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Introduction

This work is based on Loop Quantum Gravity, one of the most promising and mathe-

matically rigorous approaches to quantum gravity, that at the time being has collected a

large series of theoretical successes like the derivation of the Bekenstein-Hawking entropy

with the physical interpretation of the microstates of a non-rotating chargeless black hole,

the derivation of the Hawking temperature and the resolution of the singularity problem

that affects Einstein classical theory of gravity.

The work is divided in two main parts: in the first one we construct from the Hamiltonian

formulation of the classical theory the full Loop Quantum Gravity theory. Following the

Dirac quantization program for constrained system we construct initially the Kinemati-

cal Hilbert space of the theory, finding an explicit basis of states. Then we promote the

classical constraints written in terms of Ashtekar-Barbero smeared variables to quantum

operators and for each of them we look at the relative Hilbert space of the solutions, to

arrive at the quantization of the Hamiltonian constraint and its solutions, the physical

states of the theory. Along this path we construct the Area and Volume operators, that

allow us to make considerations already at the Kinematical level about the resolution of

the Singularity Problem in Loop Quantum Gravity.

In the second part of this work we study two models of Loop Quantum Cosmology, that

despite its name is not properly the cosmological sector of the theory but is made of

Minisuperspaces, so quantum models in which a certain symmetry is imposed already at

the classical level. We’ll focus initially on the simplest Minisuperspace, the flat FRW,

where we impose homogeneity and isotropy at the classical level and assume a spatially

flat solution. We loop-quantize this model and once we obtain the quantum Hamiltonian

constraint we show some of its numerical solutions. We analyze qualitative features of

such solutions, focusing in particular on their bouncing behaviour in the Planck regime,

that in an extremely elegant and incredible way replaces the classical singularity that

affect the classical theory. Then we introduce the effective approach to this model and

we show explicit calculations for the solution of the effective equations. The effective
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dynamics is an approximation of the analytic one, but for many initial states it repro-

duces extremely well the numerical solutions. We describe the physical and mathematical

reason of this extraordinary agreement and we support such consideration with math-

ematical calculations. Then following the same path of the flat FRW Minisuperspace

we study the second simplest Minisuperspace, the Bianchi I. Here we assume homogene-

ity but not isotropy: at the classical level we have only three space-like Killing vectors

forming an abelian algebra. We quantize the system and we show qualitative features

of the numerical solution, focusing in particular on the multi-bouncing behaviour of the

wavefunction in the Planck regime. Then we look at its effective dynamics, that also here

turns out to be extremely accurate for a large class of initial states. Thus also here we

show explicit calculations that justify theoretically such strong agreement between the

effective and the numerical results.
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Chapter 1

Loop Quantum Gravity

As well as for the quantization of the other field theories like Electromagnetism, there are

two approaches to quantize Einstein General Relativity within Loop Quantum Gravity:

by a side the so called Spin Foam approach, that is based on the path integral formalism

applied to Einstein General relativity written in terms of the so calledAshtekar-Barbero variables

(that we’ll present in this chapter), and the Canonical approach , that starting from the

same classical setup follows instead the Dirac quantization program of constrained sys-

tems.

In this work we’ll focus on the second one, analyzing it in detail and using it to derive

solutions of the Cosmological sector of the theory.

1.1 Canonical approach

These are the steps we’ll follow in this approach:

1. We introduce the ADM decomposition of the metric tensor, useful to construct the

Canonical formulation of classical General Relativity.

2. We formulate classical General relativity in its hamiltonian version.

3. We introduce the tetrad formalism and we use it to write the classical theory in

terms of the Ashtekar-Barbero variables, the real starting point of the Loop quanti-

zation procedure.

4. Following the Dirac prescription for the quantization of constrained systems we

quantize the theory and we look at explicit but generic solutions for the constraints.
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So let’s start with the introduction of the powerful tool of the ADM decomposition.

1.1.1 ADM formalism

The ADM procedure starts by assuming that the 4-D manifold M has the following

topology:

M ' R× Σ

where Σ is a fixed 3-D manifold of arbitrary topology and signature (+ + +).

This physically means that instead of considering the space-time as a 4-D manifold, we

consider it as a 3-D manifold evolving in time. In particular, these spatial hypersurfaces

are assumed to be Cauchy hypersurfaces. Let’s describe in detail this important concept.

Definition: given an hypersurface Σ we define the future (past) development of Σ and we

call it D+(Σ)(D−(Σ)), as the set of the points of the manifold not belonging to Σ, living

in the future (in the past) of the hypersurface such that, given a point ∈ D+(Σ)(D−(Σ))

each causal line which starts from the point, passes in the past (in the future) through Σ

Definition: we call Σ a Cauchy hypersurface if

D+(Σ) ∪D−(Σ) =M

This means that a Cauchy hypersurface can be casually connected with the whole mani-

fold.

Definition: A manifold that contains at least a Cauchy hypersurface is said to be glob-

ally hyperbolic.

Well, there is a theorem that states that we can always foliate a globally hyperbolic man-

ifold with Cauchy hypersurfaces.

So if we considerM globally hyperbolic, the statement:

M' R× Σ

means we are choosing a particular foliation of M in Cauchy hypersurfaces, and this

gives no restrictions to our globally hyperbolic manifold.

Remark: assuming that the space-time is globally hyperbolic means that there are no

causally disconnected regions.

Let’s come back now to the ADM procedure. Assuming a decomposition of our manifold

in a real line R and space-like Cauchy hypersurfaces means that we associate to each sur-
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face a value for the real parameter t belonging to R. This foliation allows us to identify t

as a time parameter, "decoupling" it from Σ.

Physically we don’t have anymore a 4-D manifold, but a 3-D one that evolves accordingly

with a parameter t.

Remark: The flow of t cannot be seen at this stage as the physical flow of time, since

as we see in detail later it can be produced by time-like diffeomorphisms, that are un-

physical infinitesimal transformations of coordinates. This is known in classical General

Relativity as the Problem of Time, and we’ll see how to solve it explicitally. We look for

the moment at t as a generic parameter.

In order to fix ideas we choose a foliation using the adapted ADM coordinates (t, ~x).

For this purpose, we define the 4-vector Xµ
t , such that its first component points toward

increasing values of t, while the other three are independent from t itself. Let’s thus

define the normalized time-flow vector:

tµ(x) ≡ ∂Xµ
t

∂t
= (1, 0, 0, 0)

written in the basis { ∂
∂t
, ∂
∂xi
}. Well, the vector tµ(x) in general is not normal to Σt.

We denote the normal to Σ with nµ and we assume it is normalized: nµnµ = −1. This

means that nµ and tµ are both time-like, but in general not parallel.

So we can decompose tµ into its normal and tangent part with respect to Σ:

tµ = N(x) · nµ(x) +Nµ(x)

We fix for simplicity: nµ = ( 1
N
,−Na

N
), obtaining: Nµ = (0, Na).

In fact since tµ = (1, 0, 0, 0) in our coordinate system, then:

t0 = 1 =
N(x)

N(x)
+N0 = 1 +N0 ⇐⇒ N0 = 0

N is called Lapse function, while Na are called Shift functions.

If we write the norm of tµ and the scalar product Nµtµ in terms of these functions, we

obtain the metric tensor (that allows to compute the scalar product) in terms of them:

gµνt
µtν = g00 = −N2 + gabN

aN b

While:

gµνt
µN ν = g0bN

b = gµν(Nn
µ +Nµ)N ν = gµνN

µNν = gabN
aN b ⇐⇒ g0b = gabN

a ≡ Nb

5



Using these results, we can write:

ds2 = gµνdx
µdxν = −(N2 −NaN

a)dt2 + 2Nadtdx
a + gabdx

adxb

where a, b = 1, 2, 3 are spatial indices contracted with the 3-metric gab.

We use this form of the metric tensor within the hamiltonian formulation of the theory.

Remark: since tµ is not orthogonal to Σ, in general gab is not its intrinsic metric.

The intrinsic metric is instead given by the spatial part of:

qµν = gµν − nµnν

so that when we look at tensors defined on Σt, since they are orthogonal to nµ can be

equivalently contracted with gµν or qµν .

The quantity qµν = gµρqρν acts as projector on Σt, so acting on a generic tensor defined

on the whole manifold projects it on the hypersurface Σt. Thus qµν allows us to construct

tensorial quantities on such hypersurface, starting from the ones defined onM.

The intrinsic metric of the spatial slices allows us to define another important quantity,

the extrinsic curvature of Σt:

Kµν = qρµq
σ
νnσ;ρ

It can be proved that this tensor is symmetric and is linked to the Lie derivative of the

intrinsic metric on the direction given by nµ: L~n = 2Kµν .

For this reason we can use it to define at the Hamiltonian level the generalized conjugate

momentum of qab, that we call πab.

The extrinsic curvature is present also in the relation between the Riemann tensor Rµ
νρσ

(for Σt) and the one forM, the usual Rµ
νρσ :

Rµ
νρσ = qµαq

β
νq
γ
ρq
δ
σR

α
βγδ −KνσK

µ
ρ −KνρK

µ
σ (Gauss-Codazzi equation)

1.1.2 Hamiltonian formulation of classical General Relativity

The Gauss-Codazzi equation and the ADM decomposition of the metric tensor allow us

to rewrite the Einstein-Hilbert action in terms of R and K :

S =

∫
dt

∫
Σt

d3x
√
qN [R−K2 +KµνK

µν ]
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Where we set 16πG = 1 for convenience (this choice will be changed for convention only

in the cosmological sector of the theory). Even if not explicit, the previous action doesn’t

contain time derivatives of N, Na. This means that:

δL
δṄ

=
δL
δṄa

= 0 (1.1)

N and Na are not propagating degrees of freedom. In the Dirac nomenclature the rela-

tions 1.1 are called Primary constraints of the system, and their existence makes classical

General Relativity a constrained system, that means that in its hamiltonian formulation

has to me studied with the Dirac theory on constrained systems.

The conjugate conjugate momentum of qab, written in terms of the extrinsic curvature

K:

πab =
δL
δq̇ab

=
√
q(Kab −Kqab)

We can define the Hamiltonian density of the theory H by computing the Legendre

transform of L, obtaining
H = NaHa +NH0 (1.2)

Where:

Ha = −2
√
q∇b

(
πba√
q

)
; H0 =

1
√
q
Gabcdπ

abπcd −√qR (1.3)

and:

Gabcd = qacqbd + qadqbc − qabqcd

is often called supermetric, or DeWitt metric. N , Na are the shift and lapse functions

of the ADM decomposition, and in this canonical formulation play the role of Lagrange

multipliers for the constraintsH0 andHa. In the Dirac nomenclatureH0 andHa are called

secondary constraints, since they are obtained by imposing that the primary constraints

1.1 hold at each time, so for physical solutions:

H0 ≈ 0, Ha ≈ 0 (1.4)

The notation ≈ means that such relations hold on physical configurations (weakly in the

Dirac nomenclature).

The relations 1.4 are not only secondary constraints for the system, but also first class:

the Poisson algebra generated byH0 andHa vanishes on shell, so on the physical solutions
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{Ha,H0} ≈ 0, {Ha,Hb} ≈ 0, {H0,H0} ≈ 0 (1.5)

As we’ll see later these first class constraints generate gauge transformations, associated

respectively with time-like and space-like diffeomorphisms.

In general any theory containing gauge invariance like General Relativity (the gauge

invariance in this case comes from the diffeomorphism invariance of the theory) is in its

hamiltonian formulation a constrained system that contains first class constraints, and

such constraints turn out to be the generators of gauge transformations.

Ha ≈ 0 is usually called Diffeomorphism constraint (here for diffeo. we mean spatial

diffeomorphisms), and H0 ≈ 0 is called Hamiltonian constraint.

A system with an hamiltonian of kind 1.27, i.e. with the form (lagrange multipliers) ×
(first class constraints) is called generally covariant system, and it has very important

features, we are about to explain. Usually for generic constrained systems the time

evolution is not generated by some constraint, since the hamiltonian contains not only

constraints but also other terms. In our case instead we can combine space-like and

time-like diffeomorphisms to produce a gauge transformation of the metric tensor that

reproduce exactly its infinitesimal variation under the time evolution generated by the

Hamiltonian. This is a peculiar and central feature of the theory, and it brings some

important consequences: by a side, solving the system given by the constraints means

finding the solutions of the theory at each time. This holds both at the classical and

quantum level, as we’ll see. By the other side, this means that at this level we are not

able to distinguish between a physical evolution and gauge transformations produced by

diffeomorphisms, and this gives rise to the famous problem of time of General Relativity,

and a possible way (not the unique one) to solve it is fixing the gauge for the solution,

in such a way that the only possible time evolution is the physical one. We see how to

do it in practise when we look at the cosmological solutions of the theory.

The same considerations can be performed on the system of the free relativistic particle:

it can be seen as a gauge field theory, so at the hamiltonian level as a constrained system.

Moreover, since as a field theory describes the evolution of four fields in 1-D it is usually

studied as a toy model for the Einstein theory. We perform its analysis on Appendix B.

But let’s come back to our Einstein-Hilbert action. In order to explore its Hamiltonian

formulation let’s look now at the symplectic structure.
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Symplectic structure and gauge transformations

We saw in the previous paragraph that the physical phase space variables of our hamil-

tonian theory are qab and their conjugate momenta πab.

Let’s construct their equal time canonical commutation relations:

{πab(t, ~x), qcd(t, ~x′)} = δa(cδ
b
d)δ(~x− ~x′) (1.6)

where with (c d) we mean the symmetric part of the tensor, i.e.:

δa(cδ
b
d) =

1

2
(δacδ

b
d + δadδ

b
c)

and where the relations 1.6 are evaluated at equal t, so on the same Cauchy hypersurface

Σt.

We recall that given two functions A(x), B(z), their Poisson brakets:

{A(x), B(z)} =

∫
d3x

[
δA(y)

δqab(x)

δB(z)

δπab(x)
− δB(z)

δqab(x)

δA(y)

δπab(x)

]
(1.7)

Well, using 1.3 we can evaluate the equal-time Poisson brackets among the constraints.

We obtain:

{Ha(x),Hb(y)} = Ha(y)∂b[δ(x− y)]−Hb(x)∂′a[δ(x− y)]

{Ha(x),H(y)} = H(x)∂aδ(x− y)

{H(x),H(y)} = Ha(y)∂aδ(x− y)−Ha(y)∂′aδ(x− y)

(1.8)

We notice as anticipated before that the Poisson brackets vanish on the constraint surface

(Hµ ≈ 0).

Let’s also observe that these relations are not trivial on the constraint surface, since the

weak equality holds only after the calculation of the Poisson brackets.

Let’s look now at the gauge transformations of the theory. The Poisson brakets between

the Diffeo. constraint and the variables of the phase space:

{H( ~N), qab} = L ~Nqab

{H( ~N), πab} = L ~Nπ
ab

9



whereH( ~N) is the smearing of the diffeomorphism constraint: H( ~N) =
∫

Σ
d3xN lHl and:

L ~Nqab = Na;b + Nb;a = δ ~−Nqab is the Lie derivative of qab along ~N , so an infinitesimal

variation of q generated by the space-like diffeomorphism along the direction individuated

by ~N .

This means that H( ~N) generates spatial diffeomorphisms on Σ, as anticipated before.

The situation is analogous for the Hamiltonian constraint:

{H(N), qab} = L~nNqab

{H(N), πab} = L~nNπab +
1

2
qabNH0 − 2N

√
qqc[aqb]dRcd

where H(N) is the smearing of the Hamiltonian constraint: H(N) =
∫

Σ
d3xNH0.

The first Poisson bracket gives an infinitesimal variation of qab on the direction orthogonal

to Σ (that in general is not the one individuated by tµ) while the second term gives the

same result for πab if we evaluate it on shell (H0 ≈ 0, Rcd ≈ 0 in vacuum).

So the Hamiltonian and the Diffeo. constraint generate the gauge transformations of the

theory in this Hamiltonian formulation.

Let’s perform now a brief analysis of the number of degrees of freedom of the theory.

Physical degrees of freedom of the classical theory

In the case of the linearized Einstein-Hilbert action the solution in vacuum has got only

2 physical degrees of freedom, that are the two polarizations of the gravitational wave.

This counting of the degrees of freedom holds however not only for the linearized theory,

but also for the generic theory in vacuum.

In the canonical formalism we can confirm this count with a general consideration.

To make it let’s start with the classical phase space of a free particle : (qi, pj). It has got

dimension 6, while as we know the physical degrees of freedom are only 3.

In the case of fied theories like GR, we expect that the number of d.o.f are infinite, since

the field is defined on a space-time which is continuous, so on an infinite domain.

So let’s see how "large" is this infinity in our canonical formulation.

The whole phase space: (qij(x) πkl(y)) has (6+6) ·∞3 d.o.f., since q and π are symmetric

tensors (i, j = 1, 3) and each component is defined on the 3-D manifold Σ.

But we remember that the physical configurations live on the constraint surface, and not

in the whole space. So we have: (12 − 4) · ∞3=8 ·∞3. This is not however the end of

the count. As we said the first class constraints Hµ generate gauge transformations on
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the constraint surface, and this means that on the physical phase space we’ll have gauge

orbits that correspond to the same physical states.

Thus we have to gauge-fix the system to obtain the physical hypersurface, that technically

means selecting a representant for each gauge orbit. This means reducing the number of

d.o.f: (8− 4) · ∞3 = 4 · ∞3.

As in the classical case, in order to recover the dimension of the configuration space we

have to divide this quantity by 2, obtaining the desired result.

Let’s proceed now toward the next step of our program, formulating the Einstein theory

in terms of Ashtekar-Barbero variables.

1.1.3 Classical background for LQG

The first tool we need to introduce in order to construct Loop Quantum Gravity is the

Tetrad formalism. As we’ll see in detail later, this formulation will allow us to write

the theory in terms of an SU(2) connection and its conjugated variable, making gravity

similar in this sense to other gauge theories like QED (U(1)), QCD (SU(3))..

Tetrad formalism

Definition: a tetrad is a quadruple of covariant tensors eIµ(x)dxµ, with I = 0, 1, 2, 3

with components that satisfy the following:

gµν(x) = eIµ(x)eJν(x)ηIJ (1.9)

Notation: we write conventionally latin indices: I, J,K, .. to denote internal tetrad

indices, while greek indices : µ, ν, ρ, .. regarding space-time components written in a

generic frame.

The dependence of e from x comes from the fact that the relation 1.9 depends on the

space-time point on which is performed since the metric is a tensorial field that depends

on the points on which is evaluated.

We could naively think that the previous relation is a sort of coordinate transformation,

from a local inertial frame (in which the metric assumes the usual Minkowski form) to a

generic one. So, let’s focus on this point and see what is the difference between:

gµν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
ηρσ

11



and 1.9, since such difference is at the heart of tetrad formalism: when we use latin

indices, we are forcing the tensor to be written (in those indices) in a local inertial frame,

or in other words these indices are lowered and raised always by the Minkowski metric.

So, if ∂xρ

∂x′µ
∂xσ

∂x′ν
allows to pass from a generic frame to another, the second one describes

the passage from a frame forced to be local inertial to a generic one. Thus we can see the

tetrad indices as describing tensors written on frames forced to be locally inertial. As a

consequence, the only transformations we can do on such tensors are Lorentz-Poincaré

(since are the only isometries of the Minkowski metric):

η′IJ = ΛK
IΛ

M
JηKM

The same for generic tensors written in the tetradic form: A′I = ΛI
JA

J .

Remark: when we define a tensor written in latin indices we don’t mean in general a

constant tensor field, and as well as all the other tensor fields it depends on x.

Notation: we consider ẽI as covariant basis vectors, while ~eJ as contravariant basis

vectors. Tetrads provide the relation between basis vectors written in latin indices and

greek ones:

~eI = eµI(x)
∂

∂xµ

While a rank-2 tensor with both latin indices has the following form:

η = ηIJ ẽ
I ⊗ ẽJ

A rank-2 tensor with a latin index and a greek one:

α = αIµẽ
I ⊗ dxµ

So we write a tensor with rank > 1 in such a way that different indices may mean different

coordinate basis (differently from what we usually do in GR); in our case µ is written in

a generic basis while I is written in a local inertial basis. Using the tetrads we can write

the tensor α in the usual basis:

α = αIµ(eIνdx
ν)⊗ dxµ = αIµe

I
νdx

ν ⊗ dxµ = αµνdx
µ ⊗ dxν

Furthermore we have that basis vectors and their dual covectors can be contracted pro-

ducing the usual Kronecker Delta:
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δIJ = ẽI(~eJ) = eIµe
ν
Jdx

µ(∂ν) = eIµe
µ
J

So far we introduced basis vectors (~eI) and covectors (ẽJ) with latin indices. A generic

vector in this basis: ~V = V I~eI . Since its components are labelled by a latin index, they

clearly transform only under Lorentz-Poincaré. The covariant derivative of such tensor:

DµV
I = ∂µV

I(x) + ωµ
I
J(x)V J(x)

where ωµIJ(x) is called Spin connection, and it is a covector with values in the Lorentz

algebra. We can define also derivatives of objects with both greek and latin indices

Dµe
I
ν = ∂µe

I
ν + ωµ

I
J(x)eJν − Γρνµe

I
ρ

We notice that we have to use different connections for the covariant derivative of com-

ponents defined in different spaces. We impose on ω the so called Tetrad postulate

Dµe
I
ν = 0

Which implies:

∂(µe
I
ν) + ω(µ

I
J
(x)eJν) = Γρνµe

I
ρ

∂[µe
I
ν] + ω[µ

I
J
(x)eJν] = 0

With the squared brakets we mean the antisymmetric part of the µ, ν indices of the

tensor : ω[µ
I
J
(x)eJν] = 1

2

(
ωµ

I
J(x)eJν − ωνIJ(x)eJµ

)
.

We want to prove now a relation that will be useful later

ωIµJ = eIν
(
∇µe

ν
J

)
(1.10)

From the Tetrad postulate

∂µe
I
ν − Γρνµe

I
ρ = ∇µe

I
ν = −ωµIJ(x)eJν ⇒ eνK

(
∇µe

I
ν

)
= −ωµIJ(x)eJνe

ν
K

Remembering that eIµeµJ = δIJ , we have

eνK
(
∇µe

I
ν

)
= −ωIµK
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Using then the Leibnitz rule

∇µ

(
eνKe

I
ν

)
−
(
∇µe

ν
K

)
eIν = −ωiµK ⇒

(
∇µe

ν
K

)
eIν = ωIµK

Remark: ∇µ and Dµ are different derivatives, and are linked by the following:

Dµe
I
ν = ∇µe

I
ν + ωIµJe

J
ν

With this formalism in hand we can construct the Einstein-Hilbert action in terms of

tetrads. Once we do this, it will be sufficient a change of variables in order to reach the

classical formulation we’ll quantize to reach LQG. In order to do this, we introduce some

important concept of tensorial calculus.

n-Forms

An n-form is a tensor field ω of type (0 n), that is totally antisymmetric in its indices.

