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Abstract

Perturbative quantum gravity can be studied in many ways. A traditional approach is to
apply covariant quantization schemes to the Einstein-Hilbert action and use heat kernel
methods, as pioneered by DeWitt. An alternative approach is to consider the graviton as
arising from the first quantization of particle actions, following the same methods used
in string theory. An interesting model to describe the graviton is based on the so-called
N = 4 spinning particle, which has been used recently to study perturbative properties
of quantum gravity, allowing in particular for the calculation of certain gauge-invariant
coefficients. The latter are related to the counterterms that renormalize the one-loop
effective action of pure quantum gravity with a cosmological constant. Such coefficients
have already been tested in D = 4 dimensions. Here we study the general case of
arbitrary D. We derive the gauge-invariant coefficients —the simplest one being the
number of physical degrees of freedom of the graviton—using the traditional heat kernel
method. We compare them with the ones obtained by using the N = 4 spinning particle
and discover that the latter fails to reproduce some of those coefficients for D 6= 4,
suggesting the need of improving that first quantized model. This constitutes a first
original result of this thesis. In the second part, we try to find an alternative worldline
path integral treatment of the heat kernel, extending a previous worldline construction
that was tailored to 4 dimensions only. We succeed in finding suitable worldline actions
for the gauge-fixed graviton fluctuations and related ghosts. The action for the graviton
fluctuations that we construct reproduces the expected Hamiltonian but does not seem
to admit a perturbative path integral treatment.
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Introduction

The construction of a quantum theory for the gravitational interaction has been one of
the main goals of modern theoretical physics. One approach uses the background field
method with covariant gauge-fixing techniques to define the Feynman rules for comput-
ing perturbatively the effective action. A useful technique to compute and renormalize
the effective action at one-loop makes use of heat kernel method, pioneered in curved
space by DeWitt [1, 2, 3]. In particular, the counterterms needed to perform renormal-
ization at one-loop are efficiently captured by heat kernel coefficients (also known as
Seeley-DeWitt coefficients) related to differential operators defined by the gauge-fixed
gravitational action. On-shell, these coefficients should not depend on the gauge-fixing
procedure, and become gauge invariant. In this thesis we shall discuss methods for com-
puting these gauge-invariant coefficients in the case of pure gravity with a cosmological
constant, and check their consistency.

The first method we consider employs the original heat kernel approach, as developed
by DeWitt. We rederive explicitly the coefficients needed to renormalize the divergences
of the effective action in 4 dimensions—the heat kernel coefficients a0, a1, and a2 in
the notation of DeWitt—keeping the spacetime dimension D arbitrary. Some of these
coefficients are reported erroneously in the literature, and we will rederive them to be
sure to consider the correct ones. Evaluating them on-shell (i.e. using the metric of
an Einstein manifold) produces the gauge-invariant coefficients of our interest. They
constitute a benchmark for alternative approaches to quantum gravity.

Alternative methods that we wish to consider and test are related to first quantized
approaches to the graviton (the heat kernel in a sense is such an approach). A first
worldline path integral approach is the one developed in [4], which was tailored to 4
dimensions only, and used to check in D = 4 the value of the gauge-invariant coefficients
we mentioned above. This model is discussed in the second part of the thesis, where
attempts to extend this approach to arbitrary D are made.

A more elegant model is the one that describes the physical graviton with the N = 4
spinning particle, developed through BRST methods in [5, 6] and within a path integral
approach in [7]. It has been used to reproduce successfully the known coefficients at
D = 4, giving at the same time a prediction at arbitrary D, see [7]. We compare these
coefficients with the one we found earlier with the heat kernel technique, and find that
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all these methods are correct in D = 4, but differ at arbitrary D. We interpret these
results as suggesting that the heat kernel results should be the correct ones, being derived
from first principles, while the disagreement that we have found indicates the need of
improving the construction of the N = 4 spinning particle, so to match the correct
results at arbitrary D.

We structure our thesis as follows. In chapter 1, after a brief introduction, we de-
scribe the heat kernel by presenting its relation with the one-loop effective action. The
coefficients of the associated expansion can be written in terms of a few independent
invariants constructed from the background fields of space-time. These coefficients are
then specialized to the case of interest, namely perturbative quantum gravity.

In chapter 2 we describe the theory of pure quantum gravity with cosmological con-
stant i.e. the Einstein-Hilbert action with the cosmological term. A background-quantum
splitting is performed to identify the graviton fluctuations on the fixed background. The
action is then expanded up to the second order in the fluctuations. The gauge symmetry
of the theory requires a procedure of gauge-fixing achieved by means of BRST methods.
The quadratic approximation of the action (necessary to evaluate the one-loop effective
action) contains the graviton and the ghost contributions, from which we extract their
invertible kinetic operators. The latter are finally used to evaluate the first three Seeley-
DeWitt coefficients. These terms identify the counterterms that make the effective action
finite (in 4 dimensions). When evaluated on-shell (i.e. on Einstein manifolds) they be-
come gauge-independent, and thus define gauge-invariant coefficients. We compare them
with similar ones obtained by other methods and find a mismatch at D 6= 4 with those
obtained by first-quantizing the N = 4 particle action, which is expected to describe the
graviton. This suggests that the N = 4 particle model needs an improvement.

In chapter 3 we try to reproduce those coefficients using an alternative approach, also
based on the worldline formalism. We start with the simpler case of the ghost sector.
We construct the particle action related to the ghosts and use it in a path integral, thus
reproducing the corresponding Seeley-DeWitt coefficients.

In chapter 4 we try to perform the same steps for the gauge-fixed graviton fluc-
tuations. We identify the corresponding particle action, which indeed reproduces the
Hamiltonian used previously in the heat kernel approach, but find that the correspond-
ing path integral is not easily calculable, as the standard perturbative method based on
Gaussian integration is inapplicable. How to overcome this final issue is left for future
research.
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Chapter 1

Heat kernel expansion

After a brief introduction to the heat kernel, starting from the generating functional in
path integral representation, the relation between the one-loop effective action and the
heat kernel is made explicit. The utility of the heat kernel procedure lies in the possibility
to write down the coefficients of the expansion taking into account a few independent
invariants constructed from the background fields defined on spacetime.

The specific form of the Laplace operator, necessary for our study of the Seeley-
DeWitt coefficients in quantum gravity, is presented paying particular attention to all
the connections in the covariant derivative. After the introduction of the local invariants,
the formulae of the heat kernel coefficients are computed for a general Hamiltonian,
following Vassilevich’s notes [8].

1.1 Heat kernel introduction

The heat kernel represents a powerful tool both in physics and mathematics. During the
last decades, it has been extremely useful for the study of effective actions, calculations
of anomalies, divergences, and asymptotics. In 1937 Fock [9] noted that it is possible
to represent Green functions in terms of integrals over the so-called “proper time”, an
auxiliary coordinate, of a kernel that satisfies the heat equation. J. Schwinger [10] used
that representation of Green functions, related to the dynamics of a particle with space-
time coordinates depending on a proper time, for studying issues such as renormalization
and gauge invariance. Later B. DeWitt [1, 2, 3] applied that procedure to quantum field
theory and quantum gravity, reaching important results. Other mentionable applications
are calculations of the vacuum polarization, the Casimir effect, and the proof of index
theorems.

In order to introduce the heat kernel, let us first define the operator ∂̂µ = ip̂µ,
that reduces to the usual derivative when acting on wave functions. Consider then the
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following second order differential operator with a mass term

Ĥ0 = −∂̂2 +m2 (1.1)

where ∂̂2 := ∂̂µ∂̂
µ corresponds to the Laplacian in cartesian coordinates on the flat

manifold M = RD. The heat kernel is defined as the matrix element between position
eigenstates of the evolution operator in euclidean time e−βĤ0 , i.e.

K(β, x, y; Ĥ0) = 〈x| exp
(
−βĤ0

)
|y〉 (1.2)

and represents the solution of the Wick-rotated (by analytic continuation t −→ −iβ)
Schrödinger equation, the heat equation:(

∂

∂β
+ Ĥ0

)
K(β;x, y; Ĥ0) = 0 (1.3)

under boundary conditions of the form

K(0;x, y; Ĥ0) = δD(x− y). (1.4)

It is quite simple to check that the explicit form of (1.2) in the case of the operator in
(1.1) is given by

K(β;x, y, Ĥ0) =
1

(4πβ)D/2
exp

(
−(x− y)2

4β
− βm2

)
. (1.5)

In the case of an operator containing an arbitrary potential represented by a smooth
function V (x), such as

Ĥ = Ĥ0 + V (x̂) (1.6)

the solution is not exactly computable in general, but in many cases can be treated by
using a perturbative expansion of the form

K(β;x, y, Ĥ) = K(β;x, y, Ĥ0)

(
a0(x, y) + a1(x, y)β + a2(x, y)β2 + . . .

)
(1.7)

with a0(x, y) = 1. The coefficients a0(x, y), a1(x, y), a2(x, y) and so on are called heat
kernel coefficients (or sometimes Seeley-DeWitt coefficients), and depend on the points
x, y and on the explicit form of the potential V (x). Of particular interest are the heat
kernel coefficients evaluated at coinciding point, an(x) ≡ an(x, x).
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1.2 One-loop effective action

In order to study the application of the heat kernel to quantum field theory consider the
following generating functional in euclidean path integral representation

Z[J ] =

∫
Dφ e−S[φ,J ] (1.8)

which produces the correlation functions of the field φ, whose action is S[φ, J ] which con-
tains a “source” J (an arbitrary function which allows to compute correlation functions
performing functional derivatives of the action). Since in this thesis we are interested in
computing the one-loop approximation of the effective action for gravity, it is enough to
expand the action up to the quadratic order in the quantum field fluctuations φ, namely

S = Scl + 〈φ, J〉+ 〈φ, Ĥφ〉+ · · · (1.9)

where Scl is the action on a classical background, Ĥ is a second-order differential operator
(interpreted as the Hamiltonian of a fictitious particle in heat kernel methods), and a
shorthand for the integrals over the D-dimensional space-time is used:

〈φ1, φ2〉 :=

∫
dDx
√
g φ1(x)φ2(x). (1.10)

In the above equation g = | det(gµν)| represents the absolute value of the determinant
of the metric, while the integral over the underlying space-time is the inner product on
the quantum fields space. In order to dispel any doubt, it is rather significant to clarify
that the classical background field which produces the action Scl and the quantum field
describing fluctuations are distinct and could be of totally different type. A noteworthy
example is the case of a pure quantum field in the classical background of gravity.

Then, equation (1.8) with the approximation in (1.9) represents a gaussian integral
solvable as follows

Z[J ] = e−Scldet−
1
2 (Ĥ) exp

(
1

4
JĤ−1J

)
. (1.11)

From now on we omit the hat in the Hamiltonian operator as follows H := Ĥ.
Let us consider the Hamiltonian operator as in equation (1.6). By taking advantage

of the heat kernel, as presented in the previous section, the propagator H−1(x, y) can be
defined using the following integral representation

H−1(x, y) =

∫ ∞
0

dβ K(β;x, y;H) (1.12)

which follows from equation (1.2) for the Hamiltonian of (1.6). At this stage it is conve-
nient to introduce the effective action. For our purposes, it is enough to set the sources
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to zero and define the effective action in terms of the generating functional as Z[0] = e−Γ,
so that at one-loop it can be written as follows

Γ1-loop =
1

2
ln det(H) (1.13)

which represents the effects of the background fields in the one-loop approximation.
To rewrite in a useful form, let us consider the following identity valid for positive

numbers λ and λ0 (interpreted as eigenvalues of the operators H and H0)

ln
λ

λ0

= −
∫ ∞

0

dβ

β

(
e−βλ − e−βλ0

)
. (1.14)

We use this relation extended to the full operator H (dropping also an infinite constant)
to rewrite the above effectve action as

Γ1-loop = −1

2

∫ ∞
0

dβ

β
K(β,H) (1.15)

with

K(β,H) = Tr
(
e−βH

)
=

∫
dDx
√
g K(β;x, x,H) (1.16)

and where the identity ln det(H) = Tr ln(H) has been used.
From equations (1.15) and (1.16) we note how the one-loop effective action can be

written by making use of the heat kernel and also studied in terms of the above-mentioned
Seeley-DeWitt coefficients, as shown in equation (1.7). The use of the heat kernel to
compute the effective action is rather convenient since the Seeley-DeWitt coefficients
can be computed in terms of just few geometric invariants, as will be shown in the next
section. The advantage of this procedure is based on its general validity for different
gauge groups, spins, etc.

1.3 The Laplace operator and local invariants

In preparation of the computation of the general Seeley-DeWitt coefficients, that will
be done in the next chapters, it is convenient to introduce the specific form of Laplace
operator of interest and the so called local invariants.

For the purpose, consider a positive definite metric tensor gµν embedded in a Rie-
mannian manifold M . We restrict our study to a manifold without boundary, which is
the case of interest. A complete and detailed description of the heat kernel expansion in
manifolds with boundaries is contained in Vassilevich’s notes [8].

Let each point of the manifold M be characterized by a vector space. The latter could
be considered as the representation space of a gauge group or of the symmetry group of
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the space-time. All these vector spaces could be seen as forming a vector bundle whose
sections are functions with an index describing an internal degree of freedom.

At this stage introduce a second order differential operator of Laplace type restricted
to the following specific form

H = −(gµν∇µ∇ν + V ) (1.17)

where ∇µ is the covariant derivative and V a matrix-valued function. The covariant
derivative contains not only the Riemannian part (together with the Christoffel symbol
Γµν

λ) but also the part related to the “gauge” connection ωµ. Therefore, if we have for
instance a scalar field transforming under a gauge group it would have also a “color” index
describing the above-mentioned internal degree of freedom, and the covariant derivative
would act on that index with a gauge field. Namely, the covariant derivative has the
form:

∇µ = ∇µ
[R] + ωµ (1.18)

where the Riemannian part contains the Christoffel connection

Γλµν =
1

2
gλσ(gµσ,ν + gνσ,µ − gµν,σ) (1.19)

where the usual notation for ordinary derivative gµσ,ν := ∂νgµσ has been used. The action
of the Riemannian covariant derivative on an arbitrary vector Vν is thus given by

∇[R]
µ Vν = ∂µVν − ΓλµνVλ. (1.20)

One could also define the field strength of the gauge connection ωµ as

Ωµν = ∂µων + ∂νωµ + [ωµ, ων ], (1.21)

and the full covariant derivative in equation (1.18) acting on the arbitrary vector Vν as
follows

∇µ Vν = ∂µVν − ΓλµνVλ + ωµVν . (1.22)

where the generators of the gauge group contained in ωµ must be chosen in the repre-
sentation belonging to Vµ.

We have already anticipated that the Seeley-DeWitt coefficients can be expressed in
terms of few local invariants constructed from the background fields defined on space-
time. For this purpose we introduce the following invariants associated to the metric
tensor gµν and gauge connection ωµ. The invariants associated to the metric can be
constructed using the Riemann curvature tensor whose well-known expression in terms
of the Christoffel symbol is

Rµ
νρσ = ∂ρΓ

µ
σν − ∂σΓµρν + ΓµρλΓ

λ
σν − ΓµσλΓ

λ
ρν . (1.23)
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Related to the Riemann tensor one defines as usual the Ricci tensor

Rµν := Rσ
µσν (1.24)

and the Ricci scalar curvature
R := Rµ

µ. (1.25)

Some of the invariants the we shall meet are the scalars R,∇2R,R2, RµνR
µν , RµνρσR

µνρσ.
Similarly, invariants associated to the gauge connection ωµ are built from the filed
strenght in (1.21), such as tr(ΩµνΩ

µν), with the trace taken over the internal gauge
indices.

In the following, we shall also need the concept of “flat indices”, associated to a local
orthonormal frame. Consider a tangent space attached to each point of the manifold. We
introduce a local orthonormal frame with a flat index described by the so called vielbein
or tetrad basis {e1, . . . , eD}. The vielbein components ekµ and the inverse eνj (satisfying
ekµe

µ
j = δkj ) connect the metric gµν to the flat one, according to

eµj e
ν
kgµν = δjk and eµj e

ν
kδ
jk = gµν . (1.26)

One can thus write the Riemannian covariant derivative in equation (1.20) applied to a
vector with a flat index:

∇µv
j = ∂µv

j + σjkµ vk (1.27)

where σjkµ is the so-called “spin connection” used to extend the concept of covariant
derivative to vectors in the tetrad basis. Its explicit expression can be found by the
condition ∇µe

k
ν = 0 and is

σklµ = eνl Γ
ρ
µνe

k
ρ − eνl ∂µekν . (1.28)

A complete and rather detailed description of the vielbein (or “vierbein”) or tetrad
basis, together with a review of General relativity using a vierbein (initially proposed by
Einstein in 1928) is contained in J. Yepez paper [11].

1.4 General formulae for the Seeley-DeWitt coeffi-

cients

In this thesis we will not perform the computation of the general heat kernel coefficients
step by step, but we will provide a synthesis of the method developed by Gilkey [12] and
followed by Vassilevich [8], where the interested reader can find all the steps and some
detailed references.

