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Introduction

Galois theory was born at the beginning of the 19th century with the studies of Evariste
Galois. One of the most important result of this theory is the Fundamental Theorem
of Galois Theory, which gives a connection between fields and groups. Indeed, given a
field extension F ⊆ L, there exists a group linked to it, which is the Galois group of
the extension. It is therefore natural to ask whether it is possible to go through this
connection in the opposite direction: given a finite group G, does there exist a Galois
extension of F with Galois group G? Hence the name Inverse Galois problem. If we
have an affirmative answer, we will say that the group G occurs as a Galois group over a
certain field F. In fact, it turns out that the answer to this problem heavily depends on
the base field. For example, over finite fields only cyclic groups occur as Galois groups;
while over p-adic fields only solvable groups occur as Galois groups. The classical inverse
problem takes Q as the base field, thus the question is: which finite groups can occur
as the Galois groups of finite field extensions of Q? Moreover, if there is an affirmative
answer for a certain group G, one can go deeper in the problem and find polynomials
with coefficients in Q whose splitting field realizes the desired extension.

Despite the problem is still unsolved, important achievements have been reached so
far. One of the first results, dated to the late 1800s, is the realization of all abelian groups,
due to Kronecker and Weber. Hilbert made significant progress in the problem, mainly
through his Irreducibility Theorem ([8]), by which he proved the realization of Sn and An
as Galois group of field extensions of Q. In 1937 Scholz and Reichardt ([17],[14]) proved
that the classical inverse problem has an affirmative answer for any p-group; in 1954
Šafarevič ([16]) proved it for any solvable group. In order to find these realizations the
problem has been attacked using the Rigidity Method: since every finite group appears as
the Galois group of a polynomial in C[t] (Riemann’s Existence Theorem [7]), one imposes
condition in order to ensure that the polynomial can be defined in Q[t]; if this process
can be done for a certain group G, one can conclude that there exists a Galois extension
of Q with G as Galois group, by Hilbert’s Irreducibility Theorem. Other significant
methods have been used through the years, such as geometric methods involving elliptic
curves (see, for example, [15],[20]). The problem is still unsolved, for example, for simple
groups. Most of them have been realized as Galois group over Q, such as M11, M12, M22

and M24 ([10]); also for the monster group the answer is affirmative ([21]). However it
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is unknown whether groups of type Lie and the Mathieu group M23 can occur as Galois
group of an extension of Q.

This thesis is focused on the realization of some classes of groups, and is organized
as follows:

• In Chapter 1 we collect some important results in Galois theory.

• In Chapter 2 we show how to realize every group as the Galois group of some Galois
extension, without requiring Q as the base field, i.e., we face the so-called "weak"
problem.

• Chapter 3 is dedicated to the realization of the groups (Zn)∗, the cyclic groups and
the abelian groups as Galois group of an extension of Q.

• In Chapter 4 we collect some results in group theory and using Dedekind’s Theorem
we show that the symmetric group Sn occurs as a Galois group over Q.

• Finally in Chapter 5 we collect some explicit examples of realization of Galois
groups over Q. In particular we show how to realize every group of order at most
8 and also the general affine group AGL(1,Fp).
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Notation

Throughout these notes, p will be a prime number. Given a set S, we shall denote by
|S| its cardinality. We shall use the following standard (Bourbaki) notation:

• Sn = Symmetric group,

• An = Alternating group,

• Z = Ring of integers,

• Z+ = Positive integers,

• Q = Field of rational numbers,

• R = Field of real numbers,

• C = Field of complex numbers,

• Z/nZ = Zn = Cn = Cyclic group of n elements,

• (Z/nZ)∗ = multiplicative group of Zn,

• V4 = Z2 × Z2 = Klein group,

• Q8 = Quaternion group,

• [a]n = Residue class modulo n of a,

• X ⊆ Y : X is a subset of Y ,

• X ⊂ Y : X is a proper subset of Y ,

• X ∼= Y : group isomorphism between X and Y ,

• H ≤ G: H is a subgroup of G,

• H ⊴ G: H is a normal subgroup of G,

• [G : H]: the index of H in G,

• A⊕B: direct sum.
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Chapter 1

Galois theory

"Il passato è sale e si scioglie,
ma dà sapore al futuro"

In this chapter we collect some preliminary fundamental results in Galois theory that
we will use in the sequel. For all details we refer to [1] and [12].

1.1 Preliminaries
Let F be a field.

Definition 1.1. A polynomial f(x) ∈ F[x] is said to be separable if it has no multiple
roots in a splitting field over F.

Example 1.2. The polynomial f(x) = x3 − 2 ∈ Q[x] is separable, indeed f(x) splits in
C[x] and its roots are 3

√
2, ξ3 3

√
2 and ξ23

3
√
2, where ξ3 is a primitive 3-th root of unity.

Example 1.3. If K is a field of characteristic p, then F := K(t) is an infinite field of
characteristic p. The polynomial f(x) = xp − t ∈ F[x] is not separable, since if α is a
root of f in a splitting field over F, we have

xp − t = xp − αp = (x− α)p

hence α is a multiple root.

Definition 1.4. A field F is said to be perfect if every irreducible polynomial f(x) ∈ F[x]
is separable.

Proposition 1.5. Fields of characteristic 0 are perfect, in particular Q is a perfect field.
Moreover, finite fields are perfect.
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Definition 1.6. (Galois Group)
For a field extension F ⊆ K we consider the following subset of Aut(K):

Gal(K/F) = {φ ∈ Aut(K) | φ(a) = a, ∀ a ∈ F}

i.e., the set of K-automorphisms that fix the field F.

Remark 1.7. Gal(K/F) is a subgroup of (Aut(K), ◦).

Given a subgroup H ≤ Gal(K/F) we will denote the set of its fixed points by

KH = {a ∈ K | φ(a) = a, ∀ φ ∈ H} .

Given a field F, for a polynomial f ∈ F[x] we define

GalF(f) := Gal(K/F), (1.1)

where K is the splitting field of f . We will often use Gal(f) instead of GalF(f) when the
base field is clear.

Proposition 1.8. Let F ⊆ K be a finite and simple field extension. If [K : F] = n then
|Gal(K/F)| ≤ n.

Proposition 1.9. Let f be a polynomial of degree n, then Gal(f) is isomorphic to a
subgroup of Sn.

We know that any automorphism σ ∈ Gal(f) maps a root of an irreducible factor
of f to another root of the same irreducible factor, and σ is uniquely determined by its
action on these roots. In general, if f factorizes as f(x) = f1(x)f2(x) . . . fk(x), where
fi(x) has degree ni, i = 1, 2, . . . , k, then since the Galois group permutes the roots of the
irreducible factors, we have

Gal(f) ≤ Sn1 × . . .× Snk
.

Theorem 1.10. Let F ⊆ K be a finite field extension, then the following conditions are
equivalent:

a) K is the splitting field of a separable polynomial with coefficients in F;

b) KGal(K/F) = F;

c) the extension is normal and separable;

d) |Gal(K/F)| = [K : F].

If any of the above conditions occurs we will say that F ⊆ K is a Galois extension.
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Proposition 1.11. Suppose that F ⊂ L is a Galois extension and that we have an
intermediate field F ⊂ K ⊂ L. Then K ⊂ L is a Galois extension.

Proposition 1.12. Let F ⊆ K ⊆ L be finite field extensions and F ⊆ L be a Galois
extension. Then F ⊆ K is a Galois extension if and only if Gal(L/K) is a normal
subgroup of Gal(L/F).
Theorem 1.13. Let F ⊆ K ⊆ L be finite field Galois extensions. Then

Gal(L/K) ⊴ Gal(L/F) and Gal(K/F) ∼=
Gal(L/F)
Gal(L/K)

.

Theorem 1.14 (Fundamental Theorem of Galois theory). Let F ⊆ L be a finite
field Galois extension. Then there is a bijection between the set of intermediate fields
F ⊆ K ⊆ L and the set of subgroups of Gal(L/F) given by he maps

φ : K −→ Gal(L/K) ψ : H −→ LH

which are one the inverse of the other. Furthermore, if K is an intermediate field and
H is a subgroup of Gal(L/F) the following hold:

|Gal(L/K)| = [L : K];

[Gal(L/F) : Gal(L/K)] = [K : F];
[L : LH ] = |H|;
[LH : F] = [Gal(L/F) : H].

Theorem 1.15 (Homomorphism extension). Let φ : F → F be a field isomorphism
and let F ⊆ E, F ⊆ E be field extensions. Then φ extends to a homomorphism:

φ : F[x] −→ F[x]
a 7−→ φ(a) ∀ a ∈ F,
x 7−→ x.

Moreover, if α ∈ E is a root of the irreducible polynomial f(x) ∈ F[x] and β ∈ E is a
root of φ(f(x)), then there exists one and only one isomorphism Ψ : F[α] → F[β] such
that Ψ|F = φ and Ψ(α) = β.

Corollary 1.16. Let F ⊆ E be a field extension and let α, β ∈ E be 2 different roots of
the same irreducible polynomial f(x) ∈ F[x]. Then F[α] and F[β] are isomorphic.

Definition 1.17. A polynomial with integer coefficients is primitive if it has 1 as a
greatest common divisor of its coefficients.

Lemma 1.18 (Gauss Lemma). A non constant polynomial in Z[x] is irreducible in
Z[x] if and only if it is both irreducible in Q[x] and primitive in Z[x].
Lemma 1.19 (Tower Lemma). Let F ⊆ K ⊆ L be finite field extensions. Then

[L : F] = [L : K] · [K : F].
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Chapter 2

Weak problem

In this section we will study the realization of a given group G as a Galois group of a
generic field extension. The fact we do not ask Q to be the base field greatly simplifies
the problem, hence the name "weak problem".

2.1 Cayley’s Theorem
Definition 2.1. For a fixed field F we define F(x1, . . . , xn) as the field of rational func-
tions with coefficients in F and with n indeterminates.

Definition 2.2 (Group action). Let G be a group with identity element e and let X
be a set. A group action of G on X is a map

G×X −→ X

(g, x) 7−→ g · x

that satisfies the following properties:

(i) e · x = x for all x ∈ X

(ii) (g1g2) · x = g1 · (g2 · x) for all g1, g2 ∈ G , x ∈ X.

Example 2.3. For a fixed field F, the symmetric group Sn acts on F(x1, . . . , xn) by
permuting the n indeterminates.

Definition 2.4. A rational function f(x1, . . . , xn) ∈ F(x1, . . . , xn) is called symmetric if
it is not changed by any permutation of the variables x1, . . . , xn.

Example 2.5. The function

f(x1, x2, x3) =
x1x2x3 − 4(x1x2 + x1x3 + x2x3)

(x1 + x2 + x3)2

is symmetric in x1, x2, x3.
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Example 2.6. The function

g(x1, x2, x3) =
x1 + x3
x1x2x3

is not symmetric, indeed the transposition (1 2) switches the variables x1, x2.

We will denote by S(x1, . . . , xn) the field of symmetric rational functions.

Theorem 2.7 (Cayley’s Theorem). Let G be a finite group with n elements. Then G
is isomorphic to a subgroup of Sn.

Proof. The group G acts on itself by multiplication. Let us denote by ∗ the group
operation. Then for every g ∈ G the map

Φg : G→ G

h 7→ g ∗ h

is a bijection. Moreover we can identify the set of bijective maps from G to itself with
Sn because G is in particular a set with n elements. One can prove that the map

Φ : G→ Sn

g 7→ Φg

is a group homomorphism. Furthermore Φ is an injective map, hence G is isomorphic to
a subgroup of Sn.