For example ωµνdxµ ⊗ dxν with ωµν = ωνµ is not a 2-form, while

ωµν(dx
µ ⊗ dxν − dxν ⊗ dxµ)

Is a 2-form. We call

dxµ ⊗ dxν − dxν ⊗ dxµ ≡ dxµ ∧ dxν

the wedge product between the basis 1-forms dxµ and dxν . In general, the wedge product

between two 1-form

ω ∧ v = ωµdx
µ ∧ vνdxν = ωµvν(dx

µ ∧ dxν)

Exterior derivative

In general, the Exterior derivative of an n-form is an (n+1)-form of this kind: given

ω = ωµ1...µndx
µ1 ∧ ... ∧ dxµn

Then

dω =
∂ωµ1...µn
∂xν

dxν ∧ dxµ1 ∧ .. ∧ dxµn

is its exterior derivative. From the previous definition is clear that if ω is an n-form

defined on a manifold of dimension n, dω = 0.

14



We can now introduce the Covariant exterior derivative for the tetrads, and we call it dω
to distinguish from the ordinary exterior derivative:

dωe
I = dei + ωIJ ∧ eJ

Writing e, ω in the basis {dxµ} we obtain

dωe
I = d

(
eIµdx

µ
)
+ωIµJdx

µ∧eJνdxν = eIµ,Jdx
ν∧dxµ+ωIνJe

J
µdx

ν∧dxµ = (eIµ,ν+ω
I
νJe

J
µ)dxν∧dxµ

But we have that dxν ∧ dxµ is antisymmetric, so also the components of this 2-form have

to be antisymmetric, thus

dωe
I = (eI [µ,ν] + ωI [νJe

J
µ])dx

ν ∧ dxµ

We introduce now an object that represents the curvature tensor written in terms of the

spin-connection ω

F IJ = dωIJ + ωIK ∧ ωKJ

Well, it can be proved that such tensor is linked with the Riemann tensor

F IJ
µν(ω(e)) = eIρeJσRµνρσ(e) Curvature

F is fundamental to write the Einstein-Hilbert action in terms of tetrads, as well as the

Riemann tensor is fundamental to write it in the usual way.

Before going on, we want to prove the following relation, useful in the next section:

g = det(gµν)) = −det(e)2 = −e2

Recalling the Cayley formula for the determinant:

g = det(gµν) =
1

4!
εµνρσεαβγδgµαgνβgργgσδ

And remembering that gµν = eIµe
J
νηIJ we have

g = det(eIµe
J
νηIJ) =

1

4!
εµνρσεαβγδeIµe

J
αηIJe

K
νe
L
βηKLe

M
ρe
N
γηMNe

O
σe
P
δηOP

Now, using the following

εµνρσeIµe
J
νe
K
ρe
L
σ = eεIJKL

15



We have

g =
1

4!
e2εIKMOεJLNPηIJηKLηMNηOP =

1

4!
e2εIKMOεIKMO = − 1

4!
e2εµνρσεµνρσ = −e2

Where we also used εµνρσεµνρσ =

√
det((η))

sgn(det(η))
εIKMOεIKMO

The Einstein-Hilbert action in terms of tetrads

From now on we’ll work using the tetrad formalism, for a reason that will be clear later.

The Einstein-Hilbert action as functional of tetrads

SEH(eIµ) =
1

2
εIJKL

∫
eI ∧ eJ ∧ FKL(ω(e)) (1.11)

Let’s prove it.

SEH(gµν(e)) =

∫
d4x
√
−gRµνg

µν =

∫
d4xeeµIe

νIRµρνσe
ρ
Je

σJ =

∫
d4xeeµIe

ρ
JF

IJ
µρ(ω(e))

Now we can prove with a bit of tensorial algebra that: 4 · eeµIeρJ = εIJKLε
µραβeKαe

L
β.

Substituting it into the action

SEH =
1

2

∫
d4xεIJKL

(1

2
εµραβeKαe

L
βF

IJ
µρ(ω(e))

)
=

1

2

∫
εIJKLe

K ∧ eL ∧ F IJ

In fact

eK ∧ eL ∧ F IJ =
1

2
eKµe

L
νF

IJ
ρσdx

µ ∧ dxν ∧ (dxρ ∧ dxσ) =
1

2
eKαe

L
βF

IJ
µρε

µραβd4x

Where we used the fact that F is antisymmetric in greek indices (it inherits this property

from the Riemann tensor) and εµνρσd4x = dxµ ∧ dxν ∧ dxρ ∧ dxσ.
We notice that 1.11 is not only diffeomorphism invariant in the greek internal indices,

but it is also Lorentz-Poincaré invariant in the latin indices. This larger symmetry group

will play an important role in the formulation of Loop Quantum Gravity.

We can also consider ω as an extra variable of the action; in this case, if we vary 1.11

with respect of ω we obtain the relation 1.10 that we previously derived from the Tetrad

postulate.

This formulation allows to add a term to the Lagrangian that contains all the features

of 1.11, as the gauge invariance of greek indices and the invariance under local Lorentz
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transformations of the latin ones

δIJKLe
I ∧ eJ ∧ FKL(ω)

Where δIJKL ≡ δI[KδL]J is the so called Generalized Kronecker Delta, antisymmetric in

the indices k, l as well as F.

The addition of this term is not relevant in vacuum GR since it leaves the equations of

motion untouched, but will play an important role in the Loop quantization of the theory.

Adding this term in 1.11 we obtain

SHolst(e, ω) =
(1

2
εIJKL +

1

γ
δIJKL

) ∫
eI ∧ eJ ∧ FKL(ω) Holst action

Where γ is called Immirzi parameter, and at this stage is a free parameter of the theory.

The variation of this action gives as anticipatedω
IJ
µν = eIν∇µe

Jν → variation of ω

Gµν(e) = 0 → variation of e

that are the field equations in vacuum, independent from γ.

Now we need to recover its Hamiltonian formulation. Once we have the hamiltonian

formulation of the Holst action, we’ll introduce the Ashtekar-Barbero variables and then

proceed with the quantization.

Hamiltonian formulation with Ashtekar-Barbero variables

In order to recover the Hamiltonian formulation of the Holst action we proceed in the

same way we did for the Einstein-Hilbert action.

We split our 4-D space-time in Cauchy spatial hypersurfaces: M = R × Σ, and choose

a set of coordinates (t, ~x) that fix the foliation. We introduce the lapse function N and

the shift N i, decomposing the metric in the ADM form

ds2 = gµνdx
µdxν = −(N2 −NaN

a)dt2 + 2Nadtdx
a + gabdx

adxb

With tµ = N(x)nµ +Nµ the vector that individuates the t-flowing in the manifold.

Let’s rewrite now tµ (that is written in the coordinate system { ∂
∂t
, ∂
∂xa
}) in a tetradic

basis:

t̃I = eIµt
µ = N(x)eIµn

µ(x) + eIµ(x)Nµ(x) = N(x)nI +Na(x)eIa(x)
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where we recall that nµ =
(

1
N
,−Na

N

)
and Nµ =

(
0, Na

)
. t̃I are the components of ~t in

the tetradic basis {~eI}.
In the Hamiltonian formulation tensors are written on the submanifolds Σt of M, and

this means that even if we can construct a tetradic basis onM, let’s say {~eI}, we have

to consider only its spatial part as basis for tensors. We call it {~ei}, i = 1, 2, 3. On each

Σt we have:

δije
i
ae
j
b = gab i, j = 1, 2, 3 (1.12)

δij is the spatial (eucledian) part of ηIJ .

The basis {~ei} is called triadic basis, and is the spatial part of the tetradic basis {~eI} =

{~ei, ~e0}.
The relation between the triadic basis and the tensorial one allows to define the triads

eai(x):

~ei = eai(x)
∂

∂xa
(1.13)

As we did before, in order to reach the Hamiltonian formulation of the Holst action we

need to define canonical conjugated variables from e, ω. However we won’t work with

the variables e, ω and their conjugated momenta, but we make a change of variables

introducing the so called Ashtekar-Barbero variables. Before doing this to simplify the

analysis, we introduce the so called time gauge:

eIµn
µ = nI = δI0

Which means that in the tetradic basis the vector nµ is orthogonal to ~ei (i = 1, 2, 3). If

now we solve the system:e
0
µn

µ = 1

e0
µg

µνe0
ν = −1

We obtain: e0
µ = (N, 0, 0, 0) and consequently t̃I = (N,NaeIa). Let’s recall that t̃I

are the components of the vector ~t (that determines the foliation) in the tetradic basis.

Now, in order to recover the Hamiltonian formulation of LQG at the classical level we

introduce the so called Ashtekar-Barbero variables. We define:

Ea
i = e eai =

1

2
εijkε

abcejbe
k
c Densitized Triad (1.14)
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Aia = γω0i
a +

1

2
εijkω

jk
a Ashtekar-Barbero connection (1.15)

Where wjka is the spatial part of the Spin connection, contained in the covariant derivative

of the tetrad:

Dµe
I
ν = ∂µe

I
ν + wIµJe

J
ν − Γρνµe

I
ρ

while eai and: e =
√
|det(E)|. Well, these variables turn out to be canonically conju-

gated. Their canonical commutation relations:

{
Aib(y), Ea

j(x)

}
=

1

2
γδabδ

i
jδ(x− y) (1.16){

Ea
i(x), Eb

j(y)

}
= 0 (1.17){

Aia(x), Ajb(y)

}
= 0 (1.18)

Where γ is the Immirzi parameter. Let’s recall that we assumed 16πG = 1. If we restore

such factor it appears in the numerator of the right-hand side of 1.16.

The hamiltonian formulation of the Holst action in these new variables:

S(A,E,N,Na) =
1

γ

∫
dt

∫
Σ

d3x
[
ȦiaE

a
i − Ai0Gi −NH0 −NaHa

]
where 

Gi = DaE
a
i = ∂aE

a
i + εjilA

j
aE

al

Ha = 1
γ
F j
abE

b
j −

1+γ2

γ
Ki
aGi

H0 =
[
F j
ab − (γ2 + 1)εjmnK

m
a K

n
b

]
· ε

jklEakE
b
l

e
+

(
1+γ2

γ

)
Gi∂a E

a
i

e

with Ki
a = ω0i

a the extrinsic curvature in the triadic form, and F k
ab = 2∂[aA

k
b] + εij

kAiaA
j
b

the curvature tensor in terms of the Ashtekar connection.

We notice that the action has the same form of the usual canonical formulation of the E-H

action, where here A takes the place of q, E of π. Let’s make some further considerations.

As usual N,Na take the role of Lagrange multipliers, while H0,Ha are respectively the

Hamiltonian and Diffeomorphism constraints.

We notice that here we have the extra-constraints Gi, called Gauss constraint: this con-

straint generates gauge transformations for "triadic" indices, in particular transforma-

tions belonging to the SU(2) ∼= SO(3) group (spatial rotations), so a subgroup of the

whole Lorentz-Poincaré.

19



The choice of the variables 2.102 and 1.15, that turned out to be crucial for the loop

quantization, was made initially to write the theory as a Yang-Mills theory, so in terms

of an SU(2) connection and its conjugated variable, an SU(2) vector. It can be proved

in fact that A transforms like an SU(2) connection, while E like an SU(2) vector.

This however is not what we do in the Loop quantization of the theory. Instead of looking

at the quantization of the phase space local variables (A,E), we construct non-local vari-

ables through their smearing along particular hypersurfaces. This by a side avoids having

operators that are distributional, by the other complicates the quantization scheme (in

particular the quantization of the Hamiltonian constraint). Despite this it is the funda-

mental step that produces a quantum theory different from the Wheeler-DeWitt one, and

allows to solve its main issues. This is not true for example if we apply this scheme to

classical Electromagnetism (see [15]).

We have to notice however a crucial difference with respect to other Yang-Mills theories:

if there the constraint surface at the classical level is made only by the Gauss constraint

Gi ≈ 0, here we have in addition the Diffeo. and the Hamiltonian constraint, so a larger

gauge group ([14]). This brings further complications that we’ll face later.

Let’s look now at the algebra generated by the Gauss constraint.

We define the smearing of the Gauss constraint:

G(Λ) =

∫
d3xGi(x)Λi(x),

Where Λi is a generic field with a triadic index. Let’s evaluate the Poisson brakets

between G and E:{∫
d3xΛj(x)Gj(x), Ea

i(x)

}
=

∫
d3xΛj(x){∂bEb

j + εmjnA
m
bE

bn, Ea
i(y)} =

=

∫
d3xΛj(x){∂bEb

j (x), Ea
i(y)}+

∫
d3xΛjεmjn{AmbEbn(x), Ea

i(y)} =

=

∫
d3xΛjεmjn{AmbEbn(x), Ea

i(y)} =

=

∫
d3xΛjεmjn

(
Amb{Ebn(x), Ea

i(y)}+ {Amb, Ea
i(y)}Ebn(x)

)
=

=

∫
d3xΛjεmjn{Amb(x), Ea

i(y)}Ebn(x) =

= γΛj(y)εijnE
an(y)
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Instead:{∫
d3xΛj(x)Gj(x), Aia(y)

}
=

∫
d3xΛj(x)

{
∂bE

b
j + εmjnA

m
b E

bn, Aia
}

=

=

∫
d3xΛj(x)

({
∂bE

b
j , A

i
a

}
+ εmjn

{
Amb E

bn, Aia
})

Let’s evaluate the two terms of the previous expression separately:∫
d3xΛj(x)

{
∂bE

b
j , A

i
a

}
=

∫
d3xΛj(x)∂b

{
Eb
j , A

i
a

}
= −γ

∫
d3xΛj(x)∂bδ

b
aδ
i
jδ(x− y) =

= γ(∂aΛ
i(y))

while:

εmjn

∫
d3xΛj(x)

{
Amb E

bn, Aia
}

= εmjn

∫
d3xΛj(x)Amb

{
Ebn, Aia

}
=

= −γεmjn
∫
d3xΛj(x)Abδ

b
aδ
niδ(x− y) =

= −γεmjnδniΛj(y)Ama(y) = −γεmjiΛj(y)Ama(y)

Let’s finally evaluate the Poisson brakets between G and itself:

{
G(Λ),Gi(y)

}
=
{
G(Λ), ∂aE

a
i(y) + εjikA

j
aE

ak(y)
}

We evaluate also in this case the two terms separately{∫
d3xGp(x)Λp(x), ∂aE

a
i(y)

}
=

∫
d3xΛp(x)

{
∂bE

b
p + εjplA

j
aE

al, ∂cE
c
i

}
=

=

∫
d3xΛp(x)

{
εjplA

j
aE

al, ∂cE
c
i

}
= γδcaδ

j
i

∫
d3xΛp(x)εjpl

∂

∂yc
(δ(x− y))Eal =

= γ

∫
d3xΛp(x)εipl

∂

∂yc
(δ(x− y))Ecl = −γ

∫
d3xΛp(x)εipl

∂

∂xc
(δ(x− y))Ecl =

= γ∂c(Λ
j(y)εijnE

cn)

While the second one

εjik
{
G(Λ), AjaE

ak(y)
}

= εjik

{∫
d3xGp(x)Λp(x), AjaE

ak(y)

}
=

= εjik

∫
d3xΛp(x)

{
Gp(x), AjaE

ak(y)

}
= εjik

∫
d3xΛp(x)

{
∂bE

b
p + εjplA

j
aE

al, AjaE
ak(y)

}
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That after a bit of calculations gives

εjik
{
G(Λ), AjaE

ak(y)
}

= γεjikε
j
mlΛ

lAmaE
ak − γεjikΛlεklnA

j
aE

an + εlik(∂aΛ
l(y))Eak(y)

Summing all together we have

{
G(Λ),Gi(y)

}
= γεilkΛ

l(y)Gk(y)

And finally, if we smear also the second term the Poisson brakets give

{
G(Λ1), G(Λ2)

}
=
γ

2
G([Λ1,Λ2])

We notice that for G ≈ 0 the Poisson braket vanishes. In a similar way can be shown that

G Poisson-commutes with all the other constraints on shell. This means that it is also a

first class constraint, and can be explicitally proved that generates gauge transformations.

In this formulation of Einstein theory we have a phase space of dimension 18 · ∞3 with

the fundamental Poisson brackets:{
Aia(x), Eb

j (y)

}
= δbaδ

i
jγδ

3(x− y)

We can recover the 12 ·∞3 phase space from the 18 ·∞3, firstly by imposing Gi ≈ 0 and

remaining with 15 · ∞3 degrees of freedom, then by fixing the residual gauge freedom.

If we do it we have no more gauge freedom for the symmetry SU(2), and we remain only

with the gauge freedom related with diffeomorphisms (generated by H0 and Ha).

Smearing of the algebra

The next and last step we need to do at the classical level is the smearing of the variables

A, E. We can smear Ea
i on a surface S with normal na:

Ei(S) =

∫
S

naE
a
id

2σ

The quantity Ei(S) is the flux of Ea
i across S. The reason why we considered a 2-D

surface of Σ to smear E comes from its definition: Ea
i = 1

2
εijkε

abcejbe
k
c: even if e′s are

contracted with the Levi-Civita tensor, we can see it as a combination of
(

0
2

)
tensors of

the form ejbe
k
c. By the other side Aia = γω0i

a + 1
2
εijkω

jk
a, so is a

(
0
1

)
tensor and it is

natural to smear it along a 1-D path of Σ. So let’s consider a path γ and an its own
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parametrization

xa(s) : [0, 1]→ Σ

Then, given a connection Aia we can construct a generic element of the algebra of SU(2):

Aa ≡ Aiaτi, where τi are the SU(2) generators, and in the j = 1
2
representation are: i

2
·

(Pauli matrices). Let’s recall in fact that the upper index of A is an adjoint index of

SU(2). Finally we can integrate Aa along the path γ:

Aia →
∫
γ

A ≡
∫ 1

0

dsAia(x(s))
dxa

ds
τi

However this doesn’t complete the smearing of the connection. For reasons that will be

clear later we introduce the holonomy of A along γ:

∞∑
n=0

∫ t

0

ds1

∫ s1

0

ds2..

∫ sn−1

0

dsnA(γ(s1))...A(γ(sn))

That is solution of the following Cauchy problem
d
dt
hγ(t)− hγ(t)A(γ(t)) = 0

hγ(0) = 1

In fact, if we integrate this equation reiteratively:

hγ(t) = 1 +

∫ t

0

A(γ(s1))hγ(s1)ds1 = 1 +

∫ t

0

ds1A(γ(s1))

[
1 +

∫ s1

0

hγ(s2)A(γ(s2)ds2

]
= 1 +

∫ t

0

A(γ(s1))ds1 +

∫ t

0

A(γ(s1))ds1

∫ s1

0

A(γ(s2)ds2

[
1 +

∫ s2

0

A(γ(s3)hγ(s3)ds3

]
...

=
∞∑
n=0

∫ t

0

ds1

∫ s1

0

ds2..

∫ sn−1

0

dsnA(γ(s1))...A(γ(sn))

Let’s fix n in such summation, and analyze the associated term:∫ t

0

ds1

∫ s1

0

ds2..

∫ sn−1

0

dsnA(γ(s1))...A(γ(sn)) (1.19)

We firstly notice that the terms A(γ(s1))...A(γ(sn)) are in this form path ordered, since:

s1 ≥ s2... ≥ sn. This is relevant already at the classical level, since A contains elements

of the algebra of SU(2), and such algebra is not abelian. We also notice that we can

rewrite 1.19 in a more useful way. For simplicity we fix n = 2, then we’ll generalize the
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consideration at arbitrary n. In this case 1.19 is:∫ t

0

ds1A(γ(s1))

∫ s1

0

ds2A(γ(s2)) (1.20)

In 1.20 we see that the integration is made over a triangle in the (s2, s1) plane, since s2

goes from 0 to s1. If we double the area of integration we obtain an integral over a square

of lenght t:∫ t

0

ds1A(γ(s1))

∫ s1

0

ds2A(γ(s2)) +

∫ t

0

ds2

∫ s2

0

ds1A(γ(s1))A(γ(s2)) =

=

∫ t

0

ds1A(γ(s1))

∫ t

0

ds2A(γ(s2))

Where in the second integral of the first line we have to keep attention and preserve the

order of the connections, since they don’t commute. Now we apply to both members the

path ordering operator

P
[ ∫ t

0

ds1A(γ(s1))

∫ s1

0

ds2A(γ(s2)) +

∫ t

0

ds2

∫ s2

0

ds1A(γ(s1))A(γ(s2))

]
=

=2

∫ t

0

ds1A(γ(s1))

∫ s1

0

ds2A(γ(s2)) =

∫ t

0

ds1

∫ t

0

ds2P [A(γ(s1))A(γ(s2))]

Thus ∫ t

0

ds1A(γ(s1))

∫ s1

0

ds2A(γ(s2)) =
1

2

∫ t

0

ds1

∫ t

0

ds2P [A(γ(s1))A(γ(s2))]

This result can be generalized for arbitrary n:∫ t

0

ds1

∫ s1

0

ds2..

∫ sn−1

0

dsnA(γ(s1))...A(γ(sn)) =
1

n!

∫ t

0

...

∫ t

0

P [A(γ(s1))...A(γ(sn))]ds1...dsn

So:

hγ(t) =
+∞∑
n=0

1

n!

∫∫∫
�
P [A(γ(s1))...A(γ(sn))]ds1...dsn

≡ P · exp
(∫ t

0

A(γ(s))ds

)
= P · exp

(∫
γ

A

)
where in our case:

A(γ(s)) = Aia(x)
dxa

ds
τi
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P stays for the usual path ordered product. Let’s look now at some important properties of

the holonomy (also called Path ordered exponential), that are the reason why we smeared

in this way the connection:

1. Given hγ, hδ the holonomies of two paths, the product hγ · hδ is the holonomy of

the composition of the paths:

hγ · hδ = hγ+δ = Pe
( ∫

γ+δ A
)

2. Under a local gauge transformation g ∈ SU(2) the holonomy transforms as:

hgγ = gs(γ)hγg
−1
t(γ)

Where s(γ) and t(γ) are respectively the initial and final points of γ, also called

source and target. This property tells us that an SU(2) transformation acts only

on the initial and final point of γ.

