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Abstract

Privacy and ethical restrictions and data scarcity in positron emission tomography
field call for efficient methods for expanding datasets through synthetic generation of
new data that cannot be traced back to real patients and that are at the same time
realistic. In this thesis, machine learning techniques were applied to 1001 amyloid-
beta PET images, which had undergone a diagnosis of Alzheimer’s disease: the
evaluations were 540 positive, 457 negative and 4 unknown. The Isomap algorithm
was adopted as a manifold learning technique in order to reduce the dimensionality of
the PET dataset; once a low-dimensional representation of the data was obtained, a
numerical scale-free interpolation method was applied in order to explicitly define an
inverse of the dimensionality reduction mapping. The interpolant was tested on the
original PET images via a leave-one-out approach, where the removed images were
compared with the reconstructed ones through a mean structural similarity index
measure (MSSIM = 0.76 ± 0.06). The effectiveness of this measure for the scope of
this thesis is questioned, since it indicated slightly higher performance for a method of
comparison exploiting principal component analysis (MSSIM = 0.79 ± 0.06), which
gave clearly poor quality reconstructed images with respect to those recovered by
the numerical inverse mapping, as visually assessed by comparison with the original
images. Ten new synthetic PET images were finally generated and, after having been
mixed with ten originals, were sent to a team of clinicians, experts in amyloid PET,
for the visual assessment of their realism; no significant agreements were found either
between clinicians and the true image labels or among the clinicians, meaning that
original and synthetic images were indistinguishable. The future perspective of this
thesis points to the improvement of the research framework in the amyloid-beta PET
field by considerably increasing available data, overcoming the constraints of data
acquisition and privacy issues. Potential improvements in obtained results can be
achieved through refinements of the manifold learning and the inverse mapping stages
during the PET image analysis, by exploring different combinations in the choice
of algorithm parameters and by applying other non-linear dimensionality reduction
algorithms. An additional prospect suggested by this work is the search for new
methods to assess image reconstruction quality.
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Introduction

Nowadays, extremely high-dimensional data are processed by a large number of sci-
entific fields, such as climatology, astrophysics, neuroscience, biology and applied
mathematics. For instance, a simple 50-by-50 grayscale image belongs to a space
with 2500 dimensions; on one hand, this amount of features provides an accurate
characterisation of the object of study; on the other hand, as more dimensions are
added, the processing power required to analyse the data and the amount of training
data needed to make meaningful models grow exponentially. This problem is called
“curse of dimensionality”: when moving to higher dimensions, the volume contain-
ing the data quickly grows, hence becoming more and more sparse. In order to keep
the same density of the feature space, one would have to increase exponentially the
number of observations.

A widely explored approach to tackle the “curse of dimensionality” is to reduce
the dimensions of a dataset consisting of a large number of features, which are as-
sumed to be highly interrelated (non-independent). “The human brain confronts the
same problem in everyday perception, extracting from its high-dimensional sensory
inputs a manageably small number of perceptually relevant features” [1]. For in-
stance, a 2500-dimensional grayscale image dataset could be described by far fewer
variables, based on the patterns hidden in it, due to the presence of correlations
between neighboring pixels. This is the underlying idea of dimensionality reduc-
tion techniques, which seek to define new variables by “combining” the ones of the
high-dimensional space in a suitable way in order to find a low-dimensional repre-
sentation, in which data model can be trained more efficiently and data samples can
be visualised more easily.

Several dimensionality reduction algorithms have been proposed in the litera-
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ture. The easiest to implement are those that search for linear dependencies between
variables and seek to preserve the global structure of the data space; two instances
are Principal Component Analysis [2, 3] and Multidimensional Scaling [4, 5]. These
methods define linear combinations of the original variables, so they can charac-
terise only linear structures in data spaces; however, many high-dimensional data
have underlying non-linear degrees of freedom that cannot be captured by linear
methods. Other techniques were then developed in order to investigate these non-
linear structures; some of the most commonly used are Isomap [1], Locally Linear
Embedding (LLE) [6], Laplacian eigenmaps [7, 8], t-distributed Stochastic Neighbor
Embedding (t-SNE) [9], LargeVis [10] and Uniform Manifold Approximation and
Projection (UMAP) [11].

These latter methods fall under the category of manifold learning techniques,
since they assume the data to lie on or near a low-dimensional non-linear manifold
embedded in a high-dimensional space and seek to find the intrinsic geometric struc-
ture of it; the aim is to preserve the local relationships between the data samples,
that is to keep similar data points close and dissimilar data points far apart, in the
low-dimensional space [10]. The dimensions of the manifold would then represent
the meaningful degrees of freedom of the data.

In order to understand the importance and usefulness of manifold learning, an
example of semi-supervised classification is helpful. Figure 1 [12, Figure 1] shows
the problem of classifying an unlabelled point “?” giving some labelled and many
unlabelled points of two classes “+” and “o” on a plane curve, that is a 1-dimensional
manifold embedded in a 2-dimensional space. The distances between two arbitrary
points in the original feature space do not necessarily reflect their intrinsic similarity,
so one would like another representation of the points that preserves the intrinsic
geometry of the data manifold and that better describes the relationship between
the points. Panel 5 shows the positions of labelled points on the curve in the new
representation, obtained by means of the Laplacian eigenmap [7, 8]. The point “?”
now falls in the middle of “+” points and can easily be classified as belonging to the
class “+” .

