
Alma Mater Studiorum - University of Bologna

Computer Science and Engineering - DISI

Artificial Intelligence

Master degree thesis in
Multi-Agent Systems

Extending the 2P-Kt ecosystem: CLP and

Labelled LP

Master degree thesis

Supervisor

Prof.Roberta Calegari
Co-supervisor

Prof. Giovanni Ciatto

Candidate

Giuseppe Boezio

Academic Year 2021-2022- Third session

Giuseppe Boezio: Extending the 2P-Kt ecosystem: CLP and Labelled LP, Master

degree thesis, © 03 February 2023.

Abstract

The ability to create hybrid systems that blend different paradigms has now be-

come a requirement for complex AI systems usually made of more than a component.

In this way, it is possible to exploit the advantages of each paradigm and exploit the

potential of different approaches such as symbolic and non-symbolic approaches. In

particular, symbolic approaches are often exploited for their efficiency, effectiveness

and ability to manage large amounts of data, while symbolic approaches are exploited

to ensure aspects related to explainability, fairness, and trustworthiness in general.

The thesis lies in this context, in particular in the design and development of

symbolic technologies that can be easily integrated and interoperable with other AI

technologies. 2P-Kt is a symbolic ecosystem developed for this purpose, it provides

a logic-programming (LP) engine which can be easily extended and customized to

deal with specific needs.

The aim of this thesis is to extend 2P-Kt to support constraint logic program-

ming (CLP) as one of the main paradigms for solving highly combinatorial problems

given a declarative problem description and a general constraint-propagation engine.

A real case study concerning school timetabling is described to show a practical

usage of the CLP(FD) library implemented.

Since CLP represents only a particular scenario for extending LP to domain-specific

scenarios, in this thesis we present also a more general framework: Labelled Prolog,

extending LP with labelled terms and in particular labelled variables. The designed

framework shows how it is possible to frame all variations and extensions of LP

under a single language reducing the huge amount of existing languages and libraries

and focusing more on how to manage different domain needs using labels which can

be associated with every kind of term.

iii

iv

Mapping of CLP into Labeled Prolog is also discussed as well as the benefits

of the provided approach.

Contents

1 Introduction 1

1.1 Thesis organization . 2

2 Background notions 3

2.1 The Prolog Language . 3

2.1.1 Brief History . 3

2.1.2 Concepts . 4

2.1.3 2p-Kt . 7

2.2 Constraint Programming . 8

2.2.1 Brief History . 8

2.2.2 Concepts . 8

2.2.3 Constraint Logic Programming 9

2.2.4 SWI Prolog - CLP libraries 9

3 CLP in 2p-Kt 11

3.1 Requirements . 11

3.2 Design . 12

3.2.1 Common aspects . 12

3.2.2 Constraint Logic Programming over Finite Domains 12

3.2.3 Constraint Logic Programming over Rationals and Reals . . . 18

3.2.4 Constraint Logic Programming over Boolean Variables 20

3.3 Implementation . 21

3.3.1 Constraint Logic Programming over Finite Domains 22

3.3.2 Constraint Logic Programming over Rationals and Reals . . . 23

3.3.3 Constraint Logic Programming over Boolean Variables 23

3.4 Case study . 24

3.4.1 Implementation . 25

3.4.2 Design . 25

v

vi CONTENTS

4 Labelled Prolog 33

4.1 Model . 33

4.1.1 Labelled Variables . 33

4.1.2 Labelled Terms . 36

4.2 Implementation . 38

4.2.1 Labels . 38

4.2.2 Unificator . 38

4.2.3 Solver . 39

5 CLP as Labelled Prolog 41

6 Conclusions and future work 43

List of Figures

2.1 2P-Kt project map. LP functionalities are partitioned into some

loosely-coupled and incrementally-dependent modules. 7

3.1 clpqr constraints BNF . 18

3.2 Sequence Diagram of the interaction among agents 27

List of Tables

3.1 Arithmetic constraints in clpfd . 13

vii

viii LIST OF TABLES

3.2 Arithmetic expressions in clpfd . 13

3.3 Admissible boolean expressions in clpb 20

3.4 Global constraints mapping between CLP(FD) and Choco Library . 23

4.1 Unification rules in LVLP, adopting standard LP unification rules and

representation . 35

4.2 Unification rules in LTLP, adopting standard LP unification rules and

representation . 37

Chapter 1

Introduction

Nowadays there are a lot of hybrid systems which exploit on different paradigms

to deal with complex AI problems. An example could be represented by systems

which use both symbolic and sub-symbolic approaches. Different solutions have been

proposed during years; for example [26] describes how to reformulate rules in such

a way that they can be directly used in an artificial neural network or in [3] it is

described how to use together neural networks and formal logic to be able to rely on

strenghts of both approaches in different fields such as healthcare, image processing,

business management, information retrieval and many other fields.

2P-Kt is an extensible ecosystem written in Kotlin which can be easily used by other

applications to perform tasks using LP with Prolog programming language. LP has

developed during years different variations and extensions according to the needs

of a specific domain. One flavor is CLP which consists of applying techniques to

solve combinatorial problems using an approach based on LP instead of using other

kinds of techniques based on other paradigms. These techniques are together called

Constraint Programming (CP).

The first contribution of this thesis is to endow 2P-Kt ecosystem with a set of

libraries of CLP which allow users to be able to use this interpreter to solve specific

problems related to the combinatorial domain. The Prolog predicates provided by

the new group of libraries implemented in this work have been realized as close as

possible to existing CLP libraries to facilitate ones already familiar with CLP to

switch to these libraries without spending time to learn new predicates and their

usages. Most importantly, this enables interoperability.

Libraries have been implemented adapting an existing CP library called Choco with

1

2 CHAPTER 1. INTRODUCTION

some 2P-Kt mechanisms which allow for masking of the underneath CP implementa-

tion providing common predicates supported by a very famous and used CLP library

of SWI Prolog interpreter called CLP(X).

A real case study has been developed to show how these libraries could be used

by other systems to integrate different kinds of functionalities. In the current case

study, the library concerning integer variables (CLP(FD)) has been used to model

constraints among professors’ lessons in an italian high school. The library was very

useful because it was possible to integrate CLP in a Multi-agent context concering

different kinds of languages and approaches allowing the realization of a complex

hybrid system as mentioned earlier.

Therefore, exploiting the concept of Labelled Variables, a new framework has

been developed which extends the label concepts to all Prolog terms designing

a computational model for Labelled Prolog. This approach makes it possible to

extend Prolog with many domain-specific applications (including the CLP) without

designing ad-hoc-specific libraries.

A possible mapping of CLP in the Labelled Prolog framework has been proposed to

show how the labels could be effectively used to support different aspects of CLP.

1.1 Thesis organization

Second chapter introduces the general content about thesis and gives a short

presentation of the topic;

Third chapter is a deepening about how CLP has been realized using 2P-Kt

framework;

Fourth chapter presents the extension of Labelled Variables for every kind of

term;

Fifth chapter presents how to adapt CLP with Labelled Prolog;

Sixth chapter discusses about the results and possible future developments.

Chapter 2

Background notions

2.1 The Prolog Language

2.1.1 Brief History

Prolog stands for PROgrammation en LOGique and it emerged during 1970s

as a way to use logic as a programming language. The early developers of this

language were Robert Kowalski, Maarten van Emden and Alain Colmelauer. The

programming language, Prolog, was born of a project aimed not at producing a

programming language but at processing natural languages; in this case, French [10].

The project gave rise to a preliminary version of Prolog at the end of 1971 and a

more definitive version at the end of 1972. Prolog gained a lot of attraction from

the computing society as it was the very first LP language. The language still holds

considerable importance and popularity among the LP languages and comes with a

range of commercial as well as free implementations.

Prolog is used for different kind of tasks such as:

• theorem proving [9]

• expert systems [18]

• knowledge representation [13]

• automated planning [23]

• natural language processing [17]

3

4 CHAPTER 2. BACKGROUND NOTIONS

2.1.2 Concepts

Syntax and semantics of Prolog are described in ISO standard ISO/IEC 13211.

Prolog is a LP language; this means that it is used to describe known facts and

relationships about a problem and less about prescribing the sequence of steps taken

by a computer to solve the problem. When a computer is programmed in Prolog,

the actual way the computer carries out the computation is specified partially by

the logic declarative semantics of Prolog, partly by what new facts can be inferred

from the given ones, and only partly by explicit control information supplied by the

programmer.

Prolog is used to solve problems which involve objects and relations among them.

The main features of the programming language are:

• specifyng some facts about some objects and their relationships

• defining some rules about objects and their relationships

• asking questions about objects and their relationships

Prolog programs are built from terms. A term is either a constant, a variable

or a structure.

2.1.2.1 Constants

A constant is a sequence of characters which denotes a specific object or rela-

tionship. A constant can be an atom or a number. All constants begin with a lower

case letter.

Example

a is an atom

12 is a number

2.1.2.2 Variables

A variable looks like an atom except it has a name beginning with capital letter

or underline signed. A variable should be thought of as standing for some objects

we are unable or unwilling to name at the time we write the program.

Example

2.1. THE PROLOG LANGUAGE 5

X and Answer are valid names for variables

2.1.2.3 Structures

A structure is a collection of other objects called components. Structures help to

organize the data in a program because they permit a group of related information

to be treated as a single object instead of separate entities. A structure is written in

Prolog by specifying its functor and its components. The coponents are enclosed in

round brackets and separated by commas. The functor is written just before the

opening round brackets.

Example

owns(john,book) is a structure having owns as functor and, john and book as

components

2.1.2.4 Facts

A fact is a relation among objects which are all ground. This means that a fact

is a structure which does not contain any variables among its components. A fact

is written as a structure followed by a dot (.). The names of the objects that are

enclosed within the round brackets in each fact are called arguments. The name of

the relationship which comes just before the round brackets is called predicate.

