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ABSTRACT 

Industry 4.0 has already landed in almost every developed country in the world. Its 

advantages are so clear and evident that they have turned the manufacturing world 

upside down. But what exactly are we talking about when we talk about Industry 4.0? 

What are its paradigms, its key points and its methods to implement all the changes 

we are determined to bring to the table? 

Industry 4.0 is discussed as the new border of manufacturing as it’s based on ideas 

and principles that follow the many current steps forward made by information 

systems and technologies. Therefore, the keys to this new manufacturing approach 

are horizontal and vertical integration, digitalization, automation.  

The development brought by Industry 4.0 applies to many areas of the supply chain, 

from information flows to operations and logistics. This last field is particularly 

important since it’s considered a key domain for examining a successful Industry 4.0 

implementation. In logistics and intralogistics, the highest priority is given to 

developing material handling systems that can provide a high level of flexibility, 

automation and responsiveness to dynamic changes. The ideal model is thought as an 

autonomous one, in which each transport unit is not ruled by a central unit of 

command but, on the contrary, is part of a decentralized system of material handlers 

that can communicate with each other thanks to their high connectivity and ability to 

collect data and rapidly exchange it with the company cloud. As predictable, all of 

these targets wouldn’t be reached with traditional AGV-based material handling 

system, which happens to be too rigid and centralized to be effective. This work puts 

another kind of devices in the spotlight, a more flexible one, a smarter one and a more 

unsupervised one: Autonomous Mobile Robots (AMR).  

Robots like these are able to freely move in an environment interacting with it by 

mapping it and rapidly reacting to every change that’s brought to it by external actors 

like operators or other robots. Unlike AGVs, there’s no need for a predetermined 

path, which can require a significant amount of time and resources to be 

implemented.  

These devices are characterized by autonomy of decision and freedom to move in the 

surrounding space in order to react to unexpected events such as the sudden showing 

up of an obstacle. This is a major advantage but, at the same time, it may affect the 

time a robot takes to complete a mission. Such loss, in terms of time or equivalent 

distance, has its origin in a situation that can normally happen in a working 

environment and therefore must be taken into consideration during the estimation 
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of the mission time of an AMR and, consequently, during the organization of the plant 

layout or the dimensioning of the fleet needed to manage a material handling system 

in such productive plant. Decisions like the one which has just been outlined are of 

great relevance to the company since they can imply the spending or saving of a 

significant amount of money. 

 

In this work the multiple advantages brought by AMRs will be shortly introduced and 

discussed with a literature review and then the focus will be moved on to analyzing 

how robots behave in certain conditions of the surrounding environment, going deep 

into details about how much time is lost due to each obstacle, each change of 

direction, each turning and so on. To do so, it will be necessary to have a clear idea of 

how AMRs work, which will be gained by multiple experiences in NTNU logistic 4.0 

laboratory. In the meantime, a logistics simulation software, AnyLogic, will be used to 

reproduce and simulate each scenario that’s considered relevant and coherent with 

reality to be eventually studied and modeled.  

 

Thanks to the simulations and experiences in the laboratory, several parameters will 

be detected according to the way they affect the mission time of an Autonomous 

Mobile Robot. For each of those parameters, and for all the combinations of them, 

will be generated a function that establishes a relation between the variation of such 

parameter and the mission time variation. To do so, it will be necessary using some 

data analysis programs and applications such as Minitab and MatLab. 

This is how the goal of this thesis will be reached, by building a model that couples a 

certain amount of mission time variation to each possible scenario reproduced 

through AnyLogic simulations. 
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EXECUTIVE SUMMARY 

This thesis is structured as following. The first part will be an introduction of what 

AMRs are, what their role in modern industry is and what main advantages they bring 

in response to the need to fit in the new boundaries of Industry 4.0. This is made 

through a deep review of the existing literature about these topics, which enables to 

have the right perspective of the key role autonomous robots play in modern 

intralogistics, understanding why companies choose them and why they turn out to 

be this successful. At the end of this section a short description of the case study of 

this thesis is reported, along with a brief summary about AnyLogic simulation 

software and its structure. 

 

In the following section all the parameters that affect the mission time are pointed 

out and, for each of them, a deep reflection leads to creating the simulation 

environment, running the program and analyzing the results, which will be then 

graphed and furtherly discussed in the following section. 

 

As anticipated, in this next section the results of the previous simulations are 

compared, discussed and graphed through a program called MatLab. For each of 

them, a function that associates each parameter variation to a mission time variation.  

 

The last part of this work is strictly connected to the previous because the focus is on 

creating new scenarios with the combination of all the parameters previously 

detected. This is followed by a final analysis of the variance, led using Minitab statistic 

application, which will give as output useful information about which parameters are 

more significant in terms of influence on the mission time. Further investigations and 

final conclusions are the closing part of this work. 
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1. INTRODUCTION AND OBJECTIVES 

Up to the present, the world has been through four industry revolutions and, among 

all four of those, the latter industry revolution that occurred in the more recent past 

has revealed new potentials and brought forward the catchword digitalization. This is 

one of the terms on which the whole idea of Industry 4.0 is centered on. When we 

talk about digitalization we mean a change which is more structural than just 

digitalizing existing processes or products. It has been defined as the use of digital 

technologies to change a business model and provide new revenue and new value-

adding opportunities. It’s the process of moving to a digital business. 

This definition, given by Gartner in 2019, implies that digitalization doesn’t only 

involve manufacturing processes and the way they are brought on; on the contrary it 

involves every single component of the supply chain, in order to create a web of 

business processes integrated and synchronized to work as a whole unit. In order to 

reach this target logistics and intralogistics are a key domain because of its function 

of providing inputs for production systems and harmonizing the whole supply chain. 

Since logistics is involved in a wide range of activities, there are multiple opportunities 

to improve a company performance and increase the potential of its value-adding 

activities through improvements in logistics. Therefore, new technologies and smart 

solutions have the power of immediately gaining strategic importance. For instance, 

big data and cloud operating, whose aims are respectively to form production 

networks capable of dynamic reconfiguration and high flexibility and providing global 

feedback to achieve high efficiency, represent powerful instruments and are 

considered as two of the main pillars of Industry 4.0.  

Through Industry 4.0 connectivity, automation, fast information exchange and 

analytics, a new dimension of flexibility can be reached and new approaches to 

planning and controlling production systems designed. 

This study focuses on how the previously mentioned key points are implemented in 

intralogistics to create a more flexible and cost-effective environment through 

introducing Autonomous Mobile Robots. Such devices represent an evolution of 

material handling systems because, compared to standard AGVs, which were 

considered the most advanced technology of the recent past years, they have some 

strategic and distinguishing characteristics. First, they don’t need any predetermined 

path to move, since they are able to calculate what the best route is to get from a 

random point A to another point B. This is made possible by the high computational 

power of AMR system and is a fundamental point because it significantly decreases 
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the amount of time and resources spent to engineer and install path guides needed 

by AGVs, which required either an optical or a magnetic or a laser guiding system. 

Secondly, AMRs are not managed by a central unit of control. On the contrary, thanks 

to the improvements like real-time algorithms made possible by Artificial Intelligence, 

they have an impressive autonomy of decision, such as dynamic routing and 

scheduling, which enables the whole material handling system to be way more 

decentralized and flexible. Another benefit that comes from adopting AMRs instead 

of more traditional methods is their ability to gain information about the environment 

around them in order to react to any unexpected event such as the presence of an 

obstacle in the path, which can be easily avoided by the robot, or the need to work in 

a new manufacturing cell where the robot might have never been before. Its 

adaptability to work under all circumstances is key to the material handling system 

flexibility and responsiveness. 

The focus of this thesis is on the aspect that was mentioned in the previous lines: how 

robots interact with the work environment they must serve and how they react to 

unexpected events like an obstacle of various dimensions, speed and direction or the 

need to change direction multiple times to get to destination. The reason why 

observing these scenarios is fundamental is because, even though obstacle avoidance 

is computed with maximum precision by the processing unit of the device, a time loss 

is inevitable and its implications have not been object of any literature deepening. 

It is therefore necessary to understand under which conditions and in what way the 

mission time of AMRs are affected. Detecting all the key factors that imply a negative 

variation on the performances of these devices is then the starting point of this work, 

for which a punctilious literature review is necessary. From this point on, the aim is 

parameterizing every factor that affects the mission time, in order to create a tool 

that associates a time loss function to each of the scenarios. The output of these 

activities will provide useful information for managers and engineers who have the 

task to develop a material handling system from scratch for a new production plant 

or to redesign an existing one. Indeed, time variations coming from our study are 

critical in the fleet dimensioning process or in a plant layout redesigning. Indeed, 

when a new productive plant must be designed, it is necessary to define the number 

of vehicles that must be introduced in the system in order to correctly fulfill the need 

of material of the whole productive plant. The output of this work helps in this process 

by allowing the engineer to consider the equivalent distance traveled by each robot 

rather than the mere distance between starting point and arrival point. The aspect 

just outlined might determine the need for more vehicles in the AMR fleet. 
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From the perspective of the urgency to execute a plant layout redesigning, this work 

highlights all the circumstances under which robots are affected in their performance 

and therefore provides engineers of suggestions about what layout bottlenecks and 

inefficiencies should be avoided in order to minimize the mission time loss. 

As a matter of fact, the general aim of this work is maximizing the efficiency of a 

material handling system by considering the characteristics of robots’ behavior, which 

is a lacking topic in literature. 

 

To summarize, this work, in order to achieve the objectives that have just been 

pointed out, is structured to answer three key questions, which are the following. 

 

 What are the situations that most affect the efficiency of AMRs in a material 

handling system? 

 Out of those, which ones can be represented by parameters whose variations 

can be simulated and computed into a function? 

 How much does each parameter affect the mission time of AMRs? How much 

a circumstance given by a combination of those parameters affects the mission 

time? 

 

It is now important to clarify how these targets are accomplished, which sources are 

examined and which tools are used in the simulation and data analysis sections. 

 

1.1 METHODOLOGY 
 

To answer the key questions of this thesis, following their order, it is compulsory to 

carry out a detailed literature review to fully understand all the possible features and 

variants of Autonomous Mobile Robots. Since these devices can be adopted in several 

fields of human activity, their job is not standardized and so are their settings. 

Examining articles, producers’ instructions or presentations and users’ reviews can be 

beyond helpful. A classic approach has been used: renown academic website Scopus 

was the main source, as it provides the user of thousands of articles, book chapters 

and any kind of research publication as well as reliable data, metrics and analytical 

tools. Other similar websites such as GoogleScholar or ScienceDirect but also several 

unofficial websites were used in the making of this thesis to get a well-rounded 

knowledge of what robots are used for, what their advantages and disadvantages are 
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and how they behave in every circumstance of pressure or uncomfortable 

environment. In addition to this, it was necessary to operate in the Logistics 4.0 

laboratory, made available by NTNU to accomplish this study. Experiencing the lab 

made it possible to outline all the parameters that were to be set in the simulation 

software AnyLogic, copying those given by default to the AMRs available at the NTNU 

campus. The speed of the robot, the minimum distance to obstacles, speed in the 

nearing of an obstacle and many more were set up in the simulation environment 

after observing and measuring them during the laboratory tests. 

Moreover, several real-life situations, which would have been difficult to run with 

AnyLogic, were reproduced in the lab and it was possible to notice how every now 

and then a circumstance under which a robot performs differently from the 

simulation software occurred. For instance, using AnyLogic it’s possible for an AMR to 

get through a 60-centimeter aisle while in the lab it was possible to find out that these 

devices need at least 95 centimeters to get through. 

As mentioned, software AnyLogic covered most of the time spent in the making of 

this project because it is used to reproduce every single scenario, starting from the 

base case, which will be discussed further in the work, to the ones coming from the 

combination of all parameters. Concisely, what was simulated through this software 

was a transportation mission of an item by an AMR under many different 

circumstances and characteristics of the surrounding working environment, obtained 

by changing the settings of some parameters or introducing obstacles or turns, and in 

particular its route from point A to point B whose distance remained unchanged in 

every simulation in order to make possible comparisons between each scenario and 

the base case. Basically, this approach is comparable to observing the flow of a liquid 

inside of a pipe. Indeed, just like in fluid mechanics, there will be head losses due to 

hostile conditions of the environment. Head losses are decreases of fluid pressure due 

to the friction between the moving fluid and the stationary pipe. In particular, this 

work is focused on minor losses, defined as energy losses localized in a specific 

component of the piping system like bends and valves, which can be logically 

translated into a material handling system as curves, obstacles or a narrowing of an 

aisle. 

All the most important features and settings of AnyLogic will be examined in the next 

chapters.  

Microsoft Excel is used to take count of all the simulation results, the time differences 

between such results and the base scenario and to create all the possible 

combinations of the chosen values of each parameter. 
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The data analysis is led mainly by using two applications, one for the computation of 

the mission time variation function for each parameter and one for the analysis of 

variance, a statistic analysis that will be investigated in the last chapter of this work. 

For the first goal the application MATLAB and in particular its Curve Fitting tool is 

used. It consists of a programming and numeric computing platform used by millions 

of engineers and scientists to analyze data, develop algorithms, and create models. 

