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Abstract

The emergence of cyber-physical systems has brought about a significant increase
in complexity and heterogeneity in the infrastructure on which these systems are
deployed. One particular example of this complexity is the interplay between cloud,
fog, and edge computing. However, the complexity of these systems can pose
challenges when it comes to implementing self-organizing mechanisms, which are
often designed to work on flat networks. Therefore, it is essential to separate the
application logic from the specific deployment aspects to promote reusability and
flexibility in infrastructure exploitation.

Starting from the existing “pulverization” approach, which involves breaking
down a system into smaller computational units that can be deployed on the
available infrastructure, this thesis presents the design and implementation of a
portable framework that enables the “pulverization” of cyber-physical systems.
The main objective of the framework is to pave the way for the deployment of
cyber-physical systems in the edge-cloud continuum by reducing the complexity
of the infrastructure and exploit opportunistically the heterogeneous resources
available on it. Different scenarios are presented to highlight the effectiveness of
the framework in different heterogeneous infrastructures and devices. This thesis
work makes a crucial step toward dynamic deployment in cyber-physical systems
exploiting the edge-cloud continuum.
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Chapter 1

Introduction

With the Internet of Things (IoT), more and more devices are connected to the
network producing a very large amount of data. Cloud computing has been
established as a technology for acquiring computational power and storage in
support of various applications; however, it is not always suitable for handling
all kinds of systems’ requirements: latency, security, and privacy are some of the
main concerns. This comes true especially with IoT systems since they produce
lots of data and in some scenarios, they must respect real-time constraints. For
these reasons, fog computing tries to overcome the cloud’s limitation by defining
a computing model that sits between IoT devices and the cloud. It allows for
the collection, aggregation, and processing of data from IoT devices (or more in
general edge devices) using a hierarchy of computing power. The combination
of fog computing with the cloud can reduce data transfers and communication
bottlenecks to the cloud, and can also contribute to reduced latencies since fog
computing resources are closer to the edge.

Nevertheless, realizing systems that operate in the edge-cloud continuum is an
open challenge [1]: the heterogeneity of the devices combined with the dynamic
nature of the requirements that modern systems must have, leveraging the flexibility
of the edge-cloud continuum is found to be as strategic as it is complex.

Different approaches have been proposed to address the challenges of realiz-
ing systems that well interoperate in heterogeneous infrastructures. Some no-
table methodologies and frameworks are represented by the osmotic computing
paradigm [2], DR-BIP and its extensions [3, 4, 5]. While the first approach is
mainly oriented to distributed microservices, the latter is more focused on the
orchestration of distributed applications by dynamically adapting the system to
the changing requirements basing the systems on the motif concept.

In the CPS context, engineering systems featuring distributed intelligence in
a self-organization fashion is one of the main relevant approaches. In this way,
the global behaviour of the system is obtained by the interaction of the individual
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2 CHAPTER 1. INTRODUCTION

components giving robustness to the system. The current trend of large-scale,
dynamic and heterogeneous Cyber-Physical Systems requires increasingly complex
and diverse infrastructures. Remote clouds offer a seemingly supply of computing,
storage, and services on demand, but this comes with the caveat of high costs
and potential latency issues, as well as data protection concerns that must align
with the specific requirements of each application. Edge computing, on the other
hand, brings resources closer to users, resulting in reduced latency and increased
reactivity, while simultaneously addressing data dissemination concerns.

As stated before, such infrastructures are not easy to manage and orchestrate,
complicating the engineering phase where the logic of the system tends to be
coupled with infrastructure aspects. Generally, this prevents the reusing of design
elements across different scenarios by exploiting the underlying infrastructure
opportunistically.

To tackle this problem in [6] the pulverization approach is proposed: this
framework brakes the system behaviour into small computational pieces logically
linked to sensors and actuators that are continuously executed and scheduled in the
available infrastructure. In this way, the system can be seamlessly mapped onto a
variety of multi-layered deployment infrastructures. It is based on a flexible logical
model which can be decomposed into a set of sub-components with well-defined re-
lationships that can be deployed and wired separately. The pulverization facilitates
the deployment independence of a system, namely the ability to run the application
with no change on various deployments retaining its original functional semantics.
In this way, the application logic will obtain the functional goals independently
of the actual deployment since the choice of the deployment strategy is affected
typically by non-functional requirements such as latency, security, performance and
cost. This approach is formalized to provide an unambiguous specification of what
constitutes pulverization by clarifying subtle aspects of the model and state the
deployment-independence property rigorously.

1.1 Motivation of the thesis work

At the time of writing, the pulverization approach is tested and validated in a
simulated environment. The simulation represents a very important step to figure
out the validity of the approach by testing it in a controlled environment. In a large
view, the simulation represents a powerful tool to validate the correctness of the
systems and to identify the potential problems that may arise in a real deployment.
However, closing the gap between a simulated system and its deployment in a real
infrastructure is not trivial and it is more challenging to do it seamlessly.

A desired development process might be to port the simulated system to the
real one with as few changes as possible. In this sense, it is desired to make use of
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tools that can appropriately handle specific aspects of the infrastructure on which
the system will be deployed without the user having to worry about them, or even
worse having to tie platform-specific aspects in the application logic.

As said before, the pulverization approach has been theorized and verified in
simulation and for this reason, it is not corroborated by any tools or frameworks
that enable the deployment of systems in a real infrastructure leveraging this
approach.

To solve these issues, this thesis aims to pave the way for closing the gap between
the simulation of systems and their deployment by leveraging the pulverization
approach via a dedicated framework.

The developed framework leverages the pulverization approach to orchestrate
distributed applications in the edge-cloud continuum. The framework aims to be
versatile enough to allow pulverization in non-aggregate systems, thus expanding
its scope of applications beyond aggregate computing.

The framework is hosted in Kotlin multiplatform, which allows the framework to
be used on several platforms, including Android, iOS, JVM and native target. This
variety of platforms is fundamental to enable the framework to be used in a variety
of scenarios, spanning from cloud servers to embedded devices. Another relevant
technology adopted in the framework is RabbitMQ, which is a message broker that
allows communication between the different components of the system. The decision
to use RabbitMQ is justified by its compatibility with multiple protocols, including
AMQP, MQTT, and WebSocket, which enables a broad spectrum of supported
devices and platforms. Furthermore, RabbitMQ facilitates several communication
patterns, such as publish/subscribe, request/reply, and routing, thereby offering
significant flexibility in how communications should occur.

To showcase the effectiveness of the framework, some scenarios in the context
of CPS have been identified by using the framework to deploy such systems,
highlighting the potential that pulverization has as a methodology. In particular, the
framework is used in conjunction with embedded systems to recreate a heterogeneous
infrastructure where the framework runs on.

For what concerns the testing of the framework and performance evaluation, an
exhaustive test suite (composed of unit and integration tests) has been developed to
validate the operational semantics of the framework. Moreover, as stated above, the
framework is tested in real scenarios by deploying a set of demos that showcase the
potential of the framework and its resilience to failures. In future work, evaluating
the performance of various deployment strategies of a given system and their impact
on communication in terms of latency and throughput represents a relevant topic
to be investigated.
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Thesis Structure. Accordingly, the remainder of this thesis is structured as fol-
lows. Chapter 2 discusses the background and related works. Chapter 3 summarize
the requirements of the framework and give an overview of relevant deployment
scenarios that are worth to be considered during the validation of the framework.
Chapter 4 presents the framework and its architectural design. Chapter 5 describes
the implementation details of the framework. Chapter 6 shows the validation
process of the framework, including the experimental setup and the results obtained
by the demos. Finally, Chapter 7 concludes this thesis by summarizing its main
contribution, with a focus on future works.



Chapter 2

Background

This chapter is organized into three sections. The first section provides an overview
of the current layered and heterogeneous infrastructure defined by the could-
edge interplay. The second section describes the problem of the deployment
independence of the applications by giving an overview of the actual frameworks and
methodologies. Finally, the third section describes the pulverization methodology
in aggregate computing and cyber-physical systems.

2.1 Layered and heterogeneous infrastructure

Nowadays, electronic devices are capable of generating vast amounts of data, from
measuring natural phenomena to human behavior. The growth of the Internet
of Things (IoT) is expected to connect virtually all objects, leading to a need to
transfer, store, and process unprecedented amounts of data.

Cloud computing has become an accessible platform for storing and processing
data for a variety of applications, including IoT devices. It offers flexibility and
low initial costs, but its adoption has exposed limitations in fulfilling requirements
for real-time, low-latency, and mobile applications. Centralized cloud data centers
are often physically and logically distant from the client, requiring multiple hops
and causing delays and consuming network bandwidth.

The adoption of cloud computing and the increasing ability of edge devices
to generate and consume heterogeneous data requires new distributed computing
infrastructures that can handle diverse application requirements. Recent computing
infrastructures that enact applications at edge devices have improved response
time and reduced bandwidth use. Fog computing has emerged as a paradigm that
combines the ability to run localized applications at the edge with the high capacity
of the cloud, supporting the heterogeneous requirements of both small and large
applications through multiple layers of the computational infrastructure.

5



6 CHAPTER 2. BACKGROUND

Taking advantage of the characteristics of the edge-cloud continuum enables
many opportunities in the Internet of Things field, like having systems that comply
with requirements such as security, data locality, real-time computation, etc. Nev-
ertheless, the deployment of applications in this infrastructure is still a challenge
and several approaches have been proposed to address this issue [1].

In the following section will be provided an overview of the main aspects and
challenges that demonstrate the suitability of combining edge, fog, and cloud
computing for various applications used by the Internet of Things.

2.1.1 Cloud Fog and Edge interplay

This section introduces the concepts and terminology of cloud, fog, and edge
computing, discussing their main characteristics and finally, how those paradigms
can be combined to provide a more flexible and efficient solution for a wide range
of applications.

Cloud computing

Over the last decade, cloud computing has become a widely adopted computing
paradigm for many applications due to its dynamic characteristics such as elasticity
and pay-per-use (achievable via virtualization and containerization), reaching a
mature state.

Cloud providers offer on-demand computing through three main models, which
are Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS) [7]. IaaS provides users with remote access to computing power
as a service, while PaaS offers a platform for software development with necessary
libraries and databases to deploy and run applications, and SaaS provides software
that relies on cloud providers’ infrastructure to offload computing and/or data.
The concept of Everything as a Service (XaaS) has emerged, which includes a wide
variety of cloud service levels.

Cloud services operate under a Service Level Agreement (SLA) that determines
the services offered and the costs for using them. Common pricing models include
charging by time unit, amount of data transfer, and the number of requests. Cloud
computing’s features of elasticity, ubiquitous access, and on-demand provisioning
make it an attractive option, allowing for lower upfront investments and faster time
to market, with reduced operational costs.

Fog computing

The evolution of hardware in personal devices has increased computing capacity
at the edge and the size of mobile devices has shrunk, allowing them to run
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applications with reasonable complexity and quality of service (QoS). As a result,
distributed computing paradigms are being utilized, where edge devices are used
to run applications and store data.

Fog computing creates a bridge between edge devices and the cloud, and
introduces a hierarchy of computing capacity, with fog nodes, cloudlets, or micro
data centers located between the edge and the cloud. This hierarchy can be spread
throughout the network, with nodes higher in the hierarchy having larger computing
capacity and serving more users, while nodes lower in the hierarchy are closer to
the edge and have lower communication delays.

The computing hierarchy in the fog infrastructure can offer a wider range of
service levels, supporting applications that cannot be supported by cloud com-
puting alone. A fog infrastructure can handle applications with a variety of QoS
requirements, as applications can run at a hierarchy level that provides adequate
processing capacity and meets latency requirements. Another consequence of the
use of processing closer to the edge is to reduce (aggregate) bandwidth use in the
network along the path between the edge and the cloud.

Edge computing

Edge computing is a distributed computing paradigm that brings computation and
data storage closer to where it is needed, reducing the distance that data must
travel and minimizing the latency for applications that require quick responses.
Edge computing evolved from the growth of mobile devices and the hardware
evolution of personal devices.

The combination of higher computing capacity and edge networks enabled
distributed computing paradigms that propose the utilization of edge devices to run
applications and store data. Edge computing is characterized by the use of devices
such as smartphones, tablets, and IoT sensors and actuators as sources of compu-
tational and storage resources. These devices have limited computational capacity
and battery life but can support application execution and storage capabilities.

Edge computing is expected to enable new applications in areas such as aug-
mented reality, autonomous vehicles, and smart cities, among others, by allowing
data processing and analysis to occur closer to the data source, reducing response
time and network congestion. Edge computing also enables the collection of data
from a variety of sources and the aggregation of data at the edge for further
processing, analysis, and decision-making.

Fog computing and edge computing are two related but distinct concepts in
the field of distributed computing. However, they are often used interchange-
ably or confused with one another, which can lead to misunderstandings and
miscommunication.
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One reason for the confusion is that both fog and edge computing refer to dis-
tributed computing infrastructures that process data closer to where it is generated,
such as on the edge of the network. They both aim to reduce network latency
and bandwidth consumption by processing data locally rather than sending it to a
centralized cloud server.

However, the main difference between fog and edge computing lies in the level
of hierarchy at which they operate. Edge computing typically refers to processing
that occurs at the outermost layer of the network, closer to end-user devices and
sensors. It involves lightweight computing devices and microservices that are often
embedded in sensors, smartphones, or IoT devices.

Fog computing, on the other hand, involves a hierarchy of computing nodes
that are distributed between the edge and the cloud. These nodes, also known as
fog nodes, cloudlets, or micro data centers, can be located at access points, routing
devices in the network, or even at the core of the network. The idea is to provide a
distributed infrastructure that can handle data processing and analysis at different
levels of the network hierarchy while minimizing latency and bandwidth usage.

In conclusion, while fog computing and edge computing share similar goals and
concepts, they are distinct in their approach and level of hierarchy.

Edge-cloud continuum problems

The edge-cloud continuum presents many challenges that must be addressed to
optimize its performance. One of the primary issues is managing the resources
distributed across the continuum in a way that ensures efficient resource utilization
and maintains QoS levels. This is particularly challenging due to the heterogeneity
of devices and applications that comprise the continuum, as well as the dynamic
nature of the network topology caused by device mobility and varying application
requirements.

The movement of services in the Edge-Cloud infrastructure is an important
consideration due to the inherent heterogeneity of the devices and applications
in the system. As edge and fog computing become more prevalent, there is a
greater need for services to move between devices in the hierarchy to optimize
the use of resources and provide the required Quality of Service (QoS). However,
managing the automatic adaptation of services to different deployment locations
while considering resource constraints at each level of the infrastructure is a major
challenge. Additionally, the heterogeneous network topology and frequent changes
in device mobility and application requirements make it even more complex.
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2.2 Deployment independence

The advantages of integrating different computing paradigms, such as cloud and
edge computing, have already been acknowledged by numerous industry and
academia-based initiatives, one example is the OpenFog Consortium 1.

The cloud-edge computing integration is an open research topic since each of the
two paradigms has its use cases and advantages. The cloud computing paradigm is
well suited for large-scale applications that require high computational power and
storage capacity. On the other hand, edge computing is well suited for applications
that require low latency and high reliability, such as autonomous vehicles, smart
cities, and industrial automation. The integration of the two paradigms can provide
a more flexible and efficient solution for a wide range of applications. Nevertheless,
the integration of the two paradigms is not trivial, and different approaches can be
used to tackle this problem.

In this context, we refer to “deployment independence” as the ability of an
application to be deployed on any computing infrastructure by separating the
business logic from deployment and infrastructure aspects. In this way, the system
logic can be developed without considering the underlying infrastructure, since
they are orthogonal aspects. This approach, on the one hand, allows for better-
engineered systems where aspects of development and deployment are separated;
while on the other hand, one can make the best use of the available infrastructure
according to the dynamics of the system.

The following section will review the main methodologies that are in the
literature and aspire to develop systems that integrate cloud-edge infrastructure.

2.2.1 Actual frameworks and methodologies

Many frameworks and methodologies have been proposed in the literature to handle
the edge-cloud continuum problem. The different approaches proposed vary in
complexity and use cases, each trying to solve a specific problem.

Among the methodologies and frameworks worth mentioning is osmotic com-
puting which operates in the IoT environment focusing on a three-tier architecture
by leveraging microservices that can be moved around the infrastructure and
frameworks such as DR-BIP and DReAM that are based on the concept of ”motif”
and interaction rules and reconfiguration rules to manage system deployment.

The following is an overview of how these two methodologies work, highlighting
their main features and how they try to solve the integration problem.

1https://opcfoundation.org/markets-collaboration/openfog/

https://opcfoundation.org/markets-collaboration/openfog/
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Osmotic computing

Osmotic computing [2] utilizes a concept known as a MEL (microelement) to en-
compass resources, services, and data. In the realm of IoT, MELs can be structured
as a graph and relocated across various infrastructures based on factors such as
cost, security, privacy, and performance. MELs encapsulate four distinct elements:
microservices that provide specific functionality, microdata representing the flow
of information to and from sensors or actuators, microcomputing that performs
various computational tasks using real-time and historic data, and microactuators
that control the state of physical resources using actuators at the network edge.

Each application can be decomposed into (cooperative) subprograms to improve
deployability and scalability. This decomposition, in osmotic computing, defines
several interacting MELs, which are atomic entities providing simple functional-
ities. A graph of MELs can include several microservices (MS) and microdata
(MD) combined to provide a specific behavior. In osmosis, containers (or virtual
components) are used to deploy dynamically and support the migration of MELs
across heterogeneous systems.

In osmotic computing, the computing environment is divided into three layers:
cloud data centers (L1), edge systems and micro data centers (L2), and IoT devices
(L3). At L3, the IoT devices capture raw data from the environment at a fixed
frequency or by events. The L2 layer is composed of network devices such as routers,
switches and gateways, supported by protocols like OpenFlow or hardware that
enables network components to be accessed remotely. Finally, L1 is composed of
data centers, which are large-scale computing facilities that provide a large number
of computing resources and storage capacity. The L2 layer can collect the data
coming from devices at L3 enabling the collection of raw data and performing some
computations before transferring these data to L1.

Osmotic computing is an extension of elastic resource management, in which
the deployment and migration strategies of microelements (MELs) can change
over time based on changing infrastructure and application requirements. Osmotic
computing automates the configuration and reconfiguration of MELs based on
factors such as quality of service, security, and runtime perturbations.

The purpose of an osmotic platform is to balance the needs of both the in-
frastructure and the applications by automatically relocating microservices to
appropriate deployment locations. This approach focuses mainly on systems that
are centrally managed and coordinated.

