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Abstract

Al contrario dei computer classici, i computer quantistici lavorano tramite le leggi della
meccanica quantistica, e pertanto i qubit, ovvero l’unità base di informazione quantisti-
ca, possiedono proprietà estremamente interessanti di sovrapposizione ed entanglement.
Queste proprietà squisitamente quantistiche sono alla base di innumerevoli algoritmi, i
quali sono in molti casi più performanti delle loro controparti classiche. Obiettivo di
questo lavoro di tesi è introdurre dal punto di vista teorico la logica computazionale
quantistica e di riassumere brevemente una classe di tali algoritmi quantistici, ossia gli
algoritmi di Quantum Phase Estimation, il cui scopo è stimare con precisione arbitraria
gli autovalori di un dato operatore unitario. Questi algoritmi giocano un ruolo cruciale
in vari ambiti della teoria dell’informazione quantistica e pertanto verranno presentati
anche i risultati dell’implementazione degli algoritmi discussi sia su un simulatore che su
un vero computer quantistico.
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Introduction

Quantum computation is the field that studies the information processing tasks that can
be implemented via a device governed by the laws of quantum mechanics. As straight-
forward as this idea may sound, this field only emerged in recent years and still faces
serious and intriguing challenges that make it a very active and vibrant area of research.
In fact, it is widely believed that quantum computers will be in many tasks much more
powerful than what classical computers will ever be, and for their features they will
find applications in the most diverse fields, ranging from cryptography to simulation of
many-body systems.

The story begins in the early 1980s with the works primarily of Paul Benioff [1], who
first thought about a quantum mechanical model of a computer, and of Richard Feynman
[2], who pointed out the potentiality of a quantum device of simulating efficiently a
quantum system. This culminated in 1985 with the work of David Deutsch [3] that
described the first theoretical model of a Universal Quantum Computer, the quantum
analog of the classical Turing Machine. In the subsequent years, the major theoretical
breakthroughs were represented by the works of Peter Shor (1994) [4] and Lov Grover
(1996) [5]. Shor demonstrated that the problem of finding the prime factors of an integer
and the problem of the discrete logarithm could be performed on a quantum device in
polynomial time, while classically they would require exponential time. Grover instead
found an algorithm that could outperform classical computers in the task of searching
through an unstructured database. These algorithms, in virtue of their widespread
applicability, brought considerable attention to this field.

As of today, the theoretical foundations of quantum computing are pretty much well
understood. The prevailing model of quantum computation is the Quantum Circuit
model, in which computation is seen as a series of quantum gates and measurements
applied to a collection of qubits, which are the quantum analog of the classical bits
of information. In this model, the qubits enjoy the quantum mechanical properties of
superposition and entanglement, which are the keys to understanding the potential of
quantum computation over classical computation. The power of quantum computation
is at the heart of the studies of Quantum Complexity Theory, which strongly suggests
that quantum computers are more powerful than classical ones, although this is not a
proven statement. This hypothesis, that goes by the name of “quantum supremacy”, is
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supported by a plethora of very efficient quantum algorithms that exploit the aforemen-
tioned quantum mechanical properties of the qubits.

In parallel to the development of the theory of quantum computing, it began the
engineering challenge to physically realise such a quantum computer. To this day there
are many different candidates, distinguished by the physical systems used to implement
the qubits. To mention a few, there are Superconductor Quantum Computing (on which
companies as Google or IBM conduct today’s research), Trapped Ion Quantum Comput-
ers, and Neutral Atoms in Optical Lattices. In order to be considered a practical quan-
tum device, all these various implementations must satisfy some requirements, known
as DiVincenzo criteria (1996) [6]: scalability with the number of qubits, possibility of
initializing the qubits, implementability of a set of universal quantum gates, capability
of measurement, and decoherence times longer than gate-operation times. In particular
quantum decoherence, that is the loss of quantum information of a non-isolated system
with the surroundings, represents a significant challenge in the realization of quantum
computers, since no qubit can be thought as perfectly isolated if one needs to act on it
via a quantum gate. The mitigation of decoherence errors is studied by Quantum Error
Correction techniques.

To this day, there is the possibility for anyone to implement and run its own quantum
algorithm. Mainly IBM grants public or premium cloud-based access to its quantum
processors through IBM Quantum Experience service. On such quantum processors
one can easily create, run and simulate quantum circuits by means of the open-source
software development kit Qiskit.

On the other side, despite considerable efforts (IBM has even launched the first com-
mercial quantum computer, IBM Q System One), the hardware limitations of these
devices are still significant, and further research needs to be done in order to practically
achieve quantum supremacy. As such, for instance, one can think of various algorithms
for the same problem that yield the result with different accuracy, depending on the
implementation features of such algorithms. One example is given by Quantum Phase
Estimation algorithms.

Quantum Phase Estimation algorithms, which are precisely the topic of this thesis,
are a class of quantum algorithms that have as objective the estimation with arbitrary
precision of the eigenvalue of a unitary operator, which is a complex phase. As pointless
as this may sound, phase estimation is mainly used as a subroutine in many other quan-
tum algorithms of interest, such as Shor’s factoring algorithm, or the HHL algorithm for
solving linear systems of equations. In addition, some of these algorithms take advan-
tage of the concept of the Quantum Fourier Transform, which is one of the key quantum
algorithms that provides exponential speedup over the classical analog, and is used in
many applications.

As such, the first chapter is mainly focused on introducing the key ideas to quantum
computing: what is a qubit, what is a quantum gate, how to build quantum circuits and
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some interesting examples that shed light on the advantages and differences of quantum
computation over classical computation.

The second chapter is instead devoted to introduce the various Quantum Phase Es-
timation Algorithms of interest, which are Kitaev’s algorithm, IQFT QPE and Inverse-
AQFT QPE, and discuss their pros and cons. In this chapter we further introduce the
aforementioned algorithm of Quantum Fourier Transform, which is relevant to two of
these Quantum Phase Estimation algorithms.

Finally, the third chapter contains the Qiskit implementation of the algorithms dis-
cussed in the previous chapter, as well as the results obtained by running them on a
simulator and on a real IBM quantum device, where one can effectively see the state of
the art of these quantum processors.
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Chapter 1

Quantum computation logic

In this chapter we will give an introductory overview on the main features of quantum
computation that make it different from classical computation. We will describe the
quantum mechanical space of qubits and the operations that can manipulate such qubits,
which are effectively the ingredients that are needed to understand what quantum logic
is and how powerful it can be. The main references of this chapter are [7] and [8].

1.1 Single qubit

Classical computation and information theory is built upon the concept of the classical
bit, which is a system that can live in either one of two classical states : 0 or 1.

In a similar fashion, when dealing with quantum computation, we come across the
concept of the quantum bit or qubit, which again similarly is a system that can have two
quantum states : |0⟩ or |1⟩. The main difference between these two entities is that the
quantum bit can live in a linear superposition of its two states, according to the rules of
quantum mechanics. Namely, a qubit can be represented by a physical ket |ψ⟩ that lives
in a two-dimensional complex Hilbert space H2:

|ψ⟩ = α |0⟩+ β |1⟩ (1.1.1)

where α, β ∈ C are the coefficients of the expansion of |ψ⟩ in the |0⟩ , |1⟩ orthonormal
basis of H2.

