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Introduzione

La decomposizione di Iwasawa è una decomposizione di un gruppo di Lie

semisemplice G in cui i fattori sono sottogruppi chiusi di G e il cui prototipo è

il procedimento di ortonormalizzazione di Gram-Schmidt. Per esempio, siano

G = SLn(C), U(n) il gruppo unitario, K = G ∩ U(n), A il sottogruppo di

G delle matrici diagonali con elementi diagonali positivi ed U il sottogruppo

delle matrici unipotenti, triangolari superiori. La decomposizione di Iwasawa

è G = KAU nel senso che la moltiplicazione K×A×U → G è un omeomor-

fismo (e, in effetti, un diffeomorfismo). Questa decomposizione si estende a

tutti i gruppi di Lie semisemplici. In tal caso si ottiene una decomposizione

dell’algebra di Lie e si solleva ai gruppi. I dettagli di questa costruzione

generale possono essere trovati, ad esempio, in [K].

Obbiettivo principale di questo lavoro è studiare la decomposizione di

Iwasawa del gruppo SL2(R) approfondendone alcune rilevanti applicazioni

topologiche ed algebriche.

La tesi si sviluppa intorno ad un capitolo principale, il Capitolo 2, che si

apre con la dimostrazione della decomposizione di Iwasawa per SL2(R). Il

Teorema 2.2.1 mostra poi che SL2(R) può essere pensato come la parte in-

terna di un toro solido, dunque è possibile calcolarne il gruppo fondamentale

e il rivestimento universale. Il paragrafo 2.4 è dedicato allo studio delle classi

di coniugio degli elementi di SL2(R), descritte in termini dei sottogruppi che

compaiono nella decomposizione di Iwasawa (Teorema 2.4.1). Infine nel para-

grafo 2.5 la decomposizione di Iwasawa viene ottenuta utilizzando l’azione di

SL2(R) sul semipiano superiore. La referenza principale per questo capitolo

i
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è una nota di Keith Conrad sull’argomento [C].

Il Capitolo 1 raccoglie il materiale introduttivo utile ad una lettura au-

tocontenuta della tesi. In particolare vengono introdotti i gruppi topologici

GLn(F) e SLn(F), l’azione di un gruppo su un insieme e l’esponenziale di

matrici.

Infine, nel Capitolo 3 viene estesa la dimostrazione della decomposizione

di Iwasawa ai gruppi SLn(R) e SLn(C).



Introduction

The Iwasawa decomposition is a decomposition of a semisimple Lie group

G in which the factors are closed subgroups of G and whose prototype is the

Gram-Schmidt orthonormalization process. For instance, let G = SLn(C),
U(n) the unitary group, K = G ∩ U(n), A the subgroup of G of diagonal

matrices with positive diagonal entries and U the subgroup of unipotent up-

per triangular matrices. The Iwasawa decomposition is G = KAU , meaning

that the product K × A × U → G is a homomorphism (and, in fact, a dif-

feomorphism). This decomposition extends to all semisimple Lie groups. In

that case, a decomposition of the Lie algebra is obtained and lifted to the

group. The details of this general construction can be found, for example, in

[K].

The main goal of this thesis is to study the Iwasawa decomposition of

SL2(R), examining some relevant topological and algebraic applications.

The thesis is developed around a main chapter, Chapter 2, which opens

with a proof of the Iwasawa decomposition for SL2(R). Theorem 2.2.1 shows

that SL2(R) can be thought as the inside of a solid torus, so it is possible to

calculate its fundamental group and universal covering. Section 2.4 concerns

the study of the conjugacy classes of elements of SL2(R), described in terms

of the subgroups that appear in the Iwasawa decomposition (Theorem 2.4.1).

Lastly, in Section 2.5, the Iwasawa decomposition is obtained using the action

of SL2(R) on the upper half-plane. The main reference for this chapter is a

note by Keith Conrad on the topic [C].

Chapter 1 presents introductory material useful for reading the thesis.

iii



iv INTRODUCTION

In particular, the following topics are introduced: the topological groups

GLn(F) and SLn(F), the action of a group on a set, and matrix exponential.

Lastly, in Chapter 3 the Iwasawa decomposition is generalized to the

groups SLn(R) and SLn(C).
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Chapter 1

Preliminaries

1.1 The groups GLn(F) and SLn(F)

Let F be a field and let n be a positive integer.

We denote by Mn(F) the set of n× n matrices with coefficients in F.
The general linear group of order n is the subset of Mn(F) of invertible

matrices:

GLn(F) = {g ∈ Mn(F) | det g ̸= 0}.

Endowing it with the matrix product operation it gains a group structure.

We define SLn(F) as the set of matrices in Mn(F) with determinant 1:

SLn(F) = {g ∈ Mn(F) | det g = 1}.

It is a subgroup of GLn(F) due to Binet Theorem.

In this thesis we are interested in the cases F = R or F = C.

Topological structure

A topological group G is a topological space with a group structure such

that the group operations

G×G→ G G→ G

(x, y) 7→ x · y x 7→ x−1

1



2 1. Preliminaries

are continuous.

In the special cases F = R,C we can see GLn(F) and SLn(F) as topologi-

cal groups endowing them with the euclidean induced topology, identifying

Mn(F) with Fn×n.

The interesting maps between two topological groups are the continuous ho-

momorphisms.

Remark 1.1.1. Requiring both continuity and homomorphism conditions is

not redundant at all: neither condition implies the other. For instance we

can examine G := (Q[e],+) with the euclidean induced topology from R and

the functions

f : G→ G g : G→ G

x 7→ 3 q 7→ q for q ∈ Q

e 7→ 0;

the map f is continuous because it is constant, but it is not a homomorphism

since f(0) ̸= 0; conversely g is a homomorphism by definition but it is not

continuous because there exist open neighbourhoods of 0 whose inverse image

is not open.

1.2 Group action

Let X be a set and let G be a group.

A map σ : X → X is called a permutation of X if it is bijective. Let us denote

by Perm(X) the set of all the permutations of X. It’s easy to prove that it

gains a group structure when endowed with function composition operation.