Example

king(john,france). is a fact

2.1.2.5 Rules

A rule is a disjunction of predicates, where at most one is not negated, written

in the following way:

Head : −Body.

where Head is a predicate, Body is a conjunction of predicates and the symbol ":-"

means that the body implies the head. This kind of structure is called Horn clause.

A Prolog program can be seen as a list (because order matters) of Horn clauses

called theory. Facts could be seen as Rules having Body equals to true. Rules are

6 CHAPTER 2. BACKGROUND NOTIONS

used to describe some complex relations among objects of the domain of discourse

and differently from facts can contain variables.

Example

motherOf(X,Y) :- parentOf(X,Y),female(X).

The aforementioned description of Prolog language has been adapted from [8].

2.1.2.6 Unification

A substitution is a function which associates a variable to a given term. The

most general unifier (MGU) is the substitution which allows to transform two terms

making them equals such that all other substitutions can be obtained through a

composition with this one. The unification is a process whereby two structures are

made equals via substitution and it is used several times during the Prolog resolution

process.

2.1.2.7 Resolution

The resolution in Prolog happens in the following way: the interpreter tries

to verify whether a conjunction of predicates (the goal) provided by the user can

be derived from the current program or not and in the case it could, it provides a

computed answer substitution (CAS) which is a set of substitutions which allow to

make true the user’s goal.

Prolog resolution process is called SLD (Selective Linear Definite clause resolution)

and works as follows:

SLD resolution implicitly defines a search tree of alternative computations, in which

the initial goal clause is associated with the root of the tree. For every node in the

tree and for every definite clause in the program whose positive literal unifies with

the selected literal in the goal clause associated with the node, there is a child node

associated with the goal clause obtained by SLD resolution. A leaf node, which has

no children, is a success node if its associated goal clause is the empty clause. It

is a failure node if its associated goal clause is non-empty but its selected literal

unifies with no positive literal of definite clauses in the program. SLD resolution

is non-deterministic in the sense that it does not determine the search strategy for

exploring the search tree. Prolog searches the tree depth-first, one branch at a time,

using backtracking when it encounters a failure node. Depth-first search is very

2.1. THE PROLOG LANGUAGE 7

efficient in its use of computing resources, but is incomplete if the search space

contains infinite branches and the search strategy searches these in preference to finite

branches: the computation does not terminate. The SLD resolution search space is

an or-tree, in which different branches represent alternative computations.[11]

2.1.3 2p-Kt

2p-Kt is a general, extensible, and interoperable ecosystem for logic programming

and symbolic AI written in Kotlin which supports the Prolog ISO standard.

2p-kt is the evolution of another project called tuProlog [5]. To support reusability

Figure 2.1: 2P-Kt project map. LP functionalities are partitioned into some loosely-
coupled and incrementally-dependent modules.

2p-Kt is divided into several modules described as follows:

• :core: exposes data structures for knowledge representation via terms and

clauses, other than methods supporting their manipulation

• :unify: used to compare and manipulate logic terms through logic unification

• :theory: in-memory storage of clauses into ordered (e.g. queues) or un-

ordered (e.g. multisets) data structures, and their efficient retrieval via

pattern-matching

• :serialize-* and :parser-*: used to perform ancillary operations such as

serialization and parsing

• :solve: aspects which are orthogonal w.r.t. any particular resolution strategy

—e.g. errors management, extensibility via libraries, I/O, etc

• :solve-*: modules which implement a specific resolution strategy

8 CHAPTER 2. BACKGROUND NOTIONS

• :repl and :ide: provide CLI and GUI

The structure of the project can be seen in figure 2.1.

2p-Kt provides a well-grounded technological basis for implementing/experiment-

ing/extending the many solutions proposed in the literature—e.g., abductive infer-

ence, rule induction, probabilistic reasoning and labelled LP.

2.2 Constraint Programming

CP is a paradigm for solvig combinatorial problems where different constraints

are imposed on feasible solutions for different decision variables, each having its own

domain. Constraints are relations among variables which limit the values decision

variables can assume in feasible solutions [25]

2.2.1 Brief History

In artificial intelligence interest in constraint satisfaction developed in two

streams. In some sense a common ancestor of both streams is Ivan Sutherland’s

groundbreaking 1963 MIT Ph.D. thesis, “Sketchpad: A man-machine graphical

communication system” . In one stream, the versatility of constraints led to

applications in a variety of domains, and associated programming languages and

systems. This stream we can call the language stream. In 1964 Wilkes proposed

that algebraic equations be allowed as constraint statements in procedural Algol-like

programming languages, with relaxation used to satisfy the constraints. Around

1967, Elcock developed a declarative language, Absys, based on the manipulation of

equational constraints.

2.2.2 Concepts

There are mainly two types of CP problems: CSP (Constraint Satisfaction

Problem) and COP (Constraint Optimization Problem).

A CSP involves finding solutions to a constraint network, that is, assignments

of values to its variables that satisfy all its constraints. Constraints specify combina-

tions of values that given subsets of variables are allowed to take.

A constraint can be specified extensionally by the list of its satisfying tuples, or

intensionally by a formula that is the characteristic function of the constraint.

2.2. CONSTRAINT PROGRAMMING 9

A COP is basically the same as a CSP but in addition to the aforementioned

constraints there is another one which consists of finding a solution which minimizes

or maximizes a certain function.

2.2.3 Constraint Logic Programming

CLP began as a natural merger of two declarative paradigms: constraint solving

and LP [14].

Viewing the subject rather broadly, CLP can be said to involve the incorporation

of constraints and constraint “solving” methods in a logic-based language. This

characterization suggests the possibility of many interesting languages, based on

different constraints and different logics. However, to this point, work on CLP has

almost exclusively been devoted to languages based on Horn clauses.

Prolog can be said to be a CLP language where the constraints are equations over

the algebra of terms (also called the algebra of finite trees, or the Herbrand domain).

The equations are implicit in the use of unification.

2.2.4 SWI Prolog - CLP libraries

SWI-Prolog is an implementation of the Prolog language which is strong in

education because it is free and portable, but also because of its compatibility with

textbooks and its easy-to-use environment.

SWI-Prolog is used as an embedded language where it serves as a small rule subsystem

in a large application. The syntax and set of built-in predicates is based on the ISO

standard [30].

2.2.4.1 CLP(X) libraries

CLP(X) stands for CLP over the domain X. Plain Prolog can be regarded as

CLP(H), where H stands for Herbrand terms.

SWI Prolog supports:

• CLP(FD) for integers

• CLP(B) for boolean variables

• CLP(Q) for rational numbers

• CLP(R) for floating point numbers

10 CHAPTER 2. BACKGROUND NOTIONS

All constraints contained in these libraries will be deeply explained in chapter 3.

CLP(FD) has two main usages:

• declarative integer arithmetics

• solving combinatorial problems such as planning, scheduling and allocation

tasks

The predicate of this library can be classified as:

• arithmetic constraints

• membership constraints

• enumeration predicates

• combinatorial constraints

• reification predicates

• reflection predicates

Practical usage of these constraints can be found in [29].

CLP(Q) and CLP(R) share basically the same constraints except for bb_inf

constraint which is used to find a minimum in the case of mixed integer programming.

CLP(B) can be used to model and solve combinatorial problems such as veri-

fication, allocation and covering tasks. Benchmarks and usage examples of this

library are available from [28] and [27].

Chapter 3

CLP in 2p-Kt

3.1 Requirements

As described in section 2.1.3, 2P-Kt is an exensible framework with different

mechanisms which could be used to add to the standard Prolog other features; in

this case we deal with CLP.

There are existing libraries for Prolog interpreters which deal with CLP. SWI Prolog

uses different libraries called CLP(X) (where is X is the domain of the variables)

which are very popular and used in the Prolog community. For this reason, different

libraries have been developed which share the same predicates having the same

functor/arity in such a way that for a new 2P-Kt user can be very easy and familiar

to use them.

The main purpose of the following project is to implement CLP libraries in 2P-Kt

having the following requirements:

• the interface of the predicates exposed by the libraries must be as close as

possible to the one used by SWI Prolog for CLP

• there are not strict requirements about how to implement libraries but a good

solution would exploit on existing components in 2P-kt

• the different libraries could contain different predicates wrt SWI Prolog only if

it is not possible to find another solution which is compatible with the current

framework

11

12 CHAPTER 3. CLP IN 2P-KT

3.2 Design

3.2.1 Common aspects

Four different libraries have been realized:

• clp-core for basic functionality of the other libraries

• clpfd for integer variables

• clpqr for rational and real variables

• clpb for boolean variables

clpqr contains basically the predicates of clpq and clpr of SWI Prolog because

there is any distinction between rational and reals in 2P-Kt.

Libraries have been developed in this way to keep separated predicates which affect

variables with different domains. This is useful because each variabile type has own

way to deal with constraints and searching for feasible solutions. Libraries will be

described in the following sections highlighting common and/or different aspects

with respect to the SWI Prolog counterpart.

3.2.2 Constraint Logic Programming over Finite Domains

For a better explaination predicates will be divided in groups as described in

section 2.2.4.1.

3.2.2.1 Arithmetic Constraints

All constraints supported by SWI Prolog are also supported in 2P-Kt; constraints

are the followings:

3.2. DESIGN 13

Constraint Explaination

Expr1 #= Expr2 Expr1 equals Expr2

Expr1 #\= Expr2 Expr1 is not equal to Expr2

Expr1 #>= Expr2 Expr1 is greater than or equal to Expr2

Expr1 #=< Expr2 Expr1 is less than or equal to Expr2

Expr1 #> Expr2 Expr1 is greater than Expr2

Expr1 #< Expr2 Expr1 is less than Expr2

Table 3.1: Arithmetic constraints in clpfd

Expression Explaination

integer Given value

variable Unknown integer

-Expr Unary minus

Expr + Expr Addition

Expr * Expr Multiplication

Expr - Expr Subtraction

Expr ˆ Expr Exponentiation

min(Expr,Expr) Minimum of two expressions

max(Expr,Expr) Maximum of two expressions

Expr mod Expr Modulo induced by floored division

abs(Expr) Absolute value

Expr div Expr Floored integer division

Table 3.2: Arithmetic expressions in clpfd

Expr1 and Expr2 are arithmetic expressions. Expr rem Expr and Expr //

Expr are not supported. rem is modulo induced by truncated division whereas // is

truncated integer division.