Consider an auxiliary smooth function σ(x) on the manifold M , the heat kernel of
equation (1.16) can be written in terms of the trace of the exponential operator as follows

K(β, σ,H) = Tr
(
σe−βH

)
(1.29)
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where

K(β, σ,H) =

∫
M

dDx
√
g tr[K(β;x, x;H)]σ(x). (1.30)

In the last equation the trace “tr” has to be considered as over the internal indices, and
K(β;x, x;H) is the solution at coincident points of the heat equation of the form in
(1.3) with boundary condition (1.4). This solution can be written in terms of a complete
set of orthonormal eigenfunctions of the differential operator H {φλ} associated to its
eigenvalues λ, as follows

K(β;x, y;H) =
∑
λ

φ†λ(x)φλ(y)e−βλ. (1.31)

It is possible to write the trace of equation (1.29) using an asymptotic expansion for
β → 0:

Tr
(
σe−βH

)
≈
∑
k≥0

βk−D/2ak(σ,H) (1.32)

where ak(σ,H) are the coefficients of the expansion.
At this stage it is possible to prove that this ansatz is consistent on manifolds with-

out boundaries, with the heat kernel coefficients computable in terms of the independent
invariants described earlier. Going more into detail, if we express all the possible in-
dependent invariants constructed from V , Rijkl and Ωij (all introduced in the previous
section, we use here flat indices) and their covariant derivatives with IJ

k (D), we have

ak(f,H) = tr

∫
M

dDx
√
g[σ(x)ak(x;H)] =

∑
J

tr

∫
M

dDx
√
g[σ(x)cJIJ

k (D)] (1.33)

where cJ are some constants. Skipping al the steps that are not necessary for the purpose
of this thesis and jumping directly to the results, the general formulae for the first three
heat kernel (or Seeley-DeWitt) coefficients are

a0(σ,H) =
1

(4π)D/2

∫
M

dDx
√
g tr[σ(x)]

a1(σ,H) =
1

(4π)D/2

∫
M

dDx
√
g tr

[
σ(x)

(
R

6
+ V

)]
a2(σ,H) =

1

(4π)D/2

∫
M

dDx
√
g tr

{
σ(x)

[
1

6

(
1

5
R + V

)
;kk

+
1

2

(
1

6
R + V

)2

+
1

180

(
R2
ijkl −R2

ij

)
+

1

12
Ω2
ij

]}
. (1.34)
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1.5 Summary of the formulae

Let us collect the formulae for the computation of the Seeley-DeWitt coefficients in
a simple form that will be more useful in the next section for the application to the
quantum gravity theory. From now on for the rest of the thesis we will indicate the
first three heat kernel coefficients a0, a1 and a2, using DeWitt notation that keeps them
unintegrated.

Consider a second order differential operator of the form

Ĥ = −∇2 − V (1.35)

where ∇2 = gµν∇µ∇ν and V is a matrix-valued function. The covariant derivative above
contains both the Riemannian part (with the Levi-Civita connection) and the “gauge”
connection:

∇µ = ∇[R]
µ + ωµ (1.36)

where ωµ is the gauge field whose field strength tensor Ωµν is given by

[∇µ,∇ν ]φ = Ωµνφ, (1.37)

with φ a charged (with “color” index) scalar field. The commutation relation for the
covariant derivatives of an uncharged (no “color” index) controvariant vector field V λ is

[∇µ,∇ν ]V
λ = Rµν

λ
σV

σ. (1.38)

Taking into account the insertion of an arbitrary smooth function σ(x), using a
perturbative approach, the heat kernel can be written as

Tr
(
σ(x)e−βĤ

)
=

∫
dDx
√
g

(4πβ)D/2
tr[σ(x)(a0(x) + a1(x)β + a2(x)β2 +O(β3))] (1.39)

where the trace “tr” is on the matrix indices and the coefficients are

a0(x) =11 (1.40)

a1(x) =
1

6
R + V (1.41)

a2(x) =
1

6
∇2

(
1

5
R + V

)
+

1

2

(
1

6
R + V

)2

+
1

180
(R2

µντσ −R2
µν) +

1

12
Ω2
µν . (1.42)
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Chapter 2

Perturbative quantum gravity:
action and gauge fixing

In the previous chapter we have introduced the heat kernel making explicit the rela-
tion with the one-loop effective action. In the concluding section a summary has been
presented, with some general formulae that will be useful soon.

The aim of this chapter is firstly to introduce the Einstein-Hilbert action in a manifold
equipped with a metric tensor, where a background-fluctuations splitting is performed.
The mentioned action enjoys a gauge symmetry that must be properly fixed following
BRST methods.

Once that the invertible kinetic operators are isolated and reduced to a form useful for
the exponentiation with a proper time, the heat kernel formulae can be applied making
use of appropriate replacements. The corresponding Seeley-DeWitt coefficients a0, a1,
and a2 are thus computed at arbitrary dimension and at D = 4. At the final step they
are reduced “on-shell”, namely evaluated on Einstein manifolds (where the background
metric satisfies Einstein field equations) and compared with B. DeWitt results and other
different papers.

2.1 Quadratic approximation of quantum gravity ac-

tion

Consider first a manifold M of dimension D equipped with a Riemannian metric tensor
Gµν(x) with the euclidean signature. The dynamical field of perturbative quantum grav-
ity is the metric tensor itself, by means of which one writes the infinitesimal invariant
length of space-time as follows

ds2 = Gµν(x)dxµdxν . (2.1)
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The metric has a gauge symmetry known as “general change of coordinates”, also referred
to as diffeomorphism or reparametrization. In particular, under the change of coordinates
x→ x′(x), the metric has the following transformation law

Gµν(x)→ G′µν(x
′) = Gστ (x)

∂xσ

∂x′µ
∂xτ

∂x′ν
. (2.2)

which leaves the Einstein-Hilbert action invariant. The latter, using the principle of least
action, yields the Einstein field equations. It is a functional of the metric tensor and can
be written in the following way

S[Gµν ] = −k−2

∫
dDx
√
G[R(G)− 2Λ] (2.3)

where also the cosmological constant Λ has been inserted. R(G) is the Ricci scalar
curvature, function of the metric tensor, and the constant in front of the integral, tipically
interpreted as the coupling constant of the theory, is k2 = 16πGN , where GN is the
Newtonian gravitational constant. The theory of quantum gravity constructed using the
Einstein-Hilbert action has the property of being non-renormalizable. Similarly to the
Fermi theory of the weak interaction, it can be interpreted as an effective field theory,
namely valid up to some energy scale according to a proper cut-off dictated by the
coupling constant (or the mass entering it).

At this stage it is possible to implement a background field formalism, splitting the
metric tensor Gµν into a fixed classical background gµν (that in general does not coincide
with the Minkowski metric), and a small perturbation hµν which defines the quantum
fluctuation of the metric:

Gµν(x) = gµν(x) + hµν(x). (2.4)

The quanta of the field hµν identifies the so-called “gravitons” of the theory. Typically a
constant k is placed in front of the quantum field hµν , in order to control the perturbative
expansion by making it as small as one wants. In this case it has been incorporated in
the field.

Since we are interested in the evaluation of the one-loop effective action, we can show
that, by taking advantage of the metric split, the action (2.4) can be expanded in orders
of the fluctuation as follows

S[g + h] =
1

k2
[S0 + S1 + S2 +

∞∑
n=3

Sn]. (2.5)

Proceeding in this manner one can identify the linear term, which provides the Einstein
field equations, and the quadratic term, precisely the one of our interest.

In order to write the explicit expression of each term up to the quadratic order in
the expansion (2.5) we rewrite first the Ricci scalar in terms of the Ricci tensor as
R(G) = GµνRµν(G), where Gµν is the inverse of the metric. It can be evaluated as

Gµν(x) = (gµν + hµν)
−1 = gµν − hµν + hµλh

λν +O(h3) (2.6)
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as can be easily checked by computing the following product to recover the identity:

GµνG
νλ = (gµν + hµν)(g

νλ − hνλ + hνσh
σλ) = δλµ +O(h3). (2.7)

By taking advantage of the property log detA = tr logA and performing some loga-
rithm and exponential expansions we can write the square root of the metric determinant
in powers of hµν as follows√

| detGµν | =
√
| det gµν |

(
1 +

1

2
hµµ −

1

4
hµνhµν +

1

8
(hµµ)2 +O(h3)

)
. (2.8)

The action can be thus written in terms of expansions (2.6) and (2.8), by making use
of the notation h = hµµ = gµνhµν :

S[g+h] = −k−2

∫
dDx
√
g

(
1+

1

2
h−1

4
hµνhµν+

1

8
h2+O(h3)

)[(
gµν−hµν+hµλh

λν

)
Rµν(g+h)−2Λ

]
(2.9)

The background metric gµν is used to raise and lower the indices. After some algebra,
integration by parts and neglect of total derivatives one gets:

S0 = −
∫
dDx
√
g

{
R− 2Λ

}
,

S1 =

∫
dDx
√
g

{
hµν
(
Rµν −

1

2
gµνR + gµνΛ

)}
,

S2 = −
∫
dDx
√
g

{
1

4
hµν(∇2 + 2Λ)hµν −

1

8
h(∇2 + 2Λ)h+

1

2

(
∇νhνµ −

1

2
∇µh

)2

+
1

2
hµλhνσRµνλσ +

1

2

(
hµλhνλ − hhµν

)
Rµν +

1

8

(
h2 − 2hµνhµν

)
R

}
.

(2.10)

In equations (2.10) the Ricci scalar, the Ricci tensor and the covariant derivative are con-
structed using the background metric tensor gµν . For a complete and detailed calculation
step by step of the Einstein-Hilbert action expansion see appendix A.1.

Following the principle of least action one can obtain the graviton equation of motion
by computing δS1[h]/δhµν = 0. The result represents, as we have anticipated, the
Einstein field equations.

1
√
g

δS1

δhµν
= Rµν −

1

2
gµνR + gµνΛ = 0 (2.11)

The quadratic approximation S2[h] is the part of the action that we want to study
to compute the one-loop effective action. To that end we extract the invertible kinetic
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operator of the graviton, whose inverse represents the propagator of the theory, and we
apply the heat kernel formulae (1.40),(1.41) and (1.42) for the coefficients computation.

Befor proceeding with this pattern we should deal with the gauge symmetry of quan-
tum gravity, performing a proper fixing with a specific gauge. This is the purpose of the
next section.

2.2 Gauge fixing and invertible kinetic operators

According to what we have already briefly discussed, the Einstein-Hilbert action (2.3)
originally introduced enjoys a gauge symmetry represented by general change of coordi-
nates or diffeomorphism. Let us consider an infinitesimal change of coordinates of the
following type

xµ → x′µ = xµ − ξµ(x) (2.12)

where ξµ(x) is the infinitesimal vector field along which the transformation is performed.
Under (2.12) the full metric tensor Gµν has the following transformation rule

δGµν(x) = G′µν(x)−Gµν(x) = ξρ(x)∂ρGµν(x) + ∂µξ
ρ(x)Gρν(x) + ∂νξ

ρ(x)Gµρ(x) (2.13)

= ∇µξν(x) +∇νξµ(x) = £ξGµν(x). (2.14)

The symbol £ξ stands for the Lie derivative of the metric along the vector field ξµ.
The latter, as a vector, contains D independent directions for the gauge transformation.
According to the general background field formalism and in view of the metric split (2.4)
one recognizes two different gauge symmetries:
(i) a quantum gauge symmetry transforming hµν and leaving the background inert:

δεgµν = 0

δεhµν = £ε(gµν + hµν) = ∇µεν +∇νεµ + ελ∇λhµν + (∇µε
λ)hλν + (∇νε

λ)hµλ;
(2.15)

(ii) a classical symmetry of background diffeomorphism with hµν transforming as a ten-
sor:

δξgµν = £ξgµν

δξhµν = £ξhµν .
(2.16)

They both reproduce the gauge transformation of the full metric tensor Gµν when acting
on it. However, only the first one is a true dynamical symmetry, leaving the background
field invariant. That means also that it is the only one to be “gauge-fixed”. The second
one instead treats the background metric as a gauge field and the quantum field hµν
transforms as a tensor, for this reason it is called background gauge symmetry.

The reparametrization or diffeomorphism invariance of the Einstein-Hilbert action
implies that the metric tensor carries some non-physical gauge degrees of freedom, which
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are eliminated by the ghost fields. Since we are working on a manifold of dimension D,
the vector field degrees of freedom for the ghost and antighost are D for each one, while
the number of independent components of a symmetric rank-2 tensor with non-vanishing
trace are D(D + 1)/2. Hence the total number of graviton polarizations is

Nd.o.f.(D) =
D(D + 1)

2
− 2D =

D(D − 3)

2
. (2.17)

This value can be considered as a benchmark for the first heat kernel coefficient of one-
loop quantum gravity. If reduced to dimension D = 4 this values becomes Nd.o.f.(D) = 2,
which is the well-known number of polarizations of the graviton, namely the two physical
degrees of freedom of a massless spin-2 gauge theory. One may also notice that in D = 3
the graviton has a null number of propagating degrees of freedom, a hint that in this
case Einstein gravity has no dynamics.

For this purpose we have to perform the gauge-fixing following the BRST methods.
The BRST quantization method is widely used to write the gauge-fixed action for a
general non-abelian gauge theory. It can be applied to many areas such as Yang-Mills
theory or other cases where the structure functions of the gauge algebra are constants
and the algebra closes without employing the equation of motion. A typical example
is the one provided by the theory of quantum gravity constructed from the Einstein-
Hilbert action, even if it can be interpreted just as effective field theory because of its
non-renomalizability problems. First we introduce a gauge-fixing function as follows

fµ := (∇νhνµ −
1

2
∇µh). (2.18)

One might notice, at this stage, that in the quadratic approximation of the action (2.10)
there is a term that coincides exactly with 1

2
fµfµ. That term, that in the de Donder

gauge is directly put to zero, gets removed after the gauge-fixing,
By using the function (2.18) we construct the gauge fermion Ψ as follows

Ψ := bµ(fµ −
i

2
πµ) (2.19)

with bµ the anti-ghost (fermionic and so anti-commuting) and πµ the auxiliary field or
Nakanishi-Lautrup field in Yang-Mills theory (bosonic and so commuting). They are
called non-minimal fields and are used to introduce the gauge fermion (2.19). Their
BRST variation, with η the anticommuting BRST parameter, are

δBb
µ = iηπµ

δBπµ = 0
(2.20)

which are obviously nilpotent. For this reason the total quadratic aproximation of the
action written in the following way is manifestly BRST invariant:

S2,tot = S2 + s

∫
dDx
√
gΨ (2.21)
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where s indicates the Slavnov variation, namely the BRST variation with the η parameter
removed from the left. We are allowed to add an extra term to the quadratic action, an
in eq. (2.21), because the BRST variation is nilpotent, namely s2 = 0. This is a crucial
point because two BRST invariant quantities, which differ by a BRST variation of a
function, belong to the same cohomology class, namely they represent the same physical
observable.

The integral of the Slavnov variation of the gauge fermion provides the action for the
ghost and for the auxiliary field:

Sgh + Sπ =

∫
dDx
√
g
δBΨ

δη
=

∫
dDx
√
g

[(
π2

2
+ iπµfµ

)
− bµsfµ

]
(2.22)

where sfµ = fµ(sh). The Slavnov variation of the quantum fluctuations of the metric
is given by the BRST variation with the η parameter stripped off. The BRST variation
can be cast from gauge transformation (2.15) just replacing the vector field εµ with the
ghost field cµ:

shµν = ∇µcν +∇νcµ +O(h). (2.23)

Using the proper equations of motion πµ = −ifµ, one can integrate out the auxiliary
field noting that the following identity holds

π2

2
+ iπµfµ =

1

2
fµf

µ. (2.24)

In the total action (2.21) this term cancels the same term with opposite sign above
mentioned. From the action in (2.22) what remains is the ghost action

Sgh = −
∫
dDx
√
gbµsfµ. (2.25)

Using the Slavnov variation of the metric hµν (2.23) it is possible to evaluate the explicit
expression of sfµ and recognizing the Riemann tensor in terms of the commutator of
covariant derivatives

[∇ν ,∇µ]cν = Rνµ
ν
λc
λ (2.26)

the ghost action reads

Sgh = −
∫
dDx
√
gbµ(∇2cµ +Rµνc

ν). (2.27)

For these computations we have ignored terms like b-c-h interactions that are not relevant
for one-loop calculations.

The quadratic approximation of the total action thus contains the ghost part and the
graviton action:

S2,tot = Sgh + Sh (2.28)
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where

Sh =

∫
dDx
√
g

[
− 1

4
hµν∇2hµν +

1

8
h∇2h− 1

2
hµλhνσRµνλσ −

1

2

(
hµλhνλ − hhµν

)
Rµν

− 1

8
(R− 2Λ)h2 +

1

4
hµνhµν(R− 2Λ)

]
.

(2.29)

Having found the quadratic action for the ghost and the graviton, the next step is to
identify down the invertible kinetic operators. The fact that they are invertible reassures
us of the correctness of the gauge-fixing procedure. The simplest case is the ghost one.
The kinetic operator can be immediately found by rearranging the action as follows

Sgh = −
∫
dDx
√
gbµ(δµν∇2 +Rµ

ν)c
ν , (2.30)

so that one might write it as

Sgh =

∫
dDx
√
gbµF

µ
νc
ν (2.31)

where the invertible kinetic operator is

Fµν = −(δµν∇2 +Rµ
ν) (2.32)

which is an operator that acts on vector fields.
For the graviton, the invertible kinetic operator can be identified casting the action

in the following form

Sh =

∫
dDx
√
g

1

2
hµνF

µν,αβhαβ (2.33)

where the operator is

F µναβ =− 1

4

(
gµαgνβ + gναgµβ − gµνgαβ

)(
∇2 −R + 2Λ

)
− 1

2

(
Rµανβ +Rµβνα − gµνRαβ − gαβRµν

)
− 1

4

(
gµαRνβ + gµβRνα + gναRµβ + gνβRµα

)
.