The second goal is achieved by operating with Minitab, another advanced and 

powerful tool for statistics used for the analysis and optimization of business 

processes.  

At the end of this work, it will be possible to extract a function that will allow to 

quantify the relation existing between each scenario, determined by one parameter 

or the combination of more, and the mission time loss that the above-mentioned 

scenario implies. What has just been cleared out implies that, since a scenario can be 

described by the variation of multiple parameters at the same time, the final formula 

is going to be a sum of components. 

 

1.2 LIMITATIONS 
 

There are some limitations that occurred in the making of this study which 

contributed to increasing the difficulty of more than one phase of it.  

The main limitation come from the simulation software AnyLogic, with which there 

was very little familiarity. Therefore, it was difficult to try and learn its dynamics from 

scratch and gaining knowledge about it subtracted much time from the core activities 

of this thesis. Moreover, this software includes robots that work in a highly similar 

way to AMRs but there are some circumstances under which they perform differently. 

This will be discussed later in this work and will allow to understand which scenarios 

were not representable with AnyLogic. This aspect is particularly relevant because it 

leaves some open questions and future developments that could be easily 

investigated by a deeper use of robots in labs or production plants rather than in a 

simulation software.  

One last limitation comes from the fact that the functions obtained by data analysis 

applications were approximated and, therefore, the results have a small percentage 

of error and uncertainty.  
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2. FEATURES AND APPLICATION FIELDS OF AUTONOMOUS MOBILE ROBOTS 

In this section of the thesis a deepening of the main features of Autonomous Mobile 

Robots is executed, starting from describing the most relevant devices implanted on 

them and some of the most likely fields where they can be introduced. 

To go into further details about the technical specifications of AMRs, the ones 

available at NTNU Logistics 4.0 are brought in the spotlight. The above-mentioned 

devices are MiR200, showed in Figure 1, whose name comes from the producer MiR, 

a leading manufacturer of collaborative mobile robots that was a first mover in this 

field. For this reason, their robots have experienced a wide spreading among the 

manufacturing field.   

          
Since its dimensions are relatively small and the minimum width required to let the 

robot pass through a tight aisle or door, it can be used for multiple goals and 

situations. Its responsiveness to the surrounding environment is given by its cameras 

and sensors that can create a map of the plant they shall work in and a continuous 

activity of obstacle detection. The process through which a map of the plant is made 

takes place at the beginning of the robots’ work. In this phase, the AMR is led 

manually around the plant so that its sensors can provide the central unit of 

information regarding the position of walls, workstations and any other kind of fixed 

element that might interfere with the trajectories traveled by robots. These obstacles 

are shown with black marks on the computer interface. Once this process is concluded 

the AMR can operate in full autonomy inside of the environment that was just 

mapped. Meanwhile, sensors keep detecting obstacle in order to prevent collisions 

with something that hadn’t been revealed in the mapping process. In case something 

unexpected showed up, it would appear in the interface as red mark of the same 

shape as the real-life obstacle. In figure 2 an example of mapping output is shown. 

The just mentioned aspect is what contributes to robots’ outstanding ability of 

obstacle avoidance. The robot-user interface can be easily mastered by anyone in a 

  The reason of this expansion lies in its 

  characteristics of simplicity of use and  

  agility, but also its weight capability, as  

  this robot can transport loads up to  

  200 kilograms. Its maximum speed is  

  1,1 m/s while going forwards but is  

  generally set to slightly lower values. 

   

 

 

 

Figure 1. A MiR200 Autonomous Mobile Robot 
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short amount of time and this is one further reason why AMRs find that much 

appreciation among manufacturing companies.  

 

 
Figure 2.  
The output of a mapping process made by an AMR. 
In red, walls and moving obstacles are highlighted thanks to the 3D cameras and sensors of robots. 

These devices can be implemented in many different fields. In manufacturing, which 

is the purpose of this work, they can imply significant improvements, as mentioned in 

the introductive chapter. AMRs can enable high product mix capabilities and flexibility 

without necessarily changing the plant layout as they are meant to perform in high-

traffic zones and narrow aisles. Redesigning the layout of a productive plant in order 

to introduce new flexible production line requires heavy investments which could be 

avoided by the mere introduction of robots allowing the system to acquire more 

flexibility at a reduced cost and effort.  In addition to this, robots can interact with 

human operators as co-workers in several phases of their use and even assist workers 

in mounting components in the assembly phase. An example of this is the role they 

play in the automotive sector, where they operate alongside humans in the 

assembling of heavy parts.  

Autonomous Mobile Robots, as mentioned, can carry heavy loads but travel through 

narrow aisle and doors at the same time thanks to their small dimensions and their 

advanced obstacle avoidance system, which gives them the potential of being 

introduced in many other fields. They can be adapted to many tasks thanks to the 

possibility to implant many kinds of mechanical add-ons such as cleaning devices or 

robotic arms. One example is warehousing, where they can be used to help the 
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human worker in order picking operations. This activity is significant because it allows 

the saving of a large amount of time, since order picking is renowned to be one of the 

costliest and most time-consuming operations in warehousing. 

 

Relating to more recent emergencies, AMRs can provide a good level of automation 

in non value added activities such as cleaning and disinfecting rooms, for instance in 

hospitals. Its technology makes possible to work on every square inch of the floor and 

to avoid obstacles that, in such a hostile environment as a hospital floor, might occur 

frequently. They can save time for doctors or nurses by just-in-time deliveries of 

instruments or medicines and they might also carry out some activities that are now 

executed by humans but imply risks for human health.  

 

One more application field for Autonomous Mobile Robot might be in safety, thanks 

to their ability to provide constant stream of video and data to the control center. 

They can basically be moving cameras that could even work at night with infrared 

technology. Artificial Intelligence enables robots to detect a suspicious activity and 

assess whether it might be a possible threat.  

Last, they are used in hotels for basic tasks like delivering food and drinks to guests in 

their rooms or in common areas or take out trash. They can also be used for 

housekeeping as cleaners of corridors and halls. 

 

Their use is going to face an exponential rise in the next decades since a big variety of 

application is possible thanks to fundamental features like flexibility or autonomy of 

decision. Furthermore, the convenience of such devices remains unknown to many. 

Therefore, AMR are expected to find way more applications than the ones already 

existing. 
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3. ANYLOGIC SIMULATION ENVIRONMENT 

AnyLogic is a simulation software for business that allows companies to gain deeper 

insights and optimize complex systems and processes. It’s mainly used to reproduce 

and analyze complex and dynamic environments such as queuing problems, real-time 

variations of warehouses stocks or optimizing production processes. It can also be 

used to study transportation systems such as railways or even streets interacting with 

cars or pedestrians. It is particularly user friendly because it doesn’t require much 

programming in terms of code lines, except for some complicated operations or 

settings. For this reason, it is preferrable to other simulation platforms like Automod. 

In AnyLogic, a physical representation of the environment is necessary. For instance, 

in an assembly line, each workstation must be graphically reproduced, and so do 

conveyors, products and operators, that are considered resources by the software. 

Each resource must have the appropriate features and must be placed in the right 

spot of the grid in order to reproduce the real environment as precisely as possible. 

In this work, it is extremely important to consider the same distance traveled by AMRs 

in each different simulation in order to make comparisons between different 

scenarios possible. Therefore, it is required that the graphical representation of the 

working environment is exactly coincident with reality. 

 

Along with the graphical reproduction of the simulation environment, the flowchart 

needs to be built. The flowchart is essential in AnyLogic because it stands for the 

logical order that events follow. As it’s possible to understand from Figure 3, it 

consists of a sequence of blocks and connections between them. Each block 

represents an event and it is possible to click on it in order to set all its parameters to 

consequently characterize the whole process according to the situation that must be 

reproduced. 
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The flowchart shown in Figure 3 belongs to one of the models created in the making 

of this work and will be discussed in the next chapters. It contains the most recurring 

blocks that are significant for the creation of the simulation models.  

A list of the main blocks used to create the virtual environment follows. 

 

 Source Block: it consists of a block that triggers the start of the mission. It 

generates the loading units at a rate that can be set in the setting window 

according to which is the time interval needed by an AMR to complete a 

handling mission and pick the following unit. 

 Split Block: useful as a logic connector as it allows to synchronize two actions 

that must be brought on in parallel. 

 Sink Block: this block triggers the end of the mission. It is usually not set as its 

functions are limited but it can often be used as a counter of the units that leave 

the system. For instance, in this case it counts the output in terms of amount 

of load units that leave reach the destination point through an AMR 

transportation. 

 MoveByTransporter Block: this is the key to the flowchart because it gives the 

AMR the instruction for the loading of the item, the pick-up location, and the 

destination point. In the scenarios that were reproduced in this work, it is 

significant because it also contains some lines of code that characterize the 

variables created to measure the mission time. In all the situations where there 

is a dynamic obstacle, as shown in Figure 3, it is necessary to introduce another 

MoveByTransporter block in order to create a handling task for such moving 

obstacle, which might be another AMR, a forklift or an operator. 

 TimeMeasureStart and TimeMeasureEnd: these two blocks are placed 

respectively before and after a block or a series of consecutives block of which 

Figure 3. 
An example 
of an 
AnyLogic 
flowchart. 



 
 

 
 

25 

it’s required to know the duration. In this case are placed before and after the 

MoveByTransporter block in order to measure the duration of the handling 

mission carried out by the robot. 

 

All the settings of the robot, such as speed, acceleration, size and behavior in 

proximity of an obstacle are defined in the setting window of another block called 

TransporterFleet which doesn’t need to be placed in the flowchart area but it’s 

fundamental to reproduce how the robots interact with the environment into the 

simulation software. 

 

Even though time measuring blocks were introduced in the flowchart, in this work 

time will be measured by using two variables based on the occurring of some events 

in the simulation. The two just mentioned variables were managed through a couple 

of code lines and are meant to measure time of the travel from starting point to 

destination point with the vehicle unladen. Therefore, the variables are set as it 

follows. The first one, called StartWaitingTime, is set to the simulation current time 

at the exact moment of the unloading of the item at the arrival location. The other 

variable, called Waiting, is set when the AMR arrives to destination and loads the new 

unit that needs to be transported and its value is equal to the difference between the 

current time of the simulation and the value of previously set variable 

StartWaitingTime. Therefore, Waiting is going to report the time of the return travel 

of the unladen robot.  

This way of setting variables is made possible by an assumption made while setting 

the parameters of this work: both loading and unloading times are considered as 

instantaneous activities in order to avoid an influence of loading/unloading times on 

the travel time.  

 

In this work, as mentioned, the goal is to define a function that associates a certain 

amount of mission time loss to each circumstance characterizing the work 

environment. Therefore, for each scenario, it is necessary to measure the mission 

time of mobile robots and compare it with a base scenario that will be used as 

standard. The base case environment is shown in Figure 4 and it consists of a straight 

path from pick-up location to destination point. The length of the path is set to 100 

meters and the width of the aisle to 3 or 3,5 meters. All the other scenarios will have 

the same path length and corridor width in order to allow comparisons. 
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Figure 4. The base case scenario. The 100-meter corridor, on top, is the path traveled by the AMR. 
On bottom, the flowchart and the graphical representation of the Waiting variable are shown. 
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4. FACTORS AFFECTING THE MISSION TIME OF AN AMR 

The mission time of an Autonomous Mobile Robot, as mentioned in the first 

paragraphs, is monitored because it has a huge impact on productivity and cost 

effectiveness. More specifically, it is considered in the fleet dimensioning process and 

therefore its variations can affect the number of vehicles necessary to implement a 

successful material handling system. Indeed, the number of robots necessary in a 

handling fleet is calculated at the condition of knowing the throughput of each AMR, 

which is described by the following formula, 

 

𝑞𝑎𝑚𝑟 =
3600

𝑇𝑐
∙ 𝐶𝑣 

 

where Cv stands for the capacity of the vehicle and Tc for the cycle time of the handling 

mission. This gives an interesting insight on how important the cycle time Tc is in 

calculating the throughput of each device and, consequently, in dimensioning the 

fleet. The cycle time of each robot is calculated as it follows:  

 

𝑇𝑐  = =   
𝐿

𝑣
  ×  2

𝑎

𝑣
 × 2𝑡𝐿

𝑈⁄  

 

Therefore, the cycle time can be influenced by the speed and acceleration of the 

vehicles, the loading/unloading time and the length of the path. Since, as mentioned, 

loading and unloading are not considered in this work and speed and acceleration 

assume fixed values according to the ones of the robots of NTNU Logistics 4.0 

laboratory, the length of the path is the concern of this work. In detail, what affects 

the above-reported Tc is the equivalent length caused by mission time losses. It is the 

aim of this chapter to answer to the first key question of this work by detecting and 

analyzing what factors contribute to a variation of the mission time and therefore a 

reduction of each device throughput.   

 

A literature review is necessary to find out which are believed to be the most affecting 

situations in terms of mission time loss by previous research on Autonomous Mobile 

Robots. From this review it would be predictable to extract factors that influence the 

distance traveled by robots, e.g. obstacles and their characteristics such as the 

obstacle width which implies a reduction of the free portion of aisle available for the 

(1) 

(2) 
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robot to pass or the speed and direction of the obstacle. Furthermore, there might as 

well be features of the path itself determining a delay in the mission time.  

