparison of the SNR distribution of the positive
pixels and the negative pixels of the E-mode amplitude map (Ê), and difference of
the histograms relative to the truncated catalog. In the top panel we show the SNR
distribution of the positive pixels of the E-mode map (empty histogram) and the negative
pixels after having changed the sign, Ê (full histogram), the negative pixels are caused
by the noise and by the negative signal of the lensing effect that is not related to galaxy
clusters. In the bottom panel we have the difference of the counts in each bin of the
positive and negative pixels of the E-mode. We define the threshold (red vertical line) with
a given expected purity, 80%, as the SNR value in which the positive pixels map counts
become the 80% of the total (horizontal line); we plot the threshold also in the top Figure.



62 CHAPTER 5. AMICO-WL ON EUCLID

1 2 3 4 5 6 7 8 9
Peak SNR value

100

101

102

103
co

un
ts

Signal-to-Noise ratio SNR distribution

Cross shear SNR peaks (B-mode)
Tang. shear SNR peaks (E-mode)
E B threshold: 1.8

1 2 3 4 5 6 7 8 9
Peak SNR value

0.0

0.2

0.4

0.6

0.8

1.0

(E
SN

B S
N
)/E

SN

(ESN BSN)/ESN

80.0% expected purity

Figure 5.7 Peaks E − B method: comparison of the SNR distribution of the peaks of
the E-mode and B-mode amplitude maps, and difference of the histograms relative to the
truncated catalog. In the top panel we show the SNR distribution of the peaks of the
E-mode map (empty histogram) and the B-mode map (full histogram). The peaks of the
B-mode map, caused by noise only, reach SNR values that are quite lower with respect
to the E-mode peaks. In the bottom panel we have the difference of the counts in each
bin of the E-mode map minus the counts of the same bin of the B-mode map, normalized
over the E-mode counts. We define the threshold (red vertical line) with a given expected
purity, 80%, as the SNR value in which the E-mode map counts become the 80% of the
total (horizontal line); we plot the threshold also in the top figure as a vertical red line.

and distributions in full analogy to what has been done for the pixel statistics
(see bottom Figure 5.7). The expected purity of 80% is found for a threshold of
SNR = 1.8. Peaks E−Ê method: also the last method presented does not
account for the LSS noise contribution, therefore, as done for the Pixels E−Ê
method, we now consider the distribution of the negative peaks. Again, we perform
a detection run for the E-mode map and the E-mode map with inverted sign (so
that now the minima are maxima) with a threshold of SNR = 1.0. We compare
the distributions of maxima and minima (see top panel of Figure 5.8). Then we
compute the ratio of the distribution obtaining again an estimate of the expected
purity, for the peaks themselves. For 80% of expected purity, we derive a threshold
of SNR = 2.4. Since the peak statistics is better suited for cluster detections as
discussed, we will consider the methods based on it in the following analysis. Table
5.3 lists the SNR thresholds derived with both Peaks E − B method and Peaks
E−Ê method methods for the two catalogs (full and truncated). We will refer to
the threshold found with the peaks E −B method as the weak threshold while the
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Figure 5.8 Peaks E − Ê method: comparison of the SNR distribution of the positive
peaks and the negative peaks of the E-mode amplitude map (Ê), and difference of the
histograms, relative to the truncated catalog. In top panel we show the SNR distribution
of the positive peaks of the E-mode map (empty histogram) and the negative peaks in
absolute value, Ê (full histogram). The negative peaks are caused by the noise and by the
negative signal of the lensing effect that is not related to galaxy clusters. In the bottom
panel we have the difference of the counts in each bin of the positive and negative peaks
of the E-mode. We define the threshold (red vertical line) with a given expected purity,
80%, as the SNR value in which the positive pixels map counts become the 80% of the
total (horizontal line); we plot the threshold also in the top figure as a vertical red line.
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catalog weak SNthr strong SNthr

E −B method E − Ê method

complete 1.9 2.4
truncated 1.8 2.4

Table 5.3 Detection thresholds used for the analysis of the complete and truncated
catalog of simulated ellipticities. For each catalog, we report the thresholds computed with
the peaks analysis of the E-mode and B-mode peaks (peaks E − B method) and the peaks
analysis of the positive and negative peaks of the E-mode (peaks E − Ê method).

E − Ê method produces the strong threshold.

5.3.2 Catalog of detections
We identified with AMICO all peaks above the SNR thresholds found in Section 5.3.1
and produced the results for both full and truncated galaxy samples. For the
truncated galaxy catalog, we have 1796/329 objects for the weak/strong SNR
thresholds. Roughly 18% of the detections found with the weak threshold is above
SNR = 2.4. For the complete galaxy catalog, we have 1189/268 objects for the
weak/strong SNR thresholds. As expected we have more detections based on the
truncated galaxy catalog which comprises fewer foreground objects reducing the
lensing signal.

In Figure 5.9 we show a zoom in of the amplitude map (E-mode) where we
marked the real detections. The peaks that are more visible in the map are have a
higher SNR as expected.

In the top panel of Figure 5.10 we show the SNR of the detections as a function
of their ID which marks the order in which they are discovered. The same figure
shows the two SNR thresholds adopted in the analysis. In the bottom panel of
Figure 5.10 we display the signal-to-noise ratio distribution of the detections, the
median SNR of the detection catalog found with the weak threshold is 2.04 ± 0.14
2 while the median of the sample of detections obtained with the strong threshold
is 2.8 ± 0.3. Clearly, the majority of the detections have a low signal-to-noise ratio
building ∼ 78% of the total.