The problem of manifold learning also brings with it another issue: how to invert
a dimensionality reduction mapping to return to the original feature space. PCA
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Figure 1: Top row: Panel 1. Two classes “+” and “o” on a plane curve. Panel
2. Labelled points of the classes and unlabelled point “?” to be classified. Panel 3.
Unlabelled points. Bottom row: Panel 4. Alternative representation of the curve.
Panel 5. Positions of labelled points and “?” on the new representation. Panel 6.
All points in the new representation. [12, Figure 1]
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provides an easy answer, since it defines a rotation matrix which then can be in-
verted effortlessly; however, PCA is linear and does not have the flexibility to learn
non-linear manifolds embedded in high-dimensional spaces. The non-linear methods
mentioned above, instead, are only defined on a discrete set of data points, so an
explicit mapping that could then be inverted is not provided. Therefore, one usually
needs numerical methods in order to define the inverse of non-linear dimensionality
reduction mappings. Although non-linear mapping are more difficult to invert, the
importance of understanding the intrinsic geometric structure of the manifold data
makes their use worthwhile.

This thesis work was aimed at generating synthetic amyloid-beta PET images
in order to overcome the privacy and ethical restrictions regarding management of
sensitive data and to provide a method to increase the availability of data in PET
field. The approach adopted was then the study of the manifold underlying the
high-dimensional space of PET images; a low-dimensional representation of the data
was achieved by means of the Isomap algorithm [1]. Once the meaningful degrees
of freedom of the manifold had been obtained, new synthetic PET images could be
generated by interpolating new data points on the low-dimensional space and by
recovering their corresponding high-dimensional PET images through the inverse of
the Isomap mapping. A numerical scale-free interpolation method based on cubic
radial basis functions was adopted.

The structure of this thesis is organised as follow: Chapter 1 presents the mate-
rials used for this thesis work. Chapter 2 explains the algorithms adopted in order
to reduce the dimensionality of the PET image space and to invert the non-linear
mapping. Chapter 3 describes the preprocessing and analysis of PET images, as well
as the generation of the synthetic images. Chapter 4 gives the results of this thesis
work. Chapter 5 discusses the results and offer the future perspectives of this thesis.
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Chapter 1

Dataset description

For this thesis, Positron Emission Tomography (PET) image data were collected from
the European Alzheimer’s Disease Consortium (EADC) database. The EADC is a
consortium of 47 Alzheimer’s centres in 13 European countries and is funded by the
European Union [13]. Its primary goal is to develop and maintain an organisational
structure capable of rapidly carrying outrivals of interventions designed to prevent,
slow or ameliorate the primary and secondary symptoms of Alzheimer’s disease [14].

The dataset is composed of 4 groups of patients who had been submitted to
18F-florbetaben (286 subjects), 18F-florbetapir (377 subjects), 18F-flutemetamol (191
subjects) and 11C-Pittsburgh Compound B (147 subjects) PET respectively, in 21
research centres across Europe.

The four tracers used in the PET scans are radioactive compounds that detect
amyloid-beta deposition in the brain [15], associated with Alzheimer’s disease. From
a clinical point of view, these tracers provide roughly the same cortical informa-
tion; nevertheless, they are different molecules, characterised by their own specific
and non-specific binding mechanisms. They should then be regarded separately, by
dividing the dataset in subsets, according to the tracers. However, this practise is
usually not observed and, typically, mixed datasets are analysed; therefore, for this
thesis work, the whole set of PET images was used, ignoring the technical differences
between the tracers.

The 1001 PET scans are classified as negative (457 “NEG” subjects), positive
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Table 1.1: Demographics and Clinical Diagnosis of the PET image dataset

PET images
Sample size 1001

Age [y] 69.4 ± 8.3
[41; 90]

Sex 485 females
415 males

101 other/unknown

Diagnosis (NEG:POS:UNK) 457:540:4

(540 “POS” subjects) or unknown (4 “UNK” subjects).
The demographics (including age and sex) and clinical diagnosis of the subjects

are summarized in Table 1.1; the ages of 111 patients are not known.
Each PET image is stored in a 193-by-229-by-193 matrix, saved in a NIfTI file.

An example of PET labelled “negative” (rescaled into an 8bit image) is showed in
Figures 1.1, 1.2, 1.3, which illustrate the brain axial, coronal and sagittal planes,
respectively.

Another example of a PET image is given by the PET labelled “positive”, shown
in Figures 1.4, 1.5, 1.6.

Finally, an example of a PET image labelled “unknown” is shown in Figures 1.7,
1.8, 1.9.
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Figure 1.1: Visualisation of a PET image labelled negative on the brain axial planes.
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Figure 1.2: Visualisation of a PET image labelled negative on the brain coronal
planes.

9



Figure 1.3: Visualisation of a PET image labelled negative on the brain sagittal
planes.
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Figure 1.4: Visualisation of a PET image labelled positive on the brain axial planes.
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Figure 1.5: Visualisation of a PET image labelled positive on the brain coronal
planes.
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Figure 1.6: Visualisation of a PET image labelled positive on the brain sagittal
planes.
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Figure 1.7: Visualisation of a PET image labelled unknown on the brain axial planes.
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Figure 1.8: Visualisation of a PET image labelled unknown on the brain coronal
planes.
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Figure 1.9: Visualisation of a PET image labelled unknown on the brain sagittal
planes.
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Chapter 2

Methods

This chapter presents an explanation of the algorithms used in this thesis work.
In the first section, the Isometric Feature Mapping, or Isomap, algorithm [1] is

introduced as the method of choice for the non-linear dimensionality reduction of the
dataset.

The second section offers the theoretical underpinning and the description of a
scale-free radial basis interpolation [16] used to numerically invert the dimensionality
reduction mapping.

