
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Image Processing and Computer Vision

SMART MIRROR: REMOTE VERIFICATION
OF AN IDENTITY DOCUMENT HOLDER

CANDIDATE SUPERVISOR

Michele Vece Prof. Luigi Di Stefano

Academic Year 2021-2022

Session 3rd

Contents

1 Introduction 1

1.1 Content overview . 1

2 Literature review 2

2.1 Face Recognition . 2

2.1.1 Face Recognition before neural networks 2

2.1.2 Face Recogniton neural networks 3

2.1.3 Face Recognition challenges 3

2.2 Face Detection . 3

2.2.1 Adopted model . 4

2.3 Face Verification . 4

2.3.1 Adopted models . 5

3 Implementation 7

3.1 Introduction . 7

3.2 System architecture overview 7

3.3 How it works . 8

3.3.1 Face detection . 8

3.3.2 Face Verification . 9

3.3.3 Models . 10

3.3.4 Example of use . 10

4 Evaluation 13

ii

4.1 Experimental settings . 13

4.1.1 Datasets . 13

4.1.2 Face Detection . 14

4.1.3 Face Verification . 16

4.2 Further evaluation . 20

4.2.1 Face Detection . 20

4.2.2 Face verification . 20

5 Conclusions 22

5.1 Final remarks . 22

5.2 Future work . 22

Bibliography 24

Acknowledgements 26

iii

List of Figures

2.1 ArcFace leads to better separation between closest classes . . . 5

2.2 Example of a triplet loss . 6

3.1 Smart Mirror architecture . 7

3.2 Sequence diagram . 11

4.1 Face detection performed at different resolutions 14

4.2 Confidence of true and false positive face detections 16

4.3 Distributions of true and false matches with different distance

metrics. 18

4.4 TPR and FPR at different confidence threshold levels. 19

4.5 Average confidence values for true and false matches 21

4.6 Average confidence values for true and false matches, after

removal of the lowest confidence 21

iv

Abstract

Nowadays, some activities, such as subscribing an insurance policy or opening

a bank account, are possible by navigating through a web page or a download-

able application.

Since the user is often “hidden” behind a monitor or a smartphone, it is

necessary a solution able to guarantee about their identity.

Companies are often requiring the submission of a “proof-of-identity”,

which usually consists in a picture of an identity document of the user, to-

gether with a picture or a brief video of themselves.

This work describes a system whose purpose is the automation of these

kinds of verifications.

Chapter 1

Introduction

This work was carried out in collaboration with Blue Reply srl [1]. It consists

in the implementation of a face detection and verification web application,

which should integrate their already working document recognition app.

1.1 Content overview

This work is structured as follows.

Chapter 2 explains the concepts of face detection and face verification

and briefly describes the main characteristics of the architectures used in next

sections.

Chapter 3 describes the implementation of the web application and its ar-

chitecture and illustrates a simple use case.

Chapter 4 goes deep in the choice of some parameters of the system and

contains the analysis of its behaviour in response to freely available datasets

and the evaluation on a custom dataset.

Chapter 5 resumes the entire work and presents the conclusions drawn.

Chapter 2

Literature review

2.1 Face Recognition

The term Face Recognition (FR) refers to systems capable of detecting and

matching a human face from a digital image or a video frame against a set of

faces.

2.1.1 Face Recognition before neural networks

Face Recognition approaches prior to the spread of neural networks could be

divided into three main groups [12].

First, holistic approaches, which use a derivation of low-dimensional rep-

resentation through certain distribution assumptions. Second, local-feature-

based FR, that make use of some invariant properties of local filtering. Finally,

learning-based local descriptors, in which local filters are learnt for better dis-

tinctiveness.

Differently from neural networks, these traditional methods attempted to

recognize human faces by few layers of representations. In addition, most

methods aimed to address only one aspect of unconstrained facial changes:

there was no method to address these unconstrained challenges in an inte-

grated way. As a consequence, these “shallow” methods were not capable to

2.2 Face Detection 3

extract stable identity features invariant to real-world variations.