Since the space H2 is two-dimensional over the complex field, one would expect
the qubit |ψ⟩ to be parametrized by 4 real parameters, but this is not the case. The
requirement of physicality of the ket |ψ⟩ imposes a probabilistic intepretation, which
results in the constraint

⟨ψ|ψ⟩ = 1 ⇐⇒ |α|2 + |β|2 = 1 (1.1.2)

5



Upon this normalization constraint, a measurement of the qubit gives the result 0 with
probability |α|2, and gives the result 1 with probability |β|2.

Furthermore the ket |ψ⟩ is invariant for what regards its physical interpretation under
a change of its global phase:

|ψ⟩ 7→ eiϕ |ψ⟩ , ϕ ∈ R (1.1.3)

which amounts to a degree of freedom that can be arbitrarily set to a convenient value
without changing the observable properties of our system.

These two constraints reduce the number of real degrees of freedom from 4 to 2,
which implies that the space of qubits is a two-dimensional real manifold. To see this
more clearly, let’s compute an explicit expression for the coefficients α and β. In polar
form

α = a eiχ β = b eiζ , a, b ∈ [0,+∞[ χ, ζ ∈ [0, 2π[ (1.1.4)

From the constraint (1.1.2) we can conclude that

a2 + b2 = 1 (1.1.5)

and that allows us to reparametrize a and b in the following form, without loss of gen-
erality:

a = cos
θ

2
b = sin

θ

2
, θ ∈ [0, π] (1.1.6)

Furthermore, from the invariance with respect to the transformation (1.1.3), we can
choose the global phase of |ψ⟩ such that α = cos(θ/2) ∈ R. We thus have constructed a
more explicit form for |ψ⟩ which captures the relevant and physical degrees of freedom
of a single qubit:

|ψ⟩ = cos
θ

2
|0⟩+ sin

θ

2
eiφ |1⟩ , θ ∈ [0, π] φ ∈ [0, 2π[ (1.1.7)

From the periodicity properties of this expression, we can see that θ and φ clearly
represent respectively the polar and azimuthal angles on a sphere, which is called the
Bloch sphere, depicted in Fig. 1.1.
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Figure 1.1: Bloch sphere for a single qubit, from [7].

We have therefore found the correct manifold structure of the space of physical states
for a qubit. Manipulations on a single qubit can thus be seen as rotations on the Bloch
sphere, as we will show in more detail in the following sections.

1.2 Multiple qubits

Since for any practical computation one qubit is not necessary, in this section we will
revolve our attention to multiple qubit states.

Firstly, let’s focus our attention on a 2-qubit system. The space of states of this
composed system is the tensor product of the spaces of the two single qubits: H2 ⊗H2.
A convenient choice of orthonormal basis of this space is represented by the four kets
|00⟩, |01⟩, |10⟩ and |11⟩, which encode the four possible combinations of states of the two
qubits. The most general 2-qubit state can thus be represented by a linear superposition
of the basis states, and it is given by the state ket |ψ⟩:

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ (1.2.1)

which again, in order to recover a probabilistic interpretation, must satisfy the constraint:

⟨ψ|ψ⟩ = 1 ⇐⇒
∑

x∈{0,1}2
|αx|2 = 1 (1.2.2)

Similarly to the single qubit, one obtains the measurement result x ∈ {00, 01, 10, 11}
with probability |αx|2, but one can also measure only one qubit. For example, measuring
the first qubit gives 0 with probability |α00|2 + |α01|2, while it gives 1 with probability
|α10|2 + |α11|2.
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Another fruitful orthonormal basis of this space is given by the so-called Bell states
or EPR pairs : 

|β00⟩ = 1√
2
(|00⟩+ |11⟩)

|β01⟩ = 1√
2
(|01⟩+ |10⟩)

|β10⟩ = 1√
2
(|00⟩ − |11⟩)

|β11⟩ = 1√
2
(|01⟩ − |10⟩)

(1.2.3)

These four states form a set of quantum entangled pairs, which means that the two qubits
are correlated. Take for example |β00⟩: if one measures the first qubit the result can be
either 0 or 1 with equal probabilities 1/2, but then the second qubit is consequently
forced to give the same result of the first one under measurement.

More formally, an entangled pair is described by a non-decomposable tensor in the
space H2 ⊗H2, which represents a quantum state of the composite system that cannot
be reduced to a product of single qubit states. Indeed, one can check that the Bell states
|βxy⟩ are non-decomposable states.

If we then want to describe a n-qubit system, we can easily see that the space of
states of this composite system is the tensor product H⊗n

2 , where a basis is given by the
2n kets |x⟩, x ∈ {0, 1}n. A general state ket is then given by the linear superposition

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩ (1.2.4)

for which the usual normalization constraint is required. Any n-qubit state is therefore
specified by 2n complex amplitudes.

1.3 Quantum gates

Now that we have found the mathematical structure to describe correctly quantum bits
of information, we are interested in manipulating these bits to effectively implement a
quantum algorithm.

Since we are working in the realm of quantum mechanics, our manipulation of qubits
should be done accordingly to the laws of this theory. Manipulating a quantum state
in practice means taking a normalized ket |ψ⟩ of an Hilbert space H and applying an
operator U to obtain a second normalized ket |ψ′⟩ in the same Hilbert space. This
operator U can be seen as a time-evolution operator.

The rules of quantum mechanics are strict about U . Firstly, it must preserve the
linear structure of the Hilbert space, which in physical terms implies that states evolve
independently when they are in a linear superposition, and in mathematical terms implies
that U is linear:

U(α |ψ⟩+ β |ϕ⟩) = α U |ψ⟩+ β U |ϕ⟩ (1.3.1)
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Secondly, it must preserve the probabilistic interpretation of the state ket, which math-
ematically implies that

⟨ψ|ψ⟩ = ⟨ψ′|ψ′⟩ = 1 (1.3.2)

which can be easily seen to be an equivalent condition to U being a unitary operator:

U † U = I ⇐⇒ U † = U−1 (1.3.3)

It’s a remarkable result that these are the only constraints that U must satisfy; any
unitary operator is a valid quantum gate.

From a circuital point of view, we can see the unitary operator U as a “black box”
which in general acts on a state |ψ⟩ of n qubits (reversibly, since U−1 exists) and produces
a new state |ψ′⟩ of n qubits, which is summarized in Fig. 1.2.

|ψ⟩ |ψ′⟩U

Figure 1.2: Circuital representation of a generic U gate.