5.4 Matching procedure and weak lensing selection
function

When dealing with detection algorithms or in general with the creation of a catalog
of astrophysical objects it is useful to compare the results against an existing catalogs
of the same type of sources present in the same FOV to check for consistency. This
can also allow to extend the information about the detected sources, for instance
by exploiting different wavelengths and methods. In the case of simulated data, it
is available a reference catalog listing the actual sources in the simulation with all

2From here on we will express the error associated with the median using the median
absolute deviation (MAD), a robust measure of the variability of a univariate sample of
quantitative data: MAD = median(|Xi − X̃|) where X̃ is the median of the variable X.
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Figure 5.9 Map of the detections from the truncated catalog. We show the positions
of the detections on the amplitude map where. We use the bigger blue circles for the
detections with SNR > 2.4, the strong threshold, while the smaller light-blue circles
correspond to the detections with SNR > 1.8, the weak threshold.
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Figure 5.10 Signal-to-noise ratio analysis of the catalog of detections. In top panel
we show the SNR of the detections as a function of their ID in the catalog, which can be
used to follow the different steps of the detection procedure which starts from the higher
SNR that is ∼9.0 and then rapidly decreases reaching SNR ∼ 3.0 around ID∼100. Below
the strong threshold (solid red horizontal line) the rare jumps due to the cleaning become
more common. The green dashed line represents the weak threshold. In bottom panel
we show the histogram of the SNR distribution of the detection catalog, the counts are
in logarithmic scale; with the solid line we enhance the distribution of the peaks with
SNR > 2.4, the subset found with the strong threshold, while the dashed line is the full
sample of detections. The vertical lines stand for the median of the distributions.
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Figure 5.11 We show the distribution of the complete catalog of dark matter simulated
structures in the redshift-mass plane. The red dashed line reproduces the cut applied, only
the halos above the line are used as a reference as they are expected to produce a SNR
high enough to be detected. Also, possible matches of detections with halos in the region
under the red line would likely result from a random superposition in the parameter space
z − M because of the high density of sources.

their true properties. This catalog allows to test the reliability of the code and in
general of the overall procedure. This means that for weak lensing we know where
the structures generating the lensing peaks are. We will refer to this catalog as the
halo catalog to be matched with the detections catalog to characterize the sample
purity and completeness.

For the matching, we define a subset of true halos to reduce the confusion
given by random projections that weak lensing measures can not address being
unable to provide an estimate of the redshift. We first select all halos within the
FOV. Then we apply a mass dependent selection which scales with redshift to
exclude all clusters that cannot produce a significant lensing signal and that could
be matched only because of a chance projection. Such cut is defined by modeling
the expected signal-to-noise ratio of the sources assuming a survey with a certain
surface number density. We adopt the same selection criterion used within the weak
lensing detection challenge currently in place within the Euclid consortium. The
cut is shown in Figure 5.11. Only structures above this line are considered. This
criterion is meant to reduce the ambiguity given by chance projections.

The final reference catalog used for matching comprises 464 dark-matter objects.
In Figure 5.12 we show the map of these halos, where the color of the points indicates
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Figure 5.12 Map of the dark matter halos used as a reference for the detection. We
show the halos selected from the simulated halo-catalog plotted in the FOV. The color of
the dots is related to the redshift and the size is scaled with the virial mass. It is possible
to see some cases of aggregated structures where we have circles of similar colors near each
other.

the redshift and their size scales with the mass. The distributions of redshift and
mass of all halos and of the selected ones are shown in Figure 5.13. Most of the
halos are in the redshift range [0.2,0.5] with a median of 0.35 ± 0.09, and a virial
mass with a median of 14.2 ± 0.16 log

(
h−1Mpc

)
. The adopted selection removes

most of the sources with redshift above 0.5 − 0.6 that would be impossible to detect
because of their high redshift and small mass.

We performed the matching analysis using a code available within the AMICO
software package. The code sorts the lensing detections according to their signal-to-
noise ratio and the halos with respect to their virial mass. This is done to match
detections with large SNR to large clusters. The matching radius is set to 1 h−1Mpc
centered on the true position of the halo, and its angular size scales according to the
angular diameter distance of halos. This choice is based on the typical size expected
for the weak lensing imprint in the data and is large enough to account for the
discretized position of halos in the simulations and detections in the amplitude maps.
A larger matching radius would create an artificial increase of successful matching
due to chance alignments. We also set a higher limit of 3 arcmins on the matching
radius in order to stop the increase of the radius for sources at high redshift.
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Figure 5.13 Distribution of virial mass (M200) and redshift of the 464 selected sources
from the simulated dark matter halos in the "Euclid test challenge" halo catalog. In top
panel we show the distribution of virial mass in log10 (M200) of the selected halos (in
orange) compared with the distribution of the total halos from the simulated catalog
(in gray), the selected catalog has a median of 14.19 ± 0.16 log10 (h−1M⊙) (error in
median absolute deviation) while the total catalog has a lower median of 14.03 ± 0.11
log10 (h−1M⊙). In bottom panel we compare the redshift distributions between the total
and the selected catalog.
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Figure 5.14 Distribution of the matched detections. We show in light blue all the
detections of the complete catalog. The red plus symbol stands for the matched halo with
detection in the weak threshold catalog (SNR > 1.8) while the bigger red cross symbol is
associated only with the detections in the strong threshold catalog (SNR > 2.4).

5.4.1 Matching analysis
The catalog of the matched detections for the larger sample, obtained with the
weak threshold, contains 323 objects, while the strong threshold sample of detection
match 187 dark-matter halos of the 464 in the catalog described in Section 5.4. The
distribution of the detected and matched clusters can be seen in Figure 5.14.