2.1.2 Face Recogniton neural networks

Face Recognition networks inherit from deep classification networks [12]: the

network is trained over a set of known face identities and then an intermediate

bottleneck layer is used as a representation to generalize recognition beyond

the set of identities used in the training.

Evolution of network architectures and training losses

As a consequence, the first architectures were exclusively inspired by stan-

dard Convolutional Neural Networks. However, in the years, they have been

evolving and nowadays include also inception modules or residual layers.

Similarly, initially FR networks adopted cross-entropy based softmax loss

for feature learning. However, this loss was not sufficient by itself to learn dis-

criminative features. An alternative approach consisted in the use of Euclidean-

distance-based losses (e.g., contrastive loss, triplet loss). Starting from 2017,

angular and cosine-margin-based losses became popular.

2.1.3 Face Recognition challenges

Many challenges are still open in the face recognition paradigm. They include

dealing with different poses, ages, make-up and low resolution images.

2.2 Face Detection

The term Face Detection refers to systems capable of detecting a human face

in a digital image or a video frame.

They usually return the coordinates of the detected face(s), if any, and a

confidence value.

2.3 Face Verification 4

2.2.1 Adopted model

In the following, a brief overview of the model adopted as face detector in the

web application.

MTCNN

Multitask Cascaded Convolutional Neural Networks (MTCNN) are described

in [13].

The cascade face detector proposed by Viola and Jones [11] and based

on Haar-Like features usually achieves good performance with real-time effi-

ciency. However, it may degrade significantly in real-world applications with

larger visual variations of human faces. As a consequence, a more robust de-

tector is needed and MTCNN is a good alternative.

In MTCNN, given an image, it is resized to different scales to build an im-

age pyramid, which is the input of the following three-stage cascaded frame-

work:

1. a Proposal Network (P-Net), which identifies the candidate windows

and their bounding box regression vectors;

2. a Refine Network (R-Net), which further rejects a large number of false

candidates;

3. an Output Network (O-Net), which outputs the five facial landmarks’

positions for eyes, nose and mouth.

At each step, calibration with bounding box regression is performed and

highly overlapped candidates are merged via non-maximum suppression.

2.3 Face Verification

Face Verification aims at establishing whether two images represent the same

person.

2.3 Face Verification 5

It differs from Face Identification, whose purpose, instead, consists in de-

termining the specific identity of the person represented in the image. While

Face Verification computes one-to-one similarity between the two input im-

ages, Face Identitification performs one-to-many similarity.

2.3.1 Adopted models

In the following, a brief overview of the models used in the web application.

ArcFace

ArcFace is described in [3]. The architecture implemented in [10] is a ResNet-

34 with an embedding dimension of 512 and reaches 99.41% on LFW bench-

mark.

They propose an Additive Angular Margin Loss to further improve the

discriminative power of the face recognition model and the stabilization of

the training process.

The arc-cosine function is used to calculate the angle between the cur-

rent feature and the target weight, then an additive angular margin penalty is

added to simultaneously enhance the intra-class compactness and inter-class

discrepancy.

As a consequence, while softmax loss provides roughly separable feature

embedding, but produces ambiguity in decision boundaries, ArcFace loss en-

forces a more evident gap between the nearest classes, as shown in figure 2.1

from [3].

Figure 2.1: ArcFace leads to better separation between closest classes

2.3 Face Verification 6

Dlib

Dlib face recognition network is briefly described in [5]. Also its architecture

is a ResNet, but with 29 layers convolutional layers. The dimension of the

embedding is 128 and it reaches 99.38% on LFW benchmark.

According to its creator, it is essentially a version of the ResNet-34 net-

work from [6] with a few layers removed and the number of filters per layer

reduced by half [5].

FaceNet

FaceNet model is described in [9]. The architecture implemented in [10] is an

Inception-ResNet with an embedding of dimension 512. It reaches 99.65% on

LFW benchmark.

In contrast to traditional network approaches, which train a classifier and

then use an intermediate bottleneck layer as face representation, FaceNet di-

rectly optimize the embedding itself using a triplet based loss function.