Now let’s focus on a single qubit system, described by a state ket inH2. An important
gate in this system is the not gate X which acts on the basis |0⟩, |1⟩ as such:

X |0⟩ = |1⟩ X |1⟩ = |0⟩ (1.3.4)

and therefore acts on a general qubit state in the form of (1.1.1) as such:

X(α |0⟩+ β |1⟩) = β |0⟩+ α |1⟩ (1.3.5)

A more compact notation consists of writing the state (1.1.1) as a column vector in the
|0⟩, |1⟩ basis:

ψ =

[
α
β

]
(1.3.6)

and the quantum not gate as a matrix:

X =

[
0 1
1 0

]
(1.3.7)

The action of the quantum gate is therefore synthesized in the row-column product of
X and ψ:

X

[
α
β

]
=

[
β
α

]
(1.3.8)
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Other important gates on a single qubit (always written in matrix form) are the Y
and Z gates:

Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
(1.3.9)

and the Hadamard gate:

H =
1√
2

[
1 1
1 −1

]
(1.3.10)

which turns |0⟩ into the superposition (|0⟩+ |1⟩)/
√
2, and turns |1⟩ into (|0⟩ − |1⟩)/

√
2.

Very important is also the family of the so-called phase gates

P (φ) =

[
1 0
0 eiφ

]
, φ ∈ [0, 2π[ (1.3.11)

where the most notable ones are the Z, S and T gates:

Z = P (π) =

[
1 0
0 −1

]
S = P

(π
2

)
=

[
1 0
0 i

]
T = P

(π
4

)
=

[
1 0
0 eiπ/4

]
(1.3.12)

Together, the X, Y and Z gates are the 3 Pauli matrices :

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
(1.3.13)

It’s a fact that a general unitary operator U on H2 can be expressed as such:

U = eiαRn̂(θ) = eiα
[
cos

(
θ

2

)
I − i sin

(
θ

2

)
(nxX + nyY + nzZ)

]
(1.3.14)

where α ∈ [0, 2π[, θ ∈ [0, π] and (nx, ny, nz) are the 3 cartesian components of the versor
n̂, so n2

x + n2
y + n2

z = 1.
The Rn̂(θ) operator has a nice interpretation within the Bloch sphere picture: it

encodes a 3D rotation of θ degrees around the versor n̂ that affects the 3-vector repre-
senting the qubit. In this way, every quantum gate involving a single qubit can be seen,
up to a phase, as a rotation on the Bloch sphere. For example, the Hadamard gate is
parameterized by α = π/2, θ = π, n̂ = (1, 0, 1)/

√
2.

Otherwise, another useful parameterization for U is through Euler angles:

U = eiαRz(β)Ry(γ)Rz(δ) =

= eiα
[
e−iβ/2 0
0 eiβ/2

] [
cos(γ/2) − sin(γ/2)
sin(γ/2) cos(γ/2)

] [
e−iδ/2 0
0 eiδ/2

]
(1.3.15)
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and if we set A = Rz(β)Ry(γ/2), B = Ry(−γ/2)Rz(−(δ+β)/2) and C = Rz((δ−β)/2),
one can check that we have obtained three unitary matrices with the properties

U = eiαAXBXC, ABC = I (1.3.16)

where X is the not gate. This decomposition will turn to be useful later on.

A general quantum gate for a single bit is expressed through its circuital representa-
tion as a box with the name of the gate on top. An example is shown in Fig. 1.3.

|0⟩ , |1⟩ 1√
2
(|0⟩ ± |1⟩)H

Figure 1.3: Circuital representation of the Hadamard gate.

We may now consider the case of quantum gates involving n qubits. As one can
imagine, the variety of unitary operators U is much richer, since the Hilbert space H⊗n

2

is much bigger than H2.
A prototype of multi-qubit quantum gate is the controlled -not gate or simply cnot

gate UCN , which acts on 2 qubits: the control qubit and the target qubit. It acts on the
basis of H⊗2

2 as such:

UCN |00⟩ = |00⟩ UCN |01⟩ = |01⟩ UCN |10⟩ = |11⟩ UCN |11⟩ = |10⟩ (1.3.17)

which can be summarized in the following notation:

|x, y⟩ 7→ |x, y ⊕ x⟩ , x, y ∈ {0, 1} (1.3.18)

where ⊕ is the addition modulo 2, which is equivalent to a classical xor gate. This gate
basically flips the logical state of the second qubit (the target) if and only if the first
qubit (the control) is activated.

From the matrix representation of UCN (22 × 22 matrix)

UCN =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.3.19)

one can easily see that this gate is indeed unitary, since U †
CN UCN = I, hence it is a valid

quantum gate.
Another useful way to visualize the cnot gate is through its circuital representa-

tion, shown in Fig. 1.4, which emphasizes the action on the target qubit (bottom line)
controlled by the control qubit (top line).
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|x⟩ |x⟩

|y⟩ |y ⊕ x⟩

Figure 1.4: Circuital representation of cnot.

Another useful gate in quantum computation is the so-called Toffoli gate which acts
on 3 qubits in the following manner:

|x, y, z⟩ 7→ |x, y, z ⊕ xy⟩ , x, y, z ∈ {0, 1} (1.3.20)

Basically the first two qubits act as control qubits, and when they are both set they flip
the sign of the third one.

In matrix representation the Toffoli gate is a 23 × 23 matrix:

UT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(1.3.21)

with circuital representation given in Fig. 1.5.

|x⟩ |x⟩

|y⟩ |y⟩

|z⟩ |z ⊕ xy⟩

Figure 1.5: Circuital representation of Toffoli.

A first conceptual use of the Toffoli gate is proving that quantum computation can
fully implement classical algorithms: the Toffoli gate can be set to operate as a nand or
a fanout gate (see Fig. 1.6), which are two universal gates for classical computation,
provided that we dispose of enough qubits.
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|x⟩ |x⟩

|y⟩ |y⟩

|1⟩ |1⊕ xy⟩ = |xy⟩

|x⟩ |x⟩

|1⟩ |1⟩

|0⟩ |0⊕ (x · 1)⟩ = |x⟩

Figure 1.6: On the left, a Toffoli gate simulating a nand on the target qubit. On the
right, a Toffoli gate simulating a fanout on the target qubit.

However, the power of quantum computation is not limited to merely replicating
classical computation, as one can imagine numerous unitary matrices that do not have
a classical counterpart: for example the Hadamard gate can superpose the qubit states
|0⟩ and |1⟩.

1.3.1 No-cloning theorem

Another remarkable difference between classical and quantum computation is that in
quantum computation a generic qubit |ψ⟩ cannot be copied. This fact goes by the name
of no-cloning theorem and it is one of the main results of quantum information theory.