3.2.2.2 Membership Constraints

These constraints are used to specify the admissible domains of variables.

The predicates are:

14 CHAPTER 3. CLP IN 2P-KT

• Var in Domain: Var is an element of Domain; Domain is either an integer or

an interval (expressed as Lower..Upper)

• Vars in Domain: The variables in the list Vars are elements of Domain

It is not current supported union of domains as expression for building a domain.

3.2.2.3 Enumeration predicates

These predicates are used to customize the search to find a feasible assignment

of all variables such that all constraints are satisfied.

The predicates are labeling/2 and label/1.

labeling(Options, Vars)

Assign a value to each variable in Vars; Options is a list of options that let exhibit

some control over the search process. Several categories of options exist:

• variable selection strategy: it can be the order in which the variable occurs

(leftmost, it is the default), the leftmost variable with smallest domain (ff),

the variables with smallest domains, the leftmost one participating in most

constraints (ffc), the leftmost variable whose lower bound is the lowest (min)

or the leftmost variable whose upper bound is the highest (max)

• value order: elements of the chosen variable’s domain in ascending order (up,

it is the default) or domain elements in descending order (down)

• branching strategy: For each variable X, a choice is made between X = V

and X #\= V, where V is determined by the value ordering options. This

option is called step, it is the default and the only branching option supported

At most one option of each category can be specified, and an option must not

occur repeatedly.

The order of solutions can be influenced with:

• min(Expr)

• max(Expr)

3.2. DESIGN 15

This generates solutions in ascending/descending order with respect to the

evaluation of the arithmetic expression Expr.

The predicate labeling/2 does not support as options the following branching

strategies:

• enum: For each variable X, a choice is made between X = V_1, X = V_2

etc., for all values V_i of the domain of X. The order is determined by the

value ordering options.

• bisect : For each variable X, a choice is made between X #=< M and X #>

M, where M is the midpoint of the domain of X.

label(Vars)

Equivalent to labeling([], Vars).

3.2.2.4 Global constraints

A global constraint expresses a relation that involves many variables at once.

The implemented constraints are the followings:

• all_distinct(Vars): True iff Vars are pairwise distinct

• sum(Vars, Rel, Expr): The sum of elements of the list Vars is in relation

Rel to Expr. Rel is one of #=, #,̄ #<, #>, #=< or #>=

• scalar_product(Cs, Vs, Rel, Expr): True iff the scalar product of Cs and

Vs is in relation Rel to Expr. Cs is a list of integers, Vs is a list of variables

and integers. Rel is #=, #,̄ #<, #>, #=< or #>=

• lex_chain(Lists): Lists are lexicographically non-decreasing

• tuples_in(Tuples, Relation): True iff all Tuples are elements of Relation.

Each element of the list Tuples is a list of integers or finite domain variables.

Relation is a list of lists of integers

• serialized(Starts, Durations): Describes a set of non-overlapping tasks.

Starts = [S1, ..., Sn], is a list of variables or integers, Durations = [D1, ..., Dn]

is a list of non-negative integers. Constrains Starts and Durations to denote a

set of non-overlapping tasks, i.e.: S_i + D_i =< S_j or S_j + D_j =< S_i

for all 1 =< i < j =< n

16 CHAPTER 3. CLP IN 2P-KT

• element(N, Vs, V): The N-th element of the list of finite domain variables

Vs is V

• global_cardinality(Vs, Pairs): Global Cardinality constraint. Vs is a list

of finite domain variables, Pairs is a list of Key-Num pairs, where Key is an

integer and Num is a finite domain variable. The constraint holds iff each V

in Vs is equal to some key, and for each Key-Num pair in Pairs, the number of

occurrences of Key in Vs is Num

• circuit(Vs): True iff the list Vs of finite domain variables induces a Hamilto-

nian circuit. The k-th element of Vs denotes the successor of node k

• cumulative(Tasks, Options): Schedule with a limited resource. Tasks is a

list of tasks, each of the form task(S_i, D_i, E_i, C_i, T_i). S_i denotes the

start time, D_i the positive duration, E_i the end time, C_i the non-negative

resource consumption, and T_i the task identifier. Each of these arguments

must be a finite domain variable with bounded domain, or an integer. The

constraint holds iff at each time slot during the start and end of each task, the

total resource consumption of all tasks running at that time does not exceed

the global resource limit. Options is a list of options. Currently, the only

supported option is limit(L) which is the global resource limit

• cumulative(Tasks): Like the previous one but with L = 1

• disjoint2(Rectangles): True iff Rectangles are not overlapping. Rectangles is

a list of terms of the form F(X_i, W_i, Y_i, H_i), where F is any functor, and

the arguments are finite domain variables or integers that denote, respectively,

the X coordinate, width, Y coordinate and height of each rectangle.

• chain(Zs, Relation): Zs form a chain with respect to Relation. Zs is a list

of finite domain variables that are a chain with respect to the partial order

Relation, in the order they appear in the list. Relation must be #=, #=<,

#>=, #< or #>

Notes

Wrt global constraints provided by CLP(FD) library of SWI Prolog the follow-

ing aspects are different:

• the index of the predicate circuit/1 starts from 1 and not from 0 for imple-

mentation issues

3.2. DESIGN 17

• the predicate all_different/1 has not been supported because it has the

same usage of all_distinct but it has a weaker propagation which cannot be

simulated

• predicates automaton/3 and automaton/8 have not been implemented

because of the fact that these predicates are rarely and difficult to use

• the predicate global_cardinality/3 can be used but actually it throws an

exception because the Option parameter cannot be supported

3.2.2.5 Reification Predicates

All relational constraints discussed in 3.2.2.1 can be reified. This means that

their truth value is itself turned into a clpfd variable, so that it is possible to reason

about whether a constraint holds or not. These predicates are reifiable themselves.

• #\Q: Q does not hold

• P #<==> Q: P and Q are equivalent

• P #==> Q: P implies Q

• P #<== Q: Q implies P

• P #∧ Q: P and Q hold

• P #∨ Q: P or Q hold

• P #\ Q: Either P holds or Q holds, but not both

• zcompare(Order, A, B): reify an arithmetic comparison of two integers

3.2.2.6 Reflection Predicates

Reflection predicates let obtain, in a well-defined way, information that is

normally internal to this library. Predicates are:

• fd_var(Var): True iff Var is a clpfd variable

• fd_inf(Var, Inf): Inf is the infimum of the current domain of Var

• fd_sup(Var, Sup): Sup is the supremum of the current domain of Var

• fd_size(Var, Size): Reflect the current size of a domain. Size is the number

of elements of the current domain of Var

18 CHAPTER 3. CLP IN 2P-KT

• fd_dom(Var, Dom): Dom is the current domain (see 3.2.2.3) of Var

• fd_degree(Var, Degree): Degree is the number of constraints currently

attached to Var

3.2.3 Constraint Logic Programming over Rationals and Reals

This library is very different from the previous one because variable definitions

and constraints can be stated in the same predicate. The main predicate is {}(Con-

straints) which allows to add the constraints given by Constraints to the constraint

store.

Constraints can be defined using the following grammar:

Figure 3.1: clpqr constraints BNF

All constraints are supported except for <Expression> =

= <Expression> (not equal). This libraries contains also the following predicates:

3.2. DESIGN 19

• satisfy(Vars): Provides for each variable in Vars a feasible assignment

• entailed(Constraint): Succeeds if Constraint is necessarily true within the

current constraint store. This means that adding the negation of the constraint

to the store results in failure

• inf(Expression, Inf): Computes the infimum of Expression within the current

state of the constraint store and returns that infimum in Inf. This predicate

does not change the constraint store

• sup(Expression, Sup): Computes the supremum of Expression within the

current state of the constraint store and returns that supremum in Sup. This

predicate does not change the constraint store

• minimize(Expression): Minimizes Expression within the current constraint

store. This is the same as computing the infimum and equating the expression

to that infimum

• maximize(Expression): Maximizes Expression within the current constraint

store. This is the same as computing the supremum and equating the expression

to that supremum

• bb_inf(Ints, Expression, Inf, Vertex, Eps): It computes the infimum of

Expression within the current constraint store, with the additional constraint

that in that infimum, all variables in Ints have integral values. Vertex will

contain the values of Ints in the infimum. Eps denotes how much a value may

differ from an integer to be considered an integer

• bb_inf(Ints, Expression, Inf, Vertex): it behaves as the previous one but

not use an error margin

• bb_inf(Ints, Expression, Inf): as the previous one but without returning

the values of the integers

• dump(Target, Newvars, CodedAnswer): Returns the constraints on

Target in the list CodedAnswer where all variables of Target have been replaced

by NewVars. This operation does not change the constraint store

Notes

Eps of the predicate bb_inf/5 cannot be fully supported, the only admissible

value is 0.