3. Under the action of a generic spatial diffeomorphism the holonomy transforms as:

hγ(φA) = hφ◦γ(A)

4. The functional derivative of h with respect to the connection A gives:

δhγ(A)

δAia(x)
=


∫
ds1

2
ẋaδ(3)(γ(s), x)τihγ if x is the source of γ∫

ds1
2
ẋaδ(3)(γ(s), x)hγτi if x is the target of γ∫

dsẋaδ(3)(γ(s), x)hγ(0, s)τihγ(s, 1) if x is inside γ

(1.21)

Where we have to pay attention of the fact that τihγ 6= hγτi since hγ is an element of

SU(2) and the generators do not commute.

With the definition of the holonomy we completed the smearing of the variables A, E.

The resulting smeared Algebra is calledHolonomy-flux Algebra, and as we said earlier

its introduction is the fundamental break from the old Wheeler-DeWitt theory. The

quantization of such phase space is called Loop quantization since initially the holonomies

have been thought as integrals along loops, not generic curves γ.
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1.2 Quantization of the theory

Before applying the Dirac quantization program to our classical theory, let’s make a brief

recap about this procedure.

To quantize a constrained system there are two main approaches: the so called reduced phase space

approach and the Dirac approach.

The first approach requires the following steps: constraining the system, constructing

Dirac observables, which are quantities that commute with all the first class constraints:

{O,C} ≈ 0, and then quantize such observables making act them on a suitable Hilbert

space. This procedure is in general quite involved, and we won’t follow it. By the other

side the Dirac approach starts from quantizing the theory without constraints, and then

imposing constraints at the quantum level to the Kinematical Hilbert space.

Let’s give a picture of these two different approaches:

Let’s describe the Dirac program step by step:

1. Find a representation of the phase space variables of the theory as operators act-

ing on the kinematical Hilbert space Hkin, and promoting the Poisson brackets to

commutators:

{ . , . } → − i
~

[ . , . ]

2. Promote the classical constraints of the system to self-adjoint operators acting on

Hkin.
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3. Characterize the space of solutions of the quantum constraints by defining the

corresponding inner product, that gives a notion of physical probability. This allows

to construct the Physical Hilbert space of the theory, that is the quantum analog of

the classical constraint surface.

The states belonging to this space satisfy: Ĉi |ψphys〉 = 0

4. Find a complete set of observables that commute with all the constraints:

Ô | [Ô, Ĉi] = 0

Well, this procedure is completely general and holds for any constrained system. So let’s

apply to our theory.

We start by defining the representation given by the connection A, so that a generic state

of the Kinematical Hilbert space can be written as a wave functional depending on A:

ψ[A] = 〈A|ψ〉

Then we promote the phase space variables E, A to quantum operators; in such repre-

sentation we have

Âiaψ[A] = Aiaψ[A] (1.22)

Êa
i ψ[A] = −i~γ δ

δAia
ψ[A] (1.23)

We notice that such operators, as well as q̂ab and π̂cd are distributional operators. After-

wards we promote the classical Poisson brakets to commutators:

[Âia, Ê
b
j ] = i~γδbaδijδ3(x− y) (1.24)

The next step is construct a well-defined inner product for the Kinematical Hilbert space

of such wave functionals. Here we meet the first difficulty, since the inner product requires

the definition of a measure in the space of connections. In other gauge theories we have

a fixed background metric to define the integration measure, while here the metric is a

dynamical quantity, so we cannot follow the usual QFT procedure.

In order to reach this goal we need to come back to the classical theory and smear

the canonical variables E and A. This by a side allows to work with operators at the

quantum level that are not distributional, and by the other allow to write a well-defined
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inner product for the Kinematical Hilbert space. To reach the goal we need to introduce

the notion of cylindrical functions.

1.2.1 The Kinematical Hilbert space

A cylindrical function is a functional of a field that depends only on some subset of

degrees of freedom of the field itself. The holonomies we introduced to smear the variable

A:

hγ[A] = Pexp
(∫

γ

A

)
are examples of cylindrical functions of A. We notice in fact that in the holonomy we

don’t consider all the degrees of freedom of the field A, but only the ones that regard the

chosen path γ.

In order to construct more complicated cylindrical functions of the theory we introduce

the definition of graphs.

Definition: we define a graph Γ as a collection of oriented paths e ∈ Σ.

We call such paths links of the graph, while the intersections between them nodes.

We can generalize now the previous example of cylindrical function:

a generic cylindrical function is a couple (Γ, f) of a graph Γ with L links and a smooth

function

f : SU(2)L −→ C

with f given by a functional of the connection defined as

〈A|Γ, f〉 = Ψ(Γ,f)[A] = f(he1 [A], ..., heL [A]) ∈ CylΓ

In other words the state |Γ, f〉 written in the basis of the connections is a functional f

depending on variables that are holonomies evaluated on the different paths that compose

the graph Γ. In this generic case the cylindrical function captures only the degrees of

freedom of A along the links of the graph; ei, i = 1, ..., L are the links of the graph Γ.
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Remark: f takes values in SU(2)L since he1 , ..., heL are elements of SU(2).

In this way we built an abstract space of functionals (Γ, f) that can be turned into an

Hilbert space if we equip it with a scalar product.

The previous switch from the connection A to the holonomy:

hγ = P · exp
(∫

γ

A

)

is fundamental at this stage since the holonomy is an element of SU(2) and the integra-

tion over SU(2) is well defined [21]; moreover there is a unique gauge-invariant measure

(normalized) dh, called Haar measure for such space.

So we can define the scalar product:

〈Ψ(Γ,f)|Ψ′(Γ,f ′)〉 =

∫ ∏
e

dhef(he1 [A], ..., heL [A]) · f ′(he1 [A]...heL [A]) (1.25)

where in principle f, f ′ are different functionals.

In this way, at fixed Γ, we send:

CylΓ → HΓ

Then we define the Hilbert space of all cylindrical functions for all graphs as the direct

sum of Hilbert spaces on given graphs:

HKin = ⊕HΓ

The scalar product on HKin follows from 1.25: if Ψ,Ψ′ share the same Γ, we have 1.25,

while if they regard different Γ, i.e.

〈Ψ(Γ1,f)|Ψ′(Γ2,f ′)〉

we consider a graph: Γ3 ≡ Γ1 ∪ Γ2 and we extend f1, and f2 trivially on Γ3 and define:

〈Ψ(Γ1,f1)|Ψ(Γ2,f2)〉 ≡ 〈Ψ(Γ1∪Γ2,f1)|Ψ(Γ1∪Γ2,f2)〉

Well, a key result due to Ashtekar and Lewandowski is that the Hilbert space

HKin = ⊕HΓ

29



can be seen as an Hilbert space of gauge connections A:

HKin = L2[A, dµAL]

where the measure dµAL is made over the space of connections, and not of holonomies.

This means that we can see the scalar product 1.25 as

〈Ψ(Γ1,f1)|Ψ(Γ2,f2)〉 =

∫
dµALΨ(Γ1,f1)[A]Ψ(Γ2,f2)[A]

In this way we have an Hilbert space with a well-defined measure over the space of

connections that doesn’t require a background metric.

We completed the first step for quantization.

What we have to do now is promoting the holonomy-flux algebra to the quantum version.

In order to do this is convenient to introduce an orthogonal basis on HKin; this can be

done using the Peter-Weyl theorem. Before doing this let’s recall the notion of Wigner

matrices of SU(2): given an element g ∈ SU(2) the Wigner matrix Dj(g) represents the

action of g ∈ SU(2) on the {|j, n〉} basis, which is the basis of common eigenstates of the

operators Ĵz (generators of SU(2)), and Ĵ2 (the sum of squared generators), written in

the 〈j,m| representation. So:

Dj
m,n(g) ≡ 〈j,m| g |j, n〉

Well, the Peter-Weyl theorem states that given the Hilbert space:

L2(SU(2), dµHaar)

of functions of SU(2), any of these functions (that in our case are the holonomies) can

be written as a combination of D’s:

f(g) =
∑
j∈N

2

j∑
m=−j

j∑
n=−j

f jmnD
(j)
mn(g)

with

j = 0,
1

2
, 1,

3

2
, ... m, n = −j, ..., j

where D(j)
mn are elements of the group written in the representation j of SU(2).

This means that {Dj
mn} is a complete basis for the space on which f(g) lives : L2(G, dµHaar).
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f jmn ∈ C are the weights of the combination.

We can apply this consideration directly to HΓ. In particular, if

f(g) =
∑
j∈N

2

j∑
m=−j

j∑
n=−j

f jmnD
(j)
mn(g)

then

〈A|Γ, f〉 =
∑
j1

∑
j2

∑
j3

...
∑
jL

∑
m1

∑
m2

...
∑
mL

∑
n1

...
∑
nL

·D(j1)
m1n1

f j1m1n1
...D(jL)

mLnL
f jLmLnL

and the basis elements:

〈A|Γ; jl,ml, nl〉 ≡ D(j1)
m1n1

(he1)...D
(jL)
mLnL

(heL)

Where l = 1, 2, ...L. This is a generic state of an orthonormal basis of our Hilbert space

in the representation of A. Clearly L depends on the number of edges in Γ.

For the moment we are working with theHaar measure, which means that our functionals

are thought in the space of holonomies, not in the space of A; we’ll see later how to write

them in such space.

Using this basis for HΓ, we can construct easily quantum field operators associated with

the phase space variables. In particular, if we consider:

Ψ(Γ,f)[A] = D
1
2
m,n(he)

which means

f = f(he(A)), f : SU(2)→ C

so that Γ is made only of a link, and that we consider f as one of the basis elements

{D(j)
mn} which span L2(SU(2), dµHaar):

f = D
1
2 (he) ≡ he

In this case if we promote the holonomy to an operator:

(ĥγ)mn(he)pq = (hγ)mn(he)pq (1.26)

with m,n, p, q =1
2
,−1

2
and
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(ĥγ)mn =
̂(

Pexp

(∫
γ

A

))
mn

with A = Aia(x)τi

If instead we look at the action of Ê on the holonomy:

Êi(S)hγ[A] = −i~γ
∫
S

d2σna
δhγ[A]

δAia(x(σ))
(1.27)

where we used:

Êi =

∫
S

d2σnaÊ
a
i
.
=

∫
S

d2σna

(
− i~γ δ

δAia

)
Let evaluate 1.27 explicitally. First of all we have to distinguish between different cases:

• γ ∩ S=P , with P a point of the manifold Σ inner to γ.

• γ ∩ S= ∅.

• γ ∩ S=P , with P a point of the manifold Σ that is the source or the target of γ.

We consider here the first case, so we assume that such P exists and lies inside γ. Using

the third relation of 1.21

Êihγ[A] = −i~γ
∫
S

d2σna

∫ 1

0

ds ẋaδ(3)(xb(s)− yb(σ))hγ1τihγ2

Where γ is divided in γ1 and γ2 in P . We also used the following

δhγ[A]

δAia(~y(σ1, σ2))
=

δhγ[A]

δAia(~x(s))

δAia(~x(s))

δAia(~y(σ))
=

δhγ[A]

δAia(~x(s))
δ3(xb(s)− yb(σ))

We have

= −i~γ
∫
S

d2σna

∫ 1

0

ds ẋaδ(3)(xb(s)− yb(σ))hγ(s = 0, s = P )τihγ(s = P, s = 1) =

= −i~γ hγ(0, P )τihγ(P, 1)

∫
S

d2σna

∫ 1

0

ds ẋaδ(3)(xb(s)− yb(σ))

Let’s so evaluate the integral:∫
S

d2σna

∫ 1

0

ds ẋaδ(3)(xb(s)− yb(σ)) =

∫
S

d2σ

∫ 1

0

ds εabc
∂yb

∂σ1

∂yc

∂σ2

dxa

ds
δ(3)(xd(s)− yd(σ))

From the definition of the normal to a surface, and the scalar product between two

vectors.

Now we have to distinguish between three different cases:
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1. if the curve γ is tangent to the surface in P , then

εabc
∂yb

∂σ1

∂yc

∂σ2

dxa

ds

∣∣∣∣
~x,~y=P

= 0

Since in the tangent space of P the vector field ∂xa

∂s
will be a linear combination of

∂yb

∂σ1
and ∂yc

∂σ2
. This gives a whole 0 result cause the Dirac delta.

2. If the curve γ intersects the surface in a non tangent way we have the only non trivial

result: Now, assuming for clarity a coordinate system adapted to the surface S and

to the curve γ, in such system we have: xd(s) = (s, 0, 0) and yd(σ) = (0, σ1, σ2) We

have: ∫
S

d2σ

∫ 1

0

ds εabc
∂yb

∂σ1

∂yc

∂σ2

dxa

ds
δ(s)δ(σ1)δ(σ2) =

=

∫
S

d2σ εabc
∂yb

∂σ1

∂yc

∂σ2

dxa(s)

ds

∣∣∣∣
s=0

δ(σ1)δ(σ2) =

= ±
∫
S

d2σ εabcu
a
1u

b
2u

c
3 δ(σ1)δ(σ2) = ±

∫
S

d2σ ε123 δ(σ1)δ(σ2)

= ±
∫
S

d2σδ(σ1)δ(σ2) = ±1

Where we called

ua1 =


1

0

0

 , ub2 =


0

1

0

 , uc3 =


0

0

1


And the sign is fixed by the relative orientation between na and ẋa.

So in the end we have:

Êi(S)hγ = −iγ~ hγ(0, s)τihγ(s, 1) = −iγ~ hγ1τihγ2 (1.28)
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Where clearly s is the parameter of γ for which the curve meets the surface S.

With the previous result in hand, let’s consider now the action of the scalar product of

two fluxes acting inside γ:

Êi(S)Êi(S)hγ(A) = −~2γ2hγ1(A)τ iτihγ2(A)

We notice that on the right-hand side we have the 2° Casimir of the SU(2) group: τ iτi =

C2. Moreover here we are dealing with the fundamental representation of the group,

which means:

τi = 〈1
2
,m| τi |

1

2
, n〉 ≡ i

2
σi

So for this representation: C2 = −3
4
1mn. This means that it commutes with all the

elements of the group, so

Êi(S)Êi(S)hγ(A) = −~2γ2C2hγ(A) = ~2γ2 3

4
hγ(A) (1.29)

By the other side, if we have that the two fluxes act on an end point of γ, for example

the target we have:

Êi(S)Êj(S)hγ(A) = −~2γ2hγ(A)τiτj

From this result we notice that two flux operators do not commute:

[Êi(S), Êj(S)]hγ(A) = −~2γ2hγ(A)[τi, τj] = −~2γ2hγ(A)εij
khγ(A)τk

The result 1.29 can be trivially extended to a generic basis element Dj(h): in this case

we don’t have Pauli matrices, but higher dimensional unitary matrices, that we call Ji.

The Casimir operator for such representation is : C2
j = −j(j + 1)12j+1, and:

Êi(S)Êj(S)Dj(hγ(A)) = ~2γ2j(j + 1)Dj(hγ(A)) (1.30)

We can extend the action of Êi(S)Êj(S) on a generic state of our Hilbert space HKin.

Well, in this section we recovered a well-defined Hilbert space HKin for the theory, we

defined a scalar product and a representation of the quantum version of the Algebra. Now

we can proceed with the second step of the Dirac quantization program, i.e. promoting

the classical constraint to quantum operators and find a basis of solutions for the relative

quantum equations.
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1.2.2 The Gauss constraint and the Spin Network States

In order to find the physical states of the theory belonging to HPhys we need to impose all

the constraints at the quantum level. We start with the Gauss constraint, the solutions

of which are states invariant under a local SU(2) transformation. They define the Hilbert

space H0
Kin.

We recall that a property of the holonomies is:

hγ −→ h′γ = ÛGhγ = gs(γ)hγg
−1
t(γ) (1.31)

Similarly, if we write hγ in the representation j:

D(j)(hγ) −→ D(j)(h′γ) = D(j)(gs(γ)hγg
−1
t(γ)) = D(j)(gs(γ))D

(j)(hγ)D
j(g−1

t(γ)) (1.32)

Let’s prove the last equality:

[
D(j)(gs(γ)hγg

−1
t(γ))

]
mn

= 〈j,m|
(
gs(γ)hγg

−1
t(γ)

)
|j, n〉 =

= 〈j,m| gs(γ)

∑
j′

∑
p

|j′, p〉 〈j′, p|hγ
∑
j′′

∑
q

|j′′, q〉 〈j′′, q| g−1
t(γ) |j, n〉

Now, the summation over j′, j′′ has to give respectively δjj′ , δjj′′ ; in fact:

gs(γ) |j′, p〉 =
∑
k

ak |j′, k〉

Because a generic element of SU(2) acts as rotation and cannot change the total spin of

the state, and: 〈j,m|j′, k〉 = 0 for j′ 6= j.

So we have;

= 〈j,m| gs(γ)

∑
p

|j, p〉 〈j, p|hγ
∑
q

|j, q〉 〈j, q| g−1
t(γ) |j, n〉 =

=
∑
p

∑
q

〈j,m| gs(γ) |j, p〉 〈j, p|hγ |j, q〉 〈j, q| g−1
t(γ) |j, n〉 =

=
[
D(j)(gs(γ))D

(j)(hγ)D
j(g−1

t(γ))
]
mn

From 1.31 we see that a gauge SU(2) transformation acts only on the source and the

target of the link γ, ∀ γ ∈ Γ. This means that it acts only on the nodes of the graph and

that the gauge invariance of a state described by f(h1, .., hL) is the gauge invariance of f

at the nodes.
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We have that ψ ∈ H0
Kin, so is solution of the Gauss constraint iff:

f0(h1, .., hL) = f0(gs1h1g
−1
t1
, ..., gsLhLg

−1
tL

)

This condition can be implemented through the Group averaging technique: given f ∈
CylΓ, and Γ a graph with N nodes and L links, a gauge invariant state has the following

form

f0(h1, ...hL) =

∫ N∏
n=1

dgn f(gs1h1g
−1
t1
, ..., gsLhLg

−1
tL

) (1.33)

The previous statement can be easily proved:

f0(g̃s1h1g̃
−1
s1
, ...g̃sLhLg̃

−1
sL

) =

∫ ∏
n

dgn f(gs1 g̃s1h1g̃
−1
t1
g−1
t1
, ..., gsL g̃sLhLg̃

−1
tL
g−1
tL

)

Let’s call ḡ = g g̃, then ḡ−1 = (g g̃)−1 = g̃−1g−1. We have:

f0(g̃s1h1g̃
−1
s1
, ...g̃sLhLg̃

−1
sL

) =

∫ ∏
n

dgn f(ḡs1h1ḡ
−1
t1
, ..., ḡsLhLḡ

−1
tL

)

Now, since the integral is made over the whole group SU(2), we have
∫
dg =

∫
dḡ. This

means

f0(g̃s1h1g̃
−1
s1
, ...g̃sLhLg̃

−1
sL

) =

∫ ∏
n

dḡn f(ḡs1h1ḡ
−1
t1
, ..., ḡsLhLḡ

−1
tL

) = f0(h1, ...hL)

Let’s consider an example, the θ-graph:
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A generic cylindrical function for such graph:

ψ(Γ,f)[A] =
∑

jl,ml,nl

f j1,j2,j3m1,m2,m3,n1,n2,n3
Dj1
m1n1

(hγ1)D
j2
m2n2

(hγ2)D
j3
m3n3

(hγ3)

Well, in order to make it satisfying the Gauss constraint we have to impose gauge invari-

ance. The gauge transformations don’t act on the weights of the combination, that are

scalars for such transformations, so:

ψinv. =
∑

jl,ml,nl

f j1,j2,j3m1,m2,m3,n1,n2,n3

[
Dj1
m1n1

(hγ1)D
j2
m2n2

(hγ2)D
j3
m3n3

(hγ3)
]
inv.

(1.34)

Using 1.33 we have

[
Dj1
m1n1

(hγ1)D
j2
m2n2

(hγ2)D
j3
m3n3

(hγ3)
]
inv.

=

=

∫
dg1dg2D

j1
m1n1

(g1hγ1g
−1
2 )Dj2

m2n2
(g1hγ2g

−1
2 )Dj3

m3n3
(g1hγ3g

−1
2 )

where we have only two integrals since only two nodes. We can rewrite this expression

= Pm1m2m3α1α2α3Pβ1β2β3n1n2n3D
j1
α1β1

(hγ1)D
j2
α2β2

(hγ2)D
j3
α3β3

(hγ3) (1.35)

Where all the indices are summed over. We define

Pm1m2m3α1α2α3 ≡
∫
dg1D

(j1)
m1α1

(g1)D(j2)
m2α2

(g1)D(j3)
m3α3

(g1)

Pβ1β2β3n1n2n3 ≡
∫
dg2D

(j1)
β1n1

(g−1
2 )D

(j2)
β2n2

(g−1
2 )D

(j3)
β3n3

(g−1
2 )

Where we notice that∫
dg2D

(j1)
β1n1

(g−1
2 )D

(j2)
β2n2

(g−1
2 )D

(j3)
β3n3

(g−1
2 ) =

∫
dg2D

(j1)
β1n1

(g2)D
(j2)
β2n2

(g2)D
(j3)
β3n3

(g2)

Since the integral is made over the whole group SU(2).

P ’s are projectors from HKin −→ H0
Kin.
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Let’s analyze in detail the equation 1.35:

Pm1m2m3α1α2α3D
j1
α1β1

(hγ1)D
j2
α2β2

(hγ2)D
j3
α3β3

(hγ3) =

=
∑

α1,α2,α3

∫
dg1 〈j1,m1| g1 |j1, α1〉 〈j2,m2| g1 |j2, α2〉 〈j3,m3| g1 |j3α3〉 〈j1, α1|hγ1 |j1, β1〉 ·

· 〈j2, α2|hγ2 |j2, β2〉 〈j3, α3|hγ3 |j3, β3〉 =

=

∫
dg1 〈j1,m1| g1

∑
α1

|j1, α1〉 〈j2,m2| g1

∑
α2

|j2, α2〉 〈j3,m3| g1

∑
α3

|j3α3〉 〈j1, α1|hγ1 |j1, β1〉 ·

· 〈j2, α2|hγ2 |j2, β2〉 〈j3, α3|hγ3 |j3, β3〉 =∫
dg1 〈j1,m1| g1

∑
α1

|j1, α1〉 〈j1, α1|hγ1 |j1, β1〉 〈j2,m2| g1

∑
α2

|j2, α2〉 〈j2, α2|hγ2 |j2, β2〉 ·

· 〈j3,m3| g1

∑
α3

|j3α3〉 〈j3, α3|hγ3 |j3, β3〉

Now, removing the three identities:

=

∫
dg1 〈j1,m1| g1(hγ1 |j1, β1〉) 〈j2,m2| g1(hγ2 |j2, β2〉) 〈j3,m3| g1(hγ3 |j3, β3〉)

Well, we can interpret the previous expression in the following way: the projector P

acting on the state

hγ1 |j1, β1〉 ⊗ hγ2 |j2, β2〉 ⊗ hγ3 |j3, β3〉 (1.36)

that belongs to the space:

V =
3⊗
l=1

V (jl)

produces a state belonging to the subspace of V made of gauge invariant states, called

the Singlet space V 0. Clearly a state of such space V 0 will be of kind 1.36, with the

adding property of gauge invariance. The states belonging to V 0 are called Intertwiners.

