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Abstract

Perturbative quantum gravity can be studied in many ways. A traditional approach is to
apply covariant quantization schemes to the Einstein-Hilbert action and use heat kernel
methods, as pioneered by DeWitt. An alternative approach is to consider the graviton as
arising from the first quantization of particle actions, following the same methods used
in string theory. An interesting model to describe the graviton is based on the so-called
N = 4 spinning particle, which has been used recently to study perturbative properties
of quantum gravity, allowing in particular for the calculation of certain gauge-invariant
coefficients. The latter are related to the counterterms that renormalize the one-loop
effective action of pure quantum gravity with a cosmological constant. Such coefficients
have already been tested in D = 4 dimensions. Here we study the general case of
arbitrary D. We derive the gauge-invariant coefficients —the simplest one being the
number of physical degrees of freedom of the graviton—using the traditional heat kernel
method. We compare them with the ones obtained by using the N' = 4 spinning particle
and discover that the latter fails to reproduce some of those coefficients for D # 4,
suggesting the need of improving that first quantized model. This constitutes a first
original result of this thesis. In the second part, we try to find an alternative worldline
path integral treatment of the heat kernel, extending a previous worldline construction
that was tailored to 4 dimensions only. We succeed in finding suitable worldline actions
for the gauge-fixed graviton fluctuations and related ghosts. The action for the graviton
fluctuations that we construct reproduces the expected Hamiltonian but does not seem
to admit a perturbative path integral treatment.



Contents

Introductionl

(1 Heat kernel expansion|

(LT Heat kernel introductionl . . . . . . ... ... ... ... ...
(1.2 One-loop eftective action| . . . . . . . .. ... ... ... ...
(1.3 'The Laplace operator and local invariants| . . . ... ... ..
(1.4  General formulae for the Seeley-DeWitt coetficients| . . . . . .
(1.5 Summary of the formulae. . . . . . ... ... ... ... ...

2 Perturbative quantum gravity: action and gauge fixing|

[2.1 Quadratic approximation of quantum gravity action| . . . . . .
[2.2  Gauge fixing and invertible kinetic operators| . . . . . . . . ..
[2.3  Seeley-DeWitt coefficients| . . . . . ... ... ... ... ...

[3  Worldline formalism for the ghost|

[3.1  Worldline theory and eftective action| . . . . . . . . ... . ..
[3.2  The vector model for the ghost| . . . . . ... ... ... ...
[3.3  Worldline action for the ghost| . . . . . .. ... .. ... ...
[3.4  Regularization procedures| . . . . . . ... .. ... ... ...
[3.5  One-loop eftective action of the ghost| . . . . . . . . . ... ..
[3.6  Vector path integral and dimensional regularization| . . . . . .

[4  Worldline formalism for the graviton|

4.1 'The tensor model for the graviton| . . . . . . .. .. ... ...

Conclusions|

[Acknowledgments|

erturbative quantum gravity computations
[A" Perturbati t it tations|
[A.1 Einstein-Hilbert action’s expansion under metric perturbation|

49
49

53

55

57



(B Vector path integral computations|
(B.1 Ambiguous integrals with DR} . . . . .. ... ... ... ... ... ...
[B.2 Modular integrals| . . . . . . . . ...

[C_Coherent states for rank-2 tensorsl

(Bibliography|

63
63
70

71

75



Introduction

The construction of a quantum theory for the gravitational interaction has been one of
the main goals of modern theoretical physics. One approach uses the background field
method with covariant gauge-fixing techniques to define the Feynman rules for comput-
ing perturbatively the effective action. A useful technique to compute and renormalize
the effective action at one-loop makes use of heat kernel method, pioneered in curved
space by DeWitt [Il, 2, B]. In particular, the counterterms needed to perform renormal-
ization at one-loop are efficiently captured by heat kernel coefficients (also known as
Seeley-DeWitt coefficients) related to differential operators defined by the gauge-fixed
gravitational action. On-shell, these coefficients should not depend on the gauge-fixing
procedure, and become gauge invariant. In this thesis we shall discuss methods for com-
puting these gauge-invariant coefficients in the case of pure gravity with a cosmological
constant, and check their consistency.

The first method we consider employs the original heat kernel approach, as developed
by DeWitt. We rederive explicitly the coefficients needed to renormalize the divergences
of the effective action in 4 dimensions—the heat kernel coefficients ag, a1, and as in
the notation of DeWitt—keeping the spacetime dimension D arbitrary. Some of these
coefficients are reported erroneously in the literature, and we will rederive them to be
sure to consider the correct ones. Evaluating them on-shell (i.e. using the metric of
an Einstein manifold) produces the gauge-invariant coefficients of our interest. They
constitute a benchmark for alternative approaches to quantum gravity.

Alternative methods that we wish to consider and test are related to first quantized
approaches to the graviton (the heat kernel in a sense is such an approach). A first
worldline path integral approach is the one developed in [4], which was tailored to 4
dimensions only, and used to check in D = 4 the value of the gauge-invariant coefficients
we mentioned above. This model is discussed in the second part of the thesis, where
attempts to extend this approach to arbitrary D are made.

A more elegant model is the one that describes the physical graviton with the N = 4
spinning particle, developed through BRST methods in [B, 6] and within a path integral
approach in [7]. It has been used to reproduce successfully the known coefficients at
D = 4, giving at the same time a prediction at arbitrary D, see [7]. We compare these
coefficients with the one we found earlier with the heat kernel technique, and find that



all these methods are correct in D = 4, but differ at arbitrary D. We interpret these
results as suggesting that the heat kernel results should be the correct ones, being derived
from first principles, while the disagreement that we have found indicates the need of
improving the construction of the N/ = 4 spinning particle, so to match the correct
results at arbitrary D.

We structure our thesis as follows. In chapter 1, after a brief introduction, we de-
scribe the heat kernel by presenting its relation with the one-loop effective action. The
coefficients of the associated expansion can be written in terms of a few independent
invariants constructed from the background fields of space-time. These coefficients are
then specialized to the case of interest, namely perturbative quantum gravity.

In chapter 2 we describe the theory of pure quantum gravity with cosmological con-
stant i.e. the Einstein-Hilbert action with the cosmological term. A background-quantum
splitting is performed to identify the graviton fluctuations on the fixed background. The
action is then expanded up to the second order in the fluctuations. The gauge symmetry
of the theory requires a procedure of gauge-fixing achieved by means of BRST methods.
The quadratic approximation of the action (necessary to evaluate the one-loop effective
action) contains the graviton and the ghost contributions, from which we extract their
invertible kinetic operators. The latter are finally used to evaluate the first three Seeley-
DeWitt coefficients. These terms identify the counterterms that make the effective action
finite (in 4 dimensions). When evaluated on-shell (i.e. on Einstein manifolds) they be-
come gauge-independent, and thus define gauge-invariant coefficients. We compare them
with similar ones obtained by other methods and find a mismatch at D # 4 with those
obtained by first-quantizing the A/ = 4 particle action, which is expected to describe the
graviton. This suggests that the N' = 4 particle model needs an improvement.

In chapter 3 we try to reproduce those coefficients using an alternative approach, also
based on the worldline formalism. We start with the simpler case of the ghost sector.
We construct the particle action related to the ghosts and use it in a path integral, thus
reproducing the corresponding Seeley-DeWitt coefficients.

In chapter 4 we try to perform the same steps for the gauge-fixed graviton fluc-
tuations. We identify the corresponding particle action, which indeed reproduces the
Hamiltonian used previously in the heat kernel approach, but find that the correspond-
ing path integral is not easily calculable, as the standard perturbative method based on
Gaussian integration is inapplicable. How to overcome this final issue is left for future
research.



Chapter 1

Heat kernel expansion

After a brief introduction to the heat kernel, starting from the generating functional in
path integral representation, the relation between the one-loop effective action and the
heat kernel is made explicit. The utility of the heat kernel procedure lies in the possibility
to write down the coefficients of the expansion taking into account a few independent
invariants constructed from the background fields defined on spacetime.

The specific form of the Laplace operator, necessary for our study of the Seeley-
DeWitt coefficients in quantum gravity, is presented paying particular attention to all
the connections in the covariant derivative. After the introduction of the local invariants,
the formulae of the heat kernel coefficients are computed for a general Hamiltonian,
following Vassilevich’s notes [§].

1.1 Heat kernel introduction

The heat kernel represents a powerful tool both in physics and mathematics. During the
last decades, it has been extremely useful for the study of effective actions, calculations
of anomalies, divergences, and asymptotics. In 1937 Fock [9] noted that it is possible
to represent Green functions in terms of integrals over the so-called “proper time”, an
auxiliary coordinate, of a kernel that satisfies the heat equation. J. Schwinger [10] used
that representation of Green functions, related to the dynamics of a particle with space-
time coordinates depending on a proper time, for studying issues such as renormalization
and gauge invariance. Later B. DeWitt [I], 2], 3] applied that procedure to quantum field
theory and quantum gravity, reaching important results. Other mentionable applications
are calculations of the vacuum polarization, the Casimir effect, and the proof of index
theorems.

In order to introduce the heat kernel, let us first define the operator éu = 1Py,
that reduces to the usual derivative when acting on wave functions. Consider then the



following second order differential operator with a mass term

Hy = =0+ m? (1.1)
where 9% := 3“3“ corresponds to the Laplacian in cartesian coordinates on the flat

manifold M = RP”. The heat kernel is defined as the matrix element between position
eigenstates of the evolution operator in euclidean time e #H0_ i.e.

K(8,a,y; o) = (al exp(—B1s ) ly) (1:2)

and represents the solution of the Wick-rotated (by analytic continuation t — —if3)
Schrodinger equation, the heat equation:

o .
<% + Ho)K(B; z,y; Hy) =0 (1.3)

under boundary conditions of the form
K(0;z,y; Hy) = 6P (z — v). (1.4)

It is quite simple to check that the explicit form of ((1.2) in the case of the operator in

(1.1)) is given by

K(Bs,y, o) — Gt ﬁm2). (15)

1
(amp)ypr2 P (‘ 1B

In the case of an operator containing an arbitrary potential represented by a smooth
function V'(z), such as o
H = Hy+V(z) (1.6)

the solution is not exactly computable in general, but in many cases can be treated by
using a perturbative expansion of the form

K(B: .y, H) = K(B: 2.y, o) (( y) + ar(z, )8 + asle, )+ .. ) (1.7)

with ag(z,y) = 1. The coefficients ag(x,y), ai(z,y), az(x,y) and so on are called heat
kernel coefficients (or sometimes Seeley-DeWitt coefficients), and depend on the points
x, y and on the explicit form of the potential V' (x). Of particular interest are the heat
kernel coefficients evaluated at coinciding point, a,(x) = a,(z, x).



1.2 One-loop effective action

In order to study the application of the heat kernel to quantum field theory consider the
following generating functional in euclidean path integral representation

Z[J] = /Dqﬁ e~519J] (1.8)

which produces the correlation functions of the field ¢, whose action is S[¢, J| which con-
tains a “source” J (an arbitrary function which allows to compute correlation functions
performing functional derivatives of the action). Since in this thesis we are interested in
computing the one-loop approximation of the effective action for gravity, it is enough to
expand the action up to the quadratic order in the quantum field fluctuations ¢, namely

S=Su+ (¢, J)+ (¢, He) + - (1.9)

where S, is the action on a classical background, H is a second-order differential operator
(interpreted as the Hamiltonian of a fictitious particle in heat kernel methods), and a
shorthand for the integrals over the D-dimensional space-time is used:

(61, ) = / 0P \/G 1 (x)palx). (1.10)

In the above equation g = |det(g,,)| represents the absolute value of the determinant
of the metric, while the integral over the underlying space-time is the inner product on
the quantum fields space. In order to dispel any doubt, it is rather significant to clarify
that the classical background field which produces the action S, and the quantum field
describing fluctuations are distinct and could be of totally different type. A noteworthy
example is the case of a pure quantum field in the classical background of gravity.

Then, equation with the approximation in (1.9) represents a gaussian integral
solvable as follows

A 1 -
Z[J] = e_SCldet_%(H) exp(ZJH_lJ) : (1.11)

From now on we omit the hat in the Hamiltonian operator as follows H := H.

Let us consider the Hamiltonian operator as in equation (1.6). By taking advantage
of the heat kernel, as presented in the previous section, the propagator H!(x,y) can be
defined using the following integral representation

H o) = [ 48 KB ) (1.12)

which follows from equation ((1.2)) for the Hamiltonian of (1.6). At this stage it is conve-
nient to introduce the effective action. For our purposes, it is enough to set the sources



to zero and define the effective action in terms of the generating functional as Z[0] = e T,
so that at one-loop it can be written as follows

1
Fl-loop = 5 In det(H) (113)

which represents the effects of the background fields in the one-loop approximation.
To rewrite in a useful form, let us consider the following identity valid for positive
numbers A and Ay (interpreted as eigenvalues of the operators H and Hy)

A [TAB e e
In " /0 5 (e e ) . (1.14)

We use this relation extended to the full operator H (dropping also an infinite constant)
to rewrite the above effectve action as

TLtoop = —% OOO %K(ﬁ, H) (1.15)
with
K(B,H) =Tr(e ") = /de V9 K(B;z,x,H) (1.16)

and where the identity Indet(H) = Trln(H) has been used.

From equations and we note how the one-loop effective action can be
written by making use of the heat kernel and also studied in terms of the above-mentioned
Seeley-DeWitt coefficients, as shown in equation ([1.7). The use of the heat kernel to
compute the effective action is rather convenient since the Seeley-DeWitt coefficients
can be computed in terms of just few geometric invariants, as will be shown in the next
section. The advantage of this procedure is based on its general validity for different
gauge groups, spins, etc.

1.3 The Laplace operator and local invariants

In preparation of the computation of the general Seeley-DeWitt coefficients, that will
be done in the next chapters, it is convenient to introduce the specific form of Laplace
operator of interest and the so called local invariants.

For the purpose, consider a positive definite metric tensor g,, embedded in a Rie-
mannian manifold M. We restrict our study to a manifold without boundary, which is
the case of interest. A complete and detailed description of the heat kernel expansion in
manifolds with boundaries is contained in Vassilevich’s notes [§].

Let each point of the manifold M be characterized by a vector space. The latter could
be considered as the representation space of a gauge group or of the symmetry group of



the space-time. All these vector spaces could be seen as forming a vector bundle whose
sections are functions with an index describing an internal degree of freedom.

At this stage introduce a second order differential operator of Laplace type restricted
to the following specific form

H=—(¢"V,V,+V) (1.17)

where V, is the covariant derivative and V' a matrix-valued function. The covariant
derivative contains not only the Riemannian part (together with the Christoffel symbol
[',,) but also the part related to the “gauge” connection w,. Therefore, if we have for
instance a scalar field transforming under a gauge group it would have also a “color” index
describing the above-mentioned internal degree of freedom, and the covariant derivative
would act on that index with a gauge field. Namely, the covariant derivative has the
form:

V.=V, +u, (1.18)
where the Riemannian part contains the Christoffel connection
A 1 Ao
r o= 59 (.g,ua,u + Guoy — gul/,a) (119)
where the usual notation for ordinary derivative g,,, := 9,9, has been used. The action

of the Riemannian covariant derivative on an arbitrary vector V, is thus given by
VAV, =0,V, — T,V (1.20)
One could also define the field strength of the gauge connection w,, as
Q= Ouwy + 0wy, + Wy, wy, (1.21)

and the full covariant derivative in equation ([1.18]) acting on the arbitrary vector V,, as
follows
V.V, =0V, —T* VA +w,V,. (1.22)

where the generators of the gauge group contained in w, must be chosen in the repre-
sentation belonging to V.