2.1 The Isomap algorithm

The generic problem of dimensionality reduction is the following [8]. Given a set of
n data points {x(1), . . . , x(n)} in RD, one searches for a set {z(1), . . . , z(n)} of points
in Rd, where d ≪ D, such that z(i) is a “good” representation of x(i), in some sense.
The assumption that {x(1), . . . , x(n)} ⊂ M will be made, where M is a non-linear
d-dimensional manifold embedded in RD. Intuitively M can be thought of as a
d-dimensional “surface” in RD [12].

The goal is therefore to find a Euclidean embedding Φn of the data points from
the high-dimensional space RD, which is called input or feature space, to the low-
dimensional space Rd:

Φn : RD → Rd, x(i) 7→ Φn(x(i)) = z(i) , for i = 1, . . . , n . (2.1.1)
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For two arbitrary points on the underlying manifold, their distance, measured
by the standard Euclidean metric or some other domain-specific metric, may appear
deceptively small and may not accurately reflect their intrinsic similarity, which is
instead correctly measured by the geodesic distance along the manifold.

For neighboring points, input-space distance provides a good approximation to
geodesic distance. For faraway points, geodesic distance can be approximated by
adding up a sequence of “short hops” between neighboring points. These approxi-
mations are computed by finding shortest paths in a graph with edges connecting
neighboring data points.

These are the ideas behind the Isometric Feature Mapping, or Isomap, algorithm
[1], and its steps are the following:

1. The first step determines which points are neighbours in the manifold M. The
neighbourhood of each point x(i) depends on the Euclidean distances dRD(i, j)
between x(i) and the other points x(j) measured in their input space. The two
main methods to find the neighbours are to connect each point to all points
within some fixed radius ϵ or to all of its K nearest neighbours. A weighted
graph G is then created over the data points with edges of weights dRD(i, j).

2. In the second step, Isomap estimates the geodesic distances dM(i, j) between
all pairs of points on the manifold M by computing their shortest path dis-
tances dG(i, j) in the graph G. The graph distances dG(i, j) provide increasingly
better approximations to the intrinsic geodesic distances dM(i, j) as the num-
ber of points is increased [1]. The shortest paths are computed via the Floyd’s
algorithm [17]: we initialise dG(i, j) = dRD(i, j) if x(i) and x(j) are linked by an
edge, dG(i, j) = ∞ otherwise; then, for each value of k = 1, . . . , n in turn, all
entries dG(i, j) are replaced by min{dG(i, j), dG(i, k) + dG(k, j)}. The matrix
of final values DG = {dG(i, j)} contains the shortest path distances between all
pairs of points in G.

3. The final step applies classical Multidimensional Scaling (MDS) [18] to the
matrix of graph distances DG, constructing an embedding of the data in Rd

that best preserves the manifold’s estimated intrinsic geometry. The coordi-
nate vectors z(i) for the points in Rd are chosen to minimize the cost function
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E = ∥τ(DG) − τ(DZ)∥L2 : DZ indicates the matrix of Euclidean distances
dZ(i, j) = ∥z(i) − z(j)∥ and ∥A∥L2 the matrix norm

√∑
i,j A2

ij. The τ operator
converts distances to inner products in order to guarantee an efficient opti-
mization and is defined as τ(D) = −HSH/2, where S = {D2

ij} is the matrix of
squared distances and H = {δij − 1/N} is the “centering matrix” [1, 18]. The
global minimum of the cost function E is achieved by setting the coordinate
vectors z(i) to the top d eigenvectors of the matrix τ(DG): if λp is the p-th eigen-
value (in decreasing order) of the matrix τ(DG) and v i

p the i-th component
of the p-th eigenvector, the p-th component of the d-dimensional coordinate
vector z(i) is set equal to

√
λp v i

p .

The Euclidean embdedding Φn : RD → Rd sought is thus defined as follows:

Φn(x(i)) =
[√

λ1 v i
1 , . . . ,

√
λd v i

d

]T

. (2.1.2)

For finite datasets, dG(i, j) may fail to approximate dM(i, j) for a small fraction
of points that are disconnected from the giant component of the neighborhood graph
G [1]. These outliers are easily detected as having infinite graph distances from the
majority of other points and arise from being outside the neighbourhood of size ϵ of
the points in the giant component (in case the radius ϵ was chosen as the Isomap
parameter in the first step of the algorithm). Therefore, the graph turns out to be
split in multiple connected components and one has to choose between increasing
the neighbourhood size to include all the points in a single connected component, or
deleting the outliers from further analysis; the latter was actually the choice for the
study of this thesis, as will be seen in Section 3.2.1.

The intrinsic dimensionality of the data, that is the dimension d of the manifold
M, can be estimated from the decrease of the residual variance of Isomap as the
dimensionality of the low-dimensional space Rd is increased: we may look for the
“elbow” at which the curve of the residual variance ceases to decrease significantly
with added dimensions.

A classic example of application of the Isomap algorithm is the dimensionality
reduction of the “Swiss roll” dataset: the data lie on a 2-dimensional manifold which
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Figure 2.1: Application of Isomap on the “Swiss roll” dataset. Panel A. Comparison
between Euclidean (dashed line) and geodesic (solid line) distances. Panel B. Neigh-
borhood graph G providing an approximation of the geodesic distance via shortest-
path length (red segments). Panel C. Comparison between geodesic distance and
shortest-path length on the 2-dimensional representation. [1, Fig. 3]

is embedded in a 3-dimensional space. A visualisation of the main Isomap ideas
applied on this problem is given in Figure 2.1 [12, Fig. 3]. In Panel A, the two
circled points appear deceptively close in the original space, as measured by their
Euclidean distance (dashed line); instead the geodesic distance (solid line) reflects
their intrinsic similarity. Panel B shows the neighborhood graph G constructed
from the Euclidean distances in the first step of Isomap; the red segments provide
an approximation of the geodesic distance by means of the shortest path distance,
computed in the second step of the algorithm. Panel C shows the embedding of the
data points in a 2-dimensional space, representing the manifold; the shortest-path
and geodesic distances are compared, and it can be seen that the former gives a
good approximation of the latter. The 2-dimensional Isomap embedding therefore
well approximates the geometric structure of the manifold, finding a configuration
that preserves the relationships between the data points.