DR-BIP and DReAM framework

The Dynamic Reconfigurable BIP framework (DR-BIP) [3] includes three main
aspects of dynamism: (I) the ability to describe parametric system coordination for
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Figure 2.1: Osmotic computing architecture reference. Picture taken from [2].

an arbitrary number of instances of component types, (II) the ability to add/delete
components and manage their interaction rules depending on dynamically changing
conditions, and (III) allow services to seamlessly continue their activity on any
available device or computer (fluid architectures [8]). The DR-BIP framework is
an extension of the Behavioral Interconnection Protocol (BIP) [9] and Dy-BIP (a
former extension that support dynamic interactions) [4].

The DR-DIP framework provides support for runtime changes in the system,
including component creation and removal, migration between motifs, and both
programmed and triggered reconfiguration. The use of motifs allows components
to interact with others based on their behavior and interaction rules within their
new motif, providing a flexible framework for coordination. The platform shares
similarities with DReAM [5], but the use of constraints allows for more expressive
coordination.

DR-BIP uses motifs as the basic unit for describing dynamic architectures
(see Figure 2.2). Each motif includes the behavior of components, the rules for
interaction between components, and the rules for reconfiguring the motif, including
adding, removing, or moving components. Motifs are structurally organized as the
deployment of component instances on a logical map. Maps are arbitrary graph-like
structures consisting of interconnected positions. Deployments relate components
to positions on the map. The definition of the motif is completed by two sets of
rules: (I) the interaction rules, which define the behavior of the components and
the interaction between them, and (II) the reconfiguration rules, which define the
conditions under which the motif can be reconfigured.

Systems are defined as collections of motif instances, each of which can evolve
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independently or in coordination with other motifs through shared components
or inter-motif reconfiguration rules. Inter-motif reconfiguration rules also allow
for the creation and deletion of motif instances and the exchange of components
between motifs.

DR-BIP’s behavior in a motif-based system is defined in a compositional way,
where every motif has its own set of interactions determined by its local structure.
These interactions remain constant until the motif executes a reconfiguration action.
In the absence of reconfigurations, the system maintains a fixed architecture and
operates like a normal BIP system. Interactions do not affect the architecture,
while system and/or motif reconfigurations change the architecture, but do not
impact components, meaning running components retain their state, even though
new components may be added or removed.

Figure 2.2: Motif-based System Concept. Picture taken from [3].

2.3 Pulverization in Aggregate Computing and

CPS

This section presents a brief overview of the state of the art in the field of aggregate
computing and cyber-physical with a main focus on the pulverization and which
problems try to solve.

Self-organizing systems are a way of engineering distributed intelligence in which
the system’s global behavior and structure are achieved through the continuous
interaction of simple individual components. This approach allows for inherent
adaptation to unexpected or unforeseeable situations and has been applied in
various contexts, such as human social behavior, and swarm robotics.
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Artificial self-organizing systems are software-based systems that regulate their
internal structures and behavior without external control, often by mimicking
the self-organization mechanisms observed in nature. Self-organizing approaches
are applied to distributed cyber-physical systems (CPS), where individual system
components interact with each other based on physical proximity to collect and
process information generated by distributed sensors and use it to control the
system behavior.

However, recent advances in technology have made modern CPS increasingly
large-scale, heterogeneous, and dynamic, which makes it challenging to engineer
distributed intelligent systems that can be deployed in different contexts and
exploit available resources opportunistically. To address this problem, a framework
based on the pulverization approach is proposed [6], which breaks the overall
system behavior into tiny pieces of computation linked to sensors, actuators,
and neighboring components. These sub-components can be deployed and wired
separately, allowing for a separation of concerns between the self-organization logic
and the deployment context.

The pulverization approach can be implemented in the framework of Aggregate
Computing [10], where global self-organizing behavior can be specified declaratively
by composing pure functions expressing increasingly complex distributed algorithms.
This approach allows for the design of distributed adaptive behavior for large-scale
CPS that can be deployed in a deployment-independent way, meaning that the
behavioral description of the self-organization logic remains unchanged regardless
of the specifics of the deployment context.

The pulverization approach was exercised simulating a CPS whose aim is to
reduce the contribution of household winter heating to air pollution by imposing a
custom maximum temperature relative to the level of particulate matter (PM) in
the area surrounding the household [6]. The system implements the functionality in
a self-organization fashion, where there isn’t a central coordinator and the system
autonomously organizes its behaviour even in the face of disturbance. The goal of
the experiment is to show that via the pulverization approach, the system’s business
logic, defined once, can be reused in different deployment schemes, preserving its
functional behavior.

Another initial research effort [11] was made by combining the pulverization
approach with the multi-tier programming paradigm [12]. The multi-tier program-
ming paradigm defines a distributed architecture in a single compilation unit with
a single language. Once the program is specified, the compiler (or the runtime)
is responsible for splitting the computation among different peers. A language
that supports multi-tier programming is ScalaLoci [13, 14], a type-safe multi-tier
language hosted in Scala. A ScalaLoci application is structured through peers and
ties,where peers abstract over the locations representing the components of an



14 CHAPTER 2. BACKGROUND

application, while the ties define the connection between peers. Only tied peers
can communicate with each other. The example provided in [11] shows how the
pulverization approach can be fitted into the multi-tier programming paradigm,
by defining a logical node as a peer which in turn is composed of a set of peers
representing the pulverized device. Moreover, the example shows the conjunction
of ScaFi, a Scala internal DSL that can run on the JVM or in the browser and
ScalaLoci showing how this could be the foundation stone of a unified framework
living in the Scala ecosystem. Finally, the example shows how different deployment
schemes can be defined by changing the ties between peers by preserving the
functional behaviour of the system.



Chapter 3

Requirements

This chapter introduces the pulverization approach by explaining the terminologies
and concepts that will be used in the rest of the thesis. The main principles of
pulverization are presented, followed by a description of the pulverization domain
model supported by some relevant examples. Next, the framework’s requirements
are reported and, finally, the chapter concludes with relevant scenarios that are
worth using to test the use and effectiveness of the framework.

3.1 Pulverization domain model

Pulverization is an approach to conceive self-organization in distributed systems
that facilitate deployment independence, i.e., the ability of an application to run
with no change on various deployments while retaining its original functional
semantics. The main idea is to organize the structure and the behaviour of a
system in a way that the developer can focus on the logical model, abstracting
from the deployment details, scheduling and communication. The logical model
can be partitioned into a set of software components that can be deployed on the
available infrastructure, while the application logic will preserve the functional
goals independently from the actual deployment.

To better formalize the terminology coming from the pulverization, the following
ubiquitous language [15] is proposed in Table 3.1. The main reasons for the use of
this ubiquitous language are to avoid ambiguity and to ensure that the concepts
are understood in the same way by anyone who approaches the pulverization.

Henceforth, concepts characterizing pulverization will be used with the meaning
given in Table 3.1.

A Logical Device is the representation of a device in the system abstracting
from the specific deployment details. It is composed of five components: Sensors,
Actuators, Behaviour, Communication and State while the interaction between them

15
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Concept Definition

Sensors Component that represents a set of logical sensors
Actuators Component that represents a set of logical actuators
Behaviour Component that models the device behaviour
Communication Component that handles the interaction with neigh-

bours (other devices)
State Component the holds the representation of the de-

vice’s knowledge
Thin host A device that has limited computational power and

memory
Thick host A device that has a powerful computational power

and memory
Logical device A logical representation of a device composed of

several components which they can be deployed on
the available infrastructure

Logical neighbouring link Defines a logical connection between two logical de-
vices defining the network topology. The aforemen-
tioned structure can change over time.

Table 3.1: Pulverization Ubiquitous language.

sensors actuators

behaviour communication

logical
device

state

β

σ

χ

α

κ neighbour
device

β

σ

χ

α

κ

Figure 3.1: Representation of a logical device split into its components and a
connection with one of its neighbours
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determines the device’s logic in the system. The Figure 3.1 shows a representation
of a logical device split into its components defining also a link with another device.

The Sensors σ and Actuators α components represent the way the device
interacts with the environment: the former is used to acquire information from the
environment, while the latter is used to perform actions on the environment. The
State κ component represents the device’s knowledge and abstract from the actual
storage mechanism or representation. The Communication χ component handles
the interaction with neighbours by holding the information about the identity of
the neighbours and how to reach them. The send and receive operations occur
through respectively the input channels and the output channels, where the output
channel of a device is connected to the input channel of its neighbours. Finally, the
Behaviour β component models the device behaviour via a function which maps
the state of the device to a new state, defines a set of prescriptive actions to be
performed and a set of coordination data to be propagated to the neighbours.

Each device performs a MAPE-like cycle that includes the following steps
and that defines the interactions between the device’s subcomponents as depicted
in Figure 3.1, where the arrows denote the message flow:

1. Context acquisition: the device acquires information from its sensors and
the communication component, storing them in the device state

2. Computation: the device behaviour function is computed against the device
state

3. Coordination data propagation: coordination data is sent to all the
neighbour’s device

4. Actuation: the actuators are activated to execute a set of prescriptive
actions

A platform is a collection of physical hosts connected by a dynamic graph of
physical network links, representing the communication channel between two hosts.
A host is an entity with a unique identifier (e.g. an IP address, URI resource, etc.)
and can be a computer system, an embedded device holding sensors and actuators,
a virtual machine or a software container. The type of communication channel (the
link between hosts) may vary depending on the underlying network infrastructure
and protocols. The hosts types are divided into two categories: thin hosts and
thick hosts. Thin hosts are devices with limited computational power and memory,
while thick hosts can compute and may even do so on behalf of multiple logical
devices.

The deployment of the CPS can be defined as an allocation map placing
each component of each device to specific hosts in the platform. An example
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Figure 3.2: Example of instantiation of the CPS model. Picture taken from [6].

of a deployment can be seen in Figure 3.2. In the example is assumed that all
the sensors and actuators are deployed on the same host, though this is not a
requirement, sensors and actuators may be deployed on different hosts.

Examples of deployment are provided in Figure 3.3 showing an increasing
number of responsibilities are centralized. The Figure 3.3a shows a peer-to-peer
style deployment where, for each device, all the components are deployed on the
same host. This style is not suitable in a sensor network where a device is designed
to operate for a long time using solely battery power and is not equipped with
enough power to host a β-component. The Figure 3.3b shows a broker-based
style deployment where all the χ-components are deployed on a separate host
(broker). This is a common scenario in IoT systems where a broker is used to
handle the communication between devices. The Figure 3.3c shows “big data
in the cloud” style deployment where all the κ-components are deployed in the
cloud enabling big-data analysis. The Figure 3.3d shows an embedded device with
sensors/actuators style deployment where all the α and σ-components are deployed
on the same thin host while all the remaining components are deployed on a thick
host. This scenario covers the case of a device with limited computational power
and memory by offloading the β-component to a thick host.

3.2 Framework requirements

The main objective of this thesis work is to develop a framework that can “fill
the gap” between the modelling of a CPS (and its simulation) and the physical



3.2. FRAMEWORK REQUIREMENTS 19

Figure 3.3: (a) Peer-to-peer style; (b) broker-based style (e.g. MQTT); (c) Big
data in the cloud style; (d) embedded device with sensors/actuators. Picture taken
from [6].

deployment of the system on an infrastructure. The framework should model the
pulverization concept and provide a clear separation between the behaviour of the
overall system and low-level details of the deployment via a simple and concise
API. Also, the framework must capture the concepts defined by the pulverizing
approach to provide a good starting point on which the framework can be evolved.

Business requirements

As previously mentioned, the main objective of the framework is to provide a
way to deploy CPSs via the pulverization approach. The business requirements
identified are reported as follows:

• The pulverization approach can be used to simply and effectively deploy CPS
systems

• The framework should be flexible to support different deployment strategies

• The framework should be extensible to support different communication
protocols
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User requirements

The user requirements are identified from the perspective of the developer who will
use the framework. The user requirements identified are reported as follows:

• It should be possible to configure the system to deploy by defining the
structure of each device logical device

• It should be possible to configure the deployment unit for each logical device

• It should be possible to configure the logical devices and deployment unit via
a DSL

• It should be possible to create a sensors component

• It should be possible to create a actuators component

• It should be possible to create a communication component

• It should be possible to create a behaviour component

• It should be possible to create a state component

Functional requirements

The functional requirements, obtained from the user requirements, are reported
below:

• Multiple logical devices can be defined

• For each logical device, the components that compose it can be defined

• Each component defined for a logical device must be configured to be deployed
on a specific tier of the infrastructure

• A check must be performed to ensure that the configuration of the logical
devices is valid and consistent

• Links between logical devices can be defined

• Multiple deployment units can be defined for each logical device using the
system configuration

• The user-defined components can be added to the deployment unit

• The deployment unit can be started
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• The deployment unit can be stopped

• Prevent the run of the deployment unit if the configuration is not honored

• Different protocols can be added to the deployment unit to enable intra-
component communication

• For each component, a custom implementation of the logic that implements
how the communication with other components should occur can be provided

Non-functional requirements

• The framework should be easy to use by providing a simple and clean API
simplifying the development of the system and adoption of the framework

• The framework should be extensible in the sense that the user can customize
some aspects of the framework like the communication protocols, and the
logic of each component

• The framework should be flexible to support different deployment strategies
coping with different scenarios and infrastructures

• The framework should support a wide range of architectures to support a
heterogeneous set of devices enabling wide adoption of the framework

3.3 Reference scenarios

This section gives examples of scenarios in which the framework can be used to
implement a Cyber-Physical System. The proposed scenarios are intended on the
one hand to show in what contexts the framework can operate and on the other
hand to provide guiding examples of using the framework for users interested in
using it.

The following are three examples that can be used as a reference for applying
the pulverization approach.

The first example is the simplest scenario where the pulverization can fit in and
can be considered the “hello world” of the pulverization. The scenario is a simple
system composed of a single device whose objective is to control the moisture level
of the soil. The device is composed of a sensor that measures the moisture level of
the soil and an actuator that controls the irrigation system. The objective is to keep
the moisture level of the soil at a predefined level. From this description emerge a
device composed of the following components: sensor, actuator, behaviour, and
state. The system is deployed on three hosts: two thin host which host the sensor
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and actuator components and a thick host which hosts the behaviour and state
components. In this scenario, the device is “decomposed” into sub-component that
are deployed on different hosts and the communication between the components
is handled by the framework obtaining the global behaviour of the device. This
example shows the basic building blocks of pulverization by realizing a system with
only one device focusing on the use of either thin hosts and thick hosts.

The second example is a more complex scenario where multiple devices come into
play and where communication between them is the main focus. In this example,
two types of devices are defined: one that needs to find another device and the
device that needs to be found. The first device described may be a smartphone,
while the second may be an embedded device with low computational and memory
characteristics. The goal of this example is to use smartphones to find the embedded
device: the closer the smartphones get to the embedded device, the more intense
light the embedded device will produce; conversely, as the smartphones move
away, the light will decrease in intensity. Meanwhile, smartphones communicate
with each other by exchanging information about the distance to the embedded
device that needs to be found. On smartphones are executed the sensor and
actuator components, while behavior and state components are offloaded to the
cloud. Similarly, the embedded device hosts only the actuator component while the
behavior is offloaded to the cloud. As for communication between the devices, all
communication components are instantiated in the cloud. This scenario emphasizes
the communication that takes place between devices in the system: devices are
decomposed into their components that are then instantiated in the infrastructure
where communication does not reside in the devices themselves but rather on the
cloud, nevertheless the correctness of system operation will be preserved.

The last example proposed is quite similar to the previous one but the focus is
on having some devices perform the behavior locally while others are offloaded to
the cloud. This example is intended to show that it is possible to support different
ways of deploying the system seamlessly. The goal of the example is to implement a
system that measures the level of aggregation of people (leveraging a mobile device)
through, for example, a crowd estimation algorithm. The system consists of many
devices that interact with each other and exchange information about the distance
between them. This information is then shared with an additional device in the
network that is responsible for making an estimate of the crowd and performing an
actuation proportional to the computed value. The peculiarity of this deployment
lies in the fact that some devices perform the behavior computation on the device
itself, while other devices perform the computation offloaded in the cloud. Thus,
by varying the system deployment strategy for the same device, we want to observe
that the system maintains its functional correctness.
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Design

This chapter discusses the design elements characterizing the framework by illus-
trating how the pulverization concepts were modeled and what adaptations were
made to make the pulverization approach better fit in the framework. For each
module of the framework, the relevant design choices are discussed and finally, a
detailed description of the interactions between the framework’s modules is also
provided to better understand the framework’s architecture.

4.1 Framework architecture

The framework is articulated in modules: each module takes into account a specific
aspect of the pulverization. The modularity of the framework enables from one
side, the possibility to use only the needed modules, preventing the bloating
of the project; on the other side, modularity allows the customization of some
implementations of the framework.

The two fundamentals modules of the pulverization framework are: core and
platform which respectively define the core concepts of pulverization like the type
of components and all the logic needed to run the pulverized system like defining
the components reference, loading the user-defined components and setup the
communications between all of them.

The third module is rabbitmq-platform which is highly dependent on the two
modules described above and its purpose is to rely on RabbitMQ1 to enable
the communications between all the components. This component manages all
the low-level aspects related to communication like the connection to the broker,
declaring queues and so on.

1RabbitMQ is an open-source message-broker (or message-oriented-middleware) that origi-
nally implement the AMQP protocol and has since been extended with a plug-in architecture to
support other protocols like MQTT.

23
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In Figure 4.1 are represented all the framework’s modules and the relationship
between them.

core platform rabbitmq platform

core

configuration dsl component

communication

componentref platform dsl

rabbitmq

User

«uses»«uses»

Figure 4.1: Package diagram showing the modules that constitute the framework
and their relationship.

In the Table 4.1 are reported a synthetic representation of the modules that
constitute the framework with a corresponding description.

Module Description

Core Defines all the pulverization concepts, exposing them as
interfaces. Provides a DSL to configure each logical device
in the system and a way to define the relationship between
them.

Platform Is responsible for executing all the device’s components on
the available infrastructure. Provides a DSL to configure
the platform specifying which components should be used.

RabbitMQ Platform Represents a possible implementation for enabling intra-
component communication leveraging RabbitMQ as pro-
tocol.

Table 4.1: A tabular representation of the modules that constitute the framework.

The pulverization framework relies on a three-level architecture. Each level
of the framework’s architecture is designed to use the functionalities of the layer
above and makes accessible their functionalities to the layer below.

The described architecture takes with it the implicit “one-way dependency”
where the layer below depends on the layer above and not vice versa. The Figure 4.2
depicts the architecture’s choice made to design the framework.
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Platform

RabbitMQ &
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Figure 4.2: Architectural diagram showing how the pulverization framework is
designed.

Given that the framework is intended to be used by multiple users, it is essential
to reduce the cognitive effort required by users to use it effectively. By prioritizing
the minimization of cognitive effort, the framework can be made more accessible,
user-friendly, and ultimately, successful in achieving its intended purpose.