2.2 Universal extension
Theorem 2.8. Let x1, . . . , xn be indeterminates. The elementary symmetric functions
defined by

σ1 = x1 + . . .+ xn;

σ2 = x1x2 + x1x3 + . . .+ x2x3 + x2x4 + . . .+ xn−1xn;

...

σi =
∑

1≤j1<j2<...<ji≤n

xj1xj2 · · ·xji ;

...
σn = x1x2 . . . xn

are symmetric, and any symmetric rational function in the variables x1, . . . , xn is a
rational function in the elementary symmetric functions σ1, . . . , σn.
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Proof. See, for example, [4] for a complete proof.

Example 2.9. (x1 − x2)
2 is symmetric in x1, x2 and

(x1 − x2)
2 = (x1 + x2)

2 − 4x1x2 = σ2
1 − 4σ2.

Example 2.10. x21 + x22 + x23 is symmetric in x1, x2, x3 and

x21 + x22 + x23 = (x1 + x2 + x3)
2 − 2(x1x2 + x1x3 + x2x3) =

= σ2
1 − 2σ2.

Example 2.11. The polynomial x21x22 + x21x
2
3 + x22x

2
3 is symmetric in x1, x2, x3 and an

easy computation shows that

x21x
2
2 + x21x

2
3 + x22x

2
3 = σ2

2 − 2σ1σ3.

Theorem 2.12. The field extension S(x1, . . . , xn) ⊂ F(x1, . . . , xn) is a Galois extension
with Galois group isomorphic to Sn.

Proof. The extension S(x1, . . . , xn) ⊂ F(x1, . . . , xn) has finite degree, indeed
F(x1, . . . , xn) is the splitting field of the following polynomial

q(t) =
n∏
i=1

(t− xi) = tn − (
n∑
i=1

xi)t
n−1 + . . .+ (−1)n

n∏
i=1

xi ∈ S(x1, . . . , xn)[t] (2.1)

and the extension has degree at most n!. Moreover q(t) is trivially a separable polynomial,
then S(x1, . . . , xn) ⊂ F(x1, . . . , xn) is a Galois extension and from Theorem 1.10 it follows
that

|Gal(F(x1, . . . , xn)/S(x1, . . . , xn))| = [F(x1, . . . , xn) : S(x1, . . . , xn)] ≤ n! . (2.2)

On the other hand, if σ is a permutation in Sn, it can be seen as an automorphism of
F(x1, . . . , xn) permuting the indeterminates; besides σ fixes the subfield S(x1, . . . , xn),
so it is an element of the Galois group. It follows that
Gal(F(x1, . . . , xn)/S(x1, . . . , xn)) has at least n! elements, and from Equation 2.2 we
conclude that Gal(F(x1, . . . , xn)/S(x1, . . . , xn)) ∼= Sn.

The field extension in Theorem 2.12 is known as the universal extension with Galois
group Sn.
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2.3 Universal realization of a finite group
Theorem 2.13. Given a finite group G, there exists a Galois extension whose Galois
group is isomorphic to G.

Proof. Let G be a finite group of order n, and let F be an arbitrary field. We know that
the universal extension of degree n,

K = S(x1, . . . , xn) ⊂ F(x1, . . . , xn) = L

is a Galois extension with Galois group Sn. Since G is isomorphic to a subgroup of
Sn by Theorem 2.7, it follows that G is also isomorphic to a subgroup H ⊂ Gal(L/K).
Using the maps φ and ψ of Theorem 1.14, we obtain the Galois extension LH ⊂ L with
Galois group

Gal(L/LH) = H ∼= G.

This shows that LH ⊂ L is the desired extension.

Example 2.14. Let C = {e, a, a2} be the cyclic group of order 3. We know it is
isomorphic to a subgroup of S3, which is

C ∼= A3 = {e, (1 2 3), (1 3 2)} (in cyclic notation);

and if we take the field extension

K = S(x1, x2, x3) ⊂ F(x1, x2, x3) = L

we have C ∼= A3 ⊂ S3
∼= Gal(L/K). Following the steps of the proof of Theorem 2.13 we

obtain an intermediate field
K ⊂ LA3 ⊂ L.

For example, the polynomial

f(x1, x2, x3) = x1x1x2 + x2x2x3 + x3x3x1

is fixed by A3 but it is not fixed by all the permutations of S3, since the transposition
(1 2) sends f to the polynomial

g(x1, x2, x3) = x2x2x1 + x1x1x3 + x3x3x2.

We now use the functions of Theorem 1.14 to obtain

A3
ψ−→ LA3

φ−→ Gal(L/LA3).

And we conclude that
Gal(L/LA3) = A3

∼= C.

However, in explicit examples, one is often interested in Galois group of polynomials
over Q. Thus the question is: which finite groups can occur as the Galois groups of finite
field extensions of Q? This is known as the inverse Galois problem (over Q).
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Chapter 3

Classical inverse problem

The classical inverse Galois problem consists in determining whether a fixed group G
occurs as a Galois group over Q, in other words, determining whether there exists a
Galois extension Q ⊆ L such that the Galois group Gal(L/Q) is isomorphic to G.

3.1 Cyclotomic polynomials
Definition 3.1. For a positive integer n we define the n-th cyclotomic polynomial as
the monic polynomial that is the minimal polynomial over Q of any primitive n-th root
of unity. Explicitly it is equal to

Φn(x) =

φ(n)∏
i=1

(x− xi), (3.1)

where φ is Euler’s function, and the xi’s are the φ(n) different primitive n-th roots of
unity. Equivalently,

Φn(x) =
∏

xi∈µn,o(xi)=n

(x− xi),

where µn is the set of all the n-th roots of unity and o(xi) is the order of xi.

Definition 3.2. We also define the following polynomial

Ψn(x) =
∏

xi∈µn,o(xi )̸=n

(x− xi).

Remark 3.3. Φn(x) ·Ψn(x) = xn − 1.

Remark 3.4. We have xn − 1 =
∏

d|nΦd(x).

Remark 3.5. The polynomial Φn(x) has integer coefficients and, if n ̸= 1, it has constant
term equal to 1.
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3.2 Cyclic groups
Theorem 3.6. Let n be a positive integer and let ξn be a primitive n-th root of unity.
Then Q ⊆ Q(ξn) is a Galois extension, and the following properties hold:

(i) [Q(ξn) : Q] = φ(n);

(ii) Gal(Q(ξn)/Q) ∼= (Z/nZ)∗.

Proof. If we choose ξn = e
2πi
n we can obtain all other primitive n-th roots of unity by

raising ξn to the power of positive integers coprime with n and smaller than n. It follows
that Q(ξn) is the splitting field over Q of Φn(x) (see Definition 3.1), which is separable,
so we have a Galois extension. We obtain [Q(ξn) : Q] = φ(n), hence the Galois group
Gal(Q(ξn)/Q) =: G has φ(n) elements. We can explicitly determine the φ(n) elements
in G, since for every integer k < n coprime with n, by Theorem 1.15, there exists the
following automorphism:

γk : Q(ξn) → Q(ξn)

ξn 7→ (ξn)
k,

which is an element of G. Moreover we can consider the following map

η : Gal(Q(ξn)/Q) → (Z/nZ)∗ (3.2)
γk 7→ [k]n (3.3)

which is bijective and a homomorphism of groups since

η(γk ◦ γk′) = [k · k′]n = [k]n · [k′]n = ηγ(k) · ηγ(k′).

It follows that G ∼= (Z/nZ)∗.

Example 3.7. Let ξ = e
2πi
5 be a primitive 5-th root of unity and set E = Q[ξ]. The

minimal polynomial of ξ is φ(x) = x4 + x3 + x2 + x+ 1 and by Theorem 3.6 we have

Gal(E/Q) ∼= (Z/5Z)∗ ∼= Z/4Z.

The elements of the Galois group, in the notation above, are {id, γ2, γ3, γ4}, and a gen-
erator for this cyclic group is γ2 since 2 has order 4 in (Z/5Z)∗.

From Theorem 3.6 we know that for all n, (Z/nZ)∗ occurs as a Galois group over Q,
but this is not always a cyclic group.

Theorem 3.8. (Z/nZ)∗ is cyclic if and only if n = 2, n = 4, n = pα or n = 2 · pα where
p is an odd prime and α ∈ Z+.
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Proof. This was first proved by Gauss. The reader can find a complete proof in [19].

In particular we know how to realize every cyclic group with p − 1 elements where
p is an odd prime number. We want to extend this result to every positive integer. To
this aim, we will use a theorem due to Dirichlet.

Lemma 3.9. Let a, n be positive integers and let p be a prime such that p | Φa(n) and
p ∤ Φd(n) for every d proper divisor of a. Then p ≡ 1 mod a.

Proof. We first observe that p, n are coprime numbers. Indeed p | Φa(n) and since the
polynomial Φa(x) divides xa − 1 we have that p | na − 1. It follows that p ∤ n otherwise
we obtain the absurd p | na − 1 and p | na. We will now show that [n]p has order a in
Zp. The order of [n]p divides a because in Zp the following holds:

[n]ap − [1]p =
∏
d|a

Φd([n]p) = [0]p

where the second equality follows from the hypothesis p | Φa(n), so Φa([n]p) = [0]p. On
the other hand the order of [n]p is at least a since if d < a, d | a we have

[n]dp − [1]p =
∏
d′|d

Φd′([n]p)

with Φd′([n]p) ̸= [0]p because by hypothesis p ∤ Φd′(n) for every d′ proper divisor of a. So
the order of [n]p is exactly a, but since the order of an element divides the order of the
group, we obtain a | (p− 1).

Theorem 3.10 (Weak form of Dirichlet’s Theorem on arithmetic progressions).
For every integer a ̸= 0 there are infinite primes of the form an+1, where n is a positive
integer.

Proof. For a = 1 the statement is trivial, and without loss of generality we can prove it
for a > 0. We observe that if a > 1 we have to prove that there exist infinite primes p
such that p ≡ 1 modulo a. Let a > 1 and assume by contradiction that there is only a
finite number of primes p such that p ≡ 1 mod a, say p1, . . . , pq. For a fixed a, if there
exist a prime p and an integer n which satisfy the hypotheses of Lemma 3.9, we have
p ≡ 1 (mod a), but this is not enough because p could be one of the pi above. Let us
consider instead of a the integer A = a · p1 . . . pq. Now, if there exist a prime p and an
integer n such that A, n, p satisfy the hypotheses of Lemma 3.9, we can conclude p ≡ 1
(mod A) and in particular p ≡ 1 (mod a), but in this way we are sure p ̸= pi for every
i = 1, . . . , q. The polynomials ΦA(x) and Q(x) :=

∏
d|A,d ̸=AΦd(x) are coprime in C[x]

because they have no common roots, so they are coprime also in Q[x] and from Bezout’s
Theorem it follows that there exist U(x) and V (x) in Q[x] such that

1 = U(x) · ΦA(x) + V (x) ·Q(x).
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We can now choose n ∈ Z such that the polynomials nΦA(x) and nQ(x) have integer
coefficients. Moreover we can choose n such that ΦA(n) ̸= 0 and ΦA(n) ̸= ±1 because on
one side we have infinite n such that nΦA(x), nQ(x) ∈ Z[x], while ΦA(n) and ΦA(n)∓ 1
only have a finite number of roots. For such a number n we have

n = nU(x) · ΦA(x) + nV (x) ·Q(x)

and in particular
n = nU(n) · ΦA(n) + nV (n) ·Q(n). (3.4)

Since ΦA(n) ̸= 0 e ΦA(n) ̸= ±1, there exists a prime p which divides ΦA(n). By the same
argument used in Lemma 3.9, it follows that p and n are coprime numbers. Arguing by
contradiction, if p divides Q(n) we would have from Equation (3.4) that p | n which is
an absurd. It follows that p ∤ Q(n) and in particular it does not divide Φd(n) for any
d | A, d ̸= A, hence the triple A, n, p satisfies the hypotheses of Lemma 3.9. Observe
that there is no need to prove that there exists at least one of the prime p such that
p ≡ 1 mod a, because the argument above still works with A = a.

