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INTRODUCTION

INTRODUCTION

Hydrology is a science that deals with water ortligastudying the chemical and
physical characteristics, distribution in space &nte, the dynamic behaviour
and relationships with the environment during alhges of the complex cycle of
exchanges between ocean, atmosphere and backao, @ither directly or after
surface runoff on land or water penetration and enwent in the subsurface
(water cycle or hydrologic cycle).

Hydrology is integrated with other disciplines winids with the earth
sciences as geology, meteorology, oceanographychgeustry etc...(The
Columbia Electronic Encyclopedia,2Q07

Strictly speaking the field of investigation conmterthe study of the
hydrology of the waters in their precipitation @amdl and runoff into the oceans,
which deals with the waters, because the study afine waters is the
responsibility of oceanography, while that of treigus aspects of water in the
atmosphere (rain water) falls within the field oét@orology.

Hydrology deals with surface water (hydrographyd agroundwater
(geohydrology). The study of surface water not ardgicerns the waterways, but
also the lakes (limnology), glaciers (glaciology)daalso the drainage and
irrigation. Among the fundamental tasks of the ljolgy within the study of
methods for ensuring effective and practical foamfitative determination of
parameters relating to the water balance, datapirgtation and formulation of
principles and laws relating to the dynamic andwhek of active water in the
hydrological cycle. Applied hydrology sets itseliet task of providing the
necessary data to determine the intensity andilwistvn of rainfall, runoff
values of the waterways on the basis of systenaatit continuous sections in
river characteristics and consequences of theimeghe rate of evaporation on
lakes and reservoirs, underground water absorption

Having relevant data is possible to reconstructthwihe use of
mathematical models and computers, the flow of wated then predict the
consequences of any actions undertaken by manredudts thus obtained can

be compared with those derived from direct expeniaigon on physical models
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appropriately reduced, but which need to be effectiequired that all measured
data are available and accurate.

The above considerations highlight the fundamerdbd of hydrology
and hydrological modelling in water resources managnt and engineering.
However, hydrological modelling is still impreciaad affected by limitations in
general. The main reason is a result of the limoitst of hydrological
measurement techniques, since we are not able &suree everything about
hydrological systems. Increasing demands on wasources throughout the
world require improved decision-making and improweadels.

The present study is focusing on rainfall-runoff daling and in
particular on techniques for parameter calibratiime objectives of the study is
to assess the efficiency of currently used parametémation methods with
respect to hypothetical and real world case studMesestablished models is
used for which calibration techniques are testedetiore deriving indications on

their efficiency and suitability.



CHAPTER 1

CHAPTER 1
WATERSHEDS

The watershed (Figure 1.1) is defined as that @omif land whose water runoff
surface is directed towards a fixed section ofraash that is defined in section
closure of the basin.

As the process of modelling the earth's surface #na formed due
mainly just the erosive action of water flowing time surface. Referring to
collection only water catchment precipitation ikitag about.

Watersheds can be large or small. Every streabytéiy, or river has an
associated watershed, and small watersheds jtiedome larger watersheds.

Watersheds can also be callesinsanddrainages Here is an example
of what a watershed looks like:

Figure 1.1: Example of watershed (North and southivers watersheds association).

The catchment area is the fundamental physiographits which refer to the
study of phenomena of the river and hydro-geomdggical processes
associated with them.
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These dynamics are analyzed under the more genealledge of hydrological
cycle (water cycle changes on the Earth's surfadeaimosphere) and the order
to obtain the determination of elements essentgltlie proper sizing of the
works hydraulic system interventions and river basiFor example, can affect
estimate of the volume of water flowing througheat®n of a stream in a given
period of time, the full extent of which can ocauth a given return period, the
amount of solid material eroded from the surfacéhefbasin. The determination
of these quantities is the subject of determinististatistical processing.

The hydrological response of a basin depends amfafhithat occur
naturally on it (and thus indirectly from its pasit and altitude), from their
interception and from the subsequent disposal (Hng the permeability
determined by the texture and soil depth, the typeoverage etc.), by solar
radiation and the orientation respect winds etc.

Watersheds are associated with creeks, streamessriand lakes, but
they are much more. A watershed is a highly evolsedes of processes that
convey, store, distribute, and filter water that,turn, sustain terrestrial and
aquatic life. Here we explore a cross-section afatural, undeveloped river
corridor to see how trees and wetlands, floodplam$ uplands handle water as

shown in Figure 1.2.

Instream Riparian Wetland
Forest

—  Floodplain— +  Forested Slope— Upland-

Figure 1.2: Natural systems Watersheds Atlas).
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It is estimated that 80 to 90 % of streams in oatenshed are headwater streams
starting in forested woodlands. Moving constantiyvdstream, a stream widens,
its shape and structure changes, and so do itsiadnaditats, temperatures and
food sources. Below are four factors involved wittanges in complex stream
dynamics:

* Water temperatures vary: Tree-coveredheadwatersare considered
cold water streams because they are fed by colghgwater and shaded
overhead from the heat of the sun. Cold water stseanter larger rivers
that have warmer temperatures because they haveslesle and more
sunlight hitting their mid-channels and sides.

e Food sources change;

« Agquatic habitats vary within a stream reach:high energy waters scour
and erode stream channels. Deposition of soil sedlisn silts, and sands
happens in slower, low-energy river stretches, wheenthic habitats
tend to have more silts and sands and less grave

» Water quality changes: Streams tend to start out uncontaminated in
headwaters and experience sediment and chemicdingpaas they
traverse tilled, residential and industrializeddscapes. Headwaters are
almost always cleaner than big river waters.

Riparian forests refer to forest vegetation ocagralongside streams and rivers
and offer the last opportunity for runoff watershave a lively exchange with
vegetation and soils before entering streams ameasti
Riparian forests have two main functions:
o Filtering: Runoff from rain or snow is intercepted by rigari
vegetation, where it slows down and drops out sedtm
o Stabilizing: Interwoven root systems of streamside vegetation
prevent erosion during high water events. Undigdrlriparian
vegetation is usually made up of mature, nativedbtrees like red
maples, sycamores, and willows, with a range oivaeashrubs and
grasses that tolerate wetter soils.
After infiltrating natural systems, water evaposafeom rivers and wetlands,
soils and plants. It returns to the atmospherealb dgain as precipitation.
Precipitation is water that falls from clouds ireteky as rain (liquid form of
water) or as snow, sleet, or hail (solid forms atev). Runoff is water that flows
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over the surface of the land. It usually occurs mthe rate of precipitation (rain)
exceeds infiltration, that is the soil becomes redidl with water and can absorb
no more. In the built environment, runoff occurs asphalt surfaces where the
soil has been covered with an impervious material.

Water cycling cools the planet, cleans the air, sustains life. This is the

water cycle as shown in Figure 1.3:

» View Human Impacts
on the Water Cycle

Figure 1.3: Water cycle (Watersheds Atlas).

Hydrological modelling of water balances or extrenfifoods and droughts) is
important for planning and water management. Uofately the small number
(or even the lack) of observations of key varialilest influence hydrological
processes limits the applicability of rainfall-rdhonodels; so modelling is an
important tool for assessing the data of the weyele in the areas of interest. In
principle, if the models are based on the basiocples of physics and so the
estimation of model parameters should be an eaky ta

Hydrological models describe the natural procesdgethe water cycle

(see Figures 1.4 and 1.5).
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Rainfall: Watershed RunOf!:

Figure 1.4

Rainfall | Rainfall-Runoff | Runoff
Model

Figure 1.5

Due to the largecomplexity of the corresponding natural phenomehase
models contain substantial simplifications. Thepsist of basic equations, oft
loosely based on physical premises, whose parasneter specific for th
selected catchment and problem under <. In this project wewill deal with
watershed models amal particular, wewill see an application of HBV mod

Understanding and moding the water balance dynamics of catchm:
is important from both engineering and scientifiergpectives. Hydrologici
rainfall runoff models may be used in managing Weder resources of rive
basins. They can be employed for assessing antheopo dfects on runoff
regime, water quantity and quality, for estimatihgsign flow valuesand for
river flow forecasting€.g., Beven, 20(). In the past decades a large amour
rainfall runoff models water balance models wereettgped. These range frc
simple black box models, to conceptual models amtptex physically base
distributed modelsSingh and Freve et al., 2001a, 200)b

In engineering application conceptual models arstiyaised. In thest
the basic processes such as interception, infdtratevaporation, surface a
subsurface runoff, etc., are reflected to somengxta real life applications th
algorithms that a used to describe the processes are essentiltisated inpu-
output relationships, formulated to mimic the fuocal behavour of the proces
in question €.g., Beveret al, 2001).

There is an important aspect in the calibrationcafchment mode,

which is the time scale dependence of model pedona Merz et al, 200).
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During model calibration the user usually attematsuse a sufficiently long
period of meteorological and runoff observations ni@ake certain that the
calibration can be regarded as a good fit to thia dand it also properly
represents the streamflow variabilitygfgstrom et al., 1991

The choice of record length is often determineddbaya availability in
practice. So in many cases only short records ykeavs of data) can be used for
calibration. In the literature it is recommended ¢boose the minimum
calibration period as one that samples all differgypes of hydrological
behaviours, including extremevents. This is usually checked by comparing
model efficiencies for the calibration and veritioa periods Refsgaard et al.,
2000 rather than by varying the length of the calilnat period. If the
verification efficiency is not much poorer than tbalibration efficiency, one
concludes that the model genuinely represents tmilation of streamflow
variability (Vierz et al, 200p

Both the estimation of model parameters and theessf calibration and
verification efficiencies are connected to probleofsparameter uncertainty
(Montanari, 2005, 2007; Refsgaard et al., 1996, 2@afizinger and Bardossy,
2008; Freer et al., 19%6 An analysis of the variability (uncertainty) of
calibrated model parameters as a function of caiidkm time scale is therefore
useful. The goal of such analysis would be to foud when the parameter
uncertainty is smaller than possible time scalect$t

Many important scientific and practical questionancbe risen in
connection with the record length and calibratitrategies of rainfall runoff
models. It is important to learn for instance wileetthe model efficiency
changes with the period of runoff data used foribcalion and what is a
sufficiently long period to acquire sufficient cafdnce in the performance of
the model for future applications. The performanteptimisation algorithms
with respect to the uncertainty (variability) of ded parameters is also of
interest.