(2.34)

2.3 Seeley-DeWitt coefficients

Equations (2.32) and (2.34) represent respectively the invertible kinetic operators for the
ghost and the graviton. Nevertheless, the form of (2.34) is not immediately useful for
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the computation. For this purpose, one can introduce the following metric (sometimes
called DeWitt super-metric)

γµν,αβ = gµαgνβ + gµβgνα −
2

D − 2
gµνgαβ, (2.35)

that is manifestly symmetric under the exchange of the first two indices with last two.
It satisfies the equation

γρσ,µνγµν,αβ =
1

2
(δβαδ

σ
β + δσαδ

ρ
β). (2.36)

Eq. (2.35) can be used in order to lower the first pair of indices in expression (2.34) so that
one gets the operator F in a form that can be exponentiated to yield the corresponding
heat kernel:

Fµν
στ =− 1

2
(δµ

σδν
τ + δµ

τδν
σ)(∇2 + 2Λ) +

1

2

(
δµ
σδν

τ + δµ
τδν

σ − 2

D − 2
gµνg

στ

)
R

+
2

D − 2
gµνR

στ + gστRµν −Rµ
σ
ν
τ −Rµ

τ
ν
σ

− 1

2
(δµ

σRν
τ + δµ

τRν
σ + δν

σRµ
τ + δν

τRµ
σ)

(2.37)

where D is the dimension of the manifold.
Let us start with the ghost coefficients computation. By comparing the kinetic oper-

ator (2.32) with the general form (1.35) one replaces 11 with δµν and the matrix V with
Rµ
ν . Since the ghost field is a controvariant vector field, the commutation relation for the

covariant derivative operators that appear in (2.32) are

[∇µ,∇ν ]c
σ = Rµν

σ
τc
τ . (2.38)

The Riemann tensor in this case has to be tought as a set of D × D matrices labelled
by the indices µ and ν. Therefore one also replaces Ωµν with Rσ

τµν . Using the formulae
(1.40), (1.41), (1.42) and that tr(δµν ) = D, one can check that the ghost heat kernel
coefficients at arbitrary dimension D are

tr[a0,gh(x)] = D (2.39)

tr[a1,gh(x)] =
1

6
DR +R (2.40)

tr[a2,gh(x)] =
D + 5

30
∇2R +

D + 12

72
R2 − D − 90

180
RµνR

µν +
D − 15

180
RστµνR

στµν (2.41)

21



that reduced in dimension D = 4 are

tr[a0,gh(x)]
D=4−−→ 4 (2.42)

tr[a1,gh(x)]
D=4−−→ 5

3
R (2.43)

tr[a2,gh(x)]
D=4−−→ 3

10
∇2R +

2

9
R2 +

43

90
RµνR

µν − 11

180
RστµνR

στµν (2.44)

It is rather manifest that the result in (2.42) represents the correct number of degrees of
freedom of the ghost vector field.

The same strategy can be applied for the graviton heat kernel coefficients. By com-
paring the operator (2.37) with the general form (1.35) one replaces 11 with δµν

στ and
the matrix V with −Ξµν

στ , where

δµν
στ :=

1

2
(δµ

σδν
τ + δµ

τδν
σ) (2.45)

and

Ξµν
στ :=

1

2

(
δµ
σδν

τ + δµ
τδν

σ − 2

D − 2
gµνg

στ

)
R +

2

D − 2
gµνR

στ + gστRµν

−Rµ
σ
ν
τ −Rµ

τ
ν
σ − 1

2
(δµ

σRν
τ + δµ

τRν
σ + δν

σRµ
τ + δν

τRµ
σ).

(2.46)

One might recognize eq. (2.45) to be the symmetric Kronecker delta, with trace
tr(δµν

στ ) = 1
2
D(D + 1). Since the kinetic operator in (2.37) acts on fields that are

covariant symmetric tensors, the commutation relation of covariant derivative becomes

[∇µ,∇ν ]hστ = Rστ
ρλ
µνhρλ (2.47)

where

Rστ
ρλ
µν :=

1

2
(δσ

ρRτ
λ
µν + δσ

λRτ
ρ
µν + δτ

ρRσ
λ
µν + δτ

λRσ
ρ
µν) (2.48)

that has to be considered as a set of 1
2
D(D + 1) × 1

2
D(D + 1) matrices labelled by

symmetrized pairs of indices.
At this stage one can use the formulae (1.40), (1.41), (1.42) and proceed with a

straightforward calculation with significant algebra. Some intermediate steps that might
be useful for the reader are the following:
(i) For a1(x) and a2(x) computations:

tr(Ξµν
στ ) = Ξµν

µν =
1

2
D(D − 1)R−D(D + 1)Λ ; (2.49)

(ii) For a2(x) computation: the graviton coefficient a2(x) contains the following contri-
butions

a2(x) ⊃ 1

12
Ω2
µν →

1

12
Rστ

ρλ
µνRρλ

αβµν tr−→ 1

12
Rστ

ρλ
µνRρλ

στµν = −D + 2

12
R2
τλµν ; (2.50)
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a2(x) ⊃ 1

2

(
1

6
R + V

)2

→ 1

2

(
1

6
Rδµν

στ − Ξµν
στ

)(
1

6
Rδστ

αβ − Ξστ
αβ

)
=

1

2

(
R2

36
δµν

αβ − 1

3
RΞµν

αβ + Ξµν
στΞστ

αβ

)
,

(2.51)

where the following trace is shown

tr(Ξµν
στΞστ

αβ) = Ξµν
στΞστ

µν =
D3 − 5D2 + 8D + 4

2(D − 2)
R2 +

D2 − 8D + 4

D − 2
R2
στ

3R2
µνστ +D(D + 1)Λ2 − 5D3 − 17D2 + 14D

6(D − 2)
RΛ.

(2.52)

(iii) A necessary identity repeatedly used in the computation is the following one

RαβδγRαδβγ = Rαβδγ(−Rαβγδ −Rαγδβ) = RαβδγRαβδγ −RαβδγRαγδβ

= RαβδγRαβδγ −RαβγδRαγβδ = RαβδγRαβδγ −RαβδγRαδβγ,
(2.53)

therefore

RαβδγRαδβγ =
1

2
R2
αβδγ. (2.54)

Once that the calculations are done we end up with the following graviton heat kernel
coefficients at arbitrary dimension D:

tr[a0(x)] =
1

2
D(D + 1) (2.55)

tr[a1(x)] = −D(5D − 7)

12
R +D(D + 1)Λ (2.56)

tr[a2(x)] = −D(2D − 3)

30
∇2R +

25D3 − 145D2 + 262D + 144

144(D − 2)
R2

− D3 − 181D2 + 1438D − 720

360(D − 2)
RστR

στ +
D2 − 29D + 480

360
RµνστR

µνστ

+D(D + 1)Λ2 − D(5D2 − 17D + 14)

6(D − 2)
RΛ.

that reduced to D = 4 become

tr[a0(x)]
D=4−−→ 10 (2.57)

tr[a1(x)]
D=4−−→ −13

3
R + 20Λ (2.58)

tr[a2(x)]
D=4−−→ −2

3
∇2R +

59

36
R2 − 55

18
RστR

στ +
19

18
RµνστR

µνστ + 20Λ2 − 26

3
RΛ. (2.59)
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One can recognize (2.57) to be the number of degrees of freedom of a symmetric rank-2
tensor with non-vanishing trace in dimension D = 4. Nevertheless, in order to have the
correct number of degrees of freedom of the graviton, namely its physical polarizations,
we have to sum these results to the ghost ones.

Using these coefficients we are able to write the following terms contained in the one-
loop effective action Γ for the ghost and the graviton, terms that lead to divergencies
and which must be renormalized away. The general expression is

Γ = α

∫ ∞
0

dβ

β

∫
dDx
√
g

(4πβ)D/2
tr[a0(x) + a1(x)β + a2(x)β2 +O(β3)]. (2.60)

with the value of α depending on the type of field (i.e. α = −1
2

for a real boson like
a real scalar, α = −1 for a complex boson, and opposite signs for anticommuting fields
like the ghosts).

In the following we write the effective action of the ghost and the graviton, specifically
at D = 4, for a comparison with other texts and papers:

Γgh =

∫ ∞
0

dβ

β

∫
d4x
√
g

(4πβ)2

[
4 +

5

3
Rβ +

(
3

10
∇2R +

2

9
R2 +

43

90
RµνR

µν − 11

180
RστµνR

στµν

)
β2

+O(β3)

]
;

(2.61)

Γgraviton = −1

2

∫ ∞
0

dβ

β

∫
d4x
√
g

(4πβ)2

[
10 +

(
−13

3
R + 20Λ

)
β +

(
−2

3
∇2R +

59

36
R2

− 55

18
RστR

στ +
19

18
RµνστR

µνστ + 20Λ2 − 26

3
RΛ

)
β2 +O(β3)

]
.

(2.62)

The total heat kernel of quantum gravity is the sum of the individual contributions of
the ghost and the graviton as follows

Γ[g] = −1

2

∫ ∞
0

dβ

β

{
Tr

[
e−βF̂

]
− 2 Tr

[
e−βF̂

]}
(2.63)

where F̂ and F̂ are the second order differential operator respectively for the ghosts and
the graviton. Therefore the general heat kernel coefficient of order k for quantum gravity
is given by

tr[ak,tot] = tr[ak]− 2tr[ak,gh] (2.64)
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which yields the following coefficients

tr[a0,tot(x)] =
D(D − 3)

2
(2.65)

tr[a1,tot(x)] = −5D2 − 3D + 24

12
R +D(D + 1)Λ (2.66)

tr[a2,tot(x)] = −2D2 −D + 10

30
∇2R +

25D3 − 149D2 + 222D + 240

144(D − 2)
R2

− D3 − 185D2 + 1806D − 1440

360(D − 2)
RστR

στ +
D2 − 33D + 540

360
RµνστR

µνστ

+D(D + 1)Λ2 − 5D3 − 17D2 + 14D

6(D − 2)
RΛ

(2.67)

that reduced to D = 4 are

tr[a0,tot(x)]
D=4−−→ 2 (2.68)

tr[a1,tot(x)]
D=4−−→ −23

3
R + 20Λ (2.69)

tr[a2,tot(x)]
D=4−−→ −19

15
∇2R +

43

36
R2 − 361

90
RστR

στ +
53

45
RµνστR

µνστ + 20Λ2 − 26

3
RΛ.

(2.70)

As a check we recognize from eq. (2.68) the correct number of polarizations of the
graviton in dimension D = 4. One may notice that the field equations (2.11) have
not been used at any step in this calculation. Therefore these results are valid for any
background field.

The total, unregulated one-loop effective action (2.63) thus reads

Γ = −1

2

∫ ∞
0

dβ

β

∫
d4x
√
g

(4πβ)2

[
2 +

(
−23

3
R + 20Λ

)
β +

(
−19

15
∇2R +

43

36
R2

− 361

90
RστR

στ +
53

45
RµνστR

µνστ + 20Λ2 − 26

3
RΛ

)
β2 +O(β3)

]
.

(2.71)

As well-known, this expansion is not applicable to get the finite terms of the effective
action because of the infrared divergencies that arise since the graviton is massless (these
IR divergences are seen from the lack of convergence in the upper limit of the proper
time integration), but it is enough to identify the UV diverging pieces (arising from the
lower limit of the proper time integration) that must be renormalized away.

In general, the effective action is expected to depend on the gauge chosen in construct-
ing the gauge-fixed action and perturbation theory. However, it becomes gauge invariant
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when evaluated on-shell. Thus, one can restrict the above coefficients “on-shell”, namely
simplify them by evaluating them on Einstein manifolds. Using the Einstein field equa-
tions (2.11) one has that the cosmological constant can be written in terms of the Ricci
scalar curvature as

Λ =
D − 2

2D
R (2.72)

and the Ricci tensor is given by

Rµν =
2Λ

D − 2
gµν . (2.73)

Using equations (2.72) and (2.73), the coefficients (2.65)-(2.67) reduce to

tr[a0,tot(x)] =
D(D − 3)

2
(2.74)

tr[a1,tot(x)] =
2D3 − 8D2 − 66D + 72

24(D − 1)
R (2.75)

tr[a2,tot(x)] =
(D + 5)(5D2 − 42D − 144)

720D
R2 +

D2 − 33D + 540

360
RµνστR

µνστ (2.76)

that at D = 4 (eqs. (2.68)-(2.70)) become

tr[a0,tot(x)]
D=4−−→ 2 (2.77)

tr[a1,tot(x)]
D=4−−→ −8

3
R (2.78)

tr[a2,tot(x)]
D=4−−→ −29

40
R2 +

53

45
RµνστR

µνστ . (2.79)

All these terms give rise to divergences in the effective action, and must be renormal-
ized away. As they are evaluated on-shell, they identify gauge invariant coefficients that
should not depend on the gauge chosen. Any formulation of quantum gravity should be
able to reproduce them independently of the scheme chosen in the calculation.

For future reference, we write them also in terms of the cosmological constant Λ,
rather that in terms of the Ricci scalar curvature R

tr[a0,tot(x)]
D=4−−→ 2 (2.80)

tr[a1,tot(x)]
D=4−−→ −32

3
Λ (2.81)

tr[a2,tot(x)]
D=4−−→ −58

5
Λ2 +

53

45
RµνστR

µνστ , (2.82)

In light of the above results, we can introduce a topological invariant called Euler
characteristic of the manifold that can be used to compare our results with other papers
and texts. In D = 4 the Euler characteristic is

χ(M) =
1

32π2

∫
d4x
√
g(R2

µνστ − 4R2
µν +R2) =

1

32π2

∫
d4x
√
gG (2.83)
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where G = R2
µνστ − 4R2

µν + R2 is called Gauss-Bonnet term. On Einstein manifolds
G = R2

µνστ . Hence the part of the one-loop effective action on Einstein manifolds of
dimension D = 4 that is logarithmically divergent, i.e.

Γdiv = −1

2

1

(4π)2

∫ ∞
0

dβ

β

∫
d4x
√
g

(
−58

5
Λ2 +

53

45
R2
µνστ

)
(2.84)

can be written as

Γdiv = −1

2

∫ ∞
0

dβ

β

(
106

45
χ(M)− 29

40π2
Λ2vol(M)

)
. (2.85)

where vol(M) =
∫
M
d4x
√
g represents the volume of the manifold M .

Let us comment on these results. Neglecting the topological term, and setting the
cosmological constant to zero, one recovers the well-known result of t’ Hooft and Veltman
[13], according to which quantum gravity is finite at one-loop (more precisely, it is free
of logarithmic divergences, as given by eq. (2.85)). This result does not hold anymore
at two-loops, as shown by Goroff and Sagnotti [14]. The one-loop result for quantum
gravity with the cosmological constant at D = 4 is instead originally due to Christensen
and Duff [15]. This result is also recovered by the above expression.

Let us now discuss and compare the more general heat kernel coefficients we have
calculated with the literature. One may check that some of the results shown in eqs.
(2.65)-(2.67) of the total quantum gravity heat kernel coefficients at arbitrary D are dif-
ferent from the ones reported by B. DeWitt, in particular the ones in eqs. (16.80)-(16.82)
of [1] and eqs. (16.79)-(16.81) of [3]. This is exactly what we have anticipated in the
introduction: some of the first three heat kernel coefficients are sometimes erroneously
reported in the literature. This could lead to confusion, for example where such coeffi-
cients are used as a starting point for further purposes. In this regard we have decided
to rederive them using the original heat kernel method, to make sure we consider the
correct ones.

Nevertheless, our results are identically reported by I.G. Avramidi in [16], where
similar heat kernel methods are used as well. The reader can compare step by step the
Seeley-DeWitt coefficients for the ghost, the graviton, and the total one-loop effective
action. This accordance provides an extra proof of the correctness of our results (and of
theirs).

It is also worth stressing that eqs. (2.84) and (2.85) (using the Euler characteristic)
are not only in agreement with Avramidi, see eq. (3.79) of [16], but also with the results
of eq. (4.23) of [15], as anticipated above, while they disagree with [17], as noted by
Avramidi himself. Moreover, the ghost, graviton and total coefficients at D = 4 are also
reproduced in F. Bastianelli and R. Bonezzi [4], where they have been computed using
a worldline approach to quantum gravity.

A further source of disagreement in the study of such coefficients could be related
to the gauge-fixing procedure adopted. Indeed, the effective action for gauge theories
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in general may depend on the gauge chosen. It is expected to be gauge invariant only
on-shell. For this reason, we have calculated the gauge-invariant coefficients at arbitrary
D as well. To derive them, we have considered a gravitational background satisfying
the Einstein field equations. These coefficients represent a benchmark for any correct
construction of perturbative quantum gravity, as they should not depend on the method
chosen for their calculation.

In particular, a novel method for describing the graviton makes use of the first quan-
tization of the N = 4 spinning particle, which applies the same strategy used in defining
string theory by first quantizing a mechanical model. In this respect, we have verified
that the coefficients (2.77)-(2.79) on D = 4 Einstein manifolds are identical to those
calculated in [7], obtained precisely by using the N = 4 spinning particle. Note that
the latter can be consistently quantized only on on-shell backgrounds, while keeping the
background off-shell leads to results that differ from the standard heat kernel coefficients
given above. However, the more general coefficients (2.74)-(2.76) at arbitrary D differ
from the ones obtained in [7] with the N = 4 spinning particle, suggesting the need of
improving the latter so to meet this benchmark in arbitrary dimensions. This fact was
unexpected and provides a novel result of this thesis.
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Chapter 3

Worldline formalism for the ghost

In the foregoing chapter the heat kernel expansion, with its well known formulas, has been
employed for the study of perturbative quantum gravity’s Seeley-DeWitt coefficients a0,
a1 and a2. The achieved results have been compared with the literature and sources of
disagreements have been pointed out.

The aim of the second part of this thesis lies in the attempt of reproducing those
results using the worldline formalism. Our approach will follow F. Bastianelli and R.
Bonezzi’s work [4] where the heat kernel coefficients have been computed specifically
in space-time dimension D = 4. Our interest is to extend this approach to arbitrary
dimension D and to compare results with those of the previous chapter.

The core idea of this approach resides in the possibility of constructing a worldline
representation of the invertible kinetic differential operators (2.32) and (2.34) of the
quadratic action. This idea should be applied separately to the ghosts and the graviton,
in order to find their heat kernel coefficients and finally put them together to construct
the full one-loop effective action. For this purpose the present chapter will be dedicated
to the construction of a worldline model which correctly reproduces the ghost. The
greater simplicity with respect to the graviton case can be used to present the theory
that will be then applied also to the latter.

