
ALMA MATER STUDIORUM - UNIVERSITY OF BOLOGNA

SCHOOL OF ENGINEERING AND ARCHITECTURE

Department of Computer Science and Engineering

Master’s degree in Computer Engineering

MASTER’S THESIS
in

Protocols And Architectures For Space Networks M

Unibo-BP: an innovative free software implementation of

Bundle Protocol Version 7 (RFC 9171)

Candidate:

Lorenzo Persampieri

Supervisor:

Prof. Carlo Caini

Academic Year 2021/2022

I

ABSTRACT

The BP (Bundle Protocol) version 7 has been recently standardized by IETF in RFC

9171, but it is the whole DTN (Delay-/Disruption-Tolerant Networking) architecture, of

which BP is the core, that is gaining a renewed interest, thanks to its planned adoption

in future space missions. This is obviously positive, but at the same time it seems to

make space agencies more interested in deployment than in research, with new BP

implementations that may challenge the central role played until now by the historical

BP reference implementations, such as ION and DTNME. To make Unibo research on

DTN independent of space agency decisions, the development of an internal BP

implementation was in order. This is the goal of this thesis, which deals with the design

and implementation of Unibo-BP: a novel, research-driven BP implementation, to be

released as Free Software. Unibo-BP is fully compliant with RFC 9171, as demonstrated

by a series of interoperability tests with ION and DTNME, and presents a few

innovations, such as the ability to manage remote DTN nodes by means of the BP itself.

Unibo-BP is compatible with pre-existing Unibo implementations of CGR (Contact

Graph Routing) and LTP (Licklider Transmission Protocol) thanks to interfaces designed

during the thesis. The thesis project also includes an implementation of TCPCLv3 (TCP

Convergence Layer version 3, RFC 7242), which can be used as an alternative to LTPCL

to connect with proximate nodes, especially in terrestrial networks. Summarizing,

Unibo-BP is at the heart of a larger project, Unibo-DTN, which aims to implement the

main components of a complete DTN stack (BP, TCPCL, LTP, CGR). Moreover, Unibo-

BP is compatible with all DTNsuite applications, thanks to an extension of the Unified

API library on which DTNsuite applications are based. The hope is that Unibo-BP and

all the ancillary programs developed during this thesis will contribute to the growth of

DTN popularity in academia and among space agencies.

III

TABLE OF CONTENTS

1 Introduction ... 1

1.1 Challenged Networks .. 1

1.2 The DTN Architecture ... 1

1.3 Routing ... 3

1.4 Convergence Layer .. 4

1.5 DTNsuite .. 5

1.6 Unibo-DTN .. 5

2 Bundle Protocol Version 7 .. 7

2.1 Bundle node .. 7

2.2 Endpoint ID ... 7

2.3 Bundle format .. 8

2.4 Major Implementations .. 10

3 Software Architecture ... 12

3.1 Motivations .. 12

3.2 High-Level Design ... 14

3.3 Auxiliary libraries.. 15

3.4 The “bp” library: data classes ... 16

3.5 The “bp” library: services ... 18

3.6 The “ipc” library ... 20

3.7 The “client” and “server” libraries .. 21

3.8 The “cla” library ... 22

3.9 Remote administration ... 23

4 Implementation details ... 25

4.1 Libraries .. 25

IV

4.2 Routing .. 27

4.3 Extension blocks .. 30

4.4 Inter-Process Communication .. 32

4.5 Application Programming Interface .. 34

4.6 Code Building and Installation ... 37

4.7 The Unibo-BP node ... 37

5 Command-Line Interface .. 40

5.1 unibo-bp .. 41

5.2 unibo-bp-admin ... 42

5.3 unibo-bp-remote-admin ... 53

5.4 unibo-bp-tcpcl .. 54

5.5 unibo-bp-ping ... 54

5.6 unibo-bp-echo... 55

5.7 unibo-bp-send .. 56

5.8 unibo-bp-sink .. 57

5.9 unibo-bp-utility .. 57

6 Interoperability tests ... 58

6.1 Network topology ... 58

6.2 Tests description ... 60

6.3 Unibo-BP as a source node .. 61

6.4 Unibo-BP as a destination node ... 65

6.5 Unibo-BP as a router node ... 69

7 Conclusions .. 75

Bibliography ... 77

Appendix A: Nodes configuration ... 81

1

1 INTRODUCTION

1.1 CHALLENGED NETWORKS

Space communications are subject to long propagation delays, intermittent

connectivity, frequent transmission errors, and downtime.

Terrestrial Internet is based on the TCP/IP architecture, designed to ensure good

performance in an environment where the following requirements are met:

1. The round-trip time (RTT), i.e., the time elapsed between sending a packet and

acknowledging its receipt, must be short.

2. Throughout the communication session, there must be a continuous path

between sender and receiver.

3. Packet losses due to errors introduced by the channel must be negligible.

4. Support for the TCP/IP protocol suite must be provided by all nodes.

Networks that do not meet one or more of these requirements are called "Challenged",

as in them the TCP/IP suite has difficulties, or simply cannot, provide satisfactory

performance. Among challenged networks we have both space networks and a few

peculiar types of terrestrial and maritime networks (sensor networks, emergency

networks, military tactical networks, underwater networks, etc.). A new architecture

known as DTN (Delay-/Disruption-Tolerant Networking) was thus designed to

overcome all mentioned challenges [RFC4838].

1.2 THE DTN ARCHITECTURE

The DTN architecture originates from a generalization of InterPlanetary Networking

(IPN) and is designed to be used in the terrestrial or submarine domain as well. This

new architecture proposes to solve the problems of challenged networks by inserting

a new layer called the "Bundle Layer" between the application and transport layers.

2

Figure 1.1 - The DTN Architecture

Nodes that implement the Bundle Layer are called DTN nodes, but there is no

requirement that this additional layer be implemented by all nodes in the network. In

fact, the nodes in the network segment represented by the cloud in the Figure 1.1 can

be simple routers in the Internet network if the network segment connecting two DTN

nodes is the Internet network. The unit of information exchanged at the Bundle Layer

is the Bundle and the protocol that is used at the bundle layer is called the Bundle

Protocol (BP); its version 6 was standardized by the Internet Research Task Force

(IRTF) in an Experimental RFC [RFC5050] (issued in 2007), and only recently (January

2022) its version 7 has been formalized by the Internet Engineering Task Force (IETF)

as a Proposed Standard RFC [RFC9171]. In parallel, the BP has been standardized also

by CCSDS (Consultative Committee for Space Data System), a standardization body

consisting of all major space Agencies, with “Blue book” (standard document in CCSDS

jargon) [CCSDS_BPV6].

A DTN node handles Bundles according to a “store, carry and forward” policy to cope

with the possible lack of a continuous path between source and destination nodes. Each

node along the path stores incoming Bundles, it may carry them with it (as in “data-

mule” or “ferry” environments), and forwards them to the next node on the source-to-

destination path, as soon as the corresponding link is available, which may be

immediately, or after hours. In fact, in challenged networks it is expected that a node

may not have the ability to send Bundles for an arbitrarily long period of time, due to

temporarily unavailable links with neighboring nodes.

Bundle Protocol

Application

Bundle Protocol

Transport Protocol A

Network Protocol A

Bundle Protocol

Transport

Protocol A

Network

Protocol A

Transport

Protocol B

Network

Protocol B

Bundle Protocol

Transport

Protocol B

Network

Protocol B

Transport

Protocol C

Network

Protocol C

Bundle Protocol

Application

Bundle Protocol

Transport Protocol C

Network Protocol C

Network

Segment A

Network

Segment B

Network

Segment C

3

1.3 ROUTING

A DTN node makes use of routing algorithms at the Bundle Layer level to decide which

proximate node it should forward the Bundle to get the Bundle delivered to

destination.

DTN routing algorithms can be opportunistic or deterministic, depending on the kind

of intermittent connectivity typical of the deployment environment. In the former case,

contacts between nodes are supposed random, thus they are based on sending multiple

copies of a Bundle to different neighbors, with the goal of increasing the probability of

delivery to destination. The main algorithms of this type are Epidemic [Vahdat_2000]

Spray and Wait [Spyropoulos_2005], DTLSR [Demmer_2007] and ProPHET

[Lindgren_2004] [RFC6693]; all of them implement a sort of controlled flooding, where

the bundle is not passed to all nodes encountered, but only to a subset (to avoid a

possible network collapse of a pure flooding). They mainly differ in the rule followed

to restrict the number of copies [Caini_2011], [Araniti_2015].

However, there are also deterministic routing algorithms, particularly relevant to

space communications, which exploit the a priori knowledge of deterministic contacts.

They use the information contained in the “contact plan”, i.e., the list of next “contacts”

and “ranges” compiled in advance by a space agency and distributed to its nodes. In

this framework, contacts are unidirectional, being defined as “transmission

opportunities from node A to node B”; they obviously refer to a time interval and to a

nominal transmission rate (often asymmetric in space links). The expected

propagation delay between node A and B, whose knowledge is also essential to routing,

is given in “range” instructions. Note that the propagation delay can vary from a few

ms for close nodes (e.g., between a Lander and a Rover) to a few minutes (e.g., between

Mars and Earth) or more. The main routing algorithm of this type is the Contact Graph

Routing, designed by Scott Burleigh of NASA-JPL, whose latest version has been

recently standardized by CCSDS as Schedule-Aware Bundle Routing (SABR)

[CCSDS_SABR]. The University of Bologna (Unibo), together with DLR (German

Aerospace Center), has presented an enhanced version of SABR [Caini_2021]

[Birrane_2021] [Persampieri_2020], implemented in Unibo-CGR, the thesis project

4

developed for my bachelor's degree [Unibo-CGR]. Unibo-CGR was designed to operate

with ION, the NASA-JPL suite of DTN protocols, and it has been included in ION official

package [ION] by its designer and maintainer, Scott Burleigh, (it can be activated in

alternative to the original implementation by means of a “configure” option). However,

thanks to its modular design, Unibo-CGR can be coupled with whatever BP

implementation by means of a simple interface, as we did during this thesis, to allow

Unibo-BP to use SABR (with numerous optional extensions) by means of Unibo-CGR.

1.4 CONVERGENCE LAYER

In DTN jargon, the protocol stack below the bundle layer is improperly called

Convergence Layer. At its top, i.e., immediately below the BP and usually above a

Transport protocol, we have the Convergence Layer Adapters (CLAs); their aim is to

allow BP to abstract from the specific interfaces of the underlying protocols. The two

most important convergence layer adapters are the TCP Convergence Layer and the

LTP Convergence Layer (note that their official names do not include the “adapter”

word, with some language inconsistency).

The TCP Convergence Layer is required to be implemented by a DTN node to send and

receive Bundles over Internet. Although its version 4 has been recently standardized

[RFC9174] in the thesis we were more interested in version 3 [RFC7242] since it is the

version currently implemented by all major BP implementations, thus the only one that

can provide a high interoperability to Unibo-BP.

The LTP Convergence Layer [RFC5325] [RFC5326] [CCSDS_LTP] is of particular

interest for space communications as it allows the use of the Licklider Transmission

Protocol (LTP) as a Transport Layer protocol, below BP. LTP was specifically designed

to be used in space, to overcome TCP limitations in the presence of long delays or link

intermittency. Unibo-LTP [Bisacchi_2022] [Bisacchi_2021] [Unibo-LTP] is an

implementation of Multicolor-LTP, and enhanced version of LTP proposed by Unibo

and DLR to be used with ION. Its modular design allowed me to develop an alternative

interface to Unibo-BP, thus adding the possibility of using LTP in alternative to TCP as

a convergence layer, which is of great importance for space environments.

5

1.5 DTNSUITE

The DTNsuite [DTNsuite] is a collection of applications, developed and maintained by

Unibo, which makes use of the Unified API [UnifiedAPI], a library that allows

application developers to use a common “abstracted” API to interact with the

underlying BP to perform tasks such as sending or receiving bundles, independently of

APIs of specific BP implementations, with obvious advantages in terms of application

behavior consistency and maintenance facility.

To do this, the Unified API requires that a special interface be implemented for each

supported BP. During this thesis, the support for Unibo-BP was integrated into Unified

API, thus making available all DTNsuite applications (DTNperf [Caini_2013], DTNchat,

DTNproxy, DTNfog, DTNbox [Bertolazzi_2019]) to Unibo-BP users.

1.6 UNIBO-DTN

Unibo-DTN [Unibo-DTN] is the “umbrella” project aimed at including all major

components of a DTN node, some of which, as SABR, LTP and DTNsuite, were

previously developed as independent projects. This thesis fills the main gap with the

development of BP version 7. Thanks to it, and to interfaces to Unibo-CGR, Unibo-LTP,

DTNsuite, all pre-existing modules are now integrated in Unibo-DTN and can be used

together. Moreover, the implementation of TCP Convergence Layer Version 3 adds the

possibility to interoperate with virtually all other BP implementations.

Now Unibo-DTN contains all the major components needed to deploy a DTN node, with

a focus toward DTN nodes operating in space networks. As that, it looks like a Unibo

(scaled down) version of ION. However similar, we must highlight that ION and Unibo-

DTN have different aims. ION is designed with operation environments in mind, with

specific features (e.g., SDR [Burleigh_2007]) to increase robustness in space and a wide

variety of additional protocols for network management, for the support of a BP aware

public-subscribe architecture and security (BPSec [RFC9172], DTKA [Burleigh_2013]),

just to mention only a few elements of a long list. Unibo-DTN, by contrast, is more

focused on research and development of DTN pillars, where modularity and varieties

6

of experimental options are the major design drivers, as obvious coming from an

academic environment.

7

2 BUNDLE PROTOCOL VERSION 7

2.1 BUNDLE NODE

Each bundle node offers the ability to send or receive bundles and is composed of three

main components: a Bundle Protocol Agent (BPA), an Application Agent, and a set of

zero or more Convergence Layer Adapters.

The Bundle Protocol Agent is the key component of a bundle node as it implements the

services offered by the Bundle Protocol. These services are explained in detail in

[RFC9171].

The Application Agent uses the services offered by BP to communicate. It is itself

composed of two elements: the Administrative Element and the Application-Specific

Element. The former deals with receiving or sending Administrative Records, among

which are status reports (i.e., information regarding the processing of a specific

bundle). The latter deals with sending or receiving Application Data.

Figure 2.1 - Bundle Node

2.2 ENDPOINT ID

Each bundle node, or service it offers, is represented by an Endpoint ID (EID). Such

EIDs are characterized by the scheme they follow (see below) and can be singleton or

8

not. Specifically, if an EID is not singleton, it means that at any given time zero or more

nodes may have registered as belonging to that EID. Otherwise, the EID is singleton,

i.e., exactly one node is registered with it. One singleton EID to which each bundle node

is implicitly and permanently registered is the EID of the administrative element of that

bundle node, called the Node ID. Two main schemes are defined in [RFC9171]: "dtn"

and "ipn".