Theorem 3.11. Let n ≥ 2 be a positive integer, then there exists a Galois extension of
Q with Galois group isomorphic to the cyclic group Zn.

Proof. If n = 2 we can choose the splitting field of the polynomial x2 − 2, so that the
Galois group consists of τ :

√
2 7→ −

√
2 and id. Let us now assume n > 2. We can choose

a prime p such that p ≡ 1 (mod n) by Theorem 3.10. Let ξp be a primitive p-th root
of unity. We already know by Theorem 3.6 that Gal(Q(ξp)/Q) ∼= (Z/pZ)∗. Since p ≡ 1
(mod n) it follows that n | (p− 1), therefore p− 1 = kn for some integer k. The Galois
group G := Gal(Q(ξn)/Q) ∼= (Z/pZ)∗ ∼= Zp−1 contains a subgroup H isomorphic to Zk
(the one generated by [n]p−1) and by fundamental Theorem of Galois theory we have
H ∼= Gal(Q(ξp)/Q(ξp)

H). Since cyclic groups are abelian, H is a normal subgroup of G
and by Theorems 1.13 and 1.14 we have that Q ⊆ Q(ξp)

H =: E is a Galois extension.
Moreover we have:

Gal(E/Q) ∼=
Gal(Q(ξp)/Q)

Gal(Q(ξp)/E)
∼=

Zp−1

Zk
∼= Zn.

Example 3.12. We can realize Z6 as a Galois group over Q using p = 13. Indeed, if ξ13
is a primitive 13th root of unity, we have Gal(Q(ξ13)/Q) ∼= Z12 and since 12 = 6 · 2 it
follows that

Gal(E/Q) ∼= Z6

where E = Q(ξ13)
Z2 .

12



Example 3.13. The Galois group of the polynomial f = x4 + 5x2 + 5 over Q is cyclic
of order 4. First we note that f is irreducible by Eisenstein criterion with p = 5. One
can prove that its roots are:

α1,2 =

(
−5±

√
5

2

) 1
2

α3,4 = −α1,2 ;

moreover we have:
α1 · α2 =

√
5 = 2α2

1 + 5,

so it follows that:

α2 = 2α1 + 5 · (α1)
−1 ∈ Q[α1],

α3 = −α1 ∈ Q[α1],

α4 = −α2 ∈ Q[α1]

and we deduce that Q[α1] is the splitting field of f , which is a separable polynomial of
degree 4. Hence Gal(f) is isomorphic to a subgroup of S4 of order 4, since Q ⊂ Q[α1] is
a Galois extension, so it is either the Klein group or the cyclic group Z4. By Theorem
1.15 there exists s ∈ Gal(f) such that s(α1) = α2. Then we have

s(
√
5) = s(2α2

1 + 5) = 2 · s(α1)
2 + 5 = 2α2

2 + 5 = −
√
5

then

s(α2) = s

(√
5

α1

)
=

−
√
5

α2

= −α1 = α3

s(α3) = s(−α1) = −α2 = α4.

Hence the order of s is 4 and Gal(f) ∼= Z4.

3.3 Abelian groups
Theorem 3.14 (Chinese remainder Theorem). Let n1, . . . , nk be positive integer,
ni > 1 ∀ i, such that (ni, nj) = 1 ∀ i ̸= j and let a1, . . . , ak ∈ Z. Then the following
system of congruence 

x ≡ a1 (mod n1)
...
x ≡ ak (mod nk)

(3.5)

has one and only one solution S modulo N = n1 · . . . · nk.
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Proof. We set N = n1 · . . . · nk and for all i = 1, . . . , k we denote Ni =
N
ni

. Then we
have a solution of system (3.5) given by S = a1N1N

−1
1 + . . . + akNkN

−1
k , where N−1

i is
the inverse of Ni modulo ni (we know it exists because Ni and ni are coprime numbers
by construction). Moreover S is the only solution modulo N , because if S ′ is another
solution of system (3.5) we have S ′ ≡ S (mod n1), . . . , S ′ ≡ S (mod nk) and since ni are
coprime numbers, we obtain S ′ ≡ S (mod N).

Corollary 3.15. In the notation of Theorem 3.14, ZN is in one-to-one correspondence
with Zn1 × . . .× Znk

:

η : ZN → Zn1 × . . .× Znk

[a]N 7→ ([a]n1 , . . . , [a]nk
)

Moreover, the restriction of the map η from Z∗
N to Z∗

n1
× . . .× Z∗

nk
is also bijective.

Proof. The map η is bijective thanks to Theorem 3.14. We will now prove the second
part of the corollary for k = 2, and N = nm. Consider [a]N ∈ Z∗

N , thus (a, nm) = 1
and in particular (a, n) = 1 = (a,m). It follows that ([a]n, [a]m) ∈ Z∗

n × Z∗
m, hence the

restriction of the map η is well defined. On the other hand, since η is bijective, taken
([a]n, [b]m) ∈ Z∗

n × Z∗
m, there exists [c]N ∈ ZN such that [c]n = [a]n and [c]m = [b]m, but

we have to show that [c]N ∈ Z∗
N . Indeed, since c = kn+a for some k ∈ Z, it follows that

(c, n) = (a, n) = 1 and for the same reason (c,m) = 1. Hence (c, nm) = (c,N) = 1 and
[c]N ∈ Z∗

N . The general case is analogous.

Definition 3.16 (Finitely generated group). An abelian group G is said to be finitely
generated if there exist g1, . . . , gn ∈ G such that every element g ∈ G can be written as
a linear combination of them

g = a1g1 + . . .+ angn

with ai integer coefficients.

Theorem 3.17 (Classification of finitely generated groups). Let M be a finitely
generated abelian group. Then either

M ∼= Zk , k ≥ 0

or

M ∼= Zk ⊕
r⊕
i=1

Zdi

with k ≥ 0, for some integers di such that if i < j, di | dj.

Note that Zdi stands for Z/diZ.

14



Proof. The reader can find a complete proof of the statement in [5].

Corollary 3.18. In the notation of Theorem 3.17, if M is a finite abelian group, it
follows that

M ∼=
r⊕
i=1

Zdi

for some integers di such that if i < j, di | dj.

Proof. M is finite, hence k = 0.

Theorem 3.19 (Kronecker-Weber). Let A be a finite abelian group. Then
A ∼= Gal(E/Q) where E is a subfield of Q(ω) for some s-th primitive root of unity ω.

Proof. If A = {id} we can take E = Q. Otherwise, since A is an abelian finite group, by
Corollary 3.18 we have

A ∼= Zd1 × . . .× Zdt
for some di ≥ 2 where di | dj if i < j. From Dirichlet’s Theorem 3.10 we can take
p1, . . . , pt different primes such that pi ≡ 1 (mod di) for all i = 1, . . . , t. Indeed, even if
some of the di’s can be the same, the Theorem guarantees infinitely many primes with
that property. Then for all i = 1, . . . , t there exists an integer mi such that pi−1 = mi ·di.
We define s = p1 · . . . · pt. Now, we notice that

ϕ : Zpi−1 → Zdi
[a]pi−1 7→ [a]di

is a surjective homomorphism, indeed:

• For [a]pi−1, [b]pi−1 ∈ Zpi−1 we have:

ϕ([a]pi−1+[b]pi−1) = ϕ([a+ b]pi−1) = [a+ b]di = [a]di +[b]di = ϕ([a]pi−1)+ϕ([b]pi−1).

• For every [c]di ∈ Zdi we can pick [d]pi−1 ∈ Zpi−1 such that ϕ([d]pi−1) = [c]di since
pi − 1 ≡ 0 (mod di).

Taking products, we obtain a surjective homomorphism:

t∏
i=1

Zpi−1 → A.

Moreover, since the primes pi’s are all different, by the Chinese remainder Theorem
and Corollary 3.15 we have that

Z∗
s
∼= Z∗

p1
× . . .× Z∗

pt
∼= Zp1−1 × . . .× Zpt−1

15



and thus we have the surjective homomorphism:

Φ : Z∗
s → A.

We can display this first part of the proof as follows:

Z∗
s

A

Z∗
p1
× . . .× Z∗

pt

Zp1−1 × . . .× Zpt−1

Zd1 × . . .× Zdt

Φ

Let us denote by H the kernel of Φ, then we know from group theory that:

A ∼= Z∗
s/H.

Hence we only need to find a Galois extension with Galois group isomorphic to Z∗
s/H. We

already know from Theorem 3.6 that if ξs is a primitive s-th root of unity, then Q ⊆ Q(ξs)
is a Galois extension with Galois group isomorphic to Z∗

s. By the fundamental Theorem
of Galois theory, since H is a subgroup of Z∗

s, we can deduce that it corresponds to the
field subextension Q(ξs)

H such that:

Gal(Q(ξs)/Q(ξs)
H) = H.

Since Z∗
s is abelian, H is a normal subgroup and by Proposition 1.12 we have the Galois

extension Q ⊆ Q(ξs)
H with Galois group:

Gal(Q(ξs)
H/Q) ∼=

Gal(Q(ξs)/Q)

Gal(Q(ξs)/Q(ξs)H)
∼=

Z∗
s

H
∼= A (see Theorem 1.13).

We can display this last part of the proof as follows:

Q

Q(ξs)
H

Q(ξs)
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Another way to find the subgroup H is to consider for all i = 1, . . . , t the cyclic
subgroup of Zpi−1 generated by [di]pi−1:

Hi =< [di]pi−1 >⊆ Zpi−1

which has order mi. We now consider the subgroup H = H1 × . . . × Ht of the Galois
group Gal(Q(ξs)/Q). H is a normal subgroup because we are in an abelian context. Let
E be the field of elements fixed by H, then by Theorem 1.14 it follows that Q ⊆ E is a
Galois extension such that

Gal(E/Q) ∼=
Zp1−1 × . . .× Zpt−1

H1 × . . .×Ht

∼= Zd1 × . . .× Zdt ∼= A.
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Chapter 4

Symmetric groups

4.1 Class Equation
Definition 4.1. For a group G we define the center of the group G as the set of elements
that commute with all of the elements of G:

Z(G) = {z ∈ G : gz = zg ∀g ∈ G}

and for x ∈ G the centralizer of x in G:

CG(x) = {g ∈ G : gx = xg} .

One can define the following equivalence relation on G:

x ∼ y ⇐⇒ ∃ g ∈ G s.t. x = g−1yg.

Proposition 4.2 (Class Equation). For a finite group G we have:

|G| = |Z(G)|+
k∑
j=1

[G : CG(xj)]

where the sum is extended to elements that are not in the center of G and belong to
different equivalence classes.

Proof. Since conjugacy is an equivalence relation on G, we have that G is partitioned by
the set of conjugacy classes. Thus:

|G| =
∑
i

|Oxi |

where Oxi is the conjugacy class of an element xi and the sum runs over different con-
jugacy classes. Moreover, |Oxi | = |G|/|CG(xi)|. In particular, |Oxi | = 1 if and only if
xi ∈ Z(G). The result follows.
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We will first study the realization of Sp as a Galois group over Q for a prime p. In
order to do this, we will use the following result due to Cauchy.