Figure 5.15 shows the distribution of the separation between detections and the
matched clusters in h−1Mpc (top panel) and arcminutes (bottom panel). The figure
refers to the truncated galaxy catalog for both the weak (SNR = 1.8) and strong
(SNR = 2.4) thresholds.

In terms of angles, the median displacement of r of the full catalog of detections
is of 0.5 ± 0.3 arcmin, see bottom panel of Figure 5.15. For the sample of matched
detections with SNR > 2.4, the median is lower as these matches are less likely
to be random, we have 0.4 ± 0.2 arcmin. The fact that the detections-matches
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displacement is close to the pixel shows once more the validity of the matching
procedure. Only the small tail with larger displacements could be attributed to
random matches.

The displacement distribution in h−1Mpc (see top panel of Figure 5.15) shows
that the displacement is indeed limited to small separations with a median displace-
ment of ∼ 0.1h−1Mpc with respect to the matching radius of 1 h−1Mpc. Exactly we
have a median displacement of 0.13 ± 0.07h−1Mpc for the full sample (SNR > 1.8)
and of 0.11 ± 0.05h−1Mpc the subset with SNR > 2.4.

Figure 5.16 shows the distribution of matched halos as a function of mass and
redshift. We use a color scale to represent the signal-to-noise ratio of the matched
detections. For the sake of clarity, the matched halos from the SNR = 2.4 threshold
subset are represented with a cross symbol while the full sample is represented with
dots. The gray dots on the other hand stands for the halos of the total simulated
catalog.
Most of the detections with higher SNR are found in the redshift range [0.2, 0.4] and
the logarithm of the corresponding halos with mass over 14.4 M⊙/h. Most of the
un-matched halos are found in regions with low mass and intermediate redshift or
higher mass but at higher redshifts, i.e. the regions where the SNR is the smallest.
Therefore, only the detections found with the lowest SNR threshold will be present
in these regions. Some care has to be taken when dealing with these low SNR
detections but as discussed the matching criteria we implemented seem to be solid.

5.4.2 Signal-to-noise ratio
The distribution of the SNR is shown in Figure 5.17, with a median of 2.5 ±
0.4 and 2.9 ± 0.3 for the catalogs of matched detections found with SNR > 1.8
and SNR > 2.4 respectively. The dashed line shows the distribution of matched
detections, the solid line shows the distribution of the high-SNR subset, and the
solid shaded background the distribution for all detections. With the vertical lines
we show the medians of the distributions, dashed for the full sample, and solid for
the high-SNR. More than 90% of the un-matched detections of the weak catalog
have SNR < 2.4. This shows that the threshold obtained from the E −B method
with an expected purity of 80% is not reliable.

5.4.3 Redshift and virial mass
The two main properties related to weak lensing detections are the (virial) mass of
the halo and its redshift. We show in Figure 5.18 the distribution with respect to
mass and redshift of all selected halos (shaded region), the matched halos with the
sample of detections (dashed histogram) and the subset of matched halos related to
a high-SNR detection (solid histogram). We show the medians of the matched halo
distributions with vertical lines of the same style, dashed for SNR > 1.8 and solid
for SNR > 2.4.

The virial mass of the matched halos is distributed with a median of 14.23±0.16
log10(M⊙), and of 14.29 ± 0.15 log10(M⊙/h) for the high-SNR subset. Not every
mass can be detected with the same efficiency, clearly, the fraction of halos with
larger masses that are matched is higher but not every massive halo is detected, as
we can see in the high mass tail. For example, the third most massive halo appears
not to be associated with a lensing detection (see Section 5.4.4): in this case, the
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Figure 5.15 Halo-Detection displacement distribution. In the top panel we show the
distribution of the spatial distance between the position of the halo and the position of the
detection that matches the halo. We expect the position of the halo and the corresponding
detection to be slightly different due to the use of grids in AMICO-WL. We show the
medians of the distributions (vertical lines) and the 1 h−1Mpc matching radius (orange
vertical line). In the bottom panel we show the distribution of the displacement in the
projected plane. The vertical orange line shows the dimension of the pixel used in AMICO-
WL map creation. In both figures the dashed line represents the matched detections using
the weak threshold while the solid represents the subset of matched detections using the
strong threshold.
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Figure 5.16 Distribution of the halos as a function of Mass and Redshift. Grey dots
represent all the 464 simulated halos. The colored dots are the full sample of matched
halos, while the ones in the SNR > 2.4 subset are highlighted with a cross symbol. The
color scale of the dots and cross symbols represents the SNR of the detections. The halos
in the regions with high mass, log10 M200/M⊙)/h > 14.3, and redshift ≈ 0.2 − 0.4 are
mostly matched and with high-SNR detections.
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Figure 5.17 Signal-to-noise ratio distribution of the matched detections. We show
the distribution of the SNR for the weak threshold detections (dashed histogram) and
the subset of the strong threshold detections (solid histogram); we show the medians
with vertical lines of the same style. The background shaded histogram represents the
SNR distribution of the whole detection catalog. It is clear that most of the un-matched
detections have a low signal-to-noise ratio.
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detection associated exists but the position of its maximumis slightly outside the
adopted 3 arcmin matching radius.

For the redshift, the medians of the matched halo distribution are 0.34 ± 0.09
(see Fig. 5.11) and very similar for the high-SNR subset. The distribution conveys
a different efficiency in the detection of clusters at different redshift. As expected,
the filter selects preferentially the halos that have an intermediate distance between
the observer and nearby background sources, i.e. where the lensing signal is the
strongest.