2.2.1 Scheme “dtn”

Each dtn EID consists of two main data items (alphanumeric strings): the node name

and the demux token. In case the demux token is empty, it means that the EID in

question could represent a Node ID. Otherwise, if the demux token starts with the “~”

character, the EID in question is not a singleton EID. In all other cases it represents a

singleton EID.

dtn://<node name>/<demux token>

The dtn scheme also supports the concept of null EID represented by the syntax

"dtn:none".

2.2.2 Scheme “ipn”

Each ipn EID consists of two main data items (non-negative integers): the node number

and the service number. Each ipn EID is implicitly singleton. An EID in the ipn scheme

can be used as a Node ID only if the service number is 0.

ipn:<node number>.<service number>

2.3 BUNDLE FORMAT

A bundle consists of one Primary Block, one Payload Block and zero or more Extension

Blocks. In the following, we refer to version 7 unless explicitly stated. The bundle is

serialized, for transmission purposes, using a Concise Binary Object Representation

(CBOR) encoding [RFC8949]; see [RFC9171] for details.

The Primary Block follows a different structure than the other blocks and represents

the bundle header. Below we recall the information contained in the Primary Block.

9

• The version of the Bundle Protocol that built this bundle.

• The Bundle Processing Control Flags, which are flags representing properties

that apply to the entire bundle rather than to a specific block.

• The CRC type: a value between "no Cyclic Redundancy Check is present," "a

standard X-25 CRC-16 is present" [CRC16] and "a standard CRC32C (Castagnoli)

CRC-32 is present" [RFC4960].

• The EID of the application element of the bundle destination, which can be

either singleton or not but never anonymous (e.g., "dtn:none").

• The EID of the bundle source, termed the Source Node ID, i.e., the EID of the

application element that generated the bundle (e.g., "ipn:1.1"), which can be

either singleton or the null EID.

• The EID of the report-to of the bundle, i.e., the EID of the administrative element

to which the status reports are destined, which may differ from the

administrative element of the bundle source or be anonymous in case no status

reports are to be generated for that bundle.

• The creation timestamp that includes the DTN Time (number of milliseconds

elapsed since the DTN Epoch, i.e., 2000-01-01 00:00:00 +0000 UTC) at which

the bundle was generated by the source and the sequence number, which is a

monotonically increasing positive integer that can be optionally reset to 0 at

each new millisecond.

• The lifetime i.e., a duration in milliseconds that when added to the creation time

represents the time point from which the bundle payload will no longer be

useful.

• The fragment offset, which is present only if the bundle is a fragment, represents

at what offset the first byte contained in the payload of this fragment is in

reference to the payload of the original bundle.

• The Total Application Data Unit Length, present only if the bundle is a fragment,

represents the total length of the payload of the original bundle.

• The CRC value computed on the encoding of the Primary Block itself only if a

CRC type value has been specified.

10

The Extension Blocks and the Payload Block are encoded in a common format called

Canonical Bundle Block. Below we recall the information contained in each Canonical

Bundle Block.

• A number identifying the type of the block called the Block Type Code. Within

the same bundle there may be multiple blocks of the same type (e.g., Block

Integrity Block and Block Confidentiality Block for which see [RFC9172]).

• A unique number that unambiguously identifies this block within the bundle.

• The Block Processing Control Flags, which are flags representing properties that

apply only to this specific block.

• The CRC type, just like the one contained in the Primary Block. Different CRC

types can be assigned to different blocks.

• The Block-Type-Specific Data i.e., the data contained by the block itself (in the

case of the Payload Block this represents the Application Data Unit), along with

its length in bytes.

• The CRC value computed on the encoding of this Canonical Bundle Block only if

a CRC type value has been specified for this block.

The information needed to uniquely identify a bundle is the Source Node ID and the

creation timestamp (comprising both the creation time and the sequence number). In

case the bundle in question is a fragment, the fragment offset and fragment length (i.e.,

length of the Payload of that fragment) are also needed.

2.4 MAJOR IMPLEMENTATIONS

The goal of this thesis is to develop a new implementation of the Bundle Protocol

version 7, RFC 9171 compliant, interoperable with all current implementations by

means of either LTP or TCPCLv3 and the possible common use of CGR/SABR. The

following are the BP implementations taken as references for this thesis primarily as

targets for interoperability testing. All of them are released as free software.

Interplanetary Overlay Network (ION) [Burleigh_2007] is an implementation of

Bundle Protocol released by NASA JPL (Jet Propulsion Laboratory). It is written in C

11

[ION] and it includes LTP, TCPCLv3 and CGR (original and Unibo-CGR). It can be used

with Unibo-LTP in alternative to original LTP.

DTN Marshall Enterprise (DTNME) is a DTN2 [DTN2] fork made by NASA MSFC

(Marshall Space Flight Center). DTN2 was the “reference implementation” of the

Bundle Protocol, but it has not been updated since 2011. DTNME, written in C++, adds

support for the Bundle Protocol Version 7 to DTN2. Its latest release, 1.2.0 beta, is very

recent [DTNME]. It natively includes LTP and TCPCLv3. Unibo-CGR and the support of

scheduled contacts can be added by installing Unibo software as described in

[Gori_2020].

12

3 SOFTWARE ARCHITECTURE

This chapter discusses the design details that characterize this new implementation of

Bundle Protocol Version 7. Unibo-BP is released as free software under "The GNU

General Public License v3.0". The source code is published in a GitLab repository

[Unibo-BP].

3.1 MOTIVATIONS

Unibo-BP was created to fill an important gap in the DTN software already developed

by Unibo, such as Unibo-LTP, Unibo-CGR and the applications of the DTNsuite. All this

software was created to work with other BP implementations, which had its own

advantages and disadvantages. Concerning the former, developing software for ION or

DTNME was particularly stimulating, as it allowed Unibo researcher and students to

get in direct contact with their designers or maintainers, a unique experience in many

respects. However, with the years, the increasing of Unibo software modules and the

recent retirement from NASA of Scott Burleigh, the ION designer and maintainer, with

whom there was a very strict collaboration, has increased also the challenges related

to the dependence on software developed and maintained outside Unibo, as detailed in

the next paragraph. This has led to the decision of developing a Bundle Protocol

implementation fully managed by the University of Bologna, which could integrate in a

wider umbrella project, Unibo-DTN, all software modules previously cited. The new BP

implementation had to be designed with research in mind, to facilitate DTN research,

in particularly at Unibo, in the years to come.

The main disadvantage of developing software to be integrated in third party BP

implementations is the difficulty in keeping Unibo code up to date with new releases

of BP. A simple change in the BP API would make Unibo software incompatible with

the new release and thus it required a prompt response to adequate the software in

short time, which was not always possible or easy, as a university has not the human

resources of a software house. Even worse, when Unibo software was not an external

application or module, but modifications made in the core of the original

implementation dictated by research. A new version of the underlying BP

13

implementation meant the merging of existing Unibo code with the new

implementation, a quite demanding task. To avoid this process, we often proposed the

integration of our code or the introduction of new features, quite often with success,

thanks to the kindness of BP implementation maintainers who integrated our

modifications or our modules in their code (e.g., LTP enhancements and Unibo-CGR in

ION). Although still possible, this approach has become more difficult in these very

recent years, as BP is moving from research to deployment, which has led space

agencies to focus more on deployment than on research.

With Unibo-BP these disadvantages are eliminated, as it will make all Unibo software

independent of others, giving more freedom to academic research, although Unibo will

try hard to continue collaborations with other maintainers.

Moving to more technical considerations, another goal to be achieved by Unibo-BP is

the possibility to be used in tests by space agencies, which, with the introduction of

high-speed links, makes the efficiency of code execution at runtime a significant aspect.

Moreover, it must be considered that the code is going to be maintained and extended

over the years primarily by undergraduate thesis students, who will have a very short

time available to complete their thesis project. Therefore, it is paramount that the

exiting code be easily readable and modifiable, i.e., written in a programming language

familiar to them.

Keeping in mind the objectives mentioned above and for other technical reasons listed

below, C++ was chosen as the main programming language to develop Unibo-BP. It

offers the following advantages:

• It allows the use of the object-oriented programming paradigm covered

extensively in the Computer Engineering degree program at Unibo.

• It is supported by the Standard Template Library (STL), which contains many

utility functions and data structures, thus making unnecessary to implement

them from scratch or the use of third-party libraries. Problem that would occur

if, for example, C were chosen as the programming language.

14

• It allows libraries written in C to be used natively and in turn Unibo-BP code to

be used by programs written in C, albeit with necessary caveats. This is critical

for integrating Unibo-BP with preexisting software modules, such as Unibo-

CGR, Unibo-LTP, and Unified API, all written in C (for compatibility with ION).

• Finally, the latest standard versions of C++ not only will produce fast code, but

also allow programmers to use high-level constructs, conjugating execution

efficiency with code clarity and conciseness.

The following figure shows the different software components of the Unibo-DTN stack.

During this thesis, the ones shown in solid colors were implemented, while the others

were pre-existing and only needed an ad hoc interface to be implemented to make them

compatible with Unibo-BP.

Figure 3.1 – The Unibo-DTN software stack.

3.2 HIGH-LEVEL DESIGN

Unibo-BP is designed to be a highly distributed application, both multi-threaded and

multi-process. More specifically, the Bundle Protocol Agent consists of a single process,

but with multiple threads. Convergence Layer Adapters are independent processes

that will communicate with the BPA by means of Inter-Process Communication. At the

upper application layer, we have other processes, divided into administration

15

programs and applications interested in sending/receiving bundles, which also

communicate with the BPA by means of Inter-Process Communication.

3.3 AUXILIARY LIBRARIES

Unibo-BP design is based on the use of a set of core libraries, designed and

implemented during this thesis to complement the functionality offered by the C++

standard library. The most important ones are presented below.

3.3.1 The “io” library

The "io" library contains classes that, by means of the composition technique, allow the

programmer to abstract from the input/output medium that is present at the lowest

level (e.g., a file rather than a socket, or a memory buffer). The “io” library classes are

somewhat designed after the equivalent classes of the “java.io” package, generally

familiar to most programmers: there are both abstractions of the underlying devices

and higher-level utilities, e.g., to perform buffered reads/writes.

The library also contains an implementation of a CBOR encoder/decoder [RFC8949]

designed and developed from scratch during this thesis; the CBOR implementation is

fully integrated with the rest of the “io” library and by making use of the composition

technique. CBOR is the format used for bundle encoding/decoding in BPv7, but in

Unibo-BP it has also been extensively used for Inter-Process Communication.

3.3.2 The “storage” library

The "storage" library implements a file-based memory allocator. The library allocator

works as the C dynamic memory allocation (malloc), i.e., it limits itself at allocating a

persistent memory block of the requested size. The allocated memory block is

associated with an identifier, which for code efficiency coincides with the block offset

within the file (like the pointer returned by a malloc); moreover, the memory block is

tagged with the contained data type (a user-defined integer). At application startup,

the library is responsible for retrieving the allocated memory blocks and the tag

associated with each block from the file and making it known to the library user so that

it can repopulate the volatile structures based on the contents of the persistent data.

16

This library is used to store bundles, whose dimension is unconstrained by RFC9171,

in persistent memory, as well as for other uses.

3.3.3 The “time” library

The "time" library contains a few utility functions, such as to convert from UTC time (in

string format) to Unix Time (time_t in C/C++ programming languages). It also contains

a very important class, called "dtn_clock", which performs conversions between the

DTN Epoch and system times obtainable via the system_clock class offered by C++. The

dtn_clock class satisfies the clock requirements of the C++ chrono library.

3.3.4 The “math” library

The "math" library contains several classes and utility functions such as endianness

converters, generators of unique thread-safe 64-bit identifiers, calculators of Cyclic

Redundancy Check bytes, etc.

3.4 THE “BP” LIBRARY: DATA CLASSES

Several classes have been designed and implemented to abstract from the concepts

presented in [RFC9171]. Only the most important are examined below, for treatment’s

conciseness.

3.4.1 Endpoint ID

The Bundle Protocol standard stipulates that EIDs can belong to different schemes,

which may impair code generality. The EID interface has been designed to avoid this

risk, by abstracting the EID from the chosen scheme. It also offers a few utility methods

to be implemented by the classes derived from it, such as the IPN and the DTN classes,

which implement the homonymous schemes.

3.4.2 Primary Block, Payload Block and Extension Blocks

The PrimaryBlock class abstracts the data contained in the bundle primary block, and

make them accessible by a set of “setter” and “getter” methods. Analogously, the

17

CanonicalBundleBlock class represents an abstraction of “Canonical” bundle blocks,

from which the PayloadBlock and ExtensionBlock are derived.

The ExtensionBlock class, itself an abstract class, deserves a brief description.

Extension blocks are optionally added to the primary and payload blocks, whose

presence is compulsory, to add ancillary information to the bundle. Extensions can be

of various types and obey different processing rules: for example, some extension

blocks require to be processed when the bundle is received, others when it is about to

be serialized upon dispatch, etc. For this reason, the ExtensionBlock class is designed

as an abstract class, with virtual methods to be implemented by the derived classes.

Each method is then called at the wanted specific phase of the bundle processing. A

more detailed view of these methods will be provided in the next chapter.

3.4.3 Bundle

The Bundle class contains both volatile data and references to persistent data stored

by using the storage library (e.g., the storage ID of the primary and payload blocks

belonging to a bundle). Classes such as the PrimaryBlock, ExtensionBlock and

PayloadBlock have both volatile and persistent representations. Each Bundle is

associated with an identifier that is unique within the node, a 64-bit integer, saved in

persistent memory. This identifier is designed to efficiently perform operations such

as searching for a bundle within a node for administrative purposes.

3.4.4 Administrative Record

The AdministrativeRecord class is an interface for encoding/decoding administrative

records of various types. At present there is only one implementation of this interface,

the StatusReport class, which provides the programmer with getter/setter methods

for the status report data [RFC9171] and with CBOR encoding/decoding methods.

3.4.5 Regions, contacts and ranges

Contact plan information, consisting of both contact and ranges, needs to be passed to

both Contact Graph Routing and Licklider Transmission Protocol. To this end, Unibo-

BP Contact and Range classes are designed to be used by Unibo-CGR and Unibo-LTP

18

interfaces. A peculiar innovation is that the EIDs of contact or range sender and

receiver nodes are not limited to the “ipn” scheme anymore, but can follow any scheme

supported by Unibo-BP. At present, this feature just allows a node to start/stop sending

a bundle to another node, independently of the EID scheme, in accordance with

contacts, but could be potentially extended to CGR or LTP in the future (e.g., by mapping

dtn EIDs to numbers).