Theorem 4.3 (Cauchy). Let G be a finite group of order n > 1 and let p be a prime
that divides n. Then there exists an element a ∈ G of order p.

Proof. Let G be a group with identity element e. If n = p is a prime, every element
a ∈ G , a ̸= e has order p since the order of an element divides the order of the group.
We will prove the general case by induction on |G|, the base case being n = p.
Let us first suppose that G is abelian. Fix a ∈ G, a ̸= e, and let H =< a > be the cyclic
group generated by a. If p | |H| the element a

|H|
p has order p. Otherwise, if p ∤ |H| it

must be p | |G/H| since |G| = |H| · |G/H| and by hypothesis p | |G|. Since |G/H| < |G|
we know by the induction argument that there exists xH ∈ G/H of order p:

(xH)p = H ⇒ xpH = H ⇒ xp ∈ H.

If the order of x is m we have (xH)m = H. It follows that p | m and thus the element
x

m
p has order p.

Now suppose that G is not abelian. Then G ̸= Z(G) and by the Class Equation:

|G| = |Z(G)|+
∑
j

[G : CG(xj)].

If p | |Z(G)| we conclude using the previous case since Z(G) is an abelian subgroup
of G. If p ∤ |Z(G)| then there exists j such that p ∤ [G : CG(xj)]. Indeed, arguing by
contradiction, if p divides all of this terms, we would have that p divides |Z(G)| which
is an absurd. For such a fixed j, since |G| = [G : CG(xj)] · |CG(xj)| and p | |G| we
have p | |CG(xj)|. On the other hand, |CG(xj)| < |G| and we conclude by the inductive
hypothesis.

Theorem 4.4. Let f ∈ Q[t] be an irreducible polynomial of degree a prime p. Suppose
f splits in C with exactly 2 non real roots z, w. Then z = w and GalQ(f) ∼= Sp.

Proof. Since the polynomial f is irreducible on Q, which is a perfect field, we know that
f is separable. It follows by Theorem 1.10 that |GalQ(f)| = [L : Q], where L is the
splitting field of f over Q. Let α be a root of f , then [Q[α] : Q] = p. On the other hand
Q ⊆ Q[α] ⊆ L and from the Tower Lemma it follows that p | [L : Q] = |GalQ(f)|. We
know from Cauchy’s Theorem 4.3 that there exists an element with order p in GalQ(f).
Moreover the group GalQ(f) can be seen as a subgroup of Sp by Proposition 1.9, and
without loss of generality we can take the cycle (1 2 3 . . . p) as the element of order p.
The complex conjugation

τ : L → L
z 7→ z
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is an element of GalQ(f). The map τ exchanges the two non real roots of f , hence
it corresponds to a transposition (i j) in the identification with a subgroup of Sp. We
can now consider the p-cycle starting from the i element, obtaining (i k1 k2 . . . kp−1).
Renumbering the roots of f in a way such that i = 1 we have the cycle c = (1 k̃1 . . . k̃p−1)
and the transposition (1 j) = (1 k̃l) for some l. On the other hand there exists a power
raise of c of the form (1 k̃l . . . k̃d), indeed the length of the cycle is a prime p, hence its
power raises can only be either the identity, either a cycle of length p. Renumbering the
roots, we obtain that the following elements

(1 2) (1 2 . . . p)

are in GalQ(f). We know that these two cycles generate Sp.

Example 4.5. The polynomial f = x5 − 6x+ 3 ∈ Q[x] is irreducible and it has exactly
2 non real roots. Indeed we compute

f ′(x) = 5x4 − 6,

and the real roots of f ′(x) = 0 are x1,2 = ± 4

√
6
5
. Moreover we have

f ′(x) > 0 ⇐⇒ 5x4 − 6 > 0 ⇐⇒ x2 < −
√

6

5
∨ x2 >

√
6

5

⇐⇒ x < − 4

√
6

5
∨ x >

4

√
6

5
.

Since
lim

x→−∞
f(x) = −∞ and lim

x→+∞
f(x) = +∞,

f has local maximum and local minimum respectively in − 4

√
6
5

and + 4

√
6
5
, with relative

values

f

(
− 4

√
6

5

)
=

(
− 4

√
6

5

)5

− 6

(
− 4

√
6

5

)
+ 3 = −6

5
4

√
6

5
+ 6

4

√
6

5
+ 3 > 0

f

(
4

√
6

5

)
=

(
4

√
6

5

)5

− 6

(
4

√
6

5

)
+ 3 = −24

5
4

√
6

5
+ 3 < 0.

Hence the polynomial has plot as in Figure 4.1 and GalQ(f) ∼= S5.

Example 4.6. The reader shouldn’t think that in order to have Galois group Sp, a
polynomial must have exactly two non real roots. For example, the polynomial x3−4x+1
has Galois group S3 (see Example 5.9) but it has all real roots: computing its first
derivative one can see that f has graph on R as in Figure 4.2.
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Figure 4.1: x5 − 6x+ 3
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Figure 4.2: x3 − 4x+ 1
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4.2 Transitive group action
Definition 4.7 (Transitive group action). Let G be a group with an action on a non
trivial set X. The action is said to be transitive if

∀ x, y ∈ X ∃ g ∈ G s.t. g · x = y.

We will say that the group G is transitive on X.

Definition 4.8. A subgroup G of Sn is said to be transitive if for every couple of indices
i, j ∈ {1, 2, . . . , n} there exists an element σ ∈ G such that σ(i) = j; in other words, the
action of G on {1, 2, . . . , n}

G× {1, 2, . . . , n} −→ {1, 2, . . . , n}
(σ, i) 7−→ σ(i)

is transitive.

Proposition 4.9. Let K be a field and let f ∈ K[x] be a separable polynomial and
G = GalK(f). G acts transitively on the roots of f if and only if f is irreducible in K[x].

Proof. If f has degree n, f =
∑n

i=0 aix
i, we already know that G can be viewed as a

subgroup of Sn. That is because the Galois group G permutes the roots of f . Indeed, if
α is a root of f in a splitting field L of f and σ ∈ G we have:

f(σ(α)) =
n∑
i=0

aiσ(α)
i =

n∑
i=0

σ(aiα
i) = σ(f(α)) = 0

since σ is a field automorphism of L and fixes the elements in K. So the elements of
G map roots of f to roots of f . Suppose f is an irreducible polynomial and take α,
α′ ∈ L different roots of f . In this case using Theorem 1.15 we know that there exists a
field automorphism of L that fixes K and maps α 7→ α′, hence G is transitive. On the
other hand, suppose G is transitive and suppose by contradiction that f is a reducible
polynomial, f = f1 · . . . · fk, where each fi is irreducible of degree at least 1 and k > 1.
Here we obtain the absurd that the action can not be transitive because each root of
fi can only map to another root of fi. In other words, let the roots of f be α1, . . . , αn.
Since f1 is a non constant factor of f , we can find i such that f1(αi) = 0. Now pick
any j ∈ {1, . . . , n}. By our transitivity assumption, there exists σ ∈ GalK(f) such that
σ(αi) = αj. Since f1 has coefficients in K, we know that σ sends roots of f1 in roots of
f1, hence f1(αj) = 0. Since j was arbitrary and α1, . . . , αn are distinct, it follows that f1
has at least n roots, which implies that deg(f1) ≥ n, hence f = f1.
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Definition 4.10 (Double transitive action). Let G be a group with an action on a
non trivial set X. The action is said to be double transitive if

∀ x, x, y, y′ ∈ X with x ̸= x′ and y ̸= y′ ∃ g ∈ G s.t. gx = y and gx′ = y′.

If the action is clear, we will simply say that the group G is double transitive.

Definition 4.11 (Stabilizer). Given an action of a group G on a set X, for every
element x ∈ X the stabilizer subgroup of x (also called the isotropy group of x) is the set
of all elements in G that fix x:

StabG(x) = {g ∈ G | gx = x} .

Lemma 4.12. Let G be a group with transitive action on a non trivial set X. Taken
x, y ∈ X we have

StabG(y) = g · StabG(x) · g−1

where g ∈ G verifies gx = y.

Proof. If h ∈ StabG(y) we have hy = y. Since h = gg−1hgg−1 we have to show that
g−1hg is an element of StabG(x):

(g−1hg)x = (g−1h)y = g−1y = x.

Viceversa, let z ∈ StabG(x) so that zx = x and gzg−1 is an element of g · StabG(x) · g−1.
We have to show that this element fixes y. Indeed, we have:

(gzg−1)y = (gz)x = gx = y.

Proposition 4.13. Let G be a group acting on a non trivial set X and let x ∈ X. The
action is double transitive on X if and only if the action is transitive on X and StabG(x)
is transitive on X \ {x}.

Proof. The case |X| = 2 is trivially true since transitivity and double transitivity are
the same conditions. Suppose |X| > 2. If G is double transitive on X, then for every
x, y, y′ ∈ X, with x ̸= y, x ̸= y′ there exists g ∈ G such that

gx = x and gy = y′

hence G is transitive on X and StabG(x) is double transitive on X \ {x}.
Suppose now that G is transitive on X and StabG(x) is transitive on X \ {x}, where x
is an arbitrary element of X. We will first prove that for every element y ∈ X it also
holds that StabG(y) is transitive on X \ {y}. Let y ∈ X. By hypothesis there exists an
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element g ∈ G such that y = gx. By Lemma 4.12 we have StabG(y) = g StabG(x)g
−1.

Take z1, z2 ∈ X \ {y} ; then we have that g−1z1, g
−1z2 ̸= g−1y = x. By hypothesis there

exists h ∈ StabG(x) such that hg−1z1 = g−1z2, hence

ghg−1z1 = z2.

Since ghg−1 ∈ StabG(y), we deduce that StabG(y) is transitive on X \ {y} for every
y ∈ X. Consider now x1, x2, y1, y2 ∈ X with x1 ̸= x2 and y1 ̸= y2. As above, there exist
g ∈ StabG(x1) and g′ ∈ StabG(y2) such that gx2 = y2 and g′x1 = y1. Then

(g′ ◦ g)x1 = g′x1 = y1 and (g′ ◦ g)x2 = g′y2 = y2.

This proves the thesis if x1 ̸= y2. On the other hand, if x1 = y2, one can take z ∈ X, z ̸=
x1, y1 and k ∈ StabG(x1), k′ ∈ StabG(z) and k′′ ∈ StabG(y1) such that kx2 = z, k′x1 = y1
e k′′z = y2. We have:

k′′k′k(x1) = k′′k′(x1) = k′′(y1) = y1 and k′′k′k(x2) = k′′k′(z) = k′′(z) = y2.

Lemma 4.14. Let (i1 i2 . . . ik) be a k-cycle of Sn and σ ∈ Sn. Then

σ(i1 i2 . . . ik)σ
−1 = (σ(i1) σ(i2) . . . σ(ik)).

Proof. Let us set τ = σ(i1 i2 . . . ik)σ
−1 and µ = (σ(i1) σ(i2) . . . σ(ik)). We prove

that τ and µ have the same image for all indices. Let j ∈ 1, . . . , n be an index. Then
if j = σ(ir) for some r, 1 ≤ r ≤ k − 1, then:

τ(j) = σ(ir+1) µ(j) = σ(ir+1);

if j = σ(ik) then:
τ(j) = σ(i1) µ(j) = σ(i1);

if j /∈ {σ(i1) σ(i2) . . . σ(ik)} then:

τ(j) = j µ(j) = j.

Proposition 4.15. Let p be a prime and G a transitive subgroup of Sp with a transpo-
sition. Then G = Sp.