 

To perform the literature review about this matter, early research was made on 

Scopus with keywords like “AMR”, “Autonomous Mobile Robots”, “intralogistics” or 

“Logistics 4.0”. Nevertheless, the most significant results were collected thanks to 

further research defined by adding to the previously mentioned keywords more 

specific ones like “collision avoidance”, “decentralized control” and so on. 

 

The first output of this research is, as predictable, AMR speed. This factor obviously 

affects the mission time of the robot not by increasing the equivalent distance 

traveled by the AMR but increasing the value of the denominator of the first term of 

the cycle time (Tc) formula proposed in the last paragraphs. Although this factor is key 

to the cycle time of robots, studying how it affects the mission time has little 

relevance because its value can easily be changed in the AMR settings and it is not 

related to particular circumstances of the working environment. Furthermore, 

analyzing it would reveal it as the most affecting parameter and would deviate the 

focus on those factor that are more relevant to this study. Therefore, for simplicity, it 

will be kept constant in each simulation in this work at the value found in the 

laboratory: 0,8 m/s. 

 

One of the most distinctive features of Autonomous Mobile Robots is their obstacle 

avoidance system. Draganjac explains in his work that these devices move along a 

wide set of motion primitives, according to its steering limitations. Whenever the 

vehicle meets an obstacle and senses it, the motion primitive chosen to for the AMR 

to travel changes and widens as much as needed to get past the obstacle. 

Consequently, the width of the robot trajectory is proportional to the width of the 

obstacle, which results to be the second factor affecting the mission time of each 

vehicle of the fleet. The width of the obstacle cannot be considered alone. In fact, it 

must be connected to another aspect: how distant the wall is from the obstacle. If the 

obstacle-wall distance is significantly bigger than the vehicle size then the position of 

the wall itself can be negligible but, as shown in the following chapters, it has a huge 

impact if the pass is just a little wider than the robot size. Therefore, the factor 

affecting the mission time is not the width of the obstacle, it is instead the width of 

the pass between wall and obstacle. 
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Draganjac adds the idea of private zones, which allow each robot to privatize every 

cell of the environment needed to pass and communicate it to other vehicles of the 

same fleet. If another device is planned to transit in the same cells, a dispatching 

algorithm will give instructions on priorities to solve the conflict. This makes it possible 

to understand how necessary it is to consider the possibility of encountering moving 

obstacles. In case such obstacles are not other vehicles of the same fleet but, as 

frequently happens, operators or other entities, the robot will face a change of 

direction which is going to be more unexpected than a robot or a not moving obstacle, 

since the reaction time is shorter. Therefore, the trajectory computed to avoid it is 

going to be larger proportionally to the speed of the obstacle. This just mentioned 

factor is to be taken into consideration. 

 

It is important to know some aspects that distinguish a real AMR by the ideal one 

that’s implemented in AnyLogic simulator. As Liaquat states in his work, the 

differences between the two concern mainly their behavior in situations where 

dynamic obstacles meet the AMR, e.g. in a situation when an obstacle is approaching 

from behind or there are many moving obstacles in sequence that must be overtaken. 

This aspect is going to be discussed furtherly as a significant limitation of this work 

and implies future developments like simulating these scenarios in a real environment 

instead of a simulated one. 

 

One of the situations just mentioned might be considered as a separated factor that 

affects the mission time of Autonomous Mobile Robots: the frequency of multiple 

moving obstacles in sequence. When a moving obstacle approaches the AMR, it is 

overtaken by it and, afterwards, the robot needs to go back to its pre-routed path. If 

another moving obstacle approaches, the robot must repeat the same operations, 

which doesn’t create any problem if the overtaking procedure occurs a long time after 

the previous overtaking but might be a problem if the two of them are not much 

distant in time from one another. This means that, if the frequency with which moving 

obstacles appear in the AMR obstacle-detecting range increases, then the trajectory 

to avoid such obstacles widens because the robot doesn’t have time to get back to its 

predetermined path but must deal with another obstacle already. In terms of mission 

time loss, this factor certainly has an impact and, therefore, must be taken into 

consideration. 
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The same approach can be used with static obstacles. Indeed, if many obstacles are 

placed randomly in a shop floor environment, what can happen is that many of them 

are placed one after another in a rapid sequence and therefore the trajectory of each 

device is sharper and, consequently, longer. The frequency of static obstacles will be 

reported meticulously in this work and, thanks to its reproducibility on the simulation 

software, it will be modeled into a mission time variation function. 

 

As the last factor affecting the mission time is introduced, it is important to remind 

that the mission time is affected by those situations that determine an increase or a 

decrease of the path length, as it was intuitively clear from the Tc formula.  

A situational factor that has an impact is the curvature radius of a turn in the path. It 

can be defined as the absolute value of the reciprocal of the curvature of a curve at a 

given point, and it basically describes how smooth a curve is. The bigger the curvature 

radius, the smoother the curve. This implies that, taking its value as close to zero as 

possible, a sharp angle would result.   

As it is clear from Figure 5, which is an example on how it impacts on liquids in a piping 

system, the path is significantly shorter if the curvature radius is longer. 

 

  
 

In manufacturing, a circumstance like this is unlikely to occur, since in a production 

plant there are usually aisles forming sharp angles. However, a similar analysis can be 

brought on by considering the angle degrees which, changing, can imply a relevant 

deviation of the robot path. Therefore, since this scenario is closer to a real 

production layout, angle degrees are considered as the last factor affecting the 

mission time of an AMR. 

Figure 5. The curvature radius of a 
pipe. The paths, in red, are shown 
and compared.  
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To summarize, the factors that were detected as most relevant are: 

 

1. AMR speed. 

2. Width of the pass. 

3. Obstacle speed. 

4. Frequency of dynamic obstacles. 

5. Frequency of static obstacle. 

6. Angle of curvature. 

In the following chapter these factors are singularly analyzed in order to find out if 

each of them can be modeled as a parameter and used to extract a function that 

associates to each value of the parameter a value of the mission time variation. 
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5. PARAMETERS AND SIMULATIONS 

In this chapter some considerations are made regarding the key factors that were just 

discussed in chapter 4 and whether they can be modeled as parameters to create a 

function that associates their value to a mission time variation. 

In order to be consider a parameter, each of the factors detected must verify some 

conditions: 

 

 They must be an exact or highly close representation of reality. This aspect 

implies that the times obtained through the simulation software must be 

correspondent with reality and that AMRs must behave in a realistic way, e.g. 

in the collision avoidance actions or in determining the minimum distance from 

an obstacle. 

 Variations of their values must cause significant variations of the mission time 

of Autonomous Mobile Robots. 

 They must be relevant to this work. 

 

Each factor is now shortly discussed and the reasons of the choices are highlighted. 

All the parameters that are introduced in this chapter will undergo further 

examinations that will consist of simulations, computing a function that associates 

each parameter value variations to a mission time variation and a short conclusive 

discussion. What is to be done before these steps is conferring each parameter a 

range of values that will be taken as base values of the simulation. In the making of 

this analysis, the obstacle speed is considered even if it is not a parameter and its 

range of values is limited to the values that make it possible to compare it to reality 

and compute a function characterized by a realistic trend. 

 

In the following table are reported the range of values for each parameter and factor. 

 

 PARAMETERS Unit of measure Base value Minimum 

value 

Maximum 

value 

1 Width of the pass Meters 1,25 0,95 1,5 

2 Frequency of static 

obstacles 

Meters/obstacle 15 2,5 50 

3 Obstacle speed Meters/second -1,5 0,5 2 
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4 Curvature angle Degrees (°) 90 45 135 

Table 1. The three parameters are reported, adding the obstacle speed because of its characteristic 

of being computable into a function within the strict limit of values that allow a realistic 

representation of reality. 

5.1 INTRODUCTION TO RESULTS INTERPRETATION 

As anticipated, this chapter also focuses on the output dataset for each parameter. 

All the measurements are collected in an Excel file, in which the most relevant 

simulation results are reordered and the other values are rejected. The following step 

is computing a function relating each value of each parameter to its result, which is 

its mission time variation compared to the base scenario. 

This process can be carried out by using MatLab, a data analysis application used to 

develop algorithms or create models and functions. Out of the many tools developed 

by this software, the one that is significant for the aim of this part of the work is the 

Curve Fitting Tool. Such tool allows to fit curves and surfaces to externally provided 

data. Therefore, it is possible to conduct regressions analysis using the library of linear 

and non-linear models provided. Although they were not used in the making of this 

work, the Curve Fitting Tool also supports nonparametric modeling techniques, such 

as splines, smoothing and interpolation. 

Once the data provided by the simulation are inserted in the software, a function is 

computed and is shown in a Cartesian graph. In it, the X-axis the values of the 

parameter are reported while in the Y-axis the mission time variations are shown. 

The model firstly computes a function, whose type can be changed by the user to find 

the one that has the best fit. Computing the parameters described in Chapter 6, 

several models resulted to be well fitting the input data, determining the need for 

choosing one for each parameter. 

Having said that, the question that raises is the following: how is it possible to state 

which function better fits the input data? What is the evidence that justify this choice? 

MATLAB answer these questions by providing the user with useful indicators that 

measure the error of the just created model and therefore describe the goodness of 

its fit. Such indicators are SSE (), R2, R2
adj and RMSE and are defined as it follows. 
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 SSE stands for sum of squares error and it measures the goodness of fit of a 

regression model by calculating the sum of the square of each deviation of the 

actual value from the fitted value. Its formula is the following. 

 

𝑆𝑆𝐸 =  ∑ 𝑒2

𝑁

𝑖=1

  

 R2 is a goodness-of-fit measure for linear regression models. This statistic 

indicates the percentage of the variance in the dependent variable that the 

independent variables explain collectively. R-squared measures the strength of 

the relationship between the model and the dependent variable on a 

convenient 0 to 100 percent scale. This measure considers the smallest sum of 

squared residuals that is possible for the dataset that the user has inserted as 

model input. A residual is the difference between the observed value and the 

fitted value. Since R2 is a numeric result, it cannot be considered valid unless 

residual plots are evaluated. For instance, the result can be acceptable 

according to R2 even if some of the residuals were systematically too far from 

the fitted values. When a scenario like this happens, this measure must not be 

considered effective because the model is biased. Therefore, it is appropriate 

to carry out a residual plot analysis before validating the R2 result. 

 
Having given such assumptions, it is possible to continue with the analysis of R2 
by computing the following formula. 

 

𝑹𝟐 = 𝟏 −  
𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 𝒖𝒏𝒆𝒙𝒑𝒍𝒂𝒊𝒏𝒆𝒅 𝒃𝒚 𝒕𝒉𝒆 𝒎𝒐𝒅𝒆𝒍

𝒕𝒐𝒕𝒂𝒍 𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆
 

 

As the formula might suggest, this indicator expresses a better fit of the model 
if its value is closer to 100%. In this work and in general, a curve is considered 
well fit to the input dataset if R2 is greater than or equal to 95%.  

 

 R2
adj is an indicator which improves what R2 measured. It is useful in those cases 

in which more variables are considered in a model. It keeps the number of 

variables (K) and the number of points in the data sample (N). 

The formula for adjusted R-squared is the following. 

 

https://statisticsbyjim.com/glossary/regression-analysis/
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𝑅𝑎𝑑𝑗
2 = 1 − [

(1 − 𝑅2)(𝑛 − 1)

𝑛 − 𝑘 − 1
] 

  

This indicator corrects a problem that often happens by using R2 , which is its 

tendency to increase with more terms being added to the model. This is 

completely misleading. 

 

 RMSE, or root-mean-square error, indicates the goodness of the fit if its value 

is low. It is basically the quadratic mean of all the deviations (errors) between 

the observed and the fitted values. 

6. AMR SPEED 

6.1 PARAMETER PRESENTATION 

The speed of robot was mentioned in the previous paragraphs as a factor that 

influences the mission time in a direct and clear way. It is reported as the denominator 

of the first factor of the Tc formula (2) and therefore a variation of its value directly 

determines a variation of the mission time of an AMR.  

From simulating in AnyLogic and from the experiences in the NTNU Logistics 4.0 

laboratory, it was possible to verify that the speed of these devices decreases every 

time they meet an obstacle or they approach a turning point. Observing and 

measuring their paths in the lab, the minimum distance to an obstacle was believed 

to be 0,5 meters. Measuring times and comparing them to the ones detected from 

AnyLogic, it was possible to extract the values of acceleration and deceleration that 

were set to 0,25 m/s. Furthermore, the user interface of the AMRs used in the lab 

automatically set its speed to 0,8 m/s.  

As mentioned, this factor verifies the first two conditions but not the third one and, 

therefore, will not be considered a parameter in the making of this work mainly 

because it is pointless to change its value knowing its real speed in the working 

environment. Moreover, its impact on the mission time is incredibly higher than any 

other parameter of this work and consequently the results would have been 

excessively altered by this specific factor.  