More precisely, the no-cloning theorem states that a given arbitrary state |ψ⟩ of an
Hilbert space H cannot be copied into a fixed state |s⟩ of H. In other terms, it does not
exists a unitary gate U that realizes the evolution:

U : H⊗H → H⊗H
|ψ⟩ ⊗ |s⟩ 7→ |ψ⟩ ⊗ |ψ⟩ , ∀ |ψ⟩ (1.3.22)

This can be inferred from the constraints of linearity and unitarity we put on U .
If we have two different states |ψ⟩ and |ϕ⟩ that we somehow managed to duplicate

with the U gate, we can see that due to the constraint of linearity, we cannot duplicate
an arbitrary superposition α |ψ⟩+ β |ϕ⟩, with |α|2 + |β|2 = 1:

(α |ψ⟩+ β |ϕ⟩)⊗ |s⟩ =

= α |ψ⟩ ⊗ |s⟩+ β |ϕ⟩ ⊗ |s⟩ U7−→ α |ψ⟩ ⊗ |ψ⟩+ β |ϕ⟩ ⊗ |ϕ⟩ (1.3.23)

The final state in general is clearly different from the duplicate of α |ψ⟩+ β |ϕ⟩:

(α |ψ⟩+ β |ϕ⟩)⊗ (α |ψ⟩+ β |ϕ⟩) =
= α2 |ψ⟩ ⊗ |ψ⟩+ β2 |ϕ⟩ ⊗ |ϕ⟩+ αβ(|ψ⟩ ⊗ |ϕ⟩+ |ϕ⟩ ⊗ |ψ⟩) (1.3.24)
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In fact, they are only equal when 
α2 = α

β2 = β

αβ = 0

|α|2 + |β|2 = 1

(1.3.25)

which implies that either α = 1, β = 0 or α = 0, β = 1, which means that U can only
copy |ψ⟩ and |ϕ⟩ when they are not superposed.

To characterize more precisely which states can be copied or not, we use the constraint
of unitarity of U . Suppose again we have two states |ψ⟩ and |ϕ⟩ that we are able to
duplicate. Now we can see that the unitary gate U preserves the inner product between
states:

⟨ϕ|ψ⟩2 = ⟨ϕ|ψ⟩ ⟨ϕ|ψ⟩ = (⟨ϕ| ⊗ ⟨ϕ|)(|ψ⟩ ⊗ |ψ⟩) =
= (⟨ϕ| ⊗ ⟨s|)U †U(|ψ⟩ ⊗ |s⟩) =
= (⟨ϕ| ⊗ ⟨s|)(|ψ⟩ ⊗ |s⟩) = ⟨ϕ|ψ⟩ ⟨s|s⟩ =
= ⟨ϕ|ψ⟩ (1.3.26)

which implies that either ⟨ϕ|ψ⟩ = 1 or ⟨ϕ|ψ⟩ = 0, which in turn means that either |ψ⟩
and |ϕ⟩ are the same state, or they are mutually orthogonal.

So we can see that the unitarity condition on U forces the states that can be duplicated
to be orthogonal to each other, and superpositions are not allowed to be duplicated.
This reconciles with the fanout operation that we have seen in the previous section:
the Toffoli gate can only duplicate the qubits |0⟩ and |1⟩, which are mutually orthogonal
in H2, but it cannot duplicate an arbitrary superposition of these two states.

1.4 Quantum circuits

The problem is now finding a way to combine efficiently basic quantum gates in order to
obtain the needed arbitrary unitary gate U .

It’s a remarkable fact [7] that the cnot gate and single qubit gates form a set of
universal quantum gates, which means that every unitary gate U can be made up by a
clever combination of these gates only. If we then wish to use just a discrete set of gates,
we cannot obviously represent exactly every unitary operator U , since the set of unitary
operators is continuous. Nevertheless, one can demonstrate that we can approximate a
general U with arbitrary accuracy only using a discrete set of gates.
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To see a basic example, consider the swap gate, which acts on 2 qubits as such:

|x, y⟩ 7→ |y, x⟩ , x, y ∈ {0, 1} (1.4.1)

This gate can be expressed as a combination of 3 cnot gates, as shown in Fig. 1.7.

|x⟩ |y⟩

|y⟩ |x⟩
=

Figure 1.7: The swap gate (on the left) and its realization through cnots (on the right).

The equivalence between the two circuits in Fig. 1.7 can be easily verified:

|x, y⟩ 7→ |x, y ⊕ x⟩
7→ |x⊕ (y ⊕ x), y ⊕ x⟩ = |y, y ⊕ x⟩
7→ |y, (y ⊕ x)⊕ y⟩ = |y, x⟩ (1.4.2)

Another nice example is the circuit given in Fig. 1.8 that entangles 2 qubits, effec-
tively creating a Bell state.

|x⟩

|y⟩

H
|βxy⟩

Figure 1.8: Circuit that implements the creation of Bell states.

In this circuit the Hadamard gate superposes the |0⟩ and |1⟩ states, and the cnot gate
acts in a linear manner, effectively entangling the target qubit to the control qubit.

Particularly useful is also the operation of the controlled-U gate on 2 qubits, as shown
in Fig. 1.9.

U

Figure 1.9: Circuital representation of the controlled-U gate.

This circuit basically implements an if: if the control qubit is set, then the operator U
acts on the target qubit. A pratical way to implement is through the decomposition
(1.3.16), as shown in Fig. 1.10.
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U
=

P (α)

C B A

Figure 1.10: Circuital implementation of the controlled-U gate.

The claim of equivalence of the two circuits in Fig. 1.10 can be easily seen, as the phase
gate P (α) on the control qubit is equivalent to a controlled-eiα gate that affects the
target qubit. So if the control qubit is set, then U = eiαAXBXC is applied to the target
qubit, otherwise I = ABC is applied.

In conclusion, an arbitrary operation U on n qubits can be implemented only using
cnot and single qubit gates, but it turns out that this construction requires a number of
gates that grows like O(n24n), which is not very efficient. Thus, in our search of optimal
quantum algorithms we clearly need a different and more clever approach.

1.4.1 Quantum Teleportation

A first interesting quantum circuit is the one that realizes quantum teleportation. The
name may be quite misleading, since there is no real teleportation of matter, but only
of quantum information.

In practice, this circuit exploits the potentiality of quantum entanglement to transfer
the content of an unknown qubit |ψ⟩ from point A to point B, using a pair of entangled
qubits and two classical bits. The quantum teleportation protocol is summarized in Fig.
1.11.

|ψ⟩

A : |0⟩

B : |0⟩ |ψ⟩

H

H

Figure 1.11: Quantum teleportation protocol.

The protocol goes as follows: a pair of qubits are entangled in the state |β00⟩ (as one
can see in the first portion of Fig. 1.11), and then they can be placed wherever in the
universe, the first one at point A and the second one at point B.

Subsequently, a mysterious qubit |ψ⟩ arrives at point A, and the system is manipu-
lated locally through a cnot and a Hadamard gate. If we write |ψ⟩ as in (1.1.1), one
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can see that these gates act as such:

|ψ⟩ ⊗ |β00⟩ = (α |0⟩+ β |1⟩)⊗ 1√
2
(|00⟩+ |11⟩)

=
1√
2
[α |0⟩ ⊗ (|00⟩+ |11⟩) + β |1⟩ ⊗ (|00⟩+ |11⟩)]

7→ 1√
2
[α |0⟩ ⊗ (|00⟩+ |11⟩) + β |1⟩ ⊗ (|10⟩+ |01⟩)]

7→ 1√
2

[
α

1√
2
(|0⟩+ |1⟩)⊗ (|00⟩+ |11⟩) + β

1√
2
(|0⟩ − |1⟩)⊗ (|10⟩+ |01⟩)

]
=

1

2
[ |00⟩ ⊗ (α |0⟩+ β |1⟩) + |01⟩ ⊗ (α |1⟩+ β |0⟩)

+ |10⟩ ⊗ (α |0⟩ − β |1⟩) + |11⟩ ⊗ (α |1⟩ − β |0⟩) ] (1.4.3)

The protocol then instructs to measure the two qubits at point A, which can be seen
from (1.4.3) to produce every x ∈ {0, 1}2 with probability 1/4. Once these two qubits
are measured, and therefore converted into two classical bits, they need to be sent at
point B, where a controlled-X and a controlled-Z operations are applied on the qubit at
that point (the control bits are the classical bits themselves).