To achieve this goal, the framework is designed following a “pyramid-like”
architecture (see Figure 4.3) where the tip of the pyramid represents the core
pulverization concepts that the user use and implements to build up the system.
Those abstraction needs to be as clear as possible from a software engineering
perspective to avoid the user to be overwhelmed by the complexity and also because
these interfaces depend on the whole framework. As you move down the “pyramid”,
the complexity of the modules increases but the user’s knowledge needed to run
the framework decreases.

By designing the framework in this way, we open up different usage scenarios
such as a basic use that requires only an understanding of the basic concepts, to
advanced uses that require a deep understanding of the framework enabling its
complete usage and extension.

The sections below will describe the architectural choices made for each frame-
work’s module.

4.1.1 Core module

Architecturally, the core module is rather simple. Its simplicity is a consequence
of the fact that this module is the main entry point for the user, and the lower
the complexity of this module, the faster the user can become familiar with the
framework. Moreover, a correct design of the interfaces defined in the core module is
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Figure 4.3: A correlation between the framework’s complexity and the required
user’s knowledge to use the framework.

a crucial aspect to consider to be aligned with the pulverization concepts illustrated
in the article [6].

The pulverization represents a device as the combination of five components:
state, behaviour, communication, sensors and actuators [6]. All of those concepts
are modeled by the framework through interfaces that the user will implement
based on the specific scenario.

PulverizedComponent

deviceId: String
initialize()
finalize()

State

get()
update()

Behaviour

invoke()

Communication

send()
receive()

Sensor

sense()

Actuator

actuate()

SensorsContainer ActuatorsContainer

PulverizedComponentType LogicalDeviceConfiguration

* *

Figure 4.4: Class diagram showing the interfaces defined by the core module.

The Figure 4.4 shows the concepts defined by the core module and their
relationship.
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This module provides a DSL to generate the configuration needed for the
platform to run. In particular, the DSL provides a simple, clean and handy way
to create in a declarative fashion how many logical devices should the platform
manage, and how those devices are made.

4.1.2 Platform module

The platform module defines the enabling concepts for system execution like intra-
component communication and provides an abstraction for representing a remote
component and how to reach it; finally, it manages all the machinery needed to
run the system.

The highly distributed nature of a “pulverized system” has forced the design of
the framework to abstract from the actual place where components are actually
deployed; in this way, we avoid the need for the user to specify and manage specific
aspects of deployment but can focus solely on application logic while remaining
adherent to the objectives of the pulverization, which among many want to separate
aspects of deployment from aspects of application logic [6].

Although the abstractions defined in this module are fundamental to the execu-
tion of the system, their understanding by the user is not essential. Nevertheless,
their understanding becomes crucial when the user wants to extend the framework
with new features, like implementing a new protocol to enable intra-communication
components.

As said before, communication between components is a fundamental aspect to
consider; for this reason, the communicator concept comes in. The communicator
abstracts the way how the communication between two (pulverized) components
occurs. The design of this component abstracts from the message format and the
type of the involved components, effectively making the communicator highly generic
and delegating all those complexities to the specific communicator implementation
used by the platform (see Section 4.1.3).

Finally, the platform module provides a DSL to allow the user to instantiate
the platform and then actually run the system. The DSL allows, declaratively, to
specify the components intended to be executed in that specific deployment unit, as
well as indicate which specific communicator implementation to use. In Figure 4.5
is depicted the overall architecture of the platform module.

4.1.3 Rabbitmq-platform module

This module implements a possible communicator that bases its operation on
RabbitMQ. Although this module, at the time of writing, represents the only
implementation of a communicator, this does not mean that it should be the
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Figure 4.5: Class diagram showing the interfaces defined by the platform module.

only possible solution. Other communicators based on different technologies and
infrastructures will likely be implemented in the future.

In this module, all the communication aspects that will be used for communica-
tion between components of the pulverized system are defined. The design of the
framework delegates to these types of implementations to handle low-level aspects
like connections, retry on failure and so on.

While this module (or more generally this kind of module) requires a very
good understanding of the concepts defined in section 4.1.2 to be implemented, it
requires no cognitive effort on the user side to be used.

4.2 Data flow in the framework

A device, in pulverization, obtains its logical behavior through the interaction of
its constituent components. The communications between the components and the
related exchange of messages represent fundamental aspects of understanding how
the behavior of the device is obtained. The “fragmentation” of the devices into
components allows the system to work independently from the specific deployment,
focusing entirely on the business logic of the application. Is the responsibility of
the framework to take care of the communication between components, and define
how those communications should be handled.

The following sections will describe the data flow in the framework, from the
perspective of the components and the device.
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4.2.1 Components interaction

The original formulation of the pulverization defines the component’s interaction
as follows (see Figure 4.6):

sensors actuators

behaviour communication

logical
device

state

β

σ

χ

α

κ neighbour
device

β

σ

χ

α

κ

Figure 4.6: Design of the interactions between components proposed in the original
article [6].

Four interactions are involved in pulverization:

• Behaviour to State: the Behaviour read from the State the sensed values,
the communications and the current state, then update the State with
information like new communication to send to all the neighbours, a set of
prescriptive actions to perform and the new state.

• Sensors to State: the Sensors send to the State a set of sensed values.

• Actuators to State: the Actuators receives from the State a set of
prescriptive actions to perform on the environment.

• State to Communication: the State sends to the Communication a new
message to send to all the neighbours and correspondingly the Communica-
tion send to the state all the messages coming from the neighbours.

Despite this formulation being very clear and reasonable, it requires some
extra communication to achieve the result. For example, when the Behaviour
component computes the new communication to send to all the neighbours, it needs
to send it to the State component, which will then send it to the Communicator
component. This not represents a problem per se but forces an extra step to
complete the communication, resulting in possible inefficient communication and
complexity of the framework.

This kind of “extra communication” can be observed also in other component in-
teractions, like the one between Sensors/ Behaviour and Actuators/Behaviour.
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In all of those cases, the State component is involved in the communication creating
an extra step.

The framework uses a different formulation of the component’s interaction to
reduce the extra communication simplifying the overall communication pattern.
This formulation is depicted in Figure 4.7.
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Figure 4.7: Interaction between components changed to best fit into the framework.

This new formulation is based on the fact that the behaviour component has
a direct dependency on all the other four components, in this way, the behaviour
component can directly interact with the other components without the need to be
intermediated by the State.

The component’s interaction is now defined as follows:

• Sensors to Behaviour: the Sensors send to the Behaviour a set of sensed
values.

• Actuators to Behaviour: the Actuators receives from the Behaviour a
set of prescriptive actions to perform.

• Communication to Behaviour: the Communication sends to the Be-
haviour a set of communications from the neighbours and receives from the
Behaviour the new communication for the neighbours.

• State to Behaviour: the Behaviour read from the State the current state
and write to it the new state.

Now, the Behaviour component is central in the communication between
components, and it is the only component that needs to interact with all the other
components.

Below, is presented a detailed description of each component’s interaction with
the Behaviour component.
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For what concern the Sensors and Actuators components, the interaction
with the Behaviour component is specular: the sensors send to the behaviour
the sensed values and the actuators receive from the behaviour the prescriptive
actions to perform. The sequence diagrams in Figure 4.8 show the interaction of
the sensors and actuator with the behaviour.

Sensor

Sensor

Actuator

Actuator

Behaviour

Behaviour

loop
sense()

send sensed value

compute function

send prescriptive action

actuate()

Figure 4.8: Interaction between sensors and actuators with the behaviour.

The Communication and Behaviour interaction is bidirectional, which means
that the communication sends to the behaviour all the messages coming from the
neighbours and the behaviour sends to the communication component the new
messages that should be propagated to the neighbours. Reasoning on the way
this interaction occurs could lead to modeling it using a specific pattern (e.g.
synchronous or asynchronous) but is fundamental to abstract over the specific
pattern giving the freedom to use the one that better fits the current scenario. The
sequence diagrams in Figure 4.9 shows the interaction between the communication
and behaviour components using a communication pattern which not represents
the only possible one.

Even the State/Behaviour interaction is bidirectional. The behaviour queries
the state component to get the current state, then, the behaviour computes the new
state and writes back to it. Even in this case, the way this interaction is modeled
is not relevant and should be abstracted over the specific pattern. The sequence
diagrams in Figure 4.10 shows the interaction between the state and behaviour.
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Devices
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Communication

Behaviour

Behaviour

loop
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loop
compute function

new message
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Figure 4.9: Interaction between communication and behaviour.

4.2.2 Device cycle

In the previous section, we looked at what interactions occur between the various
components. In this section, we analyze how these interactions are synchronized to
ensure the overall operation of the device.

By device cycle, we mean the sequence of operations that the device must
perform to execute its functional logic. In the context of pulverization, this cycle is
pre-determined and well-structured.

The cycle consists of the following steps, as previously described i Chapter 3:

• Context acquisition: the device retrieves information from sensors and com-
munications.

• Computation: the behaviour function is applied using the state, sensors and
communications, producing an output.

• Coordination: the coordination data is sent to all the neighbours.

• Actuation: the actuators are activated to execute the prescriptive actions
produced by the behaviour.
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loop
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update

Figure 4.10: Interaction between state and behaviour.

Given the highly distributed nature of pulverization, it is quite complex to
manage this cycle properly. For this reason, it is left to the platform to manage
any synchronization to ensure that the cycle runs smoothly.

To deal with this problem, a model was created that abstracts from where
the various components are deployed, thus creating a uniform level to access
the components while delegating to the platform the logic on how to reach the
component “physically”. In this way it is also possible to make optimizations on
communications, e.g., if two components belong to the same deployment unit, then
they communicate directly in memory, otherwise, they take advantage of one of
the provided implementations to communicate over the network.

The modeling provided for this problem involves the use of two concepts: the
ComponentRef and the Communicator. The former embodies the concept of
“reference to a component” abstracting from where the component is physically
deployed. In this way, the communication with another component can be done
seamlessly. The latter is used by the ComponentRef to communicate with the
component it refers to. The Communicator manages all the low level aspects of
the communication, e.g., the protocol used to communicate, the serialization of the
data, etc.

Is the responsibility of the platform to create the right Communicator for each
ComponentRef based on the initial configuration given by the user. Separating
the reference to a component from how the communication occurs, allows the
platform to optimize all the communication and change the communicator based,
for example, on the new deployment.
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Chapter 5

Implementation

This chapter discusses in detail all the implementation aspects of the framework,
showing all its characterizing elements. First, the reasons for choosing Kotlin as
the language to implement the framework are explained. Then, for each module,
the logic governing it, the main classes, and usage scenarios will be analyzed.
Finally, the chapter will conclude with a discussion of the configuration DSL and
the platform DSL and how they support the user in the system configuration.

5.1 Languages with multiplatform targets

Pulverization is born in the context of CPS where device heterogeneity is a real
scenario. For those reasons, we can deal with networks of embedded devices (which
have very limited computational resources) up to networks of computers with high
computational power and memory. Nowadays, architectures that combine these
two scenarios are increasingly common, thus having to manage architecturally
heterogeneous networks of devices.

For these reasons, it is necessary to build a framework that can support a wide
range of architectures and platforms to maximize the number of devices on which
the framework can run.

In this context, the choice of the language to implement the framework is crucial.
A cross-platform language (or even known as multiplatform language) is a language
that allows the same code to be compiled for different platforms. The trend over
the last years is to use the same language to span over several runtime and VMs
(e.g. JVM, JavaScript, native platforms, etc.) in order to reduce the effort of
maintaining the codebase and to increase the portability of the application. The
other main advantage of using a multiplatform language is that all the shared
concepts and logic can be implemented in a single codebase that can be reused in
all the specific platforms.

35
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In this way, we can use one programming language and manage the targeting
of multiple platforms effectively (see Figure 5.1).

Core language

JavaScript

Node.js
Web

Browser
Native

Windows

Linux

macOS

JVM

Figure 5.1: Diagram showing the rationale behind the multiplatform languages.

The two following sections will examine two of the main relevant language based
on the JVM ecosystem that supports multiplatform targets.

5.1.1 Scala Language

The Scala programming language is a general-purpose programming language that
is designed to combine object-oriented and functional programming in one concise,
high-level language.

Although Scala was born under the JVM, it has been extended to support other
platforms such as JavaScript, and native platforms.

Support for cross-platform is enabled through external plugins and not directly
by the Scala compiler itself. The plugin enables compiler extensions allowing the
generation of intermediate representations (IRs) containing platform-specific as-
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pects; with the IR, the compiler makes optimization, linking and other dependencies
management.

The Listing 5.1 shows the minimal configuration required to enable the cross-
platform support for the Scala language, in particular are enabled JVM, JavaScript
and native platforms.�

1 import sbtcrossproject.CrossPlugin.autoImport.

crossProject

2

3 lazy val root = project(file("."))

4 .crossProject(

5 JSPlatform ,

6 JVMPlatform ,

7 NativePlatform ,

8 )

9 .settings(

10 name := "project -name",

11 scalaVersion := "3.2.2",

12 )
� �
Listing 5.1: Minimal configuration to enable cross-platform support for Scala.

scalac

dotty

native
compiler

NIR

NIRLTO

.nir

.nir

.ll

.scala

.scala

(a) Scala native compilation pipeline.

scala.js
Compiler

scala.js
optimizer

Dependencies

.sjsir

.js

.scala

.sjsir

(b) Scala.js compilation pipeline.

Figure 5.2: Representation of the Scala Native and Scala.js IR generation and
compilation pipelines.

The Figure 5.2 depicts the two main targets and for each one shows the
compilation pipeline in particular, the Figure 5.2a shows the compilation pipeline
for the native target, while the Figure 5.2b shows the compilation pipeline for the
JavaScript target.

For what concern the native target, the compilation pipeline is composed of
the following steps 1:

1https://scala-native.org/en/stable/contrib/compiler.html

https://scala-native.org/en/stable/contrib/compiler.html


38 CHAPTER 5. IMPLEMENTATION

• Scala code compiled into Native Intermediate Representation: the
nscplugin takes the Scala source code and inspecting the AST, it generates
the .nir files.

• LLVM final compilation: all the .nir files are compiled into .ll files and
passed to the LLVM compiler that produces the native binary file.

The pipeline for the JavaScript target is quite more articulated but for the sake
of simplicity, are reported only the main phases of the compilation steps [16]:

• Generation of the Scala.js IR: the scalajs-compiler takes the Scala
source code and generates the .sjsir files.

• Optimization (linking): in this phase the scalajs-optimizer takes the
.sjsir files and performs optimizations taking also other .sjsir files coming
from dependencies.

• Output file: the scalajs-optimizer generates the .js file that is the
output of the compilation.

During the first step, the .scala source files are compiled with scalac, augmented
with the Scala.js compiler plugin. The compiler plugin takes the internal compiler
ASTs that have been lowered to contain JVM-style classes, interfaces, methods
and instructions, and turns them into Scala.js IR (.sjsir files).

The .sjsir files are similar to .class files, although they are AST-based
(instead of stack-machine-based) and contain features dedicated to JavaScript
interoperability. The .sjsir format and specification are independent of Scala:
meaning that the linker is independent of the language version.

Scala multiplatform ecosystem

This section will examine the current ecosystem concerning the multiplatform
support for the Scala language to have more awareness about the usability of
this technology. In particular, will be addressed two main factors: the number of
libraries that supports multiplatform targeting and the maturity of each platform.

At first glance, there is a strong sense of fragmentation of projects and commu-
nities. Some communities pervasively support all three platforms (JVM, JS, and
native) while others do not, and this is reflected in the amount of multi-targeting
compatible libraries. For example, the typelevel ecosystem supports all three plat-
forms for all their main libraries: Cats Effects 2 and FS2 3. From the other

2https://typelevel.org/cats-effect/
3https://fs2.io/

https://typelevel.org/cats-effect/
https://fs2.io/
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side, the zio 4 ecosystem supports only JVM and JavaScript while the native
platform is an experimental stage. Even if the actual number of libraries is not so
high, the Scala ecosystem is quite mature to be used in its multiplatform version.
Moreover, there is a lot of work being done by the Scala community to improve
the multiplatform support for the language, so it’s very likely that in the future
the number of libraries targeting multiplatform will increase.

To complete the analysis and to have a more complete picture of the Scala
multiplatform ecosystem, will be examined the maturity of each platform. Starting
from Scala.js, the platform is quite mature and stable: the project was born several
years ago and it’s used in production by many companies. Year to year several
improvements were made to reach a high level of performance and stability [17].

Finally, the Scala Native platform works quite well but has some limitations
that make it not suitable for all production use. One of the biggest and most
important limitations is the lack of support for multithreading 5. If for some projects
this limitation is not a problem, for others it can be a big issue; nevertheless, the
typelevel community dealt with this restriction by implementing an event-loop-based
concurrency model to support native projects. Another limitation is represented by
the supported architectures: at the time of writing, only a subset of the platforms
supported by LLVM can be targeted, which means that not all the embedded
devices can be supported.

5.1.2 Kotlin Language

Kotlin is a cross-platform, statically typed, general-purpose high-level programming
language. It’s designed to interoperate fully with Java but also compile to JavaScript
or native code via LLVM.

Kotlin multiplatform is designed to simplify the development of cross-platform
projects by reducing the time spent writing and maintaining the same code for
different platforms.

The Kotlin multiplatform use cases can be synthesized in the following points:

• Android and iOS applications sharing the code between mobile platforms
enable the building of cross-platform mobile applications sharing the common
code between Android and iOS.

• Full-stack web applications when building web applications, it’s possible
to share the code between the client and the server reusing the same logic on
both sides.

4https://zio.dev/
5https://typelevel.org/blog/2022/09/19/typelevel-native.html

https://zio.dev/
https://typelevel.org/blog/2022/09/19/typelevel-native.html
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• Multiplatform libraries a multiplatform library with common code and
its platform-specific implementations for JVM, JS, and Native platforms can
be created. Once published, a multiplatform library can be used in other
cross-platform projects as a dependency.

Common
Kotlin

JS
code

Kotlin/
JS

JVM
code

Kotlin/
JVM

Kotlin native

Native code

Figure 5.3: Kotlin multiplatform structure.

The Kotlin multiplatform works using a structure (see Figure 5.3) where the
common code is at the center and works everywhere on all platforms, and to
interoperate with platforms, a specific version of Kotlin is used that includes
platform-specific libraries and tools. Through these platforms, you can access the
platform’s native code and leverage all native capabilities.

Similarly to Scala, the multiplatform support for Kotlin is enabled via a Gradle 6

plugin. As for Scala, the plugin enables a series of tools and compiler extensions to
support multiplatform development.

The Listing 5.2 shows a basic setup of Kotlin multiplatform using the Gradle
plugin.