We define an action of the group G on X a map

G×X → X

(g, x) 7→ gx

satisfying the two following properties:
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• denoted by e the identity of the group G, for every x ∈ X, ex = x;

• for every g1, g2 ∈ G and for every x ∈ X, g1(g2x) = (g1g2)x.

It follows from these properties that the map ρg : x 7→ gx is a permutation

of X (with ρg−1 : x 7→ g−1x as inverse), hence the map

ρ : G→ Perm(X)

g 7→ ρg

is a group homomorphism.

Conversely such a homomorphism gives rise to an action of G on X.

Given x ∈ X we denote by OG
x the subset of elements y ∈ X such that

y = gx for some g ∈ G, called the orbit of x in G, and by Stab(x) the subset

of elements g in G such that gx = x (relative to a fixed action), called the

stabilizer of x (in G).

It’s easy to prove that the latter is a subgroup of G.

An action of G on X is called transitive if for any two elements x, y ∈ X

there exists an element g ∈ G such that y = gx; in other words an action

is transitive on X if there is a unique orbit. Equivalently we will say that G

acts transitively on X.

1.3 Exponential and logarithm of matrices

Let us introduce a norm on Mn(R). We define

∥·∥ : Mn(R)→ R (1.1)

A 7→ sup
x∈Rn,∥x∥Rn=1

∥Ax∥Rn .

It is well defined because the sphere {x ∈ Rn, ∥x∥Rn = 1} is compact and the

map x 7→ ∥Ax∥Rn is continuous, and it is actually a norm (cf. [A]).

We can define, as in the scalar case, the exponential of a matrix X ∈ Mn(R)
as follows

expX :=
∞∑
j=0

Xj

j!
. (1.2)
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Proposition 1.3.1. For every X ∈ Mn(R), the series (1.2) is convergent

for the norm (1.1).

Proof. For the proof see [A].

We will also use eX to denote expX.

Cases of diagonal and nilpotent matrices

Let us examine the cases of diagonal and nilpotent matrices. Narrowing

down to these two cases greatly simplifies the calculation of the sum of the

series. In the first case because the series of matrices becomes a matrix whose

components are scalar series; in the second one because the series becomes

a polynomial: let A =


a1

. . .

an

 ∈ Mn(R) be a diagonal matrix and

N ∈ Mn(R) be a nilpotent matrix (notice that its order of nilpotence must

be ≤ n).

We have

eA =
∞∑
i=0

1

i!
Ai = In +


a1

. . .

an

+
1

2


a21

. . .

a2n

+ · · · =

=


ea1

. . .

ean

 ;

eN =
∞∑
i=0

1

i!
N i =

n−1∑
i=0

1

i!
N i +

1

n!
0 +

1

(n+ 1)!
0 + · · · =

n−1∑
i=0

1

i!
N i,

where we have denoted by 0 the null matrix.

Let us fix the following notation:

• nn is the set of strictly upper triangular matrices (which are nilpotent

of degree ≤ n);
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• Un := {In +X | X ∈ nn} is the set of unipotent upper triangular ma-

trices, i.e. the set of the upper triangular matrices with 1’s as diagonal

entries;

• Dn is the set of diagonal matrices;

• An is the set of diagonal matrices with positive diagonal entries.

We define, for every Y = In +X ∈ Un,

log (In +X) :=
n−1∑
j=1

(−1)j+1X
j

j

and for every A =


a1

. . .

an

 ∈ An,

logA :=


log a1

. . .

log an

 .

It is proven that

exp: nn → Un, log : Un → nn

X 7→ eX Y 7→ log Y

are inverse functions over any field of characteristic 0 (cf. [L1]).

Notice that for n = 2 the bijection is just X ←→ I2 +X.

Currently it’s easy to prove that

exp: Dn → An, log : An → Dn

D 7→ eD A 7→ logA

are inverse functions over any field of characteristic 0.

We can also define for Y ∈ Un, An and for t ∈ R

Y t := exp(t · log Y ).
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In the specific case of n = 2, if we set U =

(
1 x

0 1

)
, and A =

(
a1 0

0 a2

)
, we

have

U t =

(
1 x

0 1

)t

= exp

(
t · log

(
1 x

0 1

))
= exp

(
0 tx

0 0

)
=

(
1 tx

0 1

)
;

At = exp(t · log

(
a1 0

0 a2

)
=

(
et·log a1 0

0 et·log a2

)
=

(
at1 0

0 at2

)
.

We will use these formulas in Section 2.2.



Chapter 2

SL2(R) Iwasawa decomposition

In this chapter we will pay attention on SL2(R).
We will derive a product decomposition for it, called the Iwasawa Decompo-

sition, and provide some applications.

2.1 Iwasawa decomposition

Consider in SL2(R) the following three subgroups:

K =

{(
cos θ − sin θ

sin θ cos θ

) ∣∣∣∣∣ θ ∈ R

}
, A =

{(
r 0

0 1
r

) ∣∣∣∣∣ r > 0

}
,

U =

{(
1 x

0 1

) ∣∣∣∣∣ x ∈ R

}
.

Theorem 2.1.1. For every g ∈ SL2(R) there exist three unique matrices

k ∈ K, a ∈ A and u ∈ U such that g = kau.

Proof. Let g =

(
a b

c d

)
be a matrix in SL2(R) and apply it to the standard

basis {e1, e2} of R2. Since det(g) = 1, the vectors

ge1 =

(
a

c

)
, ge2 =

(
b

d

)

7



8 2. SL2(R) Iwasawa decomposition

form a basis of R2.

We want to apply a series of transformations in SL2(R) to bring back ge1

and ge2 respectively to e1, e2.

Let θ be the counterclockwise angle from the positive x-axis to ge1 and let

ρθ be the counterclockwise rotation around the origin by θ; ρ−θ = (ρθ)
−1 and

ρ−θge1 lies on the positive x-axis, i.e., it is a positive scalar multiple of e1

Since ρ−θ is an orthogonal transformation, then

r := ∥ρ−θge1∥ = ∥ge1∥ =
√
a2 + c2.