5.4.4 The un-matched halos
It is crucial to study the tendency of the detection algorithm to produce false
negatives. Therefore we select a sample of un-matched halos so that we can focus
on the most striking cases. We show the sample of un-matched halos studied in
Figure 5.19. Other objects with similar mass and redshift have been detected with
high significance, therefore we would expect to match these objects as well but this
is not the case.

Some missed matched halos are easily explained. We refer to the Figure 5.20
where we show the amplitude map with the detections (blue and light-blue circles),
the matched halos (red dots), and the un-matched selected halos (yellow stars with
labels).

• The object labeled with 1 (see Figure 5.19) has a large mass of 14.7 log10(M⊙/h)
but itis at relatively high redshift z = 0.66, other detections associated to
similar objects have a typical SNR below 2.4.

• In the case of halo 6, it is likely that the algorithm fails to map the signal of
a halo at the edge of the FOV: this could lead to a low SNR detection, an
uncorrect position of the peak, or no detection at all. In this case, there is a
low-SNR detection nearby but it is too far.

• Halo 18 and halo 12 are large haloes near other two, smaller, halos that
instead have been matched; it is possible that those other halos should have
been matched with nearby lower SNR peaks but instead matched with higher
SNR peaks, leaving 18 and 12 un-matched.

• Halos labeled with 3, 7, 11, and 17 are placed on the map near extended
regions of high amplitude, may be related to a complex dark matter structure
or high noise fluctuations. In these cases, the detection algorithm found
several low-SNR peaks instead of one big peak resulting in an inefficient
detection of the matter overdensity then a missed matching.

• By inspecting the amplitude map, there are three cases, 5, 8 and 9, in which
there is one (or two in the case of 8) clear detection with high significance
that lays just outside the maximum search radius of 3 arcminutes adopted
during the matching. In these circumstances, the failure is not in the detection
algorithm but in the matching procedure. All of these three detections are
within 6 arcminutes.

• Halo 2 and halo 15 represent two peculiar cases as they have very high mass
and redshift around 0.3. The lensing signal should be strong but no relevant
detection is visible in the amplitude maps.
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Figure 5.18 In top panel we show the distribution of virial mass (in logarithm) while
in bottom panel we have the redshift distribution for the matched halos. The background
shaded orange histogram is the distribution of the total 464 simulated dark matter halos.
In both panels, the dashed line refers to the full sample, and the solid line to the high-SNR
subset.
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Figure 5.19 Distribution of the un-matched halos as a function of Mass and Redshift.
We used a more stringent selection function (red dashed line) to focus on the un-matched
halos which are associated with a high expected SNR. Grey dots are all the 464 simulated
halos. The un-matched selected halos are black stars.
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Figure 5.20 Map of the un-matched selected halos. We show the amplitude map with
the low-SNR detections as light-blue circles, high-SNR detections as blue circles, the
matched halos as red cross symbols, and the un-matched halos discussed in the text are
yellow stars.
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Figure 5.21 Cumulative purity of the sample over different signal-to-noise ratio thresh-
olds. We show the purity of the catalog of detections over different values of SNR, from
SNR = 8.0 down to the weak threshold of SNR = 1.8. With the vertical lines, we highlight
the two thresholds corresponding to the weak and strong criteria for the detection.

5.5 Evaluation of the sample purity and complete-
ness

With the matching at hands, we now evaluate the sample purity and completeness.
The first is the fraction of detections that match with a real source over the total
number of detections, while the latter is the fraction of matched detections over the
total number of halos. We use the halos above the red curve in Figure 5.11 as a
reference catalog for matching.

In Figure 5.21 we show the purity for the sample above a certain SNR. Clearly,
the purity is lower for lower SNR and reaches a value of 80% very close to the strong
threshold identified with the method peaks E − Ê, actually 70%. This shows the
validity of the method. The sample derived with the threshold of the peaks E −B
method has a very low purity of 20%, further proving that the noise contribution of
the LSS can not be neglected.

In Figure A.13 we show the completeness of the sample of detections i.e. the
fraction of matched halos over the total number of halos, as a function of SNR. The
completeness decrease with the increasing of the SNR as the sample of detections
decreases in number. With the relaxed threshold, SNR = 1.8, the completeness is
around 80%, while the strong threshold, SNR = 2.4 determines a completeness of
40%.

The sample completeness is shown as a function of SNR in Figure 5.23 and for
different SNR thresholds. As expected, by applying a very restrictive/relaxed SNR
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Figure 5.22 Cumulative completeness of the sample as a function of different signal-to-
noise ratio thresholds. We show the completeness of the catalog of detections for different
values of SNR, from SNR = 9.0 down to the weak threshold of SNR = 1.8. With the
vertical lines, we highlight the two thresholds corresponding to the weak and strong criteria
for the detection.
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Figure 5.23 Purity over Completeness plot for different signal-to-noise ratio thresholds.
We show the purity of the catalog of detections with respect to the completeness (fraction
of matched halos) for different SNR thresholds. The values of the SNR are shown as
labels of the data points. As a general trend: at high SNR only a few (low completeness)
but most evident objects (high purity) are detected; when lowering the SNR more objects
are found (high completeness) but with the increased possibility of detecting a spurious
source (low purity).

cut the purity is high/low and the completeness is low/high. With the threshold of
2.4, the strong threshold, we have about 70% purity of the catalog and completeness
47%.