We have already anticipated that the Seeley-DeWitt coefficients can be expressed in
terms of few local invariants constructed from the background fields defined on space-
time. For this purpose we introduce the following invariants associated to the metric
tensor g,, and gauge connection w,. The invariants associated to the metric can be
constructed using the Riemann curvature tensor whose well-known expression in terms
of the Christoffel symbol is

Ruupa = apl—wal/ - 8orupy + FupAFAaV - FHU)\F/\pV- (123)

10



Related to the Riemann tensor one defines as usual the Ricei tensor
R, = R’ 100 (1.24)

and the Ricci scalar curvature
R = Rﬁ. (1.25)

Some of the invariants the we shall meet are the scalars R, V2R, R?, R, R" | R,,,,p0 R".
Similarly, invariants associated to the gauge connection w, are built from the filed
strenght in (1.21)), such as tr(£2,,Q"), with the trace taken over the internal gauge
indices.

In the following, we shall also need the concept of “flat indices”, associated to a local
orthonormal frame. Consider a tangent space attached to each point of the manifold. We
introduce a local orthonormal frame with a flat index described by the so called vielbein
or tetrad basis {e1,...,ep}. The vielbein components el and the inverse e/ (satisfying

kb _ sk . !
euef = 0;) connect the metric g, to the flat one, according to

el e Gu = djk and e?e%éjk =g". (1.26)

One can thus write the Riemannian covariant derivative in equation (1.20)) applied to a
vector with a flat index:
Vol =007 + ol (1.27)

where Jik is the so-called “spin connection” used to extend the concept of covariant
derivative to vectors in the tetrad basis. Its explicit expression can be found by the
condition V,ef =0 and is

kl

ol = e/ TP ek — e/ 0,eb. (1.28)

A complete and rather detailed description of the vielbein (or “vierbein”) or tetrad
basis, together with a review of General relativity using a vierbein (initially proposed by
Einstein in 1928) is contained in J. Yepez paper [11].

1.4 General formulae for the Seeley-DeWitt coeffi-
cients

In this thesis we will not perform the computation of the general heat kernel coefficients
step by step, but we will provide a synthesis of the method developed by Gilkey [12] and
followed by Vassilevich [8], where the interested reader can find all the steps and some
detailed references.

Consider an auxiliary smooth function o(z) on the manifold M, the heat kernel of
equation can be written in terms of the trace of the exponential operator as follows

K(B,0,H) = Tr(oe M) (1.29)

11



where
K (8,0, H) = /M P /G tr|K (8 2, 23 H)|o (). (1.30)

In the last equation the trace “tr” has to be considered as over the internal indices, and
K(B;x,x; H) is the solution at coincident points of the heat equation of the form in
(1.3) with boundary condition . This solution can be written in terms of a complete
set of orthonormal eigenfunctions of the differential operator H {¢,} associated to its
eigenvalues A\, as follows

K(B;z,y; H E% : (1.31)

It is possible to write the trace of equation (|1.29) using an asymptotic expansion for

g —0:
Tr(oe ") ~ Zﬁk_D/Qak(o, H) (1.32)

k>0

where ai (o, H) are the coefficients of the expansion.

At this stage it is possible to prove that this ansatz is consistent on manifolds with-
out boundaries, with the heat kernel coefficients computable in terms of the independent
invariants described earlier. Going more into detail, if we express all the possible in-
dependent invariants constructed from V', R;;i; and €;; (all introduced in the previous
section, we use here flat indices) and their covariant derivatives with I} (D), we have

ap(f, H) :tr/Mde\/g[a( ai(z; H)] Ztr/ dPx\/glo(z)c I}(D)] (1.33)

J

where ¢’ are some constants. Skipping al the steps that are not necessary for the purpose

of this thesis and jumping directly to the results, the general formulae for the first three
heat kernel (or Seeley-DeWitt) coeflicients are

nle ) =iz [ dPavnlo(e)]

a(o,H) = (4751)/2/ de\/_tr{ (x )(%H/)}

ag(o, H) = (475]3/2/ de\/_tr{ (z ){—(%R+V>;kk+%(él%+v)2
}.

1

1
6
2 2

12



1.5 Summary of the formulae

Let us collect the formulae for the computation of the Seeley-DeWitt coefficients in
a simple form that will be more useful in the next section for the application to the
quantum gravity theory. From now on for the rest of the thesis we will indicate the
first three heat kernel coefficients ag, a; and as, using DeWitt notation that keeps them
unintegrated.

Consider a second order differential operator of the form

H=-V’-V (1.35)

where V? = ¢#V,V, and V is a matrix-valued function. The covariant derivative above
contains both the Riemannian part (with the Levi-Civita connection) and the “gauge”
connection:

Ve=V+uw, (1.36)
where w, is the gauge field whose field strength tensor €2, is given by

(Vi Vo] = Q. (1.37)

with ¢ a charged (with “color” index) scalar field. The commutation relation for the
covariant derivatives of an uncharged (no “color” index) controvariant vector field V* is

V., V,JV} =R, ,V°. (1.38)

Taking into account the insertion of an arbitrary smooth function o(z), using a
perturbative approach, the heat kernel can be written as

T (ofe)e ) = [ N lolo) o) + @03 + ae)® + O] (139

where the trace “tr” is on the matrix indices and the coeflicients are

ap(x) =1 (1.40)
1
1_,/1 1/1 1, ) 1.,
Lol (2 _ _ —0? 1.42
as(z) sV <5R+V>+2<6R+V> +180(RWU Ro) + 5% (1.42)

13



Chapter 2

Perturbative quantum gravity:
action and gauge fixing

In the previous chapter we have introduced the heat kernel making explicit the rela-
tion with the one-loop effective action. In the concluding section a summary has been
presented, with some general formulae that will be useful soon.

The aim of this chapter is firstly to introduce the Einstein-Hilbert action in a manifold
equipped with a metric tensor, where a background-fluctuations splitting is performed.
The mentioned action enjoys a gauge symmetry that must be properly fixed following
BRST methods.

Once that the invertible kinetic operators are isolated and reduced to a form useful for
the exponentiation with a proper time, the heat kernel formulae can be applied making
use of appropriate replacements. The corresponding Seeley-DeWitt coefficients ag, a1,
and asy are thus computed at arbitrary dimension and at D = 4. At the final step they
are reduced “on-shell”, namely evaluated on Einstein manifolds (where the background
metric satisfies Einstein field equations) and compared with B. DeWitt results and other
different papers.

2.1 Quadratic approximation of quantum gravity ac-
tion

Consider first a manifold M of dimension D equipped with a Riemannian metric tensor

G, (x) with the euclidean signature. The dynamical field of perturbative quantum grav-

ity is the metric tensor itself, by means of which one writes the infinitesimal invariant
length of space-time as follows

ds* = G, (v)dztdx". (2.1)

14



The metric has a gauge symmetry known as “general change of coordinates”, also referred
to as diffeomorphism or reparametrization. In particular, under the change of coordinates
x — z'(z), the metric has the following transformation law
0x? O0x7
Ox'm Oz
which leaves the Einstein-Hilbert action invariant. The latter, using the principle of least
action, yields the Einstein field equations. It is a functional of the metric tensor and can
be written in the following way

Gu(z) = G, (') = Gor () (2.2)

S[Gu) = — k2 / P2 /GIR(G) — 2A] (2.3)

where also the cosmological constant A has been inserted. R(G) is the Ricci scalar
curvature, function of the metric tensor, and the constant in front of the integral, tipically
interpreted as the coupling constant of the theory, is k* = 167Gy, where Gy is the
Newtonian gravitational constant. The theory of quantum gravity constructed using the
Einstein-Hilbert action has the property of being non-renormalizable. Similarly to the
Fermi theory of the weak interaction, it can be interpreted as an effective field theory,
namely valid up to some energy scale according to a proper cut-off dictated by the
coupling constant (or the mass entering it).

At this stage it is possible to implement a background field formalism, splitting the
metric tensor G, into a fixed classical background g, (that in general does not coincide
with the Minkowski metric), and a small perturbation h,, which defines the quantum
fluctuation of the metric:

Cu() = gu(2) + (). (2.4)
The quanta of the field h,, identifies the so-called “gravitons” of the theory. Typically a
constant k is placed in front of the quantum field A, in order to control the perturbative
expansion by making it as small as one wants. In this case it has been incorporated in
the field.

Since we are interested in the evaluation of the one-loop effective action, we can show
that, by taking advantage of the metric split, the action (2.4]) can be expanded in orders
of the fluctuation as follows
%[So +81+ S+ S (2.5)

n=3

Slg+ h] =

Proceeding in this manner one can identify the linear term, which provides the Einstein
field equations, and the quadratic term, precisely the one of our interest.

In order to write the explicit expression of each term up to the quadratic order in
the expansion (2.5) we rewrite first the Ricci scalar in terms of the Ricci tensor as
R(G) = G*R,,,(G), where G* is the inverse of the metric. It can be evaluated as

G (@) = (g + ) ™ = 9" — I+ WA 1 O(?) (2.6)

15



as can be easily checked by computing the following product to recover the identity:
GG = (g + ) (g7 — B + hEhY) = 6 + O(h?). (2.7)

By taking advantage of the property logdet A = trlog A and performing some loga-
rithm and exponential expansions we can write the square root of the metric determinant
in powers of h,, as follows

1

1
V1det G| = /| det g, (1 FH = R+ () + 0(h3)), (2.8)

The action can be thus written in terms of expansions (2.6) and ([2.8)), by making use
of the notation h = hfj = g"hy,,:

1 1 1
Slg+h] = —k2 / de\/g(1+§h—zh“”hw+gh2+(9(h3)> [(gw/—hﬂuhgh*”) Rw(gm)_zA]
(2.9)

The background metric g, is used to raise and lower the indices. After some algebra,
integration by parts and neglect of total derivatives one gets:

So = —/de\/E{R — ZA},

1
S = /dDa:\/E{h”” (R/w — §QWR + g#,,A> },
1 1 1 L\ (210
S0 == [[aPa 309+ 20— S+ 200+ 5 (Vb — 19,0)

1 vo 1 14 174 1 v
SR Rupg + 5 (WhA — hh* )RW +3 (h2 — 2h* hW)R}.

In equations the Ricci scalar, the Ricci tensor and the covariant derivative are con-
structed using the background metric tensor g,,,. For a complete and detailed calculation
step by step of the Einstein-Hilbert action expansion see appendix

Following the principle of least action one can obtain the graviton equation of motion
by computing 651[h|/0h* = 0. The result represents, as we have anticipated, the
Einstein field equations.

1 48 1
ﬁm’ij - Rl“/ - §g,uuR + guVA =0 (211)

The quadratic approximation Ss[h] is the part of the action that we want to study
to compute the one-loop effective action. To that end we extract the invertible kinetic

16



operator of the graviton, whose inverse represents the propagator of the theory, and we
apply the heat kernel formulae (1.40)),(1.41)) and for the coefficients computation.

Befor proceeding with this pattern we should deal with the gauge symmetry of quan-
tum gravity, performing a proper fixing with a specific gauge. This is the purpose of the
next section.

2.2 Gauge fixing and invertible kinetic operators

According to what we have already briefly discussed, the Einstein-Hilbert action ([2.3])
originally introduced enjoys a gauge symmetry represented by general change of coordi-
nates or diffeomorphism. Let us consider an infinitesimal change of coordinates of the
following type

ot — o = ot — M (x) (2.12)

where £#(x) is the infinitesimal vector field along which the transformation is performed.
Under (2.12)) the full metric tensor G, has the following transformation rule

0Guw(2) = G, (2) — G (@) = € (2)0,G () + 0" (2)G () + 0,67 (2) G () (2.13)
=V, (2) + Volu(@) = £6G (). (2.14)

The symbol £, stands for the Lie derivative of the metric along the vector field &~.
The latter, as a vector, contains D independent directions for the gauge transformation.
According to the general background field formalism and in view of the metric split
one recognizes two different gauge symmetries:

(7) a quantum gauge symmetry transforming h,, and leaving the background inert:

OeGu =0

. . . (2.15)
Ochyy = £(guw + b)) = Ve, + Ve, + € Vahy + (Ve )y + (Ve ) by

(1) a classical symmetry of background diffeomorphism with h,,, transforming as a ten-
sor:

5€guu = OE{gm/

2.16
Sehy = £ehy. (2:16)

They both reproduce the gauge transformation of the full metric tensor G, when acting
on it. However, only the first one is a true dynamical symmetry, leaving the background
field invariant. That means also that it is the only one to be “gauge-fixed”. The second
one instead treats the background metric as a gauge field and the quantum field A,
transforms as a tensor, for this reason it is called background gauge symmetry.

The reparametrization or diffeomorphism invariance of the Einstein-Hilbert action
implies that the metric tensor carries some non-physical gauge degrees of freedom, which
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are eliminated by the ghost fields. Since we are working on a manifold of dimension D,
the vector field degrees of freedom for the ghost and antighost are D for each one, while
the number of independent components of a symmetric rank-2 tensor with non-vanishing
trace are D(D + 1)/2. Hence the total number of graviton polarizations is

D(D +1) D(D - 3)

—2D = ——=. 2.1
) (217)

This value can be considered as a benchmark for the first heat kernel coefficient of one-
loop quantum gravity. If reduced to dimension D = 4 this values becomes Ng .1 (D) = 2,
which is the well-known number of polarizations of the graviton, namely the two physical
degrees of freedom of a massless spin-2 gauge theory. One may also notice that in D = 3
the graviton has a null number of propagating degrees of freedom, a hint that in this
case Einstein gravity has no dynamics.

For this purpose we have to perform the gauge-fixing following the BRST methods.
The BRST quantization method is widely used to write the gauge-fixed action for a
general non-abelian gauge theory. It can be applied to many areas such as Yang-Mills
theory or other cases where the structure functions of the gauge algebra are constants
and the algebra closes without employing the equation of motion. A typical example
is the one provided by the theory of quantum gravity constructed from the Einstein-
Hilbert action, even if it can be interpreted just as effective field theory because of its
non-renomalizability problems. First we introduce a gauge-fixing function as follows

Naot (D) =

i (VW — %Vuh). (2.18)

One might notice, at this stage, that in the quadratic approximation of the action ([2.10)
there is a term that coincides exactly with % f*f,. That term, that in the de Donder
gauge is directly put to zero, gets removed after the gauge-fixing,
By using the function (2.18)) we construct the gauge fermion ¥ as follows
i
W= b (f, — 57@) (2.19)

with " the anti-ghost (fermionic and so anti-commuting) and =, the auxiliary field or
Nakanishi-Lautrup field in Yang-Mills theory (bosonic and so commuting). They are
called non-minimal fields and are used to introduce the gauge fermion (2.19)). Their
BRST variation, with 1 the anticommuting BRST parameter, are

b’ = inmt

By = (2.20)

6B7Tu =0
which are obviously nilpotent. For this reason the total quadratic aproximation of the
action written in the following way is manifestly BRST invariant:

Sotot = So + s/dD:r\/gj\Il (2.21)
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where s indicates the Slavnov variation, namely the BRST variation with the n parameter
removed from the left. We are allowed to add an extra term to the quadratic action, an
in eq. , because the BRST variation is nilpotent, namely s* = 0. This is a crucial
point because two BRST invariant quantities, which differ by a BRST variation of a
function, belong to the same cohomology class, namely they represent the same physical
observable.