Therefore we can rescale ρ−θge1 applying

(
1/r 0

0 1/r

)
to obtain e1, but this

matrix doesn’t have determinant 1, whereas

(
1/r 0

0 r

)
acts in the same way

on ρ−θge1 and has determinant 1.

Call B :=

(
1/r 0

0 r

)
ρ−θg; how does it transform e2? B acts as the identity

on e1, so it has the form

(
1 ∗
0 ∗

)
and it has determinant 1 (since it is product

of matrices in SL2(R)), thus the bottom right entry must be 1, i.e. B sends

e2 to

(
x

1

)
, for some x ∈ R.

Then consider the linear transformation

(
1 −x
0 1

)
, which has determinant

1 and fixes the x-axes; it sends e1 to itself and

(
x

1

)
to e2.

We have finally returned to the standard basis using a sequence of transfor-

mations in SL2(R), namely the map

(
1 −x
0 1

)(
1/r 0

0 r

)
ρ−θg

is the identity over e1 and e2, so it is the identity on R2. Solving for g, we
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obtain

g = ρθ

(
r 0

0 1/r

)(
1 x

0 1

)
∈ KAU.

Moreover we can write the parameters θ, r and x in terms of the entries of

g: if (
a b

c d

)
=

(
cos θ − sin θ

sin θ cos θ

)(
r 0

0 1/r

)(
1 x

0 1

)
=

=

(
r cos θ rx cos θ − 1/r sin θ

r sin θ rx sin θ + 1/r cos θ

) (2.1)

we have

a2 + c2 = r2, r > 0 =⇒ r =
√
a2 + c2, (2.2)cos θ = a/r

sin θ = c/r
=⇒ θ is uniquely determined, (2.3)

(
x

1

)
= Be2 =

(
1
r
(b cos θ + d sin θ)

r(−b sin θ + d cos θ)

)
=⇒ x =

ab+ cd

a2 + c2
. (2.4)

In this way we have also shown the uniqueness of the decomposition, since

r and θ do not depend on the construction, but on formula (2.1), and from

the same formula we can solve for x, obtaining (2.4).

Remark 2.1.1. Notice that saying that there is a unique G = UAK decom-

position or saying that there is a unique decomposition G = KAU is the

same thing.

Indeed, if G = UAK, then for g ∈ G we can consider g = uak for some

u ∈ U , a ∈ A, k ∈ K, so that g−1 = k−1a−1u−1. In this way we obtain a

decomposition G = KAU (and vice versa).

2.2 Topological Applications

In Section 1.1 we discussed the topological structure of the groups SLn(R)
and GLn(R), endowed with the topology induced by the euclidean one from
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Rn×n.

We might wonder how to visualize SL2(R), assuming it is possible. In this

section we will use the Iwasawa decomposition of SL2(R) to get a concrete

image of it.

Theorem 2.2.1. As a topological space, SL2(R) is homeomorphic to the

inside of a solid torus.

Proof. Let φ : K×A×U → SL2(R) be the application that sends (k, a, u) to

kau. It is surjective by the existence of the Iwasawa decomposition and it is

injective because of the uniqueness. Its inverse is ψ : SL2(R)→ K ×A×U ,

g =

(
a b

c d

)
7→ (k(g), a(g), u(g)), where

k(g) :=

(
a/r(g) −c/r(g)
c/r(g) a/r(g)

)
, a(g) :=

(
r(g) 0

0 1/r(g)

)
, u(g) :=

(
1 x(g)

0 1

)
,

r(g) :=
√
a2 + c2, x(g) :=

ab+ cd

a2 + c2
.

Notice that the maps φ and ψ are both continuous.

Topologically K ∼= S1, A ∼= R≥0
∼= R, U ∼= R. Since R2 ∼=D2 (the open disc

with radius 1) through the map h 7→ h
1+∥h∥ , then SL2(R) ∼= K × A × U ∼=

S1 × R2 ∼= S1 × D2, i.e. SL2(R) is homeomorphic to the inside of a solid

torus.

Remark 2.2.1. Notice that the map φ : K ×A×N → SL2(R) is not a group

homomorphism. Indeed, we have, for example, with θ = π/2, r = 2, x = 0,

φ

(((
0 −1
1 0

)
,

(
2 0

0 1
2

)
,

(
1 0

0 1

))2)
=

= φ

((
−1 0

0 −1

)
,

(
4 0

0 1
4

)
,

(
1 0

0 1

))
=

(
−4 0

0 −1
4

)
but (

φ

((
0 −1
1 0

)
,

(
2 0

0 1
2

)
,

(
1 0

0 1

)))2

=

(
0 −1

2

2 0

)2

=

(
−1 0

0 −1

)
.
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Definition 2.2.1. Given a topological space X and its subspace A, we say

that A is a deformation retract of X if there exists a continuous map

r : X × [0, 1]→ X

such that

r(x, 0) ∈ A for every x ∈ X;

r(x, 1) = x for every x ∈ X,

r(a, 0) = a for every a ∈ A.

If we strengthen the third condition with r(a, t) = a for every a ∈ A and for

every t ∈ [0, 1], then we say that A is a strong deformation retract of X.

Remark 2.2.2. The inside of the solid torus S1 × D2 has S1 × {(0, 0)} as a

strong deformation retract, by the homotopy

r : (S1 ×D2)× [0, 1]→ S1 ×D2

((eiθ, (a, b)), t) 7→ (eiθ, (ta, tb)),

in fact

r((eiθ, (a, b)), 0) = (eiθ, (0, 0)),

r((eiθ, (a, b)), 1) = (eiθ, (a, b)),

r((eiθ, (0, 0)), t) = (eiθ, (0, 0)) ∀t ∈ [0, 1].