6Gradle is a build automation tool for multi-language software development. It’s based on
Apache Ant and Apache Maven introducing a Groovy and Kotlin DSL. The main supported
languages are Java, Kotlin, Groovy and Scala.
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To share code between all the platforms, Kotlin provides a specific mechanism
using a hierarchical structure of modules. The common code is placed in the
commonMain module and it’s used to share the common business logic that applies
to all the platforms. Often there is the need to create several native targets that
could potentially reuse a lot of the common logic and third-party APIs. Kotlin
allows to create a specific and flexible structure to reuse as much code as possible
between the different targets. The Figure 5.4 shows a possible representation of a
Kotlin multiplatform project hierarchical structure.�

1 plugins {

2 kotlin("multiplatform") version "1.8.10"

3 }

4

5 kotlin {

6 jvm()

7 android ()

8

9 ios()

10 watchos ()

11 tvos()

12

13 linuxX64 (); linuxArm64 ()

14 mingwX64 ();

15 macosX64 (); macosArm64 ()

16 }
� �
Listing 5.2: Minimal Example of Kotlin multiplatform setup using Gradle.

To access the platform-specific APIs from the shared code, Kotlin provides a
specific mechanism called expect/actual declarations 7. With this mechanism, a
common source set defines an expected declaration, and platform source sets must
provide the actual declaration that corresponds to the expected declaration.

The expect/actual mechanism is shown in Figure 5.5 where a class in the common
source set is marked as expect and the platform-specific source set provides the
actual implementation of the class leveraging platform-specific API.

The compiler ensures that every declaration marked as expect has a corre-
sponding declaration marked as actual in the corresponding platform modules. In
this way, is guaranteed that every platform has an implementation for that class or
function.

7https://kotlinlang.org/docs/multiplatform-connect-to-apis.html

https://kotlinlang.org/docs/multiplatform-connect-to-apis.html
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commonMain

iosMain jvmMain jsMain desktopMain

iosArm64Main iosX64Main linuxX64Main mingwX64Main macosX64Main

Figure 5.4: Kotlin multiplatform hierarchical structure.

The following will be a brief introduction to how Kotlin can generate native
code and js code from the same code base.

The Kotlin/JS IR compiler is responsible for compiling Kotlin code into
JavaScript code. The compiler backend rather than generating directly JavaScript
code generates an intermediate representation (IR) of the code which is subsequently
compiled into JavaScript code. This strategy enables aggressive optimizations,
improving, for example, the generated code size.

Similarly, the Kotlin/Native compiler is responsible for compiling Kotlin code
into native code. The compiler is available for all the main operating systems
(macOS, Linux, and Windows) and supports different targets like iOS, Windows,
macOS, Linux, Raspberry PI, and WebAssembly. Unfortunately, there aren’t
details about how the compiler pipeline works, but it’s possible to see that the
compiler generates an IR representation of the code and then compiles it into native
code via LLVM. A relevant feature of Kotlin/Native is the interoperability with C
code. This feature allows using existing C libraries in Kotlin using the cinterop
tools by generating Kotlin bindings for the C library. The cinterop tool requires
a .def file that describes what .a/.so libraries to include in the build and the
corresponding .h files to parse. Finally, the cinterop tool generates a Kotlin library
that can be used in the Kotlin code.

When a Kotlin/Native library is distributed, a special file with extension .klib

is generated. This file contains all the information and file specifics for each platform.
It’s a .zip file containing a predefined directory structure: given the foo.klib file,
when unpacked as foo/, contains the following files and directories:

• in the folder with the component name is contained the serialized Kotlin IR

• in the folder targets are placed the platform-specific files, in particular in
the folder kotlin there is Kotlin compiled into LLVM bitcode; in the native
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Figure 5.5: Kotlin multiplatform expect/actual mechanism.

folder there are the bitcode files of additional native objects

• the linkdata folder contains a set of ProtoBuf 8 files with serialized linkage
metadata

• the resources folder contains resources such as images, fonts, and other files

• the manifest file in the java property format describing the library.

This structure allows having a single .klib file that can be used on different
platforms without the need to recompile the library for each one of them. In a
sense, the .klib file is a portable binary format that can be used on different
platforms.

Kotlin multiplatform ecosystem

As already done for Scala, the ecosystem will be examined for Kotlin to get a better
awareness of the usability of this technology. Again, the number of supported
libraries and the maturity of the framework will be considered to evaluate the
adoption of this technology.

Differently from the Scala multiplatform ecosystem, the Kotlin one seems to
be more coherent and structured: lots of libraries like kotlinx.serialization,
kotlinx.coroutines, and ktor are available for all the target platforms supported

8Protocol Buffers (Protobuf) is a free and open-source cross-platform data format used to
serialize structured data.
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by Kotlin. The other difference is that most of the libraries are developed directly
(or with the support of) the Kotlin team, meaning that support and the development
is more aligned and coherent with the language itself. The identification of the
magnitude of libraries targeting Kotlin multiplatform is quite simple since a site 9

collects all the available Kotlin multiplatform libraries. From this site can be seen
that more than 140 libraries are available for Kotlin multiplatform, spacing from
different categories and applications. Of course, not all the available libraries are
collected on this site, but it’s a good starting point to get an idea of the ecosystem.

For concern the maturity of the framework, the Kotlin multiplatform is still
in beta, nevertheless, its stability and usability make it a good candidate for
a production-ready product. The Kotlin team is working hard to improve the
framework and make it more stable and usable. If in Scala the specific module for
each supported platform (JS and native) is developed by an external community,
reducing the guarantee of stability and coherence with the language, in Kotlin the
multiplatform module is developed by the JetBrains team itself, increasing the
guarantee of stability of the entire framework.

5.1.3 Why Kotlin multiplatform as a choice

This section will present the reasons that led to the use of Kotlin as a language
for the framework implementation instead of Scala. The decision was based on
three main factors: the support of the overall multiplatform ecosystem, libraries
availability with multiplatform support and the number of supported platforms by
each language.

As for support related to Scala multiplatform, the issue is controversial. On the
one hand, there’s Scala.js, which has always been supported and maintained and
has reached a very high level of maturity over time. On the other hand, scala native
is managed by another community that has contributed to the project in a seesaw
manner over time, where in some cases the project had even been abandoned.
On the other side, Kotlin multiplatform is entirely supported by JetBrains and is
constantly evolving and improving. JetBrains has proven over time to carefully
curate its products ensuring very high-quality standards, a symptom that Kotlin
multiplatform may also fall into this case.

The availability of libraries that support multiplatform is a key aspect to
consider: having a large number of supported available libraries could be strategic
to develop complex applications. In this regard, the Kotlin multiplatform has
a clear advantage over Scala multiplatform: the Kotlin ecosystem is much more
structured and coherent than the Scala one. The Kotlin team has developed a
large number of libraries that support multiplatform, and the community has also

9https://libs.kmp.icerock.dev/

https://libs.kmp.icerock.dev/
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contributed to the development of many other libraries.
Finally, the number of supported platforms is the most important factor to con-

sider: without extensive support of the most common architectures and platforms,
the adoption of the pulverization framework could be limited. In this regard, Scala
native is not clear about which specific targets supports or it will support in the
future, but for sure currently, it does not support all the Apple mobile ecosystem
like iOS, watchOS and tvOS. On the other hand, Kotlin native has wide support
for the Apple mobile ecosystem and also for the Linux platform targeting ARM32,
ARM64 and x86 64 architectures as well as for the Windows platform targeting
x86 and x86 64 architectures.

For all the reasons mentioned above, Kotlin multiplatform was chosen as the
framework implementation language.

5.2 Technologies used in the framework

This section offers a comprehensive summary of the various technologies employed
across the framework’s different modules. Specifically, the key libraries and mecha-
nisms used in the framework will be highlighted, with a focus on those that are
shared across all modules. It should be noted that technologies and dependencies
unique to each module will be discussed in their respective sections.

5.2.1 Kotlin coroutines

Asynchronous programming returned to the mainstream in recent years. Created
in the ‘80s, but with the advent of multi-core processors, it has been superseded
by multi-threaded programming, which was the de facto standard for concurrent
computations. Since the 2000s, lots of programming languages have introduced
asynchronous programming features from the start while other languages have
added support later.

Multithreading is a traditional method of performing multiple computations in
parallel by executing each computation in a separate thread. However, it has draw-
backs such as increased programming complexity and reduced performance for tasks
that are IO-bound. Different flavours of asynchronous programming are an alterna-
tive to multithreading. Unlike multithreading, which is based on coarse-grained
threads, asynchronous programming is implemented via fine-grained suspendable
computations, which can more effectively interleave with each other. Different
attempts have been made over the years to provide programming languages with
facilities to support asynchronous programming: callbacks, futures and promise are
only some of the most common approaches. A callback is a function defined by the
user, passed to a callback-aware API as a function value, lambda, function pointer,
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etc., with the purpose of being called at a later time when a certain condition is met.
Although this is a rather simple mechanism, callback-based frameworks are known
to suffer from a complication of code structure disproportionate to the complexity of
the logic that code expresses, commonly referred to as “callback hell” [18]. Futures
and promises are a step above callback-based computations, working as special
proxies for not-yet-completed results of asynchronous computations. The two main
operations that can be performed on a promise are: checking for completion and
getting the result of the computation. Promises are a good solution to the callback
hell problem, but they are not without their problems: they are not composable,
and they lack a way to express dependencies between asynchronous computa-
tions. async/await is an approach that brings asynchronous programming as a
first-class language citizen: async/await is based around expressing asynchronous
computations as two interconnected parts.

The first language to introduce async/await was C#. A lot of programming
languages used the C# approach as an inspiration and follow its async/await
implementation. JavaScript, TypeScript, Dart, Python, Rust — all these languages
use async functions containing await operators.

As follow is introduced the concept of the coroutine and how it is implemented
in Kotlin, discussing the basic building block for asynchronous programming.

Even though the concepts of coroutine being used for over 50 years, there
is no standard definition of what a coroutine is. One valid definition could be
“function which can suspend and resume its execution, preserving the state between
suspensions” [19]. Coroutines have been classified using the following axes, where
implementations may differ: Symmetric/Asymmetric Control Transfer and
Stackfull/Stackless Implementation.

Symmetric coroutines can suspend themselves and resume the execution to
an arbitrary coroutine, in this context the control transfer between coroutines
is symmetrical. On the other hand, asymmetric coroutines can only suspend
themselves and resume the execution to the coroutine that suspended them, in this
context the control transfer between coroutines is asymmetric. While symmetric
coroutines are more expressive than asymmetric coroutines, they are also more
complex to understand, for this reason, most of the implementation of coroutines
are asymmetric [19].

A stackful coroutine implementation allows for suspension at any point within
nested functions and, when resumed, continues execution from the exact point
of suspension, restoring the original function call stack. Conversely, a stackless
implementation can only be suspended within itself, requiring that nested functions
also be coroutines for asynchronous execution to occur. The majority of modern
languages use stackless coroutines. While stackful coroutines are more powerful than
stackless ones, stackless coroutines can match most (if not the same) capabilities
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via careful handling of nested coroutine calls; moreover, stackful coroutines are
noticeably harder to implement efficiently.

One important aspect when implementing coroutines is the error handling
mechanism. There are two approaches currently used in asynchronous program-
ming, the first one is based on supervision trees, which was pioneered in Erlang,
and involves arranging asynchronous tasks in parent-child trees for desired error
propagation. The second approach, structured concurrency 10, aims to transfer the
idea of structured programming to asynchronous programming. It connects tasks
to their origins and ensures that the lifetime of a task cannot exceed the lifetime of
its origin, thereby establishing a launcher-launchee relation and describing error
and cancellation propagation.

Structured concurrency, in comparison to supervision trees, has a fixed error-
handling strategy and is therefore less flexible. However, it is more concise and
aligns well with the typical way asynchronous code is written. This is why structured
concurrency has gained significant attention in recent years, either as structured
concurrency libraries or as a built-in language feature 11. Kotlin uses the structured
concurrency approach to manage error handling in coroutines.

Kotlin coroutines are built upon the following goals [19]:

• Independence from low-level platforms implementation: Kotlin being
a multi-platform language, building its asynchronous support on existing
implementations like futures in JVM would lead to interoperability issues
between platforms. Therefore, a unique approach is necessary to ensure
seamless asynchronous support across all platforms.

• Adaptability to existing implementation: a strong emphasis is placed on
interoperability with existing code, particularly with Java code on the JVM
platform. To ensure a smooth experience for developers, Kotlin should support
seamless integration of established asynchronous APIs, such as promises in
JavaScript or non-blocking input/output in JVM.

• Support for pragmatic asynchronous programming: the popularity
of the async/await approach in asynchronous programming highlights the
significance of code readability. Although less expressive than full coroutines,
async/await offers adequate coverage for practical use cases and improved
performance.

Kotlin asynchronous programming is built around the “suspending function”
concept, similar to the “async function” concept in JavaScript. A suspending

10https://250bpm.com/blog:71/
11https://wiki.openjdk.org/display/loom/Structured+Concurrency

https://250bpm.com/blog:71/
https://wiki.openjdk.org/display/loom/Structured+Concurrency
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1 suspend fun guessLocaleFromText(text: String): Locale {

2 // locale detection implementation

3 }

4

5 suspend fun guessWebPageLocale (url: URL): Locale {

6 val text = HttpClient ().get <String >(url)

7 val localeGuess = guessLocaleFromText(text)

8 return localeGuess

9 }
� �
Listing 5.3: Example of a suspending function.

function is marked with the suspend modifier and can be called from other sus-
pending functions. However, their call sites are not marked as await, i.e., calls to
suspending functions are implicitly awaited. In this way, the problem of “forgotten
await”, characterizing the async/await approaches, is avoided.

The Listing 5.3 shows an example of a suspending function, which is called from
another suspending function showing how in Kotlin suspensive functions are called
implicitly. In the example can be seen that the suspending function is implicitly
awaited, and the result is returned to the caller.

As follow, a brief introduction to how Kotlin coroutines are implemented is
presented. Each suspendable function goes through a transformation from normally
invoked function to a continuation-passing style (CPS). For a suspendable function
with p1, p2, . . . , pn parameters and result type T , a new function is generated with
an additional parameter of type Continuation<T> and the return type change
to Any?. Also, the calling convention changes: the function may either suspend
or return. When the function returns some result, this result is directly returned
from the function (as usual); if the function suspends, it returns the special value
COROUTINE SUSPENDED. The compiler takes care of the transformation, so the
developer does not need to worry about it. When the user wants to suspend
a coroutine’s execution, they access the coroutine’s continuation by calling an
intrinsic function suspendCoroutineUninterceptedOrReturn. Then, stores the
continuation object to resume it later. Finally, pass the COROUTINE SUSPENDED the
intrinsic which is then returned from the function.

Kotlin implements suspendable functions as state machines since such imple-
mentation does not require runtime support. While being able to wrap different
existing frameworks for asynchronous computations, Kotlin coroutines also allow
writing asynchronous code in different styles: async/await style, using Channels or
Generator.

Coroutines were widely used in the framework to implement asynchronous
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behaviors idiomatically in Kotlin. In addition, since in the framework, the exchange
of messages between components can occur asynchronously, this was captured
through a coroutine-based construct called Flow 12.

Kotlin Flow is a new addition to the Kotlin coroutines library, and it provides
a way to perform asynchronous, sequential computations that emit values and
can be transformed into streams. A Flow is a sequence of values that are emitted
asynchronously and can be processed in a non-blocking manner. Unlike traditional
streams, Flows are also cancellable, meaning that they can be stopped at any
point in their execution. Flows are designed to be highly composable, allowing
the building of complex, multi-step computations by combining and transforming
smaller Flows. They are also designed to work well with coroutines, making them
an excellent choice for asynchronous and reactive programming in Kotlin.

For those reasons, coroutine and Flow are the main tools used in the framework
providing a simple and efficient way to implement asynchronous behaviors.

5.2.2 Dependency Injection: Koin

Dependency Injection is a software design pattern that allows for the separation of
concerns in a software application. It enables the creation of loosely-coupled code,
which is more flexible and easier to maintain. Dependency Injection is achieved
through the injection of dependencies, or required objects, into the objects that
need them. This can be done either manually or through the use of a Dependency
Injection framework.

One such framework is the Koin library, which is a popular, lightweight, and
pragmatic Dependency Injection solution for Android and Kotlin. The library
offers a simple and efficient API, with no reflection or code generation required,
making it a fast and efficient choice.

Koin uses a modular approach to Dependency Injection, allowing the definition
of dependencies in modules, assembling and managing them easily. This makes it
easy to maintain and update dependencies as needed. In addition, Koin offers a
range of features, including scope management, property injection, and support for
multi-threading, making it a comprehensive solution for Dependency Injection in
Android and Kotlin projects.

The Listing 5.4 shows how to use Koin to inject a dependency into a class.
In this example, a data class MySimpleClass is defined, and a module myModule

is also defined to provide an instance of the class as a singleton. The startKoin
function is then used to start Koin and use the defined module. Finally, the
dependency is injected into MyClass using the by inject() property delegate. The
main function creates an instance of MyClass and prints the message from the

12https://kotlinlang.org/docs/flow.html

https://kotlinlang.org/docs/flow.html
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1 data class MySimpleClass (val message: String)

2 startKoin {

3 module {

4 single { MySimpleClass("Hello from Koin") }

5 }

6 }

7 class MyClass {

8 val mySimpleClass: MySimpleClass by inject ()

9 }

10

11 fun main() {

12 val myClass = MyClass ()

13 println(myClass.mySimpleClass.message)

14 }
� �
Listing 5.4: Example of Koin usage.

injected MySimpleClass.

The use of Koin in the framework allows for the easy injection of dependencies
into the different components of the framework, making it easy to maintain and
update the framework as needed. Moreover, the use of Koin allows for the easy
creation of new components, without an excessive amount of boilerplate code.

5.3 Core module

The core module models the core concepts of the framework. The Figure 5.6 shows
the package structure of the module, which is divided into two main packages:
core and dsl.

core dslcomponent
use use

Figure 5.6: Core module package diagram.

The core package contains all the interfaces that model the pulverization
components. In particular, in Table 5.1 are listed the fundamental interface defined
in the core package.

All the interfaces illustrated in Table 5.1 are based on another concept expressed
by the Initializable interface. The Initializable interface is used to model the
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Interface Description

Behaviour The interface that models the behaviour of a component
SensorsContainer The interface that models all the sensors belonging to a

device
ActuatorsContainer The interface that models all the actuators belonging to

a device
State The interface that represents the state of a device
Communication The interface that models the capability of a device to

communicate with other devices

Table 5.1: Core interfaces

initialization of a component. Every component, before being used, should allocate
resources or perform some operations before becoming operative, as well as release
those resources when the component should be destroyed. The Initializable

interface is used to model this concept and is implemented by defining two methods:
initialize and finalize. The former must be invoked before the use of the
component, while the latter must be invoked when the component is no longer
needed, during the finalization step of the system.