To solve the scalability problem of Contact Graph Routing, recent versions of ION have

introduced the concept of hierarchical routing [Alessi_2019], based on dividing the

network into a tree of regions that communicate with each other by means of certain

nodes called “passageways”, the sole belonging to two regions. Routing inside a Region

is left in charge to CGR, as usual, while inter-regional routing is demanded to the brand

new Inter-Regional Forwarding (IRF), implemented by Scott Burleigh in an

experimental version of ION, kindly passed to us and studied in [Cingolani_2022].

Although IRF is still experimental, several classes have been implemented in Unibo-BP

with the goal of being ready for a stable IRF implementation in the near future. The

Region class contains the number of the region, the set of nodes (Node IDs) belonging

to that region, the contacts and ranges between these nodes, and which of these nodes

are passageways. Each passageway in turn is represented by the RegionPassageway

class, which contains the Node ID of the passageway and the region to which that

passageway is connected [Alessi_2019] [Cingolani_2022].

3.5 THE “BP” LIBRARY: SERVICES

In Unibo-BP, the Bundle Protocol Agent consists of several submodules, each of which

implements a specific function. Most modules are executed as daemons in dedicated

threads, others are invoked on demand and executed by the calling thread. As usual,

we will limit the treatment to the most important classes.

The BundleManager class has the task of maintaining a reference to all bundles

currently stored in the local node. To this end, each bundle created or received must

be notified to the BundleManager. This class is also responsible, via an internal thread,

for deleting bundles from the node when expired.

19

The RoutingManager determines to which neighbor(s) of the current node an

incoming bundle must be sent, in order to reach their destination. Incoming bundles

are queued by a special thread that is responsible for calculating routes. Once selected

the neighbor(s), outgoing bundles are passed to the ForwardingManager.

The ForwardingManager tracks potential neighbor nodes, with three different

priority queues for each neighbor (bulk, normal, expedited); bundle inserted into a

queue by BP, will be then extracted by the CLA connecting the local node to the

corresponding neighbor (multiple CLAs between the same two nodes are possible, in

which case a choice must be made).

The DeliveryManager determines whether the local node is the bundle destination; if

so, it passes the bundle to the RegistrationManager. In case of bundle fragmentation,

the DeliveryManager must reassemble all fragments into the original bundle before

passing it to the DeliveryManager (single fragments cannot be delivered, as stated by

[RFC9171]).

The RegistrationManager keeps track of endpoints currently registered at the local

node and allows applications registered to those endpoints to receive bundles.

Registrations can be either in an active or passive state in accordance with [RFC9171].

An active registration in Unibo-BP requires that the application-specific element is

connected to the BPA and is bound to a given EID; in contrast, a registration is in

passive state if the application-specific element has previously bound to the BPA with

a given EID but is no more connected to it at the time the bundle is received. In either

case, the bundle is placed in the delivery queue to be later extracted by the application-

specific element bound to the destination EID.

The BPManager class is a utility class designed to support generic functions, e.g., CBOR

encoding or decoding of a bundle, or loading at startup the data stored in persistent

memory (by means of the storage library).

The ContactManager provides the ability to add/remove/edit contacts and to

automatically delete them when expired. Moreover, by means of an “observer” pattern,

it allows other threads to register as “observers” of the operations involving contacts.

20

This way CGR and LTP internal bundle and range structures can be kept aligned with

changes made to the BP contact plan.

The RangeManager class is analogous to the ContactManager, but for ranges.

The classes RegionNodeManager and RegionPassagewayManager deal with the

registration of nodes within a region, or registration as passageways, respectively.

The RegionManager class manages two instances of the Region class: the "home"

region, i.e., the region to which the local node belongs, and the "outer" region, i.e., the

region that contains the home region.

Each Region class includes an instance of the ContactManager, RangeManager,

RegionNodeManager and RegionPassagewayManager classes.

3.6 THE “IPC” LIBRARY

As mentioned above, a Unibo-BP node is composed of multiple processes, which need

to communicate. Among the many different possible solutions, we opted for an Inter-

Process Communication mechanism. The resulting architecture follows a client/server

model and communication between client and server is performed by using Unix

Domain Sockets with Stream type protocol.

The "ipc" library contains the utility functions used for encoding the messages

exchanged by processes. The message header consists of a message ID (an integer) that

represents the type of request and is generally associated with a different payload

format. It was decided to use CBOR for the encoding of such messages. Each message

is encoded with a CBOR Array (Major Type 4) of 2 elements where the first element is

the header (a CBOR Unsigned Integer, Major Type 0) and the second element the

payload (any CBOR Major Type). Thus, the payload can be as complex as desired (a

CBOR Unsigned Integer rather than a CBOR Array etc.) and its format strictly depends

on the type of data we are encoding (e.g., as administrative messages of type "add

contact" and “add-range” contain different information, their payload is necessarily

different).

21

3.7 THE “CLIENT” AND “SERVER” LIBRARIES

The "client" library contains the functions used to send requests and receive responses

by means of the ipc library. Each request is associated with a method that takes the

parameters needed to construct the payload as input and returns the data received

from the server as output (or an error message in the form of an exception). This way

the Inter-Process Communication mechanism is totally transparent to the client library

user.

The "server" library runs servers within the BPA process, receives requests and send

replies. There are three servers:

• The manager server, which handles administrative commands (e.g., add a

contact or remove a contact). For each connection to the client a single

dedicated thread is created by the server.

• The user server, which handles communication with the application-specific

element to send or receive bundles. Two threads are created by the server for

each connection to the client to handle full-duplex communication (to send and

receive bundles at the same time).

• The CLA server, which accepts connections from the external convergence

layers and passes them to the “cla” library where for each connection to the

client there is a dedicated server that handles the connection. More information

about the "cla" library can be found in the next section.

Received requests are decoded according to the message ID contained in the request

header. Once the type of request is identified, the payload is decoded with the

appropriate function. Most requests are fulfilled by simply returning the result of

methods of the bp library classes to the client, while others involve interactions with

other libraries, such as to obtain information about the level of persistent memory

usage (storage library). Like the requests, the responses sent by the server are encoded

in CBOR.

22

3.8 THE “CLA” LIBRARY

The Convergence Layer Adapter consists of a server running on the BPA process, and

of client that implements specific Convergence Layers (e.g., LTP or TCP Convergence

Layer). The "cla" library contains the implementation of utility classes for both server

and client.

3.8.1 CLA server

On the CLA server side, it is necessary to abstract from the types of Convergence Layers

available, as they are very different from each other. Therefore, we defined a special

communication protocol between the CLA server and the CLA client to exchange

information on contacts, ranges and link openings/closures, as well as to send or

receive bundles: some messages involve a response (thus a request/response

protocol), while others do not require synchronization and do not involve a response

(mainly for efficiency reasons). Moreover, additional information, such as ECOS

(Extended Class of Service) fields, is passed to the Convergence Layer (client) when

sending a bundle. Such information is currently used only by the LTP Convergence

Layer to select the session color to be used (e.g., green or red) but the opportunities

offered by passing additional parameters to the lower layer are many and largely

unexplored. This is another innovative feature of Unibo-BP which may result useful in

future research.

The Link class contains abstract information about an outgoing link to a given

neighbor. It is worth stressing that multiple links to the same neighbor could be

created, either belonging to the same or different CLAs. Each link has a unique

identifier, established by the CLA server, used to inform the CLA client which

connection to use to send a bundle to the neighbor. The CLA client uses this identifier

also to inform the CLA server about openings/closures of the link itself. Each link is

also associated with ancillary information regarding reliability or the maximum size of

the protocol data unit (serialized bundle) that can be sent on that link.

The Peer class deals with managing all links, potentially belonging to various CLAs,

directed to a given neighbor. This is the class that interacts with the

23

ForwardingManager to extract from the BP queue the bundles to be sent toward the

neighbor itself. The BP queue differs from the convergence layer queue in that the

former does not refer to a specific convergence layer link while the latter does. This

means that once a bundle is extracted from the BP queue and sent to a convergence

layer it may be placed in a queue before it is sent to the neighbor. Bundles are extracted

from the BP queue only if there is an open contact toward the neighbor and if at least

one link is currently open. In addition, flow control is applied to try to meet the nominal

data rate declared by the current contact, similarly to what done by ION's bpclm

daemon. These operations are performed within the Peer class via dedicated threads

communicating with each other.

The CLA class is created as soon as an external application connects to the CLA server

and handles communication with it. Each instance of this class is associated with a

unique ID, established by the CLA client and validated by the CLA server (by means of

the CLAManager class), which allows information to be passed to a given CLA client

through the Unibo-BP server. A given message is then sent by the node administrator

to the Unibo-BP server, which based on the CLA ID will take care of passing it to the

right CLA. This mechanism is particularly useful as it allows remote administration of

CLAs through the BP itself as we will see later.

3.8.2 CLA client

On the client CLA side, the CLAOverIPC class makes possible to abstract from the IPC

mechanism used. By means of a dedicated thread this class listens for messages sent

by the server (e.g., a bundle is to be sent) and propagates them to the Convergence

Layer by means of the methods offered by an instance of the BPToCLAController

interface implemented by the CLA client. Different CLAs client may have different

needs, which is why it is required that each CLA client implement its own version of

the BPToCLAController by means of an appropriate derived class.

3.9 REMOTE ADMINISTRATION

One of the most innovative features of Unibo-BP is the ability to natively administer a

node by remote through the BP itself. The idea behind this feature is to send IPC

24

commands to a Unibo-BP node as a payload of a bundle. An application-specific

element listening at a given EID is then responsible for receiving the bundle and

propagating the payload to the local node in the form of an administrative message.

Having used an interoperable encoding such as CBOR, the Inter-Process

Communication presented earlier can be extended to the exchange of messages

between different nodes without any modifications. As mentioned earlier this feature

is also extended to CLAs connected to a Unibo-BP node.

25

4 IMPLEMENTATION DETAILS

This chapter provides the reader with an overview of Unibo-BP implementation

details.

4.1 LIBRARIES

Each library is organized as follows: below the root directory we have an "include"

directory, which contains the headers of public functions and structures, a "src"

directory, which contains the source code implementing public and private

functions/classes, and an optional "test" directory, in case unit tests (or other) are

available.

Figure 4.1 - Directory structure for libraries.

4.1.1 Shared symbols

Since Unibo-BP libraries are used by multiple components, we chose to compile them

as shared libraries. In order to reduce the size of the symbol table, and thus speed-up

dynamic linking, all symbols are hidden by default (by means of the GCC option “-

fvisibility=hidden”). This choice also helps to avoid unnecessary ABI (Application

Binary Interface) breaks when only hidden symbols, internal to the library, are

modified.

26

This, on the other hand, requires making explicit the symbols to be exported (made

accessible to library users), which is done by setting the following attribute, recognized

by the GCC and Clang compilers (both supported by Unibo-BP respectively starting

from version 10 and 11):

__attribute__((visibility("default")))

Each public symbol must therefore be preceded by this attribute.

To make the declaration of public symbols easier, and possibly to support other

compilers in the future, the header-only library "export" and “import” macros were

created, which simply mask this attribute in the following way.

#define UNIBO_BP_PUBLIC_API_EXPORT

__attribute__((visibility("default")))

#define UNIBO_BP_PUBLIC_API_IMPORT

__attribute__((visibility("default")))

Note that working with shared libraries a symbol can not only be exported but also

imported into a library and while in the case of GCC and Clang the attribute to be used

is the same, other compilers use two distinct attributes. This is why we decided to

separate “import” and “export” macros from now.

Finally, we need to determine whether we need to include a public header file (i.e., a

header file that exports symbols that can be used by other libraries) to compile the

library or to use (i.e., to link) it. In the former case we are interested in exporting

symbols, while in the latter we are interested in importing them. We, therefore, defined

two additional macros for each library, as shown below with reference to the bp

library:

#ifdef BUILD_BP_API

define BP_API UNIBO_BP_PUBLIC_API_EXPORT

#else

define BP_API UNIBO_BP_PUBLIC_API_IMPORT

#endif

27

If the BUILD_BP_API macro is defined by the build system, the library is going to be

compiled, and therefore public symbols are to be exported. Otherwise, the library is

going to be linked and the symbols are to be imported. The BP_API macro is the one

that is to be used by the bp library developer to declare the symbols to be exported.

Note that the import/export handling is now a build system issue and is totally

transparent to the user of the bp library. Only the library developer needs to determine

which symbols are public, to declare them as such.

An example of how the PrimaryBlock class is exported/imported using the BP_API

macro is shown below. Each symbol is defined in the public headers of the library and

thus the library user does not have to do anything beyond using them.

class BP_API PrimaryBlock;

4.2 ROUTING

As anticipated, the BPA is composed of several daemons that communicate by sending

bundles to each other with the goal of increasing the degree of parallelism and to

separate the various processing steps of a bundle (e.g., acquisition, routing, forwarding

etc.). Each daemon is structured in the same way, in order to communicate. We take

routing as an example, first by giving a general explanation and later by showing the

communication in detail.

At present there are two types of routing in Unibo-BP: static and dynamic. The former,

consists of rules entered manually by the network administrator, as usual, while the

latter enforces Contact Graph Routing by means of Unibo-CGR. To simplify the

introduction of additional routing types, the generic IRouter interface has been

defined, to be implemented by each router. The following method is the only one

exposed by this interface.

virtual bool try_routing(std::shared_ptr<Bundle>& bundle) = 0;

This method must return false if no route is found, otherwise true; in the latter case it

must also pass the bundle ownership to the Forwarder class representing the

neighbor selected by the ForwardingManager.

28

Routers are called sequentially by the RoutingManager daemon until the first returns

true or all routers have returned false (in which case the bundle is discarded and a

status report, if required, is generated). Currently, static routing is performed first, and

dynamic routing is performed next.

4.2.1 RoutingManager

As in other classes, such as the DeliveryManager, the RoutingManager internally runs

a daemon that extracts one bundle at a time from the daemon queue and try to find a

viable route for it. A synchronization mechanism based on mutexes and condition

variables is used to submit bundles to that daemon. The following is an excerpt of the

code used by the RoutingManager daemon, but also by other daemons in Unibo-BP, to

wait for a new bundle to be processed.

while (true) {

 std::unique_lock lck(data->mtx);

 data->cv.wait(lck, stoken, [data] { return !data-

>bundle_queue.empty(); });

 while (!data->bundle_queue.empty()) {

 std::shared_ptr<Bundle> bundle = std::move(data-

>bundle_queue.front());

 data->bundle_queue.pop();

 /* . . . daemon specific code . . .*/

 if (stoken.stop_requested()) {

 break;

 }

 }

}

To insert a bundle into the daemon's queue, also awakening the daemon, if necessary,

we use this code.

std::unique_lock lck(data->mtx);

if (data->bundle_queue.empty()) {

 data->cv.notify_one();

29

}

data->bundle_queue.push(std::move(bundle));

4.2.2 StaticRouter

Currently, static routing consists only of a rule type, which states to send a bundle to

neighbor X if destined to node Y. The association is done manually by the network

administrator. Other types of rules may be defined in the future.