Well, if we consider a basis of intertwiners, let’s say {|iα〉}α=1,..Dim(V 0), appears clear that

we can write P in the following way:

P =

Dim(V 0)∑
α=1

|iα〉 〈iα|

In the case of the θ-graph, V is the tensor product of three spaces V (jl) (l = 1, 2, 3), and

it can be proved that in this case we have only an intertwiner |i〉.
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The intertwiner of the θ-graph is linked to the so called Wigner’s 3j-m symbols:

〈j1,m1; j2,m2; j3,m3|i〉 =

 j1 j2 j3

m1 m2 m3


That is a complex number at fixed ji, mi. Its explicit expression

〈j1,m1; j2,m2; j3,m3|i〉 =

 j1 j2 j3

m1 m2 m3

 =
(−1)j1−j2−j3√

2j3 + 1
Cj3,−m3

j1m1j2m2
(1.37)

Where C are the Clebsh-Gordon coefficients and are non vanishing if and only if |j2−j3| ≤
j1 ≤ j2 + j3. This means that if the spins of the graph don’t satisfy this relation, there

is no invariant state under the action of SU(2).

Well, using this notation we can rewrite 1.35:

[
Dj1
m1n1

(hγ1)D
j2
m2n2

(hγ2)D
j3
m3n3

(hγ3)
]
inv.

=

 j1 j2 j3

m1 m2 m3

j1 j2 j3

α1 α2 α3

∗j1 j2 j3

β1 β2 β3

j1 j2 j3

n1 n2 n3

∗Dj1
α1β1

(hγ1)D
j2
α2β2

(hγ2)D
j3
α3β3

(hγ3)

Since

Pm1m2m3α1α2α3 = 〈j1,m1; j2,m2; j3,m3|i〉 〈i|j1, α1; j2, α2; j3, α3〉 =

=

 j1 j2 j3

m1 m2 m3

j1 j2 j3

α1 α2 α3

∗
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Where ∗ stays here for complex conjugation.

Let’s rewrite the gauge invariant state in a more useful way:

[
Dj1
m1n1

(hγ1)D
j2
m2n2

(hγ2)D
j3
m3n3

(hγ3)
]
inv.

=

=

 j1 j2 j3

m1 m2 m3

j1 j2 j3

n1 n2 n3

∗ ∑
α1,α2,α3

∑
β1,β2,β3

Dj1
α1β1

(hγ1)D
j2
α2β2

(hγ2)D
j3
α3β3

(hγ3) 〈i|α1, α2, α3〉 ·

· 〈β1, β2, β3|i〉 =

 j1 j2 j3

m1 m2 m3

j1 j2 j3

n1 n2 n3

∗ i∗( 3∏
l=1

Djl(hγl)

)
i

Where in the last term the contractions of indices αl and βl are implicit. Finally:

[
Dj1
m1n1

(hγ1)D
j2
m2n2

(hγ2)D
j3
m3n3

(hγ3)
]
inv.

=

 j1 j2 j3

m1 m2 m3

j1 j2 j3

n1 n2 n3

∗( 3∏
l=1

Djl(hγl)

)∏
n

in

Where n as before is the number of nodes, that in our case are two, and in are the

associated intertwiners.

Remark : if in this case we have two nodes and only an intertwiner for each of them,

for a generic graph we can have more than 1 possible intertwiner for each node, and the

state will depend also on what intertwiner we choose for each node. Thus in are quantum

numbers for our state.

Let’s write now the generic ψinv for such graph: recalling 1.39 we have

ψinv. =
∑

jl,ml,nl

f j1,j2,j3m1,m2,m3,n1,n2,n3

 j1 j2 j3

m1 m2 m3

j1 j2 j3

n1 n2 n3

∗( 3∏
l=1

Djl(hγl)

)∏
n

in

=
∑
jl

f̃ j1,j2,j3
( 3∏

l=1

Djl(hγl)

)∏
n

in

Where we defined

f̃ j1,j2,j3 ≡
∑
ml,nl

f j1,j2,j3m1,m2,m3,n1,n2,n3

 j1 j2 j3

m1 m2 m3

j1 j2 j3

n1 n2 n3

∗
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Well, we call

ψinv. =
∑
jl

f̃ j1,j2,j3
( 3∏

l=1

Djl(hγl)

)∏
n

in (1.38)

a Spin Network State.

As we can see from its generic expression it is a gauge invariant state defined on a graph,

with basis elements depending on jl, in. This means in particular that:

ψ(Γ,jl,in) =
3∏
l=1

Djl(hγl)
∏
n

in 6=
3∏
l=1

Djl(hγl)
∏
n

ĩn

If ĩn 6= in for some n. It is also clear that in the particular case of the θ-graph these

basis element don’t depend on in, since such graphs as we said previously admits only an

intertwiner for each node.

What we found for the θ-graph can be extended to whatever kind of graph, with calcula-

tions that are naturally more involved for larger graphs. In particular for each graph we

can construct the associated Hilbert space H0
Γ, and:

H0
Kin =

⊕
Γ⊂Σ

H0
Γ

In order to conclude this section we want to prove that a Spin network state satisfies:

Ĝi |ψ〉 = 0

Let’s prove it in the simple case of a node with only one link. The result can be imme-

diately generalized to all the possible nodes.

We consider an infinitesimal cubic surface that contains the node, and we suppose that

one of the sides of such surface intersects the link in an inner point infinitesimally close

to the source of the link itself. We take a gauge invariant state ψ defined on a graph that

contains such node. So

Ê(S)ψ = αiÊiψ = αiÊi

∫
dg1dg2D

j1
m1n1

(g1hγg
−1
2 )

Where here we consider the only part of ψ that gives a non vainishing result, i.e. the

matrix element of the holonomy of the link γ (the other links don’t intersect the surface,

so the action of Ê gives 0 acting on them). Using 1.28 in the limit in which hγ1 → 1, i.e.
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the surface intersects the link arbritrarily near its source:

Ê(S)ψ = −i~γ
∫
dg1dg2D

(j1)
m1n1

(
g1τiα

ihγg
−1
2

)
So:

ψ − αiÊiψ =

∫
dg1dg2

[
Dj1
m1n1

(
i~γg1τiα

ihγg
−1
2

)
+Dj1

m1n1

(
g1hγg

−1
2

)]
=

=

∫
dg1dg2D

j1
m1n1

[
g1

(
1 + i~γτiαi

)
hγg

−1
2

]
=

∫
dg1dg2D

j1
m1n1

[
g̃1hγg

−1
2

]
= ψ

Thus: αiÊiψ = 0.

But since: Êi =
∫
dσnaÊ

a
i , and the only non-vanishing contribution to the integral is

given by the infinitesimal part of the squared surface that intersects the link,

Êiψ = 0 ⇐⇒ Êa
iψ = 0

And since Ĝi = D̂aÊ
a
i , then:

Ĝiψ = 0

This result can be generalized to spin-network states with arbitrarily complicate graphs:

Êi vanishes at the nodes of the graph since the contributions from each link are summed

up and the total result is zero.

This concludes our analysis of the gauge invariant Hilbert space of the theory.

At this stage of the construction of the theory, before proceeding with the quantization

of the other constraints we can introduce two important quantum operators, constructed

from their classical counterparts: the Area operator and the Volume operator.

1.2.3 The Area Operator

The simplest geometric operator we can build is the Area Operator.

At the classical level, given a surface S ⊂ Σt, the area of the surface can be given in

terms of its normal and the densitized triad Ea
i:

A(S) =

∫
S

dσ1dσ2

√
Ea

iEbinanb (1.39)
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Let’s prove it. The area of S:

A(S) =

∫
S

dσ1dσ2

√
−det

(
gab

∂xa

∂σα
∂xb

∂σβ

)
(1.40)

Where g′αβ = gab
∂xa

∂σα
∂xb

∂σβ
with α, β = 1, 2 is the induced metric on S. Thus:

−det
(
gab

∂xa

∂σα
∂xb

∂σβ

)
= −gabgcd[∂1x

a∂1x
b∂2x

c∂2x
d − ∂1x

a∂2x
b∂1x

c∂2x
d] =

= −gabgcd2∂1x
a∂1x

[b∂2x
c]∂2x

d = −2ga[bgc]d∂1x
a∂1x

b∂2x
c∂2x

d

Now we use the following identities:

ga[bgc]d = 1
2
εaceεbdf · g · gef

ne = εeab
∂xa

∂σ1
∂xb

∂σ2

=⇒ −det
(
gab

∂xa

∂σα
∂xb

∂σβ

)
= −εaceεbdfggef∂1x

a∂1x
b∂2x

c∂2x
d = −nenf · ggef =

= nenfe
2eeie

if

obtained recalling that:

g = −e2, gef = eeie
fi

Plugging this result in 1.40, we obtain:

A(S) =

∫
S

dσ1dσ2

√
e2eeiefinenf =

∫
S

dσ1dσ2

√
Ee

iEfinenf (1.41)

Well, from 1.39 we notice that if we promote E to a quantum operator we should obtain

automatically what we need. But let’s proceed with caution: at the quantum level we

know that E acts in our representation 〈A| as a functional derivative. By the other side

we saw how EiEi acts on D if we consider only an intersecting link (1.30).

If instead of acting on an holonomy the operator ÊÊ acts on a generic state:

f = D(j1)(he1)D
(j2)(he2)...D

(jL)(heL)

where each link intersects the surface in some point (fig. 1.1), in order to give the right

result we need a regularization. Thus we decompose S in a number N of 2-dimensional
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Figure 1.1

Figure 1.2

cells ( fig. 1.2) and we can write:

A(S) = lim
N→+∞

AN(S) (1.42)

where

AN(S) =
N∑
I=1

√
Ei(SI)Ei(SI) (1.43)

with Ei(SI) =
∫
SI
naE

a
i d

2σ, SI infinitesimal. The proof of 1.42 is simple:

In the limit of infinitesimal cells SI (N →∞),

AN(S) =
N∑
I=1

√
Ei(SI)Ei(SI) ∼

N∑
I=1

√
Ea
i n

I
aSIE

binIbSI =
N∑
I=1

SI

√
Ea
i n

I
aE

binIb =

=

∫
S

dσ1dσ2

√
Ea
i E

binanb
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So we define the area operator as

Â(S) = lim
N→∞

ÂN(S)

where inside 1.43 we promote : Ea
i → Êa

i.

This operator acts on a generic Spin network state 〈A|Γ; jl,ml, nl〉.
Remark : since N → ∞, we have that each infinitesimal area SI is punctured at most

by one link. Once we reach N for which this condition is satisfied, a further refinement

gives no consequences on the spectrum of the operator.

Let’s consider for simplicity the action of such operator on 〈A|Γ; j1,m1, n1〉 = Dj1
m1n1

(he1),

which means that we consider our graph Γ as composed by only one link. Well, since

we have only one link intersecting the surface S, we expect that there will be only an

infinitesimal element of the partition of S that is punctured by the link. This means that

in the summation in 1.43 (once promoted to a sum of operators) there is only a term that

acting on the state gives a non 0 contribution. According with 1.1 we have

Â(S)he[A] = ~γ
√
j(j + 1)he[A] (1.44)

The previous relation tells us that the spectrum of the Area operator of the quantum

theory is discrete. In particular for a state with many links the eigenvalue of the Area

depends on how many links of the graph that defines the state intersects the area, and

on which representation of SU(2)M our state is written (M here is the number of links

intersecting the surface). We also notice that the minimum of the spectrum is given by

a state with only one intersecting link and the associated Wigner matrix with j = 1
2
;

moreover its value is proportional to the square of the Planck lenght (we assumed c =

16πG = 1). In the case in which the graph intersects the surface in some node, there is

a more general expression for the eigenvalues.

Let’s construct now another fundamental geometric operator.

1.2.4 The Volume Operator

Following the same reasoning we used for the Area operator we can construct theVolume Operator.

Given a region R ⊂ Σ, classically we define its volume as:

V (R) =

∫
R

d3x
√
h =

∫
R

d3x

√∣∣∣∣ 1

3!
εabcεijkEa

iEb
jEc

k

∣∣∣∣
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Where the last equality can be easily proved.

At the quantum level two different well-defined volume operators have been proposed,

respectively by Rovelli-Smolin and Ashtekar-Lewandowski. In this work we introduce

only the first one, since for our purposes is not relevant to describe both of them.

As well as we did for the area operator, given the volume R we replace the integral over

it with the limit of a Riemannian sum of cubic cells CI , so that R = ∪ICI . As before

we’ll have ∫
R

d3x ∼
∑
I

V olume(CI)

This partition allows us to write the volume of a cell in terms of fluxes. Let’s consider

for this purpose the following:

WI ≡
1

48

∫
∂CI

d2σ1

∫
∂CI

d2σ2

∫
∂CI

d2σ3

∣∣∣∣εijkEa
i(σ1)na(σ1)Eb

j(σ2)nb(σ2)Ec
k(σ3)nc(σ3)

∣∣∣∣
In the limit we send the size of a cell to 0 (ε → 0) and we shrink the cell to a point we

obtain:

WI =
1

48
εabcnanbncdet

(
Ea

i(x)
)
· ε6 ' det(Ea

i (x))ε6 ' V olume2(CI)

Where we used

εijkE
aiEbjEck = det(E)εabc

Hence we have:

V (R) = lim
ε→0

∑
I

√
WI (1.45)

Now, let’s divide each ∂CI in small surfaces SαI : ∂CI =
⋃
α S

α
I . We have:

WI =

∫
∂CI

d2σ1

∫
∂CI

d2σ2

∫
∂CI

d2σ3

∣∣∣∣εijkEa
i(σ1)na(σ1)Eb

j(σ2)nb(σ2)Ec
k(σ3)nc(σ3)

∣∣∣∣ ∼
∼
∣∣∣∣ ∫

∂CI

d2σ1

∫
∂CI

d2σ2

∫
∂CI

d2σ3εijkE
a
i(σ1)na(σ1)Eb

j(σ2)nb(σ2)Ec
k(σ3)nc(σ3)

∣∣∣∣ ∼
∼
∣∣∣∣∑

α

∫
SαI

d2σ1

∑
β

∫
SβI

d2σ2

∑
γ

∫
SγI

d2σ3εijkE
a
i(σ1)na(σ1)Eb

j(σ2)nb(σ2)Ec
k(σ3)nc(σ3)

∣∣∣∣ ∼
∼
∑
α

∑
β

∑
γ

∣∣∣∣εijkEi(SαI )Ej(S
β
I )Ek(S

γ
I )

∣∣∣∣
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Substituting it in 1.45 we obtain:

V (R) = lim
ε→0

∑
I

√
1

48

∑
α,β,γ

∣∣εijkEi(SαI )Ej(S
β
I )Ek(S

γ
I )
∣∣

And turning the classical fluxes Ei into operators:

V̂ (R) = lim
ε→0

∑
I

√
1

48

∑
α,β,γ

∣∣εijkÊi(SαI )Êj(S
β
I )Êk(S

γ
I )
∣∣ (1.46)

this is the Rovelli-Smolin Volume Operator.

In this derivation we assumed


∫ ∣∣(...)∣∣ ∼ ∣∣ ∫ (...)∣∣∑ ∣∣(...)∣∣ ∼ ∣∣∑(

...
)∣∣

As well as for the Area operator there exists an optimal refinement such that a bet-

ter refinement becomes unnecessary.

The optimal partition of the volume R in cells CI is the following: the nodes of Γ can

stay only in the interior of the cells, and not on their surface; a cell can contain at most

one node, and if it doesn’t contain any node it contains at most one link. Moreover the

partition of the surfaces ∂CI in cells SαI is made in such a way that links of Γ can intersect

a cell SαI of the partition only in its interior, and each surface SαI is punctured at most

by one link.

Remark: We notice that the presence of εijk in 1.46 means that the three fluxes have to

be different, otherwise their product gives a 0 contribution. By the other side SαI , S
β
I , S

γ
I

can be different portions of the same face, or of different faces.

Well, let’s study now the action of this operator on a Spin network state.

We look at the only two possible situations, illustrated in fig. 1.3. In the calculations

we consider for simplicity only a cubic cell, and for a generic spin network state only the

part associated with links and nodes that are inside such cell; the results can be easily

extended to the whole states defined on the whole graph.

In the second case we have that the action of the volume operator on the state gives a 0

result. Let’s prove it.

In this case we have a graph with only a link passing through the elementary volume CI
As we can see from the picture there are only two SI ’s that give a non-0 contribution to

the eigenvalue; let’s call them for simplicity S1
I , S2

I .

When the operator 1.46 with I fixed acts on the holonomy, we notice that the only term
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Figure 1.3

in the sum
∑

α,β,γ that gives a non trivial 0 result has two of the E’s necessarily equal.

This because we have only 2 surfaces of kind SαI punctured by the link. The presence of

εijk makes the result vanishing.

Let’s look now at the second case. Here we have a node inside the elementary cell, and

consequently three or more links. The volume operator associated with such cell:

Û = lim
ε→0

√
1

48

∑
α,β,γ

∣∣εijkÊi(SαI )Êj(S
β
I )Êk(S

γ
I )
∣∣ (1.47)

Let’s restrict our attention on gauge invariant states and start with a three-valent node.

For gauge invariant states as we found previously the Gauss constraint holds. But we

remember that such constraint implies

lim
ε→0

Êi(S) |ψ〉 = 0

In the particular case of a three-valent node, like in the θ-graph , since only three Sα give

a non 0 result we have:

[
Êi(S

1) + Êi(S
2) + Êi(S

3)
]
|ψ〉 = 0

Which implies:

Êi(S
1) |ψ〉 = −

[
Êi(S

2) + Êi(S
3)
]
|ψ〉 (1.48)
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By the other side the only non vanishing terms in the sum
∑

α,β,γ for such state are of

kind

±ε123Ê1(S1
I )Ê2(S2

I )Ê3(S3
I ) |ψ〉

Using the relation 1.48 we have

±ε123Ê1(S1
I )Ê2(S2

I )Ê3(S3
I ) |ψ〉 = ∓ε123

[
Ê1(S2) + Ê1(S3)

]
Ê2(S2

I )Ê3(S3
I ) |ψ〉 = 0

since εijk is totally antisymmetric.

This means that the volume associated with a gauge invariant state on a three-valent

node is zero.

Let’s consider now the case of a four-valent node. Firstly we have to recall the fact that

the intertwiners for such node is not unique but a genuine quantum number. This means

that there is a degeneracy in the spectrum of the volume operator: gauge invariant states

with different intertwiners have the same eigenvalue of V.

The Gauss constraint in this case implies

[
Êi(S

1) + Êi(S
2) + Êi(S

3) + Êi(S
4)
]
|ψ〉 = 0

Let’s consider the action of the operator 1.47 in this case. We must ask to ourself how

many non-zero contributions are present in the sum
∑

α,β,γ. If we keep in account the

relations that come from the Gauss constraint, we have 48 equal terms. This means:

Û = lim
ε→0

√∣∣εijkÊi(S1
I )Êj(S

2
I )Êk(S

3
I )
∣∣

And:

Û |ψ〉 =
√

~3γ3
∣∣εijkJ1

i J
2
j J

3
k

∣∣ |ψ〉
Where Ji are the generators of SU(2). As usual their explicit form depends on the rep-

resentation, and the representation depends on the spins that the state associates to the

links: for example if j = 1
2
we have that Ji = τi, and so on.

This operator is well defined, with a discrete spectrum and minimal excitations propor-

tional to (~G)
3
2 = l3P .

In order to complete the quantization of the theory, we need to look at the dynamics,

studying the quantum version of the Diffeo. and Hamiltonian constraints, with related

Hilbert spaces of solutions. Let’s start with the Diffeo. constraint.
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1.2.5 The Diffeomorphisms constraint

In this section we implement the diffeo. constraint Ha ≈ 0 in its quantum version and

find a basis for the space Hdiff., the space of Spin Network States that are also Diffeo-

invariant states.

We start with the action of generic diffeomorphisms on a state ψ. Recalling the properties

of the holonomy, the action of the operator φ̂ on a Spin Network State:

φ̂ ψΓ = ψφ◦Γ

where:

φ̂ : CylΓ −→ Cylφ◦Γ

Let’s list some important feature of such operator:

• It is a well defined unitary operator.

• CylΓ⊥Cylφ◦Γ independently on the particular diffeomorphism. This means that

we cannot consider for such states infinitesimal diffeomorphisms: all the diffeomor-

phisms are finite for cylindrical functions. This comes from the fact that if we apply

the diffeomorphism operator φ̂ (that is assumed to be not the Identity operator) to

a quantum state it modifies the associated graph, and the scalar product between

two states with different graphs is always 0. In this sense CylΓ⊥Cylφ◦Γ, and an

infinitesimal diffeomorphism is finite from this point of view, since changes "drasti-

cally" the state. This as we see in a moment is not an obstacle for the construction

of Hdiff..

In order to constructHdiff. we can proceed with a group averaging as we did for the Gauss

constraint, building in this way states invariant under finite diffeomorphisms. Before

doing this, we need to identify the symmetries of the graph, i.e. diffeomorphisms that

act trivially on them. We have two kind of such transformations:

1. The diffeomorphism that exchange links of the graph, without changing Γ.

We call the subspace of these diffeomorphisms GSΓ.