After a brief introduction of the effective action we proceed with the construction
of a vector model that correctly describes the ghosts. This will require bosonic and
fermionic phase space variables for the Hilbert space construction, where the general
state contains also vector fields. All the other unecessary fields need to be projected out
using an additional coupling with a worldline gauge field and an extra Chern-Simons
term.

The path integral construction needs a regularization scheme to satisfy some renor-
malization conditions such as a chosen ordering of the associated Hamiltonian operator.
The regularization procedure used (dimensional regularization in this thesis) will be nec-
essary for the computation of Feynman graphs with ambiguous and divergent products
of distributions.
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The one-loop effective action then will be computed with a perturbative expansion
in Riemann normal coordinates.

3.1 Worldline theory and effective action

In order to introduce the worldline theory let us first present the partition function for
pure gravity in terms of the path integral as follows

Z[g] =

∫
DhDbDc e−S2,tot , (3.1)

where the quadratic action is the one of eq. (2.28) and the integral is over the graviton
hµν , the ghost cµ and the antighost bµ. The partition function can be written using the
determinants as follows

Z[g] ∝ DetV [Fµν ]Det
−1/2
T2 [Fµν,αβ] (3.2)

where V and T2 as subscripts represent the functional space of action of the operators,
namely vectors and symmetric rank-2 tensors respectively. The operators in the last
equation are the ones found in the previous chapter, for the ghost and the graviton. The
one-loop effective action that we want to compute, defined by Z[g] = e−Γ[g], is given by

Γ[g] =
1

2
{TrT2 ln[Fµν,αβ]− 2TrV ln[Fµν ]}. (3.3)

If we introduce the Schwinger proper time representation for the logarithm, i.e. for a
generic operator Ô

Tr ln Ô = −
∫ ∞

0

dβ

β
Tr

[
e−βÔ

]
(3.4)

where β is the proper time parameter, the one-loop effective action can be cast as

Γ[g] = −1

2

∫ ∞
0

dβ

β

{
Tr

[
e−βF̂

]
− 2Tr

[
e−βF̂

]}
. (3.5)

The operators F̂ and F̂ represent the quantum mechanical Hamiltonians of the graviton
and the ghosts respectively, that acting on symmetric rank-2 tensors φαβ and vectors V ν

give

(F̂ φ)µν = Fµναβφ
αβ =− 1

2

(
gµαgνβ −

1

2
gµνgαβ

)(
∇2 −R + 2Λ

)
φαβ

− 1

2

(
Rµανβ +Rµβνα −

1

2
gµνRαβ

)
φαβ

− 1

2

(
Rλ
µφλν +Rλ

νφλµ −
1

2
gµνR

αβφαβ

)
+

1

2
gαβRµνφ

αβ;

(3.6)
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(F̂V )µ = FµνV
ν = −1

2

(
∇2Vµ +RµνV

ν

)
. (3.7)

The aim of the next section is to study a worldline representation of the ghost differential
operator when acting on a vector as shown in (3.7). Therefore, the idea is to construct
the model of a particle where the associated quantum mechanical Hamiltonian F̂ acts on
a Hilbert space containing vectors.

3.2 The vector model for the ghost

In order to produce the above-mentioned model we consider first a D-dimensional space-
time with metric gµν(x), which coordinates and related conjugate momenta are the usual
real bosonic variables of the phase space xµ(t) and pµ(t). These variables, after the
quantization, will describe the functional dependence on space-time points of the wave
function which represents a state in the Hilbert space. We will see that among other
fields the constructed wave function contains the studied vector field for the ghost as
well. For this purpose the wave function should also have discrete indices. This is
possible by constructing the phase space also with fermionic variables that are specifically
worldline complex fermions, for simplicity characterized by flat Lorentz indices: λa(t) and
corresponding conjugate momenta λ̄a(t).

The bosonic variables, togheter with the complex fermionic ones, define a graded
phase space. We promote these variables to operators by introducing (anti)-commutation
relations for the usual canonical quantization:

[x̂µ, p̂ν ] = iδµν , {λ̂a, λ̂†b} = δab. (3.8)

where δab is the flat metric and we put as usual ~ = 1. The quantization of Grassmann
odd variables produces fermionic creation and annihilation operators that give rise to
a finite dimensional Hilbert space. The use of additional bosonic variables rather than
fermionic ones for the discrete indices description is valid as well. The main difference,
apart different signs, is that the corresponding Hilbert space would be infinite dimen-
sional.

After the quantization we consider xµ as the eigenvalues of x̂µ, while for the fermionic
sector we introduce “bra” coherent states that are eigenstates 〈λ| of the operator λ̂a with
eigenvalues λa: 〈λ| λ̂a = 〈λ|λa. The corresponding bosonic and fermionic momenta are
their derivatives.

Since we work in a curved space-time of metric gµν(x), we have to pay attention
to the possible g1/4 factors present in the bosonic momentum operator p̂µ, where g =
|detgµν(x)|. This is dictated by the form of the covariant measure present in the scalar
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product, that is dDx
√
g. Therefore, in order to guarantee hermiticity of the momentum,

the latter is given by
pµ = −ig−1/4∂µg

1/4, (3.9)

with derivative acting through the g factor. While the momentum of the fermionic
variable is

λ̄a =
∂

∂λa
, (3.10)

so that {λ̄a, λb} = δba.
At this juncture it is possible to construct the states of the Hilbert space using the

graded variables providing the continuous and discrete indices. The generic state of the
Hilbert space is represented by a wave function |Ψ〉 ∼ Ψ(x, λ) that thanks to the coherent
states is given by Ψ(x, λ) = (〈x| ⊗ 〈λ|) |Ψ〉. It can be Taylor expanded as follows

|Ψ〉 ∼ Ψ(x, λ) =Ψ(x) + Ψa(x)λa +
1

2
Ψa1a2(x)λa1λa2 + · · ·+ 1

D!
Ψa1...aD(x)λa1 . . . λaD

=
D∑
n=0

1

n!
Ψa1...an(x)λa1 . . . λan .

(3.11)

The upper value of the sum is D, the space-time dimension, which represents the number
of independent components of a vector. Depending on the occupation number n, it
is possible to identify different antisymmetric tensors. Among them there is also the
vector field we want to reproduce, associated to the occupation number n = 1, with
corresponding state of the form |V 〉 ∼ Va(x)λa. From now on we consider wave functions
containing only Va(x) such as |Ψ〉 ∼ Va(x)λa. In the next section we will describe the
method to project out all the unwanted fields and to keep only the one of interest, exactly
describing the ghost field of our gauge fixed quantum gravity action.

Since the aim of the chapter is to provide a worldline representation of the ghost dif-
ferential operator (2.32), we need to reproduce also the Laplacian operator ∇̂2. Therefore
we want to construct the covariant derivative. Hence, we introduce the generators of the
Lorentz group SO(D)

Mab = −M ba := [λa, λ̄b], (3.12)

obeying the corresponding so(D) algebra

[Mab,M cd] = δbcMad + δadM bc − δacM bd − δbdMac. (3.13)

We define the covariant derivative operator as follows

∇̂µ := ∂µ +
1

2
ωµabM

ab = ∂µ + ωµabλ
aλ̄b, (3.14)

32



with ωµab the spin connection. It is rather important to stress that the covariant deriva-
tive operator written in the last equation acts on wave functions, and is different from
covariant derivatives acting on fields. If we consider the wave function V (x, λ) ∼ Va(x)λa,
the action of the operator (3.14) is given by

∇̂µV (x, λ) = (∇µVa)λ
a = (∂µVa + ωµa

bVb)λ
a, (3.15)

where one recognizes the action of the covariant derivative on the vector field Va. The
covariant derivative can be written in a compact form by introducing the covariant
momentum, which includes the momentum pµ and the spin connection. Using eq. (3.9),
the covariant derivative is given by

∇̂µ = ig1/4πµg
−1/4 = ig1/4(pµ − iωµabλaλ̄b)g−1/4, (3.16)

where πµ := pµ − iωµabλaλ̄b is exactly the covariant momentum. Once we have written
the covariant derivative, we are able to write the Laplacian operator with the following
ordering

∇̂2 :=
1
√
g
∇̂µg

µν√g∇̂ν , (3.17)

that using the covariant momentum is given by

∇̂2 = −g−1/4πµg
µνg1/2πνg

−1/4. (3.18)

3.3 Worldline action for the ghost

Once we have all the ingredients for the construction of the model, we are able to provide
a quantum mechanical worldline representation of the ghost invertible kinetic differential
operator. The Laplacian operator (3.18) acting on the wave function gives

∇̂2V (x, λ) = (∇2Va)λ
a. (3.19)

Therefore, the full Hamiltonian for the ghost is

H = F̂ :=
1

2
g−1/4πµg

µνg1/2πνg
−1/4 − 1

2
Rabλ

aλ̄b. (3.20)

The correctness of the latter can be easily verified by applying it to the wavefunction
V (x, λ) ∼ Va(x)λa, using the identity {λ̄a, λb} = δba, and checking that the result is
equivalent to eq. (3.7).

Prior to writing the classical worldline action able to produce the ghost heat kernel
coefficients, we have to discuss a postponed issue. In the last section we stressed that
using a graded phase space it is possible to produce an Hilbert space which states can
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be interpreted as wave functions containing different fields. At this juncture we want
to project out all the unwanted fields and maintain only the vector field, that correctly
describes the ghost.

The first step to project the Hilbert space on the n = 1 sector is to check that λa

and λ̄a enjoy a U(1) symmetry under the transformation laws

λa → λ′a =e−iαλa

λ̄a → λ̄′a =eiαλ̄a.
(3.21)

Therefore the kinetic term of the fermionic variables λ̄aλ̇
a is invariant. The corresponding

conserved Noether current is of the form λaλ̄a. In order to select the occupation number
n = 1 one can proceed coupling the variables λa and λ̄a to a worldline living gauge field
a(t) and introducing an additional Chern-Simons term with a coupling s = n − D

2
that

is quantized. In this way the free kinetic term of fermionic variables gets modified, and
the associated term in the action with euclidean time is

Sλλ̄ =

∫ β

0

dt[λ̄aλ̇
a − ia(λaλ̄a − s)]. (3.22)

The introduction of an external gauge field can be used as a Lagrange multiplier which
equation of motion produces the wanted constraint. Indeed the gauge field equation of
motion produces the constraint

C = (λaλ̄a − s) (3.23)

that by setting n = 1 in s selects the correct physical state if applied to the full wave
function as CΨ(x, λ) = 0. The latter represents the classical constraint that upon
quantization produces some ordering ambiguities. They can be resolved by a graded
symmetrization in the following way

Ĉ =
1

2

(
λa

∂

∂λa
− ∂

∂λa
λa
)
− s. (3.24)

Indeed using anti-commuting relations we have that

Ĉ =
1

2

(
λa

∂

∂λa
− ∂

∂λa
λa
)
− s = λa

∂

∂λa
− 1

2

{
λa,

∂

∂λa

}
− s = λa

∂

∂λa
− D

2
− s, (3.25)

it is possible to recognize the number operator N̂ = λa ∂
∂λa

which identifies the occupation
number n, and finally selecting the Chern-Simons coupling s = n − D

2
, we end up with

the quantum version of the wanted constraint for n = 1:

(N̂ − 1)Ψ(x, λ) = 0. (3.26)
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If the readers are interested in other applications of that procedure they may consult the
papers [18] and [19].

Once the physical state describing the ghost field has been selected, we have all the
ingredients to write the classical phase space action in euclidean time, using the quantum
mechanical Hamiltonian of eq. (3.20):

S[x, p, λ, λ̄; a] =

∫ β

0

dt

[
−ipµẋµ+ λ̄aλ̇

a+
1

2
gµνπµπν−

1

2
Rabλ

aλ̄b− ia
(
λaλ̄a−s

)]
. (3.27)

Finding the equations of motion of the ordinary momentum pµ

δS

δpµ
= 0→ pµ = iẋµ + igµνωνabλ

aλ̄b, (3.28)

we can integrate out it and write the classical action in configuration space

S[x, λ, λ̄; a] =

∫ β

0

dt

[
1

2
gµν ẋ

µẋν + λ̄a(Dt + ia)λa − 1

2
Rabλ

aλ̄b + ias

]
, (3.29)

where the covariant derivative contains also the spin connection with fermionic variables

Dtλ
a = λ̇a + ẋµωµ

a
bλ
b. (3.30)

3.4 Regularization procedures

In our worldline method discussion we are near to the final form of the classical action in
configuration space used to recover the Seeley-DeWitt coefficients for the ghost sector.
The last effort lies on the regularization scheme that one has to introduce to properly
treat the path integral. What we have constructed so far with the action (3.29) represents
a so-called non-linear sigma model. In general the various computations for the latter
creates many problems if not properly treated. The various issues mentioned above have
been widely discussed during the last decades and in this section we will mention some
papers and texts for those wishing to deepen the subject. A clarifying overview of the
necessity of regularization schemes and associated counterterms is contained in [20].

The presence of gµν(x) in the action of non linear sigma models in one dimension
produces ordering ambiguities when a canonical quantization is performed. One can
start with the free classical Hamiltonian of the form

H(x, p) =
1

2
gµν(x)pµpν . (3.31)

It is well known that the canonical quantization of the classical Hamiltonian produces
some ordering problems of coordinates xµ and momenta pµ, which derive from the fact
that the following commutation rule holds

[x̂µ, p̂ν ] = iδµν . (3.32)
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The simplest explanation is that different quantum theories correspond just to a single
classical theory described by the Hamiltonian (3.31). A general method to fix this type
of ambiguities is to rely on symmetries. At this purpose one can impose general covari-
ance (or covariance under diffeomorphisms) at the quantum level with an operatorial
momentum as in eq. (3.9) and a quantum Hamiltonian operator of the form

Ĥ(x̂, p̂) =
1

2
g−1/4p̂µg

1/2gµν p̂νg
−1/4, (3.33)

that in coordinates representation reduces to

Ĥ = −1

2
∇̂2, (3.34)

which Laplacian has been used with this ordering in (3.18). Although this resolves some
ordering problems, it reduces the quantum Hamiltonian to a class of operators which
differ from a term proportional to the scalar curvature R, the only covariant scalar
object that can be constructed with two derivatives on the metric:

Ĥ = −1

2
∇̂2 +

ξ

2
R. (3.35)

A common renormalization condition, that is imposed in the path integral description,
requires the Hamiltonian to be covariant under general change of coordinates and the
coefficient ξ = 0. Different values for ξ can be introduced later with an extra term in the
potential V (x). So far we have not mentioned the problem for requiring a renormalization
scheme yet. The explanation comes directly from the form of the non linear sigma model.
One can clearly see in (3.29) that the model contains double derivative interactions that
would give rise to linear divergences (as seen by a power counting procedure [20],[21]).
These are ultraviolet divergences, while infrared ones are not present because we are
studying actions on a compact time-interval. One could implement a renomalization to
remove ultraviolet linear divergences, but this is not strictly necessary. As showed in [22]
one should consider the covariant measure of the path integral

Dx ∼
∏√

gdDx (3.36)

where the metric dependence
∏√

g can be exponentiated introducing commuting aµ and
anticommuting bµ, cν ghosts, which action is

Sghosts[x, a, b, c] =

∫ β

0

dt

[
1

2
gµν(x)(aµaν + bµcν)

]
. (3.37)

One can check ([20],[21]) that the above mentioned linear divergences cancel with addi-
tional linear divergences coming from local interactions of the ghosts, in such a way that
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the final result in the sum of diagrams is finite. This cancellation is possible only after a
proper regularization of individual divergent Feynman graphs. Different regularization
schemes differ by finite local counterterms, such that the value of individually regularized
divergent diagrams depend on the scheme, while the final result is regularization inde-
pendent. By power counting one can also check that one dimensional non linear sigma
models are super-renormalizable, therefore only finite counterterms up to two-loops will
appear in the regularization scheme.

There are three widely used regularization schemes that can be implemented for this
purpose: time slicing, mode regularization and dimensional regularization.

Time slicing (TS) regularization scheme is constructed from the operatorial ex-
pression of the transition amplitude in quantum mechanics. The time-interval is dis-
cretized with N equally spaced points ti, and the action is described only by N variables
q(t1) . . . q(tN) using a “mid-point prescription” that is connected to a Weyl ordering
choice of the Hamiltonian operator Ĥ. In this way one gets a discretized path integral
in momentum space where integrating out the momenta and taking the continuous limit
N → ∞ Feynman rules are derived. We mentioned that counterterms are used to sat-
isfy renormalization conditions, that include the symmetry of general covariance. Since
the TS regularization scheme corresponds to a Weyl ordering of the Hamiltonian oper-
ator, one can check that the Weyl ordered Hamiltonian is not covariant and differ from
the covariant form of eq. (3.33). Therefore this regularization scheme breaks general
covariance. The only way to achieve a covariant final result is to use the counterterm

VTS = −1

8
R +

1

8
gµνΓβµαΓανβ, (3.38)

where the term ΓΓ is non-covariant as well.
Mode regularization (MR) is derived expanding quantum fluctuations q(t) around

a background solution x(t) in Fourier sine series. A cut-off at mode M is introduced.
The problematic distributions are now under control and one can perform all the com-
putations for Feynman graphs evaluation. Only at the end it is possible to recover the
continuous limit M →∞. Also in this case the regularization scheme breaks the symme-
try of general covariance, therefore, in order to guarantee the renormalization conditions,
a non-covariant counterterm is necessary to restore covariance of the final result:

VMR = −1

8
R− 1

24
gµνgρλgγδΓ

γ
µρΓ

δ
νλ. (3.39)

Dimensional regularization (DR) is applied after the usual perturbative expansion of
the path integral, and represents the simplest regularization in that case. The advantage
of DR scheme is that the required counterterm VDR does not need a non-covariant ΓΓ
term, because this approach does not break general covariance. In order to remove
ambiguities of path integral distributions and their products one introduces D extra
dimensions dt→ dd+1t and evaluates the Feynman graphs. At the end of the computation
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the limit d→ 0 can be restored. This is actually not the most practical way to use DR.
Indeed one could manipulate problematic integrals using the extended space in d + 1
dimensions, by means of useful identities which involve Green equations and integration
by parts, to cast the integral that turns out to be computable at d→ 0. A counterterm
is required also in this case, but it is the simplest one:

VDR = −1

8
R. (3.40)

In this thesis we will widely use dimensional regularization and corresponding ma-
nipulations of the integrals in order to compute Seeley-DeWitt coefficients. Therefore
a better and detailed description will be given in the next sections, including all the
computations performed. For the reader that is interested in the subject, [21] contains
a complete description of the abovementioned three regularization schemes.