20 CHAPTER 3. CLP IN 2P-KT

Expression Explaination

0 false

1 true

variable unknown truth value

Expr logical NOT

Expr + Expr logical OR

Expr * Expr logical AND

Expr # Expr exclusive OR

Expr =:= Expr equality

Expr =\= Expr disequality (same as #)

Expr =< Expr less or equal (implication)

Expr >= Expr greater or equal

Expr < Expr less than

Expr > Expr greater than

+(Exprs) n-fold disjunction

*(Exprs) n-fold conjunction

Table 3.3: Admissible boolean expressions in clpb

3.2.4 Constraint Logic Programming over Boolean Variables

All predicates of this library are based on the concept of boolean expression. A

boolean expression is one of:

Supported predicates are:

• sat(Expr): True iff the Boolean expression Expr is satisfiable

• taut(Expr, T): If Expr is a tautology with respect to the posted constraints,

succeeds with T = 1. If Expr cannot be satisfied, succeeds with T = 0.

Otherwise, it fails

• labeling(Vs): Assigns truth values to the variables Vs such that all constraints

are satisfied

• sat_count(Expr, Count): Count the number of admissible assignments.

Count is the number of different assignments of truth values to the variables in

the Boolean expression Expr, such that Expr is true and all posted constraints

are satisfiable

3.3. IMPLEMENTATION 21

• weighted_maximum(Weights, Vs, Maximum): Enumerate weighted

optima over admissible assignments. Maximize a linear objective function over

Boolean variables Vs with integer coefficients Weights. This predicate assigns

0 and 1 to the variables in Vs such that all stated constraints are satisfied, and

Maximum is the maximum of sum(Weighti∗Vi) over all admissible assignments

• random_labeling(Seed, Vs): Select a single random solution. An admissible

assignment of truth values to the Boolean variables in Vs is chosen in such a

way that each admissible assignment is equally likely. Seed is an integer, used

as the initial seed for the random number generator

3.3 Implementation

The aforementioned libraries have been implemented in 2P-Kt using the following

interfaces and classes:

• PrimitiveWrapper: it is an abstract class which allows to define a predicate

which is not unified as usual but it executes some code producing some side

effects on the actual substitution. This class reifies the generator concept

described in [6] where the solver can be seen as a stream consumer allowing

it to get a stream of solutions interacting with a primitive mechanism (the

generator) which can be seen by the solver as an ordinary build-in predicate

denoted by its own signature and arity. The PrimitiveWrapper has been used

to define most of predicates contained in the libraries.

• RuleWrapper: it is an abstract class which allows to define a Prolog Rule.

This class is useful to avoid repeated code because it allows to define some

predicates in terms of other existing ones.

• Library: it is an interface which has been implemented to group together

different predicates implementations which can be either PrimitiveWrapper or

RuleWrapper

• durable CustomData: it is a map from String to Any which allows to

store data during the resolution process. It has been used to store the model

containing all variables and constraints of the problem

• DefaultTermVisitor: this abstract class is used to realize the visitor pattern

[12] and it has been extensively used for different tasks such as evaluation of

22 CHAPTER 3. CLP IN 2P-KT

expressions, generation of arithmetic expressions and all other tasks related to

perform different operations wrt the type of the term

The actual implementation of all constraints have been realized exploiting on

the Choco Library [24]. This library has been chosen for different reasons:

• it is written in Java and can be easily used with Kotlin language

• wrt other similar libraries (e.g. OR Tools [22] or JaCoP [16]) it simplifies the

composition of expressions for the creation of new variables or constraints

• well documented and with an active community to get support in case of

doubts or problems

Choco Library cannot be directly mapped with SWI Prolog CLP(X) libraries

because these libraries belong to different paradigms. For this reason the mapping

was not immediate but sometimes different approaches have been used to solve these

issues.

Following, the main mapping choices grouped by Library

3.3.1 Constraint Logic Programming over Finite Domains

The Model class of Choco has been used to keep all information about variables

and constraints.

in/2 and ins/2 predicates have been mapped to the method

intVar(name,lower_bound,upper_bound) which allows to store the different

variables.

Each relational constraint can be added to the model using decompose().post()

applied to the constraint which belongs to the class ReExpression whereas the

different arguments of these constraints are arithmetical expressions belonging

to the class ArExpression Global constraints have been mapped using differ-

ent methods provided by the Model class, they are summarized in the table at

the end of this section. enumeration predicates have been implemented using

Search.intVarSearch which allows to customize the searching process.

reification predicates have been implemented converting relational constraints to

boolean variables and combining them using LogOp logical operators. reflection

predicates have been mapped using different properties of IntVar which allow

to inspect different aspects of the variables such as domain, number of constraints,

etc. . .

3.3. IMPLEMENTATION 23

SWI Prolog Choco Library

all_distinct(Vars) allDifferent(Vars)

sum(Vars,Op,Result) sum(Vars,Op,Result)

scalar_product(Coeffs, Vars, Op, Result) scalar(Vars, Coeffs, Op, Result)

lex_chain([List1, List2]) lexLessEq(List1, List2)

tuples_in([Tuple], Relation) table(Tuple, Relation)

serialized(Starts, Durations) diffN(Starts, Zeros, Durations, Ones)

element(N, Vs, V) element(V, Vs, N)

global_cardinality(Vs, Pairs) global_cardinality(Vs, Values, Occurrences)

circuit(Variables) circuit(Variables)

cumulative(Tasks, Options) cumulative(Tasks, Capacities, GlobalCapacity)

disjoint2(Rectangles) diffN(XCoordinates, YCoordinates, Lengths, Heights)

chain(Variables, Relation) binary relational constraint for each pair of variables

Table 3.4: Global constraints mapping between CLP(FD) and Choco Library

3.3.2 Constraint Logic Programming over Rationals and Reals

The constraint is used both for variable creation using

realVar(name,lowerBound,upperBound,precision) and for imposing different

constraints which are encoded using continuous arithmetic and relational expressions

(CArExpression and CReExpression) in a similar way discussed for finite domain

variables.

Satisfaction and optimization problem are implemented as discussed for finite domain

variables using only the default configuration provided by SWI Prolog because

differently from Choco, SWI Prolog does not allow to customize the searching

strategies.

Mixed Integer Programming predicates have been mapped using some additional

variables to constraint real variables to assume integer values.

entailed/1 predicate has been implemented exploiting on isSatisfied property of

the Constraint interface.

dump/3 has been implemented using a DefaultTermVisitor which allows to

replace variables in different constraints.

3.3.3 Constraint Logic Programming over Boolean Variables

The common mapping strategy behind all clpb predicates is the following:

• add new variables to the model

24 CHAPTER 3. CLP IN 2P-KT

• store constraint to the model

• check whether the particular condition (e.g satisfiability or tautology) is true

on the current model

3.4 Case study

The aforementioned clpfd library has been used to realize a real case study

called "SchoolTimetable". This case study involves both Multi-Agent systems and

Constraint Programming technologies.

Multi-Agent Systems (MAS) is an extension of the agent technology where a group

of loosely connected autonomous agents act in an environment to achieve a common

goal. This is done either by cooperating or competing, sharing or not sharing

knowledge with each other [21]. Agent-oriented programming is a paradigm which is

based on the concept of software agents. Several definitions have been provided, one

of the most used is described in [31] and claims that an agent is a computer system

that is situated in some environment, and that is capable of autonomous action in

this environment in order to meet its design objectives.

The problem consists of finding a school timetable for each professor of a school such

that different constraints related to different aspects of the problem are respected,

and trying to satisfy all preferences of each professor as much as possible.

Italian schools have a person (usually a professor) who is responsible for the creation

of an overall timetable where for each day of the week and for each hour, a professor

must be assigned to a class according to the hours that must spend in each class as

described by school regulation. This task is difficult and time-demanding because

it is subjected to different constraints related to professors and classes where they

teach. Sometimes it can also happen that a professor asks for a lesson change due

to own commitments or needs and this entails finding a lesson change which keeps

still valid the aforementioned constraints.

More in details the requirements are the followings:

• There is a person, responsible for the creation of the timetable of each professor

(time-scheduler), who receives from school direction all information to perform

the aforementioned task

3.4. CASE STUDY 25

• After the creation of timetables, the time-scheduler must send to each professor

the corresponding timetable

• Each professor must spend exactly in each class a number of hours described

by the school regulation according to the number and type of class where the

teaching happens

• Each professor must have a free day during the school week

• In the same class cannot be more than one professor per hour (this requirement

has been imposed to simplify particular cases, e.g. laboratories, where two

professor teach in the same class)

• Each professor can have own preferences related to the lessons in which he/she

would rather not teach

• Each professor can begin a negotiation trying to satisfy own preferences,

mediated by the time-scheduler

3.4.1 Implementation

The system has been implemented using a MAS framework called Jade [2]. Jade

(Java Agent DEvelopment framework) is a MAS framework developed in Java which

supports the notion of agent. It has been used to simulate the time-scheduler and

the professors as agents which interact in the same environment.

To implement the CP, new features have been added to clpfd library which are not

supported in SWI Prolog:

• all_distinct_except_0: a predicate which states that all variables must be

different except for 0 which can occur with repetitions

• tuples_in with reification: reification operators supported only relational

predicates or reified predicate themselves. Now this predicate is also suported

3.4.2 Design

Several design choices have been taken and will be explained according to the

kind of paradigm they affect

3.4.2.1 Multi-Agent Systems (MAS)

There are two types of agents: TimeScheduler and Professor.

TimeScheduler agent has in its own state all information related to the amount of

26 CHAPTER 3. CLP IN 2P-KT

hours each professor must spend in each class and knows the Agent Identifier (AID)

of each Professor agent. Moreover, it uses the Directory Facilitator (DF) agent to

register its own service of negotiation mediator.

The TimesScheduler is responsible for the following tasks:

• creation of timetables

• communication of timetables to each professor

• mediation of negotiation among professors for the satisfaction of their prefer-

ences

These tasks are accomplished with the following Behaviors:

• TimetableBehaviour: it produces the different timetables, save and send

each of them to the corresponding professor

• WaitProposalBehavior: it waits for a cfp message from a professor to begin

a negotiation

• MediationBehaviour: it mediates negotiation among professors for prefer-

ences satisfaction

Professor agent is an abstract class which is used to keep a common architecture

for all professors which differ only for their preferences.