Analyzing the common aspects of the components defined in Table 5.1, it
is possible to identify another common concept that can be isolated in a single
common interface: the context in which the component is executed. In this specific
scenario, the Context interface holds information about the specific device that
components belong to, representing this information with the field deviceID.

All those two concepts are implemented in a third interface that models the
concept of “generic pulverization component” called PulverizedComponent, which
is the base interface for all the components defined in Table 5.1. This interface
implements also an external interface named KoinComponent; this interface enables
field injection for all the class that implements it. This feature is used to dynamically
inject the Context inside of each component.

The Figure 5.7 shows the class diagram that models the relationship between
the core interfaces of the framework illustrated previously.

Sensors and Actuators

The modeling of the concepts of “sensors” and “actuators” within the framework
and the implementation choices made to model these concepts in the framework
are discussed in more detail below.

All the considerations and choices made to model the concept of sensor hold
also for the concept of actuator, so for the sake of brevity, only the discussion about
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Figure 5.7: Class diagram showing the relation between the core interfaces of the
framework.

the sensor concept is reported.
The formulation presented in the original paper [6] defines the sensors module

as “a set σ of logical sensors”; starting from this assertion the sensor component
is broken down into two separate concepts: the sensor which models the physical
sensor from which the data is collected, and the sensors container which represents
the collector of the sensors belonging to a specific device.

The Sensor interface, represented in Listing 5.5, models a single sensor defining
the method sense which is use to perform the operation of sensing the environment.�

1 interface Sensor <out T> : Initializable {

2 suspend fun sense(): T

3 }
� �
Listing 5.5: Sensor interface defined in the framework.

The interface is generic in a type variable T that represents the type of data
collected by the sensor and implements the Initializable interface to model the
ability of initialization of the sensor.

More complex and with relevant design choices is the SensorContainer class.
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1 abstract class SensorsContainer : PulverizedComponent {

2 private var sensors: Set <Sensor <*>> = emptySet ()

3

4 operator fun <P, S : Sensor <P>>

5 plusAssign(sensor: S) {

6 sensors = sensors + sensor

7 }

8

9 fun <P, S : Sensor <P>>

10 addAll(vararg allSensor: S) {

11 sensors = sensors + allSensor.toSet ()

12 }

13

14 operator fun <T, S : Sensor <T>>

15 get(type: KClass <S>): S? =

16 sensors.firstOrNull(type:: isInstance) as? S

17

18 fun <T, S : Sensor <T>>

19 getAll(type: KClass <S>): Set <S> =

20 sensors.mapNotNull { e ->

21 e.takeIf { type.isInstance(it) } as? S

22 }.toSet()

23

24 inline fun <reified S : Sensor <*>>

25 get(): S? = this[S::class]

26

27 inline fun <reified S : Sensor <*>>

28 get(run: S.() -> Unit) = this[S::class ]?.run()

29 }
� �
Listing 5.6: Implementation of the SensorsContainer using inline methods and
KClass.

The sensors’ container is modeled via an abstract class which implement the
PulverizationComponent interface making the container itself initializable. The
storing of the sensors is done via a Set of Sensor objects; since the Sensor interface
is generic, it is not possible to determine which type of sensor will be used, for this
reason, the Kotlin type projection over the type variable T of the Sensor is used. In
this way, the SensorContainer can store sensors of different types, and it will be the
responsibility of the container to provide methods that allow retrieving the sensors
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of a specific type in a type-safe way. In this regard, the SensorContainer provides
three-way of retrieving the sensors: get<T>(), getAll<T>() and get<T>(run).
The first method returns a single sensor of type T if it is present in the container,
otherwise, it returns null. This method should be used with care considering that
if more sensors with type T are present in the container, only one of them will be
returned with no guarantee on which one will be returned. This method is useful
when in the container there is only one sensor of the specified type. The second
method returns a Set of sensors of type T if at least one sensor of that type is
present in the container, otherwise, an empty Set is returned. The third method
finds the sensor of type T and invokes the run function over the retrieved sensor if
it is not null, otherwise, it does nothing.

One of the challenges faced in implementing these methods stemmed from
the presence of type erasure. The type erasure is a feature of the Java virtual
machine that removes the type information from the compiled bytecode, making it
impossible to retrieve the type of a generic type variable at runtime. To overcome
this limitation, the Kotlin mechanism of reified type parameters is used. This
mechanism leverages another mechanism of the Kotlin language called inline
functions that allows inlining the body of a function inside the caller function. In
this way, a sort of “local monomorphization” is performed, allowing the retrieval
of the type of the generic type cleanly, without the need of using reflection via
KClass<T>.

Above was discussed the problem of retrieving a sensor in a type-safe way, this
problem is solved by inspecting all the objects stored in the container and returning
only those that are an instance of the type T. The complete implementation of the
SensorContainer class is reported in Listing 5.6.

As stated above, all the considerations and choices made for the Sensor and
SensorContainer are valid also for the Actuator and ActuatorContainer classes.

Communication

The other relevant component in the core module is the communication com-
ponent, which is responsible for the communication between the devices. The
communication component is described as “A communication component χ handling
interaction with neighbours, holding information on the identity of neighbors and
how to reach them, managing input channels used to receive external messages into
the device’s state, and output channels for emitting messages to all its neighbours”.
From this description emerges the bidirectional nature of communication where
sending and receiving channels are neatly separated. Another aspect that emerges
from the description is the need to hold a reference to the neighbors of the device
and their identity.

In light of the considerations made above, it was decided to demand the user
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1 interface Communication <P : Any > : PulverizedComponent {

2 override val componentType: PulverizedComponentType

3 get() = CommunicationComponent

4

5 suspend fun send(payload: P)

6

7 fun receive (): Flow <P>

8 }
� �
Listing 5.7: Communication interface defined in the framework.

the responsibility of holding the references to the neighbors and their identity,
and to provide a simple interface to send and receive messages. The rationale
behind this choice is that is quite difficult to provide a generic representation of the
network topology and determine how it can change over time, and for this reason,
it is better to leave the responsibility of managing the neighbors to the specific
implementation of the communication component.

The Communication interface, presented in Listing 5.7, models the communica-
tion component and defines two methods: send and receive.

The interface is generic in a type variable P that represents the type of messages
that can be sent and received by the component. Moreover, the type variable is
bounded to the Any type: this captures the fact that the message could not be
nullable. While at first analysis it might seem redundant to specify this type bound,
it turns out to be fundamental since in the type hierarchy in Kotlin, the topmost
type is Any? which represents any nullable data type, enabling the possibility of
sending and receiving null messages, a scenario that is not desirable.

While the send method is straightforward, the receive method returns a
specific type: Flow<P>. This type represents an asynchronous stream of values that
in this case represents the messages received by all the neighbours.

Behaviour

The behaviour component is the heart of the device, it is responsible for the
execution of the device’s logic. The behaviour component is described as “A
computation function β modeling the device behavior, which maps the state of
the device to a new state, a prescriptive set of actuations to be performed, and
coordination messages to be emitted”.

The Behaviour interface, represented in Listing 5.8, models the behaviour
component and defines a single method: invoke. Moreover, in the listing are also
presented the data classes used to represent the output of the behaviour function.
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1 data class BehaviourOutput <S, E, A, O>(

2 val newState: S,

3 val newExport: E,

4 val actuations: A,

5 val outcome: O,

6 )

7

8 interface Behaviour <S, E, W, A, O> :

9 PulverizedComponent {

10 override val componentType = BehaviourComponent

11 operator fun invoke(

12 state: S, export: List <E>, sensedValues: W

13 ): BehaviourOutput <S, E, A, O>

14 }
� �
Listing 5.8: Behaviour interface defined by the framework.

How the behaviour function should be obtained can be easily inferred from
the description above: it should take as input the current state of the device, the
sensed values and the received messages, and it should return the new state of
the device, the actuations to be performed and the messages to be sent. For this
reason, the interface is generic in five type variables: S for the state, E for the
communication, W for the sensed values, A for the actuations and O for the outcome
of the function. The output produced by the behaviour function is represented by
the BehaviourOutput data class, which is defined in Listing 5.8. This class holds
information about the new state, the new communication, the actuations to be
performed, and the function’s outcome.

The peculiarity of the Behaviour class is that the method invoke is marked as
operator which allows the invocation of the function using the () operator over
the class instance.

State

Finally, the state component is responsible for the representation of the state
of the device. The state component is described as “A state κ, representing the
device’s local knowledge”.

The framework should abstract the representation of the state of the device,
and for this reason, the State interface, represented in Listing 5.9, models the
state component and defines two methods: get and update. The former is used
to retrieve the current value of the state, while the latter is used to update the
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1 interface State <S : Any > : PulverizedComponent {

2 override val componentType: PulverizedComponentType

3 get() = StateComponent

4

5 fun get(): S

6

7 fun update(newState: S): S

8 }
� �
Listing 5.9: State interface defined by the framework.

state with a new value. Is the responsibility of the user to implement the concrete
representation of the state, and for this reason, the interface is generic in a type
variable S that represents the type of the state. Is also the responsibility of the
user to persist the state somehow, the reason why the interface does not provide
any details about persistence.

The other relevant construct of this module is the configuration DSL, which will
be discussed more in detail in the Section 5.6.

5.4 Platform module

This module represents the most important part of the framework since it is
the one that provides the implementation of the platform. It is organized in a
communication package that contains the main abstraction for intra-components
communication, a componentsref package which contains all the interfaces needed
to uniform the representation of a component reference, a context package that
contains the logics for the context creation and, finally, a dsl package that contains
the DSL used to configure the pulverization platform. The Figure 5.8 shows the
package diagram of the platform module.

Communication package

In this package are given the main abstractions for intra-components communication.
In particular, the main relevant interface is Communicator: it is the interface that
represents the communication between two components of a logical device. This
interface is developed keeping in mind the fact that the concrete implementation
could be based on any kind of communication medium, and for this reason, specific
protocol aspects are abstracted over. This specific abstraction is captured by
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Figure 5.8: Package diagram of the platform module showing the relationship
between the packages.

the RemotePlace data class that represents the remote place that the receiver’s
component is deployed on. This class is composed of two fields named who and
where: the former identifies the receiver’s component answering the question of
“who is the other component”, while the latter represents where the component is
located, answering the question of “where can I reach the other components”. In
this way, each communicator will specify how to represent that two fields using
protocol-specific aspects: for example, a communicator based on TCP socket could
represent the who field as the IP address of the receiver’s component, while the
where field could be the port. In conjunction with the RemotePlace class, the
RemotePlaceProvider interface is used to provide the specific remote place based
on the specific protocol and context. The interface provides a method get that
takes as input a PulverizedComponentType and return a RemotePlace if any.
The implementation of this interface is demanded by the specific communicator
implementation.

The Communicator interface, reported in Listing 5.10, has a setup method that
accept as arguments respectively the Binding and a RemotePlace; those two argu-
ments are used to set up the communication between the two components (defined
by the Binding) and how to establish the connection (using the RemotePlace).
The finalize method is used to close the connection between the two components
and release resources if any.

The framework, by default, provides an implementation of the Communicator
interface called LocalCommunicator that is used to implement the communication
between two components that coexist in the same deployment unit. This imple-
mentation is based on the use of Flow which represents an asynchronous flow, in
particular, two Flow are used to implement the communication: one for receiving
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1 interface Communicator {

2

3 suspend fun setup(

4 binding: Binding , remotePlace: RemotePlace?

5 )

6

7 suspend fun finalize ()

8

9 suspend fun fireMessage(message: ByteArray)

10

11 fun receiveMessage (): Flow <ByteArray >

12 }
� �
Listing 5.10: Communicator interface defined by the framework.

messages (inbox flow) and one for sending messages (outbox flow). The outbox

flow is used by the fireMessage method to send messages to the other component,
while the inbox flow is used by the receiveMessage method to receive messages
from the other component. This specific implementation is used by the platform
to enable communication between components in memory in the same deployment
unit.

An important aspect to consider is the fact that the Flows used by the
LocalCommunicator should be shared across all the local instances otherwise each
instance will have its own Flow and the communication will not occur. To overcome
this issue the LocalCommunicator uses another class called CommManager which is
responsible for managing the Flows. The CommManager is a singleton that is used to
create the Flows and to share them across all the local instances. The CommManager
relies on the lazy property of Kotlin to create the Flows only when they are
needed and give the same flow instance on subsequent calls. The lazy property
can guarantee a different level of thread safety, in particular, the lazy property ac-
cepts a parameter of type LazyThreadSafetyMode which specifies the behaviour of
the lazy property. In this case, is specified LazyThreadSafetyMode.PUBLICATION

which means that the Flow will be created only once and the same instance will be
returned on subsequent calls, obtaining the desired behaviour.

Componentsref package

In this package are modeled the interfaces that are used to represent a component
reference. In the framework, the concept of “component reference” is introduced
to abstract over specific aspects like the protocol used to communicate with the
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component and the way how a component can be reached.�
1 internal class ComponentRefImpl <S : Any >(

2 private val serializer: KSerializer <S>,

3 private val binding: Binding ,

4 private val communicator: Communicator ,

5 ) : ComponentRef <S>, KoinComponent {

6 private val remotePlaceProvider by inject ()

7 private var last: S? = null

8

9 suspend fun setup() {

10 communicator.setup(

11 binding , remotePlaceProvider[binding.second]

12 )

13 }

14 suspend fun sendToComponent(message: S) {

15 communicator.fireMessage(message.serialize ())

16 }

17 suspend fun receiveFromComponent (): Flow <S> {

18 return communicator.receiveMessage ()

19 .map { it.deserialize () }

20 .onEach { last = it }

21 }

22 suspend fun receiveLastFromComponent (): S? = last

23 }
� �
Listing 5.11: Implementation of the ComponentRef interface.

The ComponentRef interface is the main interface that represents a compo-
nent reference; is generic in a type parameter S that represents the type of mes-
sage that the component can send and receive. Even in this case, the type
parameter is bounded to Any to prevent the use of nullable types. The interface
provides three main methods: sendToComponent, receiveFromComponent and
receiveLastFromComponent.

This interface is entirely managed by the platform which is responsible for
creating the component reference and for providing the right implementation based
on the context in which the component is deployed. For this reason, the end user
should not care about the implementation of this interface and should not extend
or implement it. As a design choice, all the implementations of this interface are
marked as internal so that they are not visible outside the platform module.
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The ComponentRef interface can be used in two main scenarios: the first one
is when the component to which we refer exists in the same deployment unit or
remotely, and the second one is when the component to which we refer not exists
at all (e.g when a device does not have one of the five components).

For the first scenario, the ComponentRefImpl provides an implementation
of the ComponentRef interface, while the second scenario is handled by the
NoOpComponentRef that is an implementation of the ComponentRef interface that
does nothing (see Listing 5.11).

The ComponentRefImpl defines a three-argument constructor that accepts re-
spectively a serializer, a binding and a communicator. The serializer is used
to serialize and deserialize the messages that the component can send and re-
ceive, while the binding is used to identify the component to which we refer (and
consequently the source component) and the communicator is used to establish
the communication between the two components. The implementation of this
class is quite straightforward, in particular, the sendToComponent method uses
the fireMessage method of the communicator to send the message to the other
component, while the receiveFromComponent and receiveLastFromComponent

methods use the receiveMessage method of the communicator to receive messages
from the other component. The serializer is used to serialize and deserialize the
messages that the component can send and receive, while the binding is used to
setup the communicator. A notable aspect is how the serializer is managed: the
serialization is managed via a Kotlin compiler plugin which enriches any class
annotated with @Serializable with the corresponding serializer; in this way on
any serializable class can be used the method serializer<C>() to retrieve the
serializer of the class, but this method is inline so can not be used in the constructor
of the ComponentRefImpl class because of type erasure. To overcome this issue,
inside the companion object of the class is defined the operator invoke as an inlined
function that accepts only the binding and communicator as parameters, while the
serializer is obtained via the reified type, using the aforementioned serializer

method. Since the operator invoke enable the use of the () operator, the class
constructor is emulated reducing the boilerplate needed to create the class.

The implementation of the NoOpComponentRef, shown on the Listing 5.12,
provides a no-ops implementation of the ComponentRef interface. The implemen-
tation provides that the send operation does nothing, while the receive operations
always return null for the receiveLastFromComponent and an empty flow for
receiveFromComponent method.

Context package

The context package defines only a function called createContext which is respon-
sible for creating the context that will be made available to all the components.
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1 internal class NoOpComponentRef <S : Any > :

2 ComponentRef <S> {

3 override suspend fun sendToComponent(message: S) {}

4

5 override suspend fun receiveFromComponent (): Flow <S>

6 = emptyFlow ()

7

8 override suspend fun receiveLastFromComponent (): S?

9 = null

10 }
� �
Listing 5.12: Implementation of the ComponentRef interface that does nothing.

Since this function could have a specific implementation base on the target platform
in which the framework is deployed, the function is marked as expect so that the
specific target platform can provide the implementation. At the time of writing,
only the JVM target platform is implemented with the following behaviour: first
of all, the .pulverization.env file is searched in the given path, if the file is not
found, the DEVICE ID environment variable is searched, if the variable is not found,
the function raises an exception.

Dsl package

The last package is dsl which contains the DSL used to configure and execute the
pulverization platform. The discussion of the details of the DSL is deferred to
the Section 5.7. Below, will be reported all the specific aspects of the platform
created via the DSL, including the algorithm used to set up the deployment unit,
create the components references and configure the communicators.

The platform configuration via the DSL produces a platform object which is
used to start and stop the platform. The creation process of the platform is made
via the start method and is made of several activities executed in a specific order:
first of all, the dependency injection framework is initialized registering the context,
the communicator manager and the remote place provider. Then, from the given
configuration is determined which components belong to the same deployment
unit and which components are remote. To do this, all the components defined
in the logical device are retrieved, then from the configuration is checked if the
components registered by the user matches the configuration otherwise an exception
is raised. After that, for each component, the corresponding component reference
is created and the communicator is configured. The creation of a component
reference takes as argument the serializer, a set containing all the components
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belonging to the logical device, a set containing the deployment unit components,
and the communicator. The two sets (the one containing all the components and
the one containing the deployment unit components) are used to determine if the
component is remote or not, and consequently leveraging the local communicator
or the remote one (provided as argument). Once all the components are created,
for each one, the corresponding logic is executed saving into a set the reference
of the spawned job. In Figure 5.9 is reported the activity diagram showing the
platform creation process.

Setup dependency injection module

Check configuration

Raise exception

no
Configuration is valid? yes

Setup components references
with communicators and bindings

Launch coroutines for each component

Save the reference to each coroutine job

Figure 5.9: Activity diagram showing the platform creation process.