Static routing is implemented by the StaticRouter singleton class.

4.2.3 CGRRouter

An interface for Unibo-CGR has been implemented to use Contact Graph Routing in

Unibo-BP. The main difference from other existing interfaces for other BP

implementations, namely ION and DTNME, is that in Unibo-BP contacts and ranges can

be defined in EID schemes different from “ipn”. As CGR necessarily uses numbers to

identify nodes, we defined an EID64BitConverter interface to perform a bidirectional

conversion between an EID in Unibo-BP and a 64-bit integer representing a BP node in

Unibo-CGR. The following methods return true if the conversion was successful and

false otherwise.

virtual bool convert(const EID& input, std::uint64_t& output) noexcept =

0;

virtual bool convert(std::uint64_t input, std::unique_ptr<EID>& output)

= 0;

At present, only the IPN64BitConverter class has been implemented, which handles

the conversion for the ipn scheme (which is of course the simplest case, since an ipn

node is already defined as a 64-bit integer).

Contact Graph Routing is accessed through the singleton class CGRRouter which

internally manages two instances of Unibo-CGR: one for the "home" region and the

other for the "outer" region, which is useful dealing with passageways, which must

always check if the destination node is in either their home or outer region (i.e., they

need to call CGR twice, with different contact plans, one for each region [Alessi_2019],

30

[Cingolani_2022]). A very interesting and innovative feature of this class, it is that it

also exposes several methods to modify the behavior of Unibo-CGR.

void change_reference_time(std::chrono::sys_seconds new_reference_time);

void enable_logger();

void disable_logger();

void enable_one_route_per_neighbor(std::uint64_t limit);

void disable_one_route_per_neighbor();

void enable_queue_delay();

void disable_queue_delay();

void enable_proactive_anti_loop();

void disable_proactive_anti_loop();

void enable_reactive_anti_loop();

void disable_reactive_anti_loop();

void enable_moderate_source_routing();

void disable_moderate_source_routing();

This means that instead of enabling/disabling experimental features [Caini_2021] by

modifying a config.h file, the same features can be enabled/disabled at run-time,

without the need of recompiling the code, an obvious important advantage for research

(changes can be inserted into a general “dotest” script file).

4.3 EXTENSION BLOCKS

Several extension blocks have been implemented in Unibo-BP. Specifically, in addition

to those described in [RFC9171] (Bundle Age, Previous Node and Hop Count), we

added RGR (Record Geographical Route) and CGRR (CGR-Routes) used by

experimental enhancements of SABR included in Unibo-CGR [Caini_2021]

[Birrane_2021]. Moreover, we have implemented the ECOS Block [Draft_ECOS], not yet

standardized in an RFC, which uses the same encoding format as ION for

interoperability reasons.

The following are the virtual functions of the ExtensionBlock class that should be

overridden by derived classes.

31

The ExtensionBlockOutputMask type is a bitmask that shows what information in

the extension block has been modified by the function. Based on the asserted bits,

certain operations are undertaken on the extension block, such as re-serializing the

block-type-specific data because the contents of the extension block have been

modified (e.g., for the Previous Node Block, before sending the bundle to the neighbor

the block is overwritten with the EID of the local node).

The function below is called when the extension block is inserted into a bundle.

Currently this occurs only at bundle creation, in which case we have the following

syntax:

virtual ExtensionBlockOutputMask create(Bundle &bundle);

Future policies could require that certain extension blocks be inserted into bundles

received from other nodes. In this case we can distinguish many subcases, as shown

below.

The function below is called when the bundle is inserted into the BP queue of the

neighbor to which it is to be sent:

virtual ExtensionBlockOutputMask enqueue(Bundle &bundle);

The function below is called when the bundle is extracted from the BP queue because

it can be sent to the neighbor (i.e., the contact is open and a link is available).

virtual ExtensionBlockOutputMask dequeue(Bundle &bundle);

The function below is called as soon as a bundle received from an external node has

been decoded.

virtual ExtensionBlockOutputMask acquire(Bundle &bundle);

This function below is called whenever it is necessary to serialize the contents of the

extension block due to changes to it.

32

virtual bool

serialize_block_type_specific_data_content(const Bundle& bundle,

 io::CborEncoder &encoder);

This function below is called when the bundle has been received from an external node

and it is used to decode the content of the block-type-specific data.

virtual void

deserialize_block_type_specific_data_content(Bundle& bundle,

 io::CborDecoder &decoder);

4.4 INTER-PROCESS COMMUNICATION

All messages exchanged by the Inter-Process Communication, described in 3.6, are

implemented following a consistent pattern. Requests are grouped into macro-blocks

and are delimited by identifiers named "lower_bound" and "upper_bound" that

represent the range of values (open interval) reserved for that block. Each request is

then associated with a class, which contains the "message" enumerative representing

the unique identifier of the type of request, and the functions to encode and decode the

payload. The class for the group of messages used by the Application-Specific Element

to transmit bundles is shown below, as an example:

struct IPC_API ipc_request_user_bundle_transmission {

 enum message : std::uint64_t {

 lower_bound = ipc_user_bundle_transmission_lower_bound,

 bundle_send,

 bundle_cancel,

 /* ... add new values here ...*/

 upper_bound

 };

 static void encode_payload_bundle_send(io::CborEncoder& encoder,

 bp::Bundle& bundle);

 static void decode_payload_bundle_send(io::CborDecoder& decoder,

 bp::Bundle& bundle);

33

 static void encode_payload_bundle_cancel(io::CborEncoder& encoder,

 std::uint64_t bundle_unique_id);

 static void decode_payload_bundle_cancel(io::CborDecoder& decoder,

 std::uint64_t& bundle_unique_id);

};

The implementation of the functions related to the "bundle_cancel" request are the

following:

void ipc_request_user_bundle_transmission::encode_payload_bundle_cancel(

 io::CborEncoder &encoder, std::uint64_tbundle_unique_id) {

 encoder.encode_uint(bundle_unique_id);

}

void ipc_request_user_bundle_transmission::decode_payload_bundle_cancel(

 io::CborDecoder &decoder, uint64_t &bundle_unique_id) {

 bundle_unique_id = decoder.decode_uint();

}

On the server side, to simplify the addition of new messages, for each received message

the header is decoded and the request identifier is categorized according to the

belonging block based on the lower_bound and upper_bound values of the block (i.e.,

the request identifier is contained in some block interval); then the function associated

with the specific request is selected, as shown in the following code excerpt:

switch (request) {

 case ipc_request_user_bundle_transmission::lower_bound:

 break;

 case ipc_request_user_bundle_transmission::bundle_send:

 handle_request_bundle_send(handle);

 return;

 case ipc_request_user_bundle_transmission::bundle_cancel:

 handle_request_bundle_cancel(handle);

 return;

 case ipc_request_user_bundle_transmission::upper_bound:

34

 break;

}

Each handling function decodes the request payload, performs the associated

operation and finally returns the result to the client.

4.5 APPLICATION PROGRAMMING INTERFACE

Unibo-BP is a multi-process application in which the Application-Specific Element and

CLAs run on different processes. External BP applications connect to Unibo-BP by

means of a public API implemented by a library named "unibo-bp-api". This library

exposes public functions whose prototypes adhere to the C (and not C++) syntax, so

that programs such as Unified API and Unibo-LTP, both written in C, can natively use

them. The API’s functions are essentially wrappers of the C++ methods offered by the

client and cla library classes.

Most functions return an enumerative, named UniboBPError, which if different from

the value UniboBP_NoError implies that an error of some kind occurred during the

function execution. Such errors range from unverified preconditions in the input

parameters to a possible connection shutdown.

4.5.1 Application-Specific Element API

All Unibo-BP API functions follow the same pattern, so that we can limit the treatment

to just a few, such as those used by the Application-Specific Element to connect to the

BPA and send or receive bundles.

The unibo_bp_connect function, shown below, connects the BP application to the BPA

server running in the directory passed as a parameter. If successful, the handle

parameter (a pointer to an opaque type) is initialized.

35

UniboBPError unibo_bp_connect(

 const char* directory,

 UniboBPUserHandle* handle);

The unibo_bp_connect_default has the same functionality but attempts to connect to

a server running in the directory path contained in the environment variable

UNIBO_BP or, if this is undefined, to the working directory.

UniboBPError unibo_bp_connect_default(UniboBPUserHandle* handle);

The unibo_bp_disconnect releases the resources used by the handle parameter and

disconnects from the server.

void unibo_bp_disconnect(UniboBPUserHandle* handle);

The unibo_bp_get_admin_id returns as output, via the EID parameter, the

administrative endpoint of the local node related to the scheme passed as parameter.

UniboBPError unibo_bp_get_admin_id(

 UniboBPUserHandle handle,

 UniboBPScheme scheme,

 UniboBPEID* eid);

The unibo_bp_bind binds the application-specific element to a specific EID.

UniboBPError unibo_bp_bind(

 UniboBPUserHandle handle,

 UniboBPEID* eid);

The unibo_bp_bind_random is like the previous one but connects to a random EID

assigned by the server in the scheme desired by the caller. For the ipn scheme a random

service number is assigned, while for the dtn scheme a random demux token is

assigned. In both cases a number is randomly chosen.

36

UniboBPError unibo_bp_bind_random(

 UniboBPUserHandle handle,

 UniboBPScheme scheme);

The unibo_bp_get_registered_eid returns, via the EID parameter, a read-only access

to the EID to which the handle is registered. Particularly useful if the

unibo_bp_bind_random() function has been used to bind to an EID.

UniboBPError unibo_bp_get_registered_eid(

 UniboBPUserHandle handle,

 ConstUniboBPEID* eid);

The unibo_bp_get_sender_handle returns the opaque type that can be used by the

thread responsible for sending bundles.

UniboBPSenderHandle unibo_bp_get_sender_handle(

 UniboBPUserHandle handle);

The unibo_bp_send_bundle sends a bundle using the data contained in the opaque

UniboBPOutboundBundle type that was previously initialized by the caller through

appropriate calls to the "set" functions. If successful, the UniboBPOutboundBundle

structure is populated with the creation timestamp data established by the BPA. Note

that if “success” is retuned, this does not mean that the bundle has been sent, but simply

that the BPA has agreed to send it (it might fail, for example, if the payload of the bundle

is too large).

UniboBPError unibo_bp_send_bundle(

 UniboBPSenderHandle handle,

 UniboBPOutboundBundle bundle);

The unibo_bp_get_receiver_handle returns the opaque type that can be used by the

thread responsible for receiving bundles.

UniboBPReceiverHandle unibo_bp_get_receiver_handle(

 UniboBPUserHandle handle);

The unibo_bp_receive_bundle_blocking waits to receive a bundle until a timeout is

triggered or another error occurs. On exit, it returns the received bundle via the opaque

37

UniboBPInboundBundle type, which defines various “get” functions to read the

bundle fields.

UniboBPError unibo_bp_receive_bundle_blocking(

 UniboBPReceiverHandle handle,

 UniboBPInboundBundle* bundle,

 uint64_t timeout_ms);

4.6 CODE BUILDING AND INSTALLATION

CMake is used to generate the build system for Unibo-BP. We decided to use a build

system generator, instead of a simple Makefile, to ease the project management and to

avoid portability issues. In particular, the choice fell on CMake since it is the “de facto”

industry standard for handling C++ projects and is well known by the open-source

community.

For user convenience, a Makefile serves as a wrapper for the CMake commands. The

following is the typical command sequence for installing Unibo-BP using the Makefile.

make init

make

sudo make install

sudo ldconfig

Additional options and commands are documented by the make help command.

4.7 THE UNIBO-BP NODE

Unibo-BP can start different nodes on the same machines, by associating different

directories to each node. In more details, when a Unibo-BP node is started, several

directories and files are created in the local filesystem:

• The ".unibo-bp" directory it is created in the working directory where the node

is started. It acts as parent directory.

• The "admin" directory contains the Unix Domain Socket "admin.sock" created

by the server that handles administrative messages.

38

• The "cla" directory contains the Unix Domain Socket "cla.sock" created by the

CLA server.

• The "inbound" directory contains the bundles (one temporary file for each

bundle) received by the Convergence Layer Adapters sent by neighbors.

• The "outbound" directory contains the bundles (one temporary file for each

bundle) serialized by the local BPA for forwarding purposes.

• The "storage" directory contains the “global.storage” file, which is the sole file

used for persistency.

• The "user" directory contains the Unix Domain Socket "user.sock" created by

the server that handles Application-Specific Element messages.

• The “unibo-bp.running” file, which is used as a marker file, to avoid that

multiple Unibo-BP nodes are started in the same directory. The presence of this

file in a directory means that another Unibo-BP node cannot be started in the

same directory. This file is automatically deleted when the node is successfully

stopped. In the unlucky case of node crash, this file must be manually removed

in order to restart the node in the same directory.

Figure 4.2 - Overview of the “.unibo-bp” directory.

As mentioned, the only limitation is that it is not possible to start multiple nodes in the

same directory. However, it is always possible to start multiple nodes within the same

machine, as long as different directories are used. This may not seem useful in a

deployment scenario, but it can be very convenient for any kind of testing not involving

channel challenges: a multiple node scenario can be created without the need of

39

implementing a testbed with several containers or virtual machines. We used this

feature extensively during the development phase of Unibo-BP itself.

40

5 COMMAND-LINE INTERFACE

Differently from other BP implementations, Unibo-BP is not configured via

configuration files, but a series of executables that are installed in the user's operating

system can be used for this purpose. Each of these programs provides a command-line

interface (CLI) that can be interpreted by a command-line shell, such as "bash"(Bourne

Again Shell) [Bash]. It is then up to the user to decide whether to invoke the commands

manually from the terminal or to group them within a script for future reuse. This

chapter describes the command-line interface containing both administration

commands and some utility programs for running tests.

As most GNU/Linux programs, Unibo-BP executables return 0 if successful and print

nothing on the standard output; otherwise, if an error occurs, a value other than 0 is

returned and an error message is printed on the standard error device. However, this

rule is not universal: some of the programs print the result on the standard output if

successful, such as the request to output the contact plan loaded on the node. Other

commands, when started as daemons, print the PID (Process ID) on the standard

output for the user's convenience.

Each program consists of a command name, which may be followed by parameters

(optional unless otherwise specified) and subcommands (grouping options or other

subcommands), as shown below:

<command name> [options] [subcommand name [options]]

A command can be followed by one or multiple subcommands; those at the same depth

level are mutually exclusive.