2.2 Inverse mapping

Let there be n data points {x(1), . . . , x(n)} ⊂ RD lying on a bounded d-dimensional
smooth manifold M ⊂ RD. These points are embedded into Rd by a non-linear
mapping:

Φn : RD → Rd, x(i) 7→ Φn(x(i)) , for i = 1, . . . , n , (2.2.1)
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which is approximated by a dimensionality reduction mapping, for instance the one
given by the Isomap algorithm and expressed in Equation (2.1.2). Assume the exis-
tence of a continuous operator Φ : M → Φ(M), given by the extension of the map
Φn on the whole manifold.

Given Φ−1 the inverse of the mapping Φ, the goal is to find an approximate
inverse:

Φ† : Φ(M) → RD, z 7→ Φ†(z) (2.2.2)

such that lim
n→∞

Φ†(z) = Φ−1(z) for all z ∈ Φ(M).

2.2.1 Radial basis function interpolant

Let there be a collection of radial basis functions (RBF) defining the kernel g :
Rd × Rd → R and the set of points {z(1), . . . , z(n)} ⊂ Rd, with corresponding data
points x(i) = Φ−1(z(i)) for i = 1, . . . , n ; the RBF interpolant s : Rd → RD is then
defined:

sk(z) =
n∑

j=1
α

(j)
k g(z, z(j)) , k = 1, . . . , D . (2.2.3)

The weights α
(j)
k are found by interpolating the data points x(i), so that sk(z(i)) =

Φ−1
k (z(i)) = x

(i)
k holds. The conditions that fix the weights are described by the

following system of equations:


g(z(1), z(1)) · · · g(z(1), z(n))

... ...
g(z(n), z(1)) · · · g(z(n), z(n))

 ·


α

(1)
1 · · · α

(1)
D

... ...
α

(n)
1 · · · α

(n)
D

 =:

=: G A =


x

(1)
1 · · · x

(1)
D

... ...
x

(n)
1 · · · x

(n)
D

 =


(x(1))T

...
(x(n))T

 =: X , (2.2.4)

where G is the matrix of the RBF kernel such that Gij = g(z(i), z(j)), the i-th row
of X ∈ Rn×D identifies the coordinates of x(i) ∈ RD and A ∈ Rn×D is the matrix of
the interpolation weights: Ajk = α

(j)
k .
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Solving the system provides the weight matrix A = G−1X and thus the D-
dimensional interpolant Φ† : Rd → RD that gives an approximation of the inverse
mapping Φ−1; therefore, a new data point x = Φ−1(z) ∈ M can be approximated
as follows:

Φ†(z) = s(z) =
[

g(z, ·)T A
]T

=
[

G−1X
]T

g(z, ·) , (2.2.5)

where g(z, ·) =
[
g(z, z(1)), . . . , g(z, z(n))

]T
.

2.2.2 Cubic interpolant

As suggested in [16], we choose a cubic kernel to define the RBF interpolant; thus
we have:

g(z, w) = ∥z − w∥3 , (2.2.6)

which is an instance from the set of RBF kernels g(z, w) = ∥z − w∥β (with β =
1, 3, 5, . . .), known as radial powers, which in turn belong to the family of the RBF
kernels named polyharmonic splines.

Thus, the cubic RBF interpolant takes the following form:

sk(z) =
n∑

j=1
α

(j)
k ∥z − z(j)∥3 , k = 1, . . . , D , (2.2.7)

where again the weights α
(j)
k characterizing the matrix A are to be found by inter-

polating the data points x(i), as in Equation (2.2.4).

In order to uniquely define our interpolant, the cubic RBF basis is augmented
with constant and linear polynomials.

As will be seen later, and as reported in [19], the addition of constant and linear
polynomial terms in the cubic RBF basis helps to guarantee the non-singularity of
the interpolation matrix; moreover, these terms improve the behaviour of the inter-
polant near the boundaries of its domain, defined by the points {z(1), . . . , z(n)} ⊂ Rd

[16].
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Lastly, we will have an interpolant that exactly reproduces constant and linear func-
tions, which is a quality often sought in interpolation methods [19].

Let us then assume the new form of the interpolant:

sk(z) =
n∑

j=1
α

(j)
k ∥z − z(j)∥3 + β0k +

d∑
l=1

βlk zl , k = 1, . . . , D , (2.2.8)

where zl is the l-th coordinate of z ∈ Rd.
In order to find the interpolation weights we now have, for each dimension k =

1, . . . , D, a system of n equations (given by the conditions sk(z(i)) = x
(i)
k for i =

1, . . . , n) in n + d + 1 unknowns α
(j)
k , βlk and β0k; d + 1 conditions must then be

added to guarantee unique solvability of the system of interpolation equations.
For the sake of clarity, we shall now focus on a single dimension k of the D-

dimensional RBF interpolant s : Rd → RD and we shall drop the k index of the
weights and the interpolant; let us hence consider, without loss of generality, the
one-dimensional interpolant s : Rd → R, z 7→ s(z) = x.