The creation of component references for the behavior component, requires
further analysis: in fact, the behaviour holds a reference for each component,
namely the state, actuators, sensors, and communication. In this regard, not all
four components might be defined, so the behavior will have to create a dummy
component reference for the missing components. This is managed automatically
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when creating component references by looking at the configuration, and if a
component is neither local nor remote, then the dummy implementation is used.

5.5 RabbitMQ module

The RabbitMQ module, at the time of writing, is the only module that provides an
implementation of the Communicator interface. In particular, this module enables
the communication between components via RabbitMQ, a message broker that
implements the AMQP protocol.

RabbitMQ overview

RabbiMQ is an open sourcemessage broker written in Erlang that implements the
AMQP protocol [20]. RabbitMQ is lightweight and easy to deploy on-premises and
in the cloud. It supports multiple messaging protocols. RabbitMQ can be deployed
in distributed and federated configurations to meet high-scale, high-availability
requirements 13.

RabbitMQ is based on the notion of broker, which receives messages from
publishers (applications that publish them, also known as producers) and route
them to consumers (applications that process them). The publishers, consumers
and the broker can all reside on different machines, reasons why RabbitMQ could
be a good choice for a distributed system, in particular in the context of the
pulverization.

The AMQP protocol has the following view of the world: messages are published
to exchanges, which are often compared to post offices or mailboxes. Exchanges
then distribute message copies to queues using rules called bindings. Then the
broker either delivers messages to consumers subscribed to queues or consumers
fetch/pull messages from queues on demand.

Networks are unreliable and applications may fail to process messages therefore
the AMQP model has a notion of message acknowledgments: when a message is
delivered to a consumer the consumer notifies the broker, either automatically or
as soon as the application developer chooses to do so. When message acknowledge-
ments are in use, a broker will only completely remove a message from a queue
when it receives a notification for that message (or group of messages).

Exchanges are entities that receive messages from producers and route them to
zero or more queues. The routing algorithm depends on the exchange type and
rules called bindings. The AMQP protocol defines four exchange types that are
reported in Table 5.2.

13https://www.rabbitmq.com/#features

https://www.rabbitmq.com/#features
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Exchange type Default names

Direct exchange (Empty string) and amq.direct

Fanout exchange amq.fanout

Topic exchange amq.topic

Headers exchange amq.match (and amq.headers in RabbitMQ)

Table 5.2: Exchange types.

The default exchange is a direct exchange with no name (empty string) pre-
declared by the broker. It has one special property that makes it very useful for
simple applications: every queue that is created is automatically bound to it with
a routing key which is the same as the queue name.
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(a) Direct exchange example.
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(b) Fanout exchange example.

Figure 5.10: Representation of the two main exchanges defined in the AMQP
protocol.

A direct exchange delivers messages to queues based on the message routing
key. A direct exchange is ideal for the unicast routing of messages (although they
can be used for multicast routing as well). Below is reported how a direct exchange
works:

• A queue binds to the exchange with a routing key K

• When a new message with routing key R arrives at the direct exchange, the
exchange routes it to the queue if K = R

A direct exchange can be represented graphically as in Figure 5.10a.
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A fanout exchange routes messages to all of the queues that are bound to it
and the routing key is ignored. If N queues are bound to a fanout exchange, when
a new message is published to that exchange a copy of the message is delivered to
all N queues. Fanout exchanges are ideal for the broadcast routing of messages. A
fanout exchange can be represented graphically as in Figure 5.10b.

Topic exchanges route messages to one or many queues based on matching
between a message routing key and the pattern that was used to bind a queue to
an exchange. The topic exchange type is often used to implement various publish/-
subscribe pattern variations. Topic exchanges are commonly used for the multicast
routing of messages. Whenever a problem involves multiple consumers/applications
that selectively choose which type of messages they want to receive, the use of
topic exchanges should be considered.

Rabbimq communicator

When implementing a new Communicator, two main steps are required: the first
one is the implementation of the Communicator interface and the second one is
the implementation of the RemotePlaceProvider. The Communicator interface is
implemented by the RabbitMQCommunicator class, while the default implementa-
tion of the RemotePlaceProvider interface is provided by the defaultRabbitMQ-
RemotePlace method.

The remote place provider provides the implementation of the concepts “who”
and “where” (defined by the RemotePlace class) in the following way: the who is
the device id, while the where is the name of the component. This representation
will be used by the RabbitmqCommunicator to create the queues that will be used
to communicate between the components.

The RabbitmqCommunicator should rely on a library that implements the
AMQP protocol to communicate with the RabbitMQ broker, but since there isn’t
a Kotlin multiplatform library that implements the AMQP protocol, the class is
marked as expect so that the specific target platform can provide the implementa-
tion. At the time of writing, only the JVM target platform is implemented using
the reactor-rabbitmq library. The choice of this library is because it is based
on project Reactor 14 and can be seamlessly used in combination with the Kotlin
coroutines using the kotlinx-coroutine-reactor 15 library.

The class constructor accepts all the RabbitMQ-specific parameters like: host,
port, username, password, and virtual host. Noticeable is the setup method that is
used to set up the connection with the RabbitMQ broker, declare the exchange
and the queues, and finally bind the queues to the exchange. In this method, the

14https://projectreactor.io/
15https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-reactor/

https://projectreactor.io/
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-reactor/


5.5. RABBITMQ MODULE 67

binding and the remote place are used to create the queues that will be used to
communicate between the components.

Below will be described how the queues are created and how they are used to
communicate between the components. The RabbitmqCommunicator class defines
two queues: a sendQueue and a receiveQueue, the first one is used to send messages
to the remote component, while the second one is used to receive messages from
the remote component. In this communicator, the send queue name format fol-
lows the pattern <local component name>/<remote component name>/<remote

component id, while the receive queue name format follows the pattern <remote

component name>/<local component name>/<remote component id>. The lo-
cal component name is retrieved from the binding parameter, while the remote
component name and the remote component id are retrieved from the remote

place parameter. For example, if the communicator should manage the communi-
cation between the Behaviour and the State (remote) component for a device with
ID “1”, the send queue name will be Behaviour/State/1, while the receive queue
name will be State/Behaviour/1. Vice versa, the counterpart communicator
that manages the communication between the State and the Behaviour (remote)
component defines the send queue name as State/Behaviour/1 and the receive
queue name as Behaviour/State/1. As can be seen, the send queue name for
the first communicator is the same as the receive queue name for the counterpart
communicator, and vice versa. This means that the message sent by the first
communicator will be received by the counterpart communicator. The Figure 5.11
depicts the interaction pattern described above using two communicators.

BehaviourState

RabbitMQ
Exchange

Behaviour/State/1 State/Behaviour/1

Forward
1.state.behaviour

Forward
1.behaviour.state

Receive Receive

Send
1.behaviour.state

Send
1.state.behaviour

Figure 5.11: Example of queue declaration in the framework for the communication
between the Behaviour and the State components.

The fireMessage and receiveMessage methods implementation are straight-
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forward: the fireMessage method sends the message to the remote component
via the send queue using the Sender object, while the receiveMessage method
receives the message from the remote component via the receive queue using the
Receiver object.

5.6 Configuration DSL

The configuration DSL is used to define the structure of each logical device in
terms of defining components and where they are deployed. Before proceeding
to discuss the details of the DSL, it is important to define which information the
configuration should have.

The recurring terms and concepts in the pulverization are logical device, de-
ployment unit and place where the components are deployed. The first concept
is modeled by the LogicalDeviceConfiguration class which defines the name of
the device, the set of components type belonging to the logical device, and a set of
deployment units. The deployment unit is modeled by the DeploymentUnit class
which defines the set of components type that should be deployed and the Tier

which represents the place where the components should be deployed. The tier is
modeled via a sealed interface which has three possible values: Cloud, Edge and
Device.

The configuration captures also the concept of “relationship” between logi-
cal devices. In particular, the configuration DSL defines the DeviceRelations-

Configuration and the DeviceLink classes which are used to hold information
about the link between the logical devices.

Tier

Cloud
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Devcie

PulverizedComponentType

BehaviourComponent
StateComponent
ActuatorsComponent
SensorsComponent
CommunicationComponent

LogicalDeviceConfiguration

deviceName: String
components: Set<PulverizedComponentType>
deploymentUnits: Set<DeploymentUnit>

DeploymentUnit

deployableComponents: Set<PulverizedComponentType>
where: Tier

DeviceRelationsConfiguration

links: Set<DeviceLink>

DeviceLink

device: String
otherDevice: String

PulverizationConfiguration

devicesConfig: Set<LogicalDeviceConfiguration>
devicesLinks: DeviceRelationsConfiguration

1..n
1

1..n

1..5

1..n

1

1..5

Figure 5.12: Configuration DSL class diagram.
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Finally, the PulverizationConfiguration class has a set of LogicalDevice-
Configuration and a DeviceRelationsConfiguration; this class represents the
root of the configuration and is used to configure the pulverization platform.
The Figure 5.12 depicts the relationship between the classes that define the config-
uration that can be created via the configuration DSL.

The configuration is enriched with some extension methods that allow getting
the logical device configuration from a given device name and from a logical device
configuration, can be retrieved the deployment unit from the given components.

An example of configuration is shown on the Listing 5.13. The configuration
defines three logical devices where the device-1 can communicate with the device-
2 and the device-3. At the time of writing, the information about the links
between the logical devices is not used by the framework, but in a future version,
this information can be used, for example, by the communication components to
establish the right communication within the network.�

1 val config = pulverizationConfig {

2 logicalDevice("device -1") {

3 BehaviourComponent and StateComponent

4 deployableOn Cloud

5 StateComponent deployableOn Cloud

6 CommunicationComponent deployableOn Edge

7 SensorsComponent deployableOn Device

8 }

9 logicalDevice("device -2") {

10 BehaviourComponent and StateComponent

11 and CommunicationComponent

12 deployableOn Device

13 }

14 logicalDevice("device -3") {

15 BehaviourComponent deployableOn Cloud

16 CommunicationComponent deployableOn Edge

17 SensorsComponent deployableOn Device

18 }

19 deviceLinks {

20 "device -1" linkedWith "device -2"

21 "device -1" linkedWith "device -3"

22 }

23 }
� �
Listing 5.13: Configuration DSL
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5.7 Platform DSL

The platform DSL represents one fundamental building block of the entire frame-
work: with this DSL the user can configure the platform in a simple declarative
way, without the need to manage specific aspects like how the components should
be instantiated or how the communication between them should occur. The DSL
is implemented in the dsl package of the platform module and should provide the
following features:

• The ability to register the user-defined components with their corresponding
logic

• The ability to specify which communicator should be used to communicate
between the components

• The ability to specify a custom context that should be used.

• Produce a platform instance that can be used to start the pulverized system.

All of those four features are implemented in the DSL using the syntax and the
structure defined in the Listing 5.14 which provides an example of the use of the
DSL to configure the platform.

First of all, the DSL takes as arguments the configuration of the device that
should be executed; the configuration is used to know which components the logical
device has and how they are distributed across the infrastructure. With that
information, the platform can determine which components are local (in the same
deployment unit) and which are remote, instantiating the right components and
communicators.

Then, the DSL provides a way to register the user-defined components with
their corresponding logic. If the given components do not match the configuration,
an exception is raised.

Finally, the type of communicator and the remote place provider can be specified
respectively via the withPlatform and withRemotePlace methods. The context
can be overridden via the withContext method.

The development of this DSL has involved the resolution of several issues, in
particular, the management of serialization aspects and a limitation of the Kotlin
type inference. Below are described those issues and the solutions adopted to
overcome them.

Serialization

Serialization represents an important aspect of the working of the framework but at
the same time, you don’t want to force the user to manage serialization aspects. Is
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1 val platform = pulverizationPlatform(

2 config.getDeviceConfiguration("device -1")

3 ) {

4 behaviourLogic(

5 BehaviourComponent (), :: behaviourLogic

6 )

7 stateLogic(StateComponent (), :: stateLogic)

8 communicationLogic(

9 CommunicationComponent (), :: communicationLogic

10 )

11 actuatorsLogic(

12 ActuatorsComponent (), :: actuatorsLogic

13 )

14 sensorsLogic(SensorsComponent (), :: sensorsLogic)

15

16 withPlatform { RabbitmqCommunicator () }

17 withRemotePlace { defaultRabbitMQRemotePlace () }

18

19 withContxt {

20 configFilePath("config /. pulverization.env")

21 }

22 }
� �
Listing 5.14: Example of the use of the DSL to configure the platform.

the responsibility of the framework to retrieve the serializer from the user-defined
components and to use it in conjunction with other framework elements like the
communicators. Thus, the low complexity of using and configuring the framework
is guaranteed.

The first issue is how to retrieve the serializer from the user-defined components
without forcing the user to provide it. The solution adopted defines the DSL entry
point as an inline function that accepts a reified type parameter, in this way, the
serializer can be retrieved via the serializer method. In particular, the function
defines five type parameters: S, C, SS, AS, and R which respectively represents
the type of the state, the type of communication, the type of the sensors, the type
of the actuators, and the type of behaviour result.

The problem occurs when a logical device does not define all of the five com-
ponents but only a subset of them. For example, if a logical device is made of
the behaviour, communication, sensors, and actuators components when using the
DSL, a type for the state should be provided. A first, elegant approach would
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be to default all the unspecified types to the Nothing bottom type; however, this
approach is not feasible, since the Nothing type is not serializable and thus, it
cannot be inlined as a type. The solution adopted is to use Any as the default type
for the unspecified components. This solution enables the inlining of the type, so
the function can be used (as inline) but the drawback is that there is no serializer
for the Any type. Since the absence of the type means that the component is not
used, the serializer for the Any type is a dummy serializer that does nothing but
makes the function sound. In this way, a check can be made to verify if the given
type is Any (and rely on the dummy serializer) or if it is a specified type retrieving
the serializer from it.

The Listing 5.15 shows the implementation of the dummy serializer for the Any
type and how the serializer is retrieved from the user-defined types.�

1 internal class AnySerializer <S> : KSerializer <S> {

2 override val descriptor: SerialDescriptor =

3 PrimitiveSerialDescriptor(

4 "kotlin.Any", PrimitiveKind.STRING

5 )

6 override fun deserialize(decoder: Decoder): S =

7 TODO("Not yet implemented")

8 override fun serialize(encoder: Encoder , value: S) =

9 TODO("Not yet implemented")

10 }

11

12 internal inline fun <reified T> getSerializer ():

13 KSerializer <T> = when (T::class) {

14 Any::class -> AnySerializer ()

15 else -> serializer ()

16 }
� �
Listing 5.15: Dummy serializer for the Any type.

Type inference problem

The second issue is related to the type inference of Kotlin that does not infer a
default type for an unspecified generic type. As said in the previous sections, the
simplicity of the use of the DSL is one of the main goals of the framework. In
particular, when the user configures the platform using the DSL, the user does not
need to specify the type of components, since the framework can infer them from
the configuration. However, the Kotlin type inference does not work for the generic
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types that are not specified raising a compilation error, forcing to specify all the
types required by the entry point function of the DSL. The Listing 5.16 shows
an example of the use of the DSL when all the types are specified. The proposed
example although valid and works, is not very elegant because forces the user to
remember the positional order of the types and specify all of them.

To minimize the amount of boilerplate code and maintain the simplicity of the
DSL, the proposed solution utilizes extension methods to facilitate type inference
for all five types included in the user-defined configuration base. With the use
of the extension methods, the Kotlin type inference algorithm can infer the right
types without specifying them explicitly. This is a sort of workaround to deal with
the limitation of the Kotlin type inference algorithm that does not infer a default
type for an unspecified generic type.�

1 val platform = pulverizationPlatform <StateOps , Comm ,

2 SensorsPayload , ActuatorsPayload , Unit >(

3 config.getDeviceConfiguration("device -1")

4 ) {

5 behaviourLogic(BehaviourComponent (), :: bhvLogi)

6 stateLogic(StateComponent (), :: stateLogic)

7 communicationLogic(CommComponent (), :: commLogic)

8 actuatorsLogic(ActuatorsComponent (), :: actLogic)

9 sensorsLogic(SensorsComponent (), :: sensLogic)

10 }
� �
Listing 5.16: Example of the verbosity of the DSL when all the types are specified.

The Listing 5.17 shows the implementation of the extension methods that help
the type inference to infer the right types without specifying them explicitly.
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�
1 companion object {

2 fun <S, C, SS , AS, R>

3 PulverizationPlatformScope <S, C, SS , AS, R>

4 .behaviourLogic(

5 behaviour: Behaviour <S, C, SS, AS, R>,

6 logic: BehaviourLogicType <S, C, SS, AS, R>,

7 ) where S, C : Any , SS : Any , AS : Any , R : Any {

8 configuredComponents += BehaviourComponent

9 behaviourComponent = behaviour

10 behaviourLogic = logic

11 } // Other methods omitted for brevity

12 }
� �
Listing 5.17: Extension methods to help the Kotlin type inference algorithm.



Chapter 6

Validation

This chapter describes the validation process of the framework. The validation
process is divided into two parts: the validation of the framework itself via unit and
integration testing, and the validation of the framework’s use cases via the demos.
Aspects of CI/CD used for the development and maintenance of the project will
be explained, as well as the methodologies used to deploy the framework. Finally,
the Section 6.5 describes the current limitations of the framework and future work
geared toward extending and improving the framework.

6.1 Testing

Software testing is a critical process for verifying whether the actual software product
conforms to the specified requirements and meets the required quality standards,
thereby ensuring its integrity and ”defect-free” performance. This process involves
the systematic execution of software or system components, using either manual
or automated tools, to evaluate one or more properties of interest. The overall
objective of software testing is to identify any discrepancies or deficiencies, such as
errors, gaps, or missing requirements, that may exist between the actual system
and its intended design.

6.1.1 Unit testing

Unit testing is a type of software testing where the focus is on individual units
or components of a software system. Its purpose is to validate that each unit of
the software works as intended meeting the requirements. Unit testing is usually
performed by the developer and is the first level of testing performed on the
software.

Generally, unit tests are automated and executed whenever a change is made to

75
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the source code to ensure that the new code does not break the existing functionality.
Unit tests are designed to validate the smallest possible unit of code, such as a
single function or method, testing them in isolation from the rest of the system.

Usually, a lot of unit tests are written to try to cover as much code area as
possible by going to test corner cases and wrong uses of the code. One metric
that indicates the amount of testing that is present in the code base is called code
coverage. This metric, often expressed as a percentage, defines how many lines
of code were covered by unit tests indicating the pervasiveness of the tests but
does not provide any guarantee that the tests are correct or that they cover all the
possible cases. Therefore, an alternate interpretation of the notion of code coverage
is the number of lines of code that are untested.