We therefore have four possible states for our last qubit, depending on the state of
the two classical bits:

00 : α |0⟩+ β |1⟩ C−X7−−−→ α |0⟩+ β |1⟩ C−Z7−−−→ α |0⟩+ β |1⟩ (1.4.4)

01 : α |1⟩+ β |0⟩ C−X7−−−→ α |0⟩+ β |1⟩ C−Z7−−−→ α |0⟩+ β |1⟩ (1.4.5)

10 : α |0⟩ − β |1⟩ C−X7−−−→ α |0⟩ − β |1⟩ C−Z7−−−→ α |0⟩+ β |1⟩ (1.4.6)

11 : α |1⟩ − β |0⟩ C−X7−−−→ α |0⟩ − β |1⟩ C−Z7−−−→ α |0⟩+ β |1⟩ (1.4.7)

After these operations we have therefore faithfully reconstructed our starting qubit
|ψ⟩ at point B. This procedure however does not imply the possibility of superluminal
messages, since the classical bits still need to be transferred from A to B to complete the
protocol.

1.4.2 Grover’s Algorithm

Another remarkable circuit is the one that implements Grover’s algorithm, which exploits
the advantage of quantum superposition to outperform classical computers in the task
of searching through a database of N objects.

The problem is defined as such: let f : {0, 1, ... N − 1} → {0, 1} be a function such
that it admits one and only one value ω in the domain for which f(ω) = 1, while for
every other x ̸= ω we have that f(x) = 0. The task is to find ω.

17



Classically, the only viable method is evaluating the function at every possible in-
put value and looking at the result: one can therefore understand that it takes O(N)
iterations of the program to find ω.

By using Grover’s algorithm instead, the correct output ω is given with good prob-
ability by just O(

√
N) evaluations of the function. The circuit that performs Grover’s

algorithm is given in Fig. 1.12.

Oracle Grover diffusion operator

|0⟩ . . .

...
...

...
...

...

|0⟩ . . .

|0n⟩

H

Uω

H

2 |0n⟩⟨0n| − In

H

H H H

Figure 1.12: Circuital implementation of Grover’s algorithm.

A few comments to Fig. 1.12 are in order. First of all, the N items database
is represented through n = ⌈log2N⌉ qubits. Then n Hadamard gates in parallel are
applied to the qubits, in order to obtain a state |s⟩ which is the uniform superposition
of all possible values of the domain:

|s⟩ = 1√
N

N−1∑
x=0

|x⟩ (1.4.8)

This capability of quantum computers of superposing all possible input values, known
as quantum parallelism, provides a great advantage over classical algorithms, since the
function f will be evaluated simultaneously by linearity over the whole domain.

The function f is implemented into the oracle Uω, which is a gate that acts as such:{
Uω |ω⟩ = − |ω⟩
Uω |x⟩ = |x⟩ if x ̸= ω

⇐⇒ Uω |x⟩ = (−1)f(x) |x⟩

⇐⇒ Uω = In − 2 |ω⟩⟨ω| (1.4.9)

Then the circuit is composed of the so-called Grover diffusion operator Us, which one
can check from Fig. 1.12 to be:

Us = H⊗n (2 |0n⟩⟨0n| − In)H
⊗n = 2 |s⟩⟨s| − In (1.4.10)

This procedure of applying Uω and Us is repeated r ≈ π
√
N/4 times to get ω as the

result of the subsequent measure, with an error O(1/N).
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The correctness of these statements can be seen via a nice geometric proof. Consider
the subspace of the Hilbert space spanned by the kets |s⟩ and |ω⟩, as represented in Fig.
1.13. The system starts in |s⟩, then the application of Uω can be seen from (1.4.9) to
reflect the state through the hyperplane orthogonal to |ω⟩. Us can instead be interpreted
from (1.4.10) as a reflection through |s⟩.

Figure 1.13: Geometric representation of Grover’s algorithm.

Basically, at every iteration of UsUω, the system state vector is rotated by an angle θ
in the plane spanned by |s⟩ and |ω⟩, and after r iterations the probability of measuring
|ω⟩ is:

P (ω) = |⟨ω| (UsUω)
r |s⟩|2 = cos2

[
π

2
−
(
r +

1

2

)
θ

]
= sin2

[
(2r + 1)

θ

2

]
(1.4.11)

In turn, θ is given by:

cos θ = ⟨s|UsUω |s⟩ = ⟨s| (2 |s⟩⟨s| − I)(I − 2 |ω⟩⟨ω|) |s⟩ = ⟨s| (|s⟩ − 2 |ω⟩ ⟨ω|s⟩)

= 1− 2 |⟨ω|s⟩|2 = 1− 2

∣∣∣∣∣ 1√
N

N−1∑
x=0

⟨ω|x⟩

∣∣∣∣∣
2

= 1− 2

N

=⇒ sin
θ

2
=

1√
N

(1.4.12)

From (1.4.11), one can see that the maximum probability of getting |ω⟩ is achieved
when 2r θ/2 ≈ π/2, and from (1.4.12) this condition is met whenever

r ≈ π

4 (θ/2)
=

π

4 sin−1(1/
√
N)

≈ π
√
N

4
(1.4.13)

Plugging these formulas back into (1.4.11) one can also check that the error is of order
O(1/N).
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Chapter 2

Quantum Phase Estimation

Quantum Phase Estimation (QPE) techniques denote a class of algorithms that aim to
estimate with arbitrary precision the eigenvalues of a unitary operator U , which have
proven to be extremely useful in many areas of quantum computation, for example in
Shor’s factoring algorithm. In this chapter we will discuss several ways to implement
QPE. The exposition will follow the one from [9].

2.1 Basic setup

Every unitary operator U admits a complete set of orthonormal eigenvectors |ψ⟩ that
diagonalize it, with eigenvalues in the form of a complex phase:

U |ψ⟩ = e2πiϕ |ψ⟩ , ϕ ∈ [0, 1[ (2.1.1)

The scope of QPE is precisely to extract ϕ with arbitrary precision.

A basic setup for QPE is summarized in Fig. 2.1, and it consists simply of two
Hadamard gates, a controlled-U gate and a measurement device.

|0⟩

|ψ⟩ |ψ⟩

H H

U

Figure 2.1: Circuital representation of a basic setup for QPE.