This project therefore is organised as follows:

1. Calibration of the original data, using the HBV regdfrom the Hron
catchment located in Slovak measured in a daily st@ period between
01/01/1980 and 31/12/2000 giving us 20 years ofentesl data.
Obtaining parameters used to create generated dliag of two
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optimization algorithms: genetic algorithm — GA angrmony search —
HS and their comparison. Selecting better algoritbsed in next
calibrations.

2. Reproduction of the model by calibrating the getestalata — use of the
whole dataset.

3. Reproduction of the model by calibrating the getestadata — use of
various calibration strategies.

4. Results of the rainfall-runoff modelling in the Hroatchment.

1.1 Classification of watersheds models

Watersheds models are fundamental to integratecrwaianagement. The
watershed models abound in hydrological literatarel the state of art of
modelling is reasonably advanced, especially whiewwed in the context of
practical application.

However, these models have yet to become commonniplg or
decision-making tools. To that end, two milestomals have to be achieved.
First, these models will have to be transformed packaged at the level of a
common user. Second these models will have to begrated with social,
economic and management models yielding informatan is easily interpreted
or understood by the user.

A majority of watershed models simulate watershedponse either
without consideration of water quality or inadeguebnsideration thereof.

A decision maker wants to know as much about arnsla¢el as he can,
not just water- quantity information/{ay P. Singh et al., 1995).

The models are of different types and can be deeeldor different
purposes. Many of the models share structural ariids and some of the
models are distinctly different.

The hydrological models can be broken down by diaaton of

different kinds. The most famous and used aredheving:

1. Process based classificatiorsingle process models, integrated models.
2. Structure classification for black-box models: conceptual and

physically based. Stochastic models and deternomsbdels.
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3. Space-scale based classificationtumped and spatially distributed
models.

4. Land-use based classification:models of generation of synthetic
variables and simulation models of real variabtdzssérvable).

5. Model-use based classification:continuous simulation models, scale

models of events.

1.1.1 Process based classification

Many models are proposed to describe the dynanfica single hydrologic
process, representing a limited phase of the watele. Typical examples are
the models of infiltration, interception models andny others.

Other models are proposed to describe larger pariad the hydrological
cycle; an example is the rainfall-runoff model.

A model, as shown in Fig. 1.6 has five components:

. System (watersheds) geometry

Input

1

2

3. Governing laws
4. Initial and boundary conditions
5

. Output

GOVERNING
EQUATIONS

!

WATERSHED
INPUT &3 (PROCESSES + __, | ourteut
CHARACTERISTICS)

i

INITIAL AND
BOUNDARY
CONDITIONS

Figure 1.6: Model components (Vijay P. Singh, 1995)
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1.1.2 Structure classification for black-box models

In connection with hydrological models of their ustture rainfall-runoff
transformation can be classified as:

- Hydraulic or detailed simulation models based on experimental observations
and analytical models attempt to simulate the idial hydrological processes
that are then connected by appropriate mathemasétzionships.

- Conceptual models assimilate the real transformation of rainfalltong in
another, referred to a physical system, even differbut can provide a similar
response. In this category, you can frame moddis very different structures:
one can identify both models is complex, similarhgdraulic models, and
models such as linear parameters, simple strucsurelar to that of synthetic
models.

- Synthetic model(or empirical or black box): are not intended to represent the
processes hydrological and physical phenomena vadolin rainfall-runoff
transformation or physically or mathematically. ysz=e the system as a closed
box (black box) on which there is no specific hymsies. Modelling, therefore,
end with the search for a mathematical operatdrlthiess between them, in the
best possible way, and incoming out of the systeimthe meteor influx with
flow flowing out to the closing section river basin

Furthermore the models can be described as detetimior stochastic.

A deterministic model is a physical-mathematical model that tries to
predict numerically the evolution of the climatestgm in space-time, through
the approximate solution (not analytical) of thestsyn of mathematical
equations that describe the physical laws (thesak mechanics and of
thermodynamics) that govern the system atmosphere.

Once the initialization process is terminated ty&esm of equations, that
make up the deterministic model, evolves towardsigue solution. In this way
we have achieved something unique number for eactt m space and at every
point in time future.

A stochastic modelis a model consisting of a finite set of random
variables that depend on a parameter "t", with tvivie generally mean time,
and the values that the individual random variabkege undertaken in the past,

namely with respect to a statistical basis of depar
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The initialization of the random variables is daheough the identification of
the probability distribution that characterizes lea@riable, through statistical
analysis of a database collected in the past, whaghnesents the probability
space of the values that the random variable caimass.

Once rebuilt, the probability distribution of indiwal random variables
can be simulated via the stochastic model, thatran in time of the probability
distribution of random variables, resulting in awnprobability space of values

for each random variable.

1.1.3 Space-scale based classification

This classification is extremely important from eagtical point of view. The
hydrological model is said concentrate when thewa control reference for the
application of constitutive equations is extendedatge spatial scales, typically
entire river basin. In this case, the model haspatial dimensions. The model
is, instead, said spatially distributed if the vk control is extended to very
small spatial scale, so that within it is plausitile assumption of homogeneity
of hydrological processes. Typically, the watershetth area of 100 kfror less
can be called small, those with area of 100 to #8®medium, and those with
area of larger than 1000 Kriarge.

1.1.4 Land-use based classification

Hydrological models divided into two major categsti We talk about patterns
of generation of synthetic series when the aim ofkws to reproduce artificial
hydrological variables, or variables that do notwdadn reality. An example are
the models for estimating flood flow.

The simulation models of observable variable, haveare designed to
reproduce the variables that have occurred or @gtur in the real world,
independently from the availability or otherwisetbé corresponding observed
value. For instance, forecasting models and repactgin models of observed

events.
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1.1.5 Model-use based classification

Many hydrological models are designed to produnaukitions that are carried
out over short time periods. This approach is fiestiby the necessity, which
occurs when applying rainfall-runoff models, to Baxtended simulations to a
single flood event, because we do not considesitmelation in periods of lean
and tender. In this case we say that the model svatlkscale event. We speak
instead of a continuous simulation model over tifmte model is designed to
produce simulations of long time span.
Nowadays, continuous simulation models receivenatte from the

scientific community, because are gaining interést problems of the

management of water resources during low flows.
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CHAPTER 2
MODEL CALIBRATION

The practice application of a hydrological modeldigided into the following

stages:

Operational problems identification;
Model identification;

Calibration procedure selection;
Calibration;

a kr 0N e

Model verification.

Operational problems identification is a very dafe phase for the operator that
must clarify what is the purpose of applying thedelo in all its facets.
Availability of data and technical requirements wldobe analyzed with great
precision.

Model identification is made on the basis of techhrequirements, and
also according to the models available in theditere, hydrologist chooses the
most appropriate model but the superiority of oppraach than another is
influenced from the scope.

For the selection of the calibration procedure vem enake similar
considerations. The calibration can be performedway different alternatives:
the manual calibration and automatic calibrationciwiwill be discussed in the
next paragraph. In general, the automatic calinatequires more time and
more availability of observed data. The manualbeation instead requires great
sensitivity of the engineer who must understangl km change the parameters
for improving the model performance. The parametéitat most influence on
the results of the simulation, will be subject t@rm study in the calibration
phase.

Model verification is a very important step becaitsgives information
about the real functioning of the model unlike tiadibration. After testing the
model, it is appropriate to repeat the calibratising the full range of available
data, in order to maximize the consistency of tl¢allase used to estimate

parameter values.
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2.1 Introduction to model calibration

The hydrological models are characterized by tlesgamce of parameters to be
set by the user. Obviously, different values ofapagters correspond to different
responses of the model and thus parameters vasgahllows the model to
interpret the different characteristics of differeimer basins.

The procedure for assigning parameter values, wiigst precede so any
practical application, is called parameters (or etg)d calibration, model
parameterization, parameters (or model) optimizatio

Usually the calibration is carried out by searchihg parameter values
that maximize the reliability of the simulation neally the model.

For modelling the rainfall-runoff process, modetbat have been
developed, are based on conceptual representatiadhe physical processes of
the water flow lumped over the entire catchmena &hemped conceptual type of
models). Examples of this type of model are the&@uaento model§urnash et
al., 1999, the Tank modelSugawara et al., 19)5the HBV model Bergstrom
et al., 199) and the MIKE 11/NAM modelielsen and Hansen, 1973; Havng
et al.,199).

All rainfall-runoff models are so a simplificationsf the real-world
systems under investigation. The model componertaggregated descriptions
of real world hydrologic processes. One consequendais is that the model
parameters often do not represent directly meakurabtities, but must be
estimated using measurements of the system resplomgagh a process known
as model calibration. In fact all rainfall-runoff oglels are to some degree
lumped, so that their equations and parametersridesthe processes as
aggregated in space and time. As a consequencandiel parameters are
typically not directly measurable, and have to pec#ied through an indirect
process of parameter estimation, that is calleithredion.