Last, this work highlights the behavior of mobile robots considering particular reality-

like circumstances of the working environment rather than focusing on the settings 

of the devices. 
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7. WIDTH OF THE PASS 

7.1 PARAMETER PRESENTATION 

This factor is the result of the combination between the position of the obstacle and 

the wall, and the differences between these values generates the width of the pass 

available to let the robot get through. In this case, it was necessary to reproduce each 

scenario in the laboratory because of significant differences from the behavior of the 

AMR while approaching and overtaking the narrowing in AnyLogic. Indeed, in the 

simulation software the robot was able to get through a 58-centimeter large 

narrowing, which is exactly the robot size in width. In reality, as stated in the manual 

of instruction of MiR200, the device needs at least 90 centimeters to get through, 

which is exactly what resulted from the experiments brought on with PhD. Mirco 

Peron. 

For this reason, the first condition is satisfied, as well as the second and the third. 

Therefore, this factor is to be considered a parameter.  

During the experiments, more than one scenario was reproduced and, in the end, the 

most relevant one was determined to be the one characterized by a square obstacle 

(40x40), approximately the width of an operator, placed in the middle of the robot 

path. The width of the pass was varied during the simulations to allow to monitor the 

mission time variations under each circumstance. 

7.2 SIMULATION WITH ISOLATED PARAMETER 

fi. 

The simulation environment for the width of the pass parameter. 
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This parameter was the only one which was entirely measured in the NTNU Logistics 

4.0 laboratory, thanks to the great patience and availability of PhD. Mirco Peron and 

the permission of Professor Fabio Sgarbossa. In the lab, a box which was 

approximately the size of a person was placed in the middle of the aisle and the 

vehicle was forced to avoid it passing on the right side of the aisle. The pass was 

reduced more and more each time until it was 0,9 meters wide. In that scenario, the 

robot could only pass few times out of more than 20 tries, and therefore the 

measurement was not considered a valid result. Moreover, the experiments in the lab 

showed that there was no difference in terms of mission time if the width of the pass 

was equal to 1,5 meters or bigger. These are the reasons why the values were decided 

to range between 0,95 to 1,5 meters, which resulted in a significant impact on the 

mission time, as it is shown in the following chapter. 

 

Although most of the job was made in the laboratory, each value of the previously set 

range was reproduced in the simulation software. 

As shown in the picture, the simulation environment for this parameter is set as 

follows. The main aisle is 100-meter long and 3,5 meters long. In the picture above it 

is set to 20 meters to make it fit in the figure and to show both the starting and ending 

points. In the middle of the path there is a static obstacle in the upper part of the aisle 

which remains still. The moving part, which increases and decreases the width of the 

pass, is the lower part, consisting of another obstacle whose function is just restricting 

or enlarging the narrowing. 

7.3 SIMULATION RESULTS 

 
Figure 7. The mission time variation function for the factor “width of the pass”. This is the model 
that is valid for passage width values that are less than or equal to 1,5 m. 
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Figure 8. For passage_width values greater than 1,5 meters, the function is a straight line whose 
value on the Y-axis remains constant. 
 

As it is possible to see in Figure 7, the function computed by the Curve Fitting tool 

perfectly describes the model in that range of values going from 0,95 to 1,5 meters. 

This first graph was limited to this range of values. Indeed, the graph shows a function 

that keeps decreasing as the input parameter increases even for bigger values. This 

goes against the deductions made while considering the results of the lab 

experiments, which revealed that the mission time variation does not increase when 

the passage width is greater than 1,5 meters. 

Therefore, in this case another graph is needed to show the trend of the function for 

passages wider than 1,5 meters, which is basically a constant value. This trend is 

showed in Figure 8. 

The following formula quantitatively describes the model for values on the X-axis 

lower than or equal to 1,5. 

 

∆𝑇 =
𝑝1𝑥2 + 𝑝2𝑥 + 𝑝3

𝑥 + 𝑞1
 

Where:   
- x = passage width value. 
- p1 = -2,354 
- p2 = 8,675 
- p3 = -6,092 
- q1 = -0,9454 
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8. FREQUENCY OF STATIC OBSTACLES 

8.1 PARAMETER PRESENTATION 

The frequency of static obstacles is a relevant factor because it reproduces a scenario 

that can be easily found in a real working environment. For instance, in a long aisle 

with multiple working stations there might be obstacles of any kind, from pallets to 

operators, from stationary vehicles to semi-finished products. As stated in the 

previous chapter, their presence could be considered as a single obstacle scenario if 

the distance between obstacles is high enough. What happens if such distance is 

shorter is that AMRs are forced to travel more sharp paths, enlarging their trajectory 

in order to avoid consecutive obstacles that imply consecutive changes of directions. 

This factor is therefore relevant, can be modeled through the simulation software 

reproducing reality with great coherence and its variation cause significant variations 

in terms of mission time. For all the reasons which were just mentioned, this is going 

to be another parameter of this work. 

 

8.2 SIMULATION WITH ISOLATED PARAMETER 

Figure 9. Simulation environment for the frequency of static obstacle.  

 

This parameter, unlike the previous one, is entirely simulated in AnyLogic because it 

is needed a longer aisle to variate the frequency of obstacles. The minimum value is 

set to 2,5 m/obstacle, which means that the Autonomous Mobile Robot finds an 

obstacle every 2,5 meters. This situation is rarely found in a working environment, but 

it allows to enlarge the dataset needed to compute the mission time variation 
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function. The maximum value is 50 m/obstacle, which results in only one obstacle in 

the path because, as stated in the previous chapters, the aisle is 100 meters long. The 

experiment was brought on considering both a person size obstacle and a pallet size 

obstacle. The results, in terms of mission time variation, were quite similar. In an 

industrial context in which a situation like this can happen, the aisle is often wider 

than 3,5 meters, otherwise there would not be enough space for the robots to 

overtake a pallet, facing the device by the long side, and get through the narrowing 

formed by the wall and the obstacle. Therefore, in the simulations the aisle width is 

set to a bigger value, as shown in Figure 9. Obstacles were enlarged on one side, one 

time to the left and one to the right, in order to force robots to travel a “zigzag” 

trajectory, otherwise they would avoid every obstacle by the same side without going 

back to the center of the path. 

To summarize, starting from one obstacle, another one is added in every simulation, 

changing the position on the grid of each obstacle to keep constant the distance 

between them. 

8.3 SIMULATION RESULTS 

 
Figure 10. The trend of the function of the parameter “frequency of static obstacle”. 
 

The frequency of static obstacle is modeled as Figure 10 shows. The dT does not refer 

to the overall mission time variation. On the contrary, it refers to the mission time 

variation caused by each obstacle the robot finds on its path. For instance, as the 

graph shows, if the AMR must overtake one obstacle every 5 meters, the mission time 

variation is 2,2 s/obstacle. This value, then, must be multiplied by the total number of 

obstacles in the path to find the total amount of mission time lost in the whole path. 

This decreasing trend is explained by the fact that when many obstacles are on the 

robot way, it must make many more changes of direction. Moreover, each change of 

direction is sharper and therefore requires more time to be executed. 
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This experiment was brought on considering both an obstacle the size of a pallet and 

a person. The results are similar in terms of values and even in terms of the function 

computed by MATLAB. The only difference that is brought to attention involves the 

smallest value of the frequency range: 2,5 m/obstacle. In this scenario, pallets 

determine a 3,2 second mission time variation while obstacles the size of a person 

cause a 2,16 second variation. However, it is extremely unlikely for a robot to find one 

obstacle every 2,5 meters in a real-life working environment and therefore it is not 

fundamental to distinguish the two previously mentioned cases. 

The function returned is a negative power relation, described by the following 

formula. 

∆𝑇 = 𝑎𝑥𝑏 + 𝑐 
 
Where:  

- a = 6,398 
- b = - 0,2976 
- c = - 1,738 
- x = value of the frequency of the static obstacle. 

 
As it is possible to notice by observing the results reported in Figure 10, the statistics 

confirm the goodness of the model by highlighting a R2 indicator that is nearly 98% 

and a low value of the SSE, which is equal to 0,165. 

 

9. OBSTACLE SPEED 

9.1 PARAMETER PRESENTATION 
 

An Autonomous Mobile Robot can avoid both static and dynamic obstacles, 

approaching both from the back and from the front. This characteristic gives these 

devices great flexibility but, at the same time, makes them behave differently from a 

static obstacle situation. Indeed, when an obstacle is moving towards the robot, it is 

sensed by motion sensors and by cameras implanted in the device but it reduces the 

reaction time of the AMR and, above all, it forces the robot to enlarge its trajectory 

because it must let the aisle free for the obstacle to pass in a shorter time. Moreover, 

as stated previously, in some scenarios the obstacle might come from the same 

direction as the robot and, if its speed is higher, it must overtake the robot. In this 

case the robot must stop to let the obstacle get through and only afterwards it can 

continue its mission. In AnyLogic a dynamic obstacle scenario cannot be reproduced 
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for one reason: when an obstacle moves towards the AMR with a much higher speed 

than the robot speed, the software behaves in an unrealistic way, forcing the robot 

to move out the way to avoid colliding with the obstacle at a speed which is not 

realistic at all. As result, the AMR mission time is shorter when an obstacle approaches 

at a high speed (2,5 or 3 m/s, the speed of a random forklift). It could be considered 

as an obstacle only if the obstacle speed is less than 2 m/s.  

Considering these observations that have just emerged, the behavior of the 

simulation software becomes a highly significant limitation of this work and further 

research based on laboratory experiments is appropriate. 

 

9.2 SIMULATION WITH ISOLATED PARAMETER 

 
Figure 11. The simulation environment of the obstacle speed factor. 

 

This factor, which was previously discussed as a non-parameter for this work, is one 

of the most complex to represent because the simulation environment is modeled 

aiming to guarantee that the robot and the obstacle meet at the same point of the 

path in each simulation to make sure they meet as many times as the number of 

missions of the AMR. In figure 11figure it is shown the model and the blue path, which 

is a trajectory the obstacle must not leave. Indeed, in this case obstacles are 

transporter entities just like AMRs but are set as path-guided ones. Such path is 
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modeled in length to achieve what was just mentioned: the coincidence of the robot 

and the obstacle path in each loop of the simulation. 

Furthermore, AnyLogic gives the user the possibility to change the direction of an 

already existing path, which is what is done to carry out the simulation of the obstacle 

moving in the same direction as the vehicle. The obstacle can be modeled in width, 

length and speed in order to reproduce different vehicles interfering with the robot 

mission: forklifts, operators, AGVs or even other robots.  

Just like the previous cases, in the picture is reported a working area in scale to fit the 

figure. 

9.3 SIMULATION RESULTS 

As stated in the previous chapter, this factor is not considered a parameter for 

multiple reasons, one of which is because the AMR responds to an obstacle 

approaching in a realistic way only for speed values ranging from 0 to 2 m/s. When an 

obstacle is faster or when it approaches the robot from the back, the device 

represented on AnyLogic does not match the behavior or real-life AMRs. Therefore, 

future developments on this are appropriate and further experiments in the 

laboratory are necessary. 

Having said that, the trend of the dT function is reported, for the sake of 

completeness, considering only positive values from 0 to 2 m/s. 

 

 
Figure 12. The function trend for the factor “obstacle speed”. 

 
As it is possible to notice from Figure 12figure, the function keeps raising as the 

obstacle speed increases because the observed value at obstacle speed equal to 2,2 

was excluded (red cross on the right part of the graph) because the software 

simulation reproduced an obstacle avoidance process which was not realistic. Indeed, 

if that value had been considered, the function would have unpredictively collapsed 

even though the obstacle speed was increasing. Therefore, it is necessary to limit the 
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obstacle speed values to 2. Future developments are needed to allow this scenario to 

be modeled and a reliable function computed for obstacle speed values even higher 

than 2 m/s. Indeed, these values of speed are realistic in a working environment, since 

forklifts, for instance, can travel at a speed up to 3,5 m/s. 

10. FREQUENCY OF DYNAMIC OBSTACLES 

10.1 PARAMETER PRESENTATION 
 

This factor is conceptually similar to the frequency of static obstacles. Indeed, the way 

the robot behaves is comparable because it avoids the obstacle and then moves back 

to the center of the predetermined path and avoids the collision with the following 

obstacle. It is coherent with reality since there are plenty of situations where robots 

encounter pedestrians in a relevant frequency or even other vehicles like other AMRs 

or even forklifts. As it is possible to notice thanks to the simulations made with static 

obstacles in sequence, the waste of mission time these situations imply is relevant 

and could be modeled as a parameter. In this case, what prevents this factor from 

being considered a parameter is its low reproducibility on the software AnyLogic. The 

problem detected during the simulation concerned the path of the robot: while in the 

static obstacle scenario it was possible to lead the robot to a “zigzag” path to perform 

many changes of directions, in this scenario it is not possible due to the dynamicity of 

the system. In other words, the AMR does not go back to the center of the path but 

stays on one side of the aisle in order to avoid obstacle in a smarter but not realistic 

way, as shown in Figure 13. 
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Figure 13. As shown, the AMR (circled in blue) does not come back to its preset path (line in light 

blue) after avoiding the first obstacle (moving operator on the blue path) but it keeps the right to 

make it easier to avoid the following obstacle. Because of this robot characteristic, it is not possible 

to reproduce in AnyLogic a realistic simulation environment. 