A "--help" option is present for each command and subcommand; each command also

contains the "license" subcommand that allows the license of Unibo-BP and third-

party libraries to be printed on the standard output.

As CLI readability was the primary concern, all options adhere to the "long" format.

Within a command or subcommand, options can be specified in any order.

41

The commands contained in Unibo-BP are described below. Note that commands

involving interaction with the BPA, will attach with the BPA instance executed in the

directory path specified by the UNIBO_BP environment variable; if this is undefined,

they will connect to the BPA executed in the current working directory.

5.1 UNIBO-BP

The "unibo-bp" command starts the BPA and consists of two subcommands: "start”

and “resume”.

5.1.1 start

The former command starts a new node from scratch, by cleaning any pre-existing

storage.

The mandatory parameters supported by this subcommand are listed below.

• --set-storage-size <integer number> specifies the size (in bytes) of the file (or

memory buffer in case of volatile-only representation) used to store persistent

data.

• --ipn-admin <node id> specifies the ipn Node ID of this node.

• --dtn-admin <node id> specifies the dtn Node ID of this node.

The options supported by this subcommand are listed below.

• --daemon executes the process as a daemon returning the command prompt to

the user.

• --set-storage-type <string> specifies the preferred storage type: persistent,

volatile and mmap. Persistent means on files, volatile on memory, and memory-

mapped on a volatile cache of data saved on persistent files. Default: mmap.

As an example, the command below starts the BPA from scratch by specifying the local

ipn Node ID “ipn:1.0” and dtn Node ID “dtn://vm1.dtn/”. A persistent file of 50 MB will

be created to serve as storage medium; the storage file is memory-mapped (mmap).

Last, the BPA is started as a daemon.

42

unibo-bp start --set-storage-type mmap --set-storage-size 50000000

--ipn-admin ipn:1.0 --dtn-admin dtn://vm1.dtn/ --daemon

5.1.2 resume

The resume subcommand restarts a node that was previously stopped, maintaining the

same internal configuration. For this purpose, data are read from the BPA persistent

memory.

The options are a subset of those already presented for the start subcommand.

Specifically, they are: --daemon, --set-storage-type and --set-storage-size.

As an example, below the node is restarted using the same configuration used in the

previous run.

unibo-bp resume --daemon

5.2 UNIBO-BP-ADMIN

The "unibo-bp-admin" command groups all administration directives, which are

issued as IPC messages. These commands are usually sent to the local node, but they

can also be encapsulated in bundles and then sent to other nodes.

The “--file <file path>” option must be used to send a remote command. The IPC

message is saved in a file (append mode) instead of been sent to the local node. If the

specified file does not exist, it is created.

The unibo-bp-admin command consists of a variety of subcategories discussed below.

5.2.1 stop

The "stop" subcommand starts a graceful shutdown procedure. Note that the

command termination (the return of the prompt), does not mean that the node has

already stopped, but only that the shutdown request has been accepted.

unibo-bp-admin stop

43

5.2.2 logger

The “logger” subcommand is used to administer the Unibo-BP logger, implementing

multiple verbosity levels. Log levels are used to declare which log lines are not to be

written (i.e., all those with a level less than the current log level) and which are to be

written (i.e., all those with a level greater than or equal to the current log level).

• --get-log-level permits to retrieve the current log level.

• --set-log-level <level> specifies the minimum log level. Log levels range from

the most permissive (all) to the least (disabled), they are in order: all, trace,

debug, info, exception, warning, error, critical, fatal, disabled. Default: info.

• --write-log <level> <string> writes a log line filtered by the specified log level.

Logs are usually written by the BPA itself in the unibo-bp.log file created in its

current working directory. However, logs can also be sent to the BPA by means

of IPC messages. This option sends a log line, tagged with the specified level, to

the BPA; then the BPA decides if the log line should be written or not based on

the level shipped with the log line itself.

• --set-self-name <name> when used with --write-log allows the user to set the

specific name of whoever is writing that log line.

unibo-bp-admin logger --get-log-level

unibo-bp-admin logger –-set-log-level trace

unibo-bp-admin logger --set-self-name cli --write-log info “Hi!”

5.2.3 storage

The “storage” subcommand is used to get information about Unibo-BP storage status.

• --get-storage-info prints information about the storage usage (e.g., number of

free bytes etc.).

• --get-storage-type returns the storage type.

44

5.2.4 region

The “region” subcommand is used to administer the “home” and “outer” regions of a

passageway [Alessi_2019] [Cingolani_2022], by means of the subcommands home and

outer.

The options listed below are available for both subcommands, if not specified

otherwise.

• --set-region-number <number> to change the current region number.

• --get-region-number <number> to retrieve the current region number.

• --register-node <node id> to declare a node member of the region.

• --get-node-list to retrieve the list of nodes that are members of the region.

• --get-passageway-list to retrieve the list of nodes that are passageways.

• --get-contact-list to receive the list of (still to expire) contacts belonging to the

region.

• --get-range-list the same as --get-contact-list but for ranges.

• --deregister-node <node id> it removes the node from the region, along with

all contacts and ranges associated with it. The rationale of this behavior is that

in IRF contact plans are regional, i.e., we have a different contact plan in each

region; in a region contact plan, only nodes belonging to the region must be

cited, i.e., can compare as either sender or receiver nodes of contact or range

instructions.

• --deregister-passageway <node id> allows the user to remove the

passageway status of the node passed as argument.

• --print-utc-time to print time in UTC format (e.g., used with --get-contact-list

and --get-range-list). UTC time format is the default, so using this option is not

actually required.

• --print-relative-time <time point> to print time (e.g., contact start time) in

relative format, i.e., with reference to a time “zero” passed as argument. E.g.,

"+50" means 50 seconds after the reference time. The reference time can be

passed either in UTC format or in relative time notation (e.g., “+25” referred to

the current time).

45

• --register-passageway <node id> to declare a node passageway.

• --passageway-region-number this option is available only for the “outer”

subcommand; used with --register-passageway it permits to declare the home

region of the passageway. This because in IRF passageways belong to two

regions, the home and the outer, by contrast to all other nodes, which belong to

one region only; thus, for passageways it is necessary to specify which region

must be considered as their home region.

unibo-bp-admin region home --set-region-number 2

unibo-bp-admin region outer --get-region-number

unibo-bp-admin region home --get-node-list

unibo-bp-admin region home --get-passageway-list

unibo-bp-admin region home --get-contact-list --print-relative-time

2022-12-14T18:51:24Z

unibo-bp-admin region home --get-range-list --print-relative-time +10

unibo-bp-admin region outer --register-node ipn:2.0

unibo-bp-admin region outer --deregister-node ipn:2.0

unibo-bp-admin region home --register-passageway ipn:2.0

unibo-bp-admin region outer --register-passageway ipn:2.0 --passageway-

region-number 3

unibo-bp-admin region home --deregister-passageway ipn:2.0

5.2.5 routing

The “routing” subcommand consists of two (second layer) subcommands: “static” and

“cgr”.

The subcommand “static add” adds a rule into the static router tables and has the

following parameters:

• --destination <node id> states the destination for which we are inserting the

rule (named destination rule).

• --gateway <node id> declares the neighbor to which send the bundle if a match

is found in the static router tables.

46

As an example, the following command forces each bundle destined to the node

“ipn:2.0” to be forwarded to the neighbor “ipn:3.0”.

unibo-bp-admin routing static add --destination ipn:2.0 --gateway

ipn:3.0

The subcommand “static remove” is the dual of the add command; it has only the

following parameter:

• --destination <node id> states the destination rule to remove.

As an example, the command below removes the rule associated to the destination

node “ipn:2.0”.

unibo-bp-admin routing static remove --destination ipn:2.0

The subcommand “static get” retrieves a table from the static router and has only the

following option:

• --destination-table permits to retrieve the rules belonging to the destination

table

unibo-bp-admin routing static get --destination-table

The subcommand “cgr” is used to administer Unibo-CGR features. The options are

shown below.

• --set-reference-time <time point> to change the Unibo-CGR reference time

for logging purposes. The time point can be passed in both relative and UTC

format.

• --enable-logger to enable the Unibo-CGR logger.

• --disable-logger

• --enable-one-route-per-neighbor [limit] to enable the “one route per

neighbor” enhancement [Caini_2021], with an optional limit to the number of

neighbors for which a viable route should be found for each destination.

• --disable-one-route-per-neighbor

• --enable-queue-delay to enable the “queue delay” enhancement [Caini_2021].

47

• --disable-queue-delay

• --enable-proactive-anti-loop to enable the “proactive anti loop” algorithm

[Caini_2021].

• --disable-proactive-anti-loop

• --enable-reactive-anti-loop to enable the “reactive anti loop” enhancement

[Caini_2021].

• --disable-reactive-anti-loop

• --enable-moderate-source-routing to enable the “Moderate Source Routing”

enhancement [Birrane_2021].

• --disable-moderate-source-routing

The subcommands are summarized in the following reference list:

unibo-bp-admin routing cgr --set-reference-time +0

unibo-bp-admin routing cgr --set-reference-time 2022-12-14T18:51:24Z

unibo-bp-admin routing cgr --enable-logger

unibo-bp-admin routing cgr -–disable-logger

unibo-bp-admin routing cgr --enable-one-route-per-neighbor

unibo-bp-admin routing cgr --enable-one-route-per-neighbor 2

unibo-bp-admin routing cgr --disable-one-route-per-neighbor

unibo-bp-admin routing cgr --enable-queue-delay

unibo-bp-admin routing cgr --disable-queue-delay

unibo-bp-admin routing cgr --enable-proactive-anti-loop

unibo-bp-admin routing cgr --disable-proactive-anti-loop

unibo-bp-admin routing cgr --enable-reactive-anti-loop

unibo-bp-admin routing cgr --disable-reactive-anti-loop

unibo-bp-admin routing cgr --enable-moderate-source-routing

unibo-bp-admin routing cgr --disable-moderate-source-routing

5.2.6 contact

The "contact" subcommand is usually used to add or remove contacts by means of the

"add" and "remove" (second layer) subcommands, respectively; it is also possible to

receive information about a specific contact by means of the "get" (second layer)

48

subcommand or to modify contact’s information by means of the “change” (second

layer) subcommand.

Note that by default the contact is inserted/found within the region to which both the

contact's sender and receiver nodes belong. If this region is not found, the command

fails. It is necessary to register nodes in the common region of the node to be inserted

and the local node, before making any change to the contact plan.

Below are the parameters of the "add" subcommand, used to insert a contact into the

contact plan. Note that contacts between the same pair of “sender” and “receiver”

nodes should never overlap in time. Each parameter specifies an element of the contact

to be inserted into the contact plan. We remind the user that contacts and ranges are

unidirectional.

• --sender <node id> specifies the node from which data are sent.

• --receiver <node id> specified the node from which data are received.

• --start-time <time point> specifies the start of the contact in seconds. Relative

time and UTC formats are both supported.

• --end-time <time point> specifies the time in seconds at which the contact

expires. Relative time and UTC formats are both supported.

• --xmit-rate <integer> specifies the nominal transmission rate (bytes/s), when

the contact is active.

The parameters listed above are all mandatory, while those listed below are optional.

• --reference-time <time point> specifies the reference time to which the start

and end times refer, when entered as relative times. The time point argument

could be passed in both relative time and UTC format.

• --type <string> specifies the type of the contact. Only the scheduled type is

currently supported. Default: scheduled.

• --confidence <real number> specifies how confident we are that contact will

occur (confidence can be seen as a sort of informal qualitative probability

introduced with the opportunistic versions of CGR [Burleigh_2016]). The

argument must be a real number in the range [0.0, 1.0]. Default: 1.0.

49

unibo-bp-admin contact add --sender ipn:2.0 -–receiver ipn:3.0 --start-

time +25 --end-time +50 --reference-time 2022-12-14T18:51:24Z --xmit-

rate 125000

unibo-bp-admin contact add --sender dtn://node2/ -–receiver

dtn://nodethree/ --start-time +25 --end-time +50 --reference-time 2022-

12-14T18:51:24Z --xmit-rate 125000

The "remove" subcommand is used to delete a specific contact. The five parameters “-

-sender”, “--receiver”, “--reference-time”, “--start-time” and “--type”, which retain the

same meaning already discussed for the "add" subcommand, are necessary to uniquely

identify the contact. They will be required also by all other commands that works on

one specific contact.

unibo-bp-admin contact remove --sender ipn:2.0 -–receiver ipn:3.0

--start-time +25 --reference-time 2022-12-14T18:51:24Z

The “get” subcommand is used to retrieve the characteristics of a specific contact. It

has the same parameters as the “remove” subcommand used to uniquely identify the

contact, plus the two optional parameters listed below.

• --print-utc-time to print the contact time interval in UTC format.

• --print-relative-time <time point> to print the contact time interval in

relative format, starting from the time point passed as argument (relative time

or UTC).

unibo-bp-admin contact get --sender ipn:2.0 -–receiver ipn:3.0 --start-

time +25 --reference-time 2022-12-14T18:51:24Z --print-utc-time

unibo-bp-admin contact get --sender ipn:2.0 -–receiver ipn:3.0 --start-

time +25 --reference-time 2022-12-14T18:51:24Z --print-relative-time

2022-12-14T18:51:20Z

The “change” subcommand is used to modify the characteristics of a contact. It

requires the same parameters as the “remove” subcommand to identify the contact and

adds the ones listed below.

50

• --new-start-time <time point> specifies the new contact start time. Relative

time and UTC formats are both supported.

• --new-end-time <time point> specifies the new contact end time. Relative

time and UTC formats are both supported.

• --new-xmit-rate <integer> specifies the new data transmission rate.

• --new-type <string> specifies the new contact type.

• --new-confidence <real number> specifies the new contact confidence.

unibo-bp-admin contact get --sender ipn:2.0 -–receiver ipn:3.0 --start-

time +25 --reference-time 2022-12-14T18:51:24Z --new-end-time +40

unibo-bp-admin contact get --sender ipn:2.0 -–receiver ipn:3.0 --start-

time +25 --reference-time 2022-12-14T18:51:24Z --new-xmit-rate 150000

$ unibo-bp-admin contact get --sender ipn:2.0 -–receiver ipn:3.0 --

start-time +25 --reference-time 2022-12-14T18:51:24Z --new-start-time

+30

5.2.7 range

The “range” subcommand is very similar to the "contact" subcommand but operates

on ranges.

The “add” subcommand shares with the “contact add” subcommand the parameters “-

-sender”, “--receiver”, “--reference-time”, “--start-time” and “--end-time”. Note that to

uniquely identify a range we need only the first four. Moreover, it offers the following

mandatory parameter:

• --owlt <integer> specifies the “one-way-light-time” (i.e., the nominal

propagation delay from the sender to the destination), in seconds, of the range.

unibo-bp-admin range add --sender ipn:2.0 -–receiver ipn:3.0 --start-

time +25 --end-time +50 --reference-time 2022-12-14T18:51:24Z --owlt 1

The “remove” subcommand shares with the “add” subcommand the parameters “--

sender”, “--receiver”, “--reference-time” and “--start-time”, necessary to uniquely

identify the range.