Professor agents perform the following tasks:

• receive the timetable

• try to satisfy own preferences

• decide whether to accept a lesson change or not

In order to do these tasks they have the following Behaviours:

• TimetableBehaviour: it receives the timetable and save it

• PreferenceBehaviour: for a specific number of times it tries to satisfy

unsatisfied preferences

• NegotiationBehaviour: it starts a negotiation for a specific unsatisfied

preference

• WaitProposalBehavior: it waits for a request message from the timesched-

uler corresponding to a change proposal and manages it with a CandidateBe-

haviour

3.4. CASE STUDY 27

• CandidateBehaviour: it replies to the proposal of a specific lesson change

Professor agents, after receiving the timetable, register the classes where they

teach as services interacting with the DF agent. This is done because when the

Timescheduler agent will receive a lesson change request, it will look for all

professors who teach in the same class where the proposed change happens.

Another important design choice is related to the following aspect: when a professor

asks for a lesson change, it must be sure that before the end of the negotiation, the

current lesson cannot be available to other incoming requests. To do this, in the

NegotiationBehaviour the current lesson is added to a set of locked lessons. In

this way if another professors ask him/her to change this lesson, the request will not

be able to be satisfied.

3.4.2.2 Communication among agents

Figure 3.2: Sequence Diagram of the interaction among agents

The interaction among time-scheduler and professors can be explained as follows

(as shown in figure 3.2):

when a professor wants to change an own lesson in order to satisfy a preference, a

call-for-proposal (cfp) message is sent to the time-scheduler to begin the negotiation.

The time-scheduler will retrieve the list of all professors who teach in the same class

of the proposer’s lesson. To have a reasonable change it is also important to consider

that for each candidate professor and for each candidate lesson:

• the proposer must be free during a candidate lesson

• the candidate professor must be free during the lesson the time-scheduler wants

to propose.

28 CHAPTER 3. CLP IN 2P-KT

• the proposer’s lesson cannot be in the free day of the candidate professor and

the candidate lesson cannot be in the free day of the proposer professor

Following these criteria, the time-scheduler will realize a list of pair professor-lesson

and will try to satisfy the proposer’s request with one of them. The time-scheduler

sends to the candidate professor a proposal and this proposal can be accepted

according to two criteria:

• the proposed lesson is not one of own preferences

• the lesson to give must not be in the locked preferences

If these criteria are met, the candidate professor replies with an agree message other-

wise refuses. If the reply message contains agree as performative, the time-scheduler

communicates to the proposer the possible change. The proposer will accept or

reject according to the fact that the lesson change does not worsen own preferences.

According to the last message received from the proposer, the time-scheduler will

send to the candidate, who previously accepted the change, a confirm or disconfirm

message. If all possible negotiations fail, the time-scheduler will send to the proposer

a refuse message.

Ontologies

As described in [2] the content of a message is either a string or a raw sequence

of bytes. In realistic case, like in this one, agents need to communicate complex

information. When representing complex information, it is necessary to adopt a

well-defined syntax so that the content of a message can be parsed by the receiver to

extract each specific piece of information. According to FIPA terminology this syntax

is known as a content language. FIPA does not mandate a specific content language

but defines and recommends the SL language to be used when communicating with

the AMS and DF.

For this reason the SL language is used as content language for all messages involving

the time-scheduler and the professors. The ontology shared by all agents consists of

four concepts and three predicates. The different elements are described with SL

syntax as follows:

Concepts

(Lesson : hour⟨hour⟩ : day⟨day⟩)

3.4. CASE STUDY 29

(SchoolClass : year⟨year⟩ : letter⟨letter⟩)

(Teaching : lesson⟨hour⟩ : schoolClass⟨class⟩)

(TimetableConcept : teachings⟨list of teachings⟩)

Predicates

(UpdateT imetable : timetable⟨timetable of an agent⟩)

(Change : lessonChange⟨lesson related to a change⟩)

(Substitution : proposedLesson⟨proposer′slesson⟩ : currentLesson⟨candidate′slesson⟩)

TimetableConcept is used to encode as content message the timetable of

each professor stored as an object of the class Timetable. The reason behind two

different classes is due to the fact that Timetable uses a matrix to store information

about lessons and it is faster to retrieve and add elements compared to the class

TimetableConcept. On the other hand SL language does not support the matrix

concept and this is why a concept modelled as a list of teachings is needed.

3.4.2.3 Constraint Programming (CP)

In the following part it is provided a mathematical formulation of the model

and the corresponding code in Prolog. The model should be generated dynamically

according to the single instance data but to speed up the development process, the

current version of this project considers a specific instance of the problem.

3.4.2.4 Data provided by the problem

Days of the school week

numDays ∈ {1..6}

Hours for each school day

numHours ∈ {1..24}

Number of different professors

numProfessors ∈ N+

Number of different classes

numClasses ∈ N+

30 CHAPTER 3. CLP IN 2P-KT

Function which assigns for each professor and each class the number of hours:

∀i ∈ {1..numProfessors}

hoursi : {1..numClasses} → {0..(numHours ∗ numDays)}

Domain of variables

∀i ∈ {1..numProfessors}, j ∈ {1..numHours}, k ∈ {1..numDays}

PROLOG

Pijk in 0..numClasses

NOTE: 0 is used as joker value to state no class

3.4.2.5 Constraints

Each Professor must teach for a specified number of hours in each

class:

∀i ∈ {1..numProfessors}

PROLOG

global_cardinality([Pi∗∗], [1−hoursi(1), 2−hoursi(2), .., numClass−hoursi(numClass)])

NOTE: the number of same values assigned to professor’s variables must be equals

to the number of hours the professor must spend in that class.

[Pi∗∗] means the list of variables associated to professor i

In the same day and hour cannot be more than one professor in each

class

∀j ∈ {1..numHours}, k ∈ {1..numDays}

PROLOG

all_distinct_except_0([P∗jk])

NOTE: [P∗jk] is the list of variables associated to all professors having the same

day and hour.

Each Professor must have a free day

∀i ∈ {1..numProfessors}

3.4. CASE STUDY 31

PROLOG

tuples_in([Pi∗1], [[0..0]])∨tuples_in([Pi∗2], [[0..0]])∨..tuples_in([Pi∗(numDays)], [[0..0]])

NOTE: [Pi∗1] is the list of all variables of professor i at day 1 for all hours.

3.4.2.6 Performance

The solution of the CP model requires a lot of time to be computed because

of the huge amount of variables and constraints imposed on them. Therefore a

DummyBehaviour has been realized to simulate the creation of the professors’

timetable and then each timetable is sent to the corresponding professor.

Chapter 4

Labelled Prolog

Nowadays pervasive systems are a challenge which requires suitable models

and technologies to support distributed situated intelligence. LP can be used as

the core of such models and technologies thanks to its declarative interpretation

and inferential capabilities but, it is unsuitable to capture different domain-specific

computational models. For this reason, LP needs to be extended delegating other

aspects, such as situated computations, to other languages, or, to other levels of

computation [4].

In the following chapter two different approaches will be presented: Labelled Variables

in Logic Programming (LVLP) and Labelled Terms in Logic Programming (LTLP).

LVLP consists of enabling different computational models adding information (called

labels) to variables whereas LTLP extends the label concept to all possible kind of

terms in a logic program.

Both LP extensions have been implemented for the Prolog language. This first one

has been described in [4] whereas the second one will be explained more in details in

further section 4.2.

4.1 Model

4.1.1 Labelled Variables

Let C be the set of constants, with c1, c2 ∈ C being two generic constants. Let

V be the set of variables, with v1, v2 ∈ V being two generic variables. Let F be the

set of function symbols, with f1, f2 ∈ F being two generic function symbols; each f

∈ F is associated to an arity ar(f) > 0, stating the number of function arguments.

33

34 CHAPTER 4. LABELLED PROLOG

Let T be the set of terms, with t1, t2 ∈ T being two generic terms. Terms can be

either simple, a constant (e.g., c1) and a variable (e.g., v2) are both simple terms, or

compound, a functor of arity n applied to n terms (e.g., f1(c2, v1)) is a compound

term. A term is said ground if it does not contain variables Let H denote the set of

ground terms, also known as the Herbrand universe. A model for LVLP is defined

as a triple 〈B, fL, fC〉, where

• B = {β1, ..., βn} is the set of basic labels, the basic entities of the domain of

labels

• L ⊆ P(B) is the set of labels, where each label l ∈ L is a subset of B

• fL : L × L → L is the (label-)combining function computing a new label from

two given ones

• fC : H × L → true, false is the compatibility function, assessing the compati-

bility between a ground term and a label when interpreted in the domain of

labels

• a labelled variable is a pair 〈v, l〉 associating label l ∈ L to variable v ∈ V

• a labelling is a set of labelled variables

An LVLP program is a collection of LVLP rules of the form

Head : −Labelling,Body.

to be read as “Head if Body given Labelling”. There, Head is an atomic for-

mula, Labelling is the list of labelled variables in the clause, and Body is a list of

atomic formulas. An atomic formula has the form p(t1, ..., tn) where p is a pred-

icate symbol and ti are terms. Atom p(t1, ..., tn) is said ground if t1, ..., tn are ground.