In order to justify the choice of using constant and linear pylonomials, we will
make use of the following definition [16, 19]. Let us consider a continuous even
function f : Rd → R; it is said to be conditionally positive definite of order m on Rd

if

n∑
i=1

n∑
j=1

α(i)α(j) f(z(i) − z(j)) ≥ 0 (2.2.9)

for n distinct points {z(1), . . . , z(n)} ⊂ Rd and α = (α(1), . . . , α(n))T ∈ Rn so that,
for any real-valued polynomial p(z) of degree at most m − 1, the condition

n∑
j=1

α(j) p(z(j)) = 0 (2.2.10)

holds. If the quadratic form (2.2.9) is equal to zero if and only if α = 0, then f is
called strictly conditionally positive definite.
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The function f(z − w) = ∥z − w∥3 associated to the cubic RBF kernel g :
Rd × Rd → R is strictly conditionally positive definite of order 2 on Rd [19]; this
means that, for the set of points {z(1), . . . , z(n)} ⊂ Rd, we have

n∑
i=1

n∑
j=1

α(i)α(j) g(z(i), z(j)) ≥ 0 , (2.2.11)

with the coefficients α(j) satisfying:

n∑
j=1

α(j) pl(z(j)) = 0 , l = 1, . . . , d + 1 , (2.2.12)

where the polynomials pl(z) form a basis for the linear space of all polynomials in z

up to degree 1: p1(z) = 1, pl(z) = zl−1, for l = 2, . . . d + 1.
The condition (2.2.12) provides us with d + 1 equations to be added to uniquely

solve the system of the interpolation equations given by s(z(i)) = x(i), for i = 1, . . . , n.

In order to guarantee unique solvability, however, we need another condition on
the points {z(1), . . . , z(n)}: let us recall the definition of m-unisolvency.

A set of points {z(1), . . . , z(n)} ⊂ Rd is said to be m-unisolvent if the unique
polynomial of total degree at most m interpolating zero data on {z(1), . . . , z(n)} is
the zero polynomial.

We can now exploit [19, Theorem 7.2], which states: if the real-valued even
function f : Rd → R is strictly conditionally positive definite of order m on Rd and
the points {z(1), . . . , z(n)} form an (m − 1)-unisolvent set, then the following system
of linear equations is uniquely solvable:

 G P

P T 0

  α

β

 =
 x

0

 , (2.2.13)

where Gij = f(∥z(i) − z(j)∥) for i, j = 1, . . . , n; x = (x(1), . . . , x(n))T ; Pml = pl(z(m))
for m = 1, . . . , n and l = 1, . . . , M , and the polynomials pl(z) for l = 1, . . . , M form
a basis for the linear space of all polynomials in z up to degree (m − 1).
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Since the cubic RBF kernel is strictly conditionally positive definite of order
m = 2, we ask the points {z(1), . . . , z(n)} to form a 1-unisolvent set in Rd; the
condition is equivalent to the following [16]:

span{(z(i) − z(j)) for i, j = 1, . . . , n} = Rd . (2.2.14)

Let us introduce back the index k referring to the k-th dimension of the inter-
polant s : Rd → RD and to the k-th coordinate of the data point x(i) ∈ RD, for
i = 1, . . . , n; then, for each dimension k = 1, . . . , D, the system of interpolation
equations given by the conditions sk(z(i)) = x

(i)
k is uniquely solvable. The cubic

RBF interpolant (2.2.8) is thus guaranteed to be unique and, according to Equation
(2.2.5), the approximate inverse mapping Φ† sought is defined as follows:

Φ†
k(z) = sk(z) =

n∑
j=1

α
(j)
k ∥z − z(j)∥3 + β0k +

d∑
l=1

βlk zl , (2.2.15)

where k = 1, . . . , D .
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Chapter 3

Application on PET data

3.1 Image preprocessing

PET images were extracted from the NIfTI files by using the MATLAB function
niftiread, which saved the images in double-valued 193-by-229-by-193 matrices.

Due to limits on computational resources available, the PET matrices were re-
sized with the MATLAB function imresize3 via a nearest-neighbor interpolation,
by choosing a scale equal to 0.5 in order to reduce the size of the three matrix
dimensions. New 97-by-115-by-97 matrices were thus obtained.

The PET matrices were then reshaped into 97 × 115 × 97-dimensional vectors,
hence providing a dataset of 1001 points in R1082035.

The range of values in the PET vector components differ widely from one PET
to another across the dataset on account of the different data acquisition methods of
the research centres; as a consequence, vectors have quite different Euclidean norms,
as reported in Figure 3.1. To overcome such heterogeneity in the data, each vector
was normalised to have norm equal to 1; this method of standardisation was also
adopted in order to avoid too much pieces of data being lost during the dimensionality
reduction stage, as will be seen in Section 3.2.1 .
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Figure 3.1: Histogram of norm of PET images treated as vectors in R1082035.

3.2 Image analysis

3.2.1 Manifold learning

The dataset dimensionality reduction was approached with the application of the
Isomap algorithm on the MATLAB environment; the implementation code provided
by [20] was used. Principal component analysis (PCA) [2, 3] was also adopted as a
method of comparison.

The PET matrices had been reshaped into 97 × 115 × 97-dimensional vectors
for the purpose of computing distance between images. The space of PET physical
degrees of freedom was assumed to have the natural structure of a low-dimensional
manifold M embedded in a Euclidean vector space with dimension D = 1082035;
referring back to Section 2.1, the n = 1001 PET vectors from the dataset were the
input-space data points {x(1), . . . , x(n)} ⊂ RD whose low-dimensional representation
was to be found, by computing the Isomap embedding in Rd.

In order to learn the manifold to which the data are supposed to belong, the
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algorithm takes as input the Euclidean distances dRD(i, j) between all the data points
x(i) and x(j), for i, j = 1, . . . , n. Those were thus used to connect each point to all
points within the chosen fixed radius ϵ = 0.45, creating a graph G to best recover the
geometric structure of the manifold M and to approximate the geodesic distances
dM from the shortest path distances dG(i, j) in the graph.