The importance of testing has been recognized as a fundamental tool in the
development and maintenance of a code base, and therefore several test suites have
been developed. The most relevant in the JVM ecosystem are JUnit 1 and TestNG 2,
which are both unit-testing frameworks for the Java programming language.

In recent times, the concept of “test as specification” has emerged, and for that
reason, they must follow good programming practices and be as clear and expressive
as possible to be easily read and interpreted, al well as the main codebase. In this
regard, testing frameworks have emerged that provide DSLs enabling the writing
of clear, well-organized and contextualized tests. The most relevant in the JVM
ecosystem are Spock 3 and Kotest 4.

The following will outline the unit testing aspects involved in the framework,
explaining the rationale for choosing Kotest as the testing framework and which
key aspects of the framework were subject to unit testing.

The requirements that a testing framework must have for this project are as
follows:

• It must provide a DSL for writing tests

• It must provide several testing and assertion styles

• It must support out-of-the-box support for Kotlin coroutines

1JUnit goal is to create an up-to-date foundation for developer-side testing on the JVM.
https://junit.org/junit5/

2TestNG is inspired by JUnit and NUnit but introduces some new functionalities that make
it more powerful and easier to use. https://testng.org/doc/

3Spock is a testing and specification framework for Java and Groovy applications. http:

//spockframework.org/spock/docs/1.3/all_in_one.html
4Kotest is a testing framework for Kotlin that provides a rich set of tools for testing.

https://kotest.io/docs/

https://junit.org/junit5/
https://testng.org/doc/
http://spockframework.org/spock/docs/1.3/all_in_one.html
http://spockframework.org/spock/docs/1.3/all_in_one.html
https://kotest.io/docs/
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The first two requirements are needed to write clear and expressive tests, while
the third is needed to test the framework in a seamless way since is entirely based
on coroutines. The two main candidates for this project are Spock and Kotest.
Although Spock provides a DSL for writing tests and different styles, it does not
provide any support for coroutine, since it was born for Java and groovy. In
contrast, Kotest is entirely written in Kotlin and provides a full DSL with various
styles for testing, as well as native support for coroutines. For these reasons, Kotest
was chosen as the testing framework for this project. Moreover, Kotest supports
Kotlin multiplatform, a feature that perfectly fits the framework’s goal of being
cross-platform; in this way, all the tests are executed on the JVM, JS and Native
platforms providing an effective way of testing the framework for all of them.

For most of the tests in the pulverization framework, the FreeSpec style was
used, which is a style that allows writing tests in a specification-like way, where the
test cases are written as a sentence, and the test body is written as a code block.
This style is particularly suitable for testing the framework since it allows writing
tests clearly and expressively, the Listing 6.1 shows an example of a test written in
this style.

As can be seen, the test is written as a sentence in a specification-like fashion;
in this way, even people who are not familiar with the framework can understand
the test and its purpose, as well as understand the framework API and its usage.�

1 class BasePulverizationConfigTest : FreeSpec ({

2 "The configuration DSL" - {

3 "should configure a logical device" {

4 val config = pulverizationConfig {

5 logicalDevice("device -1") {

6 StateComponent deployableOn Cloud

7 BehaviourComponent deployableOn Edge

8 }

9 logicalDevice("device -2") { }

10 }

11 config.devicesConfig.size shouldBe 2

12 config.getDeviceConfiguration("device -1")?.let {

13 it.deviceName shouldBe "device -1"

14 it.deploymentUnits.size shouldBe 2

15 }

16 }}

17 })
� �
Listing 6.1: Example of a test written in the FreeSpec style.
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As follow will be described the relevant testing aspect for each module of the
framework.

Core module

The core module is mainly composed of interfaces that the user must implement to
use the framework. For this reason, the tests for this module are limited and mainly
focus on testing the configuration DSL, the sensors container and the actuators
container.

The testing of the sensors and actuators container presents some interesting
details that are worth mentioning. The first aspect to consider is how the dependency
injection is performed during the tests. Is recalled that the SensorsContainer

and ActuatorsContainer implement the PulverizedComponent interface and
therefore they must give an instance of the Context interface. Although in this
test scenario, the context will not be used, it is necessary to provide an instance of
the context to the container. The fast and easy way to do this is to use a mocked
version of the context, which is provided to the container via dependency injection.
The Koin framework makes available a KoinTest class and overriding the getKoin
method, it is possible to provide a mocked version of the context to the container.
The Listing 6.2 shows an example of how to provide a mocked version of the context
to the container.�

1 class ActuatorsContainerTest : FreeSpec (), KoinTest {

2 override fun getKoin (): Koin = koinApplication {

3 module {

4 single {

5 object : Context {

6 override val deviceID = "test"

7 }

8 }

9 }

10 }.koin

11

12 // Tests

13 }
� �
Listing 6.2: Example of how to provide a mocked version of the context to the
container during the tests.

The effective test of the container is performed with the use of fixtures: the
container to be tested requires some components like sensors, actuators and so
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on to be added to it. For this reason, a fixture containing dummy components
is created. In this way, the test is focused on testing the container itself and not
managing also the creation of the components, simplifying the overall test class.

The test conducted on the container are trivial, but they are useful to ensure
that the container is working properly. The container is a delicate component
because it is queried via the type of sensor or actuator that needs to be retrieved,
which is why it is necessary to exhaustively test all possible scenarios that may
occur.

The testing of the DSL is also trivial: the DSL is a simple class that provides a
set of functions to configure the framework. The tests are focused on ensuring that
the configuration produced is consistent with the use of the DSL. In addition to
testing in normal DSL use, special attention was paid to recreating possible uses of
DSL that would lead to inconsistencies in configuration and verify whether all such
cases were handled correctly. For example, was tested the case in which the user
define the same component in two different deployment units, which is not allowed
and should produce an error. Finally, all the utility functions provided to work
with the configuration were tested.

Platform module

The testing of the platform module is divided into four main parts: the testing of
the communicator, the testing of the components reference, and finally, the testing
of the dsl.

For what concern the communicator testing, only the local communicator was
tested, since the testing of the remote ones is delegated to the specific module
that implements them. The local communicator relies on the CommManager class
to use the right flow for communication with the other local communicator. The
test consists in registering the CommManager to the dependency injection module
and then testing that the class returns the same instance of the flow for the same
communication type.

The testing of the local communicator, instead, is more complex. First of all, is
verified that the local communicator can not be initialized with a self-reference; this
means that initialization of the local communicator with the same component as
source and destination is not allowed. Then, is tested the communication between
two local communicators: the test consists in creating two local communicators,
spawning each one in a different coroutine and then sending a message from one
to the other. The test is successful if the message is received by the other local
communicator. If a problem occurs during the receiving of the message, the test
can hang indefinitely, so a timeout is set to avoid this problem. So the test fails if
the timeout is reached or if the payload differs from sender to receiver, in all the
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other case the test succeed. Finally, is tested the condition in which the sender
sends more messages than the receiver can receive, in this case, the receiver should
receive only the last message sent by the sender. To emulate this condition, the
sender and the receiver are spawned in different coroutines and the sender starts
sending messages to the receiver. The receiver, instead, when spawned is blocked
for a certain amount of time, to simulate a high workload. After the delay, the
receiver starts collecting the messages sent by the sender but only the last one
should be collected.

The testing of components reference is straightforward: the test consists in
creating a ComponentsRefImpl and then set up it with the pair of the components
to be referenced. After that, is tested that the reference is correctly set up and the
class relies on the LocalCommunicator to send and receive the messages.

The dsl testing is focused to figure out possible illegal configurations of the
platform. In this regard, several test cases were created to test, for example, the
case in which more or fewer components are registered than the one specified in
the configuration. During the development of a demo of the framework, it was
discovered a bug in the DSL relative to the type inference; the bug was fixed and a
test was added to ensure that the bug will not be reintroduced in the future.

Code coverage

The metric of code coverage holds significant importance in the development of a
software project. Its management is facilitated by two distinct tools that operate at
separate levels of the project. The first tool, Kover, is a plugin for the Gradle build
system that is designed to provide code coverage for Kotlin projects. The second
tool, Codecov, is a cloud-based service that provides code coverage for GitHub
projects.

Kover operates by instrumenting the test suite to collect the code coverage
data. Subsequently, it publishes code coverage reports in different formats, mainly
.html and .xml. On the other hand, Codecov collects code coverage data from
various sources and provides a web interface to visualize the code coverage of the
project. All coverage reports are uploaded to Codecov using a GitHub Action that
is automatically triggered every time a new commit is pushed to the repository.

6.1.2 Integration testing

Integration testing is a type of testing that aims to test the interaction between
different components of the system. A typical software project is composed of
several modules, and each one of them is responsible for a specific task; the
integration testing is focused on testing the interaction between them to ensure
that they work together as expected when integrated.
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There are four main approaches or strategies to perform integration testing: the
bottom-up, the top-down, the big bang and the sandwich approach. Each strategy
has its own advantages and disadvantages, and the choice of the strategy to use
depends on the specific project and the type of testing that is required.

The big bang approach involves integrating all modules at once and testing
them all as one unit. This approach has the following advantages:

• It is easy to implement and it is suitable for small projects

• It is easy to identify errors, saving time and speeding up the deployment

However, the big bang approach has the following disadvantages:

• It is difficult to locate the source of the error since different modules are
integrated as one unit

• It is time-consuming for large projects with lots of modules

• It must wait until all modules are developed before starting the testing phase

The top down approach is an incremental approach that involves testing from
the topmost module and then proceeding to the lower modules. Each module
is tested one by one and then integrated with the other. This approach has the
following advantages:

• It is easier to identify defects and isolate their sources

• Testers check important units first, so they are more likely to find critical
design flaws.

• It is possible to create an early prototype of the system

The main disadvantage of the top down approach is that when too many testing
stubs are involved, the testing process can become complicated.

The bottom up approach is the opposite of the top down approach: it involves
testing the lower modules first and then integrating them with the upper modules.
Once the lower-level modules are tested and integrated, then the next level of
modules is formed. The main advantages of using this approach are: easier to find
and localize faults and no time is wasted waiting for all modules to be developed,
unlike the big bang approach. However, the main disadvantage of this approach is
that critical modules which control the flow of the application are tested last and
may be prone to defects.

Finally, the sandwich approach is a combination of the top down and bottom
up approaches. In this approach, top down and bottom up testing approaches
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are combined. The top-level modules are tested with low-level modules and the
low-level modules are tested with high-level modules simultaneously. Each module
interface is tested, so there are fewer chances of a defect. The main advantages
derived from this approach are represented by the combination of the benefits of
both top down and bottom up strategies. Moreover, this approach reduces the
amount of time spent on the process and all the modules are tested comprehensively.
The main disadvantage of this approach is that it is more complex than the other
approaches.

In the framework development, the big bang approach was used to perform the
integration testing. The reason for this choice is that the framework is composed
of a few modules, in this way a simpler integration testing process can be achieved.

The most important integration test is defined in the AsyncScenario test class.
This test class is responsible for testing the framework as a whole. In this test,
are used the two DSLs to configure the devices and the platform, and then the
platform is started testing that each deployed component is correctly started and
that the messages are correctly sent and received. The importance of the test
comes from the fact that it involves the entire stack of the framework bringing all
its components into play by verifying that they are operating correctly.

6.2 Continuous Integration and Delivery

The continuous integration and continuous delivery (CI/CD) pipeline is a systematic
approach to software development that involves building, testing, and deploying
code. Automating the pipeline minimizes the risk of human error and ensures a
consistent release process. It involves various tools, such as code compilation, unit
testing, code analysis, security, and binary creation. CI/CD forms the foundation of
a DevOps methodology and unifies developers and IT operations teams in software
deployment. The Figure 6.1 shows a typical CI/CD pipeline.

To enable a pipeline, adequate tools and infrastructure are required. Over the
last ten years, the CI/CD ecosystem has grown significantly, and there are many
tools available to support the pipeline. As follow, a brief landscape of the most
popular CI/CD tools is presented, showing the main features, the main advantages
and disadvantages.

Jenkins is a free, open-source automation server that helps streamline the
software development process by automating tasks such as building, testing, and
deploying code. It offers hundreds of plugins to support various technologies and
tools, making it a highly versatile platform. Jenkins is often used for continuous
integration and continuous delivery (CI/CD) workflows, allowing developers to
quickly and easily validate and release code changes. The Listing 6.3 shows an
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Figure 6.1: A classic example of a CI/CD pipeline.

example of a Jenkinsfile written in Groovy syntax that builds a java project and
subsequently runs the tests.

In the example, the Jenkinsfile defines a pipeline with two stages: one for
building the application using Maven, and one for testing it. This is just a simple
example of what can be achieved with Jenkins, but it demonstrates how it can
help automate and streamline the software development process.

GitHub Actions is a powerful CI/CD platform integrated into GitHub that
allows developers to automate their software development workflows. With GitHub
Actions custom workflows that run on specific events can be defined, such as code
pushes, pull requests, and releases. Workflows are defined using YAML files and
can include multiple steps, such as building and testing code, deploying to various
environments, and more.

Here is a simple example of a GitHub Actions workflow that builds and tests a
Java application:

In the Listing 6.4, the workflow is triggered on pushes to the main branch
and runs on an Ubuntu-based runner. The workflow includes steps to check out
the code, set up a Java environment, build the application, and run tests. With
GitHub Actions, you can easily automate and streamline your software development
workflows, helping to improve efficiency and reduce errors.

An action in the context of GitHub Actions is a pre-written, reusable piece of
code that performs a specific task within a software development workflow. These
actions can be run as part of a workflow to automate tasks such as building code,
testing it, deploying it, and more.
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1 pipeline {

2 agent any

3 stages {

4 stage('Build ') {

5 steps {

6 sh './gradlew build '
7 }

8 }

9 stage('Test ') {

10 steps {

11 sh './gradlew test '
12 }

13 }

14 }

15 }
� �
Listing 6.3: A Jenkinsfile example that builds and tests a Java project.

The choice to use GitHub Actions to implement the CI/CD pipeline was made
primarily for reasons of practicality and prior knowledge, but also because it
boasts a large community that supports and maintains the actions. The pipeline is
structured into three main jobs:

• Build: the build job is responsible for running all the quality assurance tools,
compiling the source code and generating the artifacts

• Test: the test job runs all the unit tests and integration tests, and it is
responsible to upload the artifacts on the Maven Central repository and close
the repository

• Release: the release job is responsible for releasing the artifacts on the
Maven Central repository

All the aforementioned jobs are executed in parallel over three different operating
systems: Windows, Linux and macOS. The use of three different operating systems
allows for verification that the framework is compatible with all the major operating
systems and the relative platforms, reducing the probability of errors on a specific
platform.

When working with Kotlin multiplatform, the pipeline slightly changes, since
the artifacts must be generated for each supported platform. To achieve this, the
pipeline is enriched with some additional jobs: the very first job is responsible for
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1 name: Java CI

2 on:

3 push:

4 branches:

5 - main

6 jobs:

7 build:

8 runs -on: ubuntu -latest

9 steps:

10 - uses: actions/checkout@v2

11 - name: Setup Java

12 uses: actions/setup -java@v2

13 with:

14 java -version: 19

15 - name: Build

16 run: ./ gradlew build

17 - name: Test

18 run: ./ gradlew test
� �
Listing 6.4: A GitHub Actions workflow example.

creating the staging repository on the Maven Central repository, setting up the
environment for a possible release. Then, are executed the build, test and release
jobs for each platform. A specific job is also added after the build job to close
the staging repository on the Maven Central repository, and consequently, trigger
the checks over the repository. Finally, the release job is executed to release the
artifacts on the Maven Central repository if needed (see Figure 6.2).

The rationale behind the choice of using a dedicated job for creating the staging
repository is due the fact that the subsequent jobs are executed in parallel over
different OS, which means that they would create a different staging repository for
each OS, leading to an unintended condition. Using the aforementioned approach,
the staging repository is created only once, and then, the subsequent jobs are
executed over the same repository by sharing the repository id. In this way, the
artifacts coming from different OS are uploaded to the same repository (using the
repository id generated before), and consequently, the release job releases all the
artifacts on the Maven Central repository consistently.

Code maintenance is a key aspect of good project lifecycle management. For
this reason, tools such as renovate, mergify and semantic-release have been used to
automate these aspects.

Renovate is an automated tool that is used to manage and automate the process
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Figure 6.2: The CI/CD pipeline of the framework.

of updating dependencies and keeping projects up-to-date. The Renovate Bot can
be integrated into a project’s code repository and configured to automatically detect
when updates are available and then create pull requests to implement the updates.
This can help to streamline the process of keeping dependencies up-to-date and
reduce the risk of security vulnerabilities or compatibility issues.

Mergify is an automated tool that helps to manage and automate the process of
merging pull requests in a code repository. The Mergify bot can be integrated into
a project’s code repository and configured to automatically merge pull requests
that meet specific criteria, such as passing all required tests or receiving approval
from a specified number of reviewers. This can help to speed up the code review
process and reduce the workload of maintainers, freeing them up to focus on more
strategic tasks.

The semantic-release is a tool that automates the process of versioning and
releasing software projects. It uses a specific commit message syntax to determine
the type of changes made in each commit message 5 and automatically generates
a new version number and make a release based on those changes. This helps to
ensure that version numbers are consistently and accurately updated, reducing the
risk of errors and allowing teams to focus on more important tasks. Additionally,
by automating the release process, semantic-release can help to speed up the
development cycle and allow teams to deliver new features and bug fixes to users
more quickly and efficiently.

The joint use of these three tools on the one hand greatly speeds up the release
and maintenance process of the code but on the other hand, should be paid attention

5https://www.conventionalcommits.org/en/v1.0.0/

https://www.conventionalcommits.org/en/v1.0.0/
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to the fact that since are automatic tools, they could cause unintended updates
causing repercussions on the proper functioning of the project, such as updating a
dependency that modifies a public API thus making it incompatible with its use
in the code. To minimize these scenarios, an extensive and complete test suite
should be set up, but also a CI/CD pipeline that intercepts similar a problem
should be used; in this way, maintainers are notified and they proceed with manual
intervention to resolve the issue.

Therefore, all these details have been carefully attended to so that no situations
arise that lead to inconsistencies or incompatibilities in the code base: renovate
is configured to open a pull request as soon as a new version of any dependency
is available; mergify is configured to merge automatically the PRs coming from
Renovate which the status check is passed, and semantic-release is configured to
make a release only from the master branch and if the previous jobs are completed
successfully.

6.3 Demo 1: Single Device Multiple Components

With the first demo, a simple system was aimed at highlighting the main aspects of
pulverization instantiated in a real physical scenario. As a second goal, the demo
aims to provide a reference on how it is possible to “pulverize” a device through
the framework by also testing it in a context closer to real use cases.