 

11. CURVATURE ANGLE 

11.1 PARAMETER PRESENTATION 
 

The curvature angle is the manufacturing translation of the curvature radius in piping 

systems that was detected during the literature review. This change was made mainly 

to reflect the curvature radius to a more realistic environment to be reproduced. It is 

significant to this work because it implies serious waste of mission time if its value 

variates. Operating in the laboratory was a critical advantage because it allowed to 

understand how close robots got to the walls during a 90 degree turn and how much 

their speed decreased in that part of the path. Thanks to what was observed in NTNU 

Logistics 4.0 laboratory, all the fleet parameters were set in AnyLogic as well. Since 

the curvature angle is relevant and can be reproduced with good coherence with 

reality, it is considered a parameter, which is expected to imply higher variations of 

robot mission time when the angle is smaller and lower variations when the angle 

between the aisle is tending to 180°.  
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11.2 SIMULATION WITH ISOLATED PARAMETER 

 
Figure 14. The simulation environment of the factor curvature angle. 

 

In the picture are shown, in blue, the main vertical path, which is common to all the 

5 values of the range, and the 5 different paths forming 5 different angles: 45°, 67,5°, 

90°, 112,5° and 135°. Again, the lengths are scaled to make them fit in the picture. 

The most difficult part of this modeling process was to make sure that each path was 

equal to the others. In the picture it is possible to see that the blue paths are far from 

being the same length, and that is because AMRs don’t move precisely along the pre-

determined path but are set as free-space movers. Therefore, when two aisles form 

a small angle, the AMR will not follow the path in blue, it will cut the turn and pass as 

close to the wall as possible, which was observed to be 50 centimeters, thanks to its 

artificial intelligence that computes the fastest trajectory to reach the destination 

point. Whenever the angle formed by the two aisles is bigger, for instance 135, the 

robot will act the same way, but it will not be possible for it to save as much space as 

in the previous cases because its trajectory will be closer to 180°. This is the reason 

why the smaller angles are characterized by longer paths and further destination 

point. Such distance is calculated by observing the trajectories of the robots in 

AnyLogic and making sure that each path results in the same distance traveled by the 

device. In Figure 14 walls are not shown because their position varies along with the 
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variation of the scenario: the positioning of walls when the 45-degree angle is 

considered is different than when the 112,5-degree angle is simulated. 

11.3 SIMULATION RESULTS 

 
Figure 15. The computed function of the parameter “curvature angle”. 
 

The graph shows a trend determine by a sum of sine kind of function. The computed 

formula describes the input data very accurately, with an SSE of just 0.003, while the 

R2 indicator nearly reaches 100%. Obviously, the mission time variation when the 

curvature angle equals 180° is null. Therefore, the graph should be stopped at that 

value on the X-axis and the function shall not have negative values. 

In this scenario, more than one function described the model properly with good 

fitting values. In particular, a third-degree polynomial function returned similar R-

squared and SSE values, but the sum of sine function was preferred because of its 

smaller number of terms. 

The computed formula is the following. 
 
 

∆𝑇 = 𝑎1sin (𝑏1𝑥 + 𝑐1) + 𝑎2sin (𝑏2𝑥 + 𝑐2) 
 
 
Where: 

- a1 = 42,72. 
- b1 = 0,01841. 
- c1 = 0,657. 
- a2 = 39,29. 
- b2 = 0,01947. 
- c2 = 3,708. 
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The results obtained from the simulations are, as expected, more significant when the 

angle is smaller. Nevertheless, even when a 135-degree angle is involved, the mission 

time variation is significant and reaches slightly more than 2 seconds. This can be 

explained by the AMR behavior, since the robot calculates the shortest path to reach 

the destination point and therefore gets as close as possible to the wall in a turn. By 

doing this, the robot slightly slows down when it approaches an obstacle or, as in this 

case, a wall, as observed in NTNU Logistics 4.0 laboratory. 

 

12. COMPARISON OF THE IMPACT OF EACH PARAMETER 

The last bit of this chapter consists of a short analysis to check the importance of 

parameters in terms of how much each of them affects the mission time of an 

Autonomous Mobile Robot. The activity that must be brought on is a comparison 

between the mission time loss of each of the three parameters. Indeed, the obstacle 

speed is not going to be considered because of the limitations that restrain the 

applicability of the results obtained by simulating with AnyLogic, which are already 

stated to be a limited range of results. 

Moreover, a further distinction is required: the frequency of static obstacles returns 

a mission time loss value which is comparable to the other parameters if the mission 

time per obstacle is considered. This is what was considered over the last chapters 

and in the above-reported computed function. 

Otherwise, if the total mission time loss is considered, its value raises exponentially 

to reach values that are incomparable to the other two parameters. 

Both scenarios must be considered because both reproduce realistic situations in a 

working environment. The comparisons between the impact of each parameter are 

shown in Figure 16 and Figure 17. 
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Figure 16. Comparison between the impact of each parameter on the mission time. On the Y-axis 
is reported the mission time loss in seconds. 

 

 
Figure 17. Comparison between the impact of each parameter on the mission time. In this case, 
for the frequency of static obstacles, the total mission time loss is considered multiplying the time 
loss per obstacle by the total number of obstacles in the path. 

As it is shown in the graph of Figure 17, when considering the total mission time loss, 

in the worst-case scenario where obstacles are found in the path each 2,5 meters, the 

frequency of static obstacles rapidly raises to reach 91,2% of the total lost time. 

On the other hand, when considering one event at a time and the maximum value 

that each parameter can get, the percentage of the impacts are more balanced.  
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The width of the obstacle impacts on the 44,3% of the total, while the frequency of 

static obstacles and the curvature angle respectively impact for 26,2% and 29,5% of 

the total. 
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13. SIMULATION ENVIRONMENT WITH COMBINED PARAMETERS. 

The analysis brought on in the previous chapter has returned some important results 

that have a central role in this work and allow to model many real-life situations and 

take into account time losses that enlarge the equivalent distance traveled by 

Autonomous Mobile Robots. 

Having said that, it is now fundamental to acknowledge that most of the scenarios of 

real working environments have not been considered yet. For instance, what happens 

when an AMR finds multiple obstacles and a curve in the same path? Basically, the 

situations left to analyze are resulting from the combination of the parameters that 

were discussed about in the previous chapters. Therefore, in this part of the work, the 

focus is on creating simulation models in which each parameter is not taken singularly 

anymore. On the contrary, it is combined with the other two in order to create and 

simulate more complex models that are more likely to characterize real-life scenarios. 

According to the assumptions just specified, it is necessary to select some values in 

each parameter value range and create every possible combination of those to create 

a three-value model that is going to represent a realistic scenario. In the following 

table, Table 2, the most significant values are chosen based on how relevant they are 

in terms of possibility to be found in a working plant and of how much they impact 

the mission time of an AMR. 

 

Table 2. Significant 
values considered for 
each parameter. Such 
values are to be 
combined to form 
three-value models. 

 

 

 

Concerning the width of the pass, three values out of the four that were previously 

considered are chosen to be simulated in this chapter. As of the curvature angle, the 

most realistic values were chosen, as well as for the frequency of static obstacles. 

Regarding this parameter, the 2,5 m/obstacle value was left out of this analysis 

because of two reasons: its unrealism and the enormous impact it would have on the 

mission time. Indeed, if such value was considered, it would influence the analysis and 

consequently reduce the impact of the other two parameters on the overall 

WIDTH OF THE PASS 

(m) 

FREQUENCY OF 

STATIC OBSTACLES 

(m/obs) 

CURVATURE 

ANGLE 

(°degrees) 

1 25 45 

1,25 15 90 

1,5 5 135 
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simulation time. Its impact is much more significant than the other two factors, as it 

is possible to notice from Figure 17 of Chapter 7.4. 

Since three values per parameter were picked, the overall number of scenarios 

representable is 27. Indeed, the total number of combinations is returned by a power 

whose base is the number of factors considered and the index of power equals the 

number of values per factor. Therefore, in this case, it is 33. 

Each combination of values determines a situation that will be implemented in 

AnyLogic to create a virtual environment. The running of the simulation returning a 

mission time value allows to compare such value to the mission time of the base case 

and calculate the time difference dT.  

Before proceeding to the creation of the simulation environments, it is important to 

specify what the term “base case” means. The base case scenario is the referring point 

of the whole set of simulation and the whole data set resulting from it. Each 

simulation result must be compared to the base case. Such scenario is supposed to 

reproduce the simplest realistic situation that could be found in an intralogistics plant 

and, therefore, each comparison shall result in a robot mission time variation that 

differs in relation to the simulation values selected. The following table sets the three 

parameters’ values of the base case scenario. 

 

WIDTH OF THE PASS FREQUENCY OF STATIC 

OBSTACLES 

CURVATURE ANGLE 

2 m 50 m/obstacle 180° 

Table 3. The base case scenario. 

 

As shown in the table, the above-mentioned base case scenario is basically a straight 

aisle (180° angle) with a single obstacle in the middle of it (50 m/obstacle). The width 

existing between the wall and the obstacle is set to 2 meters. This scenario is the first 

one to be reproduced. Starting from this, the 29 simulations are going to be carried 

out introducing a new curve or new obstacle and dislocating existing ones. Moreover, 

walls need to be moved as well, making the width of the pass smaller according to the 

values showed in Table 2. 

In the creation of the simulation environment, it is needed to change the value of 

parameters for each simulation to reproduce the target scenario. Since it takes high 

precision and accuracy in dislocating obstacles and walls, changing the value of all 

three parameters each time would require a massive amount of time. Thus, it is more 

comfortable to change one parameter value at a time. In particular, the parameter 
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whose modifications are easier to carry out is going to be varied more often than the 

other two. Such parameter is the width of the pass, for which changing the position 

of walls is enough. The most time-consuming modification is the one involving the 

values of the frequency of static obstacle. Indeed, changing the value of this 

parameter implies adding one or more obstacles and, consequently, dislocating all 

the pre-existing ones each time. This process requires a high amount of time and, for 

that reason, the frequency of static obstacles is kept unchanged as long as possible, 

modifying its value only twice throughout the whole simulation process.  

For such parameter, as shown in Figure 18, it is important to make a specification. 

Indeed, unlike the isolated parameter scenario, in this case there is a curve in the 

middle of the path. Since the robot runs into the curve, it is unrealistic to position an 

obstacle just after or just before the curve and therefore the curve itself is going to 

replace one of the obstacles. Consequently, if the frequency of 5 meters/obstacle 

implied positioning 16 obstacles in the isolated parameter scenario, in this situation 

the obstacles are going to be 15, due to the presence of the curve. 

 

 
Figure 18. The simulation environment with combined parameters. In this case, the environment 
consist of a 110-meter long aisle in which many obstacles are positioned 5 meters distant from each 
other. The width of the pass is kept to 1 meter and the curvature angle equals 45°. 

 

 

The curvature angle is quite time-consuming because the aisles cannot only be 

rotated. Indeed, as specified in Chapter 6.4, the curvature angle implies difficulties in 

terms of actual length of the path, because the AMR tend to cut through the curve 
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and get as close as possible to the walls. Therefore, it is necessary to move the 

destination point a little further to make sure the robot travels the same distance as 

in the straight angle scenario. The additional distance must be calculated, and this 

makes the curvature angle the second most time-consuming modification to the 

simulation environment. The simulation that must be carried out is designed exactly 

the same way as the ones involving isolated parameters: the two variables that allow 

to keep track of time and return the mean value are set, meaning that the measured 

time refers to the travel of the robot back to its starting point, right after it unloads 

the item to the destination point and start traveling its way back to the starting point. 

The length of the AMR path is kept to 100 meters. 

Once the dataset including all the combination of the three parameters is created and 

the AnyLogic environment is set, it is possible to run the simulation.  

The results returned by the simulation are resumed in the following graph. On the X-

axis it is possible to see the combination of values that each column refers to. 

 

 
Figure 19. The results of the simulations with combined parameters. 

 

Having said that, it is important to make a further reflection. The results that were 

just obtained from the simulations with AnyLogic highlighted the time loss under 

significant circumstances that can reproduce realistic scenario. Nevertheless, the aim 

of this part of the work is not to associate a mission time loss to each reproducible 

scenario, which would require a huge amount of time due to the number of possible 

combinations of parameters. On the contrary, the focus of this study is to investigate 

and possibly detect an existing relation between parameters or, even more 
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significantly, proofs of what parameter is more influent on the robot mission time. 

The analysis carried out in the next paragraph allows to state which parameter is key 

to the reduction of the robot mission time and therefore needs to be avoided in a 

real-life situation such as a new material handling system implementation. For 

instance, if the frequency of static obstacles turns out to be the most influent 

parameter on the robot mission time loss, this study can provide useful information 

to the designing engineer, who should make a further effort in order to reduce the 

possible occurring of situations in which multiple obstacles are in the robot path with 

high frequency. 

The process that implies such reflections is pivoted on the statistical analysis called 

ANOVA, which is explained and executed in the next paragraph and is key to the 

model implementation with combined parameters. 
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14. MODEL IMPLEMENTATION WITH COMBINED PARAMETERS.  