Proof. Let i, j ∈ {1, 2, . . . , p}.
We define the following equivalence relation on {1, 2, . . . , p}:

i ∼ j ⇔ i = j or (i j) ∈ G.

25



Due to the transitivity of G we have that if i ∼ j and j ∼ k with i ̸= j ̸= k ̸= i then

(i j)(j k)(i j) = (i k) ∈ G

hence i ∼ k. We will denote by [i] the equivalence class of i. Taken (i j) ∈ G and σ ∈ G
we have by Lemma 4.14 that

(σ(i) σ(j)) = σ(i j)σ−1 ∈ G

hence σ([i]) = [σ(i)]. Since G is transitive, every equivalence class has the same cardinal-
ity. Indeed for every i, j ∈ {1, 2, . . . , p} such that [i] ̸= [j] there exists σ ∈ G such that
σ(i) = j, so σ([i]) = [σ(i)] = [j] and it follows that |[i]| = |σ([i])| = |[j]|. On the other
hand |([i])| | p and |([i])| ̸= 1 because G has at least one transposition by hypothesis.
It follows that there is only one equivalence class and so all the transpositions are in G.
Since transpositions generate Sp we have G = Sp.

Proposition 4.16. Let n > 1 be a positive integer and G ≤ Sn a double transitive
subgroup with a transposition. Then G = Sn.

Proof. By hypothesis there exist i, j ∈ {1, 2, . . . , n} such that the transposition (i j) ∈ G.
Since G is double transitive, it follows that for every couple of elements k, l ∈ {1, 2, . . . , n}
there exists g ∈ G such that g(i) = k and g(j) = l. Then

g(i j)g−1 = (g(i) g(j)) = (k l) ∈ G

hence G contains all the transpositions, which generate Sn.

In the next paragraphs we will use the reduction of a polynomial modulo a prime p,
formally described by the following map:

Z[x] → Zp[x]
f(x) 7→ f(x)

where f(x) is the polynomial f(x) whose coefficients have been reduced modulo p. We
will denote the finite field Zp by Fp.

Example 4.17. The reduction modulo 5 of f(x) = 7x6 + 2x4 + 13x2 + 9x+ 1 is
f(x) = 2x6 + 2x4 + 3x2 + 4x+ 1.

4.3 Dedekind’s Theorem
Lemma 4.18. For every p prime and n positive integer, there is a unique field of cardi-
nality pn, up to isomorphism.
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Proof. Let us set q = pn. We define the polynomial f = xq − x in Fp[x] and let K be its
splitting field, where f has different roots because f ′ = −1 ̸= 0. Let A = {α1, . . . , αq} be
the set of roots of f . It holds that β ∈ A⇔ βq = β. Moreover we observe that 0, 1 ∈ A
and for all β, γ ∈ A 

β · γ ∈ A
γ−1 ∈ A (γ ̸= 0)
γ + β ∈ A

where the last property follows from Frobenius endomorphism. Thus A is a field and
A = K. Moreover it is unique (up to isomorphism) because the splitting field is so.

Corollary 4.19. For every prime p and positive integer n there exists an irreducible
polynomial of degree n in Fp[x].

Proof. If we denote by GF(pn) the only field of cardinality pn, we have GF(pn) = Zp[α]
for some α ∈ GF(pn). The minimal polynomial of α meets the requirements.

Lemma 4.20. Let p be a prime and n ∈ Z+. Set q = pn and let L = GF(q) be the finite
field with q elements. Then Gal(L/Fp) is cyclic.

Proof. We know that L = Fp(α) for some α ∈ L with minimal polynomial f(x) ∈
Fp(x) of degree n. Since finite fields are perfect, Fp ⊂ L is a Galois extension, hence
|Gal(L/Fp)| = n. Let us set G = Gal(L/Fp) and consider the Frobenius endomorphism

Ψ : L → L
a 7→ ap.

Since Ψ fixes Fp it follows that Ψ ∈ G. Moreover, ψk for 0 < k < n are all different non
trivial elements of G. We conclude

G =< Ψ > .

Lemma 4.21. Let f(x) ∈ Z[x] be a monic polynomial of degree n. Let p be a prime. Let
f(x) ∈ Fp(x) be the polynomial obtained by reducing the coefficients modulo p. Assume
that both f , f have no multiple roots. Then both GalQ(f) and GalFp(f) are isomorphic
to subgroups of Sn. Moreover, denote these subgroups as respectively G and Gp, then
Gp ⊆ G.

Proof. For the proof we refer to [9].

Theorem 4.22 (Dedekind). Let f ∈ Z[x], deg(f) = n, be a polynomial without multiple
roots. Let p be a prime such that the reduction

f(x) = g1(x) . . . gh(x) ∈ Fp[x],
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does not have multiple roots and every gi is an irreducible factor of f in Fp[x]. Then the
subgroup of Sn isomorphic to GalQ(f) contains a permutation σ whose cycle decomposi-
tion

σ = γ1 . . . γh

is such that l(γi) = deg(gi), where l(γi) is the length of the cycle.

Proof. We know by Lemma 4.20 that Gp = GalFp(f) is cyclic and therefore also the
subgroup of Sn isomorphic to it is cyclic. Hence there exists a permutation σ that
generates Gp. Let us consider σ as product of disjoint cycles

σ = (i1,1 i1,2 . . . i1,m1)(i2,1 i2,2 . . . i2,m2) · · · (ik,1 ik,2 . . . ik,mk
).

SinceGp maps roots of an irreducible polynomial in Fp[x] in roots of the same polynomial,
it follows that the numbers m1, m2, . . ., mk are the numbers of roots of respectively
g1, . . ., gh, so k = h. Moreover, since gi does not have multiple roots for all i, we have
that m1, m2, . . ., mk are the degrees of g1, . . ., gh. By Lemma 4.21 it follows that

σ ∈ Gp ⊆ GalQ(f).

Example 4.23. Our goal is to prove that the polynomial f = x4+12x3+14x2+14x+34 ∈
Z[x] has Galois group S4. The polynomial f is irreducible by Eisenstein’s criterion with
p = 2, hence it is separable because Q is a perfect field. Moreover we compute

f = x4 + 2x2 + 2x+ 1 (mod 3) = (x− 1)(x3 + x2 + 2) (mod 3),

f = x4 + 2x3 + 4x2 + 4x+ 4 (mod 5) = (x− 1)(x− 2)(x2 + 2) (mod 5)

where the factors are irreducible respectively in F3 and F5 which are perfect fields, hence
they have no multiple roots. By Dedekind’s Theorem 4.22, GalQ(f) has a cycle of length
2 and a cycle of length 3 (indeed the factors of degree 1 correspond to cycles of length
1, hence the identity permutation). We define G = GalQ(f) and we number the roots
of f with {1, 2, 3, 4}. Without loss of generality, we consider the 3-cycle to be (1 2 3).
The subgroup StabG(4) acts transitively on {1, 2, 3} because (1 2 3) ∈ StabG(4) and
this cycle and its powers acts transitively. We already know from Proposition 4.9 that G
is transitive; then G is double transitive because of Proposition 4.13. Since G is double
transitive and contains a transposition (the 2-cycle), it follows from Proposition 4.16
that G ∼= S4.

Lemma 4.24. Let f ∈ Z[x] be a primitive polynomial. If there exists a prime p such
that p does not divide the leading coefficient of f and the reduction of f modulo p is
irreducible in Zp[x] then f is also irreducible in Z[x].
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Proof. Let Φp : Z[x] → Zp[x] the map of reduction modulo p. Arguing by contradiction,
if f is (non trivially) reducible in Z[x] we have:

f = g · h with 0 < deg(g) < deg(f) and 0 < deg(h) < deg(f)

and since p does not divide the leading coefficient of f , it follows that p does not divide
the leading coefficients of g and h neither. Since Φp is an homomorphism, we have:

Φp(f) = Φp(g) · Φp(h)

where

0 < deg(Φp(g)) < deg(Φp(f)) and 0 < deg(Φp(h)) < deg(Φp(f)),

indeed the degrees of the reduced polynomials are the same as the original ones because p
does not divide their leading coefficients. We obtain an absurd, since Φp(f) is irreducible
in Zp[x].

Example 4.25. Consider the polynomial f(x) = 4x4+6x3+x2−3x−4 and take p = 3.
We have that 3 ∤ 4 and the reduction of f modulo 3 is

f(x) = x4 + x2 + 2 ∈ Z3[x],

which has no roots in Z3. Moreover, it can not be factorized as 2 polynomials of degree
2, since the only irreducible polynomials of degree 2 in Z3[x] are x2 + 1, x2 + x+ 2 and
x2 + 2x + 2. Hence, f is irreducible in Z3[x] and by Lemma 4.24 it follows that f is
irreducible in Z[x].

4.4 Realization of Sn
We are now ready for the following general result:

Theorem 4.26. For every n ∈ Z, n > 2 , there exists a polynomial f(x) ∈ Q[x] such
that GalQ(f) ∼= Sn.

Proof. Let n be a positive integer greater than 2. We know from Corollary 4.19 that for
every prime p and for every positive integer m there exists an irreducible polynomial of
degree m in Fp[x]. Hence we are able to choose 3 polynomials of degree n having the
following properties:

• f1(x) ∈ F2[x] irreducible,

• f2(x) ∈ F3[x] with an irreducible factor of degree n− 1 and a factor of degree 1,
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• f3(x) ∈ F5[x] with an irreducible factor of degree 2 and, if n is even, two factors of
degree n− 3 and 1 respectively, else if n is odd, one other factor of degree n− 2.

Let f ∈ Z[x] such that f ≡ f1 (mod 2), f ≡ f2 (mod 3) and f ≡ f3 (mod 5). This choice is
always possible because if we denote by f ′

1, f
′
2, f

′
3 the polynomials obtained by the change

of coefficients [αi] of f1, f2, f3 with coefficients αi ∈ Z, we can take f = 15f ′
1+10f ′

2+6f ′
3

as our polynomial. We observe that f is irreducible by Lemma 4.24 with p = 2, since
the leading coefficient of f is odd and the reduction of f modulo 2 corresponds to f1
which is irreducible in F2[x] by construction. It follows that f is also irreducible in Q[x]
by Gauss Lemma, hence its splitting field is a Galois extension of Q and its Galois group
acts transitively on the set of roots of f by Proposition 4.9. We notice that f2 and f3
have no multiple roots since finite fields are perfect (see Proposition 1.5). By Dedekind’s
Theorem, if n is even, GalQ(f) contains an (n − 1)-cycle and a permutation σ whose
cycle decomposition has a 2-cycle and an (n − 3)-cycle; on the other hand, if n is odd,
GalQ(f) contains an (n − 1)-cycle and a permutation τ whose cycle decomposition has
a 2-cycle and an (n− 2)-cycle. Both cases have an (n− 1)-cycle, thus GalQ(f) is double
transitive (same reason as in Example 4.23) because it is transitive and we consider
StabG(x) where x is the only element missing in the (n − 1)-cycle. Furthermore, if n
is even, σn−3 is a transposition, and if n is odd, τn−2 is also a transposition. In both
cases GalQ(f) is double transitive and contains a transposition, hence GalQ(f) ∼= Sn by
Proposition 4.16.

Example 4.27. Take the polynomial f(t) = t4 + 16t3 − 4t2 + 3t− 11 ∈ Z[t]. We have:

• f(t) ≡ t4 + t+ 1 (mod 2)

• f(t) ≡ t4 + t3 − t2 + 1 ≡ (t3 − t+ 1)(t+ 1) (mod 3)

• f(t) ≡ t4 + t3 + t2 − 2t− 1 ≡ (t2 − 2)(t+ 2)(t− 1) (mod 5)

These factors satisfy the properties required in the proof of Theorem 4.26, hence we
conclude GalQ(f) ∼= S4.