The counterterm VDR = −1
8
R for DR scheme is not the only one that our path integral

constructed with (3.20) requires. Indeed that counterterm is sufficient for a bosonic path
integral constructed with the Hamiltonian operator in eq. (3.34). In our model we have
to deal also with fermionic variables λa and λ̄a. Therefore also their ordering issues
have to be considered. The path integral constructed with the classical action (3.29)
produces a graded-symmetric Weyl ordering for fermionic terms. If there is no meaning
in the ordering of the term ωµabλ

aλ̄b because of antisymmetry of ωµab, a counterterm is
required for the term −1

2
Rabλ

aλ̄b and is given by −1
4
R. Finally the full DR counterterm

to be added to the action is

VDR = −1

8
R− 1

4
R = −3

8
R. (3.41)

The final action that we have to study for the ghost worldline model, including the
correct counterterms, is given by:

S[x, λ, λ̄; a] =

∫ β

0

dt

[
1

2
gµν ẋ

µẋν + λ̄a(Dt + ia)λa − 1

2
Rabλ

aλ̄b − 3

8
R + ias

]
. (3.42)

3.5 One-loop effective action of the ghost

As we mentioned in the previous sections the total effective action for quantum gravity
comes from the individual contributions of the graviton and of the ghost:

Γ[g] ∝ ΓT2 − 2ΓV . (3.43)

The vector model in worldline formalism for the ghost has been already constructed with
all the ingredients. The Seeley-DeWitt coefficients an(x) can be written by expanding
the integrand in eq. (3.5) in powers of β in the following way

Γ[g] ∝
∫ ∞

0

dβ

β

∫
dDx

√
g(x)

(2πβ)D/2

∞∑
n=0

βnan(x) (3.44)
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where β−D/2 is the leading contribution of the free field. In this section we will compute
the ghost contribution quantizing the worldline action of the vector model on the circle.
The idea is to perform a standard perturbative expansion of the path integral in powers
of β up to β2 and recover the Seeley-DeWitt coefficients that constitue the diverging
part of the effective action.

The path integral quantization on a circle T 1 provides the one-loop effective action

ΓV ∝
∫ β

0

dβ

β

∫
T 1

DX
Vol(Gauge)

e−SV [x,λ,λ̄;a] (3.45)

where X = (a, xµ, λa, λ̄a) contains the dynamical fields that must be integrated over.
The volume of the gauge group in the denominator is there to remember that one has
to fix the gauge symmetry.

In order to control the perturbative expansion it is convenient to introduce an or-
ganizing parameter. It is done by rescaling the time t = βτ . The action (3.29) can be
written also rescaling the fermions as λ→ 1√

β
λ, λ̄→ 1√

β
λ̄ and the gauge field as a→ 1

β
a:

SV [x, λ, λ̄; a] =
1

β

∫ 1

0

dτ

[
1

2
gµν ẋ

µẋν + λ̄a(Dτ + ia)λa − β

2
Rabλ

aλ̄b − 3

8
β2R

]
+ is

∫ 1

0

dτa.

(3.46)
Proceeding like in [23] let us extract from the latter the free action for fermionic

variables

S[x, λ, λ̄; a] ⊃ S[λ, λ̄; a] =
1

β

∫ 1

0

dτλ̄a(λ̇
a + iaλa). (3.47)

Consider the finite gauge transformations

λa(τ)→ λ′a(τ) =e−iα(τ)λa(τ)

λ̄a(τ)→ λ̄′a(τ) =eiα(τ)λ̄a(τ)

a(τ)→ a′(τ) =a(τ) + α̇(τ)

(3.48)

where e−iα(τ) are periodic functions on [0, 1]. One can check that the only gauge invariant
quantity that can be constructed using the gauge field a(τ) is the so called Wilson loop:

ω = ei
∫ 1
0 dτa(τ). (3.49)

At this stage the gauge field a(τ) can be set to a constant θ by using “small” or contin-
uously connected to the identity gauge transformation:

θ =

∫ 1

0

dτa(τ). (3.50)
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“Large” gauge transformations with a(τ) = 2πnτ and n an integer allow to write the
identity

θ ∼ θ + 2πn. (3.51)

Therefore θ represents a modular parameter ranging from 0 to 2π. After gauge fixing
the action, one is left with an integral over θ which corresponds to the Wilson loop.

Since the U(1) gauge group is abelian, the Faddeev-Popov determinant, being a
constant, can be factorized out and absorbed in the normalization. Therefore, after
these steps, the worldline path integral representation for the vector can be written as
follows

ΓV =

∫ β

0

dβ

β

∫ 2π

0

dθ

2π

∫
P

Dx
∫
A

Dλ̄Dλe−SV [x,λ̄,λ;θ] (3.52)

where SV [x, λ̄, λ; θ] is the action of eq. (3.46) where the gauge field has been set to
the constant value a(τ) = θ. The subscripts P (periodic) and A (antiperiodic) stand
for boundary conditions prescription respectively for bosonic xµ and fermionic (λa,λ̄a)
variables, i.e.

xµ(0) = xµ(1), λa(0) = −λa(1). (3.53)

The generally covariant measure for the bosonic path integral is a shorthand for the
following expression

Dx =
∏

0<τ<1

√
g(x(τ))dDx(τ). (3.54)

that is metric dependent. The measure for the fermionic path integral is flat since our
fermions are vectors with flat indices.

3.6 Vector path integral and dimensional regulariza-

tion

Let us proceed with the perturbative expansion of the path integral. The trajectory
xµ(τ) of the periodic path integral can be split into a background fixed point xbg(τ) and
fluctuations qµ(τ) vanishing at the boundary qµ(0) = qµ(1) = 0, i.e.

xµ(τ) = xbg(τ) + qµ(τ). (3.55)

The bosonic measure therefore splits as follows∫
P

Dx =

∫
dDx

√
g(x)

∫
D

Dq (3.56)

where the subscript D stands for Dirichlet boundary conditions and Dq is given by

Dq =
∏

0<τ<1

√
g(q(τ))Dq (3.57)
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with Dq = dDq. The bosonic measure, being generally covariant, is a scalar under
general changes of coordinates. This introduce a field dependence not practical for
the perturbative expansion with splitting (3.55). As we have anticipated, following the
procedure of [24], the measure field dependence can be exponentiated introducing some
commuting aµ and anticommuting bµ, cµ ghosts, i.e.∏

0<τ<1

√
g(q(τ)) =

∫
DaDbDce−Sgh[x,a,b,c] (3.58)

where

Sgh[x, a, b, c] =
1

β

∫ 1

0

1

2
gµν(x(τ))(aµaν + bµcν). (3.59)

The ghost measures are translational invariant and given by

Da =
∏

0<τ<1

dDa(τ), Db =
∏

0<τ<1

dDb(τ), Dc =
∏

0<τ<1

dDc(τ). (3.60)

Being auxiliary fields, the ghosts do not need boundary conditions. Since the fluctuations
vanish at time boundaries we can expand them using Fourier sine series, i.e.

qµ(τ) =
∞∑
m=1

qµmsin(πmτ), aµ(τ) =
∞∑
m=1

aµmsin(πmτ),

bµ(τ) =
∞∑
m=1

bµmsin(πmτ), cµ(τ) =
∞∑
m=1

cµmsin(πmτ).

(3.61)

where qµm, aµm, bµm and cµm are the Fourier coefficients. Therefore we can write the bosonic
path integral integrating over these Fourier coeffcients, namely the measure is given by

DqDaDbDc ∝
∞∏
m=1

D∏
i=1

mdqimda
i
mdb

i
mdc

i
m. (3.62)

The anti-periodic fermionic variables on the worldline can be expanded in half-integer
modes as follows

λa(τ) =
∑

r∈Z+1/2

λar e
2πirτ , λ̄a(τ) =

∑
r∈Z+1/2

λ̄are
−2πirτ . (3.63)

At this juncture it is possible to proceed with the perturbative expansion. We divide
the action that contains also the auxiliary ghosts, i.e.

SV [x, λ, λ̄; θ] =
1

β

∫ 1

0

dτ

[
1

2
gµν(x)(ẋµẋν + aµaν + bµcν) + λ̄a(Dτ + iθ)λa − β

2
Rabλ

aλ̄b − 3

8
β2R

]
+ is

∫ 1

0

dτθ

(3.64)
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into a free part

S2 =
1

2β
gµν

∫ 1

0

dτ

(
q̇µq̇ν + aµaν + bµcν

)
+

1

β

∫ 1

0

dτλ̄a(∂τ + iθ)λa (3.65)

with gµν = gµν(xbg) the metric in the background, and an interaction part (containing
the vertices) that can be expanded in powers of β

Sint =
1

β

∫ 1

0

dτ

{
1

2
[gµν(xbg + q)− gµν ]

(
q̇µq̇ν + aµaν + bµcν

)
+ ωµab(xbg + q) q̇µλaλ̄b

− β

2
Rab(xbg + q)λaλ̄b − β2 3

8
R(xbg + q)

}
,

(3.66)

where the Chern-Simons part has been factorized out the path integral. From the free
action S2 one can extract the propagators. Let us first plug the mode expansion (3.61)
in the free action part for the bosonic fluctuations and the auxiliary ghosts, to obtain

S2[q, a, b, c] =
1

2β
gµν

∫ 1

0

dτ

(
q̇µq̇ν + aµaν + bµcν

)
=

1

4β
gµν

∞∑
m=1

[(πm)2qµmq
ν
m + aµma

ν
m + bµmc

ν
m]

(3.67)

since
∫ 1

0
dτ cos2(πmτ) =

∫ 1

0
dτ sin2(πmτ) = 1/2, being m a positive integer. The bosonic

propagator for fluctuations is then given by

〈qµ(τ)qν(σ)〉 =
∞∑
m=1

∞∑
n=1

〈qµmqνn〉sin(πmτ)sin(πnτ). (3.68)

Introducing the sources for qµm modes, performing square completion and shifting inte-
gration variable we get

〈qµmqνn〉 =

∫
DqDaDbDc qµmq

ν
n e
−S2[q,a,b,c]∫

DqDaDbDc e−S2[q,a,b,c]
= βgµνδmn

2

π2m2
. (3.69)

A simpler method is to recognize the two-point correlation function (3.69) to be the

inverse of the kinetic operator in exp

[
−1

2
qµm

(
1

2β
gµνπ

2m2δmn

)
qνn

]
. The full propagator is

thus given by

〈qµ(τ)qν(σ)〉 = βgµν
∞∑
m=1

2

π2m2
sin(πmτ)sin(πnσ). (3.70)
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For the auxiliary ghosts aµ, bµ and cν propagators we can proceed in a similar way.
Before writing all the propagators let us evaluate the fermionic one. First we plug the
mode expansion for fermions into the fermionic part of the free action, i.e.

S2[λa, λ̄a] =
1

β

∫ 1

0

dτλ̄a(∂τ + iθ)λa =
i

β

∑
r∈Z+1/2

(2πr + θ)λ̄raλ
a
r . (3.71)

The propagator can be computed in the usual manner

〈λa(τ)λ̄b(σ)〉 =
∑

r∈Z+1/2

∑
s∈Z+1/2

〈λar λ̄sb〉 e2πirτe−2πisσ

=βδab
∑

r∈Z+1/2

−i
2πr + θ

e2πir(τ−σ),
(3.72)

using the two-point correlation function

〈λar λ̄sb〉 = −i β

2πr + θ
δba. (3.73)

Let us collect all the above computed propagators providing also the continuum limit:

〈qµ(τ)qν(σ)〉 =− βgµν∆(τ, σ) ,

〈aµ(τ)aν(σ) =βgµν∆gh(τ, σ) , 〈bµ(τ)cν(σ) = −2βgµν∆gh(τ, σ) ,

〈λa(τ) ¯λb(σ)〉 =βδab∆F (τ − σ, θ),
(3.74)

where

∆(τ, σ) =
∞∑
m=1

[
− 2

π2m2
sin(πmτ)sin(πmσ)

]
= (τ − 1)σθ(τ − σ) + (σ − 1)τθ(σ − τ) ,

∆gh(τ, σ) =
∞∑
m=1

2 sin(πmτ)sin(πmσ) = ∂2
τ∆(τ, σ) = δ(τ, σ) ,

∆F (τ − σ, θ) =
∑

r∈Z+1/2

−i
2πr + θ

e2πir(τ−σ) =
e−iθ(τ−σ)

2cos θ
2

[
ei
θ
2 θ(τ − σ)− e−i

θ
2 θ(σ − τ)

]
,

(3.75)

where we have computed the continuum limit and θ(τ − σ) is the usual Heaviside step
function. The above propagators are expressed in terms of distributions, that are defined
acting on functions on the time segment I = [0, 1] with the above mentioned boundary
conditions for bosons, fermions and auxiliary ghosts. One can also check the following
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identities for derivatives and equal time expression:
•∆(τ, σ) = σ − θ(σ − θ) , ∆•(τ, σ) = τ − θ(τ − σ) ,
•∆•(τ, σ) = 1− δ(τ, σ) , ∆gh(τ, σ) = ••∆(τ, σ) = δ(τ, σ)

∆(τ, τ) = τ(τ − 1) , •∆(τ, σ)|τ=σ = τ − 1

2
,

(3.76)

where the dots on the left-right hand side indicate derivatives with respect to the left-
right variable. From the symmetry of the sum in the fermionic propagator we have also
the following identities

∆F (0, θ) =
i

2
tan

θ

2
,

∆F (τ − σ, θ)∆F (σ − τ, θ) =− 1

2
cos−2 θ

2
, τ 6= σ.

(3.77)

As anticipated, path integral computations involve products and derivatives of these
distributions that are ill-defined. For this purpose it is necessary to introduce a regular-
ization scheme. The simplest choice in this case is dimensional regularization (DR). In
the following we present the complete procedure for its construction.

The idea of dimensional regularization is to extend the compact time interval I =
[0, 1] adding d extra infinite dimensions, i.e. I → I × Rd = Ω. We introduce ti ≡ (τ, t)
with i = 0, 1, ..., d and the measure becomes dd+1t = dτddt. The action in d+1 dimensions
is

SV [x, λ, λ̄; θ] =
1

β

∫
Ω

dd+1t

[
1

2
gµν(x)(∂αx

µ∂αx
ν + aµaν + bµcν)

+ λ̄a(γ
α∂αλ

a + γα∂αẋ
µωµ

a
bλ
b + iθλa)− β

2
Rabλ

aλ̄b − 3

8
β2R

]
,

(3.78)

where ∂α = ∂
∂tα

and γα are the gamma matrices in d+ 1 dimensions. Therefore the free
action becomes

S2 =
1

β

∫
Ω

dd+1t

[
1

2
gµν(∂αq

µ∂αq
ν + aµaν + bµcν) + λ̄a(γ

α∂α + iθ)λa
]

(3.79)

from which one derives the following propagators in extended space Ω

∆(t, s) =

∫
ddk

(2π)d

∞∑
m=1

−2

(πm)2 + k2 sin(πmτ) sin(πmσ)eik·(t−s) ,

∆gh(t, s) =

∫
ddk

(2π)d

∞∑
m=1

2sin(πmτ) sin(πmσ)eik·(t−s) = δ(τ, σ)δd(t− s) ,

∆F (t− s, θ) =− i
∫

ddk

(2π)d

∑
r∈Z+1/2

2πrγ0 + k · γ − θ
(2πr)2 + k2 − θ2

e2πir(τ−σ)eik·(t−s).

(3.80)
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The above propagators, that in the d → 0 limit reduce to the previous ones, obey the
following relations (Green’s equations)

∂α∂α∆(t, s) = ∆gh(t, s) = δ(τ, σ)δd(t− s) ,(
γα

∂

∂tα
+ iθ

)
∆F (t− s, θ) = δA(τ − σ)δd(t− s) ,

(3.81)

with δA which indicates the delta distribution on functions on antiperiodic boundary
conditions. In the Feynman graphs computation also the following identity will be widely
used [(

∂2

∂tα∂sα
+

∂2

∂tα∂tα

)
∆(t, s)

]∣∣∣∣
t=s

=
∂

∂τ

[(
∂

∂τ
∆(t, s)

)∣∣∣∣
t=s

]
. (3.82)

Propagators in (3.80) are much more complicated with respect to their d→ 0 limit.
Indeed it is quite difficult to perform diagrams computations in the extended space
Ω. However, this is not necessary. There is a better strategy which has the following
steps. The idea is to start from worldline diagrams that cannot be computed safely
because of ambiguous products of distributions or diverging terms, and extend them to
the non-compact space Ω in DR. Problematic integrals of such diagrams then can be
manipulated (using integration by parts and integrating against the delta distributions,
corresponding to idetities in the extended (d+ 1)-dimensional space) to get a form that
can be unambiguously computed in the d→ 0 limit. These expressions must not involve
any products of distributions or diverging quantities. For this purpose identities such
(3.81) and (3.82) are widely used. Other DM diagrams computations are present in
[21],[25], [23] and [26].