2. The ones that preserve the links, but shuffle the points inside them.

We call the relative subspace TDiffΓ. Well, these last ones have to be removed

from DiffΓ because they are infinite and spoil the group averaging procedure.
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There is however a residual issue for the group averaging procedure. The diffeomorphism

group, as we know from classical General Relativity is not compact, differently from the

group SU(2); this means that a group-averaged state cannot belong to a subspace of

H0
Kin; we encounter the same problem in Quantum Mechanics, when starting from a

state ψ ∈ L2(R, dx) we require the translation invariance:

ψ −→ c, c ∈ C

and ψ = c /∈ L2, since is not a normalized state. However we can recover the transation

invariance if we define c as a linear functional:

c : ψ ∈ L2[R, dx] −→ C

Of this kind:

c

∫
dxψ(x) = c

∫
dxψ(x)eikx

∣∣
k=0

= cψ̃(0)

In fact:

c

∫
dxψ(x+ a) = c

∫
dx′ψ(x′) = cψ̃(0)

We can do the same for our Hilbert space H0
Kin. For this purpose let’s denote with H0∗

Kin

the space of linear functionals acting onH0
Kin. Thus, η ∈ H0∗

Kin is aDiffeomorphism-invariant

functional, if

η(φ̂ψ) = η(ψ) ,∀ψ ∈ H0
Kin (1.49)

In this way we don’t restrict H0
Kin → H0

Diff., but H0∗
Kin → H0∗

Diff. so we restrict the space

of functionals acting on H0
Kin, which is the dual of H0

Kin itself.

Once we construct H0∗
Diff., we should be able to derive H0

Diff..

We notice that the condition 1.49 is formally similar to the one associated with gauge

invariance:

f0(h1, .., hL) = f0(gs1h1g
−1
t1
, ..., gsLhLg

−1
tL

)

With the important difference that f0 ∈ HKin, as well as f , while η(ψ) ∈ H0∗
Diff., not to

H0
Diff..

As well as we did before, we have to define a projector, called PDIFF. that allows to write

diffeo. invariant functionals belonging to H0∗
Diff. out of generic functionals belonging to

H0∗
Kin..

The result of this procedure are spin network states that instead of being defined on
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particular graphs are defined on equivalence classes of graphs, in which each graph of

a class can be transformed in whatever other graph of the same class through spatial

diffeomophisms. These equivalence classes are called Knots. The name comes from the

fact that a spatial diffeomorphism can change the form of the graph (fig. 1.4) but not

Figure 1.4

the number of its knots (fig. 1.5), so that each class is made of graphs with the same

Figure 1.5

number of knots.

Thus the diffeomorphism-invariant Hilbert space of the theory is spanned by the so called

Knotted Spin Networks.

We can now proceed with the quantization of the last constraint of our constrained

system, the Hamiltonian constraint.

1.2.6 The Hamiltonian constraint

In order to reach the physical Hilbert space of the theory we have to impose theHamiltonian constraint

to our Knotted Spin Network States. The classical smeared constraint:

H0(N) =

∫
d3xN

[
F j
ab − (γ2 + 1)εjmnK

m
a K

n
b

]
· εj

klEa
kE

b
l

e
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Where we don’t consider the last term, since it contains Gi and acting on Spin Network

states gives no contribution to the Hamiltonian constraint. Using the following relation:

εjmnεj
kl = δkmδ

l
n − δlmδkn

We can write:

[
(γ2 + 1)εjmnK

m
a K

n
b

]
· εjklE

a
kE

b
l

e
=
[
(γ2 + 1)Km

a K
n
b

]
· E

a
kE

b
l

e
· (δkmδln − δlmδkn) =

= 2(γ2 + 1) · E
a
kE

b
l

e
·Kk

[aK
l
b]

So we have:

H0(N) =

∫
d3xN

[
F j
abεj

kl − 2(γ2 + 1)Kk
[aK

l
b]

]
· E

a
kE

b
l

e

= HE(N)− 2(1 + γ2)T (N)

where we introduced a short-hand notation for the first and second term in the summa-

tion. This object as we expect is non-linear in terms of E, A; this gives rise to some

difficulty if we want to turn it into an operator. However we can write it in a suitable

way for the quantization, due to Thiemann. Let’s denote with V =
∫
d3x
√
det(E). After

a bit of algebra we can rewrite HE(N), T (N) in the following way:

HE(N) =

∫
d3xNεabcδijF

i
ab

{
Ajc, V

}
T (N) =

∫
d3x

N

γ3
εabcεijk

{
Aia,

{
HE(1), V

}}
·
{
Ajb,

{
HE(1), V

}}
·
{
Akc, V

}
In this way we mapped the non linearity of the constraint into Poisson brakets. Now

we have to write this object in terms of holonomies and fluxes and promoting them to

operators.

Let’s do it for HE(N). For T the procedure is analogous but since the presence of more

terms it turns out to be more complicate. We need to express the connection A and the

curvature F in terms of the holonomies. For the connection this task is quite easy if we

look at the general relation between them:

hγ(t) =
+∞∑
n=0

∫ t

0

...

∫ t

0

A(γ(s1))...A(γ(sn))ds1...dsn
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For a path ea of infinitesimal lenght ε along the coordinate xa we have:

hea [A] ' 1 + εAiaτi +O(ε2)

Where we assumed: ∫ ε

0

Aiaτi
dxa

ds
ds =

∫ ε

0

Aiaτidx
a ∼ εAiaτi

and so:

h−1
ea

{
hea , V

}
= (1− εAiaτi)

{
1 + εAjaτj, V

}
= (1− εAiaτi)

{
εAjaτj, V

}
=

= ε
{
Aa, V

}
+O(ε2) (1.50)

For the curvature F i
ab we consider an infinitesimal triangular loop αab lying on the plane

individuated by the coordinates xa, xb with two sides equal to ε. At the lowest order in

ε the holonomy associated with such path:

hαab = 1 +
1

2
ε2F i

abτi +O(ε4)

So

h−1
αab

= 1− 1

2
ε2F i

abτi +O(ε4)

Thus

hαab − h−1
αab

= ε2F i
abτi +O(ε4)

In this way we wrote all the objects that are in HE in terms of holonomies.

As we did before for the Volume and the Area operator we need to regularize the integral:

we decompose the volume Σ in cells, and transorm the integral in a summation:

HE = lim
ε→0

∑
I

ε3NIε
abcTr

(
Fab
{
Ac, V (CI)

})
(1.51)

Where

Tr
(
Fab
{
Ac, V (CI)

})
= F i

ab

{
Ajc, V

}
Tr(τiτj) = F i

ab

{
Ajc, V

}
δij

And where we substituted: ∫
d3xf(x) −→ lim

ε→0

∑
I

ε3f(I)
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Writing 1.51 in terms of the holonomies:

HE = lim
ε→0

∑
I

NIε
abcTr

[(
hαab(I) − h

−1
αab(I)

)
h−1
ec(I)

{
hec(I), V

}]
In principle the paths αab(I) and ec(I) have an arbitrary relative position. It is useful for

this operator make a partition of the volume V in tetradic cells, and adapt these paths

to such cells (fig. 1.6). Now we can promote this part of the Hamiltonian constraint to

Figure 1.6

a quantum operator:

ĤE = lim
ε→0

∑
I

NIε
abcTr

((
ĥαab(I) − ĥ

−1
αab(I)

)
ĥ−1
ec(I)

[
ĥec(I), V̂

])
It can be proved that this operator shares an important property with the Volume oper-

ator: it gives a non-zero result only if it acts on the nodes. This means that we can fix

the partition of the volume in such a way that each node is contained in a tetrahedron

CI . In this way we can write the operator as a summation over the nodes of the graph

on which it acts:

ĤE = lim
ε→0

∑
n∈Γ

Nnε
abcTr

((
ĥαab(I) − ĥ

−1
αab(I)

)
ĥ−1
ec(I)

[
ĥec(I), V̂

])
(1.52)

In the case of a three-valent node there is a natural choice for ec and αab: we choose them

in such a way that they are tangent to the links on the node. The contraction of a, b, c in

1.52 gives a sum over all the permutations of the three links. For an m-valent node (m

> 4) we have the same expression, with a, b, c = 1, 2, 3, 4.

Let’s look now at the action of such operator on a knotted spin network state: given a

node n, the action of this operator on the node consists in the creation of 2 new nodes,
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let’s say na, nb at a finite distance from n along the links a, b. The exact location of such

new nodes is irrelevant, cause the diffeo. invariance of the state. It creates also a new

link, let’s say ed of spin 1
2
connecting the two nodes na and nb (fig. 1.7). This new link is

Figure 1.7

called arc. Finally it modifies the spin of the links that connect n with na and nb of ±j
with respect to the spins of ea and eb. Consequently if by a side changes the intertwiners

of the node n, by the other the Clebsh-Gordon condition holds also for the modified node.

This concludes the first chapter and our general treatment of Loop Quantum Gravity. For

further details see [8]. The results we constructed are general and don’t regard only some

particular solution of the theory. With these tools in hand we can proceed to analyze

some of the models of Loop Quantum Cosmology, that as we said in the introduction is

not properly the Cosmological sector of the theory since is made of Minisuperspaces, in

which we impose the symmetries of the solution already at the classical level.

We’ll see in the next chapter that for the reduction of the degrees of freedom due to this

symmetrization already at the classical level the huge computational difficulties that we

meet in the general theory are extremely simplified.

We’ll see different cosmological models, constructed on the assumption of different kind of

symmetries at the classical level. We’ll derive the solutions focusing on some of their fea-

tures and in particular on a crucial property that join all of them: the Bouncing behaviour

of the solutions, that is at the heart of this work.
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Chapter 2

Loop Quantum Cosmology

Before moving on to the cosmological sector of LQG, we want to give a brief description

of an important issue that affects classical Cosmology, and more in general Einstein the-

ory of gravity: the Singularity problem. In classical Cosmology there exists a theorem,

namely the Hawking singularity theorem which states:

A globally hyperbolic space-time (M, g) in which there exists a Cauchy hypersurface Σ

and a constant C+ > 0 (C− < 0), such that the volume expansion θ > C+(θ < C−),

everywhere on Σ, is past (future) geodesically incomplete if the Strong Energy Condition

holds in the past (future) of Σ.

This means in particular that the dynamics of a globally hyperbolic space-time with a

source that satisfies the SEC and that expands (contracts) continually contains a sin-

gularity in the past (in the future). Generic ordinary matter (dust, photons,..) satisfies

such condition, and this means that a model based on a source of this kind that describes

an expanding or contracting Universe necessarily develops a singularity. Moreover the

singularities predicted by such theorem are physical singularities, so that they cannot

be eliminated by a change of coordinates. They are in general points of space-time in

which the energy density diverges, and the scalar curvature becomes infinite, so clearly

unphysical.

Singularities are features of many solutions of Einstein Equations not only in the cosmo-

logical sector, but also in the astrophysical one, like Black Holes, White Holes... Nowadays

such odd predictions of Einstein theory are commonly considered as problems of the the-

ory, not solutions, and they draw the limits of validity of the theory itself. The singularity

problem of GR has been historically one of the reasons that brought physicists to look

for a Quantum theory of Gravity. Physicists understood that only a Quantum theory of

gravity could solve this problem, but why? We know from standard Quantum Mechanics
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and from its application to Atomic physics that quantum effects of matter are already

dominant at a lenght scale of 10−10m, the average atomic size. By the other side, the

singularities predicted by Einstein theory have got 0 spatial dimension, which means

technically that they are geometric points of space that contain a given finite quantity

of energy. Now, even if the scale on which matter presents a quantum behaviour and

the scale on which the space-time itself presents a quantum behaviour are not necessar-

ily equal, and in fact ordinary Quantum Mechanics perfectly works in a classical spatial

background (inside its limits of validity), we expect that there will be a lenght scale (or

equivalently an energy scale) on which also the space-time (or the gravitational field) as

well as all the other fields presents a quantum behaviour. Many physicists think that such

behaviour should be dominant at the Planck scale: lP ∼ 10−35m. Such scale is clearly

much smaller with respect to the atomic scale, but "infinitely" much larger than the size

of the singularities of Einstein theory. The previous is only one of the considerations

that brought scientists to believe that the singularity problem could be solved only by a

Quantum theory Gravity.

One of the beautiful and most important results of Loop Quantum Cosmology is the res-

olution of such classical problem in a natural way: in the cosmological sector the classical

singularities are replaced by Quantum Bounces that result to be an intrinsic feature of

the theory, as well as the classical singularities for Einstein theory. During the bounce the

energy density of the solution reaches a minimum value and then, due to a pure quantum

effect starts to expand going outside the Planck regime. As we’ll see later, solutions with

a finite small volume at the bounces reach the Planck volume (order of magnitude) and

then start to expand. This amazing behaviour of the space-time regards at the same

time Black Holes and all the cosmological solutions, even if at the time being the analysis

on black holes is less developed in literature with respect to the cosmological one. With

"natural" we mean that this problem is solved by the theory without requiring external

ad hoc hypothesis, but its overcoming follows from the calculations.

We want to observe that such bouncing result couldn’t absolutely be reached in a clas-

sical context by ordinary matter, cause a fundamental property of classical gravity: it is

attractive. Technically such behaviour is forbidden for ordinary matter by the so called

Focusing theorem. For this reason the bounce has to be interpreted as a genuine quan-

tum effect and can arise only at the scale on which quantum effects of gravity start to be

dominant, the Planck scale.

In this chapter we’ll derive some solutions of Loop Quantum Cosmology, and we’ll check
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computationally that all of them share this feature at the Planck scale. Moreover we’ll

compare the results with the classical and Wheeler-DeWitt ones, showing by a side that

only Loop Quantum Cosmology is able to solve the Singularity problem, by the other

side that the results of the three theories are in perfect agreement outside the Planck

scale, in the so called Semiclassical region.

Before moving on to the computations, we want here to point out the following important

consideration: the ideal procedure to find symmetric solutions for the quantum theory

would require to impose the symmetries we are interested in only after quantization, so

to the quantum solutions. This procedure, even if the ideal one is very difficult to im-

plement, and we won’t follow it. Instead as commonly made in literature also for the

Wheeler-DeWitt theory we’ll construct Minisuperspaces : we impose the symmetries at

the classical level, then we quantize the classical symmetric theory, and finally we find

the solutions of the quantum constraints. As we said previously this way to proceed is

not rigorous and the solution we’ll find cannot considered rigorously exact. However this

method allows to avoid all the computational complications of the full theory, and the

solutions are expected to have many qualitative and quantitative features in common

with the exact ones.

A very last observation: when we constructed in the full theory the Area and Volume

operators, as well as the Hamiltonian constraint we introduced a regularization proce-

dure, and at the very end we removed the regulator. We’ll see that in these symmetrized

models there is no regulator but a free parameter that has to be fixed taking hints from

the full theory.

Let’s proceed thus to the analysis of the various symmetric models: we start with the

Friedmann-Robertson-Walker model, obtained by imposing homogeneity and isotropy to

the classical solution, and we conclude with the Bianchi I Universe, that joins only spatial

homogeneity.

2.1 FRW flat Universe

Classically the most generic form of an homogeneous and isotropic metric is the following:

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
(2.1)

Where the only degree of freedom is a, usually called scale factor, that depends only on

the variable t, accordingly with homogeneity. k is a parameter called curvature constant
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and can have positive, negative or null value. Since it can be rescaled, its numerical value

is not significant, and for this reason one distinguishes between three reference values:

k = 0,±1. The value of k determines the topology of the spatial hypersurfaces for such

solution, and in this work we analyze only the simplest one, k = 0: this is the case of a

spatially flat Universe.

The solution a(t) depends on the kind of source we plug in Einstein equations, and if we

consider a perfect fluid by its equation of state. In our analysis we consider a massless

scalar field as the source of the expansion.

As we previously anticipated, if we assume that such field satisfies the SEC we obtain

as classical solution an expanding (or contracting) Universe with a physical singularity

in the past (future), and we cannot study it beyond such point in the past (future). For

the expanding solution such point is often called theatrically the beginning of Time and

Space.

Let’s see what happens in Loop Quantum Cosmology.

In this section we follow mainly [9]. We start by writing the classical symmetrize model

in terms of the Ashtekar-Barbero variables, then we proceed with the quantization.

2.1.1 Classical phase space and the Hamiltonian constraint

The classical phase space (Aia, E
b
j) is drastically reduced, since the Gauss and Diffeo.

constraints are trivially zero cause homogeneity and isotropy. The Hamiltonian constraint

is the only that we have to impose. Moreover, since the spatial submanifolds Σt are flat,

the spin connection vanishes:

ωija = 0

This comes from 1.10 and the fact that eia depend only on t. Consequently we have a

huge semplification of the classical Hamiltonian constraint:

Cgrav.(N) =

∫
d3xN

−εijk
16πGγ2

F i
abE

ajEbk

e
(2.2)

From this chapter on we restore the factor 16πG.

Let’s verify 2.2.We start by the following:

Cgrav.(N) =

∫
d3x

N

16πG

[
F k
abεk

ij − 2(γ2 + 1)Ki
[aK

j
b]

]
·
Ea
i E

b
j

e
(2.3)
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From the definition of the Ashtekar connection 1.15, we have in this model:

Aia = γω0i
a ≡ γKi

a =⇒ 2Ki
[aK

j
b] =

2

γ2
Ai[aA

j
b] (2.4)

By the other side:

F k
ab = 2∂[aA

k
b] + εij

kAiaA
j
b

Thus:

εij
kεk

lmAiaA
j
b = (δliδ

m
j − δmi δlj)AiaA

j
b = 2Al[aA

m
b] = εk

lmF k
ab − 2εk

lm∂[aA
k
b]

Well, cause homogeneity the last term vanishes:

Al[aA
m
b] =

1

2
εk
lmF k

ab

Recalling 2.4:

2Ki
[aK

j
b] =

1

γ2
εijk F

k
ab

So we have:

Cgrav.(N) =

∫
Σ

d3xN
1

16πG

[
F k
abεk

ij − 1

γ2
(γ2 + 1)F k

abεk
ij
]
·
Ea
i E

b
j

e
=

=

∫
d3xN

−εijk

16πGγ2

F i
abE

a
jE

b
k

e
(2.5)

This integral in general diverges, since Σ is not compact and the fields are spatially

homogeneous. To avoid this divergence we have to restrict our analysis to a finite cell

V ; the homogeneity condition guarantees that the analysis on V can be extended on the

whole Σ. If we require also isotropy Aia and Eb
j can be rewritten in this formA

i
a = c(t)V

− 1
3

0
oeia

Ea
i = p(t)V

− 2
3

0

√
oq oeai

(2.6)

Where c(t) and p(t) are functions that depend only on t. We describe the other quantities

in a moment. Let’s derive the first one.
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We know from the full theory that:

Aia = γω0i
a

Where ωIJµ = eIν∇µe
Jν . So

ω0i
a = e0

ν∇ae
iν = e0

ν(∂ae
iν + Γνabe

ib) = e0
νΓ

ν
abe

ib

Since homogeneity. Now, recalling that e0
µ =

(
N
~0

)
e0
νΓ

ν
abe

ib = e0
0e
ib1

2
g0σ(gσa,b + gbσ,a − gab,σ) = −Neib1

2
g00gab,0 =

= −N
2

1

a(t)2
eiagaa,0 = N

ȧ(t)

a(t)
eia

So Aia = γN ȧ(t)
a(t)

eia.

We introduce now the so called fiducial metric oqab, defined by the following relation:

qab = oqaba(t)2. This tensor doesn’t contain any time evolution and allows to measure

distancs in a flat space not evolving in time (so clearly not the physical one).

Recalling that:

δije
i
ae
j
b = qab

We have

δije
i
ae
j
b = oqaba(t)2 = δij

oeia
oejba(t)2

Thus

eia = oeiaa(t) (2.7)

oeia is called fiducial triad.

These fiducial tensors are useful since allow to decouple the tensorial structure of the

variables from their time dependence, and this can be done in virtue of the symmetries.

So we have:

Aia = oeiaγNȧ(t)

Finally to reach the first of 2.6 we simply call:

c(t) = γNV
1
3

0 ȧ(t) (2.8)
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where V0 =
∫
V d

3x
√
q0 is called fiducial volume of V , so the volume measured with the

fiducial metric oqab. Clearly V0 is not the physical volume of V , since it doesn’t contain

any time evolution: it is a volume regarding a fictitious not evolving space-time.

Let’s proceed with the second proof. Whe know that Ea
i = e(t)eai(t). But we also have

eai =
sgn(a)

|a(t)|
oeai

And since

εabceiae
j
be
k
c = det(eai)ε

ijk

We have

det(eai) = det(oeai)|a|3sgn(a)

Thus

Ea
i = eeai = |det(eai)|eai = sgn(a)oeoeaia(t)2 =

√
oq p(t)V0

− 2
3
oeai (2.9)

Where we called

p(t) = sgn(a)a(t)2V0

2
3 (2.10)

In this way we built a variable p(t) with dimension [L]2. We notice from 2.7 that p(t)

is positive if the physical triad and the fiducial one are parallel, negative if antiparallel.

This means that its sign depends on our choice of the relative orientation of the two

frames (the physical triadic frame and the fiducial one). For the moment we don’t fix

their relative orientation and the sign of p remains unfixed.

Let’s see the relation between p and the physical volume V .

V =

∫
V
d3x
√
q =

∫
V
d3x
√
oqa(t)3 = V0a(t)3

Thus:

V = |p|
3
2 (2.11)

Remark 1 : as we previously anticipated the tensorial structure of the Ashtekar-Babero

variables is totally embedded in fiducial tensors. This means that written in this form we

can study the evolution of these variables without looking at their tensorial structure.

Remark 2 : even if oqab describes a flat space not evolving in time, in general is not

written in a Cartesian frame: oqab 6= δab. However the choice of the fiducial frame is
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arbitrary at this stage, so we can choose an orthonormal frame:

oqab = δab =⇒ oeai = δai

From now on we work with this assumption.

Since the decoupling due to homogeneity between the time dependence and the tensorial

structure of the Ashtekar-Barbero variables we can consider directly c(t) and p(t) as

variables of our classical phase space. They define a symplectic structure:

{c(t), p(t)} =
8

3
πGγ (2.12)

Let’s prove it.

We start from 1.16. Using 2.6 we have

{Aia(x), Eb
j(y)} = {cV0

− 1
3
oeia, pV

− 2
3

0

√
oqoebj} =

= V −1
0 δiaδ

b
j

√
oq {c, p} = 8πGδbaδ

i
jγδ

3(~x− ~y)

If now we integrate both members:
∫
V d

3x:∫
V
d3x
√
oqV −1

0 δiaδ
b
j {c, p} = 8πGδbaδ

i
jγ

∫
V
d3xδ3(~x− ~y)

⇐⇒ δiaδ
b
j {c, p} = 8πGδbaδ

i
jγ

Contracting now the indices i− a:

3 δbj {c, p} = 8πGδbjγ ⇐⇒ {c, p} =
8

3
πGγ

Then we consider a massless scalar field φ as source of the expansion, with conjugate

momentum Pφ. As we said previously it has to share the symmetry of the metric solution.