As the global sample completeness so far presented is not unique because the
redshift-mass cut-off used to define the true cluster sample can be chosen arbitrarily,
it is of great interest to investigate the purity as a function of both redshift and
virial mass, M200, of the matched clusters, as shown in Figure 5.24. The results
are shown for both strong and relaxed SNR thresholds, the completeness is clearly
higher for the sample with the lowest SNR threshold. In the same figure, the side
plots show the completeness with respect to the individual parameters: on top the
total completeness as a function of redshift, and on the right the total completeness
as a function of mass. The 100% completeness reached in the redshift bin [0.7,0.8]
has to be ignored for the very poor statistics at that redshift.

5.5.1 Random match test
To derive the number of positive matches due to pure random superposition we cre-
ated 10 randomized catalogs from the original reference one presented in Section 5.4
by shuffling the RA and Dec positions of the entries. Then, we ran the matching
procedure between these randomized catalogs and the catalog of detections obtained
with these randomized catalogs with the catalog of detections with the same settings
adopted for the unshuffled run. As a test, we verified that the matched objects have
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Figure 5.24 Completeness plot in the z − M200 plane for the catalog of detections. In
top panel we show the completeness of the full sample inside the redshift-mass plane as a
color map. We also report the value of completeness in percentage inside each bins. We
use bins of 0.1 in redshift within the range [0.0,1.0] and logarithmic bins of virial mass of
0.2 dex within [13.8,15.2]. We show also as marginal plots the 1-dimensional completeness
for the bins of redshift and mass. In bottom panel we show the same plots for the case
of the strong detections subset (SNR > 2.4).
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Figure 5.25 Displacement distribution of the matched detections with the 10 random
catalogs of halos. We show the displacement between the halo and the corresponding
matched detection in arcmin on the projected plane. With the dashed distribution and
vertical line we show the true matched halo distribution, while with the solid black line,
we show the median of the 10 random displacement distributions.

a uniform distribution in angular displacement as expected (see Figure 5.25). As a
comparison, we also show the distribution which we obtained when we considered
the true halo catalog.

Table 5.4 lists the average values (with 1σ error) for purity and completeness of
the detections based on the random catalogs and the corresponding value obtained
with the true catalog. This represents the average spurious contribution to com-
pleteness and purity due to chance projections of completeness and purity that has
to change projections that has to be accounted for.

In Figure 5.26 we show the average completeness in the plane z −M200 for the
10 random catalogs. In the same plot, we present both the case for the full sample
and the high-SNR subset: the top label in each 2D bin refers to the full sample,

random true random true
purity % purity % completeness % completeness %

SNR > 1.8 3.0 ± 0.4 20.4 11.7 ± 1.8 78.9
SNR > 2.4 4.3 ± 1.0 65.9 3.0 ± 0.5 47.0

Table 5.4 Purity and completeness computed for the 10 randomized catalogs of halos,
for both SNR thresholds. We report the average purity and completeness with their
standard deviation error computed from the 10 randomized catalogs. As references, we
also report purity and completeness obtained with the true halo catalog.
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Figure 5.26 Completeness plot in the z − M200 plane for the two catalogs of detections
(full sample and high-SNR subset) with respect to the 10 randomized catalogs of dark
matter halos. We show also marginal plots with 1-D completeness with respect to redshift
and virial mass. The color map is referred to the high-SNR subset of matched detections
while the numbers inside the bins represent the full sample (top number) and subset
(bottom bold number).

also represented by the color map, while the bold label refers to the high-SNR
subset. We have a relatively high value of random completeness (∼ 20%) in two
bins associated with the mass bins 14.8 − 15.0 log (M⊙/h) due to the fact that in
these two bins, we have only one halo and randomly matched two times out of 10.
The low statistics of halos in these bins can produce a high value of completeness in
a random way.

5.6 Effect of varying the input catalog of galaxy
ellipticities

As described in the previous sections, we included in our weak lensing analysis
only the galaxies with z > 0.6 to remove in a very simple manner most of the
foreground galaxies. The ellipticity of the galaxies at lower redshift is not related
to the lensing signal of the majority of the clusters we aim at detecting: then they
would act as noise diluting the lensing signal. In Appendix A we present the same
analysis performed on this truncated galaxy catalog presented up to now also on
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the complete galaxy catalog, including also lower redshift galaxies. Both strong and
weak thresholds based on the peaks E −B method and on the peaks E − Ê method
have been used. In this case, the thresholds are SNR = 1.9 and SNR = 2.4, with
1189 and 287 detections, respectively.

As expected the complete catalog produces systematically fewer detections: the
galaxies with z < 0.6, removed in the truncated catalog, are more likely to be a
foreground for the halos leading to a decrease in the amplitude of the signal and an
increase of the noise (see Eq. 4.16 and Eq. 4.17). In particular, we have 607 fewer
detections, almost 34% less with respect to the truncated catalog, with 62 of them
detected over the strong threshold.

Applying the same matching procedure, i.e. 1 h−1Mpc matching radius limited
to a maximum of 3 arcminutes, we obtain 323 matched objects with the true halos
with the lower SNR threshold and 187 with a SNR > 2.4. We found 43 fewer
matches (∼12%) with the complete catalog than the truncated one. In Figure 5.27
we compare the distributions of matched haloes of the two data sets (truncated and
complete catalog) as a function of the signal-to-noise ratio of the detection (in the
top panel of Figure 5.27), the virial mass (in the central panel of Figure 5.27), and
the redshift of the halos (in the bottom panel of Figure 5.27). In the figures, we
show with blue lines the distributions and relative medians (vertical lines) for the
truncated catalog, while in red for the complete catalog; for both cases, the dashed
lines report the information for the full sample while the solid lines represent the
high-SNR subset. Despite the overall decrease of matched objects for the complete
catalog due to the lower number of detections, we do not see any strong difference
in the distributions. We compute the median and verify that the distributions are
consistent with each other. In the signal-to-noise ratio distribution, it is clear how
the distribution at the low values of SNR is identical for the two catalogs, while of
the 43 fewer matches in the complete catalog, 31 are associated with a SNR > 2.4
detections.