Although choosing to use the number of nearest neighbours K of the points
x(i) as the Isomap parameter tends to lead to connected graphs, the neighbourhood
size ϵ is more geometrically motivated [8], since it fixes the radius within which
the Euclidean distances dRD(i, j) can be considered as good approximations of the
geodesic distances dM(i, j). Moreover, the K parameter may yield misleading results
when the local dimensionality varies across the dataset [1]. That is why the use of
the radius ϵ was preferred.

The value of ϵ was chosen after several trials: what emerged is that, in order to
have a connected graph G, the Isoamp parameter would have needed to be ϵ = 0.64,
for which most of the geodesic distances would have been equal to the Euclidean ones.
At that point, the algorithm would have just recovered the classical MDS, which for
Euclidean metric is equivalent to PCA. Having a single connected component was
then traded-off with the non-linear nature of the Isomap algorithm and 0.64 was
taken as an upper bound for ϵ. The lower bound was arbitrary set at 0.3 so as
not to have too many data points disconnected from the giant component of the
graph. Eventually, the ϵ = 0.45 was chosen by comparing the overall results of this
thesis work, computing the performances for different values of ϵ on a fraction of the
dataset, as will be explained in Section 3.2.2.

The construction of the neighbourhood graph generated distinct connected com-
ponents: the first was the giant component, consisting of 990 data points; 11 points
were instead disconnected from the first ones. These outliers were thus deleted from
further analysis. The reduced dataset was then composed of 990 PET images.

Notice that, without the normalisation procedure of the PET vectors adopted
in the preprocessing stage of Section 3.1, the deleted images would have been many
more due to the heterogeneity of the dataset.

A 10-dimensional Euclidean embedding Φ : R1082035 → R10 of the data was finally
constructed.
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Figure 3.2: Residual variance at different dimensions of the Isomap embedding.

The process of choosing the dimensionality of the low-dimensional Isomap repre-
sentation started from a qualitative study of the residual variance, showed in Figure
3.2 as a function of the Isomap dimensionality. The “elbow” of the curve may suggest
that the true meaningful dimensionality of the PET image dataset is around d = 6.
However, as with the selection of ϵ and as explained in Section 3.2.2, a comparison
of the results of this thesis work indicated that a more appropriate value of choice
was around d = 10 ; this is one of the last values of dimensionality where the residual
variance can still be seen decreasing sufficiently, before reaching its “plateau”.

3.2.2 Inverse map training and testing

The non-linear dimensionality reduction mapping Φ : R1082035 → R10 given by the
Isomap algorithm was taken into account, with the aim of explicitly define an inverse
of it. The low-dimensional representation of the PET images, described by the
vectors {x(1), . . . , x(990)} ⊂ R1082035, was then given by the points {z(1), . . . , z(990)} ⊂
R10, provided by the Isomap eigenvectors, as pointed in Equation (2.1.2).

The numerical interpolation method described in Section 2.2 was then adopted:
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in order to find an approximate inverse Φ† : R10 → R1082035 of the Isomap dimen-
sionality reduction mapping, the 1082035-dimensional cubic RBF interpolant (2.2.8)
was thus computed by interpolating on the original PET vectors.

The inverse mapping algorithm was cross-validated via a leave-one-out approach.
One image at a time was discarded from the dataset in order to train the interpolant
over the remaining 989 images. The interpolant was then tested on the removed
image x(i) by reconstructing it from its low-dimensional representation z(i); the re-
constructed vector Φ†(z(i)) was compared with the original by means of the Euclidean
distance-based error E = ∥x(i) − Φ†(z(i))∥ and through a mean structural similar-
ity index measure, or MSSIM, between the two vectors, after having been reshaped
into matrices and rescaled into 8bit images. The structural similarity index measure
between the local windows a and b of two images A and B is defined as follows [21]:

SSIM(a, b) = (2µaµb + C1) (2σab + C2)
(µ2

a + µ2
b + C1) (σ2

a + σ2
b + C2)

, (3.2.1)

where µa, µb, σa, σb, and σab are the voxel sample means, standard deviations, and
cross-covariance for the local windows, respectively; C1 and C2 are two constants
included to avoid instability when either (µ2

a + µ2
b) or (σ2

a + σ2
b ) is very close to zero

[21]. In order to evaluate the overall similarities between the entire images, a mean
SSIM (MSSIM) index was used, by computing the average of the SSIM indeces over
the local windows; a value closer to 1 indicates a greater similarity between images.

The code implementation adopted for the SSIM index computation was provided
by the MATLAB function ssim.

The overall performance of the algorithm was estimated on the 990 test parts
taken together and was compared with the performance of PCA reconstruction from
the first 10 principal components of the PET vectors.

As mention in Section 3.2.1, before fixing the Isomap parameter ϵ and the di-
mension d of the Euclidean embedding, the cross-validation stage of the interpolant
was repeated several times on a smaller fraction of the dataset. The parameters
were chosen by evaluating the performance of the cubic RBF interpolant, computed
for different values of ϵ and d . Due to limits on computational resources available,
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only a few combinations of these parameters could be tested, and the leave-one-out
cross-validation was performed on 10% of the whole dataset.

These limitations call for a more thorough future investigation of possible com-
binations of parameters to be used, possibly over the whole dataset.

3.3 Synthetic generation

The last stage of this thesis work was the synthetic generation of new PET images.
The aim was to create data that could be considered realistic according to a vi-

sual inspection of clinicians; the key point of the work was that generated data could
not be traced back to real patients, thus solving both data scarcity in amyloid-beta
PET field and privacy issues regarding management of sensitive data.