Therefore π1(SL2(R)) ∼= π1(S
1 ×D2) ∼= π1(S

1) ∼= Z.
We can see that the counterpart of S1 in SL2(R) is precisely K, writing down

the explicit homotopy that retracts SL2(R) to K:

r̃ : SL2(R)× [0, 1]→ SL2(R)

(kau, t) 7→ katut = k

(
rt 0

0 1/rt

)(
1 tx

0 1

)

r̃(kau, 0) = k, r̃(kau, 1) = kau, r̃(k, t) = k ∀t ∈ [0, 1],
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i.e. π1(SL2(R)) ∼= π1(K) ∼= Z.
We also point out that the universal covering space of SL2(R) is homeomor-

phic to the inside of a solid infinite cylinder R × D2 ∼= R3; further from

the Galois correspondence between subgroups of the fundamental group and

connected covering spaces of a topological space, SL2(R) admit a unique cov-

ering space of degree n for every integer n.

It has relevant importance the degree-2 covering space, called the Metaplectic

Group (cf. [HT]).

2.3 Algebraic Applications

From now on we will set:

kθ :=

(
cos θ − sin θ

sin θ cos θ

)
, ar :=

(
r 0

0 1/r

)
, ux :=

(
1 x

0 1

)
.

Given two subgroups H, K of a group G, let us denote by HK the set of

the elements g ∈ G such that g = hk for some h ∈ H, k ∈ K.

Lemma 2.3.1. Let H,K be two subgroups of a group G. If HK = KH then

HK (or equivalently KH) is a subgroup of G.

Proof. First of all notice that the identity of G belongs to HK because it

belongs to H and K.

Let h1k1, h2k2 ∈ HK, with hi ∈ H, ki ∈ K, for i = 1, 2. Since k1h2 ∈ KH
and by hypothesis KH = HK, there exist two elements h3 ∈ H, k3 ∈ K such

that k1h2 = h3k3. Therefore

h1k1h2k2 = h1h3k3k2 ∈ HK;

moreover

(h1k1)
−1 = k−1

1 h−1
1 ∈ KH = HK.

We have proven that HK is closed under group operations, i.e. it is a sub-

group.
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Lemma 2.3.2. Let A, U be the subgroups introduced in Section 2.1. Then

AU = UA. It follows from Lemma 2.3.1 that AU (or equivalently UA) is a

subgroup of SL2(R).

Proof. Let ar ∈ A, ux ∈ U , then

arux =

(
r rx

0 1/r

)
= ur2xar ∈ UA

Conversely

uxar =

(
r x/r

0 1/r

)
= aru x

r2
∈ AU.

Theorem 2.3.1. The trivial homomorphism is the unique continuous homo-

morphism SL2(R)→ R.

Proof. Let f : (SL2(R), ·)→ (R,+) be a continuous homomorphism. We will

show that f ≡ 0.

For every kau ∈ SL2(R), f(kau) = f(k) + f(a) + f(u). Let’s study how f

acts on K, A, U .

If an element b ∈ SL2(R) has finite order, i.e. there exists a positive integer

n such that bn = 1SL2(R), then 0 = f(1) = f(bn) = nf(b), hence f(b) = 0.

Consider D := {k ∈ K | ∃ n ∈ N, n > 0 such that kn = 1SL2(R)} = {kqπ|q ∈
Q}. D is dense in K and f ≡ 0 on D, thus, by the continuity of f , f ≡ 0

over K.

We recall that all continuous homomorphisms h : R → R are of the form

ht : x 7→ tx for some t ∈ R (t = f(1)).

Since (A, ·) ∼= (R,+) through lA : ar 7→ log r and (U, ·) ∼= (R,+) through

lU : ux 7→ x, then there exist t, s ∈ R such that for every r > 0, x ∈ R

f(ar) = f(l−1
A (log r)) = ht(log r) = t log r,

f(ux) = f(l−1
U (x)) = hs(x) = sx.
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By Lemma 2.3.2, for every r > 0, x ∈ R, f(arux) = f(ur2xar), but

f(arux) = f(ar) + f(ux) = t log r + sx

f(ur2xar) = f(ur2x) + f(ar) = sr2x+ t log r.

It follows (for example placing r = 2, x ̸= 0) that s = 0, i.e., f ≡ 0 over U .

In order to show that f is trivial over A we will use the fact that a homo-

morphism with image in (R,+) is invariant on conjugate classes:(
0 −1
1 0

)(
r 0

0 1/r

)(
0 1

−1 0

)
=

(
1/r 0

0 r

)
= a−1

r ,

therefore f(ar) = f(a−1
r ) = −f(ar), which implies f(ar) = 0 for every r >

0.

Corollary 2.3.1. Every continuous homomorphism (SL2(R), ·)→ (GLn(R), ·)
has image in SLn(R).

Proof. Let f be a continuous homomorphism as in the statement and con-

sider det : (GLn(R), ·)→ (R∗, ·).
The topological group SL2(R) is connected (Theorem 2.2.1) and (det◦f)(I2) =
1, so Im(det◦f) lies in R>0. Hence we can compose det◦f with h : x 7→ log x.

Notice that h◦det◦f is a continuous homomorphism from SL2(R) to (R,+),

so it’s trivial by Theorem 2.3.1. Since h is bijective, det ◦ f ≡ 1, namely for

every g ∈ SL2(R), f(g) has determinant 1.

Example 2.3.1. Let V := R[x, y]2 be the R-vector space of homogeneous

polynomials in x and y of degree 2.

Let’s consider the action of G:=GL2(R) on V

ρ : G→ Hom(V )

g 7→ ρg, ρg(p) = gp,

where g acts on p as a linear change of variables: if g =

(
a b

c d

)
then

gp := p(ax+ cy, bx+ dy).
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The map ρ is well defined (the action on V is linear) and it is in fact an

action, indeed, if g1 =

(
a b

c d

)
, g2 =

(
e f

g h

)
, then

g1(g2(p)) = g1(p(ex+ gy, fx+ hy)) =

= p(e(ax+ cy) + g(bx+ dy), f(ax+ cy) + h(bx+ dy)),

g1g2 =

(
ae+ bg af + bh

ce+ dg cf + dh

)
,

(g1g2)p = p((ae+ bg)x+ (ce+ dg)y, (af + bh)x+ (cf + dh)y),

=⇒ g1(g2(p)) = (g1g2)p.

If we fix the basis B = {x2, xy, y2} of V we can identify Hom(V ) with M3(R).
Notice that Im ρ ⊆ GL3(R) because ρg is invertible with inverse ρg−1 .