The integral of the Slavnov variation of the gauge fermion provides the action for the
ghost and for the auxiliary field:

/] 2
Sgn + Sr = /dDm\/E% = dD.T\/§|:<% + i?TMfM) - b“sfu] (2.22)

where sf, = f,(sh). The Slavnov variation of the quantum fluctuations of the metric
is given by the BRST variation with the n parameter stripped off. The BRST variation
can be cast from gauge transformation just replacing the vector field ¢, with the
ghost field ¢,:

shy, = Ve, + Ve, + O(h). (2.23)

Using the proper equations of motion 7, = —if,, one can integrate out the auxiliary
field noting that the following identity holds

2 u L. .
9 +int f, = §fuf . (2.24)

In the total action (2.21]) this term cancels the same term with opposite sign above
mentioned. From the action in (2.22)) what remains is the ghost action

Sgn = — / dPx\/gb"s f,. (2.25)

Using the Slavnov variation of the metric h,, (2.23)) it is possible to evaluate the explicit
expression of sf, and recognizing the Riemann tensor in terms of the commutator of
covariant derivatives

V.,V = R,"\c* (2.26)

the ghost action reads

Sgn = — /de\/g?b“(Vsz + Ryuc”). (2.27)

For these computations we have ignored terms like b-c-h interactions that are not relevant
for one-loop calculations.

The quadratic approximation of the total action thus contains the ghost part and the
graviton action:

Satot = Sgn + Sh (2.28)
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where

1 1
Sh = / d%\/'{ — BN Ry, + 8hV2h W Buno = 5 (Wh; — hh"”) Ry,

1 1
— g(R —20)h? + Zhﬂ”hW(R - 2A)} :

(2.29)

Having found the quadratic action for the ghost and the graviton, the next step is to
identify down the invertible kinetic operators. The fact that they are invertible reassures
us of the correctness of the gauge-fixing procedure. The simplest case is the ghost one.
The kinetic operator can be immediately found by rearranging the action as follows

Sy = — / P /b, (852 + R™)e”, (2.30)

so that one might write it as

Syn = / dPx\/gb, ", ¢ (2.31)
where the invertible kinetic operator is
3”1/ = _(5,u,yv2 + R“l/) (232)

which is an operator that acts on vector fields.
For the graviton, the invertible kinetic operator can be identified casting the action
in the following form

Sp = / de\@%hWFW’aﬁha@ (2.33)
where the operator is
FrvaB — i(guagl/ﬁ + gvaguﬁ e’ aﬁ) <V2 R+ 2A)
% (R“a”ﬁ + RMbre _ g Reb gaﬁR’“’> (2.34)
i( paRvB | guBRra L gvo g 4 uB Rua)

2.3 Seeley-DeWitt coefficients

Equations (2.32)) and ([2.34)) represent respectively the invertible kinetic operators for the
ghost and the graviton. Nevertheless, the form of (2.34)) is not immediately useful for
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the computation. For this purpose, one can introduce the following metric (sometimes
called DeWitt super-metric)

2
Vuvap = Guadvs T Gupdva — 55 9uvJas; (2.35)

that is manifestly symmetric under the exchange of the first two indices with last two.
It satisfies the equation
o,V 1 g g
fyp e ’Y/,LV,OLB = 5(55(55 + 50452’) (236)
Eq. (2.35]) can be used in order to lower the first pair of indices in expression ([2.34]) so that

one gets the operator F' in a form that can be exponentiated to yield the corresponding
heat kernel:

oT 1 o T T o 1 o T T o 2 oT
F,ul/ :_5(511 5V +5M 51/ )(v2+2A>+§<5M 5” +5N 5’/ _mguyg >R

2
+ —g’uVRO'T + gUTR/JV _ R/JJO’V’T _ RuTVO'

D -2
1 o T T o e T T g
= OB+ 0, R 4 0, BT+ 0,7 R,)

(2.37)

where D is the dimension of the manifold.

Let us start with the ghost coefficients computation. By comparing the kinetic oper-
ator with the general form one replaces 1 with 6% and the matrix V with
R:. Since the ghost field is a controvariant vector field, the commutation relation for the
covariant derivative operators that appear in are

V., V|7 = R,,°% ¢ (2.38)

The Riemann tensor in this case has to be tought as a set of D X D matrices labelled
by the indices p and v. Therefore one also replaces €2, with R?;,,. Using the formulae
(1.40), (1.41), (1.42) and that tr(6¥) = D, one can check that the ghost heat kernel
coefficients at arbitrary dimension D are

trjaggn(x)] = D (2.39)
1

triay gn(z)] = EDR +R (2.40)
D+5 D+ 12 D —90 D —15

tr[a27gh(17>] = —+V2R + il R2 - R;WRMV + RO’T,U,VRUT“V (241>

30 72 180 180
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that reduced in dimension D = 4 are

trfag gn(z)] 2= 4 (2.42)
4 5
trargn(v)] == SR (2.43)
D=4 3 2 o, 43 11
t = “ VR4 SR*+ — R, R" — —Ryp R 2.44
ta2gn(@)] 0" gt Tt 180" 7" (2.44)

It is rather manifest that the result in represents the correct number of degrees of
freedom of the ghost vector field.

The same strategy can be applied for the graviton heat kernel coefficients. By com-
paring the operator with the general form one replaces 1 with 4,,°" and

the matrix V' with —Z,,°7, where
1
0" = 5(%”5; +6,76,7) (2.45)

and

= o7 1 o5 T TS O 2 oT 2 oT oT
Sy = 5 (6u 5V + 6u 5u - mgul/g ) R + mguuR + g Ruu ( A )
2.46

1
— R,U,UVT _ RpTz/g _ §<5MO'RVT + 5;LTRVG + 6VO'R#T + 5VTR/LU>‘
One might recognize eq. ([2.45) to be the symmetric Kronecker delta, with trace
tr(0,,°7) = 3D(D + 1). Since the kinetic operator in (2.37) acts on fields that are
covariant symmetric tensors, the commutation relation of covariant derivative becomes

[vuv Vu]ho‘r - Rm'p)\,uuhp)\ (247)

where )
Ra’rp/\/u/ = 5(50'pR7')\,UJ/ + 50>\R7puu + 6’7‘pR0’>\[u/ + 5T>\R0pm/) (248)

that has to be considered as a set of $D(D + 1) X $D(D + 1) matrices labelled by
symmetrized pairs of indices.

At this stage one can use the formulae (1.40]), (1.41)), (1.42) and proceed with a
straightforward calculation with significant algebra. Some intermediate steps that might
be useful for the reader are the following:

(i) For a;(x) and as(x) computations:

1
tr(Z77) = Eu = D(D = )R = D(D + 1)A; (2.49)

(i) For as(x) computation: the graviton coefficient ay(z) contains the following contri-
butions

1 1 afuy 1 oT UV D+2
—02 ERUTPAWRPA Buv 1ty ERWMWRpA R Ny -

- :
CLQ(CC) 12 v 12 T)\/Ll/

(2.50)
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171 ’ 1/1 or _— ot 1 « - «
CLQ(QL’) D) 5(6R+ V) — §<6R(5w/ — S ) (ERégT s _ St 6)

(2.51)
1 R2 « 1 -« - oT/™
- 5(%5’“’ - gR:#V + Su Sor B) )
where the following trace is shown
D3 —5D% 48D + 4 D? —8D + 4
t E VJTEUTaB — E VUTEUT,LW — 2 R2
r( o ) Iad Q(D o 2) + D—9 oT
5D% — 17D? + 14D
3R D(D +1)A? — RA.
HvoT + ( + ) 6(D _ 2)
(2.52)

(73i) A necessary identity repeatedly used in the computation is the following one

R Raggy = R (= Rapys — Ranss) = R Rapsy — R Ranss

2.93
= RQBMRaﬁé'y - RQBM;RM% = Ra'BMRaﬁéw - RaﬂMRaM% ( )

therefore .
R Rospy = 53355,7. (2.54)

Once that the calculations are done we end up with the following graviton heat kernel
coefficients at arbitrary dimension D:

trlag(z)] = %D(D +1) (2.55)
trfay (2)] = —%R + D(D +1)A (2.56)
tr{an(z)] = _D(2§0— ) g2, 200" - 1;145£Z+_ 226)2D +144
D 18;};(; 1_4:;5);0 T e Do 2;61()) 80 e
D(5D? — 17D + 14
L p(p+1)a2 = 2 6<D_2)+ ) RA.

that reduced to D = 4 become

trfag(z)] 2= 10 (2.57)
- 1
trfaq (z)] 225 —?R +20A (2.58)
pea 2_, 59 , 55 19 , 26
t _ = e = oT - o UvoT ) A =" A 259
tay(0)] == =S VIR + o R = o Ror R o o Ry R 420 S A (2:59)
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One can recognize to be the number of degrees of freedom of a symmetric rank-2
tensor with non-vanishing trace in dimension D = 4. Nevertheless, in order to have the
correct number of degrees of freedom of the graviton, namely its physical polarizations,
we have to sum these results to the ghost ones.

Using these coefficients we are able to write the following terms contained in the one-
loop effective action I' for the ghost and the graviton, terms that lead to divergencies
and which must be renormalized away. The general expression is

—a/ dﬁ/ TG o) + ()8 + an(@) P+ O], (2.60)

At 5 D/2
with the value of o depending on the type of field (i.e. a = —% for a real boson like
a real scalar, = —1 for a complex boson, and opposite signs for anticommuting fields

like the ghosts).
In the following we write the effective action of the ghost and the graviton, specifically
at D = 4, for a comparison with other texts and papers:

*dp [d'z/g 5 2 g, 43 11 2
Tpp= | — 4+°R R+2R Ry R" — — Ry RO
oh /0 3 | (4npB)? T v T T oo 180" 77 p

ow?’)] ;
(2.61)

1 [*dp d4x\/_ 13 59
r..—_Z = 1 —“R+2A 18 ——V2 R+ 2= R?
graviton 2 /0 B / (4m3)? 0 3 0 3 36

_Pp gl + RWC,TR“”‘” +20A% — 6RA) B2 + 0(53)} .

18
(2.62)

The total heat kernel of quantum gravity is the sum of the individual contributions of
the ghost and the graviton as follows

T 1 e

where § and F' are the second order differential operator respectively for the ghosts and
the graviton. Therefore the general heat kernel coefficient of order k for quantum gravity
is given by

triak o] = triax] — 2tr{ag, g (2.64)
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which yields the following coefficients
D(D - 3)

trao ot ()] = 5 (2.65)
5D? —3D + 24
tray sor ()] = — 5 Ry o D(D +1)A (2.66)
2D?> — D + 10 9 25D3 — 149D? + 222D + 240 9
trag gor(2)] = — o
r{a2.(7)] 3 vt 144(D — 2) B
D3 — 185D? + 1806 D — 1440 D? — 33D + 540
- RO’TRUT R VO'TRMVUT
360(D — 2) + 360 "
5D3 —17D? + 14D
D(D + 1)A? — RA
DD +1) 6(D —2)
(2.67)
that reduced to D = 4 are
trag ot ()] D=9 (2.68)
— 2
tr(as o1 ()] o= —;R + 20A (2.69)
b 19, 43 , 361 53 , 26
t o —> ——V?R+4+ —R?*—- —R,.R°"+ —R,,..R"° 4+ 20A? — == RA.
t{a2 o) 5y Bt gg 90 Tt * 3 2m0)
2.70

As a check we recognize from eq. the correct number of polarizations of the
graviton in dimension D = 4. One may notice that the field equations have
not been used at any step in this calculation. Therefore these results are valid for any
background field.

The total, unregulated one-loop effective action thus reads

=-— / dﬁ/d%f[ (——R+20A)B+ (—%VQRJrﬁR2

(47 5)? 3 36
361 53 26

— Ry R77 + —Rue, R*°T +20A* — —RA | 2 + O(8%)].

(2.71)

As well-known, this expansion is not applicable to get the finite terms of the effective
action because of the infrared divergencies that arise since the graviton is massless (these
IR divergences are seen from the lack of convergence in the upper limit of the proper
time integration), but it is enough to identify the UV diverging pieces (arising from the
lower limit of the proper time integration) that must be renormalized away.

In general, the effective action is expected to depend on the gauge chosen in construct-
ing the gauge-fixed action and perturbation theory. However, it becomes gauge invariant
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when evaluated on-shell. Thus, one can restrict the above coefficients “on-shell”, namely
simplify them by evaluating them on Einstein manifolds. Using the Einstein field equa-
tions one has that the cosmological constant can be written in terms of the Ricci
scalar curvature as

D —2
A= ——R 2.72
5D (2.72)
and the Ricci tensor is given by
2A
R,uu - mguy' (273)
Using equations (2.72) and ([2.73]), the coefficients (2.65))-(2.67)) reduce to
DD -3
trlag ()] = 22 =2 (2.74)
2D3 —8D?* — 66D + 72
tray o1 ()] = 20D —1) R (2.75)
(D +5)(5D% — 42D — 144) ,  D? — 33D + 540
trfas,eor(z)] = R R RO (276
taza () 720D - 360 g (2.76)
that at D =4 (egs. (2.68)-(2.70)) become
trag o (7)) 2= 2 (2.77)
- 8
tr{ag ot ()] o= —gR (2.78)
- 29 53
trfaz o (2)) 7= — 5B+ Ruor R (2.79)

All these terms give rise to divergences in the effective action, and must be renormal-
ized away. As they are evaluated on-shell, they identify gauge invariant coefficients that
should not depend on the gauge chosen. Any formulation of quantum gravity should be
able to reproduce them independently of the scheme chosen in the calculation.

For future reference, we write them also in terms of the cosmological constant A,
rather that in terms of the Ricci scalar curvature R

trag o (7)) 2= 2 (2.80)
— 2

trlasson()] 2= —%A (2.81)
- 58 53

trfazgor(2)] 7% =A% 4 E Ry R, (2.82)

In light of the above results, we can introduce a topological invariant called Euler
characteristic of the manifold that can be used to compare our results with other papers
and texts. In D = 4 the Euler characteristic is

1
X(M) = 355

1

4 2 2 2 4
/d ZL\/E(RMVUT — 4RMV + R ) = W/d $\/§G (283)
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where G = R, — 4R’ + R? is called Gauss-Bonnet term. On Einstein manifolds

uvoT
G = R’,,,. Hence the part of the one-loop effective action on Einstein manifolds of

dimension D = 4 that is logarithmically divergent, i.e.