In Figure 5.28 we show the comparison of purity over completeness for different
signal-to-noise ratio thresholds: we have in fact 79% against 70% in completeness
for a fixed purity of 20%, related to the weak SNR threshold of the truncated
catalog, while for a fixed purity of 66%, related to the strong SNR threshold of the
truncated catalog, the completeness for the truncated catalog is 47% while is 45%
for the complete catalog.

We shall now discuss the characteristics of the additional matches that the
truncated catalog has with respect to the complete one. In Figure 5.29 we plot the
distribution of the additional matches in the z −M200 plane as done for the other
catalogs. We have in total 56 additional matched detections based on the truncated
catalog, all of which lay in low-mass regions where also the SNR are the lowest.
In Figure 5.30 we show the distribution of the difference in SNR of the matched
halos that are common to the detections based on the truncated and complete
galaxy catalogs. On the total 310 shared matches, more than half, i.e. 66%, of
the truncated galaxy catalog have higher SNR than those based on the complete
one. The increase of SNR of the detections is one of the factors responsible for the
increment of the sample size of matched detections for the truncated catalog. We
have seen the consequences of this increment in Figure 5.23.

Finally, in Figure 5.31 we compare the completeness of the complete catalog
and of the truncated one. We show the completeness in redshift and mass of the two
datasets, red for the complete, and blue for the truncated. In the central plot, we
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Figure 5.27 SNR, virial mass and redshift distribution of the complete and truncated
matches (full sample and high-SNR subset). In the three panels the blue lines represent the
truncated catalog and the red lines the complete one; the dashed lines are related to the full
sample and the solid ones to the high-SNR subset. In top panel we show the comparison
of the SNR distribution of matched objects between the complete and truncated catalog.
In central panel we show the comparison of the virial mass distribution of matched objects
in the complete and truncated catalog using the same bins of Figure 5.24. In bottom
panel we show the comparison of the redshift distribution of matched objects between the
complete and truncated catalog using the same bins of Figure 5.24.
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Figure 5.28 We show the purity of the two catalogs of detections obtained using the
complete and truncated catalog of galaxy ellipticities (red and blue lines, respectively) as a
function of the completeness computed for different SNR thresholds. The values of the
SNR are shown as labels of the data points.
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Figure 5.29 Distribution of the additional matches that the truncated catalog has
with respect to the complete one. We show the distributions of redshift and virial mass as
marginal plots while in the central plot, we show the 2D distribution of the new matches
in the z − M200 plane.
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Figure 5.30 Distribution of signal-to-noise ratio variation of halos from the truncated
to the complete catalog. The gray vertical line represents ∆SNR = 0. The dashed purple
line represents the median of the signal-to-noise variation of the common detections.
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Figure 5.31 Completeness analysis in the z − M200 plane for both the complete (red)
and truncated (blue) datasets. We show the 2-D completeness color map in the redshift-
mass plane comparing the results of the complete catalog with the results of the truncated
catalog in the same bin. We compare also the 1D completeness in the side plots by
comparing the distribution of the truncated and complete results.

compare the 2-dimensional completeness in the z−M200 plane. We label all the bins
with their respective completeness (red for the complete and blue for the truncated).
As expected, the completeness of the truncated catalog is higher for smaller systems
and for the higher redshift. This is not the case for a few mass-redshift bins but
this is due to random fluctuations due to the poor statistics.



Chapter 6

Conclusions and future
perspectives

We augmented the Adaptive Matched Identifier of Clustered Objects (AMICO)
algorithm to perform weak-gravitational lensing analysis of wide-field optical survey
data, i.e. catalog of galaxy ellipticity, to detect clusters of galaxies. The code
implements an improved version of the "optimal" linear optimal matched filter
defined in (Maturi et al., 2005). The filter assumes a mean radial profile of the
halo shear pattern and a power spectrum for the noise. The noise comprehends
the contribution of measurement errors and of the lensing due to the large-scale
structures that act as a contaminant. The filtering process allows to distinguishing
the lensing peaks of galaxy clusters from the ones of the large-scale structure and
observational noise. The detection of the clusters is based on the search of maxima in
signal-to-noise ratio maps returned by the filter. This last step has been improved by
implementing a highly optimized cleaning routine: clusters are identified iteratively
and at each iteration, the lensing signal of the detected cluster is removed from
the map to improve the detection of possible nearby blended dark matter halos.
Cleaning procedures were never applied before on a weak-lensing cluster finder with
the exception of (Pace et al., 2007).

We applied the code to a catalog of simulated galaxy ellipticities distorted by
the weak-gravitational lensing signal of the matter distribution simulated with the
MOKA Giocoli et al. (2012) code. The mock ellipticity galaxy catalog resembles
the observational properties expected for the Euclid mission. Therefore our analysis
provides a good forecast for such mission.