The unification between terms happens as described in the following table:

4.1. MODEL 35

co
ns

ta
nt

c 2
va

ri
ab

le
v 2

la
be

lle
d

va
ri

ab
le

⟨v
2
,ℓ

2
⟩

co
m

po
un

d
te

rm
s 2

co
ns

ta
nt

if
c 1

=
c 2

tr
u
e,
{v

2
/
c 1
}

if
f
C
(c

1
,ℓ

2
)
=

tr
u
e

fa
ls
e

c 1
th

en
tr
u
e

th
en

tr
u
e,
{v

2
/
c 1
},

ℓ 2

el
se

fa
ls
e

el
se

fa
ls
e

va
ri

ab
le

tr
u
e,
{v

1
/
c 2
}

tr
u
e,
{v

1
/
v
2
}

tr
u
e,
{v

1
/
v
2
},

ℓ 2
if
v
1

do
es

no
t

oc
cu

r
in

s 2

v 1
th

en
tr
u
e,
{v

1
/
s 2

}
el

se
fa
ls
e

la
be

lle
d

if
f
C
(c

2
,ℓ

1
)
=

tr
u
e

tr
u
e,
{v

1
/
v
2
},

ℓ 1
if
f
L
(ℓ

1
,ℓ

2
)
̸=

∅
if
v
1

do
es

no
t

oc
cu

r
in

s 2
,
an

d
va

ri
ab

le
th

en
tr
u
e,
{v

1
/
c 2
},

ℓ 1
th

en
tr
u
e,
{v

1
/
v
2
},

f
L
(ℓ

1
,ℓ

2
)

f
L
(ℓ

1
,ℓ

′ 1
,.
..
,ℓ

′ n
)
̸=

∅
⟨v

1
,ℓ

1
⟩

el
se

fa
ls
e

el
se

fa
ls
e

w
he

re
ℓ′ 1
,.
..
ℓ′ n

ar
e

th
e

la
be

ls
in

s 2

th
en

tr
u
e,
{v

1
/
s 2

},
f
L
(ℓ

1
,ℓ

′ 1
,.
..
,ℓ

′ n
)

el
se

fa
ls
e

co
m

po
un

d
fa
ls
e

if
v
2

do
es

no
t

oc
cu

r
in

s 1
if
v
2

do
es

no
t

oc
cu

r
in

s 1
,
an

d
if
s 1

,s
2

ha
ve

sa
m

e
fu

nc
to

r
/

ar
it
y,

an
d

te
rm

th
en

tr
u
e,
{v

2
/
s 1

}
f
L
(ℓ

2
,ℓ

′ 1
,.
..
,,
ℓ′ n

)
̸=

∅
th

ei
r

ar
gu

m
en

ts
(r

ec
ur

si
ve

ly
)

un
ify

s 1
el

se
fa
ls
e

w
he

re
ℓ′ 1
,.
..
ℓ′ n

ar
e

th
e

la
be

ls
in

s 1
th

en
tr
u
e

th
en

tr
u
e,
{v

2
/
s 1

},
f
L
(ℓ

2
,ℓ

′ 1
,.
..
,,
ℓ′ n

),
el

se
fa
ls
e

el
se

fa
ls
e

T
ab

le
4.

1:
U

ni
fic

at
io

n
ru

le
s

in
LV

LP
,a

do
pt

in
g

st
an

da
rd

LP
un

ifi
ca

ti
on

ru
le

s
an

d
re

pr
es

en
ta

ti
on

36 CHAPTER 4. LABELLED PROLOG

The only case to be added to the standard unification table is represented by

labelled variables. There, given two generic LVLP terms, the unification result is

represented by the extended tuple

(true/false, θ, l)

where true/false represents the existence of an answer, ジ is the most general unifier

mgu, and l is the new label associated to the unified variables defined by the (label-

)combining function fL It is important to define a concept which allows to check

whether a label assigned to a variable is compatible with its substitution or not. To

do this, the following compatibility function fC is defined:

fC : H × L → {true, false}

In particular, given a a ground term t ∈ H and label l ∈ L:

fC(t, ℓ) =


true if there exists at least one element of the domain

of labels which the interpretations of t and ℓ both

refer to

false otherwise

4.1.2 Labelled Terms

Labelled Terms can be seen as a generalization of the previous approach where

it is possible to apply a label not only to a variable but to each kind of term. The

main idea of this approach consists of using two functions:

• shouldUnify(term1, labels1, term2, labels2): this function is used to

check whether, according to labels1 and labels2, it is possible to unify term1

and term2. This function is very similar to fL used in the unification process

to allow the substitution of a variable when fL(labels1, labels2) ̸= ∅

• merge(term1, labels1, term2, labels2): this function is used to generate

new labels after unifying terms term1 and term2. It has the same meaning of

fL(labels1, labels2) but it is applied to every kind of term

Unification between terms happens as described by the following table:

4.1. MODEL 37

co
ns

ta
nt

c 2
la

be
lle

d
co

ns
ta

nt
⟨c

2
,ℓ

2
⟩

va
ri

ab
le

v 2
la

be
lle

d
va

ri
ab

le
⟨v

2
,ℓ

2
⟩

co
m

po
un

d
te

rm
s 2

la
be

lle
d

co
m

po
un

d
te

rm
⟨s

2
,ℓ

2
⟩

co
ns

ta
nt

if
c 1

=
c 2

∧
sh

ou
ld

U
ni

fy
(c

1
,∅

,c
2
,∅

)
if
c 1

=
c 2

∧
sh

ou
ld

U
ni

fy
(c

1
,∅

,c
2
,ℓ
2
)

if
sh

ou
ld

U
ni

fy
(c

1
,∅

,v
2
,∅

)
if

sh
ou

ld
U

ni
fy

(c
1
,∅

,v
2
,ℓ
2
)

c 1
th

en
tr
u
e,

m
er

ge
(c

1
,∅

,c
2
,∅

)
th

en
tr
u
e,

m
er

ge
(c

1
,∅

,c
2
,ℓ
2
)

th
en

v
2
/
c 1

,
m

er
ge

(c
1
,∅

,v
2
,∅

)
th

en
v
2
/
c 1

,
m

er
ge

(c
1
,∅

,v
2
,ℓ
2
)

fa
ls
e

fa
ls
e

el
se

fa
ls
e

el
se

fa
ls
e

el
se

fa
ls
e

el
se

fa
ls
e

la
be

lle
d

co
ns

ta
nt

if
c 1

=
c 2

∧
sh

ou
ld

U
ni

fy
(c

1
,ℓ
1
,c

2
,ℓ
2
)

if
sh

ou
ld

U
ni

fy
(c

1
,ℓ
1
,v

2
,∅

)
if

sh
ou

ld
U

ni
fy

(c
1
,ℓ
1
,v

2
,ℓ
2
)

⟨c
1
,ℓ

1
⟩

th
en

tr
u
e,

m
er

ge
(c

1
,ℓ
1
,c

2
,ℓ
2
)

th
en

v
2
/
c 1

,
m

er
ge

(c
1
,ℓ
1
,v

2
,∅

)
th

en
v
2
/
c 1

,
m

er
ge

(c
1
,ℓ
1
,v

2
,ℓ
2
)

fa
ls
e

fa
ls
e

el
se

fa
ls
e

el
se

fa
ls
e

el
se

fa
ls
e

va
ri

ab
le

if
sh

ou
ld

U
ni

fy
(v

1
,∅

,v
2
,∅

)
if

sh
ou

ld
U

ni
fy

(v
1
,∅

,v
2
,ℓ
2
)

if
v
1

do
es

no
t

oc
cu

r
in

s 2
if
v
1

do
es

no
t

oc
cu

r
in

s 2

v 1
th

en
v
1
/
v
2
,
m

er
ge

(v
1
,∅

,v
2
,∅

)
th

en
v
1
/
v
2
,
m

er
ge

(v
1
,∅

,v
2
,ℓ
2
)

∧
sh

ou
ld

U
ni

fy
(v

1
,∅

,s
2
,∅

)
∧

sh
ou

ld
U

ni
fy

(v
1
,∅

,s
2
,ℓ
2
)

el
se

fa
ls
e

el
se

fa
ls
e

th
en

v
1
/
s 2

,
m

er
ge

(v
1
,∅

,s
2
,∅

)
th

en
v
1
/
s 2

,
m

er
ge

(v
1
,∅

,s
2
,ℓ
2
)

el
se

fa
ls
e

el
se

fa
ls
e

la
be

lle
d

va
ri

ab
le

if
sh

ou
ld

U
ni

fy
(v

1
,ℓ
1
,v

2
,ℓ
2
)

if
v
1

do
es

no
t

oc
cu

r
in

s 2
if
v
1

do
es

no
t

oc
cu

r
in

s 2

⟨v
1
,ℓ

1
⟩

th
en

v
1
/
v
2
,
m

er
ge

(v
1
,ℓ
1
,v

2
,ℓ
2
)

∧
sh

ou
ld

U
ni

fy
(v

1
,ℓ
1
,s

2
,∅

)
∧

sh
ou

ld
U

ni
fy

(v
1
,ℓ
1
,s

2
,ℓ
2
)

el
se

fa
ls
e

th
en

v
1
/
s 2

,
m

er
ge

(v
1
,ℓ
1
,s

2
,∅

)
th

en
v
1
/
s 2

,
m

er
ge

(v
1
,ℓ
1
,s

2
,ℓ
2
)

el
se

fa
ls
e

el
se

fa
ls
e

co
m

po
un

d
te

rm
if
s 1

,
s 2

ha
ve

th
e

sa
m

e
fu

nc
to

r
/

ar
it
y
∧

if
s 1

,
s 2

ha
ve

th
e

sa
m

e
fu

nc
to

r
/

ar
it
y
∧

s 1
sh

ou
ld

U
ni

fy
(s

1
,∅

,s
2
,∅

)
∧

sh
ou

ld
U

ni
fy

(s
1
,∅

,s
2
,ℓ
2
)
∧

ar
gu

m
en

ts
re

cu
rs

iv
el

y
un

ify
th

en
m

er
ge

(s
1
,∅

,s
2
,∅

)
ar

gu
m

en
ts

re
cu

rs
iv

el
y

un
ify

th
en

m
er

ge
(s

1
,∅

,s
2
,ℓ
2
)

el
se

fa
ls
e

el
se

fa
ls
e

la
be

lle
d

co
m

po
un

d
te

rm
if
s 1

,
s 2

ha
ve

th
e

sa
m

e
fu

nc
to

r
/

ar
it
y
∧

⟨s
1
,ℓ

1
⟩

sh
ou

ld
U

ni
fy

(s
1
,ℓ
1
,s

2
,ℓ
2
)
∧

ar
gu

m
en

ts
re

cu
rs

iv
el

y
un

ify
th

en
m

er
ge

(s
1
,ℓ
1
,s

2
,ℓ
2
)

el
se

fa
ls
e

T
ab

le
4.