14.1 ANOVA TEST AND ASSUMPTIONS 
 

The models that were implemented in Chapter 7 must be considered as standards for 

the implementation of a new model, which enables considering multiple parameters 

influencing the robot mission time simultaneously. The simulation results are 

organized in an Excel worksheet and then taken as input data to carry out an ANOVA 

test, which stands for Analysis of Variance. The data analysis software used for this 

process is Minitab, a statistics software package that allows companies of any kind to 

spot trends, solve problems and to process business data in general. It also allows to 

execute the ANOVA test and give out precise and reliable results.  

The Generalized Linear Model of the Analysis of Variance is a regression model and, 

thus, it aims to detect a potentially existing relation between a dependent variable 

and an independent one. Based on the number of independent variables, this test is 

called One-Way or Two-Way ANOVA. Going into detail, a one-way ANOVA is a type of 

statistical test that compares the variance in the group means within a sample whilst 

considering only one independent variable or factor. For instance, if it is needed to 

detect a possible relation between the age of an industrial machinery and the 

frequency of malfunctions, a one-way ANOVA is required. If it is necessary to state if 

a relation exists between the age of the machinery, its weight and the frequency with 

which malfunctions occur, then a two-way ANOVA is required. In this work, since 

there are three parameters to be considered, a multi-factor analysis of variance must 

be carried out. The two-way ANOVA can not only determine the main effect of 

contributions of each independent variable but also identifies if there is a significant 

interaction effect between the independent variables. Concerning the above-

mentioned example, a multi-factor ANOVA would consider an additional factor given 

by the combination of the machinery age and weight, assessing if there is a cause-

effect relation between such combined parameter and the frequency of malfunctions. 

By analyzing the results, it is possible to understand whether one parameter is more 

influent on the result, which in this work is the robot mission time, and how more it 

affects it compared to the other parameters. 

Since the analysis of variance can be usefully implemented in many scenarios, it can 

be carried out in a huge range of application fields such as industry, agriculture, 

medicine, sociology and more. 

Nevertheless, before inserting the simulation results as input data in Minitab, it is 

necessary to specify some assumptions that the ANOVA test has and make sure that 
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the case study reported in this work complies with such assumptions. The above-

mentioned conditions that must be fulfilled are the following: 

 

1) Interval data of the dependent variable. This assumption suggests that an 

ANOVA requires the dependent variable, which in this case is the mission time 

variation, to be of metric measurement level, which is ratio or interval data. 

Examples of continuous variables are time and weight, respectively measured 

in hours and kilograms. In this specific case, the mission time variation is clearly 

an interval data kind of variable. In fact, interval variables have their main 

feature in the possibility to be measured along a continuum and have a 

numerical value. Therefore, the dependent variable of this ANOVA test 

complies with this assumption. 

Moreover, the independent variables shall be nominal. If the independent 

variables are not nominal or ordinal, they need to be grouped before the multi-

factor ANOVA can be done. Nominal variables are variables that are described 

by two or more categories, but which do not have an intrinsic order. For 

instance, the curvature angle is an independent variable and its value can only 

be one out of five pre-determined values, which leads to assume that it’s a 

nominal variable. Such analysis applies to the other independent variables of 

this work. 

 
2) Normality. The second assumption of ANOVA requires the dependent variable 

to reproduce or at least nearly reproduce a normal distribution for each of the 

multiple combinations of the independent variables. Testing this hypothesis 

can be done in several ways: it is possible to build a histogram with a normal 

distribution curve or carry out a goodness of fit test against normal distribution, 

which is usually the Kolmogorov-Smirnov normality test.  
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Figure 20. Example of Normality test executed on a 
population that received a treatment for body fat loss. The closer to the line residuals are, the higher is the 
probability of residuals following a normal distribution. 
 

The Kolmogorov-Smirnov test, carried out thanks to Minitab statistical analysis 

software, serves to check if the residuals of the ANOVA test follow a normal 

distribution. Going more into details, verifying this assumption is all about 

having or not having enough evidence to prove that the residual are not 

normally distributed. 

The results of the test, as well as a more detailed description of how to interpret 

its key figures, are reported in the following paragraphs. 

 

3) The ANOVA test assumes homoscedasticity of error variances. This simply 

means that the variance, or error term, of the outcome, which is the dependent 

variable, is the same across all values of the independent variables. The 

homoscedasticity test can be carried out through either a Levene’s test or a 

simpler graphical observation of the trend highlighted by the outliers, which 

represent the variances. In more formal terms, the general rule is that if 

the ratio of the largest variance to the smallest variance is 1.5 or below, the 

data is homoscedastic. Graphically, it is possible to assume whether a set of 

data is homoscedastic or not by reconnecting its trend to one of the two 

following examples. 

 

     
Figure 21. The graphical representation of variances allows to assume the homoscedasticity of a dataset. 

https://www.statisticshowto.com/ratios-and-rates/#ratio
https://www.statisticshowto.com/probability-and-statistics/variance/
https://www.statisticshowto.com/probability-and-statistics/variance/
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4) The fourth assumption, which needs to be verified prior to executing an ANOVA 

test, is randomness of samples and avoiding multicollinearity. Avoiding 

multicollinearity means making sure that the observations are independent 

from each other. Since the factorial ANOVA includes two or more independent 

variables it is important that the factorial ANOVA model contains little or no 

Multicollinearity.  Multicollinearity occurs, for instance, when the samples have 

not been chosen randomly and therefore the observations between or within 

groups are not independent.  

Verifying this condition is easier compared to the previous ones. Indeed, it is 
necessary a Runs Test to verify that the samples have been chosen randomly. 
This test consists of a statistical procedure that examines whether a string of 
data is occurring randomly from a specific distribution. It helps determine the 
randomness of data and can be done through Minitab. Assessing whether the 
samples were chosen randomly or not is based on the P-value given in output 
by this test: if the p-value is less than or equal to the significance level, the 
decision is to reject the null hypothesis and conclude that the order of the 
data is not random. The significance level is usually set to 0.05. The results of 
the Runs Test are reported in the following table. 
 

Descriptive Statistics    

Test 
Null hypothesis H₀: The order of the data is random 

Alternative hypothesis H₁: The order of the data is not random 

  

Number of Runs  

Observed Expected P-Value 

14 14.33 0.895 

 
Figure 22. The runs test results. 
 

As it is possible to notice from Figure 22, the Runs Test shows that there is not 
enough statistical evidence to refuse the null hypothesis, since the number of 
expected runs is not much different from the observed one and, moreover, 
the P-value is way greater than the limit value, which is usually set to 0,05. 
The null hypothesis, or H0, in this case, is assuming the randomness of samples. 
The P-value being equal to 0,895 implies not being able to confute such 
hypothesis. Therefore, it is acceptable to assess that the fourth condition is 
verified in this specific scenario. 
 

  
Number of 

Observations 

  

N K ≤ K > K 
27 11.1889 15 12 

K= sample mean 
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Moreover, it is possible to assess the independency of observations because of 

how the software AnyLogic works. Every time a simulation is run, it is 

considered by the software as a completely different scenario compared to the 

other previous simulations and, therefore, it is simulated as a whole new 

environment, which is chronologically independent from the previous ones. 

 

14.2 MODEL IMPLEMENTATION  
 

Before focusing on the results of the tests and proceeding to the regression function 

computation, it is necessary to make an introduction on what P-value and F-value 

represent. Indeed, they are the main parameters that are reported in the results and 

allow making assumptions on the numeric results. 

An ANOVA uses the following null and alternative hypotheses: 

 H0: all group means are equal. 

 HA: at least one group mean is different from the rest. 

 

H0, also known as null hypothesis, represents a scenario in which all means are equal 

and, therefore, there’s not one category that’s more impactful on the result than 

the others. 

The F-value and the P-value are the statistic values that best describe the results of 

an ANOVA test. The following explanation aims to give a short introduction on how 

to interpret these two values. 

The F-value tests the equality of means and its value is significant because it is 

proportioned to the difference between the groups. Indeed, it is the result of dividing 

the variation between sample means per the variation within samples taken 

singularly. Thus, the larger the F-statistic, the greater the evidence that there is a 

difference between the group means. Nevertheless, assessing this is not enough. 

Indeed, it is necessary to state whether each group is relevant or not and therefore a 

minimum F-value, over which a group can be considered affecting the results, is 

required. Since there is not a fixed value over which a group is considered to be 

affecting the results, it is necessary to consider the P-value.  

The P-value is strictly connected to the F-value, it being directly calculated by a 

formula including the F-value. Unlike F-value, the higher the P-value, the lower is the 

influence of that group on the overall result. Indeed, such value represents the 

probability of mistaking when assuming that the null hypothesis shall be rejected or 

refuted. Moreover, a conventional value of 0.05 is the threshold value over which 
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there is not enough statistical evidence to reject the null hypothesis and, 

consequently, it is not possible to assess that one factor is affecting the mission time 

variation more than the other two. 

 

To sum it up, if P-value is less than α = .05, we reject the null hypothesis of the ANOVA 

and conclude that there is a statistically significant difference between the means of 

the three groups. 

Otherwise, if the p-value is not less than α = .05 then we fail to reject the null 

hypothesis and conclude that we do not have sufficient evidence to say that there is 

a statistically significant difference between the means of the three groups. 

 

14.3 IMPLEMENTATION RESULTS AND ANALYSIS 
 

After specifying the conditions, the meaning of the main figures and running the 

simulations given by the combinations of parameters, it is possible to carry out the 

ANOVA test. 

The results of the test are reported in the following tables. 

 

Analysis of Variance 
Source DF Adj SS Adj MS F-Value P-Value 

 Freq. obst 2 7334.06 3667.03 4466.54 0.000 

Angle 2 8.24 4.12 5.02 0.017 

Pass.width 2 32.43 16.21 19.75 0.000 

  Error 20 16.42 0.82     

Total 26 7391.15       

Figure 23. ANOVA test results. 

 

As Figure 23 shows, the reported results concern the degrees of freedom for each 

group, the adjusted sum of squares, the adjusted mean squares and the F-value and 

P-value, which were already discussed about. The degrees of freedom are defined as 

the number of values that are free to vary in a data set. Usually, the degrees of 

freedom of a system are the result of subtracting 1 to the total number of items. In 

this case, since ANOVA follows the above-mentioned since three groups are 

considered, there are 2 degrees of freedom.  

The adjusted mean squares and the adjusted sum of squares are more relevant 

parameters because the allow more conclusion about which parameter is more 

influent of the dependent variable. Indeed, these indicators show how much variation 

of the dependent variable, which is the output of the simulations and corresponds to 
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the mission time loss, is explained by each parameter. Therefore, it is immediate to 

notice that the frequency of static obstacle, as predictable, results to be the most 

influent parameter on the mission time variation. The passage width and the 

curvature angle are comparable in terms of order of magnitude but their values are 

extremely smaller than the ones characterizing the frequency of static obstacles. 

The F-value, which was described to be proportional to the difference between group 

means, seems to confirm the observation just explained. Indeed, enough large F-value 

indicates that the term is significant. 

The last value reported in the results table is P-value. Although there is a highly 

significant difference between the influence of the three parameters on the output, 

observing the P-values it is possible to assess that there is enough statistical evidence 

to refute the null hypothesis for all the three of the parameters, concluding that they 

directly affect the mission time variation. Moreover, regarding the frequency of static 

obstacles and the width of the passage, the P-value equals 0, which is a particularly 

relevant result that allows being certain when concluding that such parameters have 

a strong influence on the time loss. The curvature angle shows a P-value which is 

greater than 0 but less than the significance level of 0.05. Therefore, the parameter 

must be considered significant. 

 

Model Summary 
S R-sq R-sq(adj) R-sq(pred) 

0.906091 99.78% 99.71% 99.60% 

Table 4. Model summary: goodness of fit values. 

 

The Model Summary table reports the values indicating the goodness of fit of this 

model. R-squared is the percentage of variation in the response that is explained by 

the model. It is calculated as 1 minus the ratio of the error sum of squares, which is 

the variation that is not explained by model, to the total sum of squares, which is the 

total variation in the model. 

Adjusted R-squared relies to the same meaning as R-squared but in this case it is 

adjusted for the number of predictors in the model relative to the number of 

observations. Finally, S represents how far the data values fall from the fitted values. 

S is measured in the units of the response and the smaller its value is, the better the 

model describes the response.  

In this case, the fitting value can be considered extremely good. Indeed, R-squared 

and Adjusted R-squared are required to reach at least 95% to assume that a model is 
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well fitting. This scenario exceeds that value so clearly that R-squared nearly reaches 

99.8%. Consequently, it is fair to conclude that the fitting is excellent. 

 

Running an ANOVA test with Minitab makes it possible not only to have an overview 

on what are the most relevant parameters but also to assess which has the biggest 

influence on the response within the set of values of each parameter. For instance, if 

the target is to exclude the most influent value of the passage width parameter to 

limit the mission time variation, it is possible to detect it by observing the results of 

its respective P-value in the following table. 