4.5 Consideration
Since Sn occurs as a Galois group over Q, and every finite group occurs as a subgroup of
some Sn (see Cayley’s Theorem 2.7), it follows that every finite group occurs as a Galois
group over some finite extension of Q, but does every finite group occur as a Galois group
over Q itself? This problem is still unsolved.

Example 4.28. Most specializations of the universal polynomial of degree n over Q have
Sn as their Galois group. This follows from the Hilbert Irreducibility Theorem, which is
discussed in [6]. For example, one can prove that the Galois group of xn − x− 1 ∈ Q[x]
is Sn for all n ≥ 2 (see [18]).
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Example 4.29. Consider the polynomial pn(x) = 1+x+ 1
2
x2+ . . .+ 1

n!
xn. In 1930 Schur

proved that pn has Galois group An if n ≡ 0 mod 4, otherwise its Galois group is Sn.

If a finite group G occurs as a Galois group over Q, then for all normal subgroups
H of G, the quotient group G/H occurs as a Galois group over Q. Indeed, if we set
G = Gal(L/Q) for some finite Galois extension L ⊂ Q, using the functions φ and ψ of
the fundamental Theorem of Galois theory, we have

H
ψ−→ LH φ−→ Gal(L/LH).

Since H ∼= Gal(L/LH) is a normal subgroup of G, we have

Gal(LH/Q) ∼=
Gal(L/Q)

Gal(L/LH)
∼= G/H,

hence Q ⊂ LH is the desired extension. Since we know we can realize cyclic groups,
abelian groups, (Z/nZ)∗ and Sn, then we know we can realize every quotient group of
these groups.

Unfortunately, the only normal subgroup of Sn for n ≥ 5 is An and the quotient
group Sn/An is the group of order 2. If we consider the case n = 4, also the Klein group
is a normal subgroup of S4, hence we can realize S4/V4 ∼= S3 as a Galois group, but we
already knew it.
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Chapter 5

Examples

We want now to go a bit further in the realization of some groups as Galois groups. In
order to understand the vastity of the inverse Galois problem, we will first remind a very
important result in group theory.

Definition 5.1. A nontrivial group G is said to be simple if its only normal subgroups
are the trivial group and the group itself.

Theorem 5.2 (Classification of the finite simple groups). Every finite simple group
belongs to one of the following classes:

• cyclic groups of prime order;

• alternating groups of degree at least 5;

• Lie groups;

• sporadic groups;

• the Tits group;

where the first three classes have infinite elements.

Proof. After years of studies from many authors, the proof was completed and announced
in 2004 by Aschbacher in [11].

5.1 The groups A3 and S3

Definition 5.3. In Q[x1, . . . , xn] we define:
√
∆ =

∏
i<j

(xi − xj).
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Definition 5.4. For a polynomial f with roots {α1, . . . , αn} we define:√
∆(f) =

∏
i<j

(αi − αj).

Lemma 5.5. For a permutation σ ∈ Sn it holds that

σ(
√
∆) = sgn(σ) ·

√
∆.

Proof. Since every permutation is product of transpositions, we prove that if τ = (i j)
is a transposition, then

τ(
√
∆) = −

√
∆.

Assume i < j and observe that there is ϵ ∈ {+1,−1} such that
√
∆ = ϵ(xi − xj)

∏
k ̸=i,j

(xi − xk)(xj − xk)
∏

l,m̸=i,j l<m

(xl − xm). (5.1)

Indeed the factors appearing in the right-hand side are, up to sign, the factors of
√
∆.

For example, when k ̸= i, j, then

xi − xk =

{
xi − xk, i < k,
−(xk − xi), k < i.

Combining all of these signs gives ϵ = ±1. Since the transposition τ takes
(xi − xk)(xj − xk) to (xj − xk)(xi − xk) and does not affect (xl − xm) for l,m ̸= i, j,
it follows by Equation (5.1) that τ(

√
∆) = −

√
∆. Let us write σ ∈ Sn as product of

transpositions σ = τ1 · · · τs. Then

σ(
√
∆) = (τ1 · · · τs)(

√
∆) = (−1)s

√
∆ = sgn(σ) ·

√
∆.

Proposition 5.6. Let f(x) ∈ Q[x] be a separable polynomial of degree n and
let α1, . . . , αn be its different roots in the splitting field of f .

a) If σ ∈ Gal(f) corresponds to σ ∈ Sn in the identification of Gal(f) with a subgroup
of Sn, then

σ(
√
∆(f)) = sgn(σ) ·

√
∆(f).

b) The subgroup of Sn isomorphic to Gal(f) is contained in An if and only if√
∆(f) ∈ Q.
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Proof. Let L be the splitting field of f and consider ϕ the evaluation homomorphism

ϕ : Q[x1, . . . , xn] → L
a 7→ a ∀a ∈ Q,
xi 7→ αi.

Clearly
√
∆(f) = ϕ(

√
∆). Then

σ(
√

∆(f)) = σ

(∏
i<j

(αi − αj)

)
=
∏
i<j

(σ(αi)− σ(αj)) =
∏
i<j

(ασ(i) − ασ(j)) =

= ϕ

(∏
i<j

(xσ(i) − xσ(j))

)
= ϕ(σ(

∏
i<j

(xi − xj))) = ϕ(sgn(σ))(
√
∆) =

= sgn(σ)ϕ(
√
∆) = sgn(σ)

√
∆(f),

This proves the first part of the Proposition. We now observe that√
∆(f) ∈ Q ⇐⇒ σ(

√
∆(f)) =

√
∆(f) ∀ σ ∈ Gal(L/Q).

Using the first part of the Proposition we get

σ(
√
∆(f)) = sgn(σ) ·

√
∆(f).

Hence √
∆(f) ∈ Q ⇐⇒ sgn(σ) ·

√
∆(f) =

√
∆(f) ∀ σ ∈ Gal(L/Q).

Since f is separable,
√

∆(f) ̸= 0 and if we simplify it we get√
∆(f) ∈ Q ⇐⇒ sgn(σ) = 1 ∀ σ ∈ Gal(L/Q) ⇐⇒ Gal(L/Q) ⊆ An.

Example 5.7. Consider the following cubic polynomial

f(x) = x3 + ax2 + bx+ c ∈ Q[x]

and set x = y − a/3 so that it becomes

g(y) = y3 + py + q

where
p =

1

3
(3b− a2) q =

1

27
(2a3 − 9ab+ 27c).
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The splitting field for these two polynomials, f(x) and g(y), is the same since their roots
differ by the constant term a/3 ∈ Q. Moreover f and g have the same discriminant since
it only depends on the differences of roots. Let α, β, γ be the roots of g(y). We compute
its discriminant in terms of p and q. In order to do this we observe that

g(y) = (y − α)(y − β)(y − γ)

and if we differentiate

g′(y) = (y − α)(y − β) + (y − α)(y − γ) + (y − β)(y − γ).

Then

g′(α) = (α− β)(α− γ),

g′(β) = (β − α)(β − γ),

g′(γ) = (γ − α)(γ − β).

Therefore
∆(g) = (α− β)2(α− γ)2(β − γ)2 = −g′(α)g′(β)g′(γ).

On the other hand, it results that g′(y) = 3y2 + p, hence we get

−∆(g) = (3α2 + p)(3β2 + p)(3γ2 + p) =

= 27α2β2γ2 + 9p(α2β2 + α2γ2 + β2γ2) + 3p2(α2 + β2 + γ2) + p3.

Note that if we consider the elementary symmetric functions in α, β, γ we obtain
σ1 = 0, σ2 = p, σ3 = −q. The expression above for −∆ is symmetric in α, β, γ and as
we did in Examples 2.9, 2.10, 2.11, we obtain

−∆ = 27(−q)2 + 9p(p2) + 3p2(−2p) + p3

hence
∆ = −4p3 − 27q2

and expressing it in terms of a, b, c we get

∆ = a2b2 − 4b3 − 4a3c− 27c2 + 18abc,

in other words we have an expression to determine ∆ through the coefficients of the
polynomial.

We analyze the Galois group of a cubic polynomial and it turns out that we can
determine it by computing ∆ with the expression above.

If the cubic f is reducible and splits in 3 linear factors, then its Galois group is trivial;
while if f is reducible but only splits into a linear factor and an irreducible quadratic,
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then we obtain a Galois group of order 2. Consider now the case f irreducible. Let us
denote by α1, α2, α3 the different roots of f and by L its splitting field. The Galois group
of f is a normal subgroup of S3, hence there are only 2 possibilities, namely, either A3

or S3 (the subgroup generated by a transposition is not normal, since two transpositions
are always conjugate). Thanks to Proposition 5.6 we know that the Galois group is A3

if and only if the discriminant ∆ is a square.

Gal(f) ∼= A3 if
√

∆(f) ∈ Q,

Gal(f) ∼= S3 if
√
∆(f) /∈ Q.

{id}

< (1 2) > < (2 3) > < (1 3) >

A3

S3

Q

Q[
√
∆(f)]

Q[α1] Q[α2] Q[α3]

F

Example 5.8. The polynomial f = x3 − 3x+ 1 is irreducible in Q[x], since its possible
rational roots are only ±1 (recall that if f is a monic polynomial, a root of f in Q must be
an integer and must divide the constant term), but f(1) ̸= 0 ̸= f(−1). Its discriminant
is

(−4) · (−3)3 − 27 = 81 = 92

hence its Galois group is A3.

Example 5.9. On the other hand, g = x3 − 4x + 1 ∈ Q[x] is also irreducible for the
same reason as in Example 5.8, but its discriminant is 229, which is not a square in Q,
hence its Galois group is isomorphic to S3.

5.2 Ordered Examples
We will now show how to realize every group of order at most 8. Moreover, we will show
how to realize AGL(1,Fp). The reader can find many other group realizations in [3].
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5.2.1 Order 1

The only group with 1 element is the trivial group G = {e}. Taken a polynomial
f(x) ∈ Q[x] all roots lie in Q, we have that GalQ(f) = G.

5.2.2 Order 2

The only group of order 2 is the cyclic group Z2. We already know by Theorem 3.11
that every cyclic group occurs as a Galois group over Q. Now we want to give an explicit
example of a polynomial with Galois group Z2. For a fixed element a ∈ Q which is not
a square in Q, the polynomial f = x2 − a has Galois group over Q isomorphic to Z2.
Indeed the splitting field of f is clearly Q[

√
a], which is a field extension of Q of degree

2, and it follows that the Galois group has at most 2 elements. The identity map and
the field automorphism

Q[
√
a] → Q[

√
a]

b 7→ b ∀ b ∈ Q
√
a 7→ −

√
a

are two different elements of the Galois group, then Gal(Q[
√
a]/Q) ∼= Z2.

Observe that if we take f as above with a a square in Q, it follows that the splitting
field of f is Q, hence its Galois group is the trivial one because only the identity map
belongs to it.