Let us study the normalization of the fermionic path integral that must be replaced in
the effective action (3.52). For this purpose we have to evaluate the fermionic determinant
given by the free path integral for fermions with antiperiodic boundary conditions:∫

A

Dλ̄Dλe−S2[λa,λ̄a] = detD(∂τ + iθ). (3.83)

Let us follow the procedures presented in [23]. First we write the Hamiltonian operator
Ĥθ of the D dimensional fermionic oscillator system, i.e.

Ĥθ = iθ
1

2
(λ̂†aλ̂

a − λ̂aλ̂†a) = iθ

(
N̂ − D

2

)
, (3.84)

where we used the fermionic number operator N̂ = λ̂†aλ̂
a. In the worldline the number

operator has the only two eigenvalues 0 and 1, thus we get

detD(∂τ + iθ) = Tre−iθ(N̂)−D
2

= eiθ
D
2 (1 + e−iθ)D =

(
2cos

θ

2

)D
.

(3.85)
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This allows us to write the vector effective action as follows

ΓV =

∫ β

0

dβ

β

∫ 2π

0

dθ

2π

(
2cos

θ

2

)D
e−isθ

∫
dDx

√
g(x)

(2πβ)D/2
〈e−Sint〉, (3.86)

where s = 1− D
2

and Sint refers to (3.66).
Let us now proceed with the perturbative expansion of 〈e−Sint〉. We know that

perturbative calculations can be performed in any coordinates system. Our choice are
the Riemann normal coordinates togheter with the Fock-Schwinger gauge for the spin
connection, centered at the background xbg. To deepen Riemann normal coordinates
see [27]. In the following we have the metric, the spin connection and some curvatures
expanded in these coordinates:

gµν(xbg + q) =gµν +
1

3
qλqσRλµνσ +O(q3) + qλqσqαqβ

[
1

20
∇λ∇σRαµνβ +

2

45
RτλσµR

τ
αβν

]
,

ωµab(xbg + q) =
1

2
qνRνµab +O(q2) + qνqλqσ

[
1

8
∇λ∇σRνµab +

1

24
Rτ

νλµRστab

]
,

Rabcd(xbg + q) =Rabcd +O(q) +
1

2
qµqν∇µ∇νRabcd ,

Rab(xbg + q) =Rab +O(q) +
1

2
qµqν∇µ∇νRab ,

R(xbg + q) =R +O(q) +
1

2
qµqν∇µ∇νR ,

(3.87)

where the tensors on the right hand side of the equations are computed at the fixed
background xbg. For sake of simplicity we have omitted all those terms that in the path
integral would give a trivial null contribution due to the odd number of fields in the
correlation function. Let us replace these expansions in Riemann normal coordinates in
the interacting action (3.66). The average of the euclidean exponential of the interacting
action can be expanded as follows

〈e−Sint〉 = 1− 〈S4〉 − 〈S6〉+
1

2
〈S2

4〉+O(β3) , (3.88)

where we used the notation where Sn indicates the term of the expansion with n quantum
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fields and is of order O(βn/2−1). After simple algebra one gets the following expressions

S4 =
1

6β
Rλµνσ

∫ 1

0

dτqλqσ
(
q̇µq̇ν + aµaν + bµcν

)
+

1

2β
Rµνab

∫ 1

0

dτqµq̇νλaλ̄b

−1

2
Rab

∫ 1

0

dτλaλ̄b − 3

8
βR ,

S6 =
1

β

[
1

40
∇λ∇σRαµνβ +

1

45
RτλσµR

τ
αβν

] ∫ 1

0

dτqλqσqαqβ
(
q̇µq̇ν + aµaν + bµcν

)
+

1

β

[
1

8
∇λ∇σRµνab +

1

24
Rτ

µλνRστab

] ∫ 1

0

dτqλqσqµq̇νλaλ̄b

−1

4
∇µ∇νRab

∫ 1

0

dτqµqνλaλ̄b − 3

16
β∇µ∇νR

∫ 1

0

dτqµqν .

(3.89)

Using these expressions in (3.88) and performing all the necessary non trivial Wick
contractions one gets

〈e−Sint〉 = 1 + βR

(
1

3
+
i

4
tan

θ

2

)
+β2

{(
1

720
− 1

192
cos−2 θ

2

)
RµνλσRµνλσ +

(
− 1

720
+

1

32
cos−2 θ

2

)
RµνRµν

+

(
25

288
− 1

32
cos−2 θ

2
+

i

12
tan

θ

2

)
R2 +

(
7

240
+

i

48
tan

θ

2

)
∇2R

}
+O(β3).

(3.90)

All the steps and computations such as ambiguous integrals evaluation with dimensional
regularization are contained in B.1.

The next step is to evaluate the modular integrals at arbitrary dimension D and with
s = 1− D

2
, i.e.

I1 =

∫ 2π

0

dθ

2π

(
2cos

θ

2

)2

eisθ = D ,

I2 =

∫ 2π

0

dθ

2π

(
2cos

θ

2

)2

eisθtan
θ

2
= i(D − 2) ,

I3 =

∫ 2π

0

dθ

2π

(
2cos

θ

2

)2

eisθcos−2 θ

2
= 4.

(3.91)

Finally replacing the results of the modular integrals in (3.91) in the expansion (3.90)
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one gets the ghost effective action:

ΓV =

∫ ∞
0

dβ

β

∫
dDx

√
g(x)

(2πβ)(D/2)

{
D + βR

(
D

12
+

1

2

)
+ β2

(
D + 5

120
∇2R

+
D + 12

288
R2 − D − 90

720
RµνRµν +

D − 15

720
RµνστRµνστ

)}
.

(3.92)

that in dimension D = 4 reduces to

ΓV =

∫ ∞
0

dβ

β

∫
dDx

√
g(x)

(2πβ)(D/2)

{
4 +

5

6
βR + β2

(
3

40
∇2R +

1

18
R2 +

43

360
RµνRµν

− 11

720
RµνστRµνστ

)}
.

(3.93)

It is rather immediate to check that the ghost results in arbitrary dimensions and in
dimension D = 4 coincide with the ones presented in the previous chapter computed
with the heat kernel known formulas. Therefore the coefficients in D = 4 coincide
with [4] from which we have extended the worldline formalism procedure at arbitrary
dimensions.
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Chapter 4

Worldline formalism for the graviton

In the last chapter of the thesis we try to find a model that is able to reproduce the
gauge-fixed graviton fluctuations. In order to do this we proceed with the construction
of a symmetric rank-2 tensor model by following the procedure described in the previous
chapter for the ghost sector. For the purpose of reproducing the graviton fluctuations
the Hilbert space of the model will require worldline complex fermionic variables that
are rank-2 symmetric tensors with non-vanishing trace. As usual, the finite dimensional
Hilbert space so constructed will contain, among other fields that must be projected out,
the graviton fluctuations. In our work we succeed in finding the correct worldline action
for the gauge-fixed graviton fluctuations, but unfortunately it seems not possible to deal
with it using perturbation theory. Therefore this part will be left for future research.

4.1 The tensor model for the graviton

Let us start considering as usual a D-dimensional space-time with a metric gµν(x). The
Hilbert space that contains, among other fields, the rank-2 symmetric tensor with non-
vanishing trace can be constructed introducing the ordinary real bosonic variables xµ(t)
and pµ(t) and worldline complex fermionic variables that are rank-2 symmetric tensors
with non-vanishing trace, i.e. ψab and ψ̄cd. Bosonic and complex fermionic variables de-
fine a graded phase space with (anti)-commuting relations upon canonical quantization:

[xµ, pν ] = iδµν {ψab, ψ̄cd} = δacδbd + δbcδad. (4.1)

The bosonic and fermionic momenta are represented by their derivatives, i.e.

pµ = −ig−1/4∂µg
1/4 ψ̄ab =

∂

∂ψab
, (4.2)
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where ψ̄ab has to be interpreted as a linear combination of ψ derivatives:

∂

∂ψab
ψcd = δcaδ

d
b + δcbδ

d
a. (4.3)

The generic state |φ〉 of the Hilbert space is represented by a wave function φ(x, ψ) =
(〈x| ⊗ 〈ψ|) |φ〉 (coherent states are used, see Appendix C) Taylor expanded as

|φ〉 ∼ φ(x, ψ) =φ(x) + φab(x)ψab +
1

2
φ(ab)1(ab)2(x)ψ(ab)1ψ(ab)2 + · · ·+ 1

N !
φ(ab)1...(ab)N (x)ψ(ab)1 . . . ψ(ab)N

=
N∑
n=0

1

n!
φ(ab)1...(ab)n(x)ψ(ab)1 . . . ψ(ab)n ,

(4.4)

where N is the number of independent components of a symmetric rank-2 tensor with
non-vanishing trace in D dimensional space-time, namely N = 1

2
D(D + 1). Similarly to

the vector model, with the occupation number n = 1 we individuate in the spectrum the
symmetric rank-2 tensor φab(x) ≡ hab(x) that correctly represents the graviton, namely
the metric fluctuations. In the construction of the classical action for the tensor model we
will introduce a coupling with a worldline gauge field with an additional Chern-Simons
term, in order to select the state |φ〉 ∼ hab(x)ψab.

The Lorentz SO(D) generators can be constructed as

Mab = −M ba :=
1

2
[ψab, ψ̄bc]−

1

2
[ψbc, ψ̄ac ] = ψa · ψ̄b − ψb · ψ̄a , (4.5)

where we used the shorthand notation ψa · ψ̄b = ψacψ̄bc. Using the Lorentz SO(D)
generators we are able to write the covariant derivative operator as follows

∇̂µ := ∂µ +
1

2
ωµabM

ab = ∂µ + ωµabψ
a · ψ̄b (4.6)

that acting on the wave function h(x, ψ) = hab(x)ψab produces

∇̂µh(x, ψ) = (∇µhab)ψ
ab = (∂µhab − ωµcahcb − ωµcbhac)ψab. (4.7)

By means of the ordinary covariant momentum in (4.2) we cast the covariant derivative
as follows

∇̂µ = ig1/4πµg
−1/4 = ig1/4

(
pµ − iωµabψa · ψ̄b

)
g−1/4, (4.8)

where πµ = pµ − iωµabψa · ψ̄b is the covariant momentum. The laplacian is constructed
with the same ordering of the previous chapter, i.e.

∇̂2 :=
1
√
g
∇̂µg

µν√g∇̂ν = −g−1/4πµg
µνg1/2πνg

−1/4. (4.9)
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Let us proceed with the construction of the quantum mechanical worldline representation
of the invertible kinetic operator of the graviton. The action of the latter acting on a
symmetric rank-2 tensor, presented in eq. (3.6), can be rearranged to recognize a term
containing the left hand side of the vacuum Einstein equation, i.e.

Fµναβφ
αβ =− 1

2

(
gµαgνβ −

1

2
gµνgαβ

)
∇2φαβ − Λφαβ − 1

2

(
Rµανβ +Rµβνα −

1

2
gµνRαβ

)
φαβ

−1

2

(
Rλ
µφλν +Rλ

νφλµ −
1

2
gµνR

αβφαβ

)
+

1

2
Rφµν +

1

2

(
Rµν −

1

2
gµνR + gµνΛ

)
gαβφ

αβ.

(4.10)

The laplace operator in the eq. (4.9) acting on the wave function gives

∇̂2h(x, ψ) = (∇2hab)ψ
ab. (4.11)

The quantum mechanical representation of the graviton kinetic operator, which action
on a symmetric rank-2 tensor is (4.10), is given by

H = F̂ :=− 1

2
(∇̂2 + 2Λ) +

1

2
R− 1

2
Rabcdψ

acψ̄bd − 1

2
Rabψ

a · ψ̄b

+
1

8
(∇̂2 + 2Λ−R)δacδbdψ

acψ̄bd +
1

4
(δacRbd + δbdRac)ψ

acψ̄bd.
(4.12)

In order to check the correctness of the last equation, consider the term

1

4
(∇2 + 2Λ)gµνgαβφ

αβ (4.13)

present in eq. (4.10). In order to reproduce this term by means of a quantum mechanical
operator we use the operator Ô = 1

8
(∇̂2 + 2Λ) acting on the wave function h(x, ψ), i.e.

Ôh(x, ψ) =
1

8
(∇̂2 + 2Λ)δacδbdψ

acψ̄bd(hefψ
ef ) =

1

8
(∇̂2 + 2Λ)δacδbdψ

achef ψ̄
bdψef

=
1

8
(∇̂2 + 2Λ)δacδbdψ

achef (δ
beδdf + δbfδde) =

1

4
(∇̂2 + 2Λ)δacδbdh

bdψac ,
(4.14)

where we used the following identity

ψ̄bdψef =
∂

∂ψbd
ψef = δbeδdf + δbfδde. (4.15)

It is rather simple to check that the last term in eq. (4.14) reproduces correctly (4.13).
For all the other terms in (4.10) we can proceed in a similar fashion.

In order to write the worldline classical action for the tensor model we need to in-
troduce a constraint able to project out all the unwanted fields in the wave function
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φ(x, ψ), in order to keep only the graviton, namely the symmetric rank-2 tensor with
non-vanishing trace corresponding to n = 1. Proceeding in the same fashion of the
vector model, we introduce a U(1) coupling between fermionic variables and a worldline
gauge field A(t), with an additional Chern-Simons term in the action. This allows us to
introduce the following constraint(

1

4
[ψab, ψ̄ab]− s

)
|h〉 = 0, (4.16)

where 1
4
[ψab, ψ̄ab] = N̂ − 1

4
D(D + 1) is the U(1) generator, with N̂ counting the number

of ψ’s in the state φ(x, ψ), and s = 1− 1
4
D(D + 1).

The classical action for the tensor model in phase space and euclidean time is thus
given by

S[x, p, ψ, ψ̄;A] =

∫ β

0

dt

[
− ipµẋµ +

1

2
ψ̄ab ˙ψab +

1

2
gµνπµπν

(
1− 1

4
ψψ̄

)
− Λ

(
1− 1

4
ψψ̄

)
− 1

2
Rabcdψ

acψ̄bd − 1

2
Rabψ

a · ψ̄b

+
1

2
R

(
1− 1

4
ψψ̄

)
+

1

4

(
δacRbd + δbdRac

)
ψacψ̄bd

− iA
(

1

2
ψabψ̄ab − s

)]
,

(4.17)

where we used the shorthand notation to write the fermionic traces ψ := δabψ
ab and

ψ̄ := δabψ̄
ab. At this juncture, in order to write the action in configuration space we

integrate out the momentum pµ by means of its eqs. of motion

pµ = iẋµ
(

1− 1

4
ψψ̄

)−1

+ igµνωνabψ
a · ψ̄b , (4.18)

to get

S[x, ψ, ψ̄;A] =

∫ β

0

dt

[
1

2
gµν ẋµẋν

(
1− 1

4
ψψ̄

)−1

+
1

2
ψ̄ab(Dt + iA)ψab

− 1

2
Rabcdψ

acψ̄bd − 1

2
Rabψ

a · ψ̄b − Λ

(
1− 1

4
ψψ̄

)
+

1

2
R

(
1− 1

4
ψψ̄

)
+

1

4

(
δacRbd + δbdRac

)
ψacψ̄bd + iAs

]
,

(4.19)

where the covariant derivative contains also the spin connection, i.e. Dtψab = ψ̇ab +
ẋµ(ωµ

a
cψ

cb + ωµ
b
cψ

ac).
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The action thus obtained does not seem to admit a perturbative treatment in β. One
could try to replace the term (1− 1

4
ψψ̄)−1 with the geometric series, to get the following

form of the action

S[x, ψ, ψ̄;A] =

∫ β

0

dt

{
1

2
gµν ẋµẋν

[
1 +

1

4
ψψ̄ +

(
1

4
ψψ̄

)2

+ . . .

]
+

1

2
ψ̄ab(Dt + iA)ψab

− 1

2
Rabcdψ

acψ̄bd − 1

2
Rabψ

a · ψ̄b − Λ

(
1− 1

4
ψψ̄

)
+

1

2
R

(
1− 1

4
ψψ̄

)
+

1

4

(
δacRbd + δbdRac

)
ψacψ̄bd + iAs

}
.

(4.20)

In order to take care of all the different orders in the perturbative approach one could
rescale the time t = βτ , and treat β as the perturbative parameter. To have a uniform
β−1 in front of the perturbative propagators, we rescale also the fermions as ψ −→ 1√

β
ψ

and ψ̄ −→ 1√
β
ψ̄ and the gauge field as A −→ 1

β
A. The action thus reads

S[x, ψ, ψ̄;A] =
1

β

∫ 1

0

dτ

[
1

2
gµν ẋµẋν

(
1 +

1

4β
ψψ̄ +

(
1

4β
ψψ̄

)2

+ . . .

)
+

1

2
ψ̄ab(Dt + iA)ψab − β

2
Rabcdψ

acψ̄bd − β

2
Rabψ

a · ψ̄b

+
β

4
(δacRbd + δbdRac)ψ

acψ̄bd +
β

4
Λψψ̄ − β

8
Rψψ̄ + β2

(
R

2
− Λ

)
+ is

∫ 1

0

dτA.