The Poisson brakets for such field:

{φ, Pφ} = 1

Consequently the total Hamiltonian constraint contains a matter contribution; if we

assume N = 1 (synchronous gage), the Hamiltonian constraint of our constrained system:

C(N = 1) ≡ C = Cgrav. + Cmatt. = − 6

16πGγ2
c2
√
|p|+

P 2
φ

2V
≈ 0 (2.13)
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Where as we previously noticed V = |p| 32 differently from V0 is the physical volume of

the cell V and depends on t. Let’s verify the first term.

We start from

Cgrav. = − 1

16πGγ2

∫
V
d3xεijk

F i
abE

ajEbk

e
(2.14)

And we assume 2.6. Firstly we notice that the choice oeia = δia (independent on ~x since

homogeneity) means that A and E in such frame are diagonal matrices, and:
√
oq = 1

since oqab = δab. Given thatdet(E) = oq
3
2p3V −2

0 = p3V −2
0

F i
ab = εijkA

j
aA

k
b

(2.15)

and substituting them in 2.14

Cgrav. = − 1

16πGγ2

∫
V
d3xεijkε

i
lm
AlaA

m
bE

ajEbk

e
=

= − 1

16πGγ2

∫
V
d3xεijkε

i
lmc(t)

2p(t)2V0
−2

oela
oemb(

oeaj)(oebk)

e
=

= − 1

16πGγ2
c2p2V −2

0 εijkε
ijk

∫
V
d3x

1

e
=

= − 3

8πGγ2
c2p2V −2

0

∫
V
d3x

V0

p
3
2

= − 3

8πGγ2
c2
√
|p|

This form for the Hamiltonian constraint even if elegant cannot be used as starting point

for the quantization of the model. This because in order to construct a well-defined

Hilbert space we have to smear the variables, and write such constraint in terms of

holonomies and smeared triads, as well as in the full theory.

So let’s look now at the smearing of the variables in this symmetrized model.

2.1.2 Holonomy-flux Algebra

In order to construct the classical holonomy-flux algebra we need to choose paths γ for

the holonomies and surfaces S for the smearing of Ea
i. However, since the symmetry of

the solution we don’t need to consider all the possible edges and surfaces.

Let’s see this in detail starting from the connection Aia. Since homogeneity and isotropy,

we can smear the connection on a straight path contained in V , obtaining a representant
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of an equivalence class of states with generic graphs. In particular, given

hγ = Pexp
(∫

γ

dsAia
dxa

ds
τi

)

we can consider a straight path, and set it on the direction individuated by a given xb,

that is a coordinate of the fiducial frame:

hγ = Pexp
(∫

γ

dxbAia
dxa

dxb
τi

)
= Pexp

(∫
γ

dxbAiaδ
a
bτi

)
= Pexp

(∫
γ

dxbAibτi

)

with oriented fiducial lenght l = µ V
1
3

0 , µ ∈ (−∞,+∞).

Now, using:

Aib = c(t)V0
− 1

3 δib

We have

h
(µ)
i = Pexp

(∫
dxbc(t)V

− 1
3

0 δibτi

)
= exp

(∫
dxbc(t)V

− 1
3

0 δibτi

)
= exp

(
c(t)V

− 1
3

0 V
1
3

0 τiµ

)
= exp

(
c(t)µτi

)
Where in the first passage we removed the path ordering operator since cause homogeneity

the integrand is independent on xb, so on the point of the path on wich we evaluate it.

Remark : we notice that the subscript i in h(µ)
i is not a triadic index, but a label that

fixes the fiducial direction we choose for the holonomy. We can see this from the fact

that the holonomy is not an element of the algebra of SU(2), but is an element of SU(2)

itself so cannot have a non contracted triadic index.

As we see in a moment the Kinematical Hilbert space is independent on the SU(2)

representation we choose, so we can fix for simplicity j = 1
2
. Thus we can rewrite the

holonomy in this way

h
(µ)
i = exp

(
ic(t)µσi

2

)
= cos

(
cµ

2

)
1− iσisin

(
c(t)µ

2

)
= cos

(
cµ

2

)
1 + 2τisin

(
c(t)µ

2

)
(2.16)

The homogeneity and isotropy ansatz brings to the fact that non-straight paths don’t

carry more informations than the one we considered here. The state associated with such

link

D(h
(µ)
i )

1
2
αβ = exp

(
iµc(t)σi

2

)
αβ

(2.17)
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By the other side we can smear the densitized triad with the integral over a squared

surface; so we can consider: d2σ = dxddxe, which means we adapt the square to two of

the three axis of the fiducial coordinate system we use

Ei(S) =

∫
S

naE
a
id

2σ =

∫
S

εabc
∂xb

∂σ1

∂xc

∂σ2
Ea

idσ
1dσ2 =

∫
S

εadedx
ddxeEa

i

Where the indices d, e are not summed over. Using the explicit expression for E:

Ei(S) = p(t)V
− 2

3
0

∫
S

εadedx
ddxe
√
oqδai = p(t)V

− 2
3

0 ASi

So

Ei(S)f i = pV
− 2

3
0 AS,f (2.18)

Where f i is a generic test function. Let’s observe that εibcdxbdxcf i describes the relative

orientation between f i and the surface and its sign depends on f once we fixed the surface.

In particular if f lies on the surface the whole result is 0. 2.18 means that the flux is

fundamentally described by p(t).

What we need now is an algebra of variables to quantize. By a side we cannot use simply

c, p since they are not smeared. By the other side is also unnecessary to use h,E since we

don’t need to look at the structure of a particular graph, since homogeneity and isotropy.

From 2.18 we see that the time evolution of Ei(S) is completely contained in p(t), and the

relation between E and p is linear. So we can think to use p in the place of E. Moreover

if we look at 2.17, and in particular at the matrix elements of the holonomies we notice

that they are linear combinations of exponentials of kind exp
( iµc(t)

2

)
, independently on

the j-representation we consider. This means that at the mathematical level the algebra

generated by the holonomies is the same generated by exp
( iµc(t)

2

)
. For this reason we can

use it as a variable for the quantization of our Minisuperspace. The importance of taking

exp
( iµc(t)

2

)
instead of c(t) is that the first one captures the degrees of freedom of A only

along a certain path with lenght µ, so is a non local variable.

Let’s proceed with the construction of the Poisson brakets between such variables. We

call Nµ(c) = exp
( iµc(t)

2

)
. Thus

{Nµ(c), p} =
8πGγ

3

∂e
iµc
2

∂c
=
i4πGγµ

3
Nµ(c) (2.19)

Well, since Nµ(c) belongs to the configuration space, the algebra is closed.

Mimicking the procedure we described in the first chapter, we can proceed now to quantize
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the theory. We start by describing the Kinematical structure.

2.1.3 Kinematical Hilbert space

Following as usual the Dirac procedure, we quantize the system. Before proceeding with

the calculations we want to notice an important fact: the system described by the vari-

ables Nµ and p is not a field theory, but a 1-particle theory in 1-D because the classical

phase space is not ∞-dimensional (as in a field theory), but 2-dimensional. This is

uniquely due to the symmetrization of the model at the classical level, that brought the

system to be described by two variables c(t), p(t) instead of two fields A, E. Thus its

quantization follows the one of a quantum mechanical system, producing a strong sim-

plification.

To quantize the system we firstly need a basis for the Kinematical Hilbert space; it can

be proved that the states |µ〉, which represent the quantum version of Nµ(c), span a space

of cylindrical functions that, embedded with the discrete scalar product 〈µ|µ′〉 = δµµ′ is

an Hilbert space. So we can use {|µ〉} as a basis for the Kinematical Hilbert space of our

model, that we call Hgrav..

This kind of quantization with a discrete inner product is called polymeric quantization

and is inequivalent to the one we usually use for 1-D systems in Quantum mechanics [19].

It is however necessary to mimick the structure of the full theory that is discontinuous:

in the full theory for example we cannot construct a variable that is canonically conju-

gated to the holonomy, since it should be (in the holonomy representation) a functional

derivative with respect to an object that is not continuous (the holonomy itself), and here

within this representation analogously we cannot construct a variable that is canonically

conjugated with Nµ.

Well, promoting now p and Nµ to quantum operators, their action on our basis |µ〉N̂µ |µ′〉 = |µ+ µ′〉

p̂ |µ〉 = p(µ) |µ〉
(2.20)

Where

p(µ) =
4πγl2P

3
µ (2.21)

Let’s prove 2.21 We start from the Dirac rule

[
N̂ ′µ, p̂

]
= i~ ̂{N ′µ, p} (2.22)
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Acting with both the members on |µ〉 we have

[
N̂ ′µ, p̂

]
|µ〉 = −~4πGγ

3
µ′N̂ ′µ |µ〉 =⇒

(
N̂ ′µp̂− p̂N̂

′
µ

)
|µ〉 = −~4πGγ

3
µ′N̂ ′µ |µ〉 =⇒

N̂ ′µp̂ |µ〉 = p̂N̂ ′µ |µ〉 − ~
4πGγ

3
µ′N̂ ′µ |µ〉

Using now the first relation of 2.20:

p̂ |µ+ µ′〉 =

(
p(µ) +

l2P4πγµ′

3

)
|µ+ µ′〉 (2.23)

that tells that the states |µ〉, that are eigenstates of the operator p̂ have eigenvalues

p(µ) =
l2P 4πγµ′

3
.

Remark 1 : in principle instead of considering N̂µ as operator we can consider directly

the holonomy. This means

ĥ
(µ′)
i |µ〉 =

1

2
(|µ+ µ′〉+ |µ− µ′〉)1 +

1

i
(|µ+ µ′〉 − |µ− µ′〉)τi

That can be easily derived writing cos and sin in their exponential form. However as we

can see in each matrix element h acts as N̂µ′ or N̂−µ′ , so we can study directly the action

of N̂µ.

Remark 2 : looking at the second relation of 2.20, we notice that |µ〉 is eigenstate of the
operator p̂, but recalling 2.11 we can construct immediately the volume operator V̂ , and

obtain that |µ〉 has to be eigenstate of V̂ too. The action of the volume operator on the

state |µ〉:

V̂ |µ〉 =

(
γ|µ|4π

3

) 3
2

l3P |µ〉 = V (µ) |µ〉 (2.24)

This means that modulo a constant |µ| 32 is the physical volume of the cell V when the

Universe formally is in its quantum state |µ〉.
Let’s notice a big difference between the spectrum of the volume operator in the full

theory, and the one here. The eigenvalues of V̂ are a fixed (infinite) subset of the real line

in the full theory. Here instead its eigenvalues are a infinite subset of the real line, but

with values unfixed, since µ ∈ (−∞,+∞). In particular, it seems that the minimum of

such spectrum is 0 since |µ| can assume arbitrary small values, which means in principle

that in this model we cannot avoid the singularity. We’ll see later that this is not the

case.

Let’s proceed now with the quantization of the massless scalar field.
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For the matter field we use the usual Schrodinger-like representation with φ̂ acting by mul-

tiplication and P̂φ = −i~ ∂
∂φ
. Both act on states defined on the Hilbert space: L2(R, dφ).

The whole Kinematical Hilbert space is

HKin = Hgrav ⊗ L2(R, dφ)

Since as we previously said the classical Gauss and diffeo. constraints are identically 0

we can proceed directly with the quantization of the Hamiltonian constraint.

2.1.4 The classical Hamiltionian constraint and its quantization

In order to quantize the Hamiltonian constraint we follow the same procedure adopted

in the full theory. We start expressing the curvature tensor F in terms of holonomies,

that have a well defined quantum counterpart. If in the full theory we considered a

small triangular loop to make the job, here we consider for simplicity a squared loop that

depends parametrically on the lenght of the edge: µV
1
3

0 in the plane individuated by the

coordinates xi, xj; we can write:

h
(µ)
�ij = h

(µ)
i h

(µ)
j (h

(µ)
i )−1(h

(µ)
j )−1

Since the fundamental property of the holonomies: hα+β = hαhβ. We notice that such

quantity is not trivially 1 since [τi, τj] 6= 0. This holonomy encolses a fiducial area: A� =

µ2V
2
3

0 . For the holonomies we use for the constraint we consider the j = 1
2
representation,

for a physical reason that we’ll explain later. We only remark that such choice produces

a form for the constraint different from other choices.

If we write the curvature tensor in terms of h, and we send A� = µ2V
2
3

0 → 0, we obtain

F l
ab = lim

A�→0
−2

tr{[h(µ)
�ij
− 1]τ l}

A�

oeia
oejb (2.25)
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Let’s prove it. We start with the expression of holonomies for edges with oriented lenght

l = µV
1
3

0 :

he1 = cos

(
µc

2

)
1 + 2τi · sin

(
µc

2

)
he2 = cos

(
µc

2

)
1 + 2τj · sin

(
µc

2

)
he3 = cos

(
µc

2

)
1− 2τi · sin

(
µc

2

)
he4 = cos

(
µc

2

)
1− 2τj · sin

(
µc

2

)
We need now to multiply them. Recalling the following relation

τiτj =
1

2
εijkτk −

1

4
δij

And renaming for simplicity: cos
(
µc
2

)
= C and sin

(
µc
2

)
= S, we have:

h
(µ)
i h

(µ)
j = 1C2 − 1δijS

2 + 2εijkτkS
2 + 2τjCS + 2τiCS =⇒

=⇒ h
(µ)
i h

(µ)
j h

(µ)−1
i = C31 + CS21 + 2τjSC

2 + 4εijkτkCS
2 =⇒

=⇒ h
(µ)
i h

(µ)
j h

(µ)−1
i h

(µ)−1
j = C2(1 + C2)1− 2CS3(2τi + τj) + 4C2S2εijkτk (2.26)

Now, to recover 2.25 we have to assume µ small, since A� → 0. So we can expand A.1

in powers of µ, stopping at o(µ3). We obtain

h
(µ)
�ij ∼ 1 + µ2c(t)2εijkτ

k (2.27)

Now,

F i
ab = εijkA

j
aA

k
b = εijkc(t)

2V
− 2

3
0 δjaδ

k
b = εiabc

2V
− 2

3
0 (2.28)

Substituting 2.27 in this:

F k
ijτk = lim

A�→0

(
h

(µ)
�ij − 1

)
µ2V

2
3

0

Multiplying both members by oeia
oejb

oeia
oejbF

k
ijτk = F k

abτk = lim
A�→0

(h
(µ)
�ij
− 1)

A�

oeia
oejb
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Now we multiply both members by τl and we make the trace

F k
abtr(τkτl) = lim

A�→0

tr{[h(µ)
�ij
− 1]τl}

A�

oeia
oejb

And since tr
(
σkσl
4i2

)
= − δkl

2
,

F l
ab = lim

A�→0
−2

tr{[h(µ)
�ij
− 1]τ l}

A�

oeia
oejb (2.29)

We notice that the direction individuated by the label l has to be orthogonal with respect

to the ones individuated by i and j. This limit is classically well defined. However as

we know from the full theory, the spectrum of the physical area is quantized, so at the

quantum level we cannot send A� → 0, since this would bring the value of the physical

area to 0. For this reason, guided by a necessary reference to the full theory we have to

assume that our area A� has a minimal value.

But how do we choose it? In order to answer to this question we have to make a parallelism

between LQG states and LQC states, since we need to use the the fact that the Area

operator in LQG has got a minimum eigenvalue. In LQC the physical area of a side of

the fiducial cell V is given simply by |p|. The LQC quantum state associated with such

area is |µ(p)〉. Let’s ask now what is the associated LQG quantum state. The first ansatz

for such state is that if the Area operator associated with the area of a side of the fiducial

cell acts on it, it has to give a value equal to |p|. This means that some of the links of

the graph of such state have to puncture such area. The second ansatz is that it has to

be an homogeneous state on the area we are considering. In principle, in order to have

an homogeneous graph on such area it should have an infinite number of links, in such

a way that there is no empty space between them. This is however not possible, since

the resulting eigenvalue of the Area operator would be infinite. So we have to choose the

links that produce (each of them) the minimum possible value of the area, and we choose

for this purpose links carrying j = 1
2
spin. We choose for simplicity straight links for the

graph. Now we have to understand how many links we need in our graph to reproduce

the LQC state. In order to do this we remember that each link puncturing the area

carries a contribution to the spectrum of the area of 4π
√

3γl2p = ∆. This means that we

need N spins, with N such that

N4π
√

3γl2p = |p| = N∆ (2.30)

72



Thus we can divide our area in N squared plaquettes, each of them with physical area

4π
√

3γl2p and consider this one as the minimum value of the physical area (area evaluated

with the physical metric) associated with the fiducial area A� (evaluated with the fiducial

metric). Calling the dimensionless fiducial area of such plaquettes µ̄2, we have

A�min = µ̄2V
2
3

0

Now, since the fiducial area of a side of the volume V is V
2
3

0 , we have

Nµ̄2V
2
3

0 = V
2
3

0

Thus µ̄2 = 1
N
. Substituting this inside 2.30 we obtain

µ̄2 =
∆

|p|
(2.31)

This means that given |p|, we have to choose µ̄ such that p(t) = ∆
µ̄2
. So we have:

F k
ab = −2

tr{[h(µ̄)
�ij
− 1]τ k}

µ̄2V
2
3

0

oeia
oejb (2.32)

The relation 2.31 is called Improved dynamics in LQC literature.

We can write 2.32 in a more useful way for its quantization. To do this we use 2.26, and

we have

F k
ab = −2

tr{[C2(1 + C2)1− 1− 2CS3(2τi + τj) + 4C2S2εijlτl]τ
k}

µ̄2V
2
3

0

oeia
oejb

Now recalling that oeia = δia, and noticing that F has to have all the indices with different

values (this can be seen easily from 2.28), from the property of the trace of the Pauli

matrices we have:

F k
ab =− 8C2S2εijl

tr{τlτ k}

µ̄2V
2
3

0

oeia
oejb = −8C2S2εabk

tr{τkτ k}

µ̄2V
2
3

0

=

=
4C2S2εkab

µ̄2V
2
3

0

= εkab
sin2

(
2µ̄c
)

µ̄2V
2
3

0

(2.33)

Well, the curvature operator F̂ is obtained by promoting 2.33 to a quantum operator.

As usual τ inside F is a generator of SU(2), and we fixed in the derivation the j =
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1
2
representation for the holonomy along the squared plaquette, as well as for all the

holonomies we consider in this model.

There is however a problem in the quantization of 2.33: F l
ab contains h(µ̄), and this

holonomy at the classical has the form N (µ̄) = exp( iµ̄c(t)
2

) = exp
( ic(t)

2

√
∆
|p|

)
. In order to

promote F to an operator we need to promote N (µ̄), but differently from N (µ) it contains

p, that is the value of a variable of the phase space. We can overcome such obstacle

through a geometrical consideration. For the operator N̂ (µ), we have:

̂
exp

(
iµc(t)

2

)
exp

(
iµ′c(t)

2

)
= exp

(
ic(µ+ µ′)

2

)
= exp

(
µ
∂

∂µ′

)
exp

(
iµ′c(t)

2

)

Where µ is a constant. So we can think at
̂

exp

(
iµc(t)

2

)
as a dragging for the state of the

quantity µ along the direction individuated by the vector field ∂
∂µ′

. In the same way we

can think at
̂

exp

(
iµ̄c(t)

2

)
as an operator that drags the state along ∂

∂µ′
of the quantity

µ̄(p). For a generic state:

̂
exp

(
iµ̄c(t)

2

)
ψ̃(µ) = exp

(
µ̄
∂

∂µ

)
ψ̃(µ)

This means that this operator acts on the state as: exp
(
µ̄(µ) ∂

∂µ

)
.

Let’s call ∂v = µ̄∂µ. In this way the µ-dependence is absorbed in v. Clearly, if µ′∂µ
generates a shift of µ′ along µ, ∂v generates a shift of 1 along v.

We can fix v with the following relation:

v(p) = (2πγl2P
√

∆)−1sgn(p)|p|
3
2 (2.34)

Where for p here we mean the eigenvalue of p̂ on the state |µ〉, i.e.:

p(µ) =
4πl2Pγ

3
µ (2.35)

Let’s prove it. If we plug 2.35 inside 2.34:

v =

(
4πl2pγ

3

) 3
2

|µ|
3
2 sgn(µ)(2πγl2P

√
∆)−1
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Now,

dv

dµ
=

3

2

(
4πl2pγ

3

) 3
2

(2πγl2P
√

∆)−1
√
|µ| = 1√

∆

√
|µ|
(

4πl2Pγ

3

) 1
2

=

√
|p|
∆

=
1

µ̄(µ)

This means that: dµ
dv

= µ̄(µ), so:

∂v =

(
dµ

dv

)
∂µ = µ̄(µ)∂µ

The classical conjugated variable to v is b = µ̄c
2
. They satisfy

{b, v} = 1 (2.36)

Well, in this new basis {|v〉}, we have

〈v| N̂ µ̄ |v′〉 = 〈v|v′ + 1〉

And this operator in such basis acts as N̂ µ̄ = e
∂
∂v . From now on we’ll work in the new

basis {|v〉}. Let’s see some features of such basis.

The action of p̂ on |v〉:
p̂ |v〉 = (2πγl2P

√
∆)

2
3 sgn(v)|v|

2
3 |v〉

The states |v〉 also form an orthonormal basis for Hgrav, so

〈vi|vj〉 = δij

Moreover the parameter v as well as p has a geometric interpretation: its absolute value

is proportional to the physical volume of the cell V ; in fact:

V̂ = |̂p| 32 , V̂ |v〉 = 2πγl2P
√

∆|v| |v〉 (2.37)

We can proceed with the quantization of F :

F̂ k
ab = εkab

̂sin2
(
2µ̄c
)

µ̄2V
2
3

0

(2.38)

Thus at this stage we quantized the curvature F and we found a basis of its eigenstates

|v〉.
We can proceed with the quantization of the full Hamiltonian constraint, so the quanti-

75



zation of
Ea

jE
b
k√

|det(E)|
=

√
|p|

V
1
3

0

δajδ
b
k

But this is a simple task, since the quantization of p is straightforward. Then the gravi-

tational part of the Hamiltonian constraint

Ĉgrav.(N = 1) = − 6

16πGγ2µ̄2

√̂
|p| ̂sin2(2µ̄c) (2.39)

For the moment we don’t care about the operator ordering. We’ll fix it later.