2:
U

ni
fic

at
io

n
ru

le
s

in
LT

LP
,a

do
pt

in
g

st
an

da
rd

LP
un

ifi
ca

ti
on

ru
le

s
an

d
re

pr
es

en
ta

ti
on

38 CHAPTER 4. LABELLED PROLOG

A specific issue of this generalization of labels to all kind of terms consists of

considering the compatibility between the labels of a predicate and the labels of its

arguments.

This is reasonable because a predicate expresses a relationship among objects;

therefore the information (labels) associated to these objects must be meaningful

with respect to the information associated to their relation.

For this reason the function stillValid(struct) has been added to the resolution

process to check the compatibility of the aforementioned labels.

4.2 Implementation

Implementation has been realized exploiting on 2P-Kt framework (previously

described in 2.1.3). Different choices have been made trying to extend as much as

possible existing components provided by this framework. Choices will be described

according to the aspects they affect.

4.2.1 Labels

Labels have been attached to each term using a map from String to Any called

tags. Tags are a machanism which can be realized by all classes which implements

Taggable interface. Term implements this interface therefore this map is used to

associate to a tag (corresponding to labels concept) to a set of Label where a Label

can be seen as a generic class which implements the Label interface. Some examples

have been provided where labels are represented as strings.

Adding labels to a term required also to change how the new term is formatted.

For this reason LabelAwareTermFormatter has been created to properly format

labelled terms. Each label is written preceeded by ’@’ symbol and all labels of a

term are surrounded bu angular brackets.

For example the struct f(a,B) having a associated with labels x,y is formatted as:

f(a < @x,@y >,B)

4.2.2 Unificator

Unificator interface has been extended to support the functions described in

4.1.2. AbstractUnificator class has been modified in order to allow the customiza-

tion of the final substitution. In the current scenario the substitution contains also

all labels associated to terms that are compared during the generation of the MGU.

4.2. IMPLEMENTATION 39

The class AbstractLabelledUnificator has been created to allow the user to define

own callback functions (shouldUnify and merge) in order to deal with the specific

scenario which requires specific kinds of labels and unification rules.

4.2.3 Solver

LabelledPrologSolver is a paticular Solver and deals with labels using a

Unificator which implements the interface LabelledUnificator. The consistency

among the labels of a predicate and the labels of its arguments is checked using

hijackStateTransition which is a method used to intercept the transition between

states in the Prolog Finite State Machine (FSM). In this case each time a Rule or

a Primitive has been executed and the next state is the Goal Selection, stillValid

method is called to check whether labels are still valid or not and in the latter case

the next state is the Backtracking state whose main purpose is to choose a different

rules or primitive to execute.

stillValid is a callback which is defined by the user according to the specific scenario.

Chapter 5

CLP as Labelled Prolog

Labelled Prolog is a monotonic extension of Prolog which allows to deal with

specific domains without the need to use specific languages or libraries to deal with

them.

There are different variants and extensions of logic programming which include:

• abductive logic programming [15]

• metalogic programming [1]

• constraint logic programming [14]

• concurrent logic programming [7]

• probabilistic logic programming [20]

With Labelled Prolog discussed in the previous chapter, all these extensions and

variants could be framed in a single environment allowing to reduce the amount

of languages to a single one (Labelled Prolog) and focusing more on how to adapt

labels and unification mechanisms to the specific domain needs.

In the current chapter is shown how to adapt CLP to the labels mechanism using

the following example.

Let’s assume to have a wardrobe where each dress can be described with a name

and an rgb color. In addition to it, each dress can contain labels which correspond

to seasons which the dress can be worn in.

We want to look for a dress whose seasons are at least seasons we are providing

in our query. Moreover, we want also constraint the solution in such a way that

the color of the dress must have an euclidean distance wrt the target dress less or

41

42 CHAPTER 5. CLP AS LABELLED PROLOG

equals to the its rgb color using a threshold which is provided by the user. In this

case the reference color and the threshold are labels attached to the color of the dress.

Let’s assume to have the following Knowledge Base:
dress(sweater ,rgb(255, 240, 245))<@winter ,@fall > .
dress(t-shirt ,rgb(255, 222, 173))<@summer ,@spring >.
dress(t-shirt ,rgb(119, 136, 153))<@summer ,@spring >.
dress(jeans , rgb(188, 143, 143))<@winter ,@fall ,@summer ,@spring >.

A possible Query could be:
?-dress(Name ,Color<@rgb (255 ,239 ,213),@30 >)<@winter >.

The callback functions mentioned in chapter 4 can be defined as follows:

• shouldUnify : checks whether the labels of the dress struct in the goal are a

subset of the labels of the possible dress and checks also whether the euclidean

distance between the reference color and the current one is less or equals to

the threshold provided always as label

• merge: generates for the dress struct the subset of seasons and for the color

the reference one

• stillValid : returns always true because reasonably there is no relation between

the color of a dress and the when it is used

In the previous example the final substitution would be {Name/sweater, Col-

or/rgb(255, 240, 245)} because the first dress is the only one having winter and fall

as seasons and a distance wrt the reference color equals to 7.25.

Chapter 6

Conclusions and future work

Different results have been achieved with the current thesis and they can be

described according to the area they affect.

From the CLP perspective we have endowed the 2P-Kt interpreter with CLP

functionalities. This means that all users of this interpreter can be able now to

write programs involving CP using a familiar group of predicates already available

which facilitate to switch to these CLP libraries. An interesting evolution of CLP in

2P-Kt could be to allow CLP to be supported with different CP libraries. Currently

only Choco Library is supported but it could be useful to develop a framework

with a number of predefined predicates which can be plugged to a specific library

implementation in a similar way supported by Minizinc [19].

From a theoretical perspective CLP has allowed to reason more about specific

needs of a domain and to generalize the Labelled Variables approach to every pos-

sible kind of term changing the approach to a generic problem which involves LP

(in particular Prolog) delegating the specific requirements and needs of a domain to

the label mechanism. This approach points out be successful because it requires the

user to specify only functions which take into account the specific scenario without

caring about the overall resolution strategy.

This could be seen as a starting point of a research inolving how to adapt existing

variations and extensions of LP to this new mechanism trying to understand also

mathematical properties which can be entailed by it.

In the currrent project we have dealt with more the ideas and implementation of this

new mechanism instead of describing more in the details the semantic of the language.

Therefore, it could be interesting also to delve this aspect from a mathematical point

43

44 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

of view in such a way to have a more rigorous definition of this framework.

Prolog has been the main programming language used to describe this new ap-

proach but reasonably it could be possible to use it for a generic language which,

similarly to Prolog, describes the problem with a variant of First-Order Logic (FOL).

45

Acknowledgements

First, I would like to express my deepest gratitude to Professor Calegari and Pro-

fessor Ciatto for all the support they provided me during the internship and thesis

redaction processes.

Second, I would like to thank my family, my friends, my former classmates and all

people who believed in me during this long study path.

Last but not least, I would like to thank myself to have been able to never give up

during these two years.

Bologna, 03 February 2023 Giuseppe Boezio

47

Bibliography

[1] Harvey Abramson and M. H. Rogers, eds. Meta-Programming in Logic Pro-

gramming. Cambridge, MA, USA: MIT Press, 1989. isbn: 0262510472 (cit. on

p. 41).

[2] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. “Developing Multi-

agent Systems with JADE”. In: (2001). Ed. by Cristiano Castelfranchi and

Yves Lespérance, pp. 89–103 (cit. on pp. 25, 28).

[3] Djallel Bouneffouf and Charu C. Aggarwal. Survey on Applications of Neu-

rosymbolic Artificial Intelligence. 2022. doi: 10.48550/ARXIV.2209.12618.

url: https://arxiv.org/abs/2209.12618 (cit. on p. 1).

[4] Roberta Calegari et al. “Extending Logic Programming with Labelled Variables:

Model and Semantics”. In: Fundam. Inf. 161.1–2 (Jan. 2018), pp. 53–74. issn:

0169-2968. doi: 10.3233/FI-2018-1695. url: https://doi.org/10.3233/

FI-2018-1695 (cit. on p. 33).

[5] Giovanni Ciatto, Roberta Calegari, and Andrea Omicini. “2P-Kt: A logic-based

ecosystem for symbolic AI”. In: SoftwareX 16 (2021), p. 100817. issn: 2352-

7110. doi: https://doi.org/10.1016/j.softx.2021.100817. url: https:

//www.sciencedirect.com/science/article/pii/S2352711021001126

(cit. on p. 7).

[6] Giovanni Ciatto, Roberta Calegari, and Andrea Omicini. “Lazy Stream Manip-

ulation in Prolog via Backtracking: The Case of 2P-Kt”. In: (2021), pp. 407–420.

doi: 10.1007/978-3-030-75775-5_27. url: https://doi.org/10.1007/

978-3-030-75775-5_27 (cit. on p. 21).