To calibrate a model, values of the model parameiex selected so that
the model simulates the hydrological behaviourha tatchment as closely as

possible.
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2.2 Model parameters

Such models typically have two types of parametgisysical” parameters and

“process” parameters.

* Physical parameters: represent measurable prapefttbe watershed
like the area of the watershed, the fraction ofwla¢ershed area that
Is impervious, and so on.

 Process parameters: represent watersheds propémaesare not
directly measurable like the depth of surface smlsture storage, the

effective lateral interflow rate, and so on.

Due to the fact that in the range of possible (oeaaly observed) input data,
different model parameters lead to a similar penfonce, the identification of a

unique dataset is practically impossibie(en and Freer, 2001

2.3 Manual calibration

In manual calibration, a trial-and-error parametdjustment is made. In this
case, the goodness-of-fit of the calibrated moslddasically based on a visual
judgment by comparing the simulated and the obsehsgrographs. For an
experienced hydrologist it is possible to obtaimeay good and hydrologically
sound model using manual calibration.

However, since there is no generally accepted obganeasure of
comparison, and because of the subjective judgmmeotved, it is difficult to
assess explicitly the confidence of the model satmohs. Furthermore, manual
calibration may be a very time consuming task, e@sfig for an inexperienced

hydrologist.

2.4 Automatic calibration

In automatic calibration, parameters are adjustgdnaatically according to a
specified search scheme and numerical measurebeofjdodness-of-fit. As
compared to manual calibration, automatic calibrats fast, and the confidence
of the model simulations can be explicitly stat€de development of automatic

calibration procedures has focused mainly on usirglngle overall objective



MODEL CALIBRATION

function (e.g. the root mean square error betwéenobserved and simulated
runoff) to measure the goodness-of-fit of the calied model.

For automatic calibration is therefore necessamstablish a criterion for
automatically and quantitatively compare the gosdnef the simulation. For
doing this, it use an objective function which hemn minimized (or maximized)
using the algorithms. The need for an objectivecfiom makes the automatic
calibration using the shell is mainly when there a@bbserved values of the data to
be simulated, which are automatically compared witle corresponding
simulated values. In this case, the objective fonstcan also be used in case of
manual calibration, if you want the comparison lestw observed and simulated

values occur quantitatively.

2.4.1 Objective functions

An objective function is an equation that is useddmpute a numerical measure
of the difference between the model-simulated dutpod the observed
(measured) watersheds output.

The aim is so to find those values of the modehpaters that optimize
the numerical value of the objective function.

The objective functions mostly used are:

1. Weighted Least Squaresit is one of the most common used objective
function. The weights windicate the importance to be given to fitting a

particular hydrograph value

F(0) = Xt=qg W [ngs - Qt(g)]z [2.1]

where:
- g% = observed (measured) streamflow value at time t;
- q:(8) = model simulated streamflow value at time t;
— 6 = vector of model parameters;
- w; =weight at time t;

— n =the number of data points to be matched.
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2. Daily root-mean square (DRMS) The daily root-mean square (DRMS)
computes the standard deviation of the model ptiedierror (difference
between measured and simulated values). The sniadlddDRMS value,
the better the model performanceuptia et al., 1999Gupta et al. (1999)
determined that DRMS increased with wetness ofyemr, indicating
that the forecast error variance is larger for bigthows. According to
Gupta et al. (1999), DRMS had limited ability teeatly indicate poor

model performance. The function is:

F(8) = \/% Y (dy — 0.(6))? [2.2]

3. Nash-Sutcliffe measure (NS)used to assess the predictive power of
hydrological models. It is defined as:

~ 3 [dr-0:(6)]

E0@)=1- —
©® %Z?ﬂ(dt—d)z

[2.3]

Where d is observed discharg®e; is modelled discharge amd] is
observed discharge at timeNash—Sutcliffe efficiencies can range from
- to 1. An efficiency of 1 =1) corresponds to a perfect match of
modelled discharge to the observed data. An effayieof O E = 0)
indicates that the model predictions are as acewasatthe mean of the
observed data, whereas an efficiency less than(Eexd) occurs when
the observed mean is a better predictor than thdemor, in other
words, when the residual variance (described byntmaerator in the
expression above), is larger than the data variddescribed by the
denominator).

Essentially, the closer the model efficiency id fdahe more accurate the
model is. It should be noted that Nash—Sutcliffecefncies can also be
used to quantitatively describe the accuracy of ehodtputs other than
discharge. This method can be used to describprddictive accuracy
of other models as long as there are observedaat@mpare the model
results. Nash, J. E. and J. V. Sutcliffe et al.1%70
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4. Bias (mean daily error):
E(8) = -2 (d; — 0:(6)) 4P

In statistics, bias (or bias function) of an estionas the difference
between this estimator's expected value and the walue of the
parameter being estimated. An estimator or decigi@with zero bias

is called unbiased. Otherwise the estimator is &alik biased.

5. ABSERR (mean absolute error):is a quantity used to measure how

close forecasts or predictions are to the everdutdomes. The mean

absolute error is given by:

F(6) = XL 4ld; — 0,(8)] [2.5]

The mean absolute error is a common measure adsterror in time
series analysis, where the terms "mean absolutatt@Vv' is sometimes
used in confusion with the more standard definit@drmean absolute
deviation.

The mean absolute error is one of a number of wdysomparing

forecasts with their eventual outcomes. Well-esthbd alternatives are
the mean absolute scaled error and the mean sgeiaoed

Where a prediction model is to be fitted using kected performance
measure, in the sense that the least squares appaelated to the
mean squared error, the equivalent for mean alesautor is least

absolute deviationgHyndman, R. and Koehler A. et al.,2005
6. ABSMAX (maximum absolute error):
F(0) = max|d; — 0.(0)] [2.6]

Whereo; is modelled discharge alis observed discharge at tihe
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2.5 Optimization methods

An optimization algorithm is a logical procedureaths used to search the
response surface, constrained to the allowableesang the parameters, for the
parameter values that optimize (maximize or minenias appropriate) the
numerical value of the objective function. The pmaare is typically
implemented on a digital computer to enable a vepyd search. There are a lot
of methods for automatic calibration but we willsdebe just two that we will
see in the application with HBV model, Genetic Algan (GA) and Harmony
Search (HS).

2.5.1 Genetic algorithm (GA)

A genetic algorithm (GA) is a search heuristic tmatnics the process of natural
evolution. This heuristic is routinely used to gexte useful solutions to
optimization and search problems. Genetic algostim@ong to the larger class
of evolutionary algorithms (EA), which generate wmns to optimization
problems using techniques inspired by natural dwwiu such as inheritance,
mutation, selection, and crossoverten, A. E. et al, 1994

With a genetic algorithm calibration algorithm, iopized parameter sets
are found by an evolution of parameter sets usahgcon and recombination.
An initial population ofn parameter sets is generated randomly in the paesame
space and “fitness” of each set was evaluated byvHiue of the objective
function. From this population (generation) is gated byn times combining of
two parameter sets. The two sets were chosen rdpdinmthe chance of being
picked is related to the fitness of the parametega/ing the highest probability
to the set with the highest fithess. A new params#¢ was generated from the
two parent sets (set A and B) by applying one ef fitilowing four rules for

each parameter randomly with certain probabilifpes,

* Value of set A
* Value of set B
« Random between the values of set A and set B

* Random value within the limits given for the paraene
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The fitness of each set in the new population @wated and the new generation
replaced the old one. This evolution is repeatecifoumber of generationsa(n
Seibert et al.20Q0

2.5.2 Harmony Search (HS)

A new heuristic algorithm has been developed anthetaHarmony Search
(HS). Harmony search (HS) is a phenomenon-mimickingrélgo (also known
as metheuristic algorithm, soft computing algorittonevolutionary algorithm)
inspired by the improvisation process of musicidnsthe HS algorithm, each
musician (= decision variable) plays (= generatesdte (= a value) for finding a
best harmony (= global optimum) all together.

The goal of the process is to reach a perfect sthtearmony. The
different steps of the HS algorithm are describeldw:
Step 1:

The T'step is to specify the problem and initialize fagameter values.
The optimization problem is defined as minimize rf@ximize)f(x) such thatx;
< Xi<uX;, wheref(x) is the objective functiorx is a solution vector consisting of
N decision variablesx() and, x andyx are the lower and upper bounds of each
decision variable, respectively. The parameterghef HS algorithm i.e. the
harmony memory sizeHMS), or the number of solution vectors in the harmony
memory; harmony memory considering ratdMCR); pitch adjusting rate
(PAR); distance bandwidth parametdiwf; and the number of improvisations
(NI) or stopping criterion are also specified in ttisp.
Step 2:

The 29 step is to initialize the Harmony Memory. The i@litharmony
memory is generated from a uniform distributiorthe ranges ki, ux], where 1
<i<N. This is done as follows:

xi] = ;X +1r X (yx; — 1X;) [2.7]

where j = 1,2,3....,HMS and~U(0,1).
Step 3:
The third step is known as the “improvisation” st€enerating a new

harmony is called “improvisation”. The New Harmovsctor is generated using
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the following rules: memory consideration, pitchjustinent, and random
selection.
Step 4:

In this step the harmony memory is updated. Theeiggad harmony
vector replaces the worst harmony in the HM (harynoremory), only if its
fitness (measured in terms of the objective fumjtis better than the worst
harmony.

Step 5:

The stopping criterion (generally the number ofat®ns) is checked. If

it is satisfied, computation is terminated. OthemyiSteps 3 and 4 are repeated.