Let us calculate ρg in terms of matrices:

ρg(x
2) = (ax+ cy)2 = a2x2 + 2acxy + c2y2,

ρg(xy) = (ax+ cy)(bx+ dy) = abx2 + (ad+ bc)xy + cdy2,

ρg(y
2) = (bx+ dy)2 = b2x2 + 2bdxy + d2y2.

Hence we obtain

f(g) :=MB
B (ρg) =


a2 ab b2

2ac ad+ bc 2bd

c2 cd d2

 .

Therefore f is a continuous homomorphism from GL2(R) to GL3(R). Notice
that

det f(g) = a2(ad3 − bcd2)− ab(2acd2 − 2bdc2) + b2(ac2d− bc3) =

= a2d2(ad− bc)− 2adbc(ad− bc) + b2c2(ad− bc) =

= (ad− bc)3 = (det g)3,

which shows f(g) is in fact invertible and that if g ∈ SL2(R) then det f(g) =

(det g)3 = 13 = 1, i.e. f(g) ∈ SL3(R).
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2.4 Conjugacy classes in SL2(R)

Given a group G and a subgroup H of G we can define the following

equivalence relations, called conjugation relations:

a ∼G b ⇐⇒ ∃ g ∈ G : a = g−1bg,

a ∼H b ⇐⇒ ∃ h ∈ H : a = h−1bh,

where a, b are any two elements of G.

Given l ∈ G we can consider the orbits of l with respect to these relations:

OG
l = {g−1lg | g ∈ G},

OH
l = {h−1lh | h ∈ H}.

Of course OH
l ⊆ OG

l . This inclusion could be strict or an equality, depending

on l.

In this section we will focus on understanding the nature of this inclusion in

the specific case of G := GL2(R) and its subgroup H := SL2(R).

Remark 2.4.1. We recall that two real matrices are conjugate in GL2(C) if

and only if they are conjugate in GL2(R).

Remark 2.4.2. Notice that trace and determinant are invariant under conju-

gation in G, but they are not characterizing. In other words, if (a, b ∈ G)

a ∼G b, then Tr a = Tr b and det a = det b, but in general, if Tr a = Tr b or

det a = det b, not necessarily a ∼G b.

On the contrary, for every h ∈ H other than ±I2, the orbit of h depends only

on the trace t of h, i.e., excluding ±I2, the trace is characterizing for ∼G in

H. Let’s see why.

It is well known that the matrices in the same G-orbit as h are all and only

those which seen in GL2(C) have the same Jordan normal form. The latter

depends uniquely on the trace of h, as in this case the characteristic polyno-

mial is ph(x) = x2− tx+1 and its eigenvalues in C are λ1,2 =
t±

√
t2−4
2

, which

are
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• distinct if t ̸= ±2. In this case t uniquely determines (unless the order

of the diagonal elements) the diagonal form

(
λ1 0

0 λ2

)
of h;

• equal if t = ±2. In this case, since we have excluded the cases h = ±I2,

h will be conjugate (in GL2(C)) to the Jordan matrix

(
±1 1

0 ±1

)
.

By Remark 2.4.1, we can summarize the above discussion as follows:

• if h ∈ SL2(R) with Trh ̸= ±2, then OG
h = {l ∈ SL2(R) | Tr l = Trh};

• if h ∈ SL2(R) with Trh = ±2, h ̸= ±I2 then OG
h = {l ∈ SL2(R) | Tr l =

Trh, l ̸= ±I2};

• OG
I2
= {I2}, OG

−I2
= {−I2}.

We now focus on the orbit OH
h , for h ∈ H.

In the following theorem, where not specified, when we talk about conju-

gacy in SL2(R) we will refer to the equivalence relation ∼H .

Let v1, v2 ∈ R2 be two vectors. We will denote by ([v1][v2]) the 2 × 2

matrix with v1 on the first column and v2 on the second one.

Theorem 2.4.1. Let h ∈ H and let t = Trh.

If t2 > 4 then h is conjugate to a unique matrix of the form

(
λ 0

0 1/λ

)
with

|λ| > 1.

If t2 = 4 then h is conjugate to exactly one matrix among ±I2, ±

(
1 1

0 1

)
,

±

(
−1 1

0 −1

)
.

If t2 < 4 then h is conjugate to a unique matrix of the form

(
cos θ − sin θ

sin θ cos θ

)
other than ±I2.

Proof. Let h ∈ SL2(R) and let ph(x) = x2 − tx + 1 be its charateristic

polynomial. The nature of the eigenvalues of the matrix depends on the
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discriminant dh = t2 − 4 of this polynomial. We thus have the following

three cases:

• dh > 0 ⇐⇒ t2 > 4

The matrix h has two real distinct eigenvalues λ > µ with respective

eigenvectors v, w; since deth = 1, µ = 1/λ. Notice that |λ| > 1.

The matrix h is conjugate in GL2(R) to

(
λ 0

0 1/λ

)
by c := ([v][w]).

Since scaling a vector doesn’t change its nature of eigenvector, we can

rescale w so that c has determinant 1. We observe that

(
λ 0

0 1/λ

)

and

(
1/λ 0

0 λ

)
are conjugate to each other by an element of SL2(R)

(specifically

(
0 −1
1 0

)
). Therefore we can choose as representative the

orbit of h the first one, which has as top left entry an element λ of

absolute value greater than 1.

Moreover h cannot be conjugated to any other matrix of the form(
η 0

0 1/η

)
with |η| > 1, η ̸= λ, because of the eigenvalues.

• dh = 0 ⇐⇒ t2 = 4 ⇐⇒ t = ±2
The eigenvalues of h are ±1, with algebraic multiplicity ma = 2. If the

geometric multiplicity mg is 2 too then h is necessarily ±I2, which is

conjugated only to itself.

From now on, to fix the ideas, let’s assume t = 2; the case t = −2 is

analogous.

In the case when the geometric multiplicity is 1, consider an eigenvector

v and extend it to a basis {v, w̃} of R2. Rescaling as in the previous

case w̃ to w we obtain det c = 1, where c := ([v][w]).