[7] Keith L. Clark and Steve Gregory. “A Relational Language for Parallel Pro-

gramming”. In: Proceedings of the 1981 Conference on Functional Programming

Languages and Computer Architecture. FPCA ’81. Portsmouth, New Hamp-

shire, USA: Association for Computing Machinery, 1981, pp. 171–178. isbn:

49

https://doi.org/10.48550/ARXIV.2209.12618
https://arxiv.org/abs/2209.12618
https://doi.org/10.3233/FI-2018-1695
https://doi.org/10.3233/FI-2018-1695
https://doi.org/10.3233/FI-2018-1695
https://doi.org/https://doi.org/10.1016/j.softx.2021.100817
https://www.sciencedirect.com/science/article/pii/S2352711021001126
https://www.sciencedirect.com/science/article/pii/S2352711021001126
https://doi.org/10.1007/978-3-030-75775-5_27
https://doi.org/10.1007/978-3-030-75775-5_27
https://doi.org/10.1007/978-3-030-75775-5_27

50 Bibliography

0897910605. doi: 10.1145/800223.806776. url: https://doi.org/10.

1145/800223.806776 (cit. on p. 41).

[8] W. F. Clocksin and Chris Mellish. Programming in Prolog. 1987 (cit. on p. 6).

[9] Helder Coelho and Luis Moniz Pereira. “Automated reasoning in geometry

theorem proving with Prolog”. In: Journal of Automated Reasoning 2.4 (1986),

pp. 329–390 (cit. on p. 3).

[10] Alain Colmerauer and Philippe Roussel. “The Birth of Prolog”. In: SIGPLAN

Not. 28.3 (Mar. 1993), pp. 37–52. issn: 0362-1340. doi: 10.1145/155360.

155362. url: https://doi.org/10.1145/155360.155362 (cit. on p. 3).

[11] Jean H. Gallier. “Logic for Computer Science: Foundations of Automatic

Theorem Proving”. In: (1985) (cit. on p. 7).

[12] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented

Software. 1st ed. Addison-Wesley Professional, 1994. isbn: 0201633612. url:

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-

Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1 (cit. on p. 21).

[13] Michael Gelfond and Nicola Leone. “Logic programming and knowledge repre-

sentation—the A-Prolog perspective”. In: Artificial Intelligence 138.1-2 (2002),

pp. 3–38 (cit. on p. 3).

[14] Joxan Jaffar and Michael J. Maher. “Constraint logic programming: a survey”.

In: The Journal of Logic Programming 19-20 (1994). Special Issue: Ten Years

of Logic Programming, pp. 503–581. issn: 0743-1066. doi: https://doi.org/

10.1016/0743-1066(94)90033-7. url: https://www.sciencedirect.com/

science/article/pii/0743106694900337 (cit. on pp. 9, 41).

[15] A. C. KAKAS, R. A. KOWALSKI, and F. TONI. “Abductive Logic Program-

ming”. In: Journal of Logic and Computation 2.6 (Dec. 1992), pp. 719–770.

issn: 0955-792X. doi: 10.1093/logcom/2.6.719. eprint: https://academic.

oup.com/logcom/article-pdf/2/6/719/2776092/2-6-719.pdf. url:

https://doi.org/10.1093/logcom/2.6.719 (cit. on p. 41).

[16] Krzysztof Kuchcinski and Radoslaw Szymanek. JaCoP - Java Constraint

Programming Solver. 2013 (cit. on p. 22).

https://doi.org/10.1145/800223.806776
https://doi.org/10.1145/800223.806776
https://doi.org/10.1145/800223.806776
https://doi.org/10.1145/155360.155362
https://doi.org/10.1145/155360.155362
https://doi.org/10.1145/155360.155362
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
https://doi.org/https://doi.org/10.1016/0743-1066(94)90033-7
https://doi.org/https://doi.org/10.1016/0743-1066(94)90033-7
https://www.sciencedirect.com/science/article/pii/0743106694900337
https://www.sciencedirect.com/science/article/pii/0743106694900337
https://doi.org/10.1093/logcom/2.6.719
https://academic.oup.com/logcom/article-pdf/2/6/719/2776092/2-6-719.pdf
https://academic.oup.com/logcom/article-pdf/2/6/719/2776092/2-6-719.pdf
https://doi.org/10.1093/logcom/2.6.719

Bibliography 51

[17] Adam Lally and Paul Fodor. “Natural language processing with prolog in

the ibm watson system”. In: The Association for Logic Programming (ALP)

Newsletter 9 (2011) (cit. on p. 3).

[18] Dennis Merritt. Building expert systems in Prolog. Springer Science & Business

Media, 2012 (cit. on p. 3).

[19] Nicholas Nethercote et al. “MiniZinc: Towards a Standard CP Modelling

Language”. In: Principles and Practice of Constraint Programming – CP 2007.

Ed. by Christian Bessière. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,

pp. 529–543. isbn: 978-3-540-74970-7 (cit. on p. 43).

[20] Raymond Ng and V.S. Subrahmanian. “Probabilistic logic programming”. In:

Information and Computation 101.2 (1992), pp. 150–201. issn: 0890-5401.

doi: https://doi.org/10.1016/0890-5401(92)90061-J. url: https:

//www.sciencedirect.com/science/article/pii/089054019290061J (cit.

on p. 41).

[21] Balaji Parasumanna Gokulan and D. Srinivasan. “An Introduction to Multi-

Agent Systems”. In: Studies in Computational Intelligence 310 (July 2010),

pp. 1–27. doi: 10.1007/978-3-642-14435-6_1 (cit. on p. 24).

[22] Laurent Perron and Vincent Furnon. “OR-Tools”. Version v9.5. In: (Nov. 25,

2022). url: https://developers.google.com/optimization/ (cit. on

p. 22).

[23] Jorge Pinna Puissant, Ragnhild Van Der Straeten, and Tom Mens. “Resolving

model inconsistencies using automated regression planning”. In: Software &

Systems Modeling 14.1 (2015), pp. 461–481 (cit. on p. 3).

[24] Charles Prud’homme and Jean-Guillaume Fages. “Choco-solver: A Java library

for constraint programming”. In: Journal of Open Source Software 7.78 (2022),

p. 4708. doi: 10.21105/joss.04708. url: https://doi.org/10.21105/

joss.04708 (cit. on p. 22).

[25] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint

Programming. USA: Elsevier Science Inc., 2006. isbn: 9780080463803 (cit. on

p. 8).

[26] Geoffrey G. Towell and Jude W. Shavlik. “Knowledge-based artificial neural

networks”. In: Artificial Intelligence 70.1 (1994), pp. 119–165. issn: 0004-3702.

doi: https://doi.org/10.1016/0004-3702(94)90105-8. url: https:

https://doi.org/https://doi.org/10.1016/0890-5401(92)90061-J
https://www.sciencedirect.com/science/article/pii/089054019290061J
https://www.sciencedirect.com/science/article/pii/089054019290061J
https://doi.org/10.1007/978-3-642-14435-6_1
https://developers.google.com/optimization/
https://doi.org/10.21105/joss.04708
https://doi.org/10.21105/joss.04708
https://doi.org/10.21105/joss.04708
https://doi.org/https://doi.org/10.1016/0004-3702(94)90105-8
https://www.sciencedirect.com/science/article/pii/0004370294901058

52 Bibliography

//www.sciencedirect.com/science/article/pii/0004370294901058 (cit.

on p. 1).

[27] Markus Triska. “Boolean constraints in SWI-Prolog: A comprehensive sys-

tem description”. In: Science of Computer Programming 164 (2018). Spe-

cial issue of selected papers from FLOPS 2016, pp. 98–115. issn: 0167-6423.

doi: https://doi.org/10.1016/j.scico.2018.02.001. url: http:

//www.sciencedirect.com/science/article/pii/S0167642318300273

(cit. on p. 10).

[28] Markus Triska. The Boolean Constraint Solver of SWI-Prolog: System Descrip-

tion. Vol. 9613. LNCS. 2016, pp. 45–61 (cit. on p. 10).

[29] Markus Triska. The Finite Domain Constraint Solver of SWI-Prolog. Vol. 7294.

LNCS. 2012, pp. 307–316 (cit. on p. 10).

[30] Jan Wielemaker. “SWI Prolog”. In: (1987). url: https://www.swi-prolog.

org/ (cit. on p. 9).

[31] Michael Wooldridge. “An Introduction to MultiAgent Systems”. In: (2009)

(cit. on p. 24).

https://www.sciencedirect.com/science/article/pii/0004370294901058
https://www.sciencedirect.com/science/article/pii/0004370294901058
https://doi.org/https://doi.org/10.1016/j.scico.2018.02.001
http://www.sciencedirect.com/science/article/pii/S0167642318300273
http://www.sciencedirect.com/science/article/pii/S0167642318300273
https://www.swi-prolog.org/
https://www.swi-prolog.org/

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis organization

	2 Background notions
	2.1 The Prolog Language
	2.1.1 Brief History
	2.1.2 Concepts
	2.1.3 2p-Kt

	2.2 Constraint Programming
	2.2.1 Brief History
	2.2.2 Concepts
	2.2.3 Constraint Logic Programming
	2.2.4 SWI Prolog - CLP libraries

	3 CLP in 2p-Kt
	3.1 Requirements
	3.2 Design
	3.2.1 Common aspects
	3.2.2 Constraint Logic Programming over Finite Domains
	3.2.3 Constraint Logic Programming over Rationals and Reals
	3.2.4 Constraint Logic Programming over Boolean Variables

	3.3 Implementation
	3.3.1 Constraint Logic Programming over Finite Domains
	3.3.2 Constraint Logic Programming over Rationals and Reals
	3.3.3 Constraint Logic Programming over Boolean Variables

	3.4 Case study
	3.4.1 Implementation
	3.4.2 Design

	4 Labelled Prolog
	4.1 Model
	4.1.1 Labelled Variables
	4.1.2 Labelled Terms

	4.2 Implementation
	4.2.1 Labels
	4.2.2 Unificator
	4.2.3 Solver

	5 CLP as Labelled Prolog
	6 Conclusions and future work
	Acknowledgements