Figure 2.2 from [9] shows how triplet loss works. Each triplet consists of

two matching faces and a non-matching face and the loss aims to separate the

positive pair from the negative one.

Figure 2.2: Example of a triplet loss

The correct choice of the triplets to use is relevant for achieving good

performance. Ideally, hardest positive and hardest negative samples should

be selected. In practice, positives and semi-hard negatives are used.

Chapter 3

Implementation

3.1 Introduction

The main purpose of this work consists in the creation of a system, named

Smart Mirror, which, once received two images in input (a document and

a selfie of the user), is able to establish whether the user is the person the

document belongs to.

3.2 System architecture overview

Software architecture is represented in figure 3.1.

Figure 3.1: Smart Mirror architecture

3.3 How it works 8

Two main components can be distinguished: the main application and the

microservices.

Main application

This application is the entry point of the system and the only component the

client should interact with. It exposes two services, one for face detection and

the other for face verification.

However, it does not compute any operation on the images: it simply re-

ceives requests from the client and forwards them to the appropriate microser-

vice(s). Then, it elaborates their responses and returns a final result to the

client.

Since Java is the main programming language used by the company, this

software is written in Spring Boot to ensure easy maintainability and interop-

erability with other company applications.

Microservices

These applications are supposed to interact only with the main application.

Each of them exposes only one service and is able to solve a specific task

(face detection or verification) by using the appropriate model or library.

Since artificial intelligence libraries and models have higher support for

python, these microservices are written by using this language and Flask.

3.3 How it works

3.3.1 Face detection

Face detection consists in finding a face inside an image. Given an image,

this implementation returns the location of the most probable detected face (if

any).

3.3 How it works 9

Confidence threshold

A detected face is returned only if its confidence is greater or equal than a

confidence threshold. Reducing the threshold may lead to false positives de-

tection, while increasing it will make harder to detect faces.

In order to determine an appropriate threshold value, the detector was

tested with a set of identity documents of different type (identity cards, pass-

ports, etc). A proper threshold could be set around 0.9 (see section 4.1.2).

Image rotation

Detectors cannot work with upside-down images. To deal with this issue, it is

possible to apply one or more rotations to the picture. Each time the image is

rotated, the detector is run. At the end, the face with the highest confidence is

returned (if any), together with the angle of the rotation.

Face alignment

Face alignment consists in rotating a detected face by a few degrees such that

the eyes are aligned, namely they have the same ordinate. Even if face align-

ment is not mandatory before feeding images to face verification models, it is

recommended.

3.3.2 Face Verification

Face verification consists in comparing two faces and establishing whether

they represent the same person or not.

Mechanism

To increase the reliability of the result, more than one microservice is re-

quested to verify the two input images, and finally their responses are gathered

and elaborated according to the following voting schemes.

3.3 How it works 10

Soft voting

As a first attempt, faces are verified if the average of the confidences returned

by the microservices is greater or equal than a given (first) threshold.

Hard voting

In case soft voting fails, a second attempt consists in discarding the lowest

confidence (among the three returned by the microservices). Among the re-

maining confidences, the ones with a value greater or equal than a second

threshold1 are considered. If more than half of microservices satisfy this con-

dition, faces are verified otherwise not.

3.3.3 Models

According to the company, the use of more neural networks to perform the

same task may guarantee the reliability of the result.

As a consequence, face verification, which is the final objective of this

system, uses three models. Face detection, instead, which is a preliminary task

to face verification, uses only a single model.

For both tasks, the choice of models fell on available and widely used

models with good performance: MTCNN [13] from [8] was selected for face

detection, while ArcFace [3] and FaceNet [9] from DeepFace framework [10]

and Dlib [4] face recognition model were used for face verification.

These last three models already include their own face detector, which has

been disabled to avoid detection from being performed multiple times.

3.3.4 Example of use

An example of interaction between the client and the software components is

described in figure 3.2.
1The new threshold should be higher than the previous one.