2.6 Calibration strategies

There are different calibration strategies to nteet objectives: good discharge
simulations in terms of least mean square errodgstla@ ability to reproduce one
functional characteristic of the system and theo@utelation function of the
discharge, which quantifies the linear dependencpuzcessive values over

time.

2.6.1 Split sample-test

The available record should be split into two segim®ne of which should be
used for calibration and the other for validatidh.the available record is

sufficiently long so that one half of it may suffidor adequate calibration, it
should be split into two equal parts, each of th&muld be used in turn for
calibration and validation, and results from bothraagements compared. The
model should be judged acceptable only if the tesults are similar and the
errors in both validations are acceptable. If tiailable record is not long

enough for a 50/50 splitting, it should be splitsuch a way that the calibration
segment is long enough for a meaningful calibrattbe remainder serving for
validation. In such a case, the splitting shouldaibee in two different ways, e.g.
(a) the first 70% of the record for calibration ahé last 30% for validation; (b)

the last 70% for calibration and the first 30% v¥atidation. The model should

qualify only if validation results from both casase acceptable and similar. If
the available record cannot be meaningfully spghién only a model which has
passed a higher level test should be usédn{es, V. et al., 1996
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2.6.2 Proxy-basin test

This test should be required as a basic test fogrgghical transposability of a
model, i.e transposability within a region, suchfas instance, the European
Alps, the prairie region of Canada and the USA, dtcstreamflow in an
ungauged basin C is to be simulated, two gaugethdas and B within the
region should be selected. The model should bérasdid on basin A and
validated on basin B and vice versa. Only if theo twalidation results are
acceptable and similar can the model command & sl of credibility with
regard to its ability to simulate the streamflowbsin C adequately.

This kind of test should also be required when \aalable streamflow
record in basin C is to be extended and is not watedfor a split-sample test as
described above. In other words, the inadequataraden basin C would not be
used for model development and the extension wbeltteated as simulation in
an ungauged basin (the record in C would be usbdfonadditional validation,
i.e. for comparison with a record simulated on ltlasis of calibrations in A and
B).

Geographical transposability between regions | Hn@k.g. the Inland
Waters Directorate of Environment Canada has itledtia need to develop
models for simulating streamflow in ungauged basihsorthern Ontario; such
models would have to be developed on the basisataf ilom gauged basins in
southern Ontario or Quebec which have different spta} conditions). If
streamflow needs to be simulated in an as yet wifggnk ungauged basin C (or
on a number of such basins) in region Il the pracedshould be as follows.
First, the model is calibrated on the historic relcof a gauged basin D in region
|. Streamflow measurements are started on at leestdifferent substitute
basins, A and B, in region Il and maintained foleatst three years. Then the
model is validated on these three-year recordsotii B\ and B and judged
adequate for simulation in a basin C if errors athbvalidation runs, A and B,
are acceptable and not significantly different.eflonger records in A and B
become available, these two basins can be usethéolel development and
subjected to the simpler test for transposabiliijhiv a region as described
above, using A and B as proxy basins for C. Of seuthe substitute basins A
and B, would not be chosen randomly but would bected so as to be
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representative of the conditions in region Il, and,far as possible, with due
consideration of future streamgauging neédsr(ies, V. et al.1996

2.6.3 Differential split-simple test

This test should be required whenever a model etased to simulate flows in
a given gauged basin under conditions differenhftbose corresponding to the
available flow record. The test may have severalamés depending on the
specific nature of the change for which the flowoide simulated.

For a simulation of the effect of a change in cliepahe test should have
the following form. Two periods with different vas of the climate parameters
of interest should be identified in the historicoed, e.g. one with high average
precipitation, the other with low. If the modelindended to simulate streamflow
for a wet climate scenario then it should be catéd on a dry segment of the
historic record and validated on a wet segment.i¢fintended to simulate flows
for a dry climate scenario, the opposite shoulddbee. In general, the model
should demonstrate its ability to perform underttaasition required: from drier
to wetter conditions or the opposite.

If segments with significantly different climaticaameters cannot be
identified in the given record, the model shouldidésted in a substitute basin in
which the differential split-sample test can be @lohhis will always be the case
when the effect of a change in land use, rathar ih&limate, is to be simulated.
The requirement should be as follows: to find aggalbasin where a similar
land-use change has taken place during the peowered by the historic record,
to calibrate the model on a segment correspondirthe original land use and
validate it on the segment corresponding to thegéd land use.

Where the use of substitute basins is required tiier testing, two
substitute basins should be used, the model fitidabth and the results for the
two validation runs compared. Only if the results aimilar can the model be
judged adequate. Note that in this case (two dubstbasins) the differential
split-sample test is done on each basin indepelydehtch is different from the
proxy-basin test where a model is calibrated on lmee@n and validated on the
other Klemes, V. et al, 1996
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2.6.4 Proxy-basin differential split-sample test

This test should be applied in cases where the Imedeupposed to be both
geographically and climatically (or land-use-wis@nsposable.

Such universal transposability is the ultimate godl hydrological
modelling, a goal which may not be attained in desato come. However,
models with this capability are in high demand (&gCanada for assessing the
climate-change impact in northern regions wheretrbasins are not gauged)
and hydrologists are being encouraged to develem tilespite the fact that thus
far even the much easier problem of simple geogcaptransposability within a

region has not been satisfactorily solvede(nes, V. et al, 1996
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CHAPTER 3
HBY MODEL - HYDROLOGINSKA BYRANS
VATTENBALANSAVDELNING

The HBV hydrology model, or Hydrologiska Byrans éatbalansavdelning
model, is a computer simulation used to analyzerridischarge and water
pollution. Developed originally for use in Scandireg this hydrological
transport model has also been applied in a largebeu of catchments on most
continents.

The HBV model is a conceptual hydrological modelpatde of
simulating outflow from a river catchment, giventewrological input data and

set of parameters.

3.1 Introduction

The HBV model Bergstrom et al., 1976; 19P4ds a conceptual model that
simulates daily discharge using daily rainfall ateinperature, and monthly
estimates of potential evaporation as input. Thedeha@onsists of different
routines representing snow by a degree-day meswbdyater and evaporation,
groundwater by three linear reservoir equations ahdnnel routing by a
triangular weighting function.

The first successful run with an early version loé HBV hydrological

model was carried out in the spring of 19B2igstrom et al., 19)4Figure 3.1):
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Figure 3.1: The first successful application of th&iBV model (Sten Bergstrom et al., 1972).

After twenty years the HBV model has become a stahdool for runoff
simulations in the Nordic countries, and the numbkmpplications in other
countries is growing. Some of applications abro&dcarried out by the Swedish
Meteorological and Hydrological Institute usingtarelard computer code.

Its successor, the PULSE model, is used for hydnmatal simulations
and simulations in ungauged catchments.

Work with HBV model has been reported on numerazasions and in
a large number of scientific papers.

The general structure of HBV model is shown inguke 3.2:
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elevation i i
" snowfall fc=.max. soil moisture storage
. B =index of soil moisture distribution
peinfal Lp=ﬂ.1rc_shold of evaporation mechanism
=limit for third runoff component
. e WA N _ Perc=percolation
DISTRIBUTED kO,k1,k2=recession coefficients
SNOW ROUTINE Lag=lag of discharge
ACCORDING TO
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) { | VEGETATION sm=soil moisture storage
l l l l l l rainfall/snowmelt uz=storage in upper zone
Iz=storage in lower zone
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computed runoff

Q2=k4-lz

Figure 3.2: Scheme of the HBV model.

Symbols:

St Is the snow storage in forest;

Sso IS the snow storage in open areas;
Ssmis the soil moisture storage;

Fc is the Max. soil moisture storage;

Wp is the Min. soil moisture storage;

S,; Is the storage in upper zone;

Lyz is the limit for third runoff component;
S; is the storage in lower zone;
Q0,Q1,Q. are the runoff components;

O O O O O o o o o o

Ko,K1,Ko are the recession coefficients.
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Below is a summary of the input data required aniphuat data produced by the
HBV model. The model requires little geographiegut data, only the size of

the modeled catchments is needed.

Input data (daily values):

— Size of modeled catchments (Rm
— Lake surface height (m) — lake surface are&)laurve;
— Precipitation (mm/d), one station, or weighted safraeveral stations;
— Potential evaporation computed from one of theofeihg:
o Pan evaporation (mm/d);
o Min and max temperature);
o0 Average temperature (°C), cloudiness (%);
o0 Average temperature (°C), short wave radiation @yJd#ind
speed (m/s) and relative humidity (%);

- Average outflow (n¥s), one station;

Computed result (daily values):

— Average outflow (n¥s);
— Optionally model state variables (mm), evaporafrom/d), corrected

precipitation (mm), lake surface height (m) ancelakea (krf);

3.2 The HBV model and its parameters

The HBV model is a rainfall-runoff model, which Indes conceptual numerical
descriptions of hydrological processes at the ca&stt scale. The general water

balance can be described as:

P—E—Q=%[SP+5M+UZ+LZ+lakes] [3.1]
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Where:

P is the precipitation;

E is the evapotranspiration;

Qs the runoff;

SPis the snow pack;

SMis the soil moisture;

UZis the upper groundwater zone ;

LZ is the lower groundwater zone;

OO O O o o o o o

lakes is the lake volume.