We investigate four different criteria to implement the SNR threshold that needs
to be set for the detection criteria which goes under the following names: pixels
E −B, pixels E − Ê, peaks E −B and peaks E − Ê. The first criterion is based on
the study of the distribution of SNR of the pixels of the E- and B-mode amplitude
maps, the threshold is found by setting a value for the "expected purity" of the
sample which is approximated by the ratio of the two distributions. The second
criteria follow a similar concept but instead of the fluctuations of the B-mode map,
the absolute value of the negative pixels of the E-mode map is used; in this way, we
account for the LSS as a source of noise. The third and fourth criteria mirror the
first two but, instead of considering all pixels, they consider the SNR distribution
of the peaks in the maps. We tested the performance of these approaches to set
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the ideal SNR cut-off to be used in surveys and conclude that the most efficient
method is the one based on positive and negative peaks of E-mode: the estimate of
the sample purity is in fact more reliable as all noise contributions are accounted
for.

We further refine the processing strategy by using only the galaxies with z > 0.6
to remove most of the non-lensed foreground sources and then compared the results
with the analysis performed with the full galaxy catalog. Using the truncated
dataset we detected 607 more objects. We then investigated the sample in terms of
completeness and purity by matching the detections with the actual halos in the
simulations. Before doing that we removed from the reference halos those objects
that, because of their mass and redshift, do not produce a significant lensing signal.
This was done to reduce the ambiguity given by chance projections. We found
higher completeness for the truncated catalog with respect to the complete one,
47% against 45% for a fixed purity of 65%.

By investigating the purity, we found that for the threshold obtained with the
peaks E − Ê method, the purity is close to the "expected purity", 70% against the
expected 80%, in contrast with the peaks E − B method we obtained a purity
of 20% when aiming at 80%. The completeness has been studied as a function
of the matched halos redshift and mass. In the redshift in the range [0.2,0.4],
the completeness reaches almost 100% in the case of the halos with virial mass
log10(M200/M⊙/h) > 14.4. As expected we reached the higher completeness where
the efficiency of the gravitational lensing effect is maximum: at a position of the
lens that is intermediate between the sources and the observer. Using the truncated
catalog we also incremented the detection of halos with smaller masses.

We further tested the reliability of the matching procedure and estimated the
number of positive matches due to pure random superposition by creating 10 catalogs
with random positions based on the original reference of halos. Then we matched
them with the sample of detections and derive the average completeness and purity
of the randomized reference. We obtained a 3.0 ± 0.4 % random purity and 11.7 ±
1.8 % random completeness. This represents the average spurious contribution to
completeness and purity due to chance projections that has to be accounted for.

We plan to improve the code by implementing an adaptive filter that would
increase the flexibility of the algorithm and allow the detection of dark matter halos
in a broader range of masses and redshift. We then intend to extend the code to
include a tomographic approach to exploit the available photometric redshifts. This
would further improve the reliability of the detection. The ultimate goal is to build
an optimized routine for the weak-lensing detection of clusters complementary to
the photometric detection algorithms such as the original AMICO employed in the
data analysis pipeline of Euclid, KiDS, and J-PAS.

The AMICO photometric algorithm in combination with the new AMICO-WL
represents an extremely versatile and powerful tool for the detection of clusters of
all kinds. The plan is to apply the code to other wide-field survey data like KiDS,
CHFTLens, DES, and in the future LSST from the Vera C. Rubin Observatory
besides Euclid.



Appendix A

Analysis of the complete
ellipticity catalog

In this appendix, we show the analogous plots already shown in Chapter 5, but for
the case of the complete catalog of galaxy ellipticity. The direct comparison of the
most relevant results of the two datasets is in Section 5.6.

93



94 APPENDIX A. COMPLETE CATALOG ANALYSIS

0h12m 16m 20m 24m 28m

9°

8°

7°

6°

RA [h m s]

De
c 

[d
eg

]

E-mode amplitude map

0.05

0.00

0.05

0.10

0.15

0h12m 16m 20m 24m 28m

9°

8°

7°

6°

RA [h m s]

De
c 

[d
eg

]