(4.21)

but we see that the vertices arising for the expansion of (1 − 1
4β
ψψ̄)−1 become non-

perturbative. How to find ways of computing the path integral associated to this action
will be left for future research.
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Conclusions

The purpose of this thesis was first to rederive the heat kernel coefficients a0, a1 and a2 of
perturbative quantum gravity using the original approach of the heat kernel developed by
B. DeWitt. After a brief introduction to the heat kernel expansion, we applied the general
formulas that define these coefficients and reduced them to the specific case of pure
quantum gravity, constructed perturbatively by expanding the Einstein-Hilbert action
via a background-quantum splitting of the metric. Once the action has been gauge-fixed,
we derived the invertible kinetic operators of the graviton fluctuations and the ghosts.
The aim was to write the Seeley-DeWitt coefficients in arbitrary dimensions D and in
an arbitrary gravitational background, so to compare our computations with different
papers. As anticipated some of these coefficients are reported erroneously in the literature
([1],[3]). On the other hand our results are in perfect agreement with more recent works
([16]). If reduced to D = 4 our Seeley-DeWitt coefficients are identical to those computed
via a worldline approach ([4]). These coefficients identify the counterterms that make the
effective action finite (in 4 dimensions) and to be gauge-invariant they must be evaluated
on-shell. For this purpose we decided to reduce our study to an Einstein manifold (which
metric satisfies the Einstein field equations). The coefficients so computed, for the specific
case of D = 4, are in agreement with the results found in [7], where the physical graviton
is successfully described by a N = 4 spinning particle model. However, our on-shell
Seeley-DeWitt coefficients at arbitrary dimensions disagree with those reported in [7].
This seems to suggest the need of further studies to make that first quantized model
consistent in any arbitrary dimensions.

The second part of the thesis is dedicated to the attempt of deriving the previous
coefficients in an alternative way, namely using a worldline formalism. This approach
has been already applied to the case of D = 4 perturbative quantum gravity in [4].
Starting from this result, we decided to generalize that idea to a space-time with arbitrary
dimensions D. The idea was to reproduce the behaviour of the gauge-fixed graviton
fluctuations and the ghosts by means of suitable particle actions, that upon quantization
provide the invertible kinetic operators of the quadratic action of pure quantum gravity.
Two models have been constructed: a vector model and a rank-2 tensor model, for the
ghosts and the graviton, respectively. The vector model succeedes in reproducing the
heat kernel coefficients associated to the ghosts. On the other hand, the tensor model,
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while providing a suitable worldline action for the graviton (reproducing the associated
Hamiltonian used in the heat kernel approach), does not lead to a path integral that
admits a perturbative expansion. How to solve that path integral it is left for future
research.
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Appendix A

Perturbative quantum gravity
computations

In the following appendix we will review step by step the computations for the Einstein-
Hilbert action’s expansion under the perturbation of the metric tensor introduced with
(2.4). The main issue will concern the evaluation of the perturbed Ricci scalar curvature,
up to O(h2), that has to be replaced in the action. The result will be valid for an
arbitrary background and in any coordinates system. The consistent algebra needed
for this computation will be checked using computer algebra of Mathematica (xPert
package).

A.1 Einstein-Hilbert action’s expansion under met-

ric perturbation

Since the expansion of the inverse of the metric, namely Gµν , has been already described,
we will proceed with the expansion of the square root of the metric determinant. For
this computation we omit the indices of the metric tensors and we make the determinant
explicit when it is present in order to simplify the notation:√

| detG| =
√
| det(g + h)| = exp log

√
| det(g + h)|

= exp
1

2
log

[
| det g det

(
1 + g−1h

)
|
]

= exp log

[
log
√
| det g|+ 1

2
log det

(
1 + g−1h

)]
.

(A.1)
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At this step we perform some logarithm and exponential expansions to obtain√
| detG| = =

√
| det g| exp

[
1

2
log det |1 + g−1h|

]
=
√
| det g| exp

[
1

2
tr log |1 + g−1h|

]
=
√
| det g| exp

[
1

2
tr

(
g−1h− 1

2
(g−1h)2 +O(h)3

)]
=
√
| det g|

[
1 +

1

2
tr(g−1h)− 1

4
tr(g−1h)2 +

1

2

(
1

2
tr(g−1h)− 1

4
(g−1h)2

)2

+O(h3)

]
=
√
| det g|

[
1 +

1

2
tr(g−1h)− 1

4
tr(g−1h)2 +

1

8
tr2(g−1h)

]
+O(h3)

=
√
| det gµν |

[
1 +

1

2
hµµ −

1

4
hµνhµν +

1

8
(hµµ)2

]
+O(h3),

(A.2)

where in the last line the indices have been reintroduced.
By looking at the expanded action as in eq. (2.9), the next step is to study the

expansion of the Ricci tensor. One can start from the evaluation of the Levi-Civita
connection:

Γρµν(g + h) =
1

2
Gρσ(Gµσ,ν +Gνσ,µ −Gµν,σ)

=
1

2
(gρσ − hρσ + hρλh

λσ)[(gµσ + hµσ),ν + (gνσ + hνσ),µ − (gµν + hµν),σ]

= Γρµν(0) + Γρµν(1) + Γρµν(2) +O(h3)

(A.3)

where the following shorthand has been used to simplify the notation:

Γρµν(0) : Christoffel symbol at 0-th order in h,

Γρµν(1) : Christoffel symbol at 1-st order in h,

Γρµν(2) : Christoffel symbol at 2-nd order in h.

(A.4)

Therefore we immediately write that

Γρµν(0) =
1

2
gρσ(gµσ,ν + gνσ,µ − gµν,σ) (A.5)

and

Γρµν(1) =
1

2
gρσ(hµσ,ν + hνσ,µ − hµν,σ)− 1

2
hρσ(gµσ,ν + gνσ,µ − gµν,σ)

=
1

2
gρσ(hµσ,ν + hνσ,µ − hµν,σ)− gλσhρσΓλµν(0).

(A.6)
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By using the covariant derivative applied to the fluctuation

∇σhµν = ∂σhµν − Γλσµhλν − Γλσνhµλ, (A.7)

we can rewrite (A.6) as

Γρµν(1) =
1

2
gρσ[∂νhµσ + ∂µhνσ − ∂σhµν − 2hσλΓ

λ
µν ± Γλνσhµλ ± Γλµσhνλ]

=
1

2
gρσ(∇νhµσ +∇µhνσ −∇σhµν),

(A.8)

where the covariant derivative in the last eq. is constructed using the background metric.
As one can see, the perturbation at first order in h of the Christoffel symbol is a tensor.
This is manifest because it involves only covariant derivatives, so the final result is fully
covariant. This information represents a powerful trick for the study of various curvature
expansions under a metric perturbation, as we will see later. In the same fashion we can
evaluate the term Γρµν(2):

Γρµν(2) =
1

2
hρλh

λσ(gµσ,ν + gνσ,µ − gµν,σ)− 1

2
hρσ(hµσ,ν + hνσ,µ − hµν,σ)

=− hρλΓ
λ
µν(1),

(A.9)

which is obviously covariant.
Once we have expanded the Christoffel symbol, we can proceed with the evaluation

of the Riemann tensor, since all the other curvatures can be easily recovered by proper
indices contraction. The Riemann curvature tensor can be written as

Rµ
νρσ(g + h) = Rµ

νρσ(0) +Rµ
νρσ(1) +Rµ

νρσ(2) +O(h3), (A.10)

where the following shorthand notation has been used

Rµ
νρσ(0) : Riemann tensor at 0-th order in h,

Rµ
νρσ(1) : Riemann tensor at 1-st order in h,

Rµ
νρσ(2) : Riemann tensor at 2-nd order in h.

(A.11)

The order 0 in h is given by

Rµ
νρσ(0) = ∇ρΓ

µ
σν(0)−∇σΓµρν(0), (A.12)

where the covariant derivative is written in terms of the background.
Let us recall, as we have anticipated, that the variation of the Christoffel symbol is

a tensor, therefore under the action of a covariant derivative it must satisfy a tensorial
law. Hence, writing the expansion as follows

Rµ
νρσ(1) = ∂ρΓ

µ
σν(1)− ∂σΓµρν(1) + ΓµρλΓ

λ
σν(1) + Γµρλ(1)Γλσν

− ΓµσλΓ
λ
ρν(1)− Γµσλ(1)Γλρν ,

(A.13)
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and adding ±ΓλρσΓµλν(1) we recognize the covariant derivatives:

Rµ
νρσ(1) = ∇ρΓ

µ
σν(1)−∇σΓµρν(1). (A.14)

In eq. (A.13) we used Γµρν := Γµρν(0). By using eq. (A.8), eq. (A.14) can be thus
expanded as follows

Rµ
νρσ(1) =

=
1

2

(
∇ρ∇νh

µ
σ +∇ρ∇σh

µ
ν +∇σ∇µhρν −∇σ∇νh

µ
ρ −∇σ∇ρh

µ
ν −∇ρ∇µhσν

)
.

(A.15)

The second order perturbation of the Riemann tensor is given by

Rµ
νρσ(2) =∂ρΓ

µ
σν(2)− ∂σΓµρν(2) + ΓµρλΓ

λ
σν(2) + Γµρλ(2)Γλσν

− ΓµσλΓ
λ
ρν(2)− Γµσλ(2)Γλρν + Γµρλ(1)Γλσν(1)

− Γµσλ(1)Γλρν(1).

(A.16)

Proceeding similarly to the previous case we end up with

Rµ
νρσ(2) = ∇ρΓ

µ
σν(2)−∇σΓµρν(2) + Γµρλ(1)Γλσν(1)− Γµσλ(1)Γλρν(1), (A.17)

that can be written in a compact form as follows

Rµ
νρσ(2) = −hµβR

β
νρσ(1)− gµαgβγ

(
Γγρα(1)Γβσν(1)− Γγσα(1)Γβρν(1)

)
. (A.18)

Since the variations at different orders in h of the Riemann tensor curvature have been
found, we can proceed with the evaluation of the Ricci tensor just contracting the proper
indices. Hence, we have

Rνσ = Rνσ(0) +Rνσ(1) +Rνσ(2) +O(h3) (A.19)

with the usual notation, where Rνσ(0) = Rµ
νµσ(0),

Rνσ(1) = Rµ
νµσ(1) =

1

2

(
∇µ∇νh

µ
σ +∇µ∇σh

µ
ν −∇σ∇νh−∇2hσν

)
, (A.20)

thanks to the simplification of two indetical terms, and finally

Rνσ(2) = Rµ
νµσ(2) = −hµβR

β
νµσ(1)− gµαgβγ

(
Γγµα(1)Γβσν(1)− Γγσα(1)Γβµν(1)

)
.

(A.21)
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The Ricci scalar curvature can be computed as

R = R(0) +R(1) +R(2) = (gνσ − hνσ + hνλh
λσ)Rνσ, (A.22)

where R(0) = gνσRνσ(0),

R(1) =− hνσRνσ(0) + gνσRνσ(1)

=− hνσRνσ(0) +∇νσh
νσ −∇2h,

(A.23)

and finally

R(2) =− hνσRνσ(1)− gνσhµβR
β
νµσ(1) +Rρλ(0)hαρh

α
λ

− gνσgµαgβγ
(

Γγµα(1)Γβσν(1)− Γγσα(1)Γβµν(1)

)
.

(A.24)

Let us write down some terms in (A.24) not yet expanded:

−gνσhρµRµ
νρσ = −

(
hρµ∇ρ∇νh

µν +
1

2
hρµ∇ν∇µhρν −

1

2
hρν∇2hµρ

− 1

2
hρµ∇ν∇ρh

µ
ν −

1

2
hρµ∇ρ∇µh

)
;

(A.25)

− gνσgµαgβγ
(

Γγµα(1)Γβσν(1)− Γγσα(1)Γβµν(1)

)
=

− 1

4

(
4∇µhµβ∇νh

βν +∇βh∇βh− 4∇µhβµ∇βh− 3∇µhνβ∇µhβν + 2∇νhµβ∇
βhµν

)
.

(A.26)

The expressions in eqs. (A.25) and (A.26) can be replaced in (A.24) to get

R(2) =Rρλ(0)hαρh
α
λ − hνσ∇µ∇σh

µ
ν − hνσ∇µ∇νh

µ
σ + hνσ∇2hνσ + hνσ∇σ∇νh

−∇µhµβ∇νh
βν − 1

4
∇βh∇βh+∇µhβµ∇βh+

3

4
∇µhνβ∇µhβν −

1

2
∇νhµβ∇

βhµν .

(A.27)

By making use of all the above written orders of expansion of the Ricci scalar, we can
collect all of them in the following final expression

R(g + h) =R(0) +

(
−hνσRνσ(0) +∇νσh

νσ −∇2h

)
+

(
Rρλ(0)hαρh

α
λ − hνσ∇µ∇σh

µ
ν − hνσ∇ν∇µh

µ
σ + hνσ∇2hνσ + hνσ∇σ∇νh

−∇µhµβ∇νh
βν − 1

4
∇βh∇βh+∇µhβµ∇βh+

3

4
∇µhνβ∇µhβν −

1

2
∇νhµβ∇

βhµν

)
.

(A.28)

61



It is worth to stress that this result is valid for any background metric and in any co-
ordinates system. If one wants to evaluate the Ricci scalar expansion in the specific
background of flat space-time they have to put background curvature to zero, so that
covariant derivatives become ordinary partial derivatives with commuting property. Fi-
nally we have all the expressions to replace in the Einstein-Hilbert action as follows

S[g+h] = −k−2

∫
dDx
√
g

[(
1+

1

2
h−1

4
hµνhµν+

1

8
h2

)(
R(g+h)−2Λ

)
+O(h3)

]
. (A.29)

By expanding the previous eq. and perfoming some integration by parts when needed,
and making use of the following relation between covariant derivatives’ commutator and
Riemann tensor curvature

[∇µ,∇β]hγα = Rγ
λµβ +Rλ

αβµh
γ
λ, (A.30)

one gets the following orders of the action expansion

S0 = −
∫
dDx
√
g

{
R− 2Λ

}
,

S1 =

∫
dDx
√
g

{
hµν
(
Rµν −

1

2
gµνR + gµνΛ

)
+ total derivatives

}
,

S2 = −
∫
dDx
√
g

{
1

4
hµν(∇2 + 2Λ)hµν −

1

8
h(∇2 + 2Λ)h+

1

2

(
∇νhνµ −

1

2
∇µh

)2

+
1

2
hµλhνσRµνλσ +

1

2

(
hµλhνλ − hhµν

)
Rµν +

1

8

(
h2 − 2hµνhµν

)
R + total derivatives

}
.

(A.31)

Neglecting all the total derivatives we end up with the mentioned eqs. (2.10).
The laborious and rather tedious algebra that we have done so far can be surprisingly

simplified making use of the tensor computer algebra package for metric perturbation
xPert [28] available for Mathematica.
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Appendix B

Vector path integral computations

In order to present some examples of computation of ambiguous Feynman graphs that
must be properly regularized, in this appendix we will follow all the steps for 〈e−Sint〉
evaluation. Many terms of the expanded 〈e−Sint〉 up to the order O(β2) will involve
2-point functions with two derivatives, that satisfying the Green equation provide di-
verging Dirac delta functions. Other problems arise with products of distributions such
as delta and step functions. The only way to solve these ambiguities with dimensional
regularization is to extend the integration domain to a non-compact (d+ 1)-dimensional
space Ω, where some manipulations are allowed to cast integrals in a non-ambiguous
form. In the following we will see some different cases. At the end we will mention also
the methods for modular integral computation.

B.1 Ambiguous integrals with DR

The present section is dedicated to the computation of 〈S4〉, 〈S6〉 and 〈S2
4〉, with S4 and

S6 referring to (3.89). Let us start with 〈S4〉, i.e.

〈S4〉 =
1

6β
Rλµνσ

∫ 1

0

dτ(〈qλqσ q̇µq̇ν〉+ 〈qλqσaµaν〉+ 〈qλqσbµcν〉) +
1

2β
Rµνab

∫ 1

0

dτ〈qµq̇νλaλ̄b〉

− 1

2
Rab

∫ 1

0

dτ〈λaλ̄b〉 − 3

8
βR

=
1

6β
Rλµνσ

∫ 1

0

dτ(〈qλqσ〉〈q̇µq̇ν〉+ 〈qλq̇µ〉〈qσ q̇ν〉+ 〈qλq̇ν〉〈qσ q̇µ〉+ 〈qλqσ〉〈aµaν〉

+ 〈qλqσ〉〈bµcν〉) +
1

2β
Rµνab

∫ 1

0

dτ〈qµq̇ν〉〈λaλ̄b〉 − 1

2
Rab

∫ 1

0

dτ〈λaλ̄b〉 − 3

8
βR.

(B.1)

where the Wick theorem for all the possible contractions of the fields in the correlators
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has been used. By means of the propagators (3.74) we get

〈S4〉 =
β

6
R

∫ 1

0

dτ [−∆|τ •∆•|τ + ∆•|τ∆•|τ −∆|τ ∆gh|τ ]−
β

2
R

∫ 1

0

dτ∆F |τ=σ −
3

8
βR.

(B.2)

In the first integral of the last eq. there are two diverging integrands. These terms are
characterized by two derivatives, i.e. proportional to the diverging δ(τ, τ) as derived
by the Green equation. They can be evaluated only after a proper manipulation with
a regularization scheme. Using the Green equation ∆gh(τ, σ) = ••∆(τ, σ) in (3.76) and
performing dimensional regularization, namely extending the integral to non-compact
d+ 1 dimensions, we get∫ 1

0

dτ(∆|τ •∆•|τ + ∆|τ ••∆|τ )
d+1−−→

∫
dd+1t∆|t(µ∆µ + µµ∆)|t

=

∫
dd+1t∆|τ [0(0∆|τ )] = −

∫
dd+1t ∂0(∆|t)0∆|t

d→0−−→ −
∫ 1

0

dτ∂τ (∆|τ )•∆|τ

=− 1

2

∫ 1

0

dτ(2τ − 1)2 = −1

6
,

(B.3)

where we used the previously mentioned identity (3.82), an integration by parts (allowed
in DR) and at the end we replaced the values of ∆(τ, τ) and •∆(τ, σ)|τ=σ as present in
(3.76). The subscript 0 indicates the derivative along the compact original dimension τ .