11 [cds [, 58, 53,
Ty = —=—— | 22 [ g 2082 2R 2.84
d 9 (471')2 /0 6 / .’L'\/g( 5 + 45 uvoT ( )

can be written as

_ L [TAB 106y 29 s
Caiv = 2/0 5 <45 xX(M) 407T2A Vol(M)). (2.85)

where vol(M) = [, d*z,/g represents the volume of the manifold M.

Let us comment on these results. Neglecting the topological term, and setting the
cosmological constant to zero, one recovers the well-known result of t” Hooft and Veltman
[13], according to which quantum gravity is finite at one-loop (more precisely, it is free
of logarithmic divergences, as given by eq. ) This result does not hold anymore
at two-loops, as shown by Goroff and Sagnotti [14]. The one-loop result for quantum
gravity with the cosmological constant at D = 4 is instead originally due to Christensen
and Duff [15]. This result is also recovered by the above expression.

Let us now discuss and compare the more general heat kernel coefficients we have
calculated with the literature. One may check that some of the results shown in egs.
— of the total quantum gravity heat kernel coefficients at arbitrary D are dif-
ferent from the ones reported by B. DeWitt, in particular the ones in eqs. (16.80)-(16.82)
of [1] and egs. (16.79)-(16.81) of [3]. This is exactly what we have anticipated in the
introduction: some of the first three heat kernel coefficients are sometimes erroneously
reported in the literature. This could lead to confusion, for example where such coeffi-
cients are used as a starting point for further purposes. In this regard we have decided
to rederive them using the original heat kernel method, to make sure we consider the
correct ones.

Nevertheless, our results are identically reported by I.G. Avramidi in [I6], where
similar heat kernel methods are used as well. The reader can compare step by step the
Seeley-DeWitt coefficients for the ghost, the graviton, and the total one-loop effective
action. This accordance provides an extra proof of the correctness of our results (and of
theirs).

It is also worth stressing that egs. and (using the Euler characteristic)
are not only in agreement with Avramidi, see eq. (3.79) of [16], but also with the results
of eq. (4.23) of [15], as anticipated above, while they disagree with [I7], as noted by
Avramidi himself. Moreover, the ghost, graviton and total coefficients at D = 4 are also
reproduced in F. Bastianelli and R. Bonezzi [4], where they have been computed using
a worldline approach to quantum gravity.

A further source of disagreement in the study of such coefficients could be related
to the gauge-fixing procedure adopted. Indeed, the effective action for gauge theories
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in general may depend on the gauge chosen. It is expected to be gauge invariant only
on-shell. For this reason, we have calculated the gauge-invariant coefficients at arbitrary
D as well. To derive them, we have considered a gravitational background satisfying
the Einstein field equations. These coefficients represent a benchmark for any correct
construction of perturbative quantum gravity, as they should not depend on the method
chosen for their calculation.

In particular, a novel method for describing the graviton makes use of the first quan-
tization of the A/ = 4 spinning particle, which applies the same strategy used in defining
string theory by first quantizing a mechanical model. In this respect, we have verified
that the coefficients — on D = 4 Finstein manifolds are identical to those
calculated in [7], obtained precisely by using the N' = 4 spinning particle. Note that
the latter can be consistently quantized only on on-shell backgrounds, while keeping the
background off-shell leads to results that differ from the standard heat kernel coefficients
given above. However, the more general coefficients - at arbitrary D differ
from the ones obtained in [7] with the N/ = 4 spinning particle, suggesting the need of
improving the latter so to meet this benchmark in arbitrary dimensions. This fact was
unexpected and provides a novel result of this thesis.
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Chapter 3

Worldline formalism for the ghost

In the foregoing chapter the heat kernel expansion, with its well known formulas, has been
employed for the study of perturbative quantum gravity’s Seeley-DeWitt coefficients ay,
a1 and ao. The achieved results have been compared with the literature and sources of
disagreements have been pointed out.

The aim of the second part of this thesis lies in the attempt of reproducing those
results using the worldline formalism. Our approach will follow F. Bastianelli and R.
Bonezzi’s work [4] where the heat kernel coefficients have been computed specifically
in space-time dimension D = 4. Our interest is to extend this approach to arbitrary
dimension D and to compare results with those of the previous chapter.

The core idea of this approach resides in the possibility of constructing a worldline
representation of the invertible kinetic differential operators and of the
quadratic action. This idea should be applied separately to the ghosts and the graviton,
in order to find their heat kernel coefficients and finally put them together to construct
the full one-loop effective action. For this purpose the present chapter will be dedicated
to the construction of a worldline model which correctly reproduces the ghost. The
greater simplicity with respect to the graviton case can be used to present the theory
that will be then applied also to the latter.

After a brief introduction of the effective action we proceed with the construction
of a vector model that correctly describes the ghosts. This will require bosonic and
fermionic phase space variables for the Hilbert space construction, where the general
state contains also vector fields. All the other unecessary fields need to be projected out
using an additional coupling with a worldline gauge field and an extra Chern-Simons
term.

The path integral construction needs a regularization scheme to satisfy some renor-
malization conditions such as a chosen ordering of the associated Hamiltonian operator.
The regularization procedure used (dimensional reqularization in this thesis) will be nec-
essary for the computation of Feynman graphs with ambiguous and divergent products
of distributions.
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The one-loop effective action then will be computed with a perturbative expansion
in Riemann normal coordinates.

3.1 Worldline theory and effective action

In order to introduce the worldline theory let us first present the partition function for
pure gravity in terms of the path integral as follows

Zlg) = / DhDbDc e 52t (3.1)

where the quadratic action is the one of eq. (2.28]) and the integral is over the graviton
huw, the ghost ¢, and the antighost b*. The partition function can be written using the
determinants as follows

Z[g] o Dety [§,]Det s’ * [Fuas] (3.2)

where V' and T2 as subscripts represent the functional space of action of the operators,
namely vectors and symmetric rank-2 tensors respectively. The operators in the last
equation are the ones found in the previous chapter, for the ghost and the graviton. The
one-loop effective action that we want to compute, defined by Z[g] = e Tl is given by

Tlg = %{Tm I0[Fouras] — 2Tty In[3"]}. (3.3)

If we introduce the Schwinger proper time representation for the logarithm, i.e. for a

generic operator O

TrinO = —/ d—Tr |:6_’8(§ (3.4)
o B

where [ is the proper time parameter, the one-loop effective action can be cast as

T[g] = —% /Ooo %{Tr le—ﬂﬁ} — 2Tr :e—ﬂﬂ } (3.5)

The operators F and § represent the quantum mechanical Hamiltonians of the graviton
and the ghosts respectively, that acting on symmetric rank-2 tensors ¢’ and vectors V'
give

. 1 1
(F¢)NV = ,u,l/aﬂ(baﬁ = — 5 <g,u,agllﬁ — §guyga5) <V2 — R + 2A) (baﬁ
1 1 s
- 5 Ruauﬁ + Ruﬁya - §g,LLI/ROLB ¢ (36>
1 A A 1 af 1 af.
- 5 R/ﬁb)\u + RV¢AN - §g,u,uR ¢a6 + 590(,8R;w¢ )
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FV)=F"V" = —% (vm + RWV”> . (3.7)

The aim of the next section is to study a worldline representation of the ghost differential
operator when acting on a vector as shown in . Therefore, the idea is to construct
the model of a particle where the associated quantum mechanical Hamiltonian F acts on
a Hilbert space containing vectors.

3.2 The vector model for the ghost

In order to produce the above-mentioned model we consider first a D-dimensional space-
time with metric g, (x), which coordinates and related conjugate momenta are the usual
real bosonic variables of the phase space x#(t) and p,(t). These variables, after the
quantization, will describe the functional dependence on space-time points of the wave
function which represents a state in the Hilbert space. We will see that among other
fields the constructed wave function contains the studied vector field for the ghost as
well. For this purpose the wave function should also have discrete indices. This is
possible by constructing the phase space also with fermionic variables that are specifically
worldline complex fermions, for simplicity characterized by flat Lorentz indices: A*(¢) and
corresponding conjugate momenta /_\“(t).

The bosonic variables, togheter with the complex fermionic ones, define a graded
phase space. We promote these variables to operators by introducing (anti)-commutation
relations for the usual canonical quantization:

[i#, p,] = iok, (A, A1) = g, (3.8)

where 6% is the flat metric and we put as usual A = 1. The quantization of Grassmann
odd variables produces fermionic creation and annihilation operators that give rise to
a finite dimensional Hilbert space. The use of additional bosonic variables rather than
fermionic ones for the discrete indices description is valid as well. The main difference,
apart different signs, is that the corresponding Hilbert space would be infinite dimen-
sional.

After the quantization we consider z* as the eigenvalues of 2#, while for the fermionic
sector we introduce “bra” coherent states that are eigenstates (\| of the operator A% with
cigenvalues A% (A| A* = (A| A%, The corresponding bosonic and fermionic momenta are
their derivatives.

Since we work in a curved space-time of metric g,,(x), we have to pay attention
to the possible ¢'/* factors present in the bosonic momentum operator Du, Where g =
|detg,,, (x)|. This is dictated by the form of the covariant measure present in the scalar
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product, that is d? x,/g. Therefore, in order to guarantee hermiticity of the momentum,
the latter is given by
pu = —ig *0,9"*, (3.9)

with derivative acting through the g factor. While the momentum of the fermionic
variable is 5

>\a = )
O\

(3.10)

so that {\,, A’} = &7

At this juncture it is possible to construct the states of the Hilbert space using the
graded variables providing the continuous and discrete indices. The generic state of the
Hilbert space is represented by a wave function |¥) ~ W(z, \) that thanks to the coherent
states is given by ¥ (z, A) = ((z| ® (A]) |¥). It can be Taylor expanded as follows

1
() ~ U(x,\) =V (z) + V,(2)\* + 2\11,11,12( )N o — U, ()AL

D!
D
1
=) =W g, ()AL A
n=0 n'

(3.11)

The upper value of the sum is D, the space-time dimension, which represents the number
of independent components of a vector. Depending on the occupation number n, it
is possible to identify different antisymmetric tensors. Among them there is also the
vector field we want to reproduce, associated to the occupation number n = 1, with
corresponding state of the form |V') ~ V,(x)A*. From now on we consider wave functions
containing only V,(x) such as |¥) ~ V,(z)A*. In the next section we will describe the
method to project out all the unwanted fields and to keep only the one of interest, exactly
describing the ghost field of our gauge fixed quantum gravity action.

Since the aim of the chapter is to provide a worldline representation of the ghost dif-
ferential operator , we need to reproduce also the Laplacian operator V2. Therefore
we want to construct the covariant derivative. Hence, we introduce the generators of the
Lorentz group SO(D)

M®™ = — M = [\, N, (3.12)

obeying the corresponding so(D) algebra
[J\4ab7 Mcd] — 5bcMad 4 5adec . (Sachd . 5bdMac. (313>

We define the covariant derivative operator as follows

~ 1 _
VM = 8M + éwuabMab = au + wuab)\a)\b, (314)
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with w,q, the spin connection. It is rather important to stress that the covariant deriva-
tive operator written in the last equation acts on wave functions, and is different from
covariant derivatives acting on fields. If we consider the wave function V (z, A) ~ V,(z)\?,

the action of the operator (3.14]) is given by
V.V (2, \) = (V V)N = (8,Va + wua Vi) A, (3.15)

where one recognizes the action of the covariant derivative on the vector field V. The
covariant derivative can be written in a compact form by introducing the covariant
momentum, which includes the momentum p,, and the spin connection. Using eq. ,
the covariant derivative is given by

A

Vi =g g™ = i (D — i A N ) g, (3.16)

where 7, 1= p, — iwwa“Xb is exactly the covariant momentum. Once we have written
the covariant derivative, we are able to write the Laplacian operator with the following
ordering

1
V9

that using the covariant momentum is given by

V2= —V,0"' VgV, (3.17)

~

V2 — —971/471'“9#”91/271'1,971/4. (3.18)

3.3 Worldline action for the ghost

Once we have all the ingredients for the construction of the model, we are able to provide
a quantum mechanical worldline representation of the ghost invertible kinetic differential
operator. The Laplacian operator (3.18)) acting on the wave function gives

VHV (z,\) = (V2V,) A (3.19)

Therefore, the full Hamiltonian for the ghost is

. 1 , - 1 .
H=%=5g Vg, g g"?m,g ' — éRab)\ AP (3.20)

The correctness of the latter can be easily verified by applying it to the wavefunction
V(z,\) ~ Vu(z)\?, using the identity {)\,, \’} = 6, and checking that the result is
equivalent to eq. (3.7).

Prior to writing the classical worldline action able to produce the ghost heat kernel
coeflicients, we have to discuss a postponed issue. In the last section we stressed that
using a graded phase space it is possible to produce an Hilbert space which states can
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be interpreted as wave functions containing different fields. At this juncture we want
to project out all the unwanted fields and maintain only the vector field, that correctly
describes the ghost.

The first step to project the Hilbert space on the n = 1 sector is to check that \®
and A, enjoy a U(1) symmetry under the transformation laws

)\a N )\la :e—ia)\a
Mo = X, =0, (3:21)

Therefore the kinetic term of the fermionic variables A, A% is invariant. The corresponding
conserved Noether current is of the form A\),. In order to select the occupation number
n =1 one can proceed coupling the variables A and A, to a worldline living gauge field
a(t) and introducing an additional Chern-Simons term with a coupling s = n — % that
is quantized. In this way the free kinetic term of fermionic variables gets modified, and

the associated term in the action with euclidean time is
B _
Sy = / dt[A A —ia(A* N, — s)]. (3.22)
0

The introduction of an external gauge field can be used as a Lagrange multiplier which
equation of motion produces the wanted constraint. Indeed the gauge field equation of
motion produces the constraint

C =X —5) (3.23)

that by setting n = 1 in s selects the correct physical state if applied to the full wave
function as C¥(x,\) = 0. The latter represents the classical constraint that upon
quantization produces some ordering ambiguities. They can be resolved by a graded
symmetrization in the following way

L 1.0 2,
C—§<)\ 8/\a—6>\a)\>—s. (3.24)

Indeed using anti-commuting relations we have that

| 0 0 0 1 0 0 D
_ a o a)l _ o _ \a = a o — )@ = 9
¢ 2(A o 8)«1)\) 5= o 2{)\ ’8)\“} =N T s B)
it is possible to recognize the number operator N = )\aa% which identifies the occupation
number n, and finally selecting the Chern-Simons coupling s = n — %, we end up with

the quantum version of the wanted constraint for n = 1:

(N —1)T(z, \) = 0. (3.26)
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If the readers are interested in other applications of that procedure they may consult the
papers [18] and [19].