51

unibo-bp-admin range remove --sender ipn:2.0 -–receiver ipn:3.0 --start-

time +25 --end-time +50 --reference-time 2022-12-14T18:51:24Z

The “get” subcommand offers the same parameters of the “remove” subcommand,

necessary to uniquely identify the range, plus the “--print-utc-time” and “--print-

relative-time” already discussed for the “contact get” subcommand.

unibo-bp-admin range get --sender ipn:2.0 -–receiver ipn:3.0 --start-

time +25 --reference-time 2022-12-14T18:51:24Z

unibo-bp-admin range get --sender ipn:2.0 -–receiver ipn:3.0 --start-

time +25 --reference-time 2022-12-14T18:51:24Z --print-relative-time

2022-12-14T18:51:20Z

The “change” subcommand requires the same options of the “remove” subcommand to

identify the range, plus the “--new-start-time” and “--new-end-time” parameters, as for

the corresponding “contact change” subcommand. It also offers another option

discussed below.

• --new-owlt <integer> specifies the new “one-way-light-time” of the range.

unibo-bp-admin range get --sender ipn:2.0 -–receiver ipn:3.0 --start-

time +25 --reference-time 2022-12-14T18:51:24Z --new-end-time +40

unibo-bp-admin range get --sender ipn:2.0 -–receiver ipn:3.0 --start-

time +25 --reference-time 2022-12-14T18:51:24Z --new-owlt 2

unibo-bp-admin range get --sender ipn:2.0 -–receiver ipn:3.0 --start-

time +25 --reference-time 2022-12-14T18:51:24Z --new-start-time +30

5.2.8 extension

The “extension” subcommand allows the user to enable or disable the insertion of

experimental extension blocks into the bundles created by the local node. At present it

can be used to enable/disable the extensions RGR (Record Geographical Route) and

CGRR (CGR-Routes), used by a few extensions of Unibo-CGR. In the future it might be

extended to other functionalities.

• --enable-rgr enables the RGR extension block.

• --disable-rgr disables the RGR extension block.

52

• --enable-cgrr enables the CGRR extension block.

• --disable-cgrr disables the CGRR extension block.

unibo-bp-admin extension --enable-rgr

unibo-bp-admin extension --disable-rgr

unibo-bp-admin extension --enable-cgrr

unibo-bp-admin extension --disable-cgrr

5.2.9 whoami

The “whoami” subcommand returns the Node ID of the local node. The scheme of the

Node ID can be specified using the “--scheme <string>” option (ipn and dtn are both

supported).

unibo-bp-admin whoami --scheme ipn

unibo-bp-admin whoami --scheme dtn

5.2.10 tcpcl

The “tcpcl” subcommand is used to control the TCP Convergence Layer process. The “-

-cla-id <integer>” option is useful to identify a specific TCPCL process in case several

instances are present, as they are differentiated by the CLA Identifier (an integer). The

default CLA Identifier for the TCPCL is 1000.

The “induct add” subcommand spawns a new server listening on specific hostname

and port. For this purpose, the optional parameters “--hostname <string>” and “--

port <integer>” are provided to override their defaults, any machine address (0.0.0.0

in IP v4) and 4556, respectively.

unibo-bp-admin tcpcl induct add

unibo-bp-admin tcpcl induct add --hostname localhost

unibo-bp-admin tcpcl induct add --port 12345

unibo-bp-admin tcpcl induct add --hostname localhost --port 12345

The “outduct add” subcommand specifies a neighbor to which the TCPCL should

connect. The mandatory parameters are listed below.

53

• --peer <node id> specifies the neighbor’s Node ID.

• --hostname <string> specifies the neighbor’s TCPCL hostname (or IP address).

• --port <integer> specifies the neighbor’s TCPCL port. Default: 4556.

unibo-bp-admin tcpcl outduct add --peer ipn:3.0 --hostname 10.0.1.2

unibo-bp-admin tcpcl outduct add --peer ipn:3.0 –-hostname

www.addressresolvedbydns.com

unibo-bp-admin tcpcl outduct add --peer ipn:3.0 --hostname

www.addressresolvedbydns.com --port 23456

The “stop” subcommand shuts down the TCPCL process.

unibo-bp-admin tcpcl stop

5.3 UNIBO-BP-REMOTE-ADMIN

The “unibo-bp-remote-admin” program is used to enable the reception and execution

of remote administration commands. In order to use this feature, the network

administrator must only specify the listening EID, to which bundles containing remote

administration commands are to be delivered. Note that at present this program works

only one-way, i.e., it reads the administration command from the received bundle’s

payload and send it to the local BPA to which the unibo-bp-remote-admin program is

connected; possible replies issued by the local BP are just ignored. This limitation

could, however, be easily removed, in new Unibo-BP releases.

The potential of the remote administration via bundles has to be fully investigated yet.

Other BP implementations, such as DTNME, offer the administrator the ability to send

remote commands to the BPA by means of a TCP connection. This technique has the

obvious advantage of being able to administer a BPA without requiring the

administrator to run a BPA on his own machine. However, it has the disadvantage of

not being able to (natively) administer remotely a node placed in a challenged network.

Instead, with Unibo-BP, we wanted to generalize the concept of remote administration

to nodes placed in challenged networks as well but requiring the network

administrator to execute a BPA on his own machine since remote commands must be

sent via bundles. Obviously, to be of some interest in deployment scenarios, the

54

security issues implicit in the use of remote commands should be counteracted using

Bundle Protocol Security [RFC9172], which may be object of future work.

The “--daemon” option is the only one actually accepted by this program and has the

same meaning as the homonymous option shown for the "unibo-bp start" subcommand

in 5.1.1.

unibo-bp-remote-admin ipn:2.3

unibo-bp-remote-admin ipn:2.3 --daemon

Remote commands should be prepared by exploiting the “--file” option of the unibo-bp-

admin program. Then, they should be sent to the remote EID by means of the “unibo-

bp-send” utility program or any other user-defined program able to use the Unibo-BP

API to send a bundle.

5.4 UNIBO-BP-TCPCL

The “unibo-bp-tcpcl” program is used to spawn an instance of the TCP Convergence

Layer. The “--cla-id <integer>” option permits to override the default CLA ID

associated with the TCPCL (i.e., 1000) with a user-defined value; this option might be

useful if a network administrator wants to spawn multiple processes, all running the

TCPCL, in order to balance the computational load between them The CLA ID is used

by the “unibo-bp-admin tcpcl” command to administer a specific TCPCL. The “--

daemon” option is also supported with the usual behavior.

unibo-bp-tcpcl --daemon

unibo-bp-tcpcl --cla-id 1234 --daemon

5.5 UNIBO-BP-PING

The “unibo-bp-ping” program is a simple “ping service” over BP. It sends a series of

bundles at regular intervals at an “echo service” and expects to receive them back after

some time. As the usual ICMP ping program shipped with most Linux distributions, the

time elapsed between the creation of the “ping bundle” and the reception of the “echo

bundle” is printed on the standard output. When the program terminates, several

55

statistics are printed on the standard output including the average RTT and the

percentage of bundles lost.

This program requires to specify the EID of the echo service and supports the following

options:

• --source <eid> specifies the source EID of the bundle. Otherwise, an ipn EID is

generated using the local ipn node number and a random service number.

• --count <integer> stops the program after “count” bundle are sent. With the

deadline option (see below), the program waits until the timeout expires, or all

bundles are acknowledged, whichever comes first. The default is unlimited.

• --deadline <integer> forces the program to stop when the specified number of

seconds have elapsed. The default is unlimited.

• --interval <integer> specifies the number of seconds between one bundle and

the next. The default is 1 second.

unibo-bp-ping ipn:3.7

unibo-bp-ping --source ipn:2.1923 dtn://echonode/echoservice

unibo-bp-ping --interval 2 --deadline 10 ipn:123.456

unibo-bp-ping --count 5 --deadline 10 ipn:123.456

5.6 UNIBO-BP-ECHO

The “unibo-bp-echo” program is a simple “echo service” over BP. It listens to a specific

EID and sends back the received data (the whole payload) to the bundle’s source. It is

designed to work as a counterpart of the "unibo-bp-ping" program, but it can work with

any BP ping program that expects to receive back a bundle containing the same payload

as the bundle sent.

By default, this program listens to the local node ipn EID with service number 7. The “-

-scheme <string>” option permits to override the scheme, e.g., by specifying “dtn” as

argument (in that case, the default demux token “echo” is used). The “--daemon” option

is also supported as usual.

The EID to which the echo service listens can be optionally forced by specifying the

desired EID.

56

unibo-bp-echo --daemon

unibo-bp-echo ipn:2.12345 --daemon

unibo-bp-echo dtn://mynode/myechoservice --daemon

unibo-bp-echo --scheme dtn --daemon

5.7 UNIBO-BP-SEND

The “unibo-bp-send” program allows to issue a single bundle to a user-defined

destination EID. Several parameters, shown below, are available.

• --source <eid> specifies the bundle’s source EID. Otherwise, a random ipn EID

is used.

• --report-to <eid> specifies the bundle’s report-to EID. Otherwise, “dtn:none” is

used.

• --destination <eid> specifies the bundle’s destination EID. This parameter is

mandatory.

• --lifetime <integer> specifies the bundle’s lifetime in milliseconds. Otherwise,

the default (60000 ms) is used.

• --payload-file <file path> specifies the path to a file whose content is to be used

as bundle’s payload.

• --payload-string <string> specifies the string to be used as bundle payload.

• --do-not-fragment specifies that the bundle must not be fragmented (i.e., the

proper Bundle Processing Control Flag is asserted).

• --forwarded specifies that “forwarded” status reports are to be generated (i.e.,

the proper Bundle Processing Control Flag is asserted).

• --received specifies that “received” status reports are to be generated (i.e., the

proper Bundle Processing Control Flag is asserted).

• --delivered specifies that “delivered” status reports are to be generated (i.e., the

proper Bundle Processing Control Flag is asserted).

• --deleted specifies that “deleted” status reports are to be generated (i.e., the

proper Bundle Processing Control Flag is asserted).

• --priority <string> specifies the “cardinal” priority (i.e., bulk, normal or

expedited).

57

• --ordinal <integer> specifies the ECOS “ordinal” priority (meaningful only if

used together with expedited priority; the integer should be in the interval

[0,255].).

• --hop-limit <integer> specifies the hop limit to be used in the Hop Count

Extension Block.

unibo-bp-send --destination ipn:123.456 --report-to ipn:789.101112 --

deleted --priority bulk --payload-string “Hello, World!” --hop-limit 10

unibo-bp-send --destination dtn://destinationnode/service --lifetime

1000000 --priority normal --payload-file /path/to/payload/file

5.8 UNIBO-BP-SINK

The “unibo-bp-sink” program receives bundles and prints their payload content on

the standard output; the listening EID must be specified.

unibo-bp-sink ipn:2.13464

unibo-bp-sink dtn://mynode/mydemux

5.9 UNIBO-BP-UTILITY

The “unibo-bp-utility” program is designed as a container of generic utilities. At

present, it can be called only with the “--get-utc-time [relative time]” option which

prints the current time in UTC format on the standard output; this option is designed

primarily to be used in conjunction with the "--reference-time" option shown for

contact and range administration. For user convenience, the optional argument

"relative time" can be used to add an offset specified in seconds to the current time: in

this case, the program will print the time obtained by adding the offset to the current

time.

unibo-bp-utility --get-utc-time

unibo-bp-utility --get-utc-time +10

58

6 INTEROPERABILITY TESTS

During the development of Unibo-BP, several tests have been performed: first to verify

that DTN nodes deployed with Unibo-BP are able to communicate with each other;

later to verify the proper functioning of the interfaces implemented for Unibo-CGR,

Unibo-LTP, and Unified-API; and finally, to verify the interoperability with other BP

implementations. In this chapter we show some interoperability tests performed with

ION and DTNME (both RFC 9171 compliant). We consider a very simple scenario where

Unibo-BP plays either the role of source, destination or intermediate node.

6.1 NETWORK TOPOLOGY

Virtualbricks [Virtualbricks], which is a network emulator developed at Unibo, was

used to build a multi-node layout (Figure 6.1), where each node is instantiated on a

different virtual machine with Debian 11, and the latest ION 4.1.1 and DTNME

1.2.0_Beta (the latest releases available at the writing of this thesis) installed, plus

Unibo-DTN software. Although the different BP implementations were available on all

machines, in interoperability tests we devoted one virtual machine to each BP

implementation, namely vm1 to DTNME vm2 to Unibo-BP and vm3 to ION.

59

Figure 6.1 - Network topology used to conduct interoperability tests.

The testbed consists of a control network and an experiment network (two DTN hops).

The former, subnet 10.0.0.0/24, is used to control the virtual machines via SSH

(Secure Shell) from the host without interfering with test traffic, which exclusively uses

the experiment network, i.e., subnets 10.0.1.0/24 and 10.0.2.0/24. Specifically, the

former connects vm1 and vm2, while the latter connects vm2 and vm3. These subnets

have a network emulator inside to introduce some challenge between VMs (huge

propagation delay, high packet loss rate, etc.). However, as challenges are irrelevant as

far as interoperability is concerned, these network emulators are not used in

interoperability tests and also the experiment network can be considered ideal.

The table below shows the IP addresses associated to each machine.

60

Machine IP Address in

subnet 10.0.0.0/24

IP Address in subnet

10.0.1.0/24

IP Address in

subnet 10.0.2.0/24

host 10.0.0.1 - -

vm1 10.0.0.11 10.0.1.1 -

vm2 10.0.0.12 10.0.1.2 10.0.2.2

vm3 10.0.0.13 - 10.0.2.3

Table 1 - IP addresses of machines in the various network segments.

The ipn Node IDs associated to DTNME, Unibo-BP and ION are respectively: ipn:1.0,

ipn:2.0, ipn:3.0. DTN nodes communicate bidirectionally by means of the TCP

Convergence Layer version 3: ipn:1.0 is connected to ipn:2.0 which in turn is connected

to ipn:3.0.

6.2 TESTS DESCRIPTION

Although several choices were possible, DTNperf [Caini_2013] was chosen to carry out

the tests, so that we could also serendipitously prove not only the interoperability of

Unibo-BP, but also that of DTNsuite applications, such as DTNperf. Moreover, we have

the following additional advantages:

• It demonstrates that the Unibo-BP API can be effectively used by external

programs (in this case, DTNperf by means of Unified API) for sending and

receiving bundles.