 

Coefficients 
Term Coef SE Coef T-Value P-Value VIF 

Constant 20.678 0.174 118.58 0.000   

Freq. Obst           

  5 23.133 0.247 93.81 0.000 1.33 

  15 -9.100 0.247 -36.90 0.000 1.33 

Angle           

  45 0.733 0.247 2.97 0.008 1.33 

  90 -0.133 0.247 -0.54 0.595 1.33 

Pass.width           

  1.00 1.422 0.247 5.77 0.000 1.33 

  1.25 -0.178 0.247 -0.72 0.479 1.33 

Table 5. Coefficients table. 

In the above-reported table, each coefficient of the Generalized Linear Model is 

described by the shown indicators. The T-value, which is given by the ratio between 

the difference in means and the standard error of the difference. 

It is possible to use the T-value to determine whether to reject the null hypothesis, that 

states that the difference in means is 0. The bigger the T-value, the bigger the evidence 

against the null hypothesis and the stronger the influence on the dependent variable. P-

value, which works exactly as the previous observations, clearly highlights that a 90-

degree angle is not relevant to the mission time loss, as well as a 1,25-meter wide 

passage. Again, the reason behind these conclusions is that there is not enough 

statistical evidence to refute the null hypothesis and state that such coefficients have 

an influence on the outcome. 

 

The main numerical results of the implementation were discussed in the previous 

paragraphs and a well-fitting model results from them. Although such activities were 

certainly important, they were not enough to assess if the model can be validated. 

What is missing is proving that it verifies every assumption of the ANOVA test. In 
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particular, since the three out of the four assumptions were already proven to be 

respected, only the third assumption needs verifying, which assumes that the 

residuals are normally distributed. The preferred way to prove this is a normality test. 

Using Minitab to perform an ANOVA test allows testing normality of residuals through 

a Kolmogorov-Smirnov normality test.  

As mentioned in paragraph 8.1, this test involves a null hypothesis H0, which is that 

residuals follow a normal distribution and a P-value, indicating whether there is 

enough evidence to refute such hypothesis. In this case, since ANOVA requires 

residuals to be normally distributed, it is necessary not to refute the null hypothesis 

in order for the second assumption to be verified. Therefore, P-value shall be greater 

than the significance level of 0.05 to accept this model. Moreover, the higher P-value, 

the higher is the probability that residuals actually follow a normal distribution.  

 

 
Figure 24. Kolmogorov-Smirnov normality test. 

 

As the graph shows, the P-value given by the Kolmogorov-Smirnov test is greater than 

0,150, indicating that there is not enough evidence to certainly deny that residual are 

normally distributed. Such result indicates that there is a probability greater than 15% 

of mistaking when assuming that residuals are not normally distributed. Since this 

probability exceeds 5%, it is therefore not acceptable to refute the null hypothesis 

and, consequently, the second ANOVA assumption is verified. 

Having said that, it is possible conclude that the modal is valid. 
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For the sake of completeness, Figure 25 reports three additional graphs, let alone the 

normality test one. The residuals histogram is a representation of the frequency of 

residuals and it allows perceiving if the residuals are normally distributed from a 

graphical perspective. Unlike the normal probability plot, this graph doesn’t show 

how far residuals are from a normal distribution and it is therefore the less accurate 

of the two. 

The Residuals versus fits plot is useful to detect whether the model meets the 

assumption of constant variance. By observing the graph, the focus shall be on 

detecting a pattern in residuals, which might indicate that variance is not constant 

and that residuals are uneven spread across the fitted values. Another irregularity 

that might come up from the graph is the presence of outliers. An outlier is a point 

which is far from the mean. In this case, even though some point a slightly further 

from the mean than the others, there is no evidence to conclude that an outlier is 

there. Moreover, by carrying out an Outlier test on residuals on Minitab, which 

returned the results reported in Table 6, the previous assessment is confirmed. 

Indeed, the P-value is way beyond the significance value of 0.05. Therefore, the null 

hypothesis H0, which states that all data values come from the same normal 

population, cannot be refuted. 

Last, the Residuals versus Order plot is usually used to verify the assumption that the 

residuals are independent from one another. Independent residuals show no trends 

or patterns when displayed in time order. Patterns in the points may indicate that 

residuals near each other may be correlated, and thus, not independent. 
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Figure 25. ANOVA summary graphs. 

Grubbs' Test 

Variable N Mean StDev Min Max G P 

RESI 27 0.000 0.795 -1.633 1.100 2.06 0.899 

Table 6. Outliers test. 

 

14.4 FURTHER ANALYSIS AND MODEL IMPROVEMENT 
 

By observing output data, graphs and assuring that all the assumptions for the ANOVA 

test are respected, it was possible to conclude that the model that was just 

implemented is valid. Nevertheless, before resuming it all with the final regression 

equation, it is appropriate to find out whether there are possible improvements to 

the model that require further investigations. 

Basically, improving a fitting model means improving its R2 or its R2
adj. The following 

formula, already mentioned in Chapter 7, is the equation for the adjusted R-squared. 

 

𝑅𝑎𝑑𝑗
2 = 1 − [

(1 − 𝑅2)(𝑛 − 1)

𝑛 − 𝑘 − 1
] 

 

Since k is the number of independent variables in the model, R2
adj increases as k 

increases. On the other hand, removing one factor each time implied a decrease of 

the resulting R2
adj, as proved by the modifications executed on this model. Such 

action, though, could only be useful to eliminate a factor whose P-value shows no 

affection on the mission time or in order to carry out a further analysis or comparison 

between two isolated variables, but it is not coherent with the purpose of this work, 

which is considering each parameter that has an influence on the mission time. 

Another method to obtain a higher value of R2
adj could be removing outliers. Just as 

previously mentioned, Grubbs’ test did not highlight any outlier and therefore there 

is no chance of improving the model by getting rid of outliers.  

 

From a different standpoint, improving the model could be interpreted as making it 

more complete by enlarging the dataset, instead of finding ways to increase the R2
adj. 

Enlarging the dataset means running more simulations after building new simulation 

environments with parameter values that are considered relevant for this analysis. In 

particular, the graph shown in Figure 26 leads to a reflection concerning the gap 

existing between the ∆T values in correspondence to a frequency of respectively 5 

and 15 meters/obstacle. 
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Figure 26. Interval plot of ∆T in correspondence of values of width, frequency and angle reported on the X-

axis.  

 

Enlarging the dataset implies using additional values for one or more of the factors 

involved in this model. While it makes no sense to give the passage width an 

additional value, and the curvature angle shall be realistically kept to a value not 

higher than 135°, it is useful to increase the dataset regarding the obstacles frequency 

instead. Moreover, the graph highlights that there is a huge gap between the ∆T 

values measured by considering 5 and 15 as values for the frequency of static 

obstacles. Therefore, it is definitely interesting to analyze how the ∆T trend varies 

when introducing an additional value of 10 to the frequency of obstacles.  

 

14.5 ANOVA 2.0 
 

Having said that, the simulations are run and the ANOVA test is repeated. The results 

are the following.  

Source DF Adj SS Adj MS F-Value P-Value 
Freq. obst 3 7634.06 2544.69 3323.89 0.000 

Angle 2 8.28 4.14 5.40 0.010 
Pass. width 2 30.26 15.13 19.77 0.000 

Error 28 21.44 0.77     
Total 35 7694.04       

Model 

Summary S R-sq R-sq(adj) R-sq(pred) 
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As shown in Table 7, the P-value 

indicates great relevance for both 

the frequency of static obstacles and the passage width, with a value of 0.                   

 
The curvature angle turns out to have less 

relevance than the other two, even though it 

is still significant since it does not exceed 0,05. 

 

The only slight difference is P-value of the curvature angle, decreasing from 0,017 to 

0,010, probably because of the higher completeness of the dataset. Indeed, 36 values 

were considered in this analysis, rather than the 27 characterizing the previous 

ANOVA test. From the table regarding the model summary, it is possible to notice that 

the R2 and R2
adj indicators are still significantly high, confirming the extreme goodness 

of the model although they are slightly smaller than the previous ANOVA. Such 

reduction can be explained by the bigger dataset used to carry out the test. The 

following table reports the data regarding the single coefficients, with some irrelevant 

changes due to the enlargement of the dataset. In particular, the 90-degree angle and 

the 1.25-meter wide passage have smaller P-values, although they are still not small 

enough to justify stating that such values directly affect the mission time. 

 
Coefficients 

 

Term Coef SE Coef T-Value P-Value VIF 

Constant 19.011 0.146 130.37 0.000   

freq           

   5 24.800 0.253 98.19 0.000 1.50 

  10 -5.000 0.253 -19.80 0.000 1.50 

  15 -7.433 0.253 -29.43 0.000 1.50 

angle           

  45 0.656 0.206 3.18 0.004 1.33 

  90 -0.178 0.206 -0.86 0.396 1.33 

width           

  1.00 1.222 0.206 5.93 0.000 1.33 

  1.25 -0.236 0.206 -1.14 0.262 1.33 

Table 8. Coefficients table for ANOVA 2.0. 

 
It is possible to notice that introducing an additional value of the frequency of static 

obstacles leads to an increase of the VIF factor from 1,33 to 1,50. Such indicator 

detects multicollinearity in regression analysis, estimating how much the variance of 

a regression coefficient is inflated due to multicollinearity in the model. VIF ranges 

 0.874972 99.72% 99.65% 99.54% 

since it is greater than 0,05. 

Therefore, there is not a significant 

difference with the results obtained 

in the previous analysis. 

 
Table 7. Main results of ANOVA 2.0. 

 

https://www.statisticshowto.com/multicollinearity/
https://www.statisticshowto.com/probability-and-statistics/regression-analysis/
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from 1 upwards but the rule of thumb assumes that values of VIF higher than 5 must 

be taken into serious consideration, which means that the multicollinearity of the 

model is cause of concern. In this case, its increase on the frequency of static obstacles 

can be motivated by the increase of variance due to introducing a new value on the 

dataset of such factor. 

 

 

 

The following figure reports the 4 graphs previously discussed, along with the main 

results of the Kolmogorov-Smirnov normality test, which show that the P-value is still 

higher than 0,150 and therefore it is not possible to refute the null hypothesis. 

Consequently, the normality assumption is respected. 

 

 
Figure 27. Main plots for ANOVA 2.0. 
 

The Residuals Versus Fits and Residuals Versus Order plots do not show any trend and 

therefore no abnormality is highlighted. Indeed, residuals seem to be equally 

distributed around 0. 
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Another graph that is interesting to report is the Interval Plot of ∆T, in Figure 28. 

As predictable from the ANOVA preliminary results, the graph, which now contains 

an additional portion in the X-axis corresponding to the value that was added to the 

dataset, has not changed significantly in its trend. Indeed, what results from it is that 

there is still a huge difference between the mission time loss due to obstacles with a 

5-meter distance between them and time loss due to obstacles separated by a bigger 

distance. Therefore, it is not surprising that the coefficients previously reported in 

Table 8 show that the coefficient corresponding to the frequency of static obstacles 

equaling 5 is incomparably bigger than any other coefficient in such table.  

 
Figure 28. Interval Plot of ∆T for ANOVA 2.0. 

 
The model that was just described respects all the ANOVA assumptions and no 

outliers were highlighted by Grubb’s Outliers test. For this reason, the model can be 

considered valid. Comparing it to the previous model and to its values of R2 and R2
adj, 

ANOVA 2.0 is slightly worse in terms of goodness of fit. On the other hand, this model 

is resulting from a much more complete dataset, characterized by 36 values instead 

of 27. It is such greater dataset completeness that makes this model preferable to the 

other, despite the R2
adj being just under the one of ANOVA 1.0. 
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Before reporting the regression equation that summarizes the model, a further step 

is done to bring more completeness to this work and to evaluate a further possibility 

of model construction. 

 

14.6 MODEL IMPLEMENTATION WITH PYTHON 
 

On a further attempt to obtain a better fitting model out of the given dataset, 

programming with Python was used to get an alternative regression equation. In this 

paragraph, the method and the results are shortly presented.  

 
The first step that was taken in the creation of the model was importing the dataset. 

Then, the input data are rescaled in order to be normalized. After this, a cross 

validation is applied to check if the model was actually a good fit for the dataset. 

Having verified such requirement, the model is computed. At first, the model was 

meant to be linear but the goodness of fit results were not so great. Indeed, the 

Adjusted R-squared barely reached 68%, which is definitely not enough to be 

considered a well-fitting representation of the dataset.  

Having acknowledged such computational results, it was necessary to increase the 

degree of the equation, aiming to boost the R2
adj value. Therefore, a second-degree 

equation was computed and such model turned out to have a significant goodness of 

fit.  

In the reported figure, it is possible to see a small portion of the lines of code used in 

the making of the model, as well as the mean squared error, the R2
adj and the nine 

coefficients of the regression equation. It is interesting to specify that this model, just 

like the previous ones, highlights the bigger impact of the frequency of static obstacles 

on the mission time loss, compared to the other two factors. Moreover, it is possible 

to notice that the first reported coefficient, referring to the frequency of static 

obstacle, has a negative impact on the result but it is positive if it comes to the 

coefficient referring the same parameter but squared.  
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Figure 29. Python lines of code for the creation of a fitting model. 

 
Despite the goodness of the above-reported model, its R2

adj equals 91,8% and is 

therefore still smaller than the second model implemented through Minitab. 