3.3 How it works 11

Figure 3.2: Sequence diagram

1. The client sends two (sequential or parallel) requests to the main appli-

cation, asking for face detection on two pictures (e.g. a document and

a selfie);

(a) the application forwards the requests to the microservice in charge

of the face detection;

(b) the microservice returns, for each request, if a face was detected

or not, and eventually the bounding box and the rotation angle;

(c) the main application forwards the responses to the client;

2. the client should resend a request with a different picture if no face was

3.3 How it works 12

detected, otherwise it should:

(a) crop the pictures (using the received bounding box coordinates);

(b) eventually rotate/align the pictures (using the provided angle);

3. the client sends a new request to the main application asking for face

verification on the cropped (and eventually aligned) pictures;

(a) the application sends parallel requests to themicroservices in charge

of face verification;

(b) each microservice applies an algorithm and returns a confidence

score;

(c) the application elaborates the confidence scores, applies a voting

scheme and returns the final outcome, the confidence score and

the intermediate elaborations.

Chapter 4

Evaluation

4.1 Experimental settings

4.1.1 Datasets

In the experiments, the following two popular dataset are used.

MIDV dataset

This dataset contains photos and videos of documents. There exists more than

a single version. The one used in the following is the MIDV-2020 [2], which

comprises 10 document types, each present in previously published MIDV-

500 and MIDV-2019 datasets. For each of document type, a sample of 100

documents (of different people) is available.

LFW dataset

Labeled Faces in theWild (LFW) [7] is a dataset of face photographs designed

for studying the problem of face recognition. The dataset contains more than

13,000 images of faces collected from the web. Each face has been labeled

with the name of the person pictured. 1680 of the people pictured have two or

more distinct photos in the dataset.

4.1 Experimental settings 14

4.1.2 Face Detection

In order to determine an appropriate threshold value, the detector was tested

with a set of identity documents of different type (identity cards, passports,

etc.) from MIDV dataset.

Confidence and image resolution

First, images from the MIDV dataset were resized multiple times in order to

evaluate the behaviour of the detector with images of lower resolution and,

consequently, lower quality.

Starting from images at their original dimensions1, they were progres-

sively reduced, in such a way the smaller dimension2 was almost halved,

matching the values: 1000, 500, 200, 100. The aspect ratio was maintained in

order not to alter the content of the picture.

Figure 4.1: Face detection performed at different resolutions

Figure 4.1 shows the percentage of faces detected and the amount of time

required at different resolution levels.

As expected, the required time grows as the resolution increases. Also

the amount of detected faces varies according to the resolution. However, it
1All the images belonging to the MIDV dataset have dimensions 2260 x 4032 pixels
2Since all images are in portrait mode, the smaller dimension is always the width.

4.1 Experimental settings 15

should be considered that both the amount of detected faces and the confi-

dence at which they are detected is only marginally affected by the change

of the resolution: firstly, the percentage of faces detected is almost constant

(except for the first case, in which the amount of faces collapsed); secondly,

the confidence of each face is substantially unchanged.

From the figure above, it could be concluded that the second resolution is

the most efficient. However, in the following, the third one is used, because it

retrieves almost all the faces detected at the highest resolution at a low addi-

tional cost and better preserves the quality of the image.

Confidence threshold

Since the face detector returns, along with the coordinates of the found face,

a confidence value, it is required to establish a threshold to distinguish which

of the input pictures contain a face and which, instead, should be rejected.

Also in this case, experiments were run on the MIDV dataset. To further

investigate the possibility of false detections, each document was rotated four

times, by 90° at each time.

In addition to the already detected 951 faces, 49 false positives3 were

found. Figure 4.2 shows the confidence of true and false positives.

From the figure it emerges that:

• almost all faces were detected with a truly high confidence (99%);

• false positives were detected with a value lower than 95%4;

• there were no detections with confidence lower than 70%.

According to the severity of the detection, two possible solutions could be

suggested. First, the threshold is set to a value close to 99%, to ensure only true

positives are selected. Alternatively, it it possible to adopt a threshold around
3Upside down faces were not included.
4Except an observation with a value of 96%

4.1 Experimental settings 16

Figure 4.2: Confidence of true and false positive face detections

90-95%, which will include additional true positives at the cost of acquiring

also some false positives. An even lower threshold is discouraged.