In different model versions HBV has been appliedniore than 40 countries all
over the world. It has been applied to countriethvauch different climatic
conditions as for example Sweden, Zimbabwe, Indid @olombia. The model
has been applied for scales ranging from lysimgletis (_indstrom and Rodhe
et al., 199) to the entire Baltic Sea drainage basirrgstrom and Carlson et al.,
1994; Graham et al., 199HBV can be used as a semi-distributed model by
dividing the catchment into subbasins. Each subbiasithen divided into zones
according to altitude, lake area and vegetatiore iitodel is normally run on
daily values of rainfall and air temperature, aralydor monthly estimates of
potential evaporation. The model is used for fldocecasting in the Nordic
countries, and many other purposes, such as spillleaign floods simulation
(Bergstrom et al., 1992water resources evaluatioivr(example Jutman et al.,
1992; Brandt et al., 1994nutrient load estimateg(heimer et al., 1998

3.2.1 Parameters

In summary the model parameters of the HBV model sixteen and the
following definitions give basic information abothe meaning of particular
parameter, about their possible names and also sofoemation about the

interval from which it should be taken.
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The parameters that we have to calibrate are:

» Fc, field capacity— maximum amount of water the soil can hold [mm];

» Rc (BETA), recharge coefficient— determines the contribution of
precipitation and melted snow to the soil and uzoer;

» Emp (C), empirical parameter used only when calculating daily PET from
monthly values of PET;

» Uzl (luz), upper zone limit- determines the threshold in upper zone when
the dischargegpccurs [mm];

» tempRain — temperature threshold above which all precijitais liquid
[°T;

» tempMelt (TT) — temperature threshold determining the mgltof snow
cover [°];

» tempSnow — temperature threshold below which all preciptatis solid
(snow) [°];

» ddf (CMELT), degree day factor determines the speed of snow melting
[mm];

» perc, percolation— amount of water from upper to lower zone [mm];

> Ipe (LP), limit of potential evapotranspiratior- used to estimate actual
evapotransipration [-];

» Ko,ki,ko, empirical parameters influencing the discharganfrupper and
lower zones;

» croute- parameter affecting the distribution of flow inteveral days;

» scf, Csp, snow correction factor Snow accumulation is adjusted by a free
parameter; it should remain 1;

» maxbas number of days into which the flow from partiqulstorages is
distributed.

The HBV model can best be classified as a semitoliged conceptual model. It
uses subbasins as primary hydrological units, aitiirmthese an area-elevation
distribution and a crude classification of land (feeest, open, lakes) are made.
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The HBV model consists of three main components:

1. Subroutines for snow accumulation and melt;
2. Subroutines for soil moistugecounting;

3. Response and river routing subroutines.

The model has a number of free parameters, valteshith are found by
calibration. There are also parameters descrilliegcharacteristics of the basin
and its climate which remain untouched during maddibration. (Bergstrom et
al., 1992.

Input data are precipitation and, in areas withwsrear temperature. The
soil moisture accounting procedure requires data the potential
evapotranspiration.

Areal averages of the climatological data are cdegbiseparately for
each subbasin.

1. Snow submodel

The snow routine of the model controls snow accath and melt. The
precipitation accumulates as snow when the air ézatpre drops below a
threshold value (TT). Snow accumulation is adjudigda free parameter,sg
the snowfall correction factor.

Melt starts with temperatures above the thresh®ld, according to a

simple degree-day expression:

Where:
0 MELT is a snowmelt (mm/day);
o CMELT is degree-day factor (mA@);
0 TT is the threshold temperatur).

Thus the snow routine of the HBV model has prinyahkee free parameters that

have to be estimated by calibration: TE-@nd Gue,r.
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2. Soil moisture submodel

The soil moisture accounting routine computes aexnof the wetness of the
entire basin. It is controlled by three free pareerse FC, BETA and LP which
will be discussed later.

Recently a modification of the evapotranspiratiautine has been
introduced in order to improve the model perforneandhen the spring and
summer is much colder or warmer than normaiqstrom and Bergstrom et al.,
1992). This routine accounts for temperature anomaddiea correction which is
based on mean daily air temperatures and long éeermages according to this

equation:
PE,=(1+4C- (T —Ty)) " PEy [3.3]

Where:

PEx is a adjusted potential evapotranspiration;
C is a empirical model parameter;

T is the daily mean air temperature;

Tw is the monthly long term average temperature;

o O O O O

PBEy is the monthly long term average potential tranasion.
The three free parameters are:

o FC is a maximum soil moisture storage in the basin;

0 BETA determines the relative contribution to runioéfim a
millimeter of rain or snowmelt at a given soil noie deficit;

o LP controls the shape of the reduction curve fdepibal
evaporation.

3. Runoff response submodel

The runoff response routine transforms excess WAy from the soil moisture
routine, to discharge for each subbasin. The reutionsist of two reservoirs

with the following free parameters:

0 Ko, K1, Ko are three recession coefficients;
o0 UZL is the threshold;

0 PERC is the constant percolation rate.



CALIBRATION OF RAINFALL-RUNOFF MODELS

Finally there is a filter for smoothing of the gesed flow. This filter consists
of a triangular weighting function with one freerpaeter, MAXBAS. It is a

model parameter affecting the distribution of flowo several days.

3.3 Model calibration

The agreement between observed and computed risr®faluated by Nash and
Sutcliffe efficiency criterion{lash and Sutcliffe et al., 19ywhich is commonly

used in hydrological modeling:

2(Qo—Q0)*—X(Q c—Qo)?
R? = - 4
(Qo—Q0)? [3-4]

Where:
0 Qois aobserved runoff
0 Q,is the mean of observed runoff

0 Qcis the computed runoff

A perfect fit would give a value ofR= 1, but in practice the value above
0.8 means good fit and measured hydrograpiigl©, 1999.



CHAPTER 4

CHAPTER 4
STUDY CATCHMENT: THE HRON RIVER
BASIN

One catchment was used in this study, the Hrom beasin, located in Slovakia.
The Hron River is a left-side tributary of the DaeuRiver; its basin is located in
Central Slovakia. The catchment is feather-shalpedted along the long main
river with numerous shorter tributaries. It covarsarea of 5465 kiits upper
and middle parts are situated in the area of Ii@@pathian Mountains, while
the lower part of the basin belongs to the Danubhianlands. The spring of the
Hron River is at an altitude of 934 m a.s.l. néar tillage of Telgart and it flows
into the Danube near Stdrovo at an altitude of0& rh a.s.l. The total length of
the Hron River is 284 km. The mean slope of therrivaries from about 7.6 %o
in the upper part to 0.9 %o in the lowlands. The iHRiver drains 11.2 % of
Slovakia. After the Vah and Bodrog catchments, kien is the third largest
river in Slovakia. The most important tributarieshe upper part of the basin are
Hronec, Cierny Hron and Rohozna from the left, Bystra, Vajskky and
Jasensky potok from the right side. In the middi¢t pf the basin the Slatina is
the largest tributary; other important tributarie Bystrica, Kremnicky and
Zarnovicky potok.

With regards to the availability of hydro-meteomilal data and also
according to the character of the hydrologic preessin the catchment the
alluvial part of the river has not sufficient dataitable for hydrologic modelling
(short series and less a dense network). Howewer tal its lowland character
and very low specific discharge (mostly less thah ls'km?), modelling
approaches have to be applied which better acclmunthe physically based
description of processes in the unsaturated zcae ¢bnceptual rainfall-runoff
models. Therefore the discharge gauging statiorsiBaBystrica was selected as
the closing cross section for this study (the téttnon River basin” refers
mainly to the Hron catchment to Banska Bystricaeh#ter). This upper Hron
River basin up to the Banska Bystrica gauging aakias an area of 1766 km

the minimum elevation of the basin is 340 m a.fhle maximum elevation is
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2004 m a.s.l.; and the mean elevation is 850 rh &lse location of the basin in

Slovakia is shown in Figure 4.1:

Figure 4.1: Location of the Hron River in Slovakia.

The climatic conditions of the Hron River basin respond to the European-
continental climatic region of the mild zone, withceanic air masses
transforming into continental ones. The annual ipretion in the basin varies
from 570 to 700 mm yedrin the lowlands to about 700 - 1400 mm year the
valleys and upper mountainous areas. The overatage is approximately
800 mm yeat. Evaporation amounts to approximately 300 to 600 year.

Three regional subdivisions of the catchment caml€ee according to
relief and elevation: the warm region (lowlandshieh is spreading out in the
Danube lowland, the Ziar and Zvolen Valleys, thédmiarm region (valleys),
which covers the mountain slopes up to 800 m aamt the whole Upper Hron
Valley. The third, the cold region (mountainouspss), is located above 800 m
a.s.l. in all mountains surrounding the upper pathe basin. The basic climatic
characteristics of these sub-regions are giverablel'4.1.

The Hron River has a snow-rain combined runoff megitype. The
precipitation in the upper part of the Hron bastaahes 1600 mm, while in
lower flat areas it is only 600 mm. The runoff regents in the upper part up to
60 % of the precipitation, while in the flatlandslyp 10 %, the mean value for
the whole basin being 37 %. The long-term mean anaischarge for the Hron
in Brezno is 8.12 rhs?, in Bansk& Bystrica 28.0 Y15, and at the confluence
with the Danube it increases to 55.2 s (Table 4.2).
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The specific runoff in the Hron River basin variegween 1.6 in the lowlands to
28 | s* km? in the mountains. The richest tributaries are Byska, Jaseniansky
potok, Vajskovsky potok and Bystrica, where theali®s reach 22 - 25 T-&m

% In the flatland areas the specific yield is ol | s* km? The mean values
for the whole basin is 10.1 T&m? which is 20 % more than that for the whole
territory of Slovakia.

The flood generation problem in the basin is comple the alpine high
mountain regions floods from snowmelt, mixed evemd flash floods represent
a threat to local villages build in narrow valleglé over the year. Due to runoff
concentration snowmelt floods and floods of cyatomiigin represent danger to

major cities and industrial areas with heavy anenaical industry, electric and

atomic power plants in the middle of the catchments

Table 4.1: Climatic characteristics of the Hron Basi (based on data provided by the Slovak
Hydrometeorological Institute).