So h = c

(
1 x

0 1

)
c−1 for some x ∈ R, x ̸= 0.
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Let’s set r :=
√
|x|. Then(

r 0

0 1/r

)(
1 ±1
0 1

)(
1/r 0

0 r

)
=

(
r ±r
0 1/r

)(
1/r 0

0 r

)
=

=

(
1 ±r2

0 1

)
=

(
1 ±|x|
0 1

)
,

namely h is conjugate to either

(
1 1

0 1

)
or

(
1 −1
0 1

)
according to the

sign of x.

Observe that

(
1 1

0 1

)
≁SL2(R)

(
1 −1
0 1

)
, indeed, if g =

(
a b

c d

)
∈

SL2(R), then

g

(
1 1

0 1

)
g−1 =

(
a a+ b

c c+ d

)(
d −b
−c a

)
=

(
1− ac a2

−c2 1 + ac

)
,

i.e. the top right entry of a matrix conjugated to

(
1 1

0 1

)
by an element

of SL2(R) must be non negative.

• dh < 0 ⇐⇒ t2 < 4

In this case h has two non-real complex conjugate eigenvalues of module

1, so we can write them as eiθ, e−iθ. Let v be a vector such that hv =

eiθv. Then hv = hv = eiθv = e−iθv. This shows that {v, v} is a basis

of complex eigenvectors for h.

Let u := v + v and w := i(v − v), which belong to R2 and are linearly

independent over R (because of the linear independence of v and v over

C). We have:

h(u) = eiθv + e−iθv = cos θv + i sin θv + cos θv − i sin θv =

= cos θu+ sin θw

h(w) = eiθiv − e−iθiv = cos θiv − sin θv − cos θiv − sin θv =

= − sin θu+ cos θw
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Thus, setting c := ([u][w]), we have h = c

(
cos θ − sin θ

sin θ cos θ

)
c−1.

Setting now r :=
√
| det c|, ũ := u/r, w̃ := w/r, c̃ := ([ũ][w̃]) we obtain

h = c̃

(
cos θ − sin θ

sin θ cos θ

)
c̃−1, with det c̃ = ±1.

If det c̃ = 1 then h is conjugate to

(
cos θ − sin θ

sin θ cos θ

)
in Sl2(R), otherwise

we can reverse the order of the columns of c̃ to give it determinant 1. In

this way h is conjugate to

(
cos θ sin θ

− sin θ cos θ

)
=

(
cos (−θ) − sin (−θ)
sin (−θ) cos (−θ)

)
in SL2(R).

It remains to check that

(
cos θ − sin θ

sin θ cos θ

)
and

(
cosα − sinα

sinα cosα

)
are

conjugate to each other in SL2(R) if and only if they are equal. This

is true because in this case we should have {eiθ, e−iθ} = {eiα, e−iα},
namely α = ±θ + 2kπ for some k ∈ Z; lastly α cannot be −θ + 2kπ

because (setting x := cos θ = cosα, y := sin θ = − sinα ̸= 0) if there

exists g =

(
a b

c d

)
∈ SL2(R) such that g

(
x y

−y x

)
g−1 =

(
x −y
y x

)
,

then (
a b

c d

)(
x y

−y x

)
=

(
x −y
y x

)(
a b

c d

)
=⇒

=⇒

(
ax− by ay + bx

cx− dy cy + dx

)
=

(
ax− cy bx− dy
ay + cx by + dx

)
=⇒

=⇒

by = cy

ay = −dy
y ̸=0
=⇒

b = c

a = −d

and this is absurd because we would have 1 = det g = ad − bc =

−d2 − c2 < 0.
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Remark 2.4.3. Theorem 2.4.1 tells us that, for h ∈ SL2(R), if we set th = Trh,

the following hold:

• if th < 2 then OH
h = OG

h ;

• if th = 2, h ̸= ±I2 then OH
h ⊊ OG

h ;

• if th > 2 thenOH
h ⊊ OG

h , indeed Tr

(
cos θ − sin θ

sin θ cos θ

)
= Tr

(
cos θ sin θ

− sin θ cos θ

)
but these matrices aren’t conjugate to each other in SL2(R).

Remark 2.4.4. Let K, A, U be the subgroups introduced in Section 2.1 and

let h, th as in Remark 2.4.3. Theorem 2.4.1 shows that

• if th < 2 then OH
h has a representative in K;

• if th = 2 then OH
h has a representative in U;

• if th > 2 then OH
h has a representative in A.

2.5 Action on the upper half-plane H

In this section G will always denote SL2(R) and K,A,U its subgroups

introduced in Section 2.1. We will also use the notation introduced at the

beginning of Section 2.3.

Consider the upper half-plane

H := {x+ iy | x, y ∈ R, y > 0}.

We can define on H a metric other than the Euclidean one, the Poincaré

metric. This provides a hyperbolic geometric model, where the length of a

curve γ : [a, b] → H, γ(t) = x(t) + iy(t), is measured by integrating from a

to b the line element |γ′(t)|
y(t)2

, where | · | is the euclidean distance of the complex

plane.

Therefore we can define the distance dH between two points z1 = x1 + iy1

and z2 = x2 + iy2 of H as the infimum of the length of the curves having z1
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and z2 as extremes.

It is proven (cf. [P]) that it is

dH(z1, z2) = 2 arctanh
|z2 − z1|
|z2 − z1|

= 2 ln
|z2 − z1|+ |z2 − z1|√

4y1y2
.

We can define an action of G on H as follows: for every g =

(
a b

c d

)
∈ G

and for every z ∈ H, set
g(z) :=

az + b

cz + d
.

Proposition 2.5.1. The map ρ : SL2(R)×H → H, (g, z) 7→ g(z) is a group

action.

Proof. First of all let us show that for every g =

(
a b

c d

)
in G and for every

z in H, g(z) belongs to H:

g(z) =
az + b

cz + d
· cz + d

cz + d
=
ac|z|2 + bd+ adz + bcz

|cz + d|2

=⇒ Im g(z) =
(ad− bc) Im z

|cz + d|2
=

Im z

|cz + d|2
> 0,

hence ρ is well-defined.