This demo models the following scenario: you want to monitor the moisture
status of soil through a device by sensing the moisture level of the soil and through
a valve, set the water flow to properly adjust the desired moisture level. This simple
scenario involves several aspects of the pulverization: first, we find the concepts
of sensor and actuator, which respectively serve to acquire the soil moisture level
and regulate water flow. Finally, the behavior specifies how the flow regulation
should occur based on the detected moisture. The Figure 6.3 shows the components
defining the logical device.

The physical system is composed of three devices: two embedded systems used
respectively for moisture sensing and water flow regulation and a server which
represents the infrastructure where the pulverized system runs. Two ESP32 6

boards are used to implement the sensor component and the actuator component.
The primary rationale behind selecting these boards is their cost-effectiveness and
ease of use. Additionally, they come equipped with a Wi-Fi module, facilitating
communication with the pulverization platform.

In Figure 6.4 is reported the physical system architecture where are reported
the communication between the components and the server.

6https://www.espressif.com/en/products/socs/esp32

https://www.espressif.com/en/products/socs/esp32
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Figure 6.3: Decomposition of the moisture device into the pulverization components
showing the interaction between them.

The multiplatform nature of the framework allows the execution of each “pul-
verized component” on different architectures. But at the time of writing, even if
the number of supported architectures in Kotlin multiplatform is quite high, the
framework does not support the Xtensa 7 architecture used by the ESP32 boards.

This limitation is solved as follows: we can think of the sensor component as
acting as a kind of proxy by collecting data from the embedded device. In this
way, the firmware that will control the board will be written in a language that
supports the Xtensa architecture and will provide a communication mechanism
with the sensor component that will simply forward the received message to other
components. As can be seen, the framework is extremely flexible, allowing it to
accommodate limitations such as the one described above.

In this specific case, the limitation described above is solved by writing the
ESP32 firmware in Rust (a language that supports the Xtensa architecture) and
implement the communication with the sensor component using a TCP socket.
The sensor component is implemented using the framework interface where a TCP
socket is opened to listen for incoming messages from the embedded device. On
each received message, the sensor’s value is extracted and saved in a local state; in
this way, on each sense method call, the last received value from the embedded
device is returned. This simple workaround allows the use of the pulverization

7Xtensa is a configurable and extensible processor architecture developed by Tensilica, now
owned by Cadence Design Systems. It is designed to meet the unique requirements of a wide
range of applications and systems, from low-power IoT devices to high-performance computing
systems.
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Figure 6.4: Physical system architecture where are reported the communication
between the components and the server.

framework also in devices that do not support the Kotlin multiplatform architecture.
The explanation of the limitation was made using the sensor component as an
example, but the same principle was applied to the actuator component, so again
via TCP socket, a message is sent to the embedded device for opening or closing
the valve.

As follow, are reported the main relevant details of the implementation of this
demo. As discussed above, the device has four components: sensor, actuator,
behavior and state; the Listing 6.5 shows the configuration of the logical device
where the sensor and actuator components are deployed into two devices, and the
behaviour and state components are deployed into the server.�

1 val configuration = pulverizationConfig {

2 logicalDevice("moisture -device") {

3 SensorsComponent deployableOn Device

4 ActuatorsComponent deployableOn Device

5 StateComponent

6 and BehaviourComponent

7 deployableOn Edge

8 }

9 }
� �
Listing 6.5: Configuration of the logical device named “moisture-device”.
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The behaviour component defines the logic of the device: retrieve the moisture
level from the sensor component and, if the moisture level is below a threshold,
open the valve using the actuator component. The state component is used to
store the moisture level. The Listing 6.6 shows the implementation of the behaviour
component.

Finally, the three deployment units are defined and containerized using Docker.
In particular, a RabbitMQ container is used to provide the communication between
the components, while the other three containers are used to run the sensor,
actuator and behaviour components. Since the three components are deployed into
three different containers, these may be deployed on different machines without
affecting the execution of the logical device.

The test of the demo was conducted on a local Linux machine running the four
containers and the two ESP32 boards. All the containers are deployed using Docker
Compose. The two ESP32 boards are connected to the same Wi-Fi network and
the sensor and actuator components are configured to connect to the respective
container using the IP address of the machine where the container is running.
Finally, the increase and decrease of soil moisture were simulated by verifying that
the valve opened and closed properly to maintain the desired level of moisture in
the soil.�

1 class SoilMoistureBehaviour :

2 Behaviour <StateOps , Unit , Double , Boolean , Unit > {

3 companion object {

4 private const val TARGET_MOISTURE = 30.0

5 }

6

7 override fun invoke(

8 state: StateOps ,

9 export: List <Unit >,

10 sValues: Double ,

11 ): BehaviourOutput <StateOps , Unit , Boolean , Unit > {

12 val action = sValues < TARGET_MOISTURE

13 return BehaviourOutput(

14 MoistureState(sValues), Unit , action , Unit

15 )

16 }

17 }
� �
Listing 6.6: Implementation of the behaviour component for the demo 1.
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6.4 Demo 2: Multi Devices Multi Components

Demo 2 aims to represent a more complex scenario than the previous one, involving
multiple devices and enabling communication between them. Also, we want to
introduce more types of devices and show how they are supported by the framework.
This demo gets even closer to real scenarios involving multiple types of devices and
where communication between them is a prerequisite.

This demo tries to replicate the hot-warm-cold game using two types of devices:
an embedded device that needs to be found and many smartphones that need to
find it. The smartphones connect to the embedded device via Bluetooth, through
which they determine its distance and communicate this information with other
smartphones. The embedded device receives the information on the distances of
the smartphones and sets a light intensity of an LED proportional to the proximity
of the smartphones to it. Thus, the closer the smartphones are to the embedded
device, the brighter the led will emit; while the farther away the smartphones are,
the less light will be emitted. Each smartphone sends its distance to all other
smartphones and simultaneously receives the distance of all other smartphones from
the embedded device. Sharing distance information is intended to test inter-device
communication while simultaneously providing clues as to where the device that
needs to be found is located so that it can be found more quickly.

A Raspberry PI was used as the embedded device since it has both Wi-Fi
and Bluetooth. The ESP32 was not chosen, as in the previous demo, because
it has hardware limitations that prevent Bluetooth and Wi-Fi from being used
simultaneously. As for smartphones, Android smartphones were used, thus allowing
the framework to be tested on this platform as well.

When designing a pulverized system, it is good to represent the system from two
different viewpoints: a viewpoint that captures the logical level of the interactions
between logical devices (see Figure 6.5) and a physical viewpoint that shows how
the system is deployed in the infrastructure (see Figure 6.6).

Figure 6.5 shows the network topology and how devices are tied together. This
level of abstraction is what should be used by the user who intends to implement
the system by exploiting the pulverization framework: he or she does not have
to worry about infrastructure or deployment aspects; how communications take
place is handled directly by the framework. This greatly simplifies the development
of the system. How then the system is deployed in the infrastructure is depicted
in Figure 6.6, which shows at the physical level where components are executed
and how intra-component communications of each device take place. Moreover, are
depicted all the physical devices involved in the system.

Design choices for the implementation of the demo are explained below. The
demo is divided into four main modules:
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Figure 6.5: Logical diagram of the connection between the logical devices.

• Android application: in this module is implemented the mobile application
that runs on smartphones

• Raspberry PI firmware: this module implements the firmware that runs
on the Raspberry PI

• Common module: this module contains the common code shared between
the Platform and Android application modules

• Platform module: this module contains the code that runs all the devices’
components logics.

The common module contains the code shared between the platform and
android application modules. In particular, it contains the implementation of each
component like the behaviour, sensors and actuators components, either for the
embedded device and the smartphones. The reason why all the components are
implemented in the same module is because they can be reused whenever a new
device is added to the system. In this way, the specific device should not implement
its specific version of the component but instead reuse the one already implemented.

The android application is structured as follows: during the initialization stage
the pulverization platform with its components is initialized and the Bluetooth
LE module configured. Then, a user interface is shown to the user, which allows
them to start the system by providing the IP of the machine where the platform
is running and the device id. Once the user starts the system, the Bluetooth LE
module starts scanning for nearby devices and, when the embedded device is found
(the Raspberry PI), the Bluetooth LE module connects to it and starts sending the
distance information to all its neighbours. At the same time, the application listen
for incoming messages from the neighbours and shows their distance on the screen.

The Raspberry PI firmware is structured as follows: first of all, the Bluetooth
LE module is configured as a server and starts the advertising process, so that all
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Figure 6.6: Physical diagram of the connection between the logical devices.

the nearby devices can connect to it. Then, a TCP socket is opened toward the
actuator component deployed on the server. Once the connection is established,
all the incoming messages are collected. The message contains a decimal value
between 0 and 1 that respectively means LED turned off and LED turned on; all
the intermediate values are used to set the LED intensity.

Finally, the Platform module defines for each logical device in the system all
its deployment units. In particular, runs the behaviour, sensors and actuators
components for each smartphone and the behaviour and actuators components for
the embedded device.

The system was dockerized and deployed using docker compose. The system,
once started, was tested by using two smartphones that were continuously moved
around the room to observe how it varied the LED intensity accordingly. The
conducted test did not reveal any anomalies or malfunctions, except for some
inaccuracies in the calculation of the distance of the devices from the Bluetooth
antenna due to signal fluctuations.

One notable test that has been conducted involves simulating a device failure
and observing how the system reacts to this condition. The failure of a device
was simulated by disconnecting it from the network. As soon as the device was
disconnected from the network, the system continued to operate as expected.
Devices that were still active, store the last message received from that device
and thus did not alter their behavior. When the device returns operational in
the network, then it will start sending the newly updated data to its neighbors
again, which will then update the information about that device’s distance from
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the antenna.
In conclusion, this demo brought out the effectiveness of the framework in

clearly separating business logic development from infrastructural and deployment
aspects, highlighting how more complicated systems are achievable through the
pulverization framework. Again, it highlighted how a failure of one component
does not preclude the system’s operation.

This demo can be extended by going to improve the calculation of the distance
of the devices from the antenna, for example, by implementing a filter that reduces
the noise in the signal acquisition producing more stable and truthful values.
Another interesting aspect to analyze may be to have some smartphones with all
components running on them, while other smartphones have the behavior running
in the cloud, thus observing that the overall behavior does not change as the
deployment structure changes.

6.5 Current framework limitations

At present, the framework has some limitations: dynamics and support for different
protocols are some examples of shortcomings. The goal of this section is therefore
to provide an overview of the main shortcomings of the framework by going on to
examine in what contexts these, if implemented, could solve certain problems.

6.5.1 Dynamics

By dynamism, in this context, we mean the ability of the framework to be able to
dynamically relocate pulverized components in the infrastructure.

At present, the framework does not handle this aspect: the deployment structure
is defined a priori and remains so throughout the life of the executed system.
Although dynamism is a key aspect in pulverization, it was decided to focus more
on good domain modeling to build a solid foundation on which the framework can
be extended, rather than implementing as many aspects as possible running the
risk of creating a rigid framework that is not very extensible and difficult to use.

6.5.2 Multi-protocols

The management of multiple protocols to enable intra-component communication is
an important aspect since pulverization can involve a large number of heterogeneous
devices that have different computational and communication capabilities.

For this reason, the choice of one protocol over another is not mutually exclusive,
but it may be appropriate, for example, to provide multiple protocols that are
used in the pulverized system. Again, you might be dealing with devices that do
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not support certain protocols, or you are in a situation where you want to use a
very lightweight protocol (e.g. MQTT) for devices with very low computational
resources and instead use a higher-performance protocol for those parts of the
system with high computational power.

At the time of writing, the only protocol implemented to enable intra-component
communication is RabbitMQ as it represents a good compromise between ease of
use, performance and adoption.

Adoption of additional protocols would increase the framework’s potential to
be used in many contexts with strong device heterogeneity.

6.5.3 Performance evaluation

Currently, no performance evaluation has been conducted on the framework. This
is a very important aspect that must be addressed in the future to understand
how the framework behaves in terms of performance and scalability. In particular,
it is important to understand, in terms of latency and throughput, how these
aspects are affected using different deployment strategies. For example, could be
interesting to understand how the latency and throughput are affected when all the
components are deployed on the same deployment unit (leveraging an in-memory
communication) and when the components are deployed on different deployment
units leveraging the communicator implementation to communicate.

Moreover, another aspect to evaluate could be how the latency and throughput
are affected when different protocols are used at the same time: for example, when
different communicator implementations are used to opportunistically exploit the
underlying infrastructure.

The main reason why this aspect has not been addressed yet is that all the effort
has been focused on testing the operational semantics of the framework checking
that all the functional requirements are met. However, the performance aspect is
very important and must be addressed in the future.
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Chapter 7

Conclusions

The increasing use of Internet of Things (IoT) devices and the resulting large
amounts of data being produced present significant challenges for cloud computing.
While cloud computing has proven effective for many applications, it may not
always be suitable for real-time constraints and handling data from IoT devices.

Fog computing offers a promising solution by providing a computing model that
sits between IoT devices and the cloud, allowing for the collection, aggregation, and
processing of data using a hierarchy of computing power. Combining fog computing
with the cloud can reduce data transfers and communication bottlenecks, as well
as contribute to reduced latencies. However, realizing systems that operate in the
edge-cloud continuum is a complex challenge due to the heterogeneity of devices
and dynamic requirements of today’s systems.

Various approaches have been proposed to address these challenges, including
self-organizing systems and methodologies such as osmotic computing. The orches-
tration of distributed applications requires careful management of the underlying
infrastructure to enable the reuse of design elements across different scenarios.

The thesis focuses more specifically on the pulverization approach: a framework
that breaks the system behaviour into small computational pieces that are con-
tinuously executed and scheduled in the available infrastructure. In this way, the
business logic of a system is neatly separated from infrastructure or deployment
concerns enabling the concept of deployment independent systems. Reuse and
independency from the deployment are the two main pillars of the pulverization
approach, by which the framework aims to enable the deployment of systems in
the edge-cloud continuum.

The main contribution of the thesis is the development of a framework that
leverages the pulverization approach to deploy Cyber-Physical Systems. The
framework aims to lay the groundwork for closing the gap between the simulation
of these systems and their deployment by exploiting the pulverization methodology.

The framework is built trying to maintain ease of use, modularity, and ex-

97
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tensibility by modeling the foundational concepts of pulverization over which the
framework can be extended and improved.

Several technology solutions were examined that could support cross-platform
targets allowing the framework to be used seamlessly across different platforms
and architectures. Kotlin multiplatform was identified as a suitable technology for
the development of the framework since a wide range of architectures is supported.

The most significant implementation details and technology challenges that
were faced during the development of the framework and what solutions were
employed to achieve it were reported.

Finally, topics such as testing and validation were covered by showing what
strategies were used to validate the framework, as well as relevant demos were
developed to show how the framework works in different contexts, each of which
brings with it peculiar characteristics that go to corroborate the proper operation
and effectiveness of the framework.

From using the framework, has emerged that deployment or infrastructural
aspects never appear during system implementation, leading to the advantage of
most efforts on development, delegating infrastructure and communication aspects
to the framework. In addition, it is apparent how the reusability of the developed
components is easily achieved by design: this leads to the same component being
able to be reused in different deployment strategies, making the application flexible
to changes in how it is deployed.

7.1 Future Work

The framework is still in its early stages of development and there is still a lot of
work to be done to make it more robust and complete. The following are some of
the topics that could be explored in future work.

Due to the heterogeneity of the devices that can be used in the edge-cloud
continuum, the framework should be able to support different communication
protocols. This would allow the framework to be used in a wider range of scenarios
allowing the use of different communication protocols based on device capabilities.
Moreover, this work can be extended to support different communication protocols
at the same time to opportunistically exploit the best protocol for the actual system
requirements or quality of services.

Dynamics is a key aspect of the edge-cloud continuum, and the framework
should be able to support dynamic changes in the system. This would allow the
framework to be used in scenarios where the system is subject to changes in the
number of devices, the number of resources, or opportunistically exploit the best
deployment strategy for the actual system.

At present, to deploy the system, certain manual procedures, such as con-
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tainerization of the deployment units, which are then executed on the existing
infrastructure, need to be carried out. By automating this process, the deployment
time can be reduced, and the risk of errors in container deployment can be mini-
mized. Consequently, it is wise to investigate how containers can be automatically
deployed into the infrastructure via DevOps (CI/CD) methodologies

With this thesis, I brought in research topics and problems such as pulverization.
It was motivating to delve into and understand the concepts of pulverization and
carry them into the implementation of a framework. Was interesting to see the
framework work in different contexts and understand how it could be evolved in
the future. This experience allowed me to study the literature and understand
what related work has already drawn useful insights from it to implement the
framework. In addition, this thesis allowed me to delve into the Kotlin ecosystem
in its multiplatform version by understanding how this technology may be suitable
to support the implementation of the framework.

The completion of this thesis has facilitated my technical growth in two distinct
ways. Firstly, it provided me with the opportunity to explore various aspects and
tools within the field, thereby enhancing my technical capabilities. Secondly, it
enabled me to tackle novel issues by motivating me to seek innovative solutions to
support the project.
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[13] Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. “Distributed
system development with ScalaLoci”. In: Proc. ACM Program. Lang. 2.OOP-
SLA (2018), 129:1–129:30. doi: 10.1145/3276499. url: https://doi.org/
10.1145/3276499.

[14] Pascal Weisenburger and Guido Salvaneschi. “Implementing a Language
for Distributed Systems: Choices and Experiences with Type Level and
Macro Programming in Scala”. In: Art Sci. Eng. Program. 4.3 (2020), p. 17.
doi: 10.22152/programming- journal.org/2020/4/17. url: https:
//doi.org/10.22152/programming-journal.org/2020/4/17.

[15] Domain-driven design - tackling complexity in the heart of software. Addison-
Wesley, 2004. isbn: 978-0-321-12521-7.

https://doi.org/10.3390/fi12110203
https://doi.org/10.3390/fi12110203
https://doi.org/10.3390/fi12110203
https://doi.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
https://doi.org/10.1109/COMPSAC.2014.56
https://doi.org/10.1109/COMPSAC.2014.56
https://doi.org/10.1109/COMPSAC.2014.56
https://doi.org/10.1109/MS.2011.27
https://doi.org/10.1109/MS.2011.27
https://doi.org/10.1109/MS.2011.27
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/ACSOS-C52956.2021.00033
https://doi.org/10.1109/ACSOS-C52956.2021.00033
https://doi.org/10.1109/ACSOS-C52956.2021.00033
https://doi.org/10.1109/ACSOS-C52956.2021.00033
https://doi.org/10.1145/3397495
https://doi.org/10.1145/3397495
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.22152/programming-journal.org/2020/4/17
https://doi.org/10.22152/programming-journal.org/2020/4/17
https://doi.org/10.22152/programming-journal.org/2020/4/17


BIBLIOGRAPHY 103
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