The circuit in Fig. 2.1 basically isolates the eigenvalue of U as a relative phase
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between the states |0⟩ and |1⟩ of the first qubit, and in the first two steps it acts as such:

|0⟩ ⊗ |ψ⟩ H⊗I7−−→ 1√
2
(|0⟩+ |1⟩)⊗ |ψ⟩ = 1√

2
(|0⟩ ⊗ |ψ⟩+ |1⟩ ⊗ |ψ⟩)

C−U7−−−→ 1√
2
(|0⟩ ⊗ |ψ⟩+ |1⟩ ⊗ e2πiϕ |ψ⟩) = 1√

2
(|0⟩+ e2πiϕ |1⟩)⊗ |ψ⟩ (2.1.2)

Now, focusing only on the first qubit, the intermediate state after the first two gates is
simply

1√
2
(|0⟩+ e2πiϕ |1⟩) (2.1.3)

In order to extract the information about ϕ one applies the other Hadamard gate on
the first qubit, and obtains the following state:

1√
2
(|0⟩+ e2πiϕ |1⟩) H7−→ 1√

2

(
|0⟩+ |1⟩√

2
+ e2πiϕ

|0⟩ − |1⟩√
2

)
=

1

2

[
(1 + e2πiϕ) |0⟩+ (1− e2πiϕ) |1⟩

]
(2.1.4)

Then the probabilities for measuring |0⟩ and |1⟩ are

P (0) =
1 + cos(2πϕ)

2
, P (1) =

1− cos(2πϕ)

2
(2.1.5)

and repeating this process enough times, one can estimate a value for ϕ from the statis-
tical distribution of the values for the first qubit.

This algorithm has two main flaws: firstly, it cannot distinguish between ϕ and (1−ϕ),
and secondly the statistical fluctuations in the measurement process cannot give a very
precise value of ϕ. In order to accomodate these issues, we will give a more refined QPE
algorithm: Kitaev’s algorithm.

2.2 Kitaev’s algorithm

The setup for this algorithm is very similar to the one seen in the previous section, and
is summarized in Fig. 2.2.

|0⟩

|ψ⟩ |ψ⟩

H K H

U2k

Figure 2.2: Circuital representation of Kitaev’s algorithm setup.

21



In this setup the K gate can either represent an identity gate I or a S gate. Moreover,
the controlled-U gate is replaced by a controlled-U2k gate, which is basically a controlled-
U gate applied 2k times, with k = 0, 1, 2, ... n− 1.

As one can quickly see from the fact that |ψ⟩ is an eigenvector of U , U2k also has |ψ⟩
as eigenvector with the following eigenvalue:

U2k |ψ⟩ = e2πi 2
kϕ |ψ⟩ (2.2.1)

Therefore, as k ranges from 0 to n− 1, this algorithm extracts the phases ϕ, 2ϕ, ... 2n−1ϕ
(modulo 1), which are useful to extract with increasing precision the first n binary digits
in the fractional expansion of ϕ.

Similarly to before, when K = I the final probabilities of getting |0⟩ or |1⟩ for the
first qubit are

P (0) =
1 + cos

(
2π 2kϕ

)
2

, P (1) =
1− cos

(
2π 2kϕ

)
2

(2.2.2)

If we instead used K = S, one can demonstrate in a similar fashion that the output
probabilities of |0⟩ or |1⟩ on the first qubit are

P (0) =
1− sin

(
2π 2kϕ

)
2

, P (1) =
1 + sin

(
2π 2kϕ

)
2

(2.2.3)

One can then extract the quantities cos
(
2π 2kϕ

)
and sin

(
2π 2kϕ

)
from a statistical anal-

ysis and use them to find 2kϕ without ambiguities:

2kϕ =
1

2π
tan−1

(
sin
(
2π 2kϕ

)
cos(2π 2kϕ)

)
(2.2.4)

As one can see, this algorithm requires a good amount of classical processing after
the quantum elaboration results. In the next sections we will derive some results that
move in the direction of creating algorithm without all this classical post-processing.

2.3 Quantum Fourier Transform

The Quantum Fourier Transform (QFT) is a unitary transformation of n qubits, from
the canonical basis |x⟩, with x ∈ {0, 1}n, to the so-called Fourier basis :

|x⟩ QFT7−−−→ |x̃⟩ = 1

2n/2

∑
k∈{0,1}n

ω xk
n |k⟩, ωn = e2πi/2

n

(2.3.1)

This is the quantum version of the discrete Fourier transform. One can prove that it can
be implement using O(n2) quantum gates, while the classical Fast Fourier Transform
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algorithm requires O(n 2n) steps [7], which amounts in an exponential speedup.

To see how to implement it, we first need to manipulate our expression for |x̃⟩,
expressing a n-digit binary number k in its binary notation:

k = k1 2
n−1 + ...+ kn 2

0 =
n∑

j=1

kj 2
n−j (2.3.2)

|k⟩ = |k1...kn⟩ =
n⊗

j=1

|kj⟩ (2.3.3)

where we used the convention that k1 is the most significant bit and kn is the least
significant bit (kj ∈ 0, 1).

Now, for what regards |x̃⟩ itself:

|x̃⟩ = 1

2n/2

∑
k∈{0,1}n

ω xk
n |k⟩

=
1

2n/2

1∑
k1=0

...
1∑

kn=0

ω
x
∑n

j=1 kj2
n−j

n

n⊗
l=1

|kl⟩

=
1

2n/2

1∑
k1=0

...
1∑

kn=0

n∏
j=1

ω xkj2
n−j

n

n⊗
l=1

|kl⟩

=
1

2n/2

1∑
k1=0

...
1∑

kn=0

n⊗
j=1

[
ω xkj2

n−j

n |kj⟩
]

=
1

2n/2

n⊗
j=1

1∑
kj=0

ω xkj2
n−j

n |kj⟩

=
1

2n/2

n⊗
j=1

[
|0⟩+ ω x 2n−j

n |1⟩
]

(2.3.4)

Focusing now on the relative phase ω x 2n−j

n we can express it as such:

ω x 2n−j

n = exp

(
2πi

2n
x 2n−j

)
= exp

(
2πi x 2−j

)
= exp

(
2πi

n∑
l=1

xl 2
n−l 2−j

)

= exp

(
2πi

n∑
l=1

xl 2
n−j−l

)
= exp

(
2πi

j∑
l=j+1−n

xl+n−j 2
−l

)

=

j∏
l=j+1−n

exp
(
2πi xl+n−j 2

−l
)
=

j∏
l=1

exp
(
2πi xl+n−j 2

−l
)

(2.3.5)
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So finally, we can write |x̃⟩ as:

|x̃⟩ = 1

2n/2

n⊗
j=1

[
|0⟩+

j∏
l=1

exp
(
2πi xl+n−j 2

−l
)
|1⟩

]
(2.3.6)

At first glance the equation (2.3.6) seems more complicated than the initial expres-
sion, but at a closer look one can see that it factorizes the action of each input qubit
|x1⟩ , ... |xn⟩ on each output qubit.