Once the physical state describing the ghost field has been selected, we have all the
ingredients to write the classical phase space action in euclidean time, using the quantum
mechanical Hamiltonian of eq. :

_ B . 1 1 _ _
Slz,p, A\, Aja] = / dt [—z’pua':“ + AN+ §g””7ru7ry — ERab/\“Ab —ia ()\“)\a — s)} . (3.27)
0

Finding the equations of motion of the ordinary momentum p,

5—8 =0 — p = ii" + ig" wyap AN\, (3.28)
opy,

we can integrate out it and write the classical action in configuration space
’ 1 LTSN By . a 1 ayb .
Slz, A\, Ay a] = dt Egu,,as“as + Ao(Dy +ia) N — §Rab)\ A +ias|, (3.29)
0
where the covariant derivative contains also the spin connection with fermionic variables

DX = X + itw, )\, (3.30)

3.4 Regularization procedures

In our worldline method discussion we are near to the final form of the classical action in
configuration space used to recover the Seeley-DeWitt coefficients for the ghost sector.
The last effort lies on the regularization scheme that one has to introduce to properly
treat the path integral. What we have constructed so far with the action represents
a so-called non-linear sigma model. In general the various computations for the latter
creates many problems if not properly treated. The various issues mentioned above have
been widely discussed during the last decades and in this section we will mention some
papers and texts for those wishing to deepen the subject. A clarifying overview of the
necessity of regularization schemes and associated counterterms is contained in [20)].

The presence of g,,(z) in the action of non linear sigma models in one dimension
produces ordering ambiguities when a canonical quantization is performed. One can
start with the free classical Hamiltonian of the form

H(z,p) = %g“”(x)pupy- (3.31)

It is well known that the canonical quantization of the classical Hamiltonian produces
some ordering problems of coordinates z# and momenta p,, which derive from the fact
that the following commutation rule holds

@, p,) = id}. (3.32)
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The simplest explanation is that different quantum theories correspond just to a single
classical theory described by the Hamiltonian . A general method to fix this type
of ambiguities is to rely on symmetries. At this purpose one can impose general covari-
ance (or covariance under diffeomorphisms) at the quantum level with an operatorial
momentum as in eq. and a quantum Hamiltonian operator of the form

N 1 R b
H(i,p) = 597" pug"*g" pug™"", (3.33)
that in coordinates representation reduces to
A 1 9
H = —§V , (3.34)

which Laplacian has been used with this ordering in . Although this resolves some
ordering problems, it reduces the quantum Hamiltonian to a class of operators which
differ from a term proportional to the scalar curvature R, the only covariant scalar
object that can be constructed with two derivatives on the metric:

. 1o, €&
H=—--V2+2R .
SVEE SR (3.35)

A common renormalization condition, that is imposed in the path integral description,
requires the Hamiltonian to be covariant under general change of coordinates and the
coefficient ¢ = 0. Different values for ¢ can be introduced later with an extra term in the
potential V(). So far we have not mentioned the problem for requiring a renormalization
scheme yet. The explanation comes directly from the form of the non linear sigma model.
One can clearly see in that the model contains double derivative interactions that
would give rise to linear divergences (as seen by a power counting procedure [20],[21]).
These are ultraviolet divergences, while infrared ones are not present because we are
studying actions on a compact time-interval. One could implement a renomalization to
remove ultraviolet linear divergences, but this is not strictly necessary. As showed in [22]
one should consider the covariant measure of the path integral

Da ~ [[ vgd" = (3.36)

where the metric dependence [] /g can be exponentiated introducing commuting a* and
anticommuting b*, ¢” ghosts, which action is

ATl
Sghosts [I, a, b, C] = / dt [ﬁguy(x) (a“al’ + b'“cl’) . (337)

0

One can check ([20],[21]) that the above mentioned linear divergences cancel with addi-
tional linear divergences coming from local interactions of the ghosts, in such a way that
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the final result in the sum of diagrams is finite. This cancellation is possible only after a
proper regularization of individual divergent Feynman graphs. Different regularization
schemes differ by finite local counterterms, such that the value of individually regularized
divergent diagrams depend on the scheme, while the final result is regularization inde-
pendent. By power counting one can also check that one dimensional non linear sigma
models are super-renormalizable, therefore only finite counterterms up to two-loops will
appear in the regularization scheme.

There are three widely used regularization schemes that can be implemented for this
purpose: time slicing, mode reqularization and dimensional reqularization.

Time slicing (TS) regularization scheme is constructed from the operatorial ex-
pression of the transition amplitude in quantum mechanics. The time-interval is dis-
cretized with NV equally spaced points ¢;, and the action is described only by N variables
q(t1) ... q(ty) using a “mid-point prescription” that is connected to a Weyl ordering
choice of the Hamiltonian operator H. In this way one gets a discretized path integral
in momentum space where integrating out the momenta and taking the continuous limit
N — oo Feynman rules are derived. We mentioned that counterterms are used to sat-
isfy renormalization conditions, that include the symmetry of general covariance. Since
the TS regularization scheme corresponds to a Weyl ordering of the Hamiltonian oper-
ator, one can check that the Weyl ordered Hamiltonian is not covariant and differ from
the covariant form of eq. (3.33). Therefore this regularization scheme breaks general
covariance. The only way to achieve a covariant final result is to use the counterterm

Vg = —éR + égwrﬁwraw, (3.38)
where the term I'T" is non-covariant as well.

Mode regularization (MR) is derived expanding quantum fluctuations ¢(f) around
a background solution z(t) in Fourier sine series. A cut-off at mode M is introduced.
The problematic distributions are now under control and one can perform all the com-
putations for Feynman graphs evaluation. Only at the end it is possible to recover the
continuous limit M — oco. Also in this case the regularization scheme breaks the symme-
try of general covariance, therefore, in order to guarantee the renormalization conditions,
a non-covariant counterterm is necessary to restore covariance of the final result:

VMR = —éR — Q—Zgw/gﬂkgwrmpr%. (3.39)

Dimensional reqularization (DR) is applied after the usual perturbative expansion of
the path integral, and represents the simplest regularization in that case. The advantage
of DR scheme is that the required counterterm Vpr does not need a non-covariant I'T’
term, because this approach does not break general covariance. In order to remove
ambiguities of path integral distributions and their products one introduces D extra
dimensions dt — d?*'t and evaluates the Feynman graphs. At the end of the computation
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the limit d — 0 can be restored. This is actually not the most practical way to use DR.
Indeed one could manipulate problematic integrals using the extended space in d + 1
dimensions, by means of useful identities which involve Green equations and integration
by parts, to cast the integral that turns out to be computable at d — 0. A counterterm
is required also in this case, but it is the simplest one:

1

In this thesis we will widely use dimensional regularization and corresponding ma-
nipulations of the integrals in order to compute Seeley-DeWitt coefficients. Therefore
a better and detailed description will be given in the next sections, including all the
computations performed. For the reader that is interested in the subject, [21] contains
a complete description of the abovementioned three regularization schemes.

The counterterm Vpgr = —%R for DR scheme is not the only one that our path integral
constructed with requires. Indeed that counterterm is sufficient for a bosonic path
integral constructed with the Hamiltonian operator in eq. ([3.34). In our model we have
to deal also with fermionic variables A\* and \,. Therefore also their ordering issues
have to be considered. The path integral constructed with the classical action (|3.29)
produces a graded-symmetric Weyl ordering for fermionic terms. If there is no meaning
in the ordering of the term wuab)\aj\b because of antisymmetry of w,q, a counterterm is
required for the term —%Rab)\aj\b and is given by —iR. Finally the full DR counterterm
to be added to the action is

3

1.1
— _R_R—_°R Al
Vor = —gR— R=—CR (3.41)

The final action that we have to study for the ghost worldline model, including the
correct counterterms, is given by:

1 1
Slx, A\ A a] = / dt{ G + N(Dy + ia) A" — —R A A? — gR +ias (3.42)
0

3.5 One-loop effective action of the ghost
As we mentioned in the previous sections the total effective action for quantum gravity
comes from the individual contributions of the graviton and of the ghost:

The vector model in worldline formalism for the ghost has been already constructed with
all the ingredients. The Seeley-DeWitt coefficients a,(x) can be written by expanding
the integrand in eq. (3.5)) in powers of 8 in the following way

Tg / dﬁ/de\/g_Zﬂn (3.44)

271'6 D/2
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where 37P/2 is the leading contribution of the free field. In this section we will compute
the ghost contribution quantizing the worldline action of the vector model on the circle.
The idea is to perform a standard perturbative expansion of the path integral in powers
of B up to % and recover the Seeley-DeWitt coefficients that constitue the diverging
part of the effective action.

The path integral quantization on a circle T provides the one-loop effective action

fdp DX 5
I hatad 7 =SvzA i 3.45
Ve /0 B Jr Vol(Gauge)e (3.45)

where X = (a,2",\% \%) contains the dynamical fields that must be integrated over.
The volume of the gauge group in the denominator is there to remember that one has
to fix the gauge symmetry.

In order to control the perturbative expansion it is convenient to introduce an or-
ganizing parameter. It is done by rescaling the time ¢ = 7. The action can be
written also rescaling the fermions as A — \/LB)" A — \/LB;\ and the gauge field as a — %a:

B

_ 1 [t 1 _
Syz, A\ Aa] = = / dr {—gwx'”x'” + Ao(D; +ia) A\ — =
B Jo 2 2

1

R A\ — 2523} +is / dra.
0
(3.46)

Proceeding like in [23] let us extract from the latter the free action for fermionic
variables

_ _ 1/ _ .
S|z, A Asa] D S Aa] = —/ AT Ao (A" +ia\?). (3.47)
0
Consider the finite gauge transformations

(1) = N(1) =e " \a(7)
Aa(T) = N(7) em(T);\a(T) (3.48)
a(t) = d' (1) =a(7) + &(7)

where e~*(7) are periodic functions on [0, 1]. One can check that the only gauge invariant
quantity that can be constructed using the gauge field a(7) is the so called Wilson loop:

w = ¢ o dra(™), (3.49)

At this stage the gauge field a(7) can be set to a constant 6 by using “small” or contin-
uously connected to the identity gauge transformation:

o= /0 dra(r) (3.50)
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“Large” gauge transformations with a(7) = 27n7 and n an integer allow to write the
identity
0 ~ 0+ 2mn. (3.51)

Therefore 6 represents a modular parameter ranging from 0 to 2w. After gauge fixing
the action, one is left with an integral over # which corresponds to the Wilson loop.
Since the U(1) gauge group is abelian, the Faddeev-Popov determinant, being a
constant, can be factorized out and absorbed in the normalization. Therefore, after
these steps, the worldline path integral representation for the vector can be written as

follows 5 )
Ty = / dp / @ / Da / DADe SV A0 (3.52)
o B Jo 2mJp A

where Sy [z, A, \; 6] is the action of eq. where the gauge field has been set to
the constant value a(7) = 6. The subscripts P (periodic) and A (antiperiodic) stand
for boundary conditions prescription respectively for bosonic z# and fermionic (A?,\?)
variables, i.e.

z*(0) = 2#(1), A4 (0) = =A*(1). (3.53)
The generally covariant measure for the bosonic path integral is a shorthand for the

following expression
Dx= [ Vla()d z(r). (3.54)

0<r<1
that is metric dependent. The measure for the fermionic path integral is flat since our
fermions are vectors with flat indices.

3.6 Vector path integral and dimensional regulariza-
tion
Let us proceed with the perturbative expansion of the path integral. The trajectory

x#(7) of the periodic path integral can be split into a background fixed point z,4(7) and
fluctuations ¢*(7) vanishing at the boundary ¢*(0) = ¢*(1) =0, i.e.

(1) = wpg(T) + ¢"(7). (3.55)

The bosonic measure therefore splits as follows

/ Dx = /dD:c\/g(x)/ Dq (3.56)
P D
where the subscript D stands for Dirichlet boundary conditions and Dq is given by

Dg= ] V9(a(r))Dg (3.57)

0<r<1
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with Dg = dPq. The bosonic measure, being generally covariant, is a scalar under
general changes of coordinates. This introduce a field dependence not practical for
the perturbative expansion with splitting . As we have anticipated, following the
procedure of [24], the measure field dependence can be exponentiated introducing some
commuting a* and anticommuting b*, c* ghosts, i.e.

[T V(@) = [ DaDbpee Sateet (3.58)

0<r<1

where )
1 1
Sen|x,a,b,c] = B/ §gm,(x(7'))(a“a” + ). (3.59)
0
The ghost measures are translational invariant and given by
Da = H dPa(r), Db = H dPn(7), Dc = H dPe(T). (3.60)
0<r<1 0<r<1 0<r<1

Being auxiliary fields, the ghosts do not need boundary conditions. Since the fluctuations
vanish at time boundaries we can expand them using Fourier sine series, i.e.

g (T) = Z ¢ sin(mmr), at(t) = Z al sin(mmr),

m m (3.61)
V(1) = Z be sin(mmT), c(r) = Z cht sin(mmT).

m=1 m=1

where ¢/, at b and c! are the Fourier coefficients. Therefore we can write the bosonic

m? m

path integral integrating over these Fourier coeffcients, namely the measure is given by

oo D
DgDaDbDc H H mdq’ da’ db: dct . (3.62)
m=1i=1

The anti-periodic fermionic variables on the worldline can be expanded in half-integer
modes as follows

X(r)= D AT N(r) = Y Me (3.63)
reZ+1/2 reZ+1/2

At this juncture it is possible to proceed with the perturbative expansion. We divide
the action that contains also the auxiliary ghosts, i.e.

B

_ 1 [t 1 _
Svlz, A A; 0] =3 / dr hgw(x)(:t“:t” + ata” + ") + No(Dy +i0)N\* — 5
0

1
+is/ dr6
0

Rap\*\P — 2523

(3.64)
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into a free part

1

52:_91/
287" J

1 1 1 B
dr ((j“q'” +ata” + b“c”) +3 / AT Ao (0; + i0) N (3.65)
0

with g,, = ¢, (T1e) the metric in the background, and an interaction part (containing
the vertices) that can be expanded in powers of 3

1 ' 1 SV v v JTAN Y
Sint :E / dT{i[guu(xbg +q) — gm/] <quq +ata” + Ve > + Wuab(xbg +q) ¢"A AP
0

- 3
— §Rab(l‘bg -+ q) )\a/\b — 62§R<Ibg + Q)},

(3.66)

where the Chern-Simons part has been factorized out the path integral. From the free
action Sy one can extract the propagators. Let us first plug the mode expansion (3.61|)
in the free action part for the bosonic fluctuations and the auxiliary ghosts, to obtain

1 1
Salg, a,b, ] :%guy dr (g}”(}” + ata” + b“c”)
0

R (3.67)
=159 D (wm) gl + alal, + bich]
m=1

since fol dr cos®(mmt) = fol dr sin?(mm7) = 1/2, being m a positive integer. The bosonic
propagator for fluctuations is then given by

(@*(1)q"(0)) = Z Z ¢t gy )sin(mmT)sin(mnT). (3.68)

m=1 n=1

Introducing the sources for ¢# modes, performing square completion and shifting inte-
gration variable we get

[ DgDaDbDc gt g% e~ 52100l o 9
T DaDaDbDee Slaba P9 dmn g (3.69)

(dhan) =

A simpler method is to recognize the two-point correlation function (3.69)) to be the
inverse of the kinetic operator in exp [—%qﬁl (% gWWszémn) q”|. The full propagator is
thus given by

{¢"(m)q" Bg“”z

Ssin(mmr)sin(mno). (3.70)
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For the auxiliary ghosts a*, b* and ¢” propagators we can proceed in a similar way.
Before writing all the propagators let us evaluate the fermionic one. First we plug the
mode expansion for fermions into the fermionic part of the free action, i.e.