The other integrals, being unambiguous, can be computed without performing any
manipulation, i.e. ∫ 1

0

dτ∆•|τ∆•|τ =

∫ 1

0

dτ

(
τ − 1

2

)2

=
1

12
,∫ 1

0

dτ∆F |τ=σ =
i

2
tan

θ

2
.

(B.4)

Replacing all the above results in (B.2) we finally get

〈S4〉 −
1

3
βR− i

4
βR tan

θ

2
. (B.5)
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The second step is the computation of 〈S6〉:

〈S6〉 =
1

β

[
1

40
∇λ∇σRαµνβ +

1

45
RτλσµR

τ
αβν

] ∫ 1

0

dτ(〈qλqσqαqβ q̇µq̇ν〉+ 〈qλqσqαqβaµaν〉

(B.6)

+ 〈qλqσqαqβbµcν〉) (B.7)

+
1

β

[
1

8
∇λ∇σRµνab +

1

24
Rτ

µλνRστab

] ∫ 1

0

dτ〈qλqσqµq̇νλaλ̄b〉 (B.8)

− 1

4
∇µ∇νRab

∫ 1

0

dτ〈qµqνλaλ̄b〉 − 3

16
β∇µ∇νR

∫ 1

0

dτ〈qµqν〉 (B.9)

Let us perform all the Wick contractions:

〈qλqσqαqβ q̇µq̇ν〉 =〈qλqσ〉[〈qαqβ〉〈q̇µq̇ν〉+ 〈qαq̇µ〉〈qβ q̇ν〉+ 〈qαq̇ν〉〈qβ q̇µ〉]
+〈qλqα〉[〈qσqβ〉〈q̇µq̇ν〉+ 〈qσ q̇µ〉〈qβ q̇ν〉+ 〈qσ q̇ν〉〈qβ q̇µ〉]
+〈qλqβ〉[〈qσqα〉〈q̇µq̇ν〉+ 〈qσ q̇µ〉〈qαq̇ν〉+ 〈qσ q̇ν〉〈qαq̇µ〉]
+〈qλq̇µ〉[〈qσqα〉〈qβ q̇ν〉+ 〈qσqβ〉〈qαq̇ν〉+ 〈qσ q̇ν〉〈qαqβ〉]
+〈qλq̇ν〉[〈qσqα〉〈qβ q̇µ〉+ 〈qσqβ〉〈qαq̇µ〉+ 〈qσ q̇µ〉〈qαqβ〉] ,

(B.10)

〈qλqσqαqβaµaν〉 =〈qλqσ〉〈qαqβ〉〈aµaν〉+ 〈qλqα〉〈qσqβ〉〈aµaν〉
+〈qλqβ〉〈qσqα〉〈aµaν〉

(B.11)

〈qλqσqαqβbµcν〉 =〈qλqσ〉〈qαqβ〉〈bµcν〉+ 〈qλqα〉〈qσqβ〉〈bµcν〉
+〈qλqβ〉〈qσqα〉〈bµcν〉

(B.12)

〈qλqσqµq̇νλaλ̄b〉 =〈qλqσ〉〈qµq̇ν〉〈λaλ̄b〉+ 〈qλqµ〉〈qσ q̇ν〉〈λaλ̄b〉
+〈qλq̇ν〉〈qσqµ〉〈λaλ̄b〉

(B.13)

〈qµqνλaλ̄b〉 =〈qµqν〉〈λaλ̄b〉. (B.14)

In the following we proceed with all the computations:

i)− 3

16
β∇µ∇νR

∫ 1

0

dτ〈qµqν〉 =
3

16
β2∇2R

∫ 1

0

dτ∆|τ =
3

16
β2∇2R

∫ 1

0

dττ(τ − 1)

=− β2

32
∇2R.

(B.15)

ii) −1

4
∇µ∇νRab

∫ 1

0

dτ〈qµqν〉〈λaλ̄b〉 =
β2

4
∇2R

∫ 1

0

dτ∆|τ∆F |τ=σ

=
β2

4
∇2R

∫ 1

0

dττ(τ − 1)
i

2
tan

θ

2
= −β

2

48
i∇2R tan

θ

2
.

(B.16)
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iii)
1

β

[
1

8
∇λ∇σRµνab +

1

24
Rτ

µλνRστab

] ∫ 1

0

dτ〈qλqσqµq̇νλaλ̄b〉 = 0 (B.17)

iv)
1

β

[
1

40
∇λ∇σRαµνβ +

1

45
RτλσµR

τ
αβν

] ∫ 1

0

dτ(〈qλqσqαqβaµaν〉+ 〈qλqσqαqβbµcν〉)

=β2

(
1

40
∇2R +

1

20
∇λ∇σR

λσ − 1

45
RµνR

µν − 3

45
RµναβR

µναβ

)
I1 ,

(B.18)

where we used the identity (2.54) and I1 stands for the following integral

I1 =

∫ 1

0

dτ∆|τ∆|τ∆gh|τ . (B.19)

v)
1

β

[
1

40
∇λ∇σRαµνβ +

1

45
RτλσµR

τ
αβν

] ∫ 1

0

dτ(〈qλqσqαqβ q̇µq̇ν〉

=β2

(
1

40
∇2R− 1

45
RµνR

µν +
1

20
∇λ∇σR

λσ − 1

30
RµναβR

µναβ

)
(I2 − I3)

(B.20)

where the integrals I2 and I3 stand for

I2 =

∫ 1

0

dτ∆|τ∆|τ •∆•|τ , I3 =

∫ 1

0

dτ∆|τ∆•|τ∆•|τ . (B.21)

Using all the above results we get

〈S6〉 = −β
2

32
∇2R− β2

48
i tan

θ

2
∇2R + β2

[
1

20
∇2R− 1

45
RµνR

µν − 1

30
RµναβR

µναβ

]
(I2 + I1 − I3).

(B.22)

Computing the three integrals, i.e. I3 = − 1
120

and I2 + I1 = 1
30

, and replacing the results
in the above equation we get

〈S6〉 = β2

[
− 7

240
∇2R− i

48
tan

θ

2
∇2R− 1

1080
RµνR

µν − 1

720
RµναβR

µναβ

]
(B.23)

The final effort is the evaluation of 〈S2
4〉. In order to avoid confusing algebra we will

use the following notation to indicate the various terms of the expandend S2
4 :

S4 = A + B + C + D, (B.24)
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where

A =
1

6β
Rλµνσ

∫ 1

0

dτqλqσ(q̇µq̇ν + aµaν + bµcν) ,

B =
1

2β
Rµνab

∫ 1

0

dτqµq̇νλaλ̄b ,

C =− 1

2
Rab

∫ 1

0

dτλaλ̄b , D = −3

8
βR.

(B.25)

Let us proceed with the computations using this notation:

〈D2〉 =
9

64
β2R2 , (B.26)

〈2CD〉 =
3

16
β2R2i tan

θ

2
, (B.27)

〈2BD〉 = 0 , (B.28)

〈2AD〉 = − 1

32
β2R2 , (B.29)

〈C2〉 =
1

4
RabR

cd

∫ 1

0

∫ 1

0

dτdσ〈λa(τ)λ̄b(τ)λc(σ)λ̄d(σ)〉

=
1

4
RabR

cd

∫ 1

0

∫ 1

0

dτdσ(〈λa(τ)λ̄b(τ)〉〈λc(σ)λ̄d(σ)〉 − 〈λa(τ)λ̄d(σ)〉〈λc(σ)λ̄b(τ)〉)

=
β2

4

(
R2

∫ 1

0

∫ 1

0

dτdσ∆2
F |τ=σ −RabR

ab

∫ 1

0

∫ 1

0

dτdσ∆F (τ − σ)∆F (σ − τ)

)
=
β2R2

4

(
−1

4
cos−2 θ

2
+

1

4

)
+
β2

4
RabR

ab1

4
cos−2 θ

2
,

(B.30)

where we performed Wick contractions for correlators with fermionic fields and we used
the identity tan2 θ

2
= cos−2 θ

2
− 1;

〈2BC〉 = − 1

β
RµνabRcd

∫ 1

0

∫ 1

0

dτdσ〈qµ(τ)q̇ν(τ)λa(τ)λ̄b(τ)λc(σ)λ̄d(σ)〉 = 0 , (B.31)

〈2AC〉 = − 1

6β
RλµνσRab

∫ 1

0

∫ 1

0

dτdσ〈qλqσ(q̇µq̇ν + aµaν + bµcν)λaλ̄b〉 = − i

48
β2R2tan

θ

2
,

(B.32)
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〈B2〉 =
1

4β2
RµνabRλσcd

∫ 1

0

∫ 1

0

dτdσ〈qµ(τ)q̇ν(τ)λa(τ)λ̄b(τ)qλ(σ)q̇σ(σ)λc(σ)λ̄d(σ)〉

=
β2

4
RµνabR

µνabI4

(B.33)

where

I4 =

∫ 1

0

∫ 1

0

dτdσ(∆•∆• − •∆∆•)∆F (τ − σ)∆F (σ − τ). (B.34)

For the last integral dimensional regularization is needed because of the delta function
contained in •∆• which multiplies the step functions present in ∆F , indeed these products
of distributions are ambiguous and must be regularized. Let us extend the integral to
the non-compact d+ 1 dimensional space and perform an integration by parts:

I4
d+1−−→

∫
dd+1t

∫
dd+1s[α∆β(t, s)∆(t, s)− α∆(t, s)∆β(t, s)]tr[γα∆F (t− s)γβ∆F (s− t)]

=− 2

∫
dd+1t

∫
dd+1s[α∆(t, s)∆β(t, s)]tr[γα∆F (t− s)γβ∆F (s− t)]

+

∫
dd+1t

∫
dd+1s∆β(t, s)∆(t, s)tr

[(
γα

∂

∂tα
∆F (t− s)

)
γβ∆F (s− t)

+∆F (t− s)γβ
(

∆F (s− t)
←−−
∂

∂tα
γα
)]
.

(B.35)

One can add a “mass term” iθ for free in order to obtain the Dirac eq., i.e.(
γα

∂

∂tα
+ iθ

)
∆F (t− s) = ∆F (t− s)

(
−γβ
←−−
∂

∂sβ
+ iθ

)
= δF (τ − σ)δd(t− s) , (B.36)

to get

2

∫
dd+1t∆β|t∆|ttr[γβ∆F |t=s]

d→0−−→ 2

∫ 1

0

dτ∆F |τ=σ∆•|τ∆|τ = 0. (B.37)

For the computation of I4 we need to evaluate the following term

I4 = −2

∫
dd+1t

∫
dd+1s{[α∆(t, s)∆β(t, s)]tr[γα∆F (t− s)γβ∆F (s− t)]}

d→0−−→ −2

∫ 1

0

dτ

∫ 1

0

dσ•∆∆•∆F (τ − σ)∆F (σ − τ) = − 1

24
cos−2 θ

2
.

(B.38)

Using the above result of the integral we get

〈B2〉 = −β
2

96
RµνabR

µνabcos−2 θ

2
. (B.39)
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The final step is the computation of 〈A2〉 which requires rather consistent algebra:

〈A2〉 =
1

36β2
RλµνσRαβγδ

∫ 1

0

dτ

∫ 1

0

dσ〈qλ(τ)qσ(τ)q̇µ(τ)q̇ν(τ)qα(σ)qδ(σ)q̇β(σ)q̇γ(σ)〉

+〈qλ(τ)qσ(τ)q̇µ(τ)q̇ν(τ)qα(σ)qδ(σ)aβ(σ)aγ(σ)〉
+〈qλ(τ)qσ(τ)q̇µ(τ)q̇ν(τ)qα(σ)qδ(σ)bβ(σ)cγ(σ)〉
+〈qλ(τ)qσ(τ)aµ(τ)aν(τ)qα(σ)qδ(σ)q̇β(σ)q̇γ(σ)〉
+〈qλ(τ)qσ(τ)aµ(τ)aν(τ)qα(σ)qδ(σ)aβ(σ)aγ(σ)〉
+〈qλ(τ)qσ(τ)aµ(τ)aν(τ)qα(σ)qδ(σ)bβ(σ)cγ(σ)〉
+〈qλ(τ)qσ(τ)bµ(τ)cν(τ)qα(σ)qδ(σ)q̇β(σ)q̇γ(σ)〉
+〈qλ(τ)qσ(τ)bµ(τ)cν(τ)qα(σ)qδ(σ)aβ(σ)aγ(σ)〉
+〈qλ(τ)qσ(τ)bµ(τ)cν(τ)qα(σ)qδ(σ)bβ(σ)cγ(σ)〉.

(B.40)

As we can see the first term is an 8-point function that using Wick theorem contains
7!! = 105 terms. By computing all these terms and all those of the other 8-point functions,
after laborious algebra we get the following result

〈A2〉 =
β2

36

∫ 1

0

∫ 1

0

dτdσ{R2[(•∆• + ∆gh)|τ∆|τ∆|σ(•∆• + ∆gh)|σ + ∆•|2τ∆•|2σ

− 2(∆•|2τ∆|σ∆gh|σ + ∆•|2σ∆|τ •∆•|τ )]
+RµνR

µν [2∆|τ ((•∆•)2 −∆2
gh)∆|σ + 2(•∆• + ∆gh)|τ∆2(•∆• + ∆gh)|σ

+ 2∆|τ •∆2(•∆• + ∆gh)|σ + 2(•∆• + ∆gh)|τ (∆•)2∆|σ
− 4∆•|τ∆(•∆)(•∆• + ∆gh)|σ − 4(•∆• + ∆gh)|τ∆(∆•)∆•|σ
− 4∆|τ (•∆)(•∆•)∆•|σ − 4∆•|τ∆•(•∆•)∆|σ
+ 4∆•|τ∆(•∆•)∆•|σ + 4∆•|τ∆•(•∆)∆•|σ]

+R2
µναβ[−3∆2∆2

gh + 3∆2(•∆•)2 − 6(∆•)∆(•∆•)•∆ + 3(∆•)2(•∆)2]}

=
β2

36

(
1

16
R2 − 1

6
RµνR

µν

)
.

(B.41)

The final result of 〈S2
4〉 is thus given by

〈S2
4〉 = β2

[(
25

144
+

1

6
i tan

θ

2
− 1

16
cos−2 θ

2

)
R2 +

(
− 1

216
+

1

16
cos−2 θ

2

)
RµνR

µν

− 1

96
cos−2 θ

2
RµναβR

µναβ

] (B.42)

Finally we have all the ingredients to compute 〈e−Sint〉 = 1− 〈S4〉 − 〈S6〉+ 1
2
〈S2

4〉, which
result is exaclty (3.90).
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B.2 Modular integrals

In this section we present for completeness the computation of the three modular integrals
in (3.91).

Let us start with I1 by writing cos θ
2

in terms of complex exponentials ei
θ
2 and per-

forming a change of variable z = eiθ:

I1 =

∫ 2π

0

dθ

2π

(
2cos

θ

2

)D
e−i(1−

D
2

)θ =

∫ 2π

0

dθ

2π
(eiθ + 1)De−iθ = −i

∫
C

dz

2π

(z + 1)D

z2
= D ,

(B.43)
where in the last step the residue theorem has been used. We proceed similarly with the
other modular integrals

I2 =

∫ 2π

0

dθ

2π

(
2cos

θ

2

)D
e−i(1−

D
2

)θtan
θ

2
= −i

∫ 2π

0

dθ

2π
(eiθ + 1)D−1(1− e−iθ)

= −
∫
C

dz

2π

(z − 1)(z + 1)D−1

z2
= i(D − 2) ;

(B.44)

I3 =

∫ 2π

0

dθ

2π

(
2cos

θ

2

)D
e−i(1−

D
2

)θcos−2 θ

2
= 4

∫ 2π

0

dθ

2π
(eiθ + 1)D−2

=
4

2πi

∫
C
dz

(z + 1)D−2

z
= 4.

(B.45)
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Appendix C

Coherent states for rank-2 tensors

Consider the fermionic operators ψab and ψ̄ab with non-vanishing trace. Under canonical
quantization they satisfy anticommutation relations, i.e.

{ψab, ψ̄cd} = δacδbd + δbcδad , (C.1)

where a, b, c, d,= 1, . . . , D are flat indices. Considering the ψ’s and ψ̄’s respectively as
creation and annihilation operators with respect to the vacuum |0〉, it is possible to define
fermionic coherent states:

|η〉 = e−η̄abψ
ab/2 |0〉 , 〈ξ| = 〈0| eξabψ̄ab/2 , (C.2)

that obey the following relations

ψ̄ab |η̄〉 = η̄ab |η̄〉 , 〈ξ|ψab = 〈ξ| ξab. (C.3)

The above coherent states are normalized as

〈ξ|η̄〉 = eξ
abη̄ab/2. (C.4)

For path integral construction with coherent states Lorentz invariant tensors are required.
The latters are built from δab and εa1...aD , i.e. Z(ab)1...(ab)N , with N = 1

2
D(D + 1). The

tensors Z(ab)1...(ab)N so constructed are symmetric in each couple of indices (ab)k and
antisymmetric by couples exchange. A simple example can be studied for D = 2, i.e.

Z(ab)(cd) ∝ εacδbd + εadδbc + εbdδac + εbcδad. (C.5)

Therefore the measures for the integrals are

dξ = Z(ab)1...(ab)Ndξ
(ab)1 . . . dξ(ab)N , dη̄ = Z(ab)1...(ab)Ndη̄

(ab)N . . . dη̄(ab)1 (C.6)
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with the identity dξdη̄ = (−1)Ndη̄dξ. Using coherent states the following identities hold∫
dξdη̄e−

1
2
ξabη̄ab = 1∫

dξdη̄e−
1
2
ξabη̄ab|η̄〉〈ξ| = 1

TrA =

∫
dξdη̄e−

1
2
ξabη̄ab〈−ξ|A|η̄〉 =

∫
dη̄dξe

1
2
ξabη̄ab〈ξ|A|η̄〉.

(C.7)
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