In this application, face detection is relevant but at the same time is a

preliminary step to the final objective, consisting in face verification. Any

false positive will surely be rejected in the successive step. For this reason,

the threshold was set to 0.9.

4.1.3 Face Verification

The need for a confidence value

A “limitation” of the face verification models that were chosen consists in the

fact that they return only a boolean value, indicating the result of the verifica-

tion. In most of the cases, also a confidence value would be desirable.

In fact, it is particularly relevant to distinguish between truly verified im-

ages and those whose result is borderline. In this case, the approval or the

rejection of similar images containing the same person may be affected not

only by the face of the person itself, but also by other elements such as the

quality of the image, and may lead to different results.

4.1 Experimental settings 17

True and false matches distributions

A method to establish a confidence value consists in finding the distribution

of true and false matches, and then computing to which distribution the new

item is more likely to belong to.

To obtain a population, a subset of pictures from Labeled Faces in the

Wild (LFW) was used. First, people with at least 10 photos per each were

selected, then, 100 identities were random sampled among them. This ensures

the possibility of having a total of 4500 true matches. After that, an equal

number of false matches was sampled.

After running face detection on this subset, for each face verificationmodel,

embedding of the input images were computed.

Then, distances between each pair of images in true and falsematches were

calculated. These distances were used as population to obtain the distribution

of true and false matches. Since the aim of face verification consists in the

distinction among these pairs, it is desirable to have distribution curves as

separated as possible.

Distance metric

In order to measure the distance between each pair, distance metrics need to

be defined. A traditional metric is represented by the euclidean distance, but,

in general, cosine similarity is preferred to it.

Here, the appropriate metric for each model was obtained comparing the

curves of the distributions, as in figure 4.3.

While for ArcFace and Dlib models it seems evident that, respectively,

the cosine distance and the euclidean distance guarantee better separability of

the curves, for FaceNet model the level of separation is similar. So, for this

model, cosine distance was used since generally preferred.

4.1 Experimental settings 18

(a) Euclidean and cosine distances for ArcFace model

(b) Euclidean and cosine distances for Dlib model

(c) Euclidean and cosine distances for FaceNet model

Figure 4.3: Distributions of true and false matches with different distance met-
rics.

Confidence estimation

Given the distribution curves for each model, the confidence was computed

as follows:

confidence(d) = ytrue(d)
ytrue(d) + yfalse(d)

4.1 Experimental settings 19

where d is the distance between a pair of images and ytrue, yfalse represent

the probability of d of belonging, respectively, to the true and false matches

distribution.

Confidence threshold

Once the confidence of eachmodel was obtained, their average was computed.

To better contextualize the meaning of the average confidence value, True

Positive Rate (TPR) and False Positive Rate (FPR) for different values of av-

erage confidence are computed, as can be seen in figure 4.4.

Figure 4.4: TPR and FPR at different confidence threshold levels.

For instance, with an average confidence of 0.7, the TPR is 0.915 and the

FPR is 0.004, while for a confidence of 0.5, TPR is 0.953 and FPR is 0.013.

High thresholds ensure that only true positives are detected, but about 10%

of them may be missed. Lowering the threshold will include further TP but

also false positives. However, even with a threshold of 0.5, the amount of FP

is limited.

Again, the choice of the average confidence threshold to adopt depends on

the severity of the context where the face verification system is applied.

4.2 Further evaluation 20

4.2 Further evaluation

The overall system was evaluated also on a custom dataset, containing images

of documents and photos from family, friends and colleagues.

There are 28 identities, with a different number of pictures for each, for

a total amount of about 400 pictures. People were asked to pose in several

positions and to include also not clear pictures of documents (e.g. warped, at

different distances from the camera, in various lightning conditions and from

diverse perspectives) with the objective of evaluating the overall system in

challenging situations.

4.2.1 Face Detection

With respect to face detection, results were satisfying: almost all faces were

detected, with the minimum threshold fixed at 0.9. No false positives were

retrieved.