1
Sy[Ae, 3] = % / 07 2a(0; + 0) A"

: 5 Z (277 + ) Ay A (3.71)

reZ+1/2

The propagator can be computed in the usual manner

<)\a Z Z )\a 27rz7‘7' —27rzsa

re€Z+1/2s€Z+1/2
i s (372)

—B5° 2mir(t—o

boy Z 2r + 0 ¢ ’

r€Z+1/2
using the two-point correlation function

ay _ . 5 b

(Ao hgp) = —1 0. (3.73)

2rr4+6 ¢
Let us collect all the above computed propagators providing also the continuum limit:
(¢"(1)q"(0)) = — Bg"A(r,0),

<au( )a'i(a) :ﬁg'uVAgh(T» U) ’ <bu(7>cy(0) = _QﬂgMVAgh(T, U) ) (3.74)
(A(1)X(0)) =B Ap(T — 0,0),

where

A( )—i > sin(mmr)sin(rmo) | = (7 — 1)ab(r — o) + (o — 1)r0(0 — 7)
T, O —m:1 —5gsin(rmr)sin(mmo) | = (r of(tr—o o 0(0 — 1),

Agp(T,0) = Z 2 sin(rm)sin(rmo) = ?A(r,0) = 6(r,0),

m=1

N 6) — Z —1 2ir(r—o) _ e—0(r—0o) 1%9( ) —%%9( )

p(r—0,0) = o 1 0° = oot €T —0)—e o—T)|,
reZ+1/2 2

(3.75)

where we have computed the continuum limit and 0(7 — o) is the usual Heaviside step
function. The above propagators are expressed in terms of distributions, that are defined
acting on functions on the time segment I = [0, 1] with the above mentioned boundary
conditions for bosons, fermions and auxiliary ghosts. One can also check the following
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identities for derivatives and equal time expression:

A(r,o0)=0c—-0(c—0), A(r,0)=17—-0(r—0),

N(r,0)=1-0(r,0), Ag(1,0)="A(1,0) =9(T,0) (3.76)

1

Alr,r)=7(1—=1), °A(1,0)|re6 =7 — 3
where the dots on the left-right hand side indicate derivatives with respect to the left-
right variable. From the symmetry of the sum in the fermionic propagator we have also
the following identities

Arp(0,6) :—tane
2 ) 2 ; (3.77)
Ap(T —0,0)Ap(c —T,0) = — 5005_25, T # 0.

As anticipated, path integral computations involve products and derivatives of these
distributions that are ill-defined. For this purpose it is necessary to introduce a regular-
ization scheme. The simplest choice in this case is dimensional regularization (DR). In
the following we present the complete procedure for its construction.

The idea of dimensional reqularization is to extend the compact time interval I =
[0, 1] adding d extra infinite dimensions, i.e. I — I X R? = Q. We introduce ' = (7,t)
withi = 0, 1, ..., d and the measure becomes d*'t = drd%. The action in d+1 dimensions
is

- 1 1
Svlz, A\ ;0] = 3 / dt {Eg,w(x)(ﬁaxuaax” + a"a” + b'c”)
Q

_ < 3
+ A0 (Y20 + Y Dt w, “p A" + 10N — gRab)\“)\b — gﬁgR} )
(3.78)
where 0, = ata and v are the gamma matrices in d + 1 dimensions. Therefore the free
action becomes
1 1 _
Sy = E / A {ng(aaq“aaq” +ata” + ") + Ao (V¥ 0a + i@))\al (3.79)
Q
from which one derives the following propagators in extended space €2
Al ddk - : - (b—s)
(t,s) ) Z k2 sin(7mmT) sin(mmo)e :

Agi(t, s) :/ (;Zwljd z_:l 2sin(rmr) sin(rmo)e™ =) = §(7, 0)6%(t — s) | (3.80)

dk 2mry? +k-y — 0
AF<t—S,9):—Z/ : Z . e27r7,r7' o) zk(t s)
(2m) e (27r)? + k* — 02
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The above propagators, that in the d — 0 limit reduce to the previous ones, obey the
following relations (Green’s equations)

O*0A(L,s) = Aga(t, ) = 6(7, )%t — ),

0 . d (3.81)
’yo‘% +i0 |Ap(t —s,0) = 0a(T — 0)0%(t — 8),

with 04 which indicates the delta distribution on functions on antiperiodic boundary

conditions. In the Feynman graphs computation also the following identity will be widely

used - . ; ,
Kataasa i ataata)A(t’ 5)] 0T [(EA(“)) tj- (3.82)

Propagators in are much more complicated with respect to their d — 0 limit.
Indeed it is quite difficult to perform diagrams computations in the extended space
2. However, this is not necessary. There is a better strategy which has the following
steps. The idea is to start from worldline diagrams that cannot be computed safely
because of ambiguous products of distributions or diverging terms, and extend them to
the non-compact space ) in DR. Problematic integrals of such diagrams then can be
manipulated (using integration by parts and integrating against the delta distributions,
corresponding to idetities in the extended (d + 1)-dimensional space) to get a form that
can be unambiguously computed in the d — 0 limit. These expressions must not involve
any products of distributions or diverging quantities. For this purpose identities such
and are widely used. Other DM diagrams computations are present in
[21],125], [23] and [26].

Let us study the normalization of the fermionic path integral that must be replaced in
the effective action (3.52)). For this purpose we have to evaluate the fermionic determinant
given by the free path integral for fermions with antiperiodic boundary conditions:

/ DADXe 2P = det? (8, + i6). (3.83)
A

Let us follow the procedures presented in [23]. First we write the Hamiltonian operator
Hy of the D dimensional fermionic oscillator system, i.e.

. 1oave oo - D
Hy = wé(xw — A\ =i <N — 5), (3.84)

where we used the fermionic number operator N = AiA%. In the worldline the number
operator has the only two eigenvalues 0 and 1, thus we get

det? (0, +i0) = Tre~#(N)-2

9D , b (3.85)
=5 (14 e7P = (2005%) .
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This allows us to write the vector effective action as follows

Iy = / a8 / o (2cos—>De—i59 / deC—\/g(_l’)@—sm)? (3.86)

(2m3)P72

where s =1 — % and S;,; refers to (13.60)).

Let us now proceed with the perturbative expansion of (e~%it). We know that
perturbative calculations can be performed in any coordinates system. Our choice are
the Riemann normal coordinates togheter with the Fock-Schwinger gauge for the spin
connection, centered at the background zy,. To deepen Riemann normal coordinates
see [27]. In the following we have the metric, the spin connection and some curvatures

expanded in these coordinates:

1
gm/(l'bg + Q) =Guv + _q/\qUR)\uua + O( ) + q qa “ B |: v)xv Rauuﬂ + —

3 RT}\O’/ARTO(ﬂV:| )

20 45

1 1
w,uab(xbg + Q) :aqVRuuab + O(q ) + qu)\qg |: VAVJRVuab + ﬂRTVAMRO'Tab:| ’
1
Rabcd(xbg + Q> :Rabcd + O(Q) + §ququ,uvuRabcd )
1
Rab(xbg + Q) :Rab + O(Q) + §ququvuvuRab 3

Rl +0) =R+ 0(a) + 500"V, V. R,

(3.87)
where the tensors on the right hand side of the equations are computed at the fixed
background 1. For sake of simplicity we have omitted all those terms that in the path
integral would give a trivial null contribution due to the odd number of fields in the
correlation function. Let us replace these expansions in Riemann normal coordinates in

the interacting action (3.66)). The average of the euclidean exponential of the interacting
action can be expanded as follows

(75 =1~ (84) — (S5) + 557 + O(F"), (389)

where we used the notation where 5, indicates the term of the expansion with n quantum
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fields and is of order O(8™/271). After simple algebra one gets the following expressions

1
68

1 1 -, 3
— 2R, AT A\ — ZBR
2Rb/0 T 86 )

1 1
1 _
84 R)\;wa / qu)\qU (q'uqu + ata’ + b,ucu) + %Ruyab / d,rququ)\a)\b
0 0

171 1 !
S6 == | - VaVoRows + = RosonRop | | drq*¢"q%q( ¢"¢" + ata” + 0¢” | (3.89)
5140 " 45 . 0
11 1 S
+B gv)\voRm/ab + ﬂR /J)\VRO'T(lb o qu q q94q A%A
1

1 _ 3 !
—Z—lvuvyRab i qu“q”)\a)\b—l—ESBVuV,,R /0 drq"q".

Using these expressions in (|3.88|) and performing all the necessary non trivial Wick
contractions one gets

(e75imt) =1 4 ﬂR(1 + ztang)

31
11 0 11 0
2 - -2 HVAC o - -2 R*R 5 3.90
b {(720 192 2)R Fua + ( 720 32 2) we (3:90)

25 1,0 i, 0\ , 7 i 0\ s 3
+<@—§cos §+Etan§)R + (240+48tan2>v R+ 0O(5°).

All the steps and computations such as ambiguous integrals evaluation with dimensional
reqularization are contained in [B.1]
The next step is to evaluate the modular integrals at arbitrary dimension D and with
s=1-2 ie.
2

2
2w de 2 )
I :/ — <2cosg) e’setang =i(D —2), (3.91)
0

Finally replacing the results of the modular integrals in (3.91)) in the expansion ({3.90))

47



one gets the ghost effective action:

g [ dPx\/g@@) D 1 D+5
/ / o 5<D/2{ +5}3(12 2)+ﬁ2( 2o v

D+12 , D—90 D-
L P R RM R, + R””‘”RWUT> }

288 720 720
(3.92)
that in dimension D = 4 reduces to
ag de g(x of 3 2 43
4 "R
/ / )72 { + ,BR—i—B OV R+ 8R 360R R,
11
T pupvot
720R RWUT) }
(3.93)

It is rather immediate to check that the ghost results in arbitrary dimensions and in
dimension D = 4 coincide with the ones presented in the previous chapter computed
with the heat kernel known formulas. Therefore the coefficients in D = 4 coincide
with [4] from which we have extended the worldline formalism procedure at arbitrary
dimensions.
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Chapter 4

Worldline formalism for the graviton

In the last chapter of the thesis we try to find a model that is able to reproduce the
gauge-fixed graviton fluctuations. In order to do this we proceed with the construction
of a symmetric rank-2 tensor model by following the procedure described in the previous
chapter for the ghost sector. For the purpose of reproducing the graviton fluctuations
the Hilbert space of the model will require worldline complex fermionic variables that
are rank-2 symmetric tensors with non-vanishing trace. As usual, the finite dimensional
Hilbert space so constructed will contain, among other fields that must be projected out,
the graviton fluctuations. In our work we succeed in finding the correct worldline action
for the gauge-fixed graviton fluctuations, but unfortunately it seems not possible to deal
with it using perturbation theory. Therefore this part will be left for future research.

4.1 The tensor model for the graviton

Let us start considering as usual a D-dimensional space-time with a metric g, (x). The
Hilbert space that contains, among other fields, the rank-2 symmetric tensor with non-
vanishing trace can be constructed introducing the ordinary real bosonic variables z#(t)
and p,(t) and worldline complex fermionic variables that are rank-2 symmetric tensors
with non-vanishing trace, i.e. ¥ and 1°*. Bosonic and complex fermionic variables de-
fine a graded phase space with (anti)-commuting relations upon canonical quantization:

[xu’pl/] — 255 {walx&cd} — 5ac5bd 4 5bc(5ad. (41)
The bosonic and fermionic momenta are represented by their derivatives, i.e.
R _Z *1/48 1/4 ,l;ab_ 8 (4 2)
Pu = —19g ud = awaba .
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where 1? has to be interpreted as a linear combination of ¢ derivatives:

0
a¢ab

P = 5568 4 6502 (4.3)

The generic state |¢) of the Hilbert space is represented by a wave function ¢(z, 1) =
({x] @ (¥]) |#) (coherent states are used, see Appendix |C]) Taylor expanded as

|6) ~ ¢(x,9)

O(@) + G (x)1” + mb (ab)a )zp(ab)lw(“b)?+---+%qb(abh...(ab)N(x)w(ab)l...W")N

Al
Z —‘¢ (ab)r...(aB)n (z) @ yplabn

n:
n=0

(4.4)

where N is the number of independent components of a symmetric rank-2 tensor with
non-vanishing trace in D dimensional space-time, namely N = %D(D + 1). Similarly to
the vector model, with the occupation number n = 1 we individuate in the spectrum the
symmetric rank-2 tensor ¢q,(x) = hgy(z) that correctly represents the graviton, namely
the metric fluctuations. In the construction of the classical action for the tensor model we
will introduce a coupling with a worldline gauge field with an additional Chern-Simons
term, in order to select the state |¢) ~ hgp(2)1®.
The Lorentz SO(D) generators can be constructed as

M = oM = S g - S =0 P -, (49)

where we used the shorthand notation % - ¢* = 9%, Using the Lorentz SO(D)
generators we are able to write the covariant derivative operator as follows

R 1 _
V,:=0,+ §w,waab = 0, + Wuap®® - Y (4.6)

that acting on the wave function h(x,v) = hay(2)Y® produces
Vih(2,9) = (V,hap) 0™ = (Ophay — wpahes — W phac) ™. (4.7)

By means of the ordinary covariant momentum in (4.2)) we cast the covariant derivative
as follows

@,u = ig1/47ru971/4 = igl/4 (pu - iwuabwa ’ &b) 971/47 (4'8>

where 7, = p, — iW,wY* - Y is the covariant momentum. The laplacian is constructed
with the same ordering of the previous chapter, i.e.

~ 1 - ~
Vi ﬁvug‘”\/ﬁvu = —g *m.g™ g Pr,g (4.9)
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Let us proceed with the construction of the quantum mechanical worldline representation
of the invertible kinetic operator of the graviton. The action of the latter acting on a
symmetric rank-2 tensor, presented in eq. , can be rearranged to recognize a term
containing the left hand side of the vacuum Einstein equation, i.e.

o 1 1 o o 1 1 o
FNVozﬂd) F=— 5 <g,uaguﬁ - égm/gaﬁ) V2¢ b A¢ b — 5 (Ruauﬂ + RMBV& - égm/RaB) 925 g
1 A A 1 af 1 1 1 b
_5 Ru(bz\u + Ruﬁb/\u - égwR Qbaﬁ + §R¢MV + 5 RW - EQWR + gWA gaBCb .
(4.10)
The laplace operator in the eq. (4.9) acting on the wave function gives
V2h(x, 1) = (VZha) ™. (4.11)

The quantum mechanical representation of the graviton kinetic operator, which action
on a symmetric rank-2 tensor is (4.10]), is given by

~ 1 1 1 - 1 _
H=F:=— §(V2 + 2A) + ER - §Rabcd¢acwbd - §Rabwa : ¢b
1 B 1 B (4.12)
+§(V2 + 20 = R)0aclpat ™9™ + Z(%:Rbd + b Rac) VP
In order to check the correctness of the last equation, consider the term
1 «
1 (V2 4+ 28) 909056 (4.13)

present in eq. (4.10). In order to reproduce this term by means of a quantum mechanical
operator we use the operator O = é(VQ + 2A) acting on the wave function h(z, ), i.e.