The circuital implementation of QFT is then represented in Fig. 2.3, which can be
checked to implement precisely equation (2.3.6) with O(n2) gates as promised.

|x1⟩ . . . . . . . . .

|x2⟩ . . . . . . . . .

|x3⟩ . . . . . .

...

|xn−1⟩ . . . . . .

|xn⟩ . . . . . .

H P2 P3 Pn

H P2 Pn−1

H P2

H

Figure 2.3: Circuital implementation of QFT.

In Fig. 2.3 the Pl gates represent a phase gate of the form:

Pl =

[
1 0

0 e2πi/2
l

]
(2.3.7)

and, at the end, all the qubits are swapped to match the adopted convention in equation
(2.3.6). The whole circuit is summarized in Fig. 2.4.

|x1⟩ 1√
2
(|0⟩+ e2πi[0.xn] |1⟩)

|x2⟩ 1√
2
(|0⟩+ e2πi[0.xn−1xn] |1⟩)

...
...

|xn⟩ 1√
2
(|0⟩+ e2πi[0.x1x2...xn−1xn] |1⟩)

QFT

Figure 2.4: Circuital representation of QFT.
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We are also interested in the inverse operation, which goes by the name of Inverse
Quantum Fourier Transform (IQFT), which, by unitarity of the QFT, is the Hermitian
conjugate of QFT:

|x⟩ IQFT7−−−→ 1

2n/2

∑
k∈{0,1}n

ω−xk
n |k⟩ (2.3.8)

This transformation can be very easily implemented by using the same setup used for
QFT, conjugating the phase gates Pl.

2.4 QPE via IQFT

We are now ready to see another algorithm for QPE which is based on IQFT. The setup
is summarized in Fig. 2.5.

|0⟩ . . .

...
...

...

|0⟩ . . .

|0⟩ . . .

|ψ⟩ . . . |ψ⟩

H

QFT †

H

H

U20 U21 U2n−1

Figure 2.5: Circuital representation of QPE based on IQFT.

We can see that the first n qubits are manipulated by the Hadamard gates and the
controlled-U2k gates as such:

|0⟩⊗n H⊗n

7−−→ 1

2n/2
(|0⟩+ |1⟩)⊗n

C−U7−−−→ 1

2n/2

n⊗
j=1

(|0⟩+ e2πi 2
n−jϕ |1⟩) = 1

2n/2

∑
k∈{0,1}n

e2πiϕk |k⟩ (2.4.1)

The resulting state is very similar to a state of the Fourier basis, and in this sense the
IQFT is optimal to recollect the information about the phase in the resulting state. In
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fact, if we apply the IQFT to this state we obtain:

1

2n/2

∑
k∈{0,1}n

e2πiϕk |k⟩ IQFT7−−−→ 1

2n/2

∑
k∈{0,1}n

e2πiϕk
1

2n/2

∑
x∈{0,1}n

e−
2πi
2n

kx |x⟩

=
1

2n

∑
x,k∈{0,1}n

e−
2πi
2n

k(x−2nϕ) |x⟩ (2.4.2)

Now, let a be the nearest integer to 2nϕ. Then we can express 2nϕ as such:

2nϕ = a+ 2nδ, 0 ≤ |2nδ| ≤ 1

2
(2.4.3)

Substituting this expression into (2.4.2) we obtain

1

2n

∑
x,k∈{0,1}n

e−
2πi
2n

k(x−2nϕ) |x⟩ = 1

2n

∑
x,k∈{0,1}n

e−
2πi
2n

k(x−a)e2πikδ |x⟩ (2.4.4)

If we now calculate the probability of obtaining |a⟩ as the final state, we get:

P (a) =

∣∣∣∣∣∣ 12n
∑

x,k∈{0,1}n
e−

2πi
2n

k(x−a)e2πikδ ⟨a|x⟩

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ 12n
∑

x,k∈{0,1}n
e−

2πi
2n

k(x−a)e2πikδδax

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ 12n
∑

k∈{0,1}n
e2πikδ

∣∣∣∣∣∣
2

=


1 if δ = 0

1

22n

∣∣∣∣1− e2πi 2
nδ

1− e2πiδ

∣∣∣∣2 if δ ̸= 0

=


1 if δ = 0

1

22n
sin2(π 2nδ)

sin2(πδ)
if δ ̸= 0

(2.4.5)

So, the final state is exactly |a⟩ whenever δ = 0. If δ ̸= 0 then our final state
will not be |a⟩ with certainty, but since 0 ≤ |2nδ| ≤ 1/2, one can demonstrate that
P (a) ≥ 4/π2 ≈ 40.5%, which is still the most probable state.

This algorithm, unlike the others we have seen, requires very little classical post-
processing, since a, the best n-bit estimate of ϕ, is simply the most probable output of
the measurement.

2.5 QPE via Inverse-AQFT

The main downside to the approach for QPE based on IQFT is the presence in the circuit
of high precision phase gates, which are very difficult to realize in practice. The approach
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for QPE presented in this section is therefore based on Approximate Quantum Fourier
Transform (AQFT), which is basically implemented with the same circuit in Fig. 2.3,
but keeping just the phase gates Pl up to a fixed degree m and removing all the phase
gates of higher degree. The result is summarized in Fig. 2.6.

|x1⟩ . . . . . . . . .

|x2⟩ . . . . . . . . .

...

|xm−1⟩ . . . . . .

|xm⟩ . . . . . .

|xm+1⟩ . . . . . .

...

|xn−1⟩ . . . . . .

|xn⟩ . . . . . .

H P2 Pm−1 Pm

H Pm−1 Pm

H P2

H

Figure 2.6: Circuital implementation of AQFT of order m.

The approach then is very similar to QPE based on IQFT: one simply replaces QFT †

with AQFT † of the desired order in Fig. 2.5. What we are basically doing is trading off
smaller success probability of getting the correct result at the end of the circuit with a
smaller degree of the phase gates and a shorter circuit. The result is shown in Fig. 2.7.

|0⟩ . . .

...
...

...

|0⟩ . . .

|0⟩ . . .

|ψ⟩ . . . |ψ⟩

H

AQFT †
m

H

H

U20 U21 U2n−1

Figure 2.7: Circuital representation of QPE based on Inverse AQFT.

One can then demonstrate [10] that if we set m = 3 the probability of getting the
right output for each single qubit is P ≥ cos2(π/8) ≈ 85.4%, which guarantees good
results by using only small degree phase gates.
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Chapter 3

Implementation of QPE

In this chapter, we will discuss the implementation results for the various QPE algorithms
presented in the previous chapter. The implementation has been done in Qiskit.

Qiskit [11] is an open-source software development kit that provides tools for creating
quantum circuits and running them either on simulators on your local computer, or on
real quantum devices on IBM Quantum Experience. Qiskit primarily uses Python as its
programming language and can be easily accessed through Jupyter Notebook. In turn,
IBM Quantum Experience [12] is IBM’s cloud-based quantum computing service, which
provides public and premium access to IBM’s quantum processors in order to run quan-
tum algorithms. IBM’s quantum processors are physically made up of superconducting
transmon qubits, which are a class of superconducting charge qubits designed to have
reduced sensitivity to charge noise.