Detected images included even people with sunglasses. Images where de-

tection failed did not include a proper face: people were not showing their face

at all (e.g. they were with their back turned), the face was missing because the

image represented the back of the document, or the photo was highly blurred.

4.2.2 Face verification

In order to test to face verification, combinations of true and false matches

were computed, for a total of about 3000 matches.

On this dataset, the system performed better in the rejection of falsematches

than in the approval of true ones, as shown in figure 4.5. However, as already

stated, the dataset explicitly contains low quality photos that make verification

harder.

An alternative that seems to adjust the performance consists in the removal

of the minimum confidence (among the three ones considered) when comput-

ing the average confidence.

4.2 Further evaluation 21

Figure 4.5: Average confidence values for true and false matches

Figure 4.6: Average confidence values for true and false matches, after re-
moval of the lowest confidence

The idea is that the performance of a single model could be low on a spe-

cific image, for some reasons. Obviously, the removal of the lowest value will

increase the average confidence and this will lead to an increment in the true

positives detection. The drawback may consist in the rise of false positives,

also.

Experimentally, this idea seems working on the input dataset, as shown in

figure 4.6: the amount of true positives is increased, while the one of false

positives is almost the same.

Chapter 5

Conclusions

5.1 Final remarks

This work explored the opportunity of an application of artificial intelligence

concepts to business related scenarios.

Existing solutions (face detection and verification models) have been in-

serted in a web application that will be used by a real company.

However, these solutions cannot be simply used “as they are”, but a com-

prehension of their mechanism is required. In this specific case, the compu-

tation and the insertion of confidence thresholds make their results clearer to

the final user.

It would be desirable to make further evaluations on more appropriate

datasets. However, identity documents data are not free available, at the mo-

ment, due to privacy reasons.

5.2 Future work

Here, the provided solution does not take into account the possibility of fake

identity documents or user photos.

5.2 Future work 23

Establishing the validity of the documents competes to the document recog-

nition application, at which this solution will be integrated. Instead, the inser-

tion of an anti-spoofing filter would be recommended to perform the liveness

detection of the user behind the monitor.

Bibliography

[1] Blue Reply: Technology Consulting. URL: https://www.reply.

com/blue-reply/it/.

[2] K. Bulatov, E. Emelianova, D. Tropin, N. Skoryukina, Y. Chernyshova,

A. Sheshkus, S. Usilin, Z. Ming, J.-C. Burie, M. Luqman, and V. Ar-

lazarov. MIDV-2020: A Comprehensive Benchmark Dataset for Iden-

tity Document Analysis. Computer Optics, 46(2):252–270, April 2022.

DOI: 10.18287/2412-6179-co-1006. URL: https://doi.org/

10.18287%5C%2F2412-6179-co-1006.

[3] J. Deng, J. Guo, J. Yang, N. Xue, I. Cotsia, and S. P. Zafeiriou. Arc-

Face: Additive Angular Margin Loss for Deep Face Recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence:1–1, 2021.

DOI: 10.1109/tpami.2021.3087709. URL: https://doi.org/

10.1109%5C%2Ftpami.2021.3087709.

[4] Dlib C++ Library. URL: http://dlib.net/python/index.html.

[5] Dlib models. URL: https : / / github . com / davisking / dlib -

models.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Im-

age Recognition, 2015. DOI: 10.48550/ARXIV.1512.03385. URL:

https://arxiv.org/abs/1512.03385.

https://www.reply.com/blue-reply/it/
https://www.reply.com/blue-reply/it/
https://doi.org/10.18287/2412-6179-co-1006
https://doi.org/10.18287%5C%2F2412-6179-co-1006
https://doi.org/10.18287%5C%2F2412-6179-co-1006
https://doi.org/10.1109/tpami.2021.3087709
https://doi.org/10.1109%5C%2Ftpami.2021.3087709
https://doi.org/10.1109%5C%2Ftpami.2021.3087709
http://dlib.net/python/index.html
https://github.com/davisking/dlib-models
https://github.com/davisking/dlib-models
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385

BIBLIOGRAPHY 25

[7] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled

Faces in the Wild: A Database for Studying Face Recognition in Un-

constrained Environments. Technical report 07-49, University of Mas-

sachusetts, Amherst, October 2007.