A 1 - - 1 . _
Oh(z, 1) :§(V2 + 20)80e0pat) Y (heppT) = g(VQ + 20) G Opat)*he ptb bt 414
4.14

1, 1
:g(v2 + 20)80e0pat hep (3°0Y + 67 5%¢) = (Vi 20)0acOpah? ™,
where we used the following identity
e — _az Wl = vesy 4 g, (4.15)
bd

It is rather simple to check that the last term in eq. reproduces correctly .
For all the other terms in (4.10)) we can proceed in a similar fashion.

In order to write the worldline classical action for the tensor model we need to in-
troduce a constraint able to project out all the unwanted fields in the wave function
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¢(x,1), in order to keep only the graviton, namely the symmetric rank-2 tensor with
non-vanishing trace corresponding to n = 1. Proceeding in the same fashion of the
vector model, we introduce a U(1) coupling between fermionic variables and a worldline
gauge field A(t), with an additional Chern-Simons term in the action. This allows us to
introduce the following constraint

(31 dal = 5) 1) =0, (4.16)

where 1[0, ] = N — 2D(D +1) is the U(1) generator, with N counting the number
of ¢’s in the state ¢(z,1), and s =1 — 1D(D + 1).

The classical action for the tensor model in phase space and euclidean time is thus
given by

p 7 : 1- - 1 1 -
8[177177 wa @Da A] - / dt |: - ipuf[‘“ + _wab¢ab + §glﬂ’ﬂ-“ﬂ_V (]— - Zw¢)
0

- A<1 - —¢¢) 1 abcdwac¢bd - %Rabwa : &b

(4.17)
+ —R 1- —WE + —\ acRyq + OpaRac |0 2pbd
2 4 4
. 1 ab,7,
— 1A —¢ wab - S ;
2
where we used the shorthand notation to write the fermionic traces 1 := 51 and
= 6. At this juncture, in order to write the action in configuration space we
integrate out the momentum p, by means of its eqs. of motion
1\ _
P, = ixk (1 - 11/11#) + g™ wyapth® - Y0, (4.18)
to get
s 1 N\ 1
A= [l gﬂ"muru(l - 08) R iy
1 1 -
—3 Rapeat)“9" — —R b - P’ — (1 - wa) (4.19)

1 — _
+ §R (1 - ZWP) + 1 (5acRbd + 5bdRac) Pehbd + iAS} )

where the covariant derivative contains also the spin connection, i.e. D)y = )% +
i#(wuacwcb _I_w,ubcwac)'
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The action thus obtained does not seem to admit a perturbative treatment in 5. One

could try to replace the term (1 — iwdj)_l with the geometric series, to get the following
form of the action

_ B 1 v 1 - 1 - 2 17ab . ab
Slx, 1, ; Al :/0 dt{§g“ LTy, [1+wa+ <wa) —l—} +§w (Dy +iA)Y
1
2

Rabcdwaclﬁbd - %Rabwa : 2/_}b —A (1 - ;‘Lwd—})

1 1 - 1 _
+ 53(1 - Z—lw?ﬁ) + 1 <5acRbd + 5bdRac> Pt + iAS}-
(4.20)
In order to take care of all the different orders in the perturbative approach one could

rescale the time t = 7, and treat 8 as the perturbative parameter. To have a uniform
B~1 in front of the perturbative propagators, we rescale also the fermions as ¢ — \/igw

and ¢ — \/LB@/; and the gauge field as A — %A. The action thus reads

1 2
Sl 4, ¢; Al = %/0 dr Bg*‘”fcu:‘@(l + %WJF (%W) + .. )

+ %@Z_}ab(Dt + iA>¢ab - §Rabcd¢acd_)bd - gRabd)a : 1/_}17
/6 ac,7bd 6 7 6 7 2 R (421)
+ Z((SacRbd + Opalac) VY + ZAWﬁ - gRIWJ + (5 - A)

1
+is/ dTA.
0

but we see that the vertices arising for the expansion of (1 — ﬁ@/nﬁ)*l become non-
perturbative. How to find ways of computing the path integral associated to this action
will be left for future research.
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Conclusions

The purpose of this thesis was first to rederive the heat kernel coefficients ag, a; and ay of
perturbative quantum gravity using the original approach of the heat kernel developed by
B. DeWitt. After a brief introduction to the heat kernel expansion, we applied the general
formulas that define these coefficients and reduced them to the specific case of pure
quantum gravity, constructed perturbatively by expanding the Einstein-Hilbert action
via a background-quantum splitting of the metric. Once the action has been gauge-fixed,
we derived the invertible kinetic operators of the graviton fluctuations and the ghosts.
The aim was to write the Seeley-DeWitt coefficients in arbitrary dimensions D and in
an arbitrary gravitational background, so to compare our computations with different
papers. As anticipated some of these coefficients are reported erroneously in the literature
([,[3]). On the other hand our results are in perfect agreement with more recent works
([16]). If reduced to D = 4 our Seeley-DeWitt coefficients are identical to those computed
via a worldline approach ([4]). These coeflicients identify the counterterms that make the
effective action finite (in 4 dimensions) and to be gauge-invariant they must be evaluated
on-shell. For this purpose we decided to reduce our study to an Einstein manifold (which
metric satisfies the Einstein field equations). The coefficients so computed, for the specific
case of D = 4, are in agreement with the results found in [7], where the physical graviton
is successfully described by a N = 4 spinning particle model. However, our on-shell
Seeley-DeWitt coefficients at arbitrary dimensions disagree with those reported in [7].
This seems to suggest the need of further studies to make that first quantized model
consistent in any arbitrary dimensions.

The second part of the thesis is dedicated to the attempt of deriving the previous
coefficients in an alternative way, namely using a worldline formalism. This approach
has been already applied to the case of D = 4 perturbative quantum gravity in [4].
Starting from this result, we decided to generalize that idea to a space-time with arbitrary
dimensions D. The idea was to reproduce the behaviour of the gauge-fixed graviton
fluctuations and the ghosts by means of suitable particle actions, that upon quantization
provide the invertible kinetic operators of the quadratic action of pure quantum gravity.
Two models have been constructed: a vector model and a rank-2 tensor model, for the
ghosts and the graviton, respectively. The vector model succeedes in reproducing the
heat kernel coefficients associated to the ghosts. On the other hand, the tensor model,

o4



while providing a suitable worldline action for the graviton (reproducing the associated
Hamiltonian used in the heat kernel approach), does not lead to a path integral that

admits a perturbative expansion. How to solve that path integral it is left for future
research.
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Appendix A

Perturbative quantum gravity
computations

In the following appendix we will review step by step the computations for the Einstein-
Hilbert action’s expansion under the perturbation of the metric tensor introduced with
. The main issue will concern the evaluation of the perturbed Ricci scalar curvature,
up to O(h?), that has to be replaced in the action. The result will be valid for an
arbitrary background and in any coordinates system. The consistent algebra needed
for this computation will be checked using computer algebra of Mathematica (xPert
package).

A.1 Einstein-Hilbert action’s expansion under met-
ric perturbation

Since the expansion of the inverse of the metric, namely G*¥, has been already described,
we will proceed with the expansion of the square root of the metric determinant. For
this computation we omit the indices of the metric tensors and we make the determinant
explicit when it is present in order to simplify the notation:

V1det G| = /| det(g + )| = explog /| det(g + h)|

1 _
= expilog {\ det g det(l +9 1h)|} (A.1)

1
= explog {log | det g| + 3 log det (1 + glh)} .
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At this step we perform some logarithm and exponential expansions to obtain

[1
V| det G| = = /| det g| exp §logdet 11 —i—glh\]
1
= /| det g| exp §trlog]1 +g_1h|]
1 P DY 3
= /| det g| exp §tr g h—g(g h)* 4+ O(h)

1 1 1/1, , _ 1, ?
= /| det g| [1 + §tr(g 'h) — Ztr(g 'h)? + 5 <§tr(g 'h) — Z(g 1h)2) + O(h?’)]
= /| det g {1 + %tr(glh) — itr(glh)Q + étrQ(glh)] + O(h%)
= d 1 1h“ 1h‘“’h L h*)? O(h?
=4/l det g, | +§ Ty uu+§( )7+ OR?),
(A.2)

where in the last line the indices have been reintroduced.

By looking at the expanded action as in eq. , the next step is to study the
expansion of the Ricci tensor. One can start from the evaluation of the Levi-Civita
connection:

1
I*.,(g+h) = §GpU(G/w7v + Guop — Guvo)

1
= E(gpa — 7+ hih/\g)[@ua + h;w),u + (gua + hua),u - (g;w + h,uV),U]

= T%,,(0) + T, (1) + T7,,,(2) + O(h?)
(A.3)

where the following shorthand has been used to simplify the notation:

I'?,,,(0) = Christoffel symbol at 0-th order in h,
I'?,,(1) = Christoffel symbol at 1-st order in h, (A.4)
I'?,,(2) = Christoffel symbol at 2-nd order in h.

Therefore we immediately write that
1 g
FPHV(O) = §gp (g,ua,l/ + Guou — guu,o) (A5)

and
P 1 po 1 po
r MV(1> :§g (hlw,l/ + hua,u - h,ul/,(f) - §h (g,ucr,u + guo,,u - g,uu,a) A6
1, . (A.6)
=59 (hpow + hvoy — b)) — grah”°I7,,,(0).

58



By using the covariant derivative applied to the fluctuation
Vah,uz/ = acrh,uzx - Fguh)\u - nghu)\v (A7>
we can rewrite (A.6) as

1
r*,,(1) =59 [Ovhyuo + Oulve — Oshyw — 20\, £ T hyy £ T hun
(A.8)

1
ZEQPU(V,,hW + V,hue — Vohu),

where the covariant derivative in the last eq. is constructed using the background metric.
As one can see, the perturbation at first order in h of the Christoffel symbol is a tensor.
This is manifest because it involves only covariant derivatives, so the final result is fully
covariant. This information represents a powerful trick for the study of various curvature
expansions under a metric perturbation, as we will see later. In the same fashion we can
evaluate the term I'7,,(2):
p 1 P10 1 po
F }LV(2) :éhAh (g/J‘U?V + gVU,/L - g#l’,o) - éh (hug’y + hl/o’,p, - h,LLl/,O')
= — 5T, (1),

(A.9)

which is obviously covariant.

Once we have expanded the Christoffel symbol, we can proceed with the evaluation
of the Riemann tensor, since all the other curvatures can be easily recovered by proper
indices contraction. The Riemann curvature tensor can be written as

Ry (g + h) = R0 (0) + RYypo (1) + Rype (2) + O(RY), (A.10)
where the following shorthand notation has been used

R!,,5(0) : Riemann tensor at 0-th order in h,
R*,,-(1) : Riemann tensor at 1-st order in h, (A.11)

R!,,»(2) : Riemann tensor at 2-nd order in h.

The order 0 in h is given by
Rt,,;(0) =V, I";,(0) — V,I'",,(0), (A.12)

where the covariant derivative is written in terms of the background.

Let us recall, as we have anticipated, that the variation of the Christoffel symbol is
a tensor, therefore under the action of a covariant derivative it must satisfy a tensorial
law. Hence, writing the expansion as follows

R (1) = 0,15, (1) — 9,T% (1) 4+ T 2T, (1) 4+ T 5 (DT,
FMO‘)\

— T I, (1) — (1)1 (A.13)
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and adding +I'*,, T, (1) we recognize the covariant derivatives:
R*,,0(1) = V,I*,,(1) = V,I*,.(1). (A.14)

In eq. (A.13) we used I'*,, := I'*,,(0). By using eq. (A.8), eq. (A.14) can be thus

expanded as follows

RMVPG(U =
1 Iz 1 1 1 n " (A.15)
=5 V, Vi +V,Vohy + V.V, =V Vb =V, V0 =V, VFh,, |.
The second order perturbation of the Riemann tensor is given by
RFpr(2) =0,1%,,(2) — 0,T% ,,(2) + T 0I5, (2) + T 0 (2)T,,
—TH I, (2) — THo(2)TH,, 4+ TH A (DT, (1) (A.16)

— T (DT, (1).
Proceeding similarly to the previous case we end up with
RFfYypo(2) = V,I%5,(2) — VoIH,,(2) + TH 6 (1T, (1) — TH, (1T, (1), (A.17)
that can be written in a compact form as follows
RV,pe(2) = —hER?,pe (1) — 9" g5, (F”pa(l)Fﬁau(l) - F’*m(l)FBpu(l))‘ (A.18)
Since the variations at different orders in h of the Riemann tensor curvature have been

found, we can proceed with the evaluation of the Ricci tensor just contracting the proper
indices. Hence, we have

Rys = Rus(0) + Rye(1) + Ryo(2) + O(R?) (A.19)

with the usual notation, where R,,(0) = R*,,,(0),
1
R,;(1) = R",,,(1) = 5 (Vuvl,hﬁ +V,V.hy —V,V,h — V2hgy>, (A.20)

thanks to the simplification of two indetical terms, and finally

Ryo(2) = R",0(2) = —hG R0 (1) — ¢ g, (F”w(l)Fﬁau(l) - F”aa(l)Fﬁuu(l))-
(A.21)
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The Ricci scalar curvature can be computed as
R = R(0) + R(1) + R(2) = (¢*° — h*° + h5h*)R,,, (A.22)

where R(0) = ¢"° R,,(0),
R(1) = = h""Rus(0) + ¢" Rye (1)

A.23
= —h"R,,(0) +V,.h" — V?h, ( )
and finally
R(2) = — B Ry(1) — g"" W5 R" 10 (1) + R (0) ha,phs
Vo po ol B ol B <A'24>
=379 g5y | T ua ()60 (1) — Ioa (D70 (1) -
Let us write down some terms in (|A.24)) not yet expanded:
vo v 1 v 1
=g b Ry = — (hZV,)V,,h“ + §hZV V#hy, — §hﬁv2hg
(A.25)

1o, 1
LA ihgvﬁ,w@;

g, (Fmamr%(l) . ruaa)m(l)) _

1

- <4v“h,wvuhﬁv + VhVPh — AV*he, VP h — 3VFRYPN kg, + QV"thﬁhW> :

(A.26)

The expressions in eqgs. (A.25) and (A.26)) can be replaced in (A.24]) to get
R(2) =R (0)ha,hs — WOV N b — WV N b + BV ?h,, + BV ,V b

v 1 3 14 1 v
— V"5V, B — Zvﬁhvf’h + V*hg, VP h + T V'h AV hsy — 5V WO hy,.
(A.27)

By making use of all the above written orders of expansion of the Ricci scalar, we can
collect all of them in the following final expression

R(g +h) =R(0) + (—h”"RW(O) + V,oh"" — v%)
+ (R”A(O)haphi — WV N bt — hV, NV b+ BV Ry, + BV, VY,

1 3 1
AV AV nghvﬂh + V*hg,VPh + Zv“h”ﬁvuhgy —~ 5vyhgvﬁhw).
(A.28)
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It is worth to stress that this result is valid for any background metric and in any co-
ordinates system. If one wants to evaluate the Ricci scalar expansion in the specific
background of flat space-time they have to put background curvature to zero, so that
covariant derivatives become ordinary partial derivatives with commuting property. Fi-
nally we have all the expressions to replace in the Einstein-Hilbert action as follows

Slg+h] = —k;‘2/d%@[(H%h—}lhﬂ”huﬁéh?) <R(g+h)—2A) +O(h3)}. (A.29)

By expanding the previous eq. and perfoming some integration by parts when needed,
and making use of the following relation between covariant derivatives’ commutator and
Riemann tensor curvature

[V, Vglh] = R 5.5 + R*apuh], (A.30)

one gets the following orders of the action expansion

So=— /d%@{}z - QA},

1
S, = /dD;p\/g{hW (RW — §gWR + gWA> + total derivatives},
D 1 v 2 1 2 1 v 1 ?
Sy =— [ d”z\/g Zhu (VZ+2A)h,, — gh(V +2A)h + 3 VP — §vuh

1 1 1
+ §h“’\h”"RWM + 3 (h“)‘hK — hh‘“’) R, + 3 <h2 — Qh””hw) R + total derz’vatives}.
(A.31)
Neglecting all the total derivatives we end up with the mentioned eqs. ([2.10)).
The laborious and rather tedious algebra that we have done so far can be surprisingly

simplified making use of the tensor computer algebra package for metric perturbation
zPert [28] available for Mathematica.
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Appendix B

Vector path integral computations

In order to present some examples of computation of ambiguous Feynman graphs that
must be properly regularized, in this appendix we will follow all the steps for (e=Sint)
evaluation. Many terms of the expanded (e=%nt) up to the order O(3?) will involve
2-point functions with two derivatives, that satisfying the Green equation provide di-
verging Dirac delta functions. Other problems arise with products of distributions such
as delta and step functions. The only way to solve these ambiguities with dimensional
reqularization is to extend the integration domain to a non-compact (d + 1)-dimensional
space §2, where some manipulations are allowed to cast integrals in a non-ambiguous
form. In the following we will see some different cases. At the end we will mention also
the methods for modular integral computation.