• The DTNperf client prints several useful pieces of information on the standard

output, including the BP implementation to which it is connected (found at run

time on the basis of running processes), its registration EID (the source of the

bundles sent) and for each bundle sent, the creation timestamp (time in ms and

sequence number). The last three elements uniquely identify a bundle. This

way, it is easy to cross-check DTNperf client output with Wireshark

[Wireshark].

• The DTNperf server also prints the BP to which it is connected but, more

importantly, it prints on the screen the payload size along with the source of

each bundle received; more exhaustive information (e.g., the timestamp, to

identify the received bundle) can be print by increasing the level of verbosity.

61

Each test is organized in the following way: the source node starts an instance of the

DTNperf client and sends 5 bundles of 1kB each to the destination node where an

instance of the DTNperf server is running, by using the following syntax:

dtnperf --client -d <destination EID> -D5k -P1k -R1M

The destination EID is the only parameter that needs to be changed in different tests.

The Data parameter (-D) specifies the total number of bytes to transmit (5 kB), while

the Payload (-P) specifies the payload length of each bundle (1 kB). The Rate (-R)

specifies the congestion control (rate-based): it is intentionally larger (1 Mbit/s) than

the total number of bytes transmitted during the test (in one second) since we are not

interested in congestion control.

In all tests the DTNperf server automatically registers with the ipn scheme (chosen

automatically by Unified-API library on which DTNperf is based, for ION and Unibo-

BP) with service number 2000. The syntax to run the DTNperf server is the following:

dtnperf --server

For DTNME a slight variation is required to use the “ipn” scheme, as in this case it is

necessary to override the default selection of Unified-API, which is dtn for

DTN2/DTNME). Moreover, it is also necessary to specify the local ipn node number (1

in the example), as shown below.

dtnperf --server --force-eid IPN --ipn-local 1

6.3 UNIBO-BP AS A SOURCE NODE

In this section are shown the tests carried out with Unibo-BP acting as the source node.

The DTNperf client always runs on vm2, while the server on vm1 or vm3 depending on

the BP implementation we want to have on the destination node, DTNME or ION,

respectively. The protocols stack is shown in the figure below.

62

Figure 6.2 – Protocol stack when Unibo-BP runs as source node.

In the following, the output of the DTNperf client and DTNperf server is shown for each

test, along with the capture made by Wireshark of the bundles transmitted by means

of TCPCL.

6.3.1 Unibo-BP (source) and DTNME (destination)

Figure 6.3 - DTNperf client executed on the Unibo-BP node. Five bundles, generated by “ipn:2.611”, with a
payload of 1 kB each were sent to “ipn:1.2000” (the DTNME node running on vm1).

63

Figure 6.4 – DTNperf server (“ipn:1.2000”) executed on the DTNME node. Five bundles, sent by
“ipn:2.611”, of 1 kB each were received.

Figure 6.5 - Wireshark capture of the five bundles sent from “ipn:2.611” (Unibo-BP, DTNperf client) to
“ipn:1.2000” (DTNME, DTNperf server).

Figure 6.6 - Dissection of the first bundle sent by the DTNperf client (“ipn:2.611”). The Primary Block is
expanded.

64

6.3.2 Unibo-BP (source) and ION (destination)

Figure 6.7 - DTNperf client executed on the Unibo-BP node. Five bundles, generated by “ipn:2.726”, with a
payload of 1 kB each were sent to “ipn:3.2000” (the ION node running on vm3).

Figure 6.8 - DTNperf server (“ipn:3.2000”) executed on the ION node. Five bundles, sent by “ipn:2.726”, of
1 kB each were received.

65

Figure 6.9 - Wireshark capture of the five bundles sent from “ipn:2.726” (Unibo-BP, DTNperf client) to
“ipn:3.2000” (ION, DTNperf server).

Figure 6.10 - Dissection of the first bundle sent by the DTNperf client (“ipn:2.726”). The Primary Block is
expanded.

6.3.3 Test results

Since all bundles sent, 5 to DTNME and 5 to ION, arrived at destination node and were

successfully delivered to the server, we can conclude that Unibo-BP is able to correctly

format bundles as required by RFC 9171. This result is also confirmed by the fact that

Wireshark is able to correctly dissect the bundles, in fact no errors are reported in

Wireshark figures. The very same tests also prove the correctness and interoperability

of the TCPCL version 3 implementation developed during this thesis.

6.4 UNIBO-BP AS A DESTINATION NODE

In this section are shown the tests carried out with Unibo-BP as destination node.

Therefore, the DTNperf server is run on vm2 while the DTNperf client on vm1 or vm3

depending on whether the source node is, respectively, DTNME or ION. The protocols

stack is shown in the figure below.

66

Figure 6.11 - Protocol stack when Unibo-BP runs as destination node.

6.4.1 DTNME (source) and Unibo-BP (destination)

Figure 6.12 - DTNperf client executed on the DTNME node. Five bundles, generated by
“dtn://vm1.dtn/dtnperf:/src_580”, with a payload of 1 kB each were sent to “ipn:2.2000” (the Unibo-BP

node running on vm2).

67

Figure 6.13 - DTNperf server (“ipn:2.2000”) executed on the Unibo-BP node. Five bundles, sent by
“dtn://vm1.dtn/dtnperf:/src_580”, of 1 kB each were received.

Figure 6.14 - Wireshark capture of the five bundles sent from “dtn://vm1.dtn/dtnperf:/src_580” (DTNME,
DTNperf client) to “ipn:2.2000” (Unibo-BP, DTNperf server).

Figure 6.15 - Dissection of the first bundle sent by the DTNperf client (“dtn://vm1.dtn/dtnperf:/src_580”).
The Primary Block is expanded.

68

6.4.2 ION (source) and Unibo-BP (destination)

Figure 6.16 – DTNperf client executed on the ION node. Five bundles, generated by “ipn:3.583”, with a
payload of 1 kB each were sent to “ipn:2.2000” (the Unibo-BP node running on vm2).

Figure 6.17 - DTNperf server (“ipn:2.2000”) executed on the Unibo-BP node. Five bundles, sent by
“ipn:3.583”, of 1 kB each were received.

69

Figure 6.18 - Wireshark capture of the five bundles sent from “ipn:3.583” (ION, DTNperf client) to
“ipn:2.2000” (Unibo-BP, DTNperf server).

Figure 6.19 - Dissection of the first bundle sent by the DTNperf client (“ipn:3.583”). The Primary Block is
expanded.

6.4.3 Test results

All bundles sent, 5 from ION and 5 from DTNME, arrived at their destination and were

correctly delivered, therefore we can conclude that Unibo-BP can correctly decode

bundles formatted as required by RFC 9171. We have also verified that our TCPCL

version 3 can correctly receive bundles sent by peers.

6.5 UNIBO-BP AS A ROUTER NODE

In this section are shown the tests carried out with Unibo-BP in an intermediate

position, i.e., acting as a DTN router. There are no applications running above Unibo-

BP, while DTNperf client and server are executed on the DTNME and ION nodes,

alternatively, to carry out a test in both directions. Each bundle sent by DTNME is first

forwarded to Unibo-BP and then it is forwarded (by Unibo-BP) to ION; then vice versa.

70

Figure 6.20 - Protocol stack when Unibo-BP runs as router node.

6.5.1 DTNME (source), Unibo-BP (router), ION (destination)

Figure 6.21 - DTNperf client executed on the DTNME node. Five bundles, generated by
“dtn://vm1.dtn/dtnperf:/src_663”, with a payload of 1 kB each were sent to “ipn:3.2000” (the ION node

running on vm3).

71

Figure 6.22 - DTNperf server (“ipn:3.2000”) executed on the ION node. Five bundles, sent by
“dtn://vm1.dtn/dtnperf:/src_663”, of 1 kB each were received.

Figure 6.23 - Wireshark capture of the five bundles sent from “dtn://vm1.dtn/dtnperf:/src_663” (DTNME,
DTNperf client) to “ipn:3.2000” (ION, DTNperf server). As can be seen from the destination IP address the

bundles were forwarded to the intermediate router (Unibo-BP).

Figure 6.24 - Dissection of the first bundle sent by the DTNperf client (“dtn://vm1.dtn/dtnperf:/src_663”)
captured on the DTNME / Unibo-BP segment. The Primary Block is expanded.

72

Figure 6.25 - Wireshark capture of the five bundles sent from “dtn://vm1.dtn/dtnperf:/src_663” (DTNME,
DTNperf client) to “ipn:3.2000” (ION, DTNperf server). As can be seen from the source IP address the

bundles were forwarded by the intermediate router (Unibo-BP).

Figure 6.26 - Dissection of the first bundle sent by the DTNperf client (“dtn://vm1.dtn/dtnperf:/src_663”)
captured on the Unibo-BP / ION segment. The Primary Block is expanded.

6.5.2 ION (source), Unibo-BP (router), DTNME (destination)

Figure 6.27 - DTNperf client executed on the ION node. Five bundles, generated by “ipn:3.664”, with a
payload of 1 kB each were sent to “ipn:1.2000” (the DTNME node running on vm1).

73

Figure 6.28 - DTNperf server (“ipn:1.2000”) executed on the DTNME node. Five bundles, sent by
“ipn:3.664”, of 1 kB each were received.

Figure 6.29 - Wireshark capture of the five bundles sent from “ipn:3.664” (ION, DTNperf client) to
“ipn:1.2000” (DTNME, DTNperf server). As can be seen from the destination IP address the bundles were

forwarded to the intermediate router (Unibo-BP).

Figure 6.30 - Dissection of the first bundle sent by the DTNperf client (“ipn:3.664”) captured on the ION /
Unibo-BP segment. The Primary Block is expanded.

74

Figure 6.31 - Wireshark capture of the five bundles sent from “ipn:3.664” (ION, DTNperf client) to
“ipn:1.2000” (DTNME, DTNperf server). As can be seen from the source IP address the bundles were

forwarded by the intermediate router (Unibo-BP).

Figure 6.32 - Dissection of the first bundle sent by the DTNperf client (“ipn:3.664”) captured on the Unibo-
BP / DTNME segment. The Primary Block is expanded.

6.5.3 Test results

All bundles sent, 5 from DTNME to ION and 5 from ION to DTNME, arrived at their

destination, forwarded by the intermediate Unibo-BP node before reaching their

destination. Therefore, we can conclude that Unibo-BP is compliant with RFC 9171

even when operating as a router.

In particular, it is worth noting to observe (from Figure 6.24 and Figure 6.26, or from

Figure 6.30 and Figure 6.32) that the Primary Block remained unchanged after

traversing the Unibo-BP node as expected, since RFC 9171 states that the Primary

Block of each bundle shall be immutable.

75

7 CONCLUSIONS

The purpose of this thesis was to design and create a novel implementation of the

Bundle Protocol version 7, recently standardized by RFC 9171. This new

implementation, named Unibo-BP, is now complete and has been released as Free

Software on a public Git repository.

Unibo-BP is fully compliant with RFC 9171 and interoperability with other BP

implementations has been demonstrated by means of a wide variety of tests with the

two reference implementations ION (designed and maintained by NASA-JPL) and

DTNME (maintained by NASA-MSFC). The tests shown in the thesis confirm that a

Unibo-BP node can correctly operates as a source of bundles, as a destination, or as a

router node. These tests also demonstrated the correctness of the implementation of

the TCP Convergence Layer version 3 (RFC 7242) developed during this thesis.

Among the novel characteristics of Unibo-BP, we cite the possibility to natively manage

a Unibo-BP node remotely by sending commands via the Bundle Protocol itself. With

Unibo-BP, it is therefore possible to manage remote nodes even if they are deployed in

challenged networks, i.e., subjected to long delays and link disruption. Another

peculiarity is that Unibo-BP accepts contacts and ranges where the EID of dtn nodes

follows schemes different from the “ipn” one, which may help in extending the scope

of CGR and LTP outside of the space networks, where the use of the “ipn” scheme is

dictated by the CCSDS standard.

Unibo-BP is at the center of a broader project, called Unibo-DTN, which also includes

Unibo-CGR and Unibo-LTP, with which Unibo-BP is fully compatible thanks to the

implementation of ad hoc interfaces developed during this thesis. Another interface

was written to extend the support of the Unified API library to Unibo-BP, which makes

compatible with Unibo-BP all applications of the DTNsuite, such as DTNperf, DTNbox,

DTNfog, DTNproxy and DTNchat, thus making Unibo-BP the central pillar of a whole

DTN ecosystem encompassing DTN protocols, routing algorithms and applications.

76

Our expectation is that Unibo-BP and Unibo-DTN can result a useful tool for all DTN

researchers, thus contributing to a wider adoption of the DTN architecture. A second,

more ambitious hope is that it may be evaluated by space agencies for interoperability

tests or in experimental deployments.

77

BIBLIOGRAPHY

[Alessi_2019] Alessi, Nicola (2019) “Hierarchical Inter-Regional Routing Algorithm for

Interplanetary Networks”. [Laurea magistrale], Università di Bologna, Corso

di Studio in Ingegneria informatica [LM-DM270]

<https://amslaurea.unibo.it/17468/>.

[Araniti_2015] G. Araniti, N. Bezirgiannidis, E. Birrane, I. Bisio, S. Burleigh, C. Caini, M.

Feldmann, M. Marchese, J. Segui, K. Suzuki. “Contact Graph Routing in DTN

Space Networks: Overview, Enhancements and Performance”, IEEE Commun.

Mag., Vol.53, No.3, pp.38-46, March 2015, DOI:

10.1109/MCOM.2015.7060480.

[Bash] Web site: https://www.gnu.org/software/bash/.

[Bertolazzi_2019] M. Bertolazzi, C. Caini and N. Castellazzi, "DTNbox: a DTN Application for

Peer-to-Peer Directory Synchronization", 2019 Wireless Days (WD), 2019, pp.

1-4, doi: 10.1109/WD.2019.8734214.

[Birrane_2021] E. J. Birrane, C. Caini, G. M. De Cola, F. Marchetti, L. Mazzuca, L. Persampieri,

“Opportunities and limits of moderate source routing in delay-/disruption-

tolerant networking space networks”, Int J Satell Commun Network. Early

publication, vol.40, no.6, pp. 428- 444, Aug.2021. doi:10.1002/sat.1421.

[Bisacchi_2021] Bisacchi, Andrea (2021) “Progetto di una implementazione veloce del

Licklider Transmission Protocol per link ottici”. [Laurea magistrale],

Università di Bologna, Corso di Studio in Ingegneria informatica [LM-

DM270] <https://amslaurea.unibo.it/22383/>.

[Bisacchi_2022] A. Bisacchi, C. Caini and T. de Cola, "Multicolor Licklider Transmission

Protocol: An LTP Version for Future Interplanetary Links", in IEEE

Transactions on Aerospace and Electronic Systems, vol. 58, no. 5, pp. 3859-

3869, Oct. 2022, doi: 10.1109/TAES.2022.3176847. (Open Source).