The method for generating synthetic data was inspired by the Synthetic Minor-
ity Over-sampling Technique, or SMOTE [22], and by its incorporation with Isomap
algorithm, given by [23]. The idea behind the method adopted is the following: once
the 10-dimensional representation of the data is obtained, the physical degrees of
freedom of the PET images are encoded in the linear Euclidean space R10. The data
were previously supposed to lie on a non-linear manifold M, embedded in R1082035.
As a consequence, the local space between any two samples is not necessarily phys-
ical, meaning that a random point drawn from the line segment between the two
samples would not necessarily represent a realistic PET image. However, the space
R10 providing the Isomap embedding of the data is linear; therefore, chances are that
a random point z selected along the line segment between two neighbours on this
space would be the low-dimensional representation of a realistic PET image, which
could then be recovered by inverting the Isomap mapping through the cubic RBF
interpolant (2.2.15); the new synthetic data point would then be x = Φ†(z).

The method for generating a synthetic PET image was thus the following:

• a point z(i) was selected randomly from the low-dimensional representation of
the dataset;

• 20 nearest neighbors of z(i) were computed;
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• a random number between 1 and 20 was generated in order to choose one of
the 20 nearest neighbours of z(i);

• the difference between z(i) and its nearest neighbour was computed; it was
then multiplied by a random number between 0 and 1 and subtracted from
z(i). This caused the selection of a random point z along the line segment
between z(i) and its neighbour;

• the inverse mapping method was finally applied to z in order to obtain a PET
vector x = Φ†(z).

This procedure was repeated ten times in order to generate five synthetic PET images
from within the area of “negative” samples and five more from the “positive” area.

The new ten PET images were finally mixed with ten originals and were sent to
a team of four clinicians, experts in amyloid PET, for the visual assessment of their
realism.
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Chapter 4

Results

In the manifold learning stage of this thesis work, described in Section 3.2.1, a 10-
dimensional representation of the PET image data was obtained, both via the Isomap
algorithm and with PCA, that was the method of comparison.

In Figure 4.1, 3-dimensional representations provided by Isomap and PCA before
the preprocessing normalisation procedure are shown, with labels of clinical diag-
noses highlighted. It is clear that Isomap mapping fails to separate the two main
classes of positive and negative patients for the a large number of data points; the
classes overlap also in PCA representation. Another issue concerning these represen-
tations is the presence of two regions with highly different data point density. Both
representation have one branch with sparse data and a very dense branch, where the
dissimilarity among the data points is hard to grasp, even though for Isomap the
situation is worse. This problematic pattern of data point density was tackled with
a normalisation of the PET vectors, as described in Section 3.1.

In Figure 4.2, the 3-dimensional projections of the Isomap and PCA represen-
tations after the normalisation are shown; the labels corresponding to the clinical
diagnoses are highlighted, showing a good visual separation between the two main
classes of negative and positive patients in both the representations.

In Figure 4.3, the 3-dimensional projections of both the algorithms are shown for
the PET images from nine of the most numerous research centre classes. A sepa-
ration between some of the classes is visible and may be due to the different data
acquisition methods among the centres.
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Isomap representation.

PCA representation.

Figure 4.1: Isomap and PCA 3-dimensional representations of PET images with
highlighted labels of clinical diagnoses, before the normalisation.
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Isomap representation.

PCA representation.

Figure 4.2: 3-dimensional projections of the Isomap and PCA representations of PET
images with highlighted labels of clinical diagnoses.
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In Section 3.2.2, the cross-validation of the cubic RBF inverse mapping algorithm
was described; the overall performance of the interpolant was determined by the
Euclidean distance-based error E and the mean structural similarity index measure
MSSIM. The statistics of the performance measures are depicted in the boxplots in
Figure 4.4; cubic RBF interpolant and PCA results are compared.

The overall performances were considered to be the average values of the perfor-
mances on the single reconstructions. Therefore, for cubic interpolant reconstruction,
Ecubic = 0.24 ± 0.03 and MSSIMcubic = 0.76 ± 0.06; for PCA, EPCA = 0.18 ± 0.02
and MSSIMPCA = 0.79 ± 0.06. According to the reconstruction error measure E,
PCA technique appears to have a fairly higher performance than the cubic RBF
interpolant; also MSSIM indicates slightly higher performance for PCA.

However, PET images reconstructed by inverting PCA were clearly of lower qual-
ity than those recovered by the cubic interpolant, as visually assessed by comparison
with the original images. Figures 4.5 - 4.10 show an example of visual comparison
between a PET image and its reconstruction with the two methods. The example
was chosen so that the MSSIM between the original image and its cubic RBF in-
terpolant reconstruction would be around the average value MSSIMcubic; therefore,
MSSIM ≈ 0.78. The corresponding value of MSSIM for the PCA reconstruction is
≈ 0.83. It is clear that, although in this example the performance of reconstruction is
higher for PCA than for the cubic RBF interpolant, the latter manages to construct
an image that better preserves the anatomical structures of the brain and the PET
scan characteristics.

The application limits of the Euclidean distance-based error were already known;
the SSIM [21] was indeed designed to have a measure that could better assess image
similarities. However, the results obtained may cast doubt on the effectiveness of
this measure, at least within the scope of this thesis work.

As stated in Section 3.3, ten synthetic PET images were generated and mixed
with ten originals; they were then sent to a team of four clinicians, here called raters,
for an independent visual assessment of their realism.

Table 4.1 shows the measures of accuracy of each rater with respect to the true
labels (original or synthetic) of the PET images and the other raters; the accuracy
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Isomap representation.

PCA representation.