5.2.3 Order 3

The only group of order 3 is the cyclic group G = Z3. Hence, we look for a Galois
extension over Q of order 3, so that its Galois group has exactly order 3. In order to
get a Galois extension of degree 3, we need a polynomial of degree 3 with all real roots,
since otherwise complex conjugation is an automorphism of order 2. We consider the
cyclotomic polynomial Φ7(x) = x6+x5+ . . .+x+1 which is irreducible and generates a
Galois extension over Q of degree 6 with Galois group Z6, and if ξ7 is a primitive 7th root
of unity, L = Q(ξ7) is the extension. The element ξ7+ξ−1

7 = 2cos(2π
7
) is fixed by complex

conjugation (an element of order 2) and no other element of Gal(Q(ξ7)/Q) fixes it. But
then Q ⊂ Q(ξ7 + ξ−1

7 ) = K is a Galois extension of degree 3, because that is the index of
the Galois group over the group generated by complex conjugation, and we can use the
fundamental Theorem of Galois theory. Note that the extension is a Galois extension,
since Z6 is abelian, hence all its subgroups are normal. Hence Q ⊂ K is the desired
extension. We can explicitly determine the minimal polynomial of 2cos(2π

7
), indeed the

polynomial
p(x) = x3 + x2 − 2x− 1
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is irreducible by Lemma 4.24 with p = 2, it is monic, and an easy computation shows
that

p(ξ7 + ξ−1
7 ) = 0

by using the fact that ξ77 = 1. Note that in Example 5.8, we have another example of
a polynomial with Galois group Z3

∼= A3. However, the method we have just used, can
be generalized. Take p a prime, and consider the cyclotomic polynomial Φp(x), which is
irreducible and if L is its splitting field, we have

L = Q(ξp) G = Gal(L/Q) = Zp−1.

Observe that the element ξp+ ξ−1
p is fixed by complex conjugation and no other element

of G fixes it. Then we can use the fundamental Theorem of Galois theory:

{id}

2

H =< τ >

p−1
2

G

Q

p−1
2

Q(ξp + ξ−1
p )

2

L

Indeed, if we set K = Q(ξp + ξ−1
p ), this is an intermediate field and

H = Gal(L/K) =< τ >,

where τ is the complex conjugation. Then we have that Q ⊂ K is a Galois extension
since Zp−1 is abelian and

[K : Q] = [Gal(L/Q) : H] =
p− 1

2
.

Hence its Galois group is the cyclic group Z p−1
2

. Using this argument, we can realize
every cyclic group of order p−1

2
with p prime. The polynomial that realizes this extension

is the minimal polynomial of ξp + ξ−1
p over Q. We will refer to this method as Method

I, and we can use it, for example, to realize the groups Z5, Z8, Z9, Z11, Z14 and Z15.
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5.2.4 Order 4

There are 2 groups of order 4, which are the cyclic group Z4 and the Klein group Z2×Z2.
We have already seen in Example 3.13 that the polynomial x4+5x2+5 has Galois group
Z4. On the other hand, if we want to find a polynomial whose Galois group is the Klein
group V4, we can use the following proposition.

Proposition 5.10. Let Q ⊂ L be a finite field extension. Then the following are equiv-
alent:

a) L = Q(
√
α,

√
β) for some α, β ∈ Q such that none of α, β or αβ is a square in Q.

b) L is a Galois extension of Q with Galois group V4.

Proof. Suppose first that condition a holds. Then

[Q(
√
α) : Q] = [Q(

√
β) : Q] = 2

since neither α or β is a square in Q. Now from Tower Lemma we get

[L : Q] = [Q(
√
α,
√
β) : Q(

√
α)] · [Q(

√
α) : Q] ≤ 4

hence [L : Q(
√
α)] ≤ 2. Assume that L = Q(

√
α), then

√
β ∈ Q(

√
α), so that√

β = a + b
√
α for some a, b ∈ Q and β = a2 + b2α + 2ab

√
α. Thus a = 0 or b = 0,

indeed β ∈ Q. If b = 0, then β is a square. If a = 0, then αβ = b2α2 is a square. In any
case, this is a contradiction, hence L is a quadratic extension of Q(

√
α). This way we

conclude that [L : Q] = 4. But L is clearly the splitting field for the polynomial

(x2 − α) · (x2 − β)

which is a separable polynomial and it follows that we have a Galois extension. Then
G = Gal(L/Q) has 4 elements:

id τ :

{ √
α 7→ −

√
α√

β 7→
√
β

σ :

{ √
α 7→

√
α√

β 7→ −
√
β

στ :

{ √
α 7→ −

√
α√

β 7→ −
√
β

and thus is isomorphic to V4.
Now assume that condition b holds. Since Gal(L/Q) ∼= V4, there exist three interme-
diate subfields E1, E2, E3 between Q and L which are extensions of degree 2 over Q,
corresponding to the three subgroups of V4 of order 2.
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{id}

< (1 2)(3 4) >< (1 3)(2 4) >< (1 4)(2 3) >

V4

Q

E2 E3E1

L

Thus each of these is a quadratic extension. Suppose E1 = Q(
√
α) and E2 = Q(

√
β),

where neither α or β is a square in Q. The fact E1 ̸= E2 implies that αβ is also not a
square in Q. Indeed,

√
β /∈ Q(

√
α), so√
β ̸= a+ b

√
α ∀ a, b ∈ Q

hence
β ̸= a2 + b2α + 2ab

√
α ∀ a, b ∈ Q.

In particular, it is true for a = 0:

β ̸= b2α ∀ b ∈ Q.

Arguing by contradiction, if there exists c ∈ Q such that αβ = c2, we could take b = c
α

and we would have the contradiction

β = b2α.

Moreover Q(
√
α,

√
β) is an extension of degree 4 over Q and it is a subfield of L, hence

L = Q(
√
α,
√
β).

Now, if we consider the polynomial

x4 − 7x2 + 10 = (x2 − 2) · (x2 − 5)

we have that its splitting field is L = Q(
√
2,
√
5), and since none of 2, 5, 10 is a square

in Q, we have that
Gal(L/Q) = V4.
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5.2.5 Order 5

The only group of order 5 is the cyclic group G = Z5. We can realize this group using
Method I with p = 11, and the minimal polynomial of ξ11 + ξ−1

11 results

p(x) = x5 + x4 − 4x3 − 3x2 + 3x+ 1.

5.2.6 Order 6

There are 2 groups of order 6, which are the cyclic group Z6 and the dihedral group
D6 = S3. We can realize Z6 using the 7th cyclotomic polynomial. Set L as the splitting
field of Φ7(x) we have

Gal(L/Q) = Z6.

On the other hand, in Example 5.9, we found that the polynomial x3−4x+1 has Galois
group S3 = D6.

5.2.7 Order 7

The only group of order 7 is the cyclic group Z7. To realize this group, we will use a
slightly different method from Method I. Let ξ29 be a primitive 29th root of unity. Then
we know that if we set L = Q(ξ29) we have

G = Gal(L/Q) = Z28.

Since [2]29 is a generator of (Z/29Z)∗, the Galois group is generated by the automorphism
ξ29 7→ ξ229 (see the isomorphism in Equation (3.2)). Furthermore, we can find an element
of order 4 by the seventh power of this automorphism, namely ψ : ξ29 7→ ξ2

7

29 = ξ1229 . Let
H be the cyclic subgroup of G of order 4 generated by ψ. Then, using the fundamental
Theorem of Galois theory, we have that G/H ∼= Z7 is the Galois group of the Galois
extension Q ⊂ Q(ξ29)

H = K. One can find out that K = Q(θ), where

θ = ξ29 + ξ1229 + ξ2829 + ξ1729 ,

and that the minimal polynomial of θ is

f(x) = x7 + x6 − 12x5 − 7x4 + 28x3 + 14x2 − 9x+ 1.

For details see, for example, [3].
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5.2.8 Order 8

There are 5 groups of order 8 (up to isomorphism), namely Z8, Z2 × Z4, Z2 × Z2 × Z2,
D8 and Q8 (quaternion group). We can realize the cyclic group Z8 using Method I with
p = 17; one can find out that the minimal polynomial of ξ17 + ξ−1

17 = ξ is

p(x) = x8 + x7 − 7x6 − 6x5 + 15x4 + 10x3 − 10x2 − 4x+ 1

and Gal(Q(ξ)/Q) = Z8. In order to find a Galois extension with Galois group Z2 × Z4,
we observe that by Chinese reminder Theorem

(Z/15Z)∗ ∼= (Z/3Z)∗ × (Z/5Z)∗ ∼= Z2 × Z4

hence we only need to find a Galois extension with Galois group (Z/15Z)∗. We know by
Theorem 3.6 that

Gal(Q(ξ15)/Q) ∼= (Z/15Z)∗

hence Q ⊂ Q(ξ15) is the desired extension, and the minimal polynomial of ξ15 over Q is
the 15th cyclotomic polynomial

Φ15(x) = x8 − x7 + x5 − x4 + x3 − x+ 1.

In order to realize Z2×Z2×Z2 we will follow the steps of the proof of Kronecker-Weber
Theorem. We know that if ξ165 is a primitive 165th root of unity, then

Gal(Q(ξ165)/Q) ∼= (Z165)
∗ ∼= (Z3)

∗ × (Z5)
∗ × (Z11)

∗.

Using p1 = 3, p2 = 5 and p3 = 11 we have three different primes such that pi ≡ 1 modulo
2, and we have the surjective homomorphism

ϕ : Z2 × Z4 × Z10 → Z2 × Z2 × Z2

([a]2, [b]4, [c]10) 7→ ([a]2, [b]2, [c]2).

We now consider the following subgroups:

H1 =< [2]2 >= {e} ≤ Z2 H2 =< [2]4 >∼= Z2 ≤ Z4 H3 =< [2]10 >∼= Z5 ≤ Z10

and H = H1 ×H2 ×H3. Set E the field of elements fixed by H, then

Gal(E/Q) ∼=
Z2 × Z4 × Z10

H1 ×H2 ×H3

∼= Z2 × Z2 × Z2.

One can prove (see, for example, [3]) that E = Q(α) is the splitting field for

p(x) = x8 + 12x7 + 68x6 + 234x5 + 547x4 + 906x3 + 960x2 + 504x+ 144.
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We want now to show that D8 occurs as a Galois group over Q. Consider the poly-
nomial f = x4 − 2 which is irreducible in Q[x] due to Eisenstein’s criterion, and set
G = GalQ(f) its Galois group isomorphic to a subgroup of S4. We order the roots of f
as ( 4

√
2,− 4

√
2, i 4

√
2,−i 4

√
2), thus the splitting field of f is L = Q( 4

√
2, i). Let us compute

the discriminant of f :√
∆(f) = (

4
√
2 +

4
√
2)(

4
√
2− i

4
√
2)(

4
√
2 + i

4
√
2)(− 4

√
2− i

4
√
2)(− 4

√
2 + i

4
√
2)(i

4
√
2 + i

4
√
2)

= −211

which is not a square in Q. By Proposition 5.6 it follows that G is not contained in A4.
By Tower Lemma we have

[L : Q] = [L : Q(
4
√
2)] · [Q(

4
√
2) : Q] = 2 · 4 = 8,

hence |G| = 8. This implies it is a Sylow-2 subgroup of S4, all of which are isomorphic
by the second Sylow theorem. We know that D8 is such a subgroup, hence

G ∼= D8.

We want now to find a Galois extension with Galois group the quaternion group Q8.

The candidate extension is Q ⊂ Q(α) = L where α =
√

(2 +
√
2)(3 +

√
3). First we

note that we have an intermediate field Q ⊆ K ⊆ L given by K = Q(
√
2,
√
3). This

is a proper subfield of L since α /∈ K. Indeed, if we consider σ ∈ Gal(K/Q) such that
σ(
√
2) = −

√
2 and σ(

√
3) =

√
3 we have that

σ(α2)

α2
=

2−
√
2

2 +
√
2
= 3− 2

√
2 = (1−

√
2)2.