Let us now verify the two properties of an action:

• 1G(z) = z for every z ∈ H:

I2(z) =
1 · z + 0

0 · z + 1
= z;

• g1(g2(z)) = (g1g2)(z) for every g1 =

(
a b

c d

)
, g2 =

(
e f

g h

)
∈ G,

z ∈ H:

g1(g2(z)) =
a( ez+f

gz+h
) + b

c( ez+f
gz+h

) + d
=
aez + bgz + af + bh

cez + dgz + cf + dh
,

(g1g2)(z) =

(
ae+ bg af + bh

ce+ dg cf + dh

)
(z) =

(ae+ bg)z + af + bh

(ce+ dg)z + cf + dh
.
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Proposition 2.5.2. The stabilizer of i in G is K.

Proof. For g =

(
a b

c d

)
∈ G,

g(i) = i ⇐⇒ ai+ b = (ci+ d)i ⇐⇒ ai+ b = di− c ⇐⇒

⇐⇒

a = d

b = −c
⇐⇒ g =

(
a −c
c a

)
⇐⇒

a2+c2=1
g ∈ K.

Remark 2.5.1. Every ar ∈ A acts on H as a dilation by a factor r2 and every

ux ∈ U acts on H as a translation parallel to the real axis by x. Indeed

ar(z) =
rz + 0

0 · z + 1
r

= r2z;

uX(z) =
z + x

0 · z + 1
= z + x.

Proposition 2.5.3. The action of SL2(R) on H is transitive.

Proof. In order to prove the statement we will show that for every element

z = x+ iy ∈ H there exists an element g ∈ G such that g(i) = z; in this way

every two elements of H are in the same orbit of i, i.e., they are in the same

orbit. Let r :=
√
y, ar :=

(
r 0

0 1/r

)
and ux :=

(
1 x

0 1

)
. Thus, by Remark

2.5.1,

uxar(i) = ux(r
2i) = ux(yi) = x+ iy.

Remark 2.5.2. In the proof above we got a matrix g in terms of the image

of i we were aiming for. Conversely given g ∈ G the Iwasawa decomposition

g = uxarkθ immediately tells us how g acts on i:

g(i) = uxarkθ(i) = uxar(i) = x+ ir2.
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We can see H as the cosets space SL2(R)/K = {[g]∼ | g ∈ SL2(R)}, where
g1 ∼ g2 if and only if there exists k ∈ K such that g1 = g2k.

Notice that G/K is not a quotient group, because K is not normal in G.

Proposition 2.5.4. The map

φ : SL2(R)/K → H

[g] 7→ g(i)

is a bijection.

Proof. We observe that φ is well defined because if g1 = g2k for some k ∈ K
then g1(i) = g2k(i) = g2(i) (see Proposition 2.5.2).

For the same reason if g1(i) = g2(i) then g
−1
2 g1(i) = i, namely g−1

2 g1 ∈ K, so

[g1] = [g2]. This proves the injectivity of φ.

Lastly, φ is surjective by Proposition 2.5.3.

We can derive an alternative proof of the Iwasawa decomposition using

the action of G on H:

Theorem 2.5.1. For every g ∈ G there exist three unique matrices u ∈ U ,
a ∈ A, k ∈ K such that g = uak.

Proof. Let g ∈ G and let x + iy := g(i) (x, y ∈ R). By Remark 2.5.1, if

we set r :=
√
y then g(i) = uxar(i). Hence by Proposition 2.5.4 there exists

kθ ∈ K such that g = uxarkθ. This proves the existence.

If there exist ux1 ∈ U , ar1 ∈ A, kθ1 ∈ K such that uxarkθ = ux1ar1kθ1 then

uxarkθ(i) = ux1ar1kθ1(i)

uxar(i) = ux1ar1(i)

x+ iy = x1 + ir21.

It follows that ux = ux1 and ar = ar1 , thus kθ = kθ1 , namely we have proven

the uniqueness of the decomposition.

Remark 2.5.3. Let g ∈ G and let tg = Tr g. In Section 2.4 the difference

t2g − 4 gave us information about the conjugacy class of g; the sign of this
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quantity is also relevant to the research of fixed points under the action of g

on H.

Indeed, if g =

(
a b

c d

)
, the fixed-point condition g(z) = z is equivalent to

az + b = z(cz + d), so z is a fixed point for g if and only if z is a zero of

qg(x) = cx2 + (d− a)x− b.
Excluding the cases g = ±I2 (in which every z ∈ H is a fixed point) and the

cases where c = 0, g ̸= ±I2 (in which we would obtain (d − a)x = b, that

has no non-real roots), the nature of the zeros of qg(x) are determined by its

discriminant

(d−a)2+4bc = d2+a2−2ad−2ad+2ad+4bc = (a+d)2−4(ad−bc) = t2g−4.

If t2g−4 > 0 then qg has two real distinct roots, so g has no fixed points on H
(but it has two independent real eigenvectors when seen as an action on R2);

if t2g − 4 = 0 then qg has one unique real root, i.e. g has no fixed point on

H (and it is not diagonalizable); finally if t2g − 4 < 0 then g has two complex

conjugate roots, so g has one and only one fixed point on H (but it has no

real eigenvalues when seen as an action on R2).

Remark 2.5.4. It is interesting to compare the role of the subgroup K in the

action on R2 and on H.
As a transformation of R2, an element k ∈ K acts like a rotation around the

origin (0, 0) and the K-orbit of a nonzero vector v is the subset of R2 of the

elements which have the same distance of v from (0, 0); in other words the

K-orbit of v is the circle of radius ∥v∥ centered at the origin.

As a transformation of H, an element of K fixes i and it can be shown that it

acts like a rotation around i relative to the hyperbolic metric on H, namely

the K-orbit of an element z is the subset of the points y ∈ H such that

dH(y, i) = dH(z, i).
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Chapter 3

SLn(R) and SLn(C) Iwasawa

decompositions

In this chapter we will generalize the Iwasawa decomposition to the case

of SLn(R) and SLn(C) for a generic n.