Therefore, the previous model, ANOVA 2.0 is kept as the best one. Nevertheless, the 

regression equation is reported for the sake of completeness in the following lines. 

 
 

∆𝑇 = −3,473𝑥 − 0,085𝑦 − 0,433𝑧 + 2,605𝑥2 + 0,095𝑦2 + 0,336𝑧2 − 0,069𝑥𝑦 + 0,16𝑥𝑧 + 0,02𝑦𝑧 

 
Where: 

- x = frequency of static obstacles. 
- y = curvature angle. 
- z = passage width. 
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15. FINAL ANOVA 2.0 RESULTS AND MODEL COMPARISONS. 

As mentioned in the previous paragraph, the summarizing model this work refers to 
is the one characterized by the best accuracy, measured by R2

adj, and the best 
completeness. This is why the regression equation that concludes and summarizes 
this work is the one resulting from the ANOVA 2.0 test.  
In this paragraph a comparison to the model with isolated parameters is carried out, 
both graphically and through formulas. 
The first models, described in Chapter 7 and certainly valid, were obtained by a 
regression function computation by using MatLab, considering each parameter taken 
singularly. Therefore, each parameter implies a ∆T trend described by its own 
formula. The three computed function are summarized in Table 9. 
 

PARAMETER COMPUTED FUNCTION 

Frequency of Static Obstacles 
(meters/obstacle) 

∆𝑇 = 6,398𝑥− 0,2976 −  1,738 

Curvature Angle (degrees) ∆𝑇 = 42,72sin (0,01841𝑥 + 0,657) +
39,29sin (0,01947𝑥 + 3,708)  

Passage Width (meters) 
∆𝑇 =

−2,354𝑥2 + 8,675𝑥 − 6,092

𝑥 − 0,9454
 

 
Table 9. Summary of isolated parameters model equations. 

The model that was just summarized computes a function for each parameter and 

does not consider a scenario in which many parameters affect the working 

environment at the same time. Therefore, to describe more complex scenarios, it is 

fair to assume that this model simply sums each value of ∆T given by each function. 

For instance, if an aisle has a 45-degree curvature angle, obstacles 10 meters far from 

each other and a passage width of 1,5 meters, all the three of the functions are 

considered and calculated respectively substituting 45, 10 and 1,5 to the “x” variable. 

Then, results are simply summed to obtain the final time loss.  

 

On the other hand, the regression equation computed by Minitab for ANOVA 2.0 test 

considers the presence of more than one parameter affecting the environment at the 

same time, summarizing everything under one function. The formula is the following. 
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∆𝑇 = 19,011 + 24,8𝑥5 − 5𝑥10 − 7,433𝑥15 − 12,367𝑥25 + 0,656𝑦45 − 0,178𝑦90

− 0,478𝑦135 + 1,222𝑧1 − 0,236𝑧1.25 − 0,986𝑧1.5 
 
 
Where: 

- Xi = frequency of static obstacles. 
- Yi = curvature angle. 
- Zi = passage width. 

 
This function is far different from the one reported in Paragraph 9.6. Indeed, the 

previous one, computed through Python, was meant to allow inserting any value of 

frequency, angle and width. That function was a generalized one and it allowed 

calculating the ∆T no matter what values the variables were set to. 

In this case, it is important to specify a fundamental difference. The variables that can 

be observed in the equation are binary. This means that they can only be set to 0 or 

1. An example helps understanding how to interpret the above-reported formula. 

The variable x25 shall be set to 1 only if the frequency of static obstacles equals 25 

meters. It must be set to 0 in any other scenario. Therefore, any variable that 

represents the actual state of the working environment shall be set to 1. 

Consequently, it is possible to sum all the terms of the equation that are different 

from 0, obtaining the final value of ∆T. Such equation is more accurate than the one 

obtain through programming in Python, as the R2
adj witnesses. Despite this, its 

variables being binary are a limitation to the functionality of the formula, since it is 

not possible to calculate the ∆T if actual values differ from the ones used in the making 

of this model. For this reason, and also because of the goodness of fit of both models, 

both equations can be considered valid and coherent to the purpose of this work. 

The following table summarizes the two equations of the combined parameters 

models. 

 
Minitab Solution Python Solution 
∆𝑇 = 19,011 + 24,8𝑥5 − 5𝑥10 − 7,433𝑥15 −
12,367𝑥25 + 0,656𝑦45 − 0,178𝑦90 − 0,478𝑦135 +
1,222𝑧1 − 0,236𝑧1.25 − 0,986𝑧1.5  

 

∆𝑇 = −3,473𝑥 − 0,085𝑦 − 0,433𝑧 +
2,605𝑥2 + 0,095𝑦2 + 0,336𝑧2 − 0,069𝑥𝑦 +
0,16𝑥𝑧 + 0,02𝑦𝑧  

 
Table 10. The two equations for combined parameters model. 

 

Having summarized the results of the two models, it is now interesting to compare 

them. More specifically, it is useful to compare them in terms of the different ∆T 
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output. The comparisons were carried out under two different assumptions. As stated 

in the previous lines, the isolated parameters models implies adding up the mission 

time loss caused by each factor. By assuming this, an overestimation of the ∆T value 

is made, which is because summing the frequency of static obstacles factor to the 

passage width factor means considering the robot getting past an obstacle twice. 

Indeed, when considering the frequency of static obstacles ∆T value, multiplied by the 

number of obstacles in the aisle, an estimation of the total time the AMR takes to 

overcome such obstacles is already made. It makes little sense to furtherly add the 

passage width factor for each obstacle and consequently consider each obstacle 

twice. The results of this approach are far from realistic, since the resulting ∆T is more 

than twice as big as the ANOVA 2.0 model, which was recognized as the best-fitting 

one. The graph reported below highlights the huge difference between the two 

models under this assumption. 

 

 
Figure 30. Graph comparing ANOVA 2.0 and isolated parameters models. 
 

A better solution to compare the two models is the following. The only factors that 

need to be summed are the frequency of static obstacles, multiplied by the number 

of obstacles in the path, and the curvature angle. By doing this, it is necessary to 

increase the ∆T by an amount that is proportional to the width of the passage. 

Therefore, for 1,5-meter wide passages the additional factor shall be bigger than the 

one corresponding to 1,25 and 1 meter-wide ones. By computing the total time by 

adding such factors, the results of the two models are comparable. The comparison 

is reported in Figure 31. 
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Figure 31. Graph comparing ANOVA 2.0 and isolated parameters models not considering the passage width 
for each obstacle but only once. 
 

After the above-reported comparison the results analysis is concluded. To sum it up, 

what was carried out in this phase was using a statistics software to perform an 

ANOVA test in order to create a regression equation characterizing the model. 

Starting off from the results of such test, the main trends and interesting information 

resulting from it were analyzed and discussed. This allowed highlighting what could 

have been improved or made more complete. Based on this consideration, a further 

analysis of variance, called ANOVA 2.0, was performed and its results were discussed. 

Another possibility of creating a model was explored by using Python programming 

language. All the models created so far were then compared and discussed, after 

summarizing the whole set of equations. Finally, a comparison of the ∆T resulting 

from ANOVA 2.0 and the isolated parameters model was made and shown through a 

graph. 
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16. LIMITATIONS AND FUTURE WORK 

This work finds its functionality validated by the goodness of the models that result 

from the software analysis but limited by some circumstances at the same time. 

Although it produced many useful information, it is necessary to admit that a future 

effort to complete this study is appropriate. As mentioned in the initial chapters, most 

of the operations involved in the making of this work were performed through 

AnyLogic simulation software. Let alone the little familiarity with the software, it 

limited the simulations scenarios because of many reasons. Firstly, the way 

automated vehicles work in this software do not allow a coherent representation of 

reality when moving obstacles are involved. Secondly, a huge amount of time was 

wasted in trying to solve software problems like unusual behaviors of robots. Issues 

like these resulted in eliminating potential parameters such as the obstacle speed, 

consequently limiting the field of application of this thesis. Future work is needed to 

solve such problems; in particular, more experiments in the lab would allow better 

coherency to reality and a wider set of parameters, compatibly with an acceptable 

cost raise. Having a bigger set of parameters would allow the creation of additional 

models involving moving obstacles to cover up a wider range of realistic events. 

A further limitation lies in the parameters being categorical. Indeed, when creating a 

model in which parameters can vary in their value, like previously done by using 

Python programming language, the model precision considerably decreases, implying 

a greater percentage of error and uncertainty. 

 

Consequently to these limitations, future work would realistically involve a more 

frequent use of NTNU Logistics 4.0 Lab or, even better, a real working plant or an 

industrial warehouse. Experimenting in real working environments would be 

important to lead trials on larger spaces and longer distances like the ones considered 

in the simulations of this work. Moreover, it would make possible to have some 

preliminary feedbacks from workers or engineers on the effective consequences and 

improvements this work leads to. One last benefit of applying these scenarios to real 

life situations like a warehouse would allow introducing different kind of moving 

obstacles, not just a person or another AMR but also any kind of forklift, AGVs or pallet 

trucks. 

Alternatively to leading real life experiments, it would be appropriate to try to repeat 

the simulations with a different logistics simulation software, like Automod or similar, 

in order to validate the values of mission time obtained by using AnyLogic. Moreover, 
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a better completeness could be reached by trying to recreate these models by using 

different statistical software or other programming applications. By doing this, it 

would be possible to choose among a wider set of models and to pick the one with 

the best fitting values.  
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17. CONCLUSIONS 

To sum it up, this work started off with a first phase of literature review, in which 

every aspect of Autonomous Mobile Robots was discussed: their structure and 

functionalities, their software and how they represent a new intralogistics method, 

their pros and cons and their fields of application. As mentioned, such application 

fields range from industrial plants or warehouses to healthcare solutions as medicine 

handlers in hospitals. Next, an insight on what caused a variation in the mission time 

of AMRs was carried out, subsequently analyzing which of those factors could be 

realistically reproduced in the simulation software and therefore considered as 

parameters. This phase excluded two out of the six factors that were detected and 

raised awareness on what is one of the most significant limitations to this work. The 

next step was the creation of the first model, which involved isolated parameters 

only, giving as output one function for each parameter. In particular, it is important 

to highlight that such formulas allow variables to be set to any possible value. The 

second model was obtained by performing an ANOVA test on the dataset of mission 

time losses coming from simulations with all the possible combinations of the values 

of the three parameters. The output was a regression function which only allowed 

parameters to be set to the simulated values. In the last phase, all the results were 

shown and compared, highlighting the main differences between the two models. 

 

The aim of this work was providing an initial answer to a topic that was not examined 

enough in literature: the consequences of AMRs on logistics and intralogistics choices. 

Indeed, autonomous robots have unique features such as collision avoidance systems 

and free routing software that represent innovative and incredibly convenient 

solutions in terms of automation and flexibility. On the other hand, their use implies 

studying the consequences on the handling time, especially in relation to the 

surrounding environment and the situations that arise from it. Simulating with 

combined parameters allowed recreating complex lifelike scenarios and therefore 

computing a function that quantitatively aims to clear out and quantify the 

consequences of each scenario on the mission time variation. This work advances a 

preliminary solution, providing a formula that can be interpreted by engineers in 

multiple ways. Firstly, it helps engineers in finding different plant layout solutions, 

adapting it to the situations in which robots perform the best. Moreover, it can be 

used in a new plant constitution scenario, helping avoiding time consuming situations 

based on the time loss values related to each parameter.  
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Most importantly, having a function that estimates the total time loss is useful to 

determine the actual mission time of a material handling operation. Obviously, 

knowing this is far from pointless, because it is fundamental in AMR fleet 

dimensioning problems and therefore it could be critical on the choice of adding or 

removing one vehicle to the fleet. The nature of such consequences of this would be 

both logistical and economical. 

 

As mentioned in the previous paragraph, more than one limitation affect this work, 

which is definitely destined to be reviewed and improved. Furthermore, better 

versions of the simulation software will be implemented and it will be possible to 

reproduce more complex scenarios and have a more complete set of models 

describing lifelike situations. Even Autonomous Mobile Robots, especially in their free 

routing software solutions and collision avoidance systems, are likely to be brought 

to a more efficient level, making it necessary to constantly adapt the approach of this 

work to more evolved working conditions. To conclude, this work provided useful 

information and statistical evidence, although there is still room for improvement to 

it, to contribute to the development of such a relevant topic in the intralogistics world.  
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19. SITOGRAPHY 

Real Statistics: https://www.real-statistics.com 

Support Minitab Statistical Software: https://www.minitab.com/en-us/support/ 

Statistics How To: https://www.statisticshowto.com 

Mobile Industrial Robots – IT: https://www.mobile-industrial-
robots.com/en/solutions/robots/mir200/ 

YouTube: 
https://www.youtube.com/channel/UC3MRxsNU6AW_hKdExtnGr1Q?view_as=subscriber 

MathWorks: https://it.mathworks.com 

Gartner, Inc: https://www.gartner.com 

AGV Network: https://www.agvnetwork.com/top-amr-applications 

Complete Dissertation by Statistics Solutions: https://www.statisticssolutions.com 
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