[Burleigh_2007] S. Burleigh, "Interplanetary Overlay Network: An Implementation of the DTN

Bundle Protocol", 2007 4th IEEE Consumer Communications and

Networking Conference, 2007, pp. 222-226, doi: 10.1109/CCNC.2007.51.

[Burleigh_2013] Burleigh, Scott, 2013, "Delay-tolerant security key agreement (DTKA)",

https://hdl.handle.net/2014/44334, Root, V1.

[Burleigh_2016] S. Burleigh, C. Caini, J. J. Messina and M. Rodolfi, "Toward a unified routing

framework for delay-tolerant networking", 2016 IEEE International

Conference on Wireless for Space and Extreme Environments (WiSEE),

Aachen, Germany, 2016, pp. 82-86, doi: 10.1109/WiSEE.2016.7877309.

[Caini_2011] C. Caini, H. Cruickshank, S. Farrell and M. Marchese, "Delay- and Disruption-

Tolerant Networking (DTN): An Alternative Solution for Future Satellite

https://amslaurea.unibo.it/17468/
https://doi.org/10.1109/MCOM.2015.7060480
https://www.gnu.org/software/bash/
https://doi.org/10.1109/WD.2019.8734214
https://doi.org/10.1002/sat.1421
https://amslaurea.unibo.it/22383/
https://doi.org/10.1109/TAES.2022.3176847
https://doi.org/10.1109/CCNC.2007.51
https://hdl.handle.net/2014/44334
https://doi.org/10.1109/WiSEE.2016.7877309

78

Networking Applications", in Proceedings of the IEEE, vol. 99, no. 11, pp.

1980-1997, Nov. 2011, doi: 10.1109/JPROC.2011.2158378.

[Caini_2013] C. Caini, A. d'Amico and M. Rodolfi, "DTNperf_3: A further enhanced tool for

Delay-/Disruption- Tolerant Networking Performance evaluation", 2013 IEEE

Global Communications Conference (GLOBECOM), 2013, pp. 3009-3015,

doi: 10.1109/GLOCOM.2013.6831533.

[Caini_2021] C. Caini, G. M. De Cola, L. Persampieri, “Schedule-Aware Bundle Routing:

Analysis and Enhancements”, International Journal of Satellite

Communications and Networking, vol. 39, no.3, pp. 237-243, May/June

2021. DOI: 10.1002/sat.1384.

[CCSDS_BPV6] CCSDS 734.2-B-1, “CCSDS Bundle Protocol Specification”, recommended

standard, Blue Book, September 2015,

https://public.ccsds.org/Pubs/734x2b1.pdf.

[CCSDS_LTP] CCSDS 734.1-B-1, “Licklider Transmission Protocol (LTP) for CCSDS”,

recommended standard, Blue Book, May 2015,

https://public.ccsds.org/Pubs/734x1b1.pdf.

[CCSDS_SABR] CCSDS 734.3-B-1, “Schedule-Aware Bundle Routing”, recommended

standard, Blue Book, July 2019, https://public.ccsds.org/Pubs/734x3b1.pdf.

[Cingolani_2022] A. Cingolani, “Studio delle funzionalità IRF e DNAC di ION”, Tesi di Laurea in

Ingegneria Informatica, Università di Bologna, 2022.

[CRC16] ITU-T, "X.25: Interface between Data Terminal Equipment (DTE) and Data

Circuit-terminating Equipment (DCE) for terminals operating in the packet

mode and connected to public data networks by dedicated circuit", p. 9,

Section 2.2.7.4, ITU-T Recommendation X.25, October 1996,

<https://www.itu.int/rec/T-REC-X.25-199610-I/>.

[Demmer_2007] M. Demmer, K. Fall, “DTLSR: Delay Tolerant Routing for Developing Regions”,

ACM SIGCOMM Workshop on Networked Systems in Developing Regions

(NSDR), Kyoto, Japan, 2007.

[Draft_ECOS] S. Burleigh “Bundle Protocol Extended Class of Service (ECOS)”, IETF Draft,

May 2021, https://tools.ietf.org/html/draft-burleigh-dtn-ecos-00.

[DTN2] Web site: https://sourceforge.net/projects/dtn/.

[DTNME] Web site: https://github.com/nasa/DTNME.

[DTNsuite] Web site: https://gitlab.com/dtnsuite.

[Gori_2020] G. Gori, “Inserimento dell’algoritmo di routing CGR-SABR in DTN2”, Tesi di

Laurea in Ingegneria Informatica, Università di Bologna, 2020.

https://doi.org/10.1109/JPROC.2011.2158378
https://doi.org/10.1109/GLOCOM.2013.6831533
https://doi.org/10.1002/sat.1384#_blank
https://public.ccsds.org/Pubs/734x2b1.pdf
https://public.ccsds.org/Pubs/734x1b1.pdf
https://public.ccsds.org/Pubs/734x3b1.pdf
https://www.itu.int/rec/T-REC-X.25-199610-I/
https://tools.ietf.org/html/draft-burleigh-dtn-ecos-00
https://sourceforge.net/projects/dtn/
https://github.com/nasa/DTNME
https://gitlab.com/dtnsuite

79

[ION] Web site: https://sourceforge.net/projects/ion-dtn/.

[Lindgren_2004] Lindgren, A., Doria, A., Schelén, O. (2004). “Probabilistic Routing in

Intermittently Connected Networks”. In: Dini, P., Lorenz, P., de Souza, J.N.

(eds) Service Assurance with Partial and Intermittent Resources. SAPIR

2004. Lecture Notes in Computer Science, vol 3126. Springer, Berlin,

Heidelberg. DOI: 10.1007/978-3-540-27767-5_24.

[Persampieri_2020] L. Persampieri, “Unibo-CGR: una nuova implementazione dell’algoritmo di

routing CGR/SABR”, Tesi di Laurea in Ingegneria Informatica, Università di

Bologna, 2020.

[RFC4838] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., and

H. Weiss, "Delay-Tolerant Networking Architecture", RFC 4838, DOI

10.17487/RFC4838, April 2007, <https://www.rfc-

editor.org/info/rfc4838>.

[RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol", RFC 4960, DOI

10.17487/RFC4960, September 2007, <https://www.rfc-

editor.org/info/rfc4960>.

[RFC5050] Scott, K. and S. Burleigh, "Bundle Protocol Specification", RFC 5050, DOI

10.17487/RFC5050, November 2007, <https://www.rfc-

editor.org/info/rfc5050>.

[RFC5325] Burleigh, S., Ramadas, M., and S. Farrell, "Licklider Transmission Protocol -

Motivation", RFC 5325, DOI 10.17487/RFC5325, September 2008,

<https://www.rfc-editor.org/info/rfc5325>.

[RFC5326] Ramadas, M., Burleigh, S., and S. Farrell, "Licklider Transmission Protocol -

Specification", RFC 5326, DOI 10.17487/RFC5326, September 2008,

<https://www.rfc-editor.org/info/rfc5326>.

[RFC6693] Lindgren, A., Doria, A., Davies, E., and S. Grasic, "Probabilistic Routing

Protocol for Intermittently Connected Networks", RFC 6693, DOI

10.17487/RFC6693, August 2012, <https://www.rfc-

editor.org/info/rfc6693>.

[RFC7242] Demmer, M., Ott, J., and S. Perreault, "Delay-Tolerant Networking TCP

Convergence-Layer Protocol", RFC 7242, DOI 10.17487/RFC7242, June 2014,

<https://www.rfc-editor.org/info/rfc7242>.

[RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)",

STD 94, RFC 8949, DOI 10.17487/RFC8949, December 2020,

<https://www.rfc-editor.org/info/rfc8949>.

[RFC9171] Burleigh, S., Fall, K., Birrane, E., and III, "Bundle Protocol Version 7", RFC 9171,

DOI 10.17487/RFC9171, January 2022, <https://www.rfc-

https://sourceforge.net/projects/ion-dtn/
https://doi.org/10.1007/978-3-540-27767-5_24
https://www.rfc-editor.org/info/rfc4838
https://www.rfc-editor.org/info/rfc4838
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc5050
https://www.rfc-editor.org/info/rfc5050
https://www.rfc-editor.org/info/rfc5325
https://www.rfc-editor.org/info/rfc5326
https://www.rfc-editor.org/info/rfc6693
https://www.rfc-editor.org/info/rfc6693
https://www.rfc-editor.org/info/rfc7242
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc9171

80

editor.org/info/rfc9171>.

[RFC9172] Birrane, E., III, and K. McKeever, "Bundle Protocol Security (BPSec)", RFC

9172, DOI 10.17487/RFC9172, January 2022, <https://www.rfc-

editor.org/info/rfc9172>.

[RFC9174] Sipos, B., Demmer, M., Ott, J., and S. Perreault, "Delay-Tolerant Networking

TCP Convergence-Layer Protocol Version 4", RFC 9174, DOI

10.17487/RFC9174, January 2022, <https://www.rfc-

editor.org/info/rfc9174>.

[Spyropoulos_2005] T. Spyropoulos, K Psounis, and C. S. Raghavendra, “Spray and wait: An

efficient routing scheme for intermittently connected mobile networks”, in

Proc. of 2005 ACM SIGCOMM workshop on Delay-tolerant networking,

WDTN’05, 2005, pp. 252-259.

[Unibo-BP] Web site: https://gitlab.com/unibo-dtn/unibo-bp.

[Unibo-CGR] Web site: https://gitlab.com/unibo-dtn/unibo-cgr.

[Unibo-DTN] Web site: https://gitlab.com/unibo-dtn.

[Unibo-LTP] Web site: https://gitlab.com/unibo-dtn/ltp.

[UnifiedAPI] A. Bisacchi, C. Caini and S. Lanzoni, "Design and Implementation of a Bundle

Protocol Unified API" 2022 11th Advanced Satellite Multimedia Systems

Conference and the 17th Signal Processing for Space Communications

Workshop (ASMS/SPSC), 2022, pp. 1-6, doi:

10.1109/ASMS/SPSC55670.2022.9914734.

[Vahdat_2000] A. Vahdat and D. Becker, "Epidemic Routing for Partially-Connected Ad Hoc

Networks", Duke Technical Report CS-2000-06, July 2000.

[Virtualbricks] P. Apollonio, C. Caini, M. Giusti, D. Lacamera, “Virtualbricks for DTN satellite

communications research and education”, in Proc. of PSATS 2014, Genoa,

Italy, July 2014, pp. 1-14. DOI: 10.1007/978-3-319-47081-8_7.

[Wireshark] Web site: https://www.wireshark.org/.

https://www.rfc-editor.org/info/rfc9171
https://www.rfc-editor.org/info/rfc9172
https://www.rfc-editor.org/info/rfc9172
https://www.rfc-editor.org/info/rfc9174
https://www.rfc-editor.org/info/rfc9174
https://gitlab.com/unibo-dtn/unibo-bp
https://gitlab.com/unibo-dtn/unibo-cgr
https://gitlab.com/unibo-dtn
https://gitlab.com/unibo-dtn/ltp
https://doi.org/10.1109/ASMS/SPSC55670.2022.9914734
https://doi.org/10.1007/978-3-319-47081-8_7
https://www.wireshark.org/

81

APPENDIX A: NODES CONFIGURATION

The following are the configurations used to carry out interoperability tests. For

DTNME and ION only the excerpts deemed most relevant are reported, while a

complete configuration is shown for Unibo-BP.

DTNME

route local_eid_ipn ipn:1.0

route set type static

interface add tcp0 tcp

link add ltvm2 10.0.1.2 ALWAYSON tcp3

route add ipn:2.* ltvm2

route add ipn:3.* ltvm2

ION

The commands below are extracted from the ionrc configuration file interpreted by

the ionadmin program.

a range +0 +36000 1 2 1

a range +0 +36000 2 3 1

a contact +1 +36000 1 2 125000

a contact +1 +36000 2 1 125000

a contact +1 +36000 3 2 125000

a contact +1 +36000 2 3 125000

The commands below are extracted from the bprc configuration file interpreted by the

bpadmin program.

a scheme ipn 'ipnfw' 'ipnadminep'

a protocol tcp 1400 100 100000000

a induct tcp 0.0.0.0 tcpcli

a outduct tcp 10.0.2.2 ''

82

Below is the content of the ipnrc configuration file interpreted by the ipnadmin

program.

a plan 2 tcp/10.0.2.2

UNIBO-BP

#!/bin/bash

REFERENCE_TIME=$(unibo-bp-utility --get-utc-time +0)

unibo-bp start --set-storage-size 50000000 --dtn-admin dtn://vm2.dtn/ --

ipn-admin ipn:2.0 --daemon

sleep 5

unibo-bp-admin region home --register-node ipn:1.0

unibo-bp-admin region home --register-node ipn:2.0

unibo-bp-admin region home --register-node ipn:3.0

unibo-bp-admin range add --start-time +0 --end-time +36000 --sender

ipn:1.0 --receiver ipn:2.0 --owlt 1 --reference-time $REFERENCE_TIME

unibo-bp-admin range add --start-time +0 --end-time +36000 --sender

ipn:2.0 --receiver ipn:1.0 --owlt 1 --reference-time $REFERENCE_TIME

unibo-bp-admin range add --start-time +0 --end-time +36000 --sender

ipn:2.0 --receiver ipn:3.0 --owlt 1 --reference-time $REFERENCE_TIME

unibo-bp-admin range add --start-time +0 --end-time +36000 --sender

ipn:3.0 --receiver ipn:2.0 --owlt 1 --reference-time $REFERENCE_TIME

unibo-bp-admin contact add --start-time +0 --end-time +36000 --sender

ipn:1.0 --receiver ipn:2.0 --xmit-rate 125000 --reference-time

$REFERENCE_TIME

83

unibo-bp-admin contact add --start-time +0 --end-time +36000 --sender

ipn:2.0 --receiver ipn:1.0 --xmit-rate 125000 --reference-time

$REFERENCE_TIME

unibo-bp-admin contact add --start-time +0 --end-time +36000 --sender

ipn:2.0 --receiver ipn:3.0 --xmit-rate 125000 --reference-time

$REFERENCE_TIME

unibo-bp-admin contact add --start-time +0 --end-time +36000 --sender

ipn:3.0 --receiver ipn:2.0 --xmit-rate 125000 --reference-time

$REFERENCE_TIME

unibo-bp-tcpcl --daemon

sleep 5

unibo-bp-admin tcpcl induct add

unibo-bp-admin tcpcl outduct add --peer ipn:1.0 --hostname 10.0.1.1

unibo-bp-admin tcpcl outduct add --peer ipn:3.0 --hostname 10.0.2.3