Climatic characteristics Lowlands Valleys Mountainous slopes
Mean temperature in January [°C] -1.5t0-25| -25t0-6.5 -2.5t0-8.0
Mean temperature in July [°C] 20.3t019.5| 19.5t014.5 19.5t09.5
Days with temperature above 0 [°C] 320 - 300 300 - 245 300 - 195
Number of summer days 75 - 60 60 - 20 60-0
Number of ice days 25-35 35-50 35-75
Days with precipitation above 1 mm 85-100 100 - 120 100 - 150
Annual precipitation [mm] 580 - 700 700 - 900 700 - 1400
Precipitation in the warm season [mm] 330 - 400 400 - 500 400 - 750
Precipitation in the cold season [mm] 250 - 300 300 - 400 300 - 650
Number of days with snow cover 35-50 50 -100 50 - 220
Evapotranspiration [mm] 600 - 500 500 - 400 500 - 300
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Table 4.2: Discharge characteristics in selected pfites in the Hron basin (based on data provided byhe
Slovak Hydrometeorological Institute).

River Profile|Basin arey Mean |Mean annual runo Mean monthly discharges
discharge for period 1931 — 1980 [frs!]
[km?] [m*s’] [10° m*y ™| 11 | 12 1 2 3 4
5 6 7 8 9 10
Hron 26.69024.44017.49020.02037.05057.230
Banskéa 1766.48 | 27.990 883.3 42.85031.08(023.85018.960 16.45019.760
Bystrica

Table 4.3: Water balance characteristics of the HrorRiver and its tributaries in the period of 1931 1980
(based on data provided by the Slovak Hydrometeorobical Institute).

Hron River mouth | Bystrianka| Vajskovsky | Jaseniansky potok Bystrica
potok

Precipitation [mm] 869 1414 1466 1407 1194
Runoff [mm] 319 755 820 704 722
Losses [mm] 550 659 646 703 472
Runoff coefficient 0.37 0.53 0.56 0.50 0.60
Specific runoff 10.10 23.92 25.98 22.31 22.89
[l s*km?]

Extensive studies conducted by the Slovak Hydroametegical Institute have

shown that hydrological time series from the pesid®31 to 1960 and from

1931 to 1980 can be considered stationary. Wherpaadnyg statistical data from

the period 1961 — 2000 with the long term behaviotithe catchments as

described by data from the period 1931 — 1980, scnally a slight decrease in

runoff can be shown. The decrease in runoff is @pprately the same for the

Hron as for the whole country (about 10 %), preeipn decrease is less

significant (about 1 to 4 %). In consequence thees a slight increase in

evapotranspiration in the water balance. As forgim®rm mean monthly

discharges for the same two periods, both incransiecrease can be detected in
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the Hron river basin; the mean monthly dischargeaat necessarily decrease in
all months in all catchments. An increasing tengec&n be detected in some

catchments in the spring and early winter.
4.1 Description of the pilot basins

For the estimation of climate change impact onaheual, monthly and flood
runoff one gauging station was selected in thidstBanska Bystrica. Table 4.4
contains the characteristics of the upper Hron rbamnd of the nested
subcatchment: the mean basin values of air temperagtrecipitation and runoff
represent the mean annual averages from the pE9&t— 1990.

Table 4.5 shows the basin averages of long-terrnmaeaual potential
evapotranspirationEP) and long-term mean annual actual evapotranspirati
(ET) period 1981 — 1990 computed by the Turc modeliciwls used in this
study. The spatial estimates of the long-term maanual air temperature
(1981 — 1990) from the six climatic stations, whigre daily measurements of air
temperature, air humidity, sunshine duration, vapmessure and wind speed
were carried out, are shown in Figure 4.2. FiguBshows the map of spatial
estimates of the long-term mean annual precipiat{®@981 — 1990) and
precipitation stations (as points) used in integiioh of the map. The grid maps
of the long-term mean annual potential and actuapetranspiration (1981 —
1990) as estimated by the Turc empirical modeifrihe precipitation, air

temperature and runoff maps are shown in Figuresdd 4.5.

Table 4.4: Basic characteristics of Banska Bystricaub-basins from the period 1981 — 1990.

Basin Banska Bystrica
Area [knT] 1763.2
Elevation mean/range [m a.s.l.] 847/1672
Air temperature [°C] 54
Precipitation [mm] 828
Runoff [mm] 394
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Table 4.5: Basin averages of long-term mean annuabfential evapotranspiration (EP) and long-term mean
annual actual evapotranspiration (ET) for the period1981 — 1990 computed by the Turc model.

Basin Banska Bystrica
EP Turc [mm] 475
ET Turc [mm] 445

Krizna

[cl
10

Figure 4.2: Spatial estimates of the long-term meaannual air temperature (1981 — 1990) and the siXimatic

stations.
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Figure 4.3: Map of the long-term mean annual precijiation (1981 — 1990) and precipitation stations (@ints)
used in interpolation.
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Figure 4.4: Grid map of the long-term mean annual ptential evapotranspiration (1981 — 1990) as estirted by
the Turc empirical model.
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Figure 4.5: Grid map of the long-term mean annual etual evapotranspiration (1981 — 1990) as estimatdxy
the Turc empirical model.

The time of concentration to the basin’s outleBamska Bystrica is around one
day. The largest travel time of 28 hours was ed8ohdy hydraulic routing,
considering the overland and subsurface flow fré¢va basin’s cells on the
catchment’s boundary to the basin with the physidadsed distributed rainfall-
runoff model of WetSpa_ (u and De Smedt et al., 20p@aking into account the
flow length, the slope, the soil properties andae roughness as a function of
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the land-use). This estimate is supported by trawees computed from the
commonly used Kirpich and Nash formula, which yeldvalues of 19 and 23

hours respectively.



CHAPTER 5

CHAPTER 5
RESULTS

In this chapter we are going to present the resiiltise rainfall-runoff modelling
in the Hron catchment using the HBV model. The nhadéculates discharge
from the catchment using various meteorological ahchatic data such as
precipitation, temperature and daily potential etegnspiration. In this study we
have been working with data from the Hron catchnrmeeasured in a daily step
in a period between 01/01/1980 and 31/12/2000 giuvs 20 years of observed
data.

Since the main objective of this study was to comparious calibration
strategies and optimization algorithms we havediztihat the best way how to
evaluate their performance is to eliminate the mesmsents errors. By doing this
we have achieved that the goodness of fit of aquéar model was given only
by the different parameters obtained from varicaltbcation strategies. In order
to eliminate the effect of the data errors we hereated a new time series of
flows calculated with the HBV model with parameténat were calibrated on
the whole period of the original data.

The whole process of the calculations can be divid® these steps.

Step 1:calibration of the original data and obtaininggraeters used to
create generated data. Using of two optimizatigor@thms: genetic algorithm —
GA and harmony search — HS and their comparisolectgg better algorithm
used in next calibrations.

Step 2 reproduction of the model by calibrating the gaed data — use
of the whole dataset.

Step 3 reproduction of the model by calibrating the gaed data — use
of various calibration strategies.
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5.1 Calibration of the original data

In order to create the generated flows, furtherdusethe study, we had to
calibrate the original dataset to obtain the betsio$ parameters. We have used
two types of optimization algorithms: genetic aifon and harmony search. To
compare these algorithms we have decided to do &i@rations for both
algorithms. Their comparison is depicted in Figird showing that both
algorithms gave similar values of the Nash-Sutlgbefficient (NS) used as an
objective function. Since the highest value of N&vachieved by the GA we
have decided to use only the GA in further calibreg. The distribution of the
parameters for both GA and HS is shown in Figures &nd 5.4 after 50

calibration using GA and HS and triangle transfdrarma

Comparison of Nash-Sicliffe codf. for genetic algerithm and harmony search

09
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Figure 5.1: Comparison between GA and HS.
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Using the best set of parameters we have achievealu® of NS of 0.826.

Furthermore we have two graphics about:

snow water equivalent (swe),

upper zone storage (suz),

lower zone storage (slz),

soil moisture (sm),

daily potential evapotranspiration (DPET),
actual evapotranspiration (aet),
temperature,

precipitation,

runoff componentsdg g, Gp.

Which can be compared. The values of a particusaarpeters are shown in

Table 5.1. These parameters were then used toecseaulated flows, which

together with observed flows, are depicted in Fegu®.

Table 5.1: Parameters used to create generated data.

Parameter Value

fc 162.61369
rc 1.00315
emp 1.0000

uzl 10.171452
tempRain 7.42226
tempMelt -1.52136
tempSnow -8.97445
ddf 0.75727
perc 2.67033
Ipe 0.50453
kO 48.56770
k1 4.19195
k2 22.79866
scf 1.0000
maxbas 3.36842
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Figure 5.2: Simulated (blue) and observed (red) flos plotted together with their errors (observed —
simulated).

As we can see, the blue line shows the simulateasfl meanwhile the red line
the observed flows. We can observe a good restifieotalibration as well as for
the errors In fact the maximum value is 150 inftrs# year and we have another
two peaks between 1984 and 1986, but in generalaneconclude the first step
is good and from these new parameters we can ol#absequently, the new
generated data.
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Hereinafter the distribution of the parametersrad@ calibrations for both GA

and HS is shown:

Parameter variation after 50 calibrations using GA and triangle transformation
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Figure 5.3: Parameter variation after 50 calibrations using GA. Red hatched area represents the intea/from
which particular parameter was selected.
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Parameter variation after 50 calibrations using HS and triangle transformation
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Figure 5.4: Parameter variation after 50 calibrations using HS. Red hatched area represents the inteivfrom
which particular parameter was selected.
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As we can see in the Figure 5.3 the parameternlgison is almost stable for
each sixteen parameters. We can observe, for nestédmt the values of the field
capacity fc) are very stable around the value of 160 and #meeswe can say
about the recharge coefficiemt) that is stable around 1.