B-mode amplitude map

0.05

0.00

0.05

0.10

0.15

Figure A.1 Zoom in of the output maps in the region RA∈[3.0,7.0] deg and
Dec∈[6.0,10.0]: the E-mode and the B-mode are shown in the top and bottom pan-
els, respectively. They are plotted with the same color scale. In the E-mode map, it is
possible to see the typical signatures of the presence of halos: white high-value spots.
These are not present in the B-mode map, that only contains the noise from galaxies.
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Figure A.2 Peaks E − B method: comparison of the SNR distribution of the peaks
of the E-mode and B-mode amplitude maps, and difference of the histograms relative to
the truncated catalog. In the top panel we show the SNR distribution of the peaks of the
E-mode map (empty histogram) and the B-mode map (full histogram). The peaks of the
B-mode map, caused by noise only, reach SNR values that are quite lower with respect
to the E-mode peaks. In the bottom panel we have the difference of the counts in each
bin of the E-mode map minus the counts of the same bin of the B-mode map, normalized
over the E-mode counts. We define the threshold (red vertical line) with a given expected
purity, 80%, as the SNR value in which the E-mode map counts become the 80% of the
total (horizontal line); we plot the threshold also in the top figure as a vertical red line.
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Figure A.3 Peaks E − Ê method: comparison of the SNR distribution of the positive
peaks and the negative peaks of the E-mode amplitude map (Ê), and difference of the
histograms, relative to the truncated catalog. In top panel we show the SNR distribution
of the positive peaks of the E-mode map (empty histogram) and the negative peaks in
absolute value, Ê (full histogram). The negative peaks are caused by the noise and by the
negative signal of the lensing effect that is not related to galaxy clusters. In the bottom
panel we have the difference of the counts in each bin of the positive and negative peaks
of the E-mode. We define the threshold (red vertical line) with a given expected purity,
80%, as the SNR value in which the positive pixels map counts become the 80% of the
total (horizontal line); we plot the threshold also in the top figure as a vertical red line.
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Figure A.5 Signal-to-noise ratio analysis of the catalog of detections. In top panel
we show the SNR of the detections as a function of their ID in the catalog, which can be
used to follow the different steps of the detection procedure which starts from the higher
SNR that is ∼9.0 and then rapidly decreases reaching SNR ∼ 3.0 around ID∼100. Below
the strong threshold (solid red horizontal line) the rare jumps due to the cleaning become
more common. The green dashed line represents the weak threshold. In bottom panel
we show the histogram of the SNR distribution of the detection catalog, the counts are
in logarithmic scale; with the solid line we enhance the distribution of the peaks with
SNR > 2.4, the subset found with the strong threshold, while the dashed line is the full
sample of detections. The vertical lines stand for the median of the distributions.
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Figure A.6 Distribution of the matched detections. We show in light blue all the
detections of the complete catalog. The red plus symbol stands for the matched halo with
detection in the weak threshold catalog (SNR > 1.9) while the bigger red cross symbol is
associated only with the detections in the strong threshold catalog (SNR > 2.4).
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Figure A.7 Halo-Detection displacement distribution. In the top panel we show the
distribution of the spatial distance between the position of the halo and the position of the
detection that matches the halo. We expect the position of the halo and the corresponding
detection to be slightly different due to the use of grids in AMICO-WL. We show the
medians of the distributions (vertical lines) and the 1 h−1Mpc matching radius (orange
vertical line). In the bottom panel we show the distribution of the displacement in the
projected plane. The vertical orange line shows the dimension of the pixel used in AMICO-
WL map creation. In both figures the dashed line represents the matched detections using
the weak threshold while the solid represents the subset of matched detections using the
strong threshold.



101

0.0 0.2 0.4 0.6 0.8 1.0
redshift z

14.0

14.2

14.4

14.6

14.8

15.0

15.2

lo
g 1

0(
M

20
0/M

/h
)

Matched detections in the z M200 plane

2

3

4

5

6

7

8

S/
N

haloes
matched detections
matched detections (strong)

Figure A.8 Distribution of the halos as a function of Mass and Redshift. Grey dots
represent all the 464 simulated halos. The colored dots are the full sample of matched
halos, while the ones in the SNR > 2.4 subset are highlighted with a cross symbol. The
color scale of the dots and cross symbols represents the SNR of the detections. The halos
in the regions with high mass, log10 M200/M⊙)/h > 14.3, and redshift ≈ 0.2 − 0.4 are
mostly matched and with high-SNR detections.
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Figure A.9 Signal-to-noise ratio distribution of the matched detections. We show
the distribution of the SNR for the weak threshold detections (dashed histogram) and
the subset of the strong threshold detections (solid histogram); we show the medians
with vertical lines of the same style. The background shaded histogram represents the
SNR distribution of the whole detection catalog. It is clear that most of the un-matched
detections have a low signal-to-noise ratio.
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Figure A.10 In top panel we show the distribution of virial mass (in logarithm) while
in bottom panel we have the redshift distribution for the matched halos. The background
shaded orange histogram is the distribution of the total 464 simulated dark matter halos.
In both panels, the dashed line refers to the full sample, and the solid line to the high-SNR
subset.
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Figure A.11 Distribution of the halos as a function of Mass and Redshift. Grey dots
are all the 464 simulated halos. The colored dots are the full sample of matched halos,
while the ones in the SNR > 2.4 subset are highlighted with a cross. The color scale of
the dots and cross symbol represent the SNR of the detections. The halos in the regions
with high mass, M200 > 14.3 log10(h−1M⊙), and redshift ≈ 0.2 − 0.4 are mostly matched
and with high-SNR detections.
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Figure A.12 Cumulative purity of the sample over different signal-to-noise ratio
thresholds. We show the purity of the catalog of detections over different values of SNR,
from SNR = 8.0 down to the weak threshold of SNR = 1.8. With the vertical lines, we
highlight the two thresholds corresponding to the weak and strong criteria for the detection.
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Figure A.13 Cumulative completeness of the sample as a function of different signal-to-
noise ratio thresholds. We show the completeness of the catalog of detections for different
values of SNR, from SNR = 9.0 down to the weak threshold of SNR = 1.8. With the
vertical lines, we highlight the two thresholds corresponding to the weak and strong criteria
for the detection.
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Figure A.14 Purity over Completeness plot for different signal-to-noise ratio thresholds.
We show the purity of the catalog of detections with respect to the completeness (fraction
of matched halos) for different SNR thresholds. The values of the SNR are shown as
labels of the data points. As a general trend: at high SNR only a few (low completeness)
but most evident objects (high purity) are detected; when lowering the SNR more objects
are found (high completeness) but with the increased possibility of detecting a spurious
source (low purity).
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Figure A.15 Completeness plot in the z − M200 plane for the catalog of detections. In
top panel we show the completeness of the full sample inside the redshift-mass plane as a
color map. We also report the value of completeness in percentage inside each bins. We
use bins of 0.1 in redshift within the range [0.0,1.0] and logarithmic bins of virial mass of
0.2 dex within [13.8,15.2]. We show also as marginal plots the 1-dimensional completeness
for the bins of redshift and mass. In bottom panel we show the same plots for the case
of the strong detections subset (SNR > 2.4).
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