B.1 Ambiguous integrals with DR

The present section is dedicated to the computation of (S4), (Se) and (S3), with S; and
Se referring to (3.89)). Let us start with (Sy), i.e.

1 ! T o v o v 1 ! v\a\
(S4) Z@RMM/ dr((¢*¢°¢"d") + ("¢ a"a”) + (" V")) + ﬁRm/ab/ dr{g"d" \"\°)
0 0

—ER /1d (AaXb>—§ﬁR
9 ab 0 T 8

— ! R / I (@ EWEE) + (PPN CE) + (P ENTP) + (@Y ara)
65" J,
AW NI i 17_p-u ay _1 17_ ay _§
O + 5B | @ FYNN) =GR [ drN) = S8R
(B.1)

where the Wick theorem for all the possible contractions of the fields in the correlators
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has been used. By means of the propagators (3.74]) we get

5 ! OA® L] (] 5 ! 3
<S4> = ER dT[—A|T A\ |7- + A |7-A |7- — AlT Agh|7} — ER dTAF|7—:o' - gﬁR
0 0
(B.2)

In the first integral of the last eq. there are two diverging integrands. These terms are
characterized by two derivatives, i.e. proportional to the diverging o(7,7) as derived
by the Green equation. They can be evaluated only after a proper manipulation with
a regularization scheme. Using the Green equation Ay, (7,0) = **A(7,0) in and
performing dimensional regularization, namely extending the integral to non-compact
d + 1 dimensions, we get

1
| aralawl - Al £ [aal(a, 4,
0

1
= [ @Al lal) = - [ @@l 2 - o als) (63
0

1t 1
=— —/ dr(2r — 1) = —=,
2 Jo 6

where we used the previously mentioned identity , an integration by parts (allowed
in DR) and at the end we replaced the values of A(7,7) and *A(7,0)|,—, as present in
(3.76)). The subscript 0 indicates the derivative along the compact original dimension 7.

The other integrals, being unambiguous, can be computed without performing any

manipulation, i.e.
L L 1\* 1
/ dTA.|7-A.|7-:/ dT(T—§) =13
0 0 (B.4)

7

! 0
/ dTAp|,—; = = tan—.
; 2 g

Replacing all the above results in (B.2)) we finally get

7

(Sy4) — %BR — iﬁRtana (B.5)
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The second step is the computation of (Sg):

1 1

45

1 ! ey o o
(Se) =— [EVAVURaWﬁ + —RquTaﬁu} / dr((* ¢ ¢“"¢"¢") + (*¢" ¢ ¢"
0

B
+{* "¢ ve”))
+1l1VVR + LR R }/ldﬂ"“'“xﬂ
S35 o va vy Avilorab T\q q qq
B8 AT etab Tt n )

1
4

1

1 _ 3
V.V, Ra / dr{g'q" \*\%) — 1—65v,NVR / dr{q¢"q")
0 0

Let us perform all the Wick contractions:

(") =Y )N @"d) + (@) q) + (0" ) (7))
H g "V d") + {0V d®d) + (7q" ) ¢")]
HO ) () (@"d") + (a7 ") (q*d") + (a7d") {a“q"))
H W) + (@) ") + (7d" ) {a"d")]
HA NP + (@) ") + (7))

("¢ a"a”) =(*¢" )" ") (a"a”) + (¢ q*) (" ¢") (a"a”)
+(*¢")(q"q*) {a"a”)

(@ VY =) g ) W) + (@ q*) (a7 d") ()
H ") g™ (b )

(NN =N )N + (P ) 7 q ) (AN
H @) (@) (AN

(@"q" ANy =(q"q") (A" X°)

In the following we proceed with all the computations:

1 1 1
i) — i@vﬂvyz%/ dr{(q"q") ziﬂQVZR/ drA|, = 352V2R/ drr(t —1)
16 0 16 0 16 0

2 2
- — 3—2V R
1 1 _ 62 1
i)~ VuVuRa [ dr('q)(3X) = VPR / dr AL Apl,
0 0

2 1 : 2
g pitan? = R an?
=7 \Y R/O drr(r 1)2tan2 = 482V RtanQ.
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ata”)

(B.6)
(B.7)

(B.8)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)



1 1 !
m)gl VaVoRuas + =R’ u)\uRaTab} / dr (" ¢ " A*N’) = 0 (B.17)

24 ;

1

1
i)ﬁhov*v Rauv5+45RmauR aBV]/ dr({(*¢"q*Pa"a”) + (" " b))

1 3
—R2| 72 . /\a__ w2 uuaﬂI
B (4OV R+ QOV’\VUR 45R R 45RWO¢5R ) 1,
(B.18)
where we used the identity (2.54) and I stands for the following integral
1
11:/ AT ALAL Al (B.19)
0
1 1 ! Ao o B u
)ﬁ 40V,\v Ra,uu/o"" 5RT)\O'MR afv dT(<q q4q94q q q >
(B.20)
=3 2R——R ,RM v L o aReB ) (I, — T
6] ( \Y I +20V,\V R SOR” s (I, — I)
where the integrals I, and I3 stand for
1 1
12:/ AT AL AAY 13:/ AT A A, A (B.21)
0 0

Using all the above results we get

AP 1 1
Se) = ——V2R Lt R 1 2| 2R — — Ry R"™ — —Ruap R | (I + 1) — I3).
Vol =~ 53 gg g VIR 55 15 30" s L+ 1~ 1)
(B.22)
Computing the three integrals, i.e. I3 = 120 and Iy +1; = 30, and replacing the results
in the above equation we get
(Sg) = B? T vR- tan0V2R - —R SR — NS (B.23)
0 240 48 1080 720" *P ‘

The final effort is the evaluation of (S%). In order to avoid confusing algebra we will
use the following notation to indicate the various terms of the expandend S%:

Si=A+B+C+D, (B.24)
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where
1
A=—R\uo / drg* ¢ (¢"¢" + a'a” + b'c”),
1 ! -
B= / drghgv AN (B.25)
1 avh 3
C=—-—-Ry dT)\ N, D=—-pR.

Let us proceed with the computations using this notation:

(D?) = %WRQ, (B.26)
(2CD) = %BZRQitang, (B.27)
(2BD) =0, (B.28)
(2AD) = —3%5232, (B.29)

(C?) :}lRabRcd /0 /0 drdo (A (F)N(F) () 3a(0))

1

= Ra R / / drdo (X ()X (7)) (Ae(0)Aa(0)) — (X*(T)Aa(0)) (Ae(@)A(7)))

_Z (RQ/ / drdoAL]—5 — abR‘“’/ / drdoAp T—U)AF(O—T))

52R2 1 20 1 (2 w1 50
1 4Cos 2+4 +4RabR 4005 5

(B.30)

where we performed Wick contractions for correlators with fermionic fields and we used

the identity tan®% = cos™2% — 1;

1 ! ! n 137 a \b c Nd _
(2BC) =~ RywarFe /0 /0 drdo(g" ()i (TN (PR (PN ()N () = 0, (B.31)

1 Lot - ‘ 0

(2AC) = —— Rywo R / / drdo (g (6" + ata” + B )NA) = — - B R?*tan~ |
65 A 48 2

(B.32)
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(B%) =i Fuaslves [ [ drdola? (0 )3 (X 00 () (0N ) Vo) -
= %2 R,uuab R'LwabLl
where .
I - / / drdo(AN — AN)Ap(r — o) Ap(o — 7). (B.34)

For the last integral dimensional reqularization is needed because of the delta function
contained in °A® which multiplies the step functions present in A, indeed these products
of distributions are ambiguous and must be regularized. Let us extend the integral to
the non-compact d + 1 dimensional space and perform an integration by parts:

14 ﬂ)/dd“t/de“ls[oéAB(t, s)A(t, s) — A(t, s)Ag(t, s)tr[y*Ap(t — S)’yﬁAF(S —t)]
/dd“zf/dd+1 A(t,8)Ag(t, 8)tr[y* Ap(t — s)Y? Ap(s — t)]

+/dd+1t/dd+13Aﬁ(t, s)A(t, s)trK %Ap(t—s)%ﬁAF(s—t)
)]

One can add a “mass term” 6 for free in order to obtain the Dirac eq., i.e

H @T

+Ap(t —s)y (AF(S —t)
(B.35)

( a%He)AF(t—s) AF(t—s)( ¥ Z+19> = bp(T —0)d%(t —s), (B.36)

to get
1
) / AN S Aty Al 2% 2 / dr Ay A, = 0, (B.37)
For the computation of I, we need to evaluate the following term
/dd“zf/dd+1 A(t, 8)Ag(t, 8)|tr[y* Ap(t — )Y Ap(s — )]}
) 0 (B.38)
0, —2/ dT/ do'ANAp(T — 0)Ap(0c —T) = ——cos 2=
Using the above result of the integral we get
s -
B?) = vap R Pcos = B.
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The final step is the computation of (A?) which requires rather consistent algebra:

(A) = o BB [ dr [ a0 (0O 0 @ () () (0)
) (1) (1) (7)g* (0)q’ (0)a’ (0)a” (o))
M) (1) (1)¢ (71)q% (0)¢’ ()b ()¢ (0))
+((7)q” (T)a" ()" (1) (0)’ (0)§’ (o) §" (o))
-+ 1) (7)a* (1)a” (7)q%(0)¢’ (0)a’ (0)a” (0))
+N1)g” (T)a" (T)a” (T)g* (o) g’ ()b’ (o) (o))
(T (1) (1) (1)q ()¢’ (0)§° (0)§" (0))
-+ )" () (1) (1)q* (0)q’ (0)a’ (0)a™ (o))
H () g ()P (7) e (1)g%(0) g’ (0)b7 (o) (0)).
(B.40)

As we can see the first term is an 8-point function that using Wick theorem contains
7!l = 105 terms. By computing all these terms and all those of the other 8-point functions,
after laborious algebra we get the following result

2 1 1
(W) = g5 [ [ drdn B gl AL AL + gl + AT

— 2(A Al Aghls + A LA[A)]
+ R R™[2A[ ((A°)? — AZ)A], + 2(A° + Agy) |- A (A + Ayy)|,
+ 20D (D + Agy)[o + 200 + Agp) |- (L) A
— AN LAA) (A Ao — (A 4 Ay |- A(A) A,
—AA[(A) (D) A, — AN AN (PAT) A
+ AN [FA(A) A, + AA°[ A (A) A, ]
FR g [—3APAL, 4+ BAP(A)? — 6(A%)A(A")A + 3(A%)* (D)}

uraf

B 2
R - 1R,
36(16 6 " )

(B.A1)
The final result of (S?) is thus given by
25 1 0 1 0 1 1 50
2\ _ 32 Bl = M -27 2 o el iz
54 =4 [(144 Tty T e 2>R i ( 216 " 16 )R“”R (B.A2)

Finally we have all the ingredients to compute (e~%mt) =1 — (Sy) — (S6) + £(S57), which
result is exaclty ([3.90).
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B.2 Modular integrals

In this section we present for completeness the computation of the three modular integrals
in (3.91)).
Let us start with I; by writing cosg in terms of complex exponentials e and per-

forming a change of variable z = e%:

" df AN do . d 1P
I = / (2cos= | e 172 = / —(e? )P = —z/im =D,
0 27 2 0 27 c2r 22

(B.43)
where in the last step the residue theorem has been used. We proceed similarly with the
other modular integrals

27 D 2m
do 0 . 0 do , . ;
12:/0 %(2“’55) ”lg)%”f‘i/o (@ P L)

(B.44)
dz (z = 1)(z+ )Pt
:_/c% = =i(D —2);
2 D 2T
I; = / ;i_@ (2(}08%) e‘i(l_?)gcos_Qg = 4/ ;Z—e(eie +1)P72
Z ™ o U (B.45)
21 Je z
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Appendix C

Coherent states for rank-2 tensors

Consider the fermionic operators ¢* and 1)® with non-vanishing trace. Under canonical
quantization they satisfy anticommutation relations, i.e.

{djab’qzcd} — 5a05bd + 5b05ad7 (Cl)

where a,b,c,d,= 1,..., D are flat indices. Considering the 1’s and 1)’s respectively as
creation and annihilation operators with respect to the vacuum |0), it is possible to define
fermionic coherent states:

[y = e PR j0) (€] = (0] T2, (C2)
that obey the following relations
Oy =), (€l = (gle. (C.3)
The above coherent states are normalized as
ECE (C.4)

For path integral construction with coherent states Lorentz invariant tensors are required.
The latters are built from 04, and €, .0y, 1.6. Z(ap), .. (ab)y, With N = %D(D +1). The
tensors Zup),...(ab)y S0 constructed are symmetric in each couple of indices (ab)y and

antisymmetric by couples exchange. A simple example can be studied for D = 2, i.e.
Z(ab)(cd) X 6ac(sbd + 6ou:l(sbc + 6bd(5ac + 6bc(saak (C5>
Therefore the measures for the integrals are

A€ = Ziap)y . (ab)n dEDT . dEIN Al = Zapy, (aryy AN L di (C.6)
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with the identity dédij = (—1)Vdnd¢. Using coherent states the following identities hold
/dé’dfle_;ﬁabﬁab —1
[ dedne i miay e =1 (eky

TrA = / dédne 26" (—¢| Alp) = / dijdgeze" T (€| Alfp).
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