In this chapter the implementation has been done on both the Qiskit Aer Simula-
tor and the IBM Quantum Experience 5-qubit quantum computing hardware platform
“ibmq manila”.

In general, the approach taken consisted in fixing an arbitrary phase ϕ = 0.1010011
and replacing the controlled-U2k gates with the single-qubit phase gates P (2π 2kϕ) on
the control qubit, thus minimizing the number of necessary qubits. Then the algorithms
try to extract this phase ϕ up to the 5th digit (ϕ is intended to have more than 5 digits
in order to simulate a more realistic eigenvalue of a generic unitary operator U).

One important remark is in order. The simulation results are obtained as projection
of the simulated wave function on the computational basis, hence giving the probabilities
of each measurement. In contrast, the quantum device gives only one instance of the
computational basis after the measurement, so the circuit needs to be run several times
to obtain statistical information. In each of these implementations the quantum routine
has been run 1024 times.
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3.1 Kitaev QPE

Kitaev’s algorithm is characterized by requiring multiple single-qubit circuits, two for
every order of approximation of ϕ.

Therefore, the relevant code that realizes the various quantum circuits can be imple-
mented as follows:

1 from qiskit import QuantumCircuit

2

3 def kitaev(order , phase):

4 qc_list = []

5

6 for ii in range(order):

7 qc1 = QuantumCircuit (1, 1)

8 qc1.h(0)

9 qc1.p(2*np.pi *(2**ii)*phase , 0)

10 qc1.h(0)

11 qc1.measure(0, 0)

12

13 qc2 = QuantumCircuit (1, 1)

14 qc2.h(0)

15 qc2.s(0)

16 qc2.p(2*np.pi *(2**ii)*phase , 0)

17 qc2.h(0)

18 qc2.measure(0, 0)

19

20 qc_list.append(qc1)

21 qc_list.append(qc2)

22

23 return qc_list

Kitaev’s algorithm also requires classical post-processing of the histograms of the
results, which is summarized in the following code:

1 def process(histos):

2 phases = []

3 shots = histos [0][’0’] + histos [0][’1’]

4

5 for ii in range(len(histos)//2):

6 cos = (histos [2*ii][’0’] - histos [2*ii][’1’])/shots

7 sin = (histos [2*ii+1][’1’] - histos [2*ii+1][’0’])/shots

8 phases.append ((np.arctan2(sin , cos)/(2*np.pi))%1)

9

10 return phases

The results obtained from implementing this algorithm are then summarized in Fig.
3.1, where the quantum device phases are obtained as the statistical mean of the runs of
the program. One can see that the simulation results are in perfect agreement with the
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theoretical predictions, while the quantum device results suffer from an inevitable noise
which makes them less reliable.

Figure 3.1: Plot of the first 5 orders of approximation of the phase ϕ, comparing the
theoretical predictions to the simulation and the quantum device results. For k = 4 the
simulation phase is hidden under the quantum device phase, as they coincide perfectly.

3.2 IQFT QPE

The implementation of the QPE algorithm based of IQFT has been done using the
standard Qiskit QFT subcircuit, so the relevant code that realizes it is the following:

1 from qiskit import QuantumCircuit

2 from qiskit.circuit.library import QFT

3

4 def IQFT_QPE(order , phase):

5 qc = QuantumCircuit(order , order)

6

7 for ii in range(order):

8 qc.h(ii)

9 qc.p(2*np.pi *(2**ii)*phase , ii)

10 qc.append(QFT(order , inverse=True), qc.qubits)

11 qc.measure(qc.qubits , qc.clbits)

12

13 return qc

This algorithm has been implemented varying the number of qubits (hence the order
of approximation of ϕ) from 3 to 5, and the results are summarized in Fig. 3.2, Fig. 3.3
and Fig. 3.4.
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Figure 3.2: Histograms of the probabilities of each 3-bit outcome of the IQFT QPE. On
the left the simulation results, and on the right the quantum device results.

Figure 3.3: Histograms of the probabilities of each 4-bit outcome of the IQFT QPE. On
the left the simulation results, and on the right the quantum device results.

Figure 3.4: Histograms of the probabilities of each 5-bit outcome of the IQFT QPE. On
the left the simulation results, and on the right the quantum device results.
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As one can see, the simulated results coincide perfectly with our expectations: in
each case the probabilities are centered around the best n-bit estimate of ϕ and rapidly
decrease as the approximation of ϕ becomes less precise. If we had chosen a particular
ϕ with fewer digits, the probabilities would have become more peaked around the true
value of ϕ, and in the limit of ϕ having the same or fewer number of digits as the number
of simulation qubits, we would have found the result ϕ with probability 1.

The real quantum device results are instead much more messy: one can still distin-
guish the most probable output from the distribution, but especially when we increase
the number of qubits, the noise becomes more and more present. The probabilities hence
are far more distributed and less peaked, thus there is a visible change in the y-scales of
the histograms between the simulation and the real quantum device results.

3.3 Inverse-AQFT QPE

In order to implement this algorithm, the AQFT subcircuit was realized from scratch,
and it was used in an analogous fashion to the IQFT case:

1 from qiskit import QuantumCircuit

2

3 def myAQFT(nqubits , degree , inverse):

4 qc = QuantumCircuit(nqubits)

5

6 for ii in reversed(range(nqubits)):

7 qc.h(ii)

8 for jj in reversed(range(max(ii -degree+1, 0), ii)):

9 qc.cu1 ((( -1)** inverse)*np.pi /(2**(ii -jj)), jj , ii)

10

11 return qc

12

13 def AQFT_QPE(order , degree , phase):

14 qc = QuantumCircuit(order , order)

15

16 for ii in range(order):

17 qc.h(ii)

18 qc.p(2*np.pi *(2**ii)*phase , ii)

19 qc.append(myAQFT(order , degree , inverse=True), qc.qubits)

20 qc.measure(qc.qubits , qc.clbits)

21

22 return qc

This algorithm has been implemented with 4 and 5 qubits, with a degree of the AQFT
of 3 (the case with 3 qubits is equivalent to the standard IQFT case), and the results
are summarized in Fig. 3.5 and Fig. 3.6. Again, the quantum device histograms are
obtained as the result of 1024 runs of the program.
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Figure 3.5: Histograms of the probabilities of each 4-bit outcome of the Inverse-AQFT
QPE. On the left the simulation results, and on the right the quantum device results.

Figure 3.6: Histograms of the probabilities of each 5-bit outcome of the Inverse-AQFT
QPE. On the left the simulation results, and on the right the quantum device results.

The same considerations we did in the IQFT case apply more or less also here.
The only difference is that the simulation results present slight deviations from before,
symptom of the fact that we used phase gates only up to degree 3. This has also the
effect of reducing drastically the noise in the real quantum device, as compared to the
results of the previous section.
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