Instead we can note how the values distributiontled recession
coefficient ko) are not so much distributed, in fact we havermeabetween 10-
30 and so we can say that the distribution is tatils.

We got almost the same parameter distribution ugslagnony Search
(HS) as we can see in the Figure 5.4. We can obskev most significant
difference for the values of limit of potent@tapotranspiratione). In fact,
the parameter variation using GA is stable arotmedvialue 0.5, instead , using
HS, is not so stable and we have a range betwd#n007/5. That for further
analysis the parameters estimated using GA weeetsel.

In these other five graphics we can compare thellated flow with a
observed flow and we can observe lines of simulatetl observed flow almost

overlapping, that means, very good results:

Apportionment of the system outputs

40%

51 %

8%

< 1%

Figure 5.5: Apportionment of the system outputs.
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As we can see in the Figure 5.5 the actual evapsptreation (AET) is just a
little bit more than 50 % (precisely 51%) of thestgm outputs. The runoff

components €0, ¢ represent the remaining 49 % are distributedislay:

* Qo<1%

° ql = 8%

e (2=40%

Comparision of cummulative observed and simulated flows
18 T T T T T T T

cummulative Qobs

16 | cummulative Qisim
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Figure 5.6: Comparison of cumulative observed andmsulated flow.

In this Figure 5.6 instead we can observe thatittes of cumulative observed
floe (Qogs) and cumulative simulated flow @) are almost the same. We can
note as after the first 1300 steps the two linestdb deviate but with a

difference that is always irrelevant.
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In this Figure 5.7 is shown the comparison of disgk simulated flow and

discharge observed:

Qsim vs Qobs
o -
2 Csimvs Clobs
plat y=x

200

[

180

Q0bs

100

&0

- 1 1
o o 100 160 200

Figure 5.7: Comparison of discharge simulated andidcharge observed.

We can note that, if we put the simulated flow e tabscissa axis and the
observed flow in ordinate axis, below the value,1@@re is a strong distribution
around the line y = x, that is perfect comparisaimg we can say that the values
are not properly similar and very close, but hogrethe results are very good.
We can say the same about the Figure 5.8, whesteoisn empirical distribution
function, or empirical cdf, that is the cumulatighstribution function associated

with the empirical measure of the sample:
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Empirical CDF
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Figure 5.8: Comparison of simulated and observeddiv.

As we can see the two lines deviate slightly anccare say that ECDF for Qobs

and ECDF for Qsinare almost the same.
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Hereinafter (Figure 5.9) is shown the comparisotwben the input data and
output data.

Input vs Output comparision
< 1%

20%

I P51
4%

50%, = 1%

I = (end)

Figure 5.9: Comparison of input and output data.

As we can see precipitation (P) + snow (S) cortstithe 50 %. The actual
evapotranspiration (AET) 25%, the remaining 25% dene by runoff

components §au, ¢ distributed in this way:

* Qo<1%
° CI1 = 4%
. qp=20%

Furthermore there is another very small (less 18f3gntage of S.
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In order to analyze the correlation dependence gntlb@ parameters we have
performed correlation analysis to identify relaBamong the parameters. After
we analyzed the parameters and we calculated Peacsfficient. The most
familiar measure of dependence between two quesitiis the Pearson
correlation coefficient. 'Pearson correlation indealso called Pearson's
correlation coefficient (or Bravais-Pearson), betwéwo random variables is a
coefficient that expresses the linearity betweasirtbovariance and the product
of their standard deviations.

In fact it is obtained by dividing the covariancketloe two variables by
their standard deviations.

The correlation coefficientx y between two random variables X and Y

with expected valuesx anduy and standard deviatioles andoy is defined as:
pry = corr(X,¥) = 220 = E[(X = ) (¥ = )] [5.1]

where E is the expected value operator, cov meavexiance, and, corr a widely
used alternative notation for Pearson's correlation

The Pearson correlation is +1 in the case of aepepositive (increasing)
linear relationship (correlation), —1 in the case@erfect decreasing (negative)
linear relationship and some value between -1 aindall other cases, indicating
the degree of linear dependence between the vesials it approaches zero
there is less of a relationship. The closer thdfiopent is to either -1 or 1, the

stronger the correlation between the variables.
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In the following Figure 5.10 is shown “Scatter” plwith the correlations

between model parameters:

FC
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TEMPSNOW TEMPMELT TEMPRAIN

DDF
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MAXBAS
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TEMPRAIN  TEMPMELT TEMPSNOW DDF MAXBAS

Figure 5.10: Scatter plot with the correlations betveen model parameters.

The scatter plot represents the relationship batwibe set of 50 calibrated
model parameters. The histograms represent grdphmtapretation of the
frequency distribution of the selected parameters.

Linear smoothing was used to see the relationdhg.can observe a
high correlation between degree day factddf] and tempmelt or between
recession coefficientky and k;. The same we can say for limit of potential
evapotranspiratiore) and recharge coefficientc(. Instead we can note a high
inverse correlation betweeéeampsnowandtempmelt as well ak; andperc.

In the Table 5.2 the Pearson correlation matrixhwhe values of

correlation coefficients between calibrated modebmeters is shown:
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Table 5.2: Correlation matrix with the values of corelation coefficients between calibrated model panaeters.

s| =] 3 <
@© @ c n
| =S| & 3
o S o o <
= = S S 5 o o 5 . o s
L e S e 8 8 S o =3 x ~ 2 S
fc 1
0.066
rc 1
uzl -0.079 | 0.368 1
tempRain 0196 | -0.121] -0.200 i
tempMelt 0.097 | -0.108| 0.70  0.017 L
tempSNow | -0.045| 0.089| -0.028  -0.44% -0.871 1
ddf 0002 | -0.44| 0253 0.01] 0.892| -0.696 1
perc PEES | 0293 0.038 021§ -0.14 0174  0.185 1
Ipe 0053 | 0969| 0384 -0129 -011 0099 0138  -0.227 1
Ko 0020 | -0155| 0428 0132 0234 0308  -0.079 .04 -0.228 1
ki 0.315| 0.200| -0.111] -0.282  0.261  -0.237  -0.016-0.911 | 0.178] -0.094 1
Kz 0278 | 0308 -0.022 -0.24 0210 0188  -0.038-0.887 | 0.233] -0.05§ 0.830 1
maxbas/k | -0034| -0380| -0.243 0276 -0042 0015 00680597 | -0.395| -0.004 -0.615 | G0

Where the values of Pearson correlation coefficibatween calibrated
parameters are presented we can observe highatmmne between the set of
parameters in snow subroutinempmelt with tempsnowandddf, perc with k;
and k, and both parameters witmaxbas High correlation was observed
betweenlpe andrc. Furthermore moderate correlation was observeddsst
Perc with fc and betweemaxbasandk.

In particular, the values marked in yellow are:

Tempsnow-temp melt= -0.87132
ddf -tempMelt = 0.892121

Ipe-rc = 0.968776

perc-k; =-0.91122

perc-k, = -0.8868

perc-maxbas= 0.596702

ki-k, = 0.829575

ki-maxbas= -0.61466

O O O o o o o o
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Instead, the values marked in red, that is withod@enate correlation, are:

0 Perc-fc=-0.4350
0 Maxbas-k; =-0.46007

5.2 Calibration of the generated data

After obtaining the best set of parameters caldarain the observed data we
have used the parameters and measured precipiatemperatures and glare
indexes to create simulated flows - hereinaftezrrefl to as generated data.

These generated data were further used to calitantgher set of
parameters which should show us whether we aretableproduce the model
itself (we are already calibrating simulated daf#)e result of the calibration
shows (see Figure 5.11) that the fit of the modevary good with the Nash-
Sutcliffe value equal to 0.99983. This means thah whe use of genetic
algorithm we have managed to reproduce the maoskf.it

Calibration of generated data
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Figure 5.11: Generated (red) and simulated (blue)ata plotted together with their errors (generated —
simulated). The fit of the data is so good (NS=0.9889) that red line overlaps the blue one.
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Furthermore we got the same five graphics of tihgiral data but with the little
difference that here the results are just a lltitemore excellent as we can see
hereinafter. In fact we can compare the simulal@a tvith a observed flow and
we can observe lines of simulated and observed floxerlapping, that means,

excellent results:

Apportionment of the system outputs
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Figure 5.12: Apportionment of the system outputs.

As we can see in the Figure 5.12 the actual evapspiration (AET) is just a
little bit more than 50 % (precisely 51%) of thestgm outputs. The runoff
components ¢ i, ¢ represent the remaining 49 % are distributedigiay:

* (o<1%
° ql = 8%
. O =40%

We can say that this graphic of generated dataaistipally equal to the same

graphic of original data.



RESULTS

Better results we can observe in the Figure 5.12revithe two lines of
cumulative observed floe ¢@s) and cumulative simulated flow &) are

overlapping.

Comparision of cummulative observed and simulated flows
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Figure 5.13: Comparison of cumulative observed andimulated flow.

In the Figure 5.14 hereafter is shown the distidou discharge simulated and
discharge observed around the line y = x, thatnme@sim = Qobs, that is
perfect comparison. The results are of course b#ten original data because

we have a perfect comparison between Qsim and Qobs:
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Figure 5.14: Comparison of discharge simulated andischarge observed.