3.1 SLn(R) Iwasawa decomposition

Let us define the following subgroups of G := SLn(R):

Kn := {k ∈ SLn(R) | kT = k−1},

the group of orthogonal matrices with determinant 1, usually denoted by

SOn(R);

An :=

{
a1

. . .

an

 ∈ SLn(R)

∣∣∣∣∣ ai > 0 ∀i = 1, . . . , n

}
,

27
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the group of diagonal matrices with positive entries;

Un :=

{
1 x12 · · · x1n

0 1
. . .

...
...

...
. . . xn−1 n

0 0 · · · 1


∣∣∣∣∣xij ∈ R

}
,

the group of upper triangular matrices with 1’s on the diagonal.

The letters we use to denote these three subgroups are chosen on purpose,

namely, K stands for compact (Kn is closed and bounded in Rn×n), A stands

for abelian and U stands for unipotent, because every u ∈ Un can be written

as u = In + x with x nilpotent.

From now on, to lighten the notation, n will be fixed and we will denote

Un, An, Kn by U , A, K, respectively.

Recalling Remark 2.1.1, we will state the theorem in terms of the G = UAK

Iwasawa decomposition.

Theorem 3.1.1. For every g ∈ G =SLn(R) there exist unique u ∈ U , a ∈ A,
k ∈ K such that g = uak. In other words the map

Φ: U × A×K → G

(u, a, k) 7→ uak

is a bijection.

Proof. Let us first prove the existence. Consider (gij)i,j=1,...,n ∈ G and let

{e1, . . . , en} be the canonical basis of Rn.

gej =


g11 · · · g1n
...

...

gn1 · · · gnn




0
...

1j
...

0


=


g1j
...

gnj

 =: gj.

We can orthonormalize {gj}j=1,...,n to {kj}j=1,...,n using the Gram-Schmidt

process: it consists of subtracting a linear combination of g1, . . . , gj−1 to gj
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and then normalizing the result in order to get mutually perpendicular unit

vectors. We observe that this is a triangular process:

b11g1 = k1

b12g1 + b22g2 = k2

...
...

b1jg1 + b2jg2 + · · ·+ bjjgj = kj

...
...

b1ng1 + b2ng2 + . . . + bnngn = kn

Notice that bjj > 0 for every j = 1, . . . , n and that the matrix k := ([k1] · · · [kn])
is orthogonal. Setting bij = 0 for i > j, let B := (bij)i,j=1,...,n. We have

BTgT =


b11 0 · · · 0

b12 b22 · · · 0
...

. . .
...

b1n . . . . . . . bnn




gT1

gT2
...

gTn


=⇒ (BTgT )j = b1jg

T
1 + b2jg

T
2 + · · ·+ bjjg

T
j = kTj

=⇒ BTgT = kT =⇒ gB = k.

We observe that B is upper triangular with positive diagonal entries and,

since ±1 = det k = det g · detB, B must have determinant 1.

Consider, for i = 1, . . . , n, ai := bii and a :=


a1

. . .

an

, that is invert-

ible, so we can multiply a−1B =: u, which is strictly upper triangular and

has 1’s as diagonal elements.

In this way we have obtained k = gau, i.e. g = u−1a−1k, with u−1 ∈ U ,

a−1 ∈ A, k ∈ K (we have proven the surjectivity of Φ).

It remains to prove the uniqueness.

Let’s suppose that g = u1a1k1 = u2a2k2, with u1, u2 ∈ U , a1, a2 ∈ A,
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k1, k2 ∈ K. Consider ggT . It results

u1a1k1k
T
1 a

T
1 u

T
1 = u2a2k2k

T
2 a

T
2 u

T
2

u1a
2
1u

T
1 = u2a

2
2u

T
2

u−1
2 u1a

T
1 = a22u

T
2 u

−T
1 .

On the left we have an upper triangular matrix, whereas on the right we have

a lower triangular matrix, so it must be diagonal. Since a is invertible and

u−1
2 u1 has 1’s as diagonal entries, u−1

2 u1 = In, i.e. u2 = u1. Thus a21 = a22;

both a1 and a2 are diagonal matrices with positive entries, so a1 = a2. It

follows that k1 = k2 too, proving the uniqueness (or the injectivity of Φ).

3.2 SLn(C) Iwasawa decomposition

In order to generalize the Iwasawa decomposition to the complex case we

have to introduce some notions which are parallel to the real case ones.

We define the standard hermitian scalar product on Cn as follows: if

z =


z1
...

zn

 , w =


w1

...

wn

 ∈ Cn, ⟨z, w⟩ :=
∑n

i=1 ziwi.

Notice that ⟨ , ⟩ induces a norm on Cn :

∥z∥ :=
√
⟨z, z⟩. (3.1)

For g ∈ Mn(C), we set g∗ = gT .

A basis {vi}i=1,...,n of Cn (or in general a set of linear independent vectors

{vi}i=1,...,k over C) is called orthonormal (with respect to the hermitian prod-

uct) if ⟨vi, vj⟩ =

1 if i = j

0 if i ̸= j
.
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Consider the following three subgroups of SLn(C):

K := {X ∈ SLn(C) | X∗X = In};

A :=

{
a1

. . .

an


∣∣∣∣∣ ai ∈ R, ai > 0 ∀i = 1, . . . , n,

n∏
i=1

ai = 1

}
;

U :=

{
1 x12 · · · x1n

0 1
. . .

...
...

...
. . . xn−1 n

0 0 · · · 1


∣∣∣∣∣xij ∈ C

}
.

The group K is called the complex unitary subgroup and its elements are

called unitary matrices; notice that a matrix is unitary if and only if its

columns form an orthonormal basis of Cn. The elements of A are diagonal

matrices with positive diagonal elements. The elements of U are called (com-

plex) unipotent upper triangular matrices.

We can now state the Iwasawa decomposition for SLn(C).

Theorem 3.2.1. For every g ∈ SLn(C) there exist unique u ∈ U , a ∈ A,

k ∈ K such that g = uak.

Proof. The proof is the same as in Theorem 3.1.1, using the Gram-Schmidt

process with respect to the standard hermitian scalar product, orthonormal-

izing with respect to the norm (3.1).
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