[8] MTCNN-OpenCV. URL: https : / / github . com / linxiaohui /

mtcnn-opencv.

[9] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A Unified Em-

bedding for Face Recognition and Clustering. In 2015 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR). IEEE, June

2015. DOI: 10.1109/cvpr.2015.7298682. URL: https://doi.

org/10.1109%5C%2Fcvpr.2015.7298682.

[10] S. I. Serengil and A. Ozpinar. LightFace: A Hybrid Deep Face Recog-

nition Framework. In 2020 Innovations in Intelligent Systems and Ap-

plications Conference (ASYU), pages 23–27. IEEE, 2020. DOI: 10 .

1109/ASYU50717.2020.9259802. URL: https://doi.org/10.

1109/ASYU50717.2020.9259802.

[11] P. Viola and M. J. Jones. Robust Real-Time Face Detection. Interna-

tional journal of computer vision, 57(2):137–154, 2004.

[12] M. Wang and W. Deng. Deep Face Recognition: A Survey. Neurocom-

puting, 429:215–244, 2021. ISSN: 0925-2312. DOI: https://doi.

org/10.1016/j.neucom.2020.10.081. URL: https://www.

sciencedirect.com/science/article/pii/S0925231220316945.

[13] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint Face Detection and Align-

ment Using Multitask Cascaded Convolutional Networks. IEEE Signal

Processing Letters, 23(10):1499–1503, October 2016. DOI: 10.1109/

lsp.2016.2603342. URL: https://doi.org/10.1109%5C%2Flsp.

2016.2603342.

https://github.com/linxiaohui/mtcnn-opencv
https://github.com/linxiaohui/mtcnn-opencv
https://doi.org/10.1109/cvpr.2015.7298682
https://doi.org/10.1109%5C%2Fcvpr.2015.7298682
https://doi.org/10.1109%5C%2Fcvpr.2015.7298682
https://doi.org/10.1109/ASYU50717.2020.9259802
https://doi.org/10.1109/ASYU50717.2020.9259802
https://doi.org/10.1109/ASYU50717.2020.9259802
https://doi.org/10.1109/ASYU50717.2020.9259802
https://doi.org/https://doi.org/10.1016/j.neucom.2020.10.081
https://doi.org/https://doi.org/10.1016/j.neucom.2020.10.081
https://www.sciencedirect.com/science/article/pii/S0925231220316945
https://www.sciencedirect.com/science/article/pii/S0925231220316945
https://doi.org/10.1109/lsp.2016.2603342
https://doi.org/10.1109/lsp.2016.2603342
https://doi.org/10.1109%5C%2Flsp.2016.2603342
https://doi.org/10.1109%5C%2Flsp.2016.2603342

Acknowledgements

I would like to thank my supervisor Dr. Luigi Di Stefano for his assistance

and advice with this thesis.

I would also like to express my gratitude to Drs. Fabio Fasano, Gennaro

Orizzonte, Filippo Bregoli and Enzo Pio Palmisano and all the Reply staff

for allowing me the opportunity to attend the internship in the company, for

providing me guidance throughout this project and for welcoming me into the

Reply team.

Finally, I could not have undertaken this journey without the support of

my family and friends.

	Introduction
	Content overview

	Literature review
	Face Recognition
	Face Recognition before neural networks
	Face Recogniton neural networks
	Face Recognition challenges

	Face Detection
	Adopted model

	Face Verification
	Adopted models

	Implementation
	Introduction
	System architecture overview
	How it works
	Face detection
	Face Verification
	Models
	Example of use

	Evaluation
	Experimental settings
	Datasets
	Face Detection
	Face Verification

	Further evaluation
	Face Detection
	Face verification

	Conclusions
	Final remarks
	Future work

	Bibliography
	Acknowledgements