Let’s deal now with the matter part of the hamiltonian constraint. It can be proved that

the inverse of the volume can be written in the following way:

[
1̂√
|p|

]
=

3

4πγl2p
√

∆
ŝgn(p)

√̂
|p|
(
N̂−µ̄

√̂
|p|N̂µ̄ − N̂µ̄

√̂
|p|N̂−µ̄

)
(2.40)

Well, the matter Hamiltonian operator is given by

Ĉmatter = −~2

2
|̂p|
− 3

2
∂2
φ (2.41)

Where the operator 1̂
V
is written in abstract, while the conjugate momentum P̂φ in the field

representation. In this way we completed the construction of the quantum Hamiltonian

constraint:

Ĉ = Ĉgrav + Ĉmatter

Now we need to require that Ĉ is a self-adjoint operator, in order to generate time

translations. Moreover we have to make a choice in the operator ordering. Several

possibilities have been studied in literature and we make the choice called sMMO (see

[24] for more details). Its two main features are

• Decoupling of zero-volume states

• Decoupling of states with |v < 0〉 from the ones |v > 0〉.

This means that if the hamiltonian acts on states of kind |v > 0〉(|v < 0〉) will give in

general a combination of states with v > 0 (v < 0). The same holds for the zero-volume

states, with the peculiarity that it annihilates them.

The Hamiltonian constraint with this prescription:

Ĉ =

[
1̂

V

] 1
2
(
− 6

16πGγ2
Ω̂2 +

1

2
P̂ 2
φ

)[
1̂

V

] 1
2

(2.42)
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Where Ω̂ is defined as:

Ω̂ =
1

4i
√

∆
|̂p|

3
4
[
(N̂2µ̄ − N̂−2µ̄)ŝgn(p) + ŝgn(p)(N̂2µ̄ − N̂−2µ̄)

]
|̂p|

3
4

Now, since the decoupling of the states |v〉, we can study the different sectors of the

Hilbert space separately, and in particular since one of the three sectors is made only by

states with |v = 0〉, we can neglect it. We can do this if we assume that nowadays the

Universe wavefunction has a contribution from the state |v = 0〉 that zero or very small.

If so, since the time evolution generated by the Hamiltonian operator has to keep the

|v = 0〉 part of the state untouched, it has to give at all times the same weight to the

Universe wavefunction, that is zero or very small. Thus we can directly remove such state

from the Kinematical Hilbert space, and consider the action of such quantum operators

on the geometric sector of the Hilbert space Hgrav, defined as the Cauchy completion

(with respect to the inner product 〈v|v′〉 = δvv′) of the following

CylS = span{|v〉 ; v ∈ R/{0}}

With this prescription the Big Bang singularity is resolved already at the Kinematical

level, since the quantum states equivalent to the classical singularity are already removed

from the Kinematical Hilbert space (before looking at explicit solutions of 2.42).

Instead of working with 2.42 we can consider its densitized version

Ĉ =

[
1̂

V

]− 1
2

Ĉ

[
1̂

V

]− 1
2

= − 6

16πGγ2
Ω̂2 +

1

2
P̂φ

2

In this way both the operators Ω̂2 and P̂φ
2
commute with Ĉ, since

[
Ω̂2, P̂φ

2]
= 0

The densitized constraint and the original one are equivalent, in the sense that their so-

lutions are bijectively related.
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2.1.5 Analysis of the Hamiltonian constraint operator

In order to find the physical solutions of the Minisuperspace we need to solve the following[
− 3

8πGγ2
Ω̂2 +

1

2
P̂φ

2
]
|ψ〉 = 0 (2.43)

Since it is an eigenvalue problem as usual we need to find a common basis of eigenstates

of Ω̂2 and P̂φ
2
. Let’s look at these operators more in detail.

P 2
φ is self-adjoint with a double degenerate continuum spectrum, and its eigenfunctions in

the basis |φ〉 are planewaves e±i|ν|φ with eigenvalues (~ν)2. We can use such planewaves

as basis for the eigenstates of P 2
φ . We notice that we can write a generic solution of 2.43

as

|ψ〉 = |Ω〉 ⊗ |φ〉

With |Ω〉 ⊗ |φ〉 ∈ Hgrav ⊗ L2(R, dφ).

This because the operator is separable (Ω̂2 and P̂φ
2
commute). Let’s look now at the

eigenstates of Ω̂2.

Superselection sectors

The action of Ω̂2 on the states |v〉 of the kinematical sector Hgrav is

Ω̂2 |v〉 = −f+(v)f+(v + 2) |v + 4〉+
[
f 2

+(v) + f−(v)2
]
|v〉 − f−(v)f−(v − 2) |v − 4〉 (2.44)

where

f±(v) =
πγl2P

2

√
|v ± 2|

√
|v|s±(v)

with

s± = sgn(v ± 2) + sgn(v)

As we previously anticipated, |v〉 states are nor annihilated by Ω̂2 neither its eigenstates

in general.

From 2.44 we notice that Ω̂2 is a difference operator of step 4. We also notice thatf−(v)f−(v − 2) = 0, if v ∈ (0, 4]

f+(v)f+(v + 2) = 0, if v ∈ [−4, 0)

This means that if we have a state of kind: |v = ε〉, with ε ∈ (0, 4] the operator relates

it with |v = ε+ 4〉; it relates |v = ε+ 4〉 with |v = ε+ 8〉 and |v = ε〉, and so on. By the
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other side, it relates |v = −ε〉 with |v = −ε− 4〉 , |v = −ε− 4〉 with |v = −ε− 8〉 and
|v = −ε〉... As we anticipated it creates two distinct sectors of the Hilbert space spanned

by |v〉: the one containing states with positive v, and the one with negative v. Moreover

it relates the v′s of the two sectors between themselves. More formally Ω̂2 relates |v〉′ s
with support in a particular semilattice of step four of the form:

L±ε = {v = ±(ε+ 4n), n ∈ N} , ε ∈ (0, 4]

Then Ω̂2 is well defined in any of the Hilbert subspaces H±ε obtained as the completion

of the respective domains

Cyl±ε = span{|v〉 , v ∈ L±ε }

With respect to the discrete inner product. So Hgrav can be written as

Hgrav =
⊕
ε

(
H+
ε ⊕H−ε

)
The action of the Hamiltonian constraint and that of the physical observables (as we’ll

see) preserve the spaces

H±ε ⊗ L2(R, dφ)

that are called Superselection sectors. This means that instead of looking at the whole

Hgrav ⊗ L2(R, dφ) we can restrict our analysis to these spaces, for given ε ∈ (0, 4].

The difference between our prescription sMMO and other ones is that if here the sectors

have support contained in semiaxis of the real line, the other ones in the whole real line.

It can be proved that Ω̂2 is a self-adjoint and positive operator within sMMO prescrip-

tion.

Eigenfunctions of Ω̂2

As we said many times |v〉 is not in general eigenstate of Ω̂2. Let’s denote with

|eελ〉 =
∑
v∈L+ε

eελ(v) |v〉 (2.45)

the eigenstates of Ω̂2 corresponding to the eigenvalue λ ∈ [0,+∞).

It can be proved that for each λ there is a unique set of associated weights eελ(v). In other

words the spectrum of Ω̂2 is non-degenerate.
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We can fix the complex norm of |eελ〉 by requiring that

〈eελ|eελ′〉 = δ(λ− λ′)

In this basis, the resolution of the identity reads

1 =

∫
R+

dλ |eελ〉 〈eελ|

That clearly holds for the Kinematical Hilbert space H+
ε .

The behaviour of such eigenfunctions 〈v|eελ〉, in the limit v → +∞ (so the classical limit)

will allow us to understand the relation between the Loop-quantization of this symmetric

model and its Wheeler-DeWitt quantization. Before looking at the explicit form of eελ(v),

we recall the Wheeler-DeWitt result.

In the Wheeler-DeWitt theory the analog of Ω̂2 is given by

Ω̂2
WdW = −α

2

4

[
1 + 4v∂v + 4(v∂v)

2
]

With α a prefactor. It is a well-defined operator on L2(R, dv); it is self-adjoint and

its spectrum is continuous with double degeneracy. Its eigenfunctions corresponding to

λ ∈ [0,+∞), labelled with ω = ±
√
λ ∈ R (double degeneracy), are

eωWdW (v) =
1√

2πα|v|
exp

(
− iω ln|v|

α

)

and provide an orthonormal basis for L2(R, dv)

〈eωWdW |eω
′

WdW 〉 = δ(ω − ω′)

Let’s compare such solutions with 2.45.

It can be proved that given an eigenfunction of Ω̂2:

eελ(ε)

eελ(ε+ 4)

eελ(ε+ 8)

.

.

.


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The components with large v behave in this way

eελ
v>>1−−−→ r{eiφε(ω)eωWdW (v) + e−iφε(ω)e−ωWdW (v)}

Where r is a normalization factor, and the phase φε(ω):

φε(ω) = T (|ω|) + cε +Rε(|ω|)

With cε a constant and Rε(|ω|) such that

lim
ω→0

Rε(|ω|) = 0

Thus we have that the components 〈v|eελ〉 are ∼ the solutions of WdW for large v. This

means that the two theories are in strong agreement in the classical limit.

Physical Hilbert space

Now we can construct an explicit solution for the Hamiltonian quantum constraint 2.43.

There are different approaches to solve this equation, and all of them give the same result:

ψε(v, φ) =

∫ +∞

0

dλeελ(v)
[
ψ̃+(λ)eiν(λ)φ + ψ̃−(λ)e−iν(λ)φ

]
= ψε+(v, φ) + ψε−(v, φ) (2.46)

where

ν(λ) =

√
3λ

4πl2P~γ2
(2.47)

and where ψ̃± are fixed by the initial datum. We notice that both the geometric and

scalar part of this solution are combinations of all the possible eigenfunctions respectively

of Ω̂2 and P̂ 2
φ . Here a sort of superposition principle holds, and this is due to the fact

that if |ψ〉, |ψ′〉 are solutions of the Hamiltonian constraint, the same holds for their sum.

This solution is clearly written in the basis {|v〉 ⊗ |φ〉}.
The relation 2.47 is fixed by requiring Ĉ |ψ〉 = 0. The physical inner product

〈ψ1|ψ2〉phys =

∫ +∞

0

dλ
[
ψ̃∗1+(λ)ψ̃2+(λ) + ψ̃∗1−(λ)ψ̃2−(λ)

]
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2.1.6 Problem of time and Physical observables

As we know from classical General Relativity in the Ashtekar-Barbero formulation phys-

ical solutions live on the constraint surface
H0 ≈ 0

Ha ≈ 0

Gi ≈ 0

In particular the physical evolution is generated by the Hamiltonian, that is given by

the sum of (constraints) · (lagrange multipliers), since the system is generally covariant.

As we said many times the same object, the Hamiltonian, generates also gauge trans-

formations in the time direction, producing what we technically call gauge orbits on the

constraint surface in which physical solutions live. To the same gauge orbit belong dif-

ferent configurations of the field (classically speaking) that represent the same physical

solution written in different coordinate systems (in the passive interpretation of the dif-

feomorphisms). This means that each physical evolution in the constraint surface can be

mimicked by a gauge transformation in the same direction, and we call with "problem

of time" this ambiguity. A way to solve this problem is through the gauge fixing of the

solution after quantization, and we do it considering as Time the mean value of an oper-

ator on physical states. In the model we are studying a natural choice is fixing 〈φ̂〉 = t:

we consider the mean value of the scalar field operator φ̂ as a clock in our Universe,

and only an its variation can be seen as a time variation. This gauge-fixing procedure is

called Time after Quantization. Let’s describe in this setup the time evolution of physical

states.

First of all we consider separately positive and negative frequency states. Then, fixing

the initial datum ψ±(v, φ0) we write its unitary evolution:

ψε±(v, φ) = U±(φ− φ0)ψε±(v, φ0)

Where

U±(φ− φ0) = exp

[
± i

√
3

4πl2P~γ2
Ω̂2(φ− φ0)

]
Is the quantum time evolution operator if we fix time before quantization.

In this way we can define Dirac observables, that at the classical level we recall that

are defined as quantities that Poisson-commute with all the first class constraints on the
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constraint surface.

Let’s start with v. Classically we know that v(t) is not a constant of motion, so it cannot

be a Dirac observable, since has non vanishing Poisson brakets with the Hamiltonian, the

generator of time evolution. However, if we look at v(φ)
∣∣
φ=φ0

after the gauge fixing, it

can be treated as a Dirac observable. This because at φ = φ0 fixed, the quantity v(φ0)

doesn’t evolve in time. This quantity classically measures the volume at time φ0.

The quantum analog of the observable v(φ0) is

v̂
∣∣
φ0
ψε(v, φ) = U+(φ− φ0)

[
vψε+(v, φ0)

]
+ U−(φ− φ0)

[
vψε−(v, φ0)

]
(2.48)

Let’s analyze the previous equation. Given ψε(v, φ) the action of this operator on such

state is

1. Decomposing the solution in its positive and negative components.

2. Freezing them at the initial time φ = φ0.

3. Multiplying ψε± by v, that is physically the volume at time φ0.

4. Evolving them through U .

We notice that v̂
∣∣
φ
preserves not only the superselection sectors, but also the subspaces

of positive and negative frequencies. Thus any of these subspaces (positive or negative

frequency) provide an irreducible representation of he observable algebra, and the analysis

can be restricted to the positive frequency sector.

The operator v̂
∣∣
φ
allows to analyze the physical results during their evolution. We’ll do

it for semiclassical states. In the next section we look at the qualitative behaviour of the

solution at the Planck scale, and compare it with the WdW behaviour.

2.1.7 Resolution of the singularity: the Quantum Bounce

In the classical theory, when the volume of the Universe vanishes (a → 0), the energy

density diverges, leading to a physical singularity. In the Wheeler-DeWitt theory, making

the gauge fixing choice φ = t, if we start with a solution that at φ = φ0 is sharply peaked

on a certain value v = v∗, and we look at the time evolution of such state, we obtain that
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the wavefunction ψWdW (v, φ) is peaked on the classical trajectory

φ =

√
1

12πG
ln

(
|v|
|v∗|

)
+ φ0 (2.49)

for each time, and in particular in the Planck regime, until the physical singularity.

In this sense the WdW theory doesn’t resolve the singularity problem. The behaviour

described by 2.49 is what we expect from a quantum solution only in the epoch for

which the energy density of the Universe is much smaller than the Planck density (the

semiclassical regime). In fact in such regime the wavefunction is peaked on the classical

value, and for the Ehrenfest theorem we have < v̂ >∼ vcl at each time. The behaviour

described by 2.49 is correctly shared by the Loop-solution in the semiclassical regime,

as we previously anticipated. What drastically changes in this Minisuperspace of Loop

Quantum Cosmology is the behaviour of the solution at the Planck scale. The peak in

the volume of our LQC solution starts to diverge from the classical value when we get

closer the Planck regime (backward in time). In particular, the mean value of v̂ on a

generic state (that we can assume for simplicity with positive frequency) when φ → 0

doesn’t reach v
∣∣
φ

= 0 but stops at a certain vmin and then starts to enlarge.

This is the qualitative behaviour of the solutions in our Minisuperspace at the Planck

scale, and is completely independent on the initial datum ψ(v0, φ0).

To fix ideas we can consider a physical profile for the initial datum given by a logarithmical

normal distribution

ψ̃+(λ) =
1

(2π)
1
4

√
σλ
exp

{
−
[
ln
(
λ
λ0

)]2
4σ2

}
So the total wavefunction for positive frequency modes

ψ(v, φ)
∣∣
φ0

=

∫ +∞

0

dλ
1

(2π)
1
4

√
σλ
exp

{
−
[
ln
(
λ
λ0

)]2
4σ2

}
· eελ(v)eiν(λ)φ

where λ and σ are linked to 〈P̂φ〉 and ∆P̂φ by the relations

〈P̂φ〉 =
√

12πGλ0e
−σ

2

2
∆P̂φ

〈P̂φ〉
=
√
eσ2 − 1

For this kind of initial datum, we show the numerical plot made by J.Olmedo in fig.

2.1. It is shown the LQC solution compared with the classical one, for an expanding

and contracting FRW solution [9]. We show in particular the expectation value v = 〈v̂〉
with respect to φ. As we can see from the plot the LQC solution reaches a minimum in
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Figure 2.1

volume that can be interpreted as a bridge from a contracting branch of the Universe to

an expanding one.

We notice from the plot that the bounce occurs for v ∼ 400, that means VBounce >> l3P .

The fact that the wavefunctions doesn’t reach the Planck volume doesn’t mean that at

each time it is outside the Planck regime. In fact if we plot the energy density ρ of the

scalar field in terms of φ we obtain that at the bounce ρBounce ∼ ρcrit, where ρcrit = 3
8πGγ2∆

.

If one assumes γ ≈ 0.238, usually used in LQC literature and that comes from the

computation of non-rotating black holes isolated horizons, then ρcrit ∼ 0.41ρP , and it is

coherent with what we expect for the energy density scale at which such phenomenon

arises. Moreover it doesn’t mean that the Universe doesn’t reach the Planck volume at

all. It means simply that if we start at the initial time with a wavefunction peaked on a

large-volume state, it never reaches the Planck volume. To better understand this point

we have to remember that we constructed our quantum theory starting from the classical

formulation in terms of Ashtekar-Barbero variables, in which we fixed a certain value

of the fiducial cell V . The freedom in this choice as we previously said comes from the

homogeneity of the model. Taking in the quantum theory an initial state with large V

means choosing for such state a large fiducial cell V . Thus the time evolution of such

wavefunction doesn’t represent the time evolution of the entire Universe. It represents

instead the time evolution of a state that contains a certain number (large) of degrees

of freedom of the gravitational field. If by the other side we start with a sharply-peaked

initial state with small volume V , so we consider a small fiducial cell V , the evolution of

such state will be completely different (and more complicate) than the one shown in the

plot, and it reaches at a certain point of the evolution the Planck volume with a density
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that can be different from ρcrit (usually a bit smaller) but that has ρcrit as upper bound.

There are plots that we don’t show here that confirm this statement.

This means that in the deep Planck regime (ρBounce ∼ ρcrit) the solution bounces, but

the minimum volume it reaches depends on the portion of Universe we are considering.

The apparent ambiguity of the different values VBounce comes from the fact that as we

previously said in this model the volume of the Universe is at each time really infinite,

also at the bounce, and what we can study is how finite portions of such Universe evolve

and behave at the bounce.

As we can also see from the plot, near the bounce the expectation value approaches the

classical one very rapidly, so that once we go away from the Planck region the semiclassical

limit of the theory agrees with the classical k = 0 FRW as desired.

We conclude this section showing another plot [17] of the solution of such Minisuperspace

(fig. 2.2) where on the z axis we have the modulus square of the wavefunction, while in the

Figure 2.2

x and y axis respectively the eigenvalue of the volume and the time φ. Different colours

describe the different values of |ψ|2, and for clarity of visualization are represented only

if |ψ|2 > 10−4. The plot is performed with the following data: ε = 2, 〈P̂φ〉 = 5 · 103 and
∆Pφ

P̂φ
=0.025. After this qualitative description of such numerical solutions we proceed now

introducing a powerful but approximate technique used in Loop Quantum Cosmology,

and in particular in this Minisuperspace, that allows to describe well the dynamics of

the solution for some particular initial states without solving analytically 2.43. Such

technique brings to the so called effective dynamics of LQC.
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2.1.8 Effective dynamics for flat FRW

The effective dynamics is a poweful tool that allows to study the solution of a model in

LQC in an approximate but very accurate way, and is based on the analysis of the action of

the quantum Hamiltonian constraint on large-volume states that are at each time sharply

peaked on classical values of physical observables. We’ll see in the next paragraph what

does this assumption of sharply peaked states physically means. The equation of motion

that arises from this approach is the classical Friedmann equation modified with quantum

corrections, and are derived with the assumption that quantum fluctuations on such

sharply peaked states are small. We start by considering the quantum Hamiltonian

constraint we constructed in the previous paragraph

Ĉ = − 6

16πGγ2µ̄2

√̂
|p| ̂sin2(2µ̄c) +

1

2

1̂

V
P̂φ

2
(2.50)

To reach the effective Hamiltonian constraint we evaluate such operator on states |ψSC〉
peaked at each time on some point of the phase space (b, v). If we assume that the volume

V of such state is large enough at each time (V >> l3P , v >> 1), in such a way that the

inverse volume corrections are negligible, we obtain:

〈ψSC | Ĉ |ψSC〉 = Ceff. ∼ −
6

16πGγ2

√
|p|sin(µ̄c)2

µ̄2
+ |p|

3
2ρ (2.51)

With

ρ =
P 2
φ

2|p|3
(2.52)

the energy density of the massless scalar field φ.

Remark: the assumption V >> l3P means that we are considering physical states gov-

erned by the effective Hamiltonian constraint 2.51 that at each time have a large volume.

We notice that it is coherent with what we found in the plot of the numerical solution of

the exact equations.

We notice also that to reach the effective Hamiltonian we don’t need to care about the

operator ordering in the quantum Hamiltonian constraint. This because we study its ac-

tion on sharply-peaked states, and this makes the operator ordering we choose irrelevant.

Well, firstly we notice that in the classical limit, so µ̄c→ 0

〈ψSC | Ĉ |ψSC〉 −→ − 6

16πGγ2

√
|p|c2 +

P 2
φ

2V
= Cclassic (2.53)
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we recover the classical Hamiltonian constraint, as we expect.

In general the evolution of semiclassical states outside the semiclassical regime produce

fluctuations that bring quantum corrections to 2.51. More we get off the semiclassical

limit, larger such corrections are. This means that in principle

− 6

16πGγ2

√
|p|sin(µ̄c)2

µ̄2
+ |p|

3
2ρ = 0 (2.54)

doesn’t hold at any times for physical states, and in particular approaching the Planck

regime. Let’s suppose for the moment however that these quantum fluctuations are

negligible at each time. From 2.51 we can construct Hamilton equations of motion. The

one for the densitized triad, described by p, gives the Hubble parameter

H =
sin(2µ̄c)

2γV
1
3

0 µ̄
(2.55)

As we did for the Hamiltonian constraint, we can check the robustness of our procedure

taking the classical limit: µ̄→ 0, then

H −→ ȧ

a

We want to write 2.54 in terms of 2.55. We start by writing

sin2(µ̄c) = sin4(µ̄c) + sin2(µ̄c)cos2(µ̄c) = sin4(µ̄c) +
sin2(2µ̄c)

4
(2.56)

We write the first term using 2.54 in terms of ρ, and we plug 2.55 in the second one

sin2(µ̄c) =

(
16πG|p|ρµ̄2γ2

6

)2

+H2γ2a2µ̄2V
2
3

0 (2.57)

Plugging the previous result inside 2.54 we obtain

− 6

γ2

(
16πG|p|ρµ̄γ2

6

)2

− 6H2a2

V
2
3

0

+ 16πG|p|ρ = 0 =⇒

=⇒H2 =
8

3
πGρ

(
1− 8πG|p|ρµ̄2γ2

3

)
=

8

3
πGρ

(
1− ρ

ρcrit.