We can say the same about the Figure 5.15, whershasvn empirical

distribution function, or empirical cdf. We can ebge a perfect coincident of
the two lines ECDF for Qobs and ECDF for Qsim:
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Figure 5.15: Comparison of simulated and observeddw.
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The last graphic (see Figure 5.16) that we got ftbengenerated data shows the
comparison of input and output data.

Input vs Qutput comparision
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Figure 5.16: Comparison of input and output data.

We can note the same things we have already setfre isame graphic of the
original data. As we can see precipitation (P) evsr{S) constitute the 50 %.
The actual evapotranspiration (AET) 25%, the remgi25% is done by runoff

components ¢, distributed in this way:

* Qo<1%
° CI1 = 4%
. g=20%

Furthermore there is another very small (less 1étgntage of S.
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5.3 Split-sample test

There are different calibration strategies to nteset objectives: good discharge
simulations in terms of least mean square errodgstla@ ability to reproduce one
functional characteristic of the system and theo@utelation function of the

discharge. One of these calibration strategieplissample test.

The available record should be split into two segis:iene of which
should be used for calibration and the other fdidasion. It should be split into
two equal parts, each of them should be used in far calibration and
validation, and results from both arrangements aeth The model should be
judged acceptable only if the two results are simand the errors in both
validation runs acceptable.

So in the next step we have tried to calibrate hpdeameters with the
use of only one half of the generated data. Thersktalf was then used as a
validation period used to verify that the calibchfgarameters can also be used
on different data. We have also used the secorfdbhéile data as a calibration
period and the first half as a validation periothe generated data were split in
the 31.12.1990 creating two periods spanning 18018nd 31.12.1990 and
1.1.1991 and 31.12.2000. When calibrating the modehe first period we have
achieved the NS values of 0.999 for the calibrapeniod and 0.998 for the
validation period. Calibration on the second pefiwdught similar results with
the NS values of 0.999 and 0.999 for calibratiord aralidation periods

respectively.
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Since both of these values are very close to 1lth@disual assessment of the
models (see Figure 5.17 and 5.18) is also very gaodan say that in both cases
we have managed to reproduce the model itself.

All the calibrated parameters are listed in Tab& 5

Split sample test results

T8
E 0 — -—-‘r—n—-fr.-ri-u—--—|"|-J-|~—.-.\.~a—--—u-n--—u‘v~—m~a..l——’—+-——- —M-—“f,—'ua--i--rlm—ﬂJ—-\m-,. ----- ”h—-—ﬁn—'——.,—-—'h——wwﬁf—ml—l\-a-—-,de-.
15— Calibration period » Validation period N
250 - MNE=0.00053 o ME=0.92878 "
A|——— simperd
| == ol 1
L i
1 |——— obaper2
E 150 — —~  obs-sim
o
t -
< 100 —
50_
0‘I'I'I'|'|'|'|'I'I'I‘I'ﬁI"I'I'I'I‘I'I‘I'I
e - o Te] =~ e
5 88 3 8¢ 8§88 g8 88 2¢gfeg g R
Figure 5.17: Comparison of generated and simulatedata. Calibrated on the first period.
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Figure 5.18: Comparison of generated and simulatedata. Calibrated on the second period.
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Table 5.3: Summary table showing all the calibrategberiods and boundaries that were used in the calilation.

Parameter Original Gen all Period 1 Period 2 lower bound | upper bound
fc 162.61 164.25 164.59 162.02 100 400
rc 1.00 1.04 1.03 1.02 0.1 4
emp 1.00 1.00 1.00 1.00 1 1
uzl 10.17 26.45 14.43 30.86 10 40
tempRain 7.42 7.09 7.20 7.20 0.5 10
tempMelt -1.52 -1.48 -1.52 -1.53 -5 2
tempSnow -8.97 -8.81 -8.77 -8.76 -10 0
ddf 0.76 0.76 0.76 0.76 0 3
perc 2.67 2.68 2.67 2.71 0.5 4
Ipe 0.50 0.53 0.52 0.52 0.5 1
ko 48.57 20.75 27.92 18.68 1 50
k1 4.19 4.07 4.17 4.02 1 30
k2 22.80 23.05 2281 22.90 10 100
scf 1.00 1.00 1.00 1.00 1 1
maxbas 3.37 3.16 3.02 3.05 1 6

5.4 Additional split-sample test

In the next step we have done the same as desqgrile@tbusly but with the
difference that we have chosen two different pexidde first period of 15 years
and the second of 5 years. The procedure is the sardescribed above: the
generated data were split in the 31.12.1995 crgativo periods spanning
1.1.1980 and 31.12.1995 and 1.1.1996 and 31.12.20{f@n calibrating the
model on the first period we have achieved the Mfues of 1.000 for the
calibration period and 0.9885 for the validationipe. Also in this additional
split-sample test calibration on the second pebi@iight similar results with the
NS values of 0.9841 and 0.9789 for calibration aralidation periods

respectively.
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can see the values are very close to 1 amditlual assessment of the
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Figure 5.20: Comparison of generated and simulatedata. Calibrated on the second period.

We have repeated this procedure, but changing atp@nperiods: we have

chosen

for the last split-sample test the firsiqeeof 5 years and the second

period of 15 years. And so the generated data splie in the 31.12.1985
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creating two periods spanning 1.1.1980 and 31.B%18nd 1.1.1986 and
31.12.2000. When calibrating the model on the pestod we have achieved the
NS values of 0.9999 for the calibration period &nh#8997 for the validation
period. Also in this additional split-sample teatiloration on the second period
brought similar results with the NS values of 0.B@hd 0.9998 for calibration
and validation periods respectively.

Split sample test results
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Figure 5.22: Comparison of generated and simulatedata. Calibrated on the second period.



RESULTS

Even here we can conclude that since both of thalses are very close to 1 and
the visual assessment of the models (see Figuteah@ 5.22) is also very good.

So we can say that in both cageshave managed to reproduce the model itself.
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CONCLUSIONS

The present study is focusing on rainfall-runoffdalling and in particular on
techniques for parameter calibration. The objestiokthe study is to assess the
efficiency of currently used parameter estimatioethmds with respect to
hypothetical and real world case studies. An etiadll models is used for
which calibration techniques are tested therefagsviohg indications on their
efficiency and suitability.

We got results of the rainfall-runoff modelling time Hron catchment (in
the middle of Slovack) using the HBV model. Thedmlocalculates discharge
from the catchment using various meteorological ahchatic data such as
precipitation, temperature and daily potential etegnspiration. In this study we
have been working with data from the Hron catchnrmeeasured in a daily step
in a period between 01/01/1980 and 31/12/2000 giuvs 20 years of observed
data.

Since the main objective of this study was to comparious calibration
strategies and optimization algorithms we have digtithat the best way to
evaluate their performance is to put ourselves rinideal conditions where
measurements errors are not present. By doingwtbitiave achieved that the
goodness of fit of a particular model was givenydmy the different parameters
obtained from various calibration strategies. Idesrto eliminate the effect of
the data errors we have simulated a synthetic sienes of flows calculated with
the HBV model with parameters that were calibratedhe whole period of the
original data.

We have used two types of optimization algorithorstiie whole dataset:
genetic algorithm and harmony search and we haed tise Nash-Sutcliffe
coefficient (NS) as an objective function.

After obtaining the best set of parameters caldatain the observed data
we have used the parameters and measured praoigstaemperatures and glare
indexes to create simulated flows (generated data).

These generated data were further used to calitantgher set of
parameters which have shown us whether we aretalieproduce the model
itself. The result of the calibration shows tha fit of the model is very good
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with the Nash-Sutcliffe value equal to 0.99983.sTimeans that with the use of
genetic algorithm we have managed to reproducentiael itself.
Then we have used various calibration strategies.

We have tried to calibrate model parameters wighuse of only one half
of the generated data. The second half was thehassa validation period used
to verify that the calibrated parameters can alsa$ed on different data. We
have also used the second half of the data asteiatadn period and the first half
as a validation period. The generated data wdikeisghe 31.12.1990 creating
two periods spanning 1.1.1980 and 31.12.1990 ahd 991 and 31.12.2000.
When calibrating the model on the first period veaédr achieved the NS values
of 0.999 for the calibration period and 0.998 fdre tvalidation period.
Calibration on the second period brought similauhes with the NS values of
0.999 and 0.999 for calibration and validation pési respectively. Since both of
these values are very close to 1 and the visuaksasgent of the model is also
very good we can say that in both cases we haveageanto reproduce the
model itself.

We have repeated this procedure, but changing abaimperiods: we
have chosen for the last split-sample test the pesiod of 5 years and the
second period of 15 years. And so the generatedvaate split in the 31.12.1985
creating two periods spanning 1.1.1980 and 31.B%18nd 1.1.1986 and
31.12.2000. When calibrating the model on the pesiod we have achieved the
NS values of 0.9999 for the calibration period #8997 for the validation
period. Also in this additional split-sample teatiloration on the second period
brought similar results with the NS values of 0.B@hd 0.9998 for calibration
and validation periods respectively.

Even here we can conclude that since both of thelses are very close
to 1 and the visual assessment of the models asvallsy good. So we can say
that in both cases we have managed to reprodudedtel itself.

We can conclude that the HBV model is an efficiesal for runoff
simulation. The model is simple and has been appliesome 40 countries, in all
parts of the world and the number of applicatiansther countries is growing. It
is also used for many other purposes, such asvapiltlesign floods simulation,

water resources evaluation, nutrient load estimates
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