Figure 4.3: 3-dimensional projections of the Isomap and PCA representations of PET
images from nine research centres.
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Figure 4.4: Comparisons between cubic RBF interpolant and PCA for the each of
the performance measures E (above) and MSSIM (below).
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Figure 4.5: Example of comparison on the axial planes between a PET image and
its cubic RBF reconstruction.

Figure 4.6: Example of comparison on the axial planes between a PET image and
its PCA reconstruction.
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Figure 4.7: Example of comparison on the coronal planes between a PET image and
its cubic RBF reconstruction.

Figure 4.8: Example of comparison on the coronal planes between a PET image and
its PCA reconstruction.
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Figure 4.9: Example of comparison on the sagittal planes between a PET image and
its cubic RBF reconstruction.

Figure 4.10: Example of comparison on the sagittal planes between a PET image
and its PCA reconstruction.
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Table 4.1: Measures of accuracy among the true labels and the raters

Labels Rater 1 Rater 2 Rater 3 Rater 4
Labels 1 0.4 0.4 0.75 0.5
Rater 1 0.4 1 0.4 0.55 0.6
Rater 2 0.4 0.4 1 0.15 0.6
Rater 3 0.75 0.55 0.15 1 0.45
Rater 4 0.5 0.6 0.6 0.45 1

Table 4.2: Measures of Cohen’s kappa coefficient among the true labels and the
raters

Labels Rater 1 Rater 2 Rater 3 Rater 4
Labels 1 -0.2 -0.2 0.5 0
Rater 1 -0.2 1 -0.2 0.06 0.2
Rater 2 -0.2 -0.2 1 -0.7 0.2
Rater 3 0.5 0.06 -0.7 1 -0.1
Rater 4 0 0.2 0.2 -0.1 1

indicates the number of identical assessments of the raters over the total number of
images.

Another measure of the agreement between the raters and the true labels is
provided by the Cohen’s kappa coefficient, whose values for this test are shown in
Table 4.2; this measure of inter-rater reliability takes into account the possibility
of the agreement occurring by chance to correct the measures of accuracy. Values
near to 1 indicate a high level of concordance; the results obtained, instead, show
low, and also negative, values of Cohen’s kappa coefficient, suggesting an agreement
worse than that expected by chance [24].

Finally, given the set of assessments of each rater, Fisher’s exact test can be
adopted in order to test the significance of each rater assessments under the statistical
hypothesis that the original and synthetic PET images are distinguishable; the null
hypothesis is that the images are indistinguishable. The measures of the p-value of
this null-hypothesis significance testing are shown in Table 4.3. P-values under the
null-hypothesis are very high; only one rater comes close to the 0.05 threshold of
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Table 4.3: Measures of Fisher’s exact test (pvalue) for each rater

p-value
Rater 1 0.62848
Rater 2 0.65628
Rater 3 0.069779
Rater 4 1

significance; therefore, the null hypothesis cannot be rejected for any rater.
The outcome of the validation test on the PET images is therefore that there

are no significant agreements between the raters and the true labels and among the
raters, meaning that original and synthetic images are indistinguishable.

An example of a synthetic PET image, drawn from within the negative sample
region of Isomap representation, is shown in Figures 4.11 - 4.16 with the two neigh-
bouring negative samples that were chosen at random, from which the synthetic
image was interpolated.

A synthetic PET image generated instead from within the positive sample region
is shown in Figures 4.17 - 4.22 with the two interpolation positive neighbours.
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Figure 4.11: Synthetic negative PET image on the brain axial planes.

Figure 4.12: The two neighbouring negative samples of interpolation on the brain
axial planes.
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Figure 4.13: Synthetic negative PET image on the brain coronal planes.

Figure 4.14: The two neighbouring negative samples of interpolation on the brain
coronal planes.
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Figure 4.15: Synthetic negative PET image on the brain sagittal planes.

Figure 4.16: The two neighbouring negative samples of interpolation on the brain
sagittal planes.
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Figure 4.17: Synthetic positive PET image on the brain axial planes.

Figure 4.18: The two neighbouring positive samples of interpolation on the brain
axial planes.
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Figure 4.19: Synthetic positive PET image on the brain coronal planes.

Figure 4.20: The two neighbouring positive samples of interpolation on the brain
coronal planes.
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Figure 4.21: Synthetic positive PET image on the brain sagittal planes.

Figure 4.22: The two neighbouring positive samples of interpolation on the brain
sagittal planes.
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Chapter 5

Conclusions

The adoption of a scale-free cubic RBF interpolant was found to be effective for
the inversion of the Isomap dimensionality reduction mapping. Reconstructed PET
images were visually similar to the originals, at least with respect to the ones provided
by the inversion of PCA. The measures adopted to define the similarity between
images did not prove useful, suggesting the search for new methods to assess image
reconstruction quality.

Realistic synthetic images could be generated, passing the clinicians’ assessment
test, which confirmed the indistinguishability between original and synthetic images.

The results of this thesis work point to the improvement of the research frame-
work in the amyloid-beta PET field. Legal constraints arising from privacy issues
about management of sensitive data could be overcome; at the same time, available
data could be increased considerably without the restriction of data acquisition limi-
tations, potentially improving other research fields where the same kind of data-wise
issues are present.

Refinements in obtained results could be achieved through improvements of man-
ifold learning and inverse mapping stages during PET image analysis, by exploring
different combinations in the choice of algorithm parameters and by applying other
non-linear dimensionality reduction algorithms.

Finally, a future work could be to built a classifier capable of distinguish between
positive and negative PET images, to be trained on synthetic images generated from
within the bulk of the two classes and from the boundary separating them; the next
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step would then be to search for characteristics of the PET images that associate
them to the two classes, by inspecting their variability when moving from one class
to the other.
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