It follows that σ(α2) = α2(1−
√
2)2. Arguing by contradiction, if α ∈ K, we have

σ(α) = ±α(1−
√
2),

and so
σ(σ(α)) = α(1−

√
2)(1 +

√
2) = −α,

which is an absurd since σ has order 2. Moreover, one can prove that
√
2 +

√
3 ∈ L,

hence K ⊂ L. It follows that

[L : Q] = [L : K] · [K : Q] = 2 · 4 = 8.

The minimal polynomial of (2 +
√
2)(3 +

√
3) over Q is

f(x) =
∏

τ∈Gal(K/Q)

(x− τ((2 +
√
2)(3 +

√
3))) =

∏
(x− (2±

√
2)(3±

√
3))
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and
g(x) = f(x2) = x8 − 24x6 + 144x4 − 288x2 + 144

is a polynomial of degree 8 and it has α as a root, hence g(x) is the minimal polynomial
of α over Q. The polynomial g(x) has 8 different roots:

±
√

(2±
√
2)(3±

√
3)

and each of these roots is an element of L. Hence L is the splitting field of a separable
polynomial, and so Q ⊂ L is a Galois extension and G = Gal(L/Q) is a group of order
8. G acts transitively on the roots of g(x) and we know that an element of G is uniquely
determined by its image on α. Consider the following roots of g(x):

α =

√
(2 +

√
2)(3 +

√
3) β =

√
(2−

√
2)(3 +

√
3)

γ =

√
(2 +

√
2)(3−

√
3) δ =

√
(2−

√
2)(3−

√
3)

and set σ, τ the elements of G such that

σ(α) = β τ(α) = γ.

We now observe that σ(α2) = β2 and so that

σ(2 +
√
2)σ(3 +

√
3) = (2−

√
2)(3 +

√
3)

and σ(αβ) = σ(
√
2(3 +

√
3)) = −αβ. It follows that σ(β) = −α and so σ is an element

of order 4 in G. Using the same argument for τ , it follows that τ(γ) = −α and τ is an
element of order 4 of G. We observe that

σ2(α) = τ 2(α) = −α.

Let us now compute the composition

στ(α) = σ(γ) = σ

(
αγ

α

)
=
σ(
√
6(2 +

√
2))

σ(α)
=

−
√
6(2−

√
2)

β
= −βδ

β
= −δ

and

τσ(α) = τ(β) = τ

(
αβ

α

)
=
τ(
√
2(3 +

√
3))

τ(α)
=

√
2(3−

√
3)

γ
=
γδ

γ
= δ.

Moreover we observe that

τσ3(α) = τσ(−α) = −τσ(α) = −δ = στ(α),
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hence στ = τσ3. We now observe that these elements of G satisfy the relations of
elements of Q8, indeed the map

G→ Q8

σ 7→ i

τ 7→ j

στ 7→ ij = k

is an isomorphism of groups, since it is a surjective homomorphism and both groups have
order 8.

5.3 The group AGL(1,Fp)
Example 5.11. Let ξp = e2πi/p be a p-th root of unity, where p is prime. We consider
the polynomial xp − 2, whose roots are ξjp

p
√
2 for 0 ≤ j ≤ p− 1, hence

L = Q(ξp,
p
√
2)

is its splitting field over Q. Since p is prime, the minimal polynomial of ξp over Q is
xp−1+. . .+1; while the minimal polynomial of p

√
2 over Q is xp−2 by Eisenstein criterion.

Then we have that p | [L : Q] and (p − 1) | [L : Q]. Since p and p − 1 are relatively
prime and [L : Q] ≤ p(p− 1), we have [L : Q] = p(p− 1). Hence Gal(L/Q) is a group of
order p(p−1). To see what group this is, let σ ∈ Gal(L/Q). We know that σ is uniquely
determined by

σ(ξp) ∈
{
ξp, . . . , ξ

p−1
p

}
, σ(

p
√
2) ∈

{
p
√
2, ξp

p
√
2, ξ2p

p
√
2, . . . , ξp−1

p
p
√
2
}
.

In other words, there are integers 1 ≤ i ≤ p− 1 and 0 ≤ j ≤ p− 1 such that

σ(ξp) = ξip, σ(
p
√
2) = ξjp

p
√
2. (5.2)

We will denote this σ by σi,j. The number of possible pairs (i, j) is (p− 1) · p = p(p− 1).
Since this is also the order of Gal(L/Q), it follows that all possible pairs

(i, j) ∈ {1, . . . , p− 1} × {0, . . . , p− 1} (5.3)

must occur in Equation 5.2. In order to determine the group structure, we need to
compute the composition of σi,j and σr,s. This is done as follows:

σi,j ◦ σr,s(ξp) = σi,j(ξ
r
p) = (σi,j(ξp))

r = (ξip)
r =

= ξirp ,

σi,j ◦ σr,s( p
√
2) = σi,j(ξ

s
p

p
√
2) = (σi,j(ξp))

sσi,j(
p
√
2) = (ξip)

s(ξjp
p
√
2) =

= ξis+jp
p
√
2.
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The computation suggests that

σi,j ◦ σr,s = σir,is+j

Unfortunately, the pair (ir, is + j) need not lie in Equation 5.3. We can resolve this
difficulty by realizing that for i ∈ Z, ξip depends only on the congruence class of i modulo
p. If we set F∗

p = Fp \ {0}, then for

(a, b) ∈ F∗
p × Fp,

we can define σa,b to be the element of Gal(L/Q) such that

σa,b(ξp) = ξap , σa,b(
p
√
2) = ξbp

p
√
2.

Then the above computation shows that σa,b ◦ σc,d = σac,ad+b. Hence the Galois group
is (F∗

p × Fp, ∗), where the group operation ∗ is such that (a, b) ∗ (c, d) = (ac, ad + b);
the identity element is (1, 0) and the inverse element of (a, b) is (a−1,−ba−1). The
composition formula leads to a geometric description of the Galois group Gal(L/Q).
Given a, b ∈ Fp, the function γa,b : Fp → Fp defined by γa,b(u) = au+ b is an affine linear
transformation, and it is a bijection if and only if a ̸= 0. All such γa,b form a group of
order p(p− 1) under composition, and it is called AGL(1,Fp), the one-dimensional affine
linear group modulo p. An easy computation shows that

γa,b ◦ γc,d = γac,ad+b.

Thus the map σa,b 7→ γa,b gives an isomorphism

Gal(L/Q) ∼= AGL(1,Fp).

47



48



Bibliography

[1] D. A. Cox. Galois theory. John Wiley & Sons, Incorporated, 2th edition, 2012.

[2] R. A. Dean. A Rational Polynomial whose Group is the Quaternions. Taylor &
Francis, Ltd, The American Mathematical Monthly, 1981. url: https://www.
jstor.org/stable/2320711?seq=1.

[3] J. W. Duggins and K. M. Pringle. Polynomials that realize groups of order 16 or
less as Galois groups. Pi Mu Epsilon Journal Vol. 12, No. 6, 2007.

[4] D. S. Dummit and R. M. Foote. Abstract algebra. John Wiley & Sons Inc, third
edition, 2003.

[5] G. Gaiffi. Dispense del corso di algebra 1. 2017. url: http://people.dm.unipi.
it/~gaiffi/Algebra1-2016/Pages/dispense1.pdf.

[6] C. R. Hadlock. Field Theory and Its Classical Problems. Carus Monographs, Vol-
ume 19, MMA, Washington, DC, 1978.

[7] D. Harbater. Riemann’s Existence Theorem. In "The Legacy of Bernhard Riemann
After 150 Years". Higher Education Press and International Press, Beijing-Boston,
2015. url: https://www2.math.upenn.edu/~harbater/RETppr.pdf.

[8] D. Hilbert. Ueber die Irreducibilität ganzer rationaler Functionen mit ganzzahligen
Coefficienten. J. reine angew. Math. 110 (1892) 104–129, 1892.

[9] N. Jacobson. Basic Algebra. W.H. Freeman and company, New York, 1985.

[10] B. H. Matzat and A. Zeh-Marschke. Realisierung der Mathieugruppen M11 und
M12 als Galoisgruppen über Q. J. Number Theory 23, 1986.

[11] A. Michael. The Status of the Classification of the Finite Simple Groups. Notices
of the American Mathematical Society. Vol. 51, no. 7., 2004.

[12] J.S. Milne. Fields and Galois theory. John Wiley & Sons, Incorporated, 2th edition,
v4.61, 2020. url: https://www.jmilne.org/math/CourseNotes/FT461.pdf.

[13] F. Ranjbar. Inverse Galois problem and significant methods. University of Tehran,
2015. url: https://arxiv.org/ftp/arxiv/papers/1512/1512.08708.pdf.

49



[14] H. Reichardt. Konstruktion von Zahlkörpern mit gegebener Galoisgruppe von
Primzahlpotenzordnung. J. reine angew. Math. 177, 1937.

[15] A. Reverter and N. Vila. Polynomials of Galois representations attached to elliptic
curves. Rev. R. Acad. Cienc. Exact. Fis. Nat. (Esp), Vol. 94. 3°, 2000.

[16] I. R. Šafarevič. Construction of fields of algebraic numbers with given solvable Ga-
lois group. Izv. Akad. Nauk SSSR, Ser. Mat. 18, 1954.

[17] A. Scholz. Konstruktion algebraischer Zahlkörper mit beliebiger Gruppe von
Primzahlpotenzordnung I. Math. Z. 42, 1937.

[18] J. P. Serre. Topics in Galois Theory. Jones and Barlett, Boston, 1992.

[19] D. Shanks. Solved and Unsolved problems in Number Theory, 4th ed. Chelsea
publishing company, New York, 1993. url: https://mathematicalolympiads.
files.wordpress.com/2012/08/solved-and-unsolved-problems-in-number-
theory-daniel-shanks.pdf.

[20] J. Silverman. The Arithmetic of Elliptic Curves. New York, Springer, 1986.

[21] J. G. Thompson. Some finite groups which appear as Gal(L/K), where K ⊆ Q(µn).
J. Algebra 89, 1984.

[22] H.G.J. Tiesinga. The inverse Galois Problem. Bachelor Project Mathematics, Uni-
versity of Groningen, 2016. url: https://fse.studenttheses.ub.rug.nl/
14148/1/thesisclassic.pdf.

[23] N. Vila. On the inverse problem of Galois theory. Autonomous University of
Barcelona, 1992. url: https://www-jstor-org.ezproxy.unibo.it/stable/
43737189?seq=1.

[24] M. B. Villarino, W. Gasarch, and K. W. Regan. Hilbert’s proof of his irreducibility
theorem. Cornell University, 2017. url: https://arxiv.org/pdf/1611.06303.
pdf.

[25] B.L. van der Waerden. Moderne Algebra. Frederick Ungar Publishing CO, New
York, 1949.

[26] D. Yates. The inverse Galois Problem. University of Bristol, 2017. url: https:
//www.researchgate.net/profile/Dean- Yates/publication/320835842_
The_Inverse_Galois_Problem_4th_year_project.

50



51



Ringraziamenti

Ringrazio tutti coloro che in questi anni mi hanno accompagnato e sostenuto in questo
viaggio alla scoperta della matematica.
Ringrazio la mia relatrice, Nicoletta Cantarini, per l’aiuto datomi nella stesura di questo
elaborato e per avermi fatto comprendere la bellezza della matematica.
Ringrazio la mia famiglia, in particolare i miei genitori che mi hanno permesso di com-
piere questo percorso e che hanno sempre creduto in me.
Ringrazio tutti gli amici che mi sono sempre stati vicini, nello svago come nel percorso
universitario ciascuno è stato un pilastro fondamentale.