)
(2.58)

with

ρcrit. =
3

8πG|p|µ̄2γ2
=

3

8πGγ2∆
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is called critical density, and is constant.

Thus

H2 =
8πG

3
ρ

(
1− ρ

ρcrit.

)
(2.59)

As we can see explicitally in 2.59 also in the effective dynamics we avoid the singularity:

when the energy density of the scalar field reaches the critical value ρ = ρcrit.( H = 0), the

Universe stops to contract, bounces and starts to expand. Thus the bouncing behaviour

of the numerical simulation is confirmed by the effective dynamics.

The solution of 2.59 is a sharply peaked state on a trajectory that initially coincides with

the classical one (contracting Universe with k = 0) going toward decreasing values of v; at

a certain point it starts to diverge from the classical trajectory and instead of collapsing

in a singularity it reaches a minimum in the value v of the phase space corresponding

to a maximum in the energy density of the scalar field ρcrit., and then symmetrically

starts to re-expand. In the expanding phase, at late times matches the classical solution

of an expanding Universe (k = 0). Moreover the volume Vbounce reached by the solution

as we’ll show in the next paragraph is much larger than the Planck volume, coherently

with the ansatz we assumed to build the effective Hamiltonian. The divergence from the

classical behaviour is due to the presence of quantum corrections at the leading order in

the effective Hamiltonian, in particular the dependence of the constraint from c through

the holonomy. It can be shown that the effective solutions reproduce extremely well the

numerical simulations for the same sharply-peaked initial states. We have to ask why

this happens, since even if also the volume of the numerical solution doesn’t reach the

Planck volume, the energy density does and we should expect that quantum corrections

to 2.51 arise in the Planck regime, so that the effective results should diverge from the

numerical ones. The accuracy of the effective equations show that also the numerical

(thus the exact) solution for such sharply peaked large-volume initial states is unaffected

by quantum fluctuations, even if it reaches the Planck regime. In the next paragraph

we’ll give a mathematical proof and a physical interpretation of the previous statement.

2.1.9 Accuracy of the effective equations for the FRW Minisu-

perspace

In this section we show why the effective equations we built in the FRW Minisuperpace

are accurate, and represent well the physical dynamics of sharply peaked large-volume

quantum states also in the Planckian regime, where we expect that quantum corrections
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become relevant. We’ll prove that the explaination of this lies in the fact that for sharply

peaked states of this model the Heisemberg uncertainty relations can be made arbitrarily

small at each time. This means that quantum fluctuations for such states never become

important, also in the Planckian regime, and the equation 2.59 that governs their motion

doesn’t acquire ~-corrections in such regime.

Let’s start looking at fluctuations in the Wheeler-DeWitt theory. We can consider as

classical phase space variables the followingA
i
a = c̃(t)δia = γȧ(t)δia

Ea
i = p̃(t)δai = a(t)2δai

(2.60)

where me made the same choices of the previous analysis for the fiducial triad and cotriad

(oeai = δai) and for the lapse (N = 1) , while a different choice for the definition of c

and p: we absorbed the powers of V0 inside them. The relations with the variables c, p:

c̃ = cV
− 1

3
0 , p̃ = pV

− 2
3

0 . We also assumed that sgn(p) = 1, that means eia and oeia parallel.

With this choice the symplectic structure becomes

{c̃(t), p̃(t)} =
8πGγ

3V0

(2.61)

We notice here, even if we don’t prove it explicitally that the dynamics as before is

not affected by the choice of the fiducial cell, since with this choice appear a factor

V0 in the classical hamiltonian constraint 2.13, in such a way that the Poisson brakets

between a variable and the constraint produce terms V0-independent. Let’s apply the

Dirac quantization program and promote the relation 2.61 to its quantum version

[ ̂̃c, ̂̃p ] = i
8πG~γ

3V0

(2.62)

Using now the Robertson inequality for two observables:

∆A∆B ≥ 1

2

∣∣〈[Â, B̂]〉∣∣ (2.63)

on a generic state |ψ〉 we obtain

∆c̃∆p̃ ≥ 4πG~γ
3V0

(2.64)
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Where we notice the dependence at the denominator from V0. This means that the

choice of the fiducial cell V , and its correspondent fiducial volume affects the quantum

states. In fact if now we send V0 → +∞, the product of the uncertanties has 0 as lower

bound. In this case, we can have at all times states arbitrarily peaked both in the p̃

and c̃ variables. We can produce the same considerations to states in LQC, and this

explains why the effective equations are so accurate: the uncertainties for peaked states

don’t spread necessarily during time evolution, and in particular near the bounce. Let’s

follow now the same argument in the LQC case. In order to do it is convenient to make

a change of variables with respect to the usual onesβ = c̃√
p̃

Ṽ = p̃
3
2

(2.65)

Where we notice here that Ṽ is not the physical volume of the fiducial cell V , since p
doesn’t contain V0 anymore. We called it Ṽ to distinguish it from the physical volume

V = V0Ṽ .

Their Poisson brakets

{β, Ṽ } =
4πGγ

V0

(2.66)

The proof of the previous relation is straightforward: we start from 2.61 and we have

{β, Ṽ } =
8πGγ

3V0

{(
∂

∂c̃

c̃√
p̃

)(
∂

∂p̃
p̃

3
2

)}
=

4πGγ

V0

(2.67)

In order to Loop-quantize this model we introduce as before the holonomy, so the smearing

of the Ashtekar connection along a straight path: exp(iλβ).

Here we consider directly an holonomy with minimum physical lenght
√

∆: λ = V
1
3

0 µ̄
√
p̃ =

√
∆ . This choice implements authomatically the improved dynamics prescription when

we use such holonomy for the Hamiltonian constraint.With these variables in hand we

can quantize the classical phase space. Let’s construct the commutator between them.

Recalling the Dirac quantization rule

[ ̂exp(iβλ), ̂̃V ] = i~ ̂{
exp(iβλ), Ṽ

}
(2.68)

Now, {
exp(iβλ), Ṽ

}
=

4πGγ

V0

exp(iβλ)iλ (2.69)
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Thus [ ̂exp(iβλ), ̂̃V ] = −~4πGλγ

V0

êiβλ (2.70)

As usual we can construct a basis {|Ṽ 〉} for the Kinematical Hilbert space, with 〈Ṽ1|Ṽ2〉 =

δṼ1Ṽ2 . The action of the operators ̂̃V and ̂exp(ilβ) on such basis

̂̃V |Ṽ 〉 = Ṽ |Ṽ 〉 (2.71)

̂exp(iλβ) |Ṽ 〉 = |Ṽ +
4πG~γλ

V0

〉 (2.72)

we can easily recover the second result using 2.70 and 2.71:

[ ̂exp(iβλ), ̂̃V ] |Ṽ 〉 = −~4πGγ

V0

êiβλ |Ṽ 〉 =⇒

=⇒ ̂exp(iβλ) ̂̃V |Ṽ 〉 − ̂̃V ̂exp(iβλ) |Ṽ 〉 = −~4πGγ

V0

̂exp(iβλ) |Ṽ 〉 =⇒

=⇒ ̂̃V ̂exp(iβλ) |Ṽ 〉 =

(
Ṽ +

4lπ~Gγ
V0

)
̂exp(iβλ) |Ṽ 〉

which means
̂exp(iλβ) |Ṽ 〉 = |Ṽ +

4πG~γλ
V0

〉

In these variables the effective Hamiltonian constraint of the system, written in terms of

holonomies of minimal physical lenght λ =
√

∆ is:

〈ψSC | Ĉ |ψSC〉 ∼ −
3V0Ṽ

8πGγ2λ2
sin2(λβ) + V0Ṽ ρ ≈ 0 (2.73)

with the usual Improved dynamics prescription implemented to define the curvature ten-

sor F at the quantum level. As before we neglect the inverse volume corrections in the

matter term, assuming large V . We notice that 2.73 is 2.51 written in different variables,

and the same for its classical limit. Let’s look at the matter term. In this section we

generalize the source of the gravitational field to a scalar field φ considered as perfect

fluid with a constant equation of state. The continuity equation of the perfect fluid in

quantum average coincides with the classical one for this effective theory

dρ

dt
+

1

Ṽ

dṼ

dt
(ρ+ p) = 0 (2.74)

And the equation of state

p = ωρ (2.75)
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with −1 ≤ ω ≤ 1 constant. This means

ρ =
ρ0

Ṽ n
(2.76)

with 0 ≤ n ≤ 2. In fact, from the continuity equation

dρ

dt
+

1

a
ρ(1 + ω)ȧ = 0 =⇒ dρ

ρ
= −3

a
(1 + ω)da (2.77)

And integrating both the members

ρ =
ρ0

Ṽ 1+ω
(2.78)

If we call n = 1 + ω we recover 2.76. We notice that ρ and ρ0 are independent on V0.

If now we evaluate the product between the uncertainties ∆Ṽ∆
( sin(λβ)

λ

)
we have

∆Ṽ∆

(
sin(λβ)

λ

)
≥ 2πG~γ

V0

∣∣〈 ̂cos(λβ)〉
∣∣ (2.79)

In order to prove it we need to use 2.63, and in particular evaluate its right-hand side

applied to this specific case:

1

2

∣∣∣∣〈[̂̃V , ̂sin(βλ)

λ

]
〉
∣∣∣∣ =

1

2

∣∣∣∣〈[̂̃V , ̂exp(iβλ)− ̂exp(−iβλ)

2iλ

]
〉
∣∣∣∣ =

=
1

2

∣∣∣∣〈[̂̃V , ̂exp(iβλ)

2iλ

]
〉 − 〈

[̂̃V , ̂exp(−iβλ)

2iλ

]
〉
∣∣∣∣ =

2πG~γ
V0

∣∣∣∣〈 ̂cos(iβλ)〉
∣∣∣∣ (2.80)

Where in the last passage we used 2.70. With this relation in hand we can evaluate,

at fixed V0 when the fluctuations of Ṽ and sin(βλ)
λ

for the semiclassical state become

important. By the other side from the Hamiltonian constraint we can derive what is the

Ṽ of the semiclassical state for which the bounce happens, and we can compare these two

values. To do this we need the equation of motion for Ṽ . We can use the Heisemberg

formula

d ̂̃V
dt

=
i

~
[Ĉ, ̂̃V ] (2.81)

with Ĉ given by

Ĉ = − 3 ̂̃V V0

8πGγ2

̂sin(λβ)

λ

̂sin(λβ)

λ
+ V0

̂̃V ρ̂ (2.82)
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Thus we have

i

~
[Ĉ, ̂̃V ] =

i

~

[
− 3V0

̂̃V
8πGγ2

̂sin(λβ)

λ

̂sin(λβ)

λ
, ̂̃V ] = − 3iV0

̂̃V
8πGγ2~

[ ̂sin(λβ)

λ

̂sin(λβ)

λ
, ̂̃V ]

=− 3iV0
̂̃V

8πGγ2~

([ ̂sin(λβ)

λ
, ̂̃V ] ̂sin(βλ)

λ
+

̂sin(λβ)

λ

[ ̂sin(βλ)

λ
, ̂̃V ])

=
3V̂

2γ

(
2 ̂cos(λβ)

̂sin(βλ)

λ

)
(2.83)

If we evaluate such relation as average on semiclassical states we obtain finally

〈d
̂̃V
dt
〉 =

dṼ

dt
=

3Ṽ

γλ
cos(λβ)sin(λβ) (2.84)

We notice that we can obtain the same result if we evaluate the classical Poisson brakets

between the Hamiltonian constraint 2.73 and Ṽ , so the Hamilton equations for Ṽ , since

we are considering averages on sharply-peaked states.

Let’s solve 2.84. We firstly square it, and then we plug the Hamiltonian constraint 2.73.

We have (
dṼ

dt

)2

=
9Ṽ 2

γ2λ2
sin2(λβ)cos2(λβ) =

9Ṽ 2

γ2λ2
sin2(λβ)

[
1− sin2(λβ)

]
=

=
24πGṼ 2ρ0

Ṽ 2n

(
Ṽ n − ρ0

ρcrit

)
(2.85)

Where ρcrit ≡ 3
8πGγ2λ2

. Now we square both the members and we integrate

dṼ · Ṽ n−1

√
24πGρ0

√
Ṽ n − ρ0

ρcrit

= dt =⇒ 2

n
√

24πGρ0

(
Ṽ n − ρ0

ρcrit

) 1
2

= t− t0 =⇒

=⇒
(
Ṽ n − ρ0

ρcrit

) 1
2

= n26πGρ0(t− t0)2 =⇒ (2.86)

=⇒ Ṽ (t) =

(
6πGρ0n

2(t− t0)2 +
ρ0

ρcrit

) 1
n

(2.87)

in the derivation we assumed dṼ
dt
≥ 0, and that Ṽ (t0) =

(
ρ0
ρcrit

) 1
n . The minimum of this

function is for Ṽ (t) =
(

ρ0
ρcrit

) 1
n , that means t = t0. Clearly we obtain the same result if

we choose a different initial datum. Thus we have

Ṽbounce =

(
ρ0

ρcrit

) 1
n

(2.88)
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We notice that Ṽbounce is independent on the fiducial volume V0.

Now we have to determine for what value of Ṽ the fluctuations become important, and

compare it with the result we obtained for the bounce.

From the Hamiltonian constraint 2.73 we have

sin(λβ)

λ
=

√
ρ0

ρcrit

1

Ṽ
n
2

(2.89)

Now, using the following relation

∆[(f(x))] ∼ ∆(x)
∣∣∂xf(x)

∣∣ (2.90)

valid for small ∆(x), we have

∆

(
sin(λβ)

λ

)
=

n

2λ

√
ρ0

ρc

∆Ṽ

Ṽ
n
2

+1
(2.91)

Assuming now that the relation 2.79 is nearly saturated we obtain

∆Ṽ 2

Ṽ
n
2

+1
=

4πG~γλ
V0n

√
ρc
ρ0

|cos(λβ)| (2.92)

From the previous one we see that the quantum fluctuations in volume become important

( Ṽ ∼ ∆Ṽ ) for:

Ṽqf =

[
4πG~γλ
V0n

√
ρc
ρ0

|cos(λβ)|
] 2

2−n

(2.93)

If we compare 2.88 with 2.93 we notice that for large V0: Ṽbounce >> Ṽqf . This proves

the correctness of the expansion 2.90 and the fact that the equation 2.84, valid only for

semiclassical states, holds at each time, in particular near the bounce point. If we perform

an analogous calculation for sin(λβ) we obtain a similar result.

We notice from 2.93 that for n = 2 (ω = 1) this relation is meaningless. However in

such case we can conclude at the previous step that does not exist a value Ṽqf for which

quantum fluctuations become important, since for n = 2 we have that the ratio ∆Ṽ
Ṽ

goes

to 0 for V0 → +∞.

By the other side we notice that for small V0, or for states that are not sharply peaked, the

effective equations fail. Summarizing, we proved that for the flat FRW Minisuperspace

of LQC the effective equations work well not only in the semiclassical regime, but also in

the deep Planck regime. This is due to the fact that the fluctuations of sharply peaked

states can be taken arbitrarily small at each time, since they are parametrized with V0,
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that can be taken arbitrarily large. Exactly the same holds for the WdW Minisuperspace.

The question that arises naturally from such conclusion is the following: does a quantum

theory without quantum fluctuations of the observables make sense?

Physical interpretation of sharply-peaked states at each time

A quantum theory that predicts states sharply-peaked at each time sounds like a prob-

lematic theory, since the presence of quantum fluctuations usually allow to distinguish

between the classical and the quantum behaviour of a system. In order to understand

why this result is instead natural let’s look at an example. Let’s consider a system of N

atoms with unit mass. Each of them can be described by the usual variables of the phase

space xi and pi, satisfying at the quantum level the commutation relation [x̂i, p̂j] = i~δij.

Let’s look now at the centre of mass of such system. We define as usual the position of

the centre of mass and the momentum as

X̂ =

∑
i x̂i
N

(2.94)

P̂ =
∑
i

p̂i (2.95)

Their canonical commutation relations

[X̂, P̂ ] =
i~
N

(2.96)

and from the previous one we notice that even if we are looking at quantum non-

commutating observables, for N → +∞ their commutator vanish. The same for the

product of their relative uncertainties. So even if the position and momentum of the sin-

gle atoms are subjected to quantum fluctuations, their average is blind to them. Moreover

we are convinced that even if the centre of mass of such system behaves classically, the

system continues to be quantum.

Exactly the same happens for our LQC minisuperspace. We recall in fact that we built

our theory starting from a classical reduced phase space, in which we considered only

the homogeneous and isotropic degrees of freedom of our fields A, E. We can see them

as averages of the local variables, or better averages of the values of the fields made on

different space points. So the fact that there are no fluctuations for our states at each

time, doesn’t imply that there are no quantum fluctuations for such fields at all. It simply

means that the variables β and Ṽ are blind to these at the quantum level, as well as the
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centre of mass for the N-atom system. The theory with a fixed fiducial cell V describes

the evolution of the modes of the field of size V , and not all the other ones. Since we are

interested in the dynamics of the large-scale structure of the Universe, we correctly take

the V0 → +∞ limit. If instead we are interested to what happens locally at each time,

we have to choose V0 small, in such a way that the quantum fluctuations are captured,

and the evolution of the observables cannot be described by the effective equations.

For further details see [18] This concludes our analysis of such Minisuperspace of LQC.

Let’s proceed now with the Loop quantization of homogeneous (but not isotropic) cos-

mologies.

2.2 Bianchi-I Universe

In the previous section we loop-quantized homogeneous and isotropic cosmologies (FRW).

Here we want to relax the symmetry assumptions and quantize a solution still homoge-

neous, but not isotropic. In this section we follow mainly [12]. At the classical level

the homogeneous Universes are called Bianchi, and are not only three as in the FRW

case (k = 0,±1) but many more, labelled with latin numbers I, II,III,... Let’s describe

the difference between them. For generic homogeneous metrics we have three space-like

Killing vectors that satisfy the following algebra:
[
X1, X2

]
= −aX2 + n3X3[

X2, X3

]
= n1X1[

X3, X1

]
= aX3 + n2X2

Where n1, n2, n3, a are the structure constants of the algebra. The set of constants de-

termines uniquely the Bianchi model. In this section we concentrate on the simplest

Bianchi Universe, that is the Bianchi I: it has all the structure constants equal to 0, and

this means that the algebra generated by the Killing vectors is abelian:
[
X1, X2

]
= 0[

X2, X3

]
= 0[

X1, X3

]
= 0
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In the classical ADM formulation, the line element of such model written in cartesian

coordinates (t, ~x):

ds2 = −N2dt2 + ax(t)
2dx2 + a2

y(t)dy
2 + a2

z(t)dz
2 (2.97)

WhereN is the usual lapse function while ax(t), ay(t), az(t) are called directional scale factors

and are the dynamical variables of the theory. As we notice from 2.97 the metric is ho-

mogeneous, since the components don’t depend on x, y, z but anisotropic, since we have

different scale factors for different directions. We can recognize from 2.97 istantly the

three Killing vectors of such metric:
{
∂
∂x
, ∂
∂y
, ∂
∂z

}
.

We notice also that if we make a rescaling:x
i −→ xiαi

ai −→ aiα
−1
i

the line element is invariant. This rescale freedom means that at the classical level ai(t)

are not observables: only the ratios ai(t)
ai(t′)

can be measured. We are in the same situation

of the FRW, where for the same reason only a(t)
a(t′)

is an observable.

An important difference between FRW (k = 0) and this model is that the first one has a

trivial dynamics in vacuum, while the second not. In fact, the Friedmann equations for

a perfect fluid: 
(
ȧ
a
)
2

= 8πG
3
Gρ

ä
a

= −4
3
πG(ρ+ 3p)

and in absence of a source (ρ = p = 0):
(
ȧ
a
)
2

= 0

ä
a

= 0

That means ȧ = 0, ä = 0, with the trivial solution a(t) = const., so the Minkowski

space-time. By the other side the Bianchi I solution for an empty Universe (called also

Kasner solution) is not Minkowski but describes a Universe with two expanding scale

factors and the third contracting, or vice versa. So, even if we could in principle quantize

this model in vacuum obtaining a non trivial Minisuperspace we’ll do it in presence of a

source.

A physical interesting property of this model is that for t = const. describes a 3-D flat
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space, in the sense that it has zero curvature, but expands anisotropically.

In order to Loop-quantize the system let’s proceed with the classical formulation in terms

of the Ashtekar-Barbero variables.

2.2.1 Classical phase space and the Hamiltonian constraint

As we can see from 2.97 the spatial part of the manifold is not compact, similarly to FRW

with k = 0,−1, differently from the case k = 1. For this reason we have to restrict our

analysis to a fiducial cell V . The homogeneity of the space guarantees that the analysis

made on V is representative of the whole space.

We choose V in a convenient way, so that its edges lie along the fixed coordinate axis xi.

As in the FRW case is useful to fix a fiducial flat metric oqab with line element

ds2
o = oqabdx

adxb

that doesn’t evolve in time. As in the previous section we denote by oq the determinant

of such metric, by Li the lenghts of the three edges of V as measured with oqab and by

V0 = L1L2L3 the fiducial volume of V .
Finally as in FRW we intoduce fiducial triads (oeia) and co-triads (oeai) such that

δij = oeai
oebj

oqab

Where in principle oqab is not written in a cartesian frame.

Let’s fix the frame for our fiducial metric, and in particular oqab = δab. In this way
oeai = δai, oeia = δia. With this choice our fiducial line element:

ds2
o = δabdx

adxb

Independently on this choice instead we have a relation between the fiducial triad (co-

triad) and the physical one: e
i
a = aa(t)

oeia

eai = (a(t)a)−1oeai

where here two equal low (high) indices don’t mean summation.

Remark : in the isotropic model we used V
1
3

0 in place of Li; here we can use Li since the

associated physical lenghts are not equal because the loss of isotropy.
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As in the previous case the homogeneity allows to write the variables E, A in a suitable

way; A
i
a = ci(t)(Li)−1oeia

Ea
i = pi(t)LiV

−1
0

√
oqoeai

(2.98)

Well, if in the isotropic case:

p = sgn(a)a2V
2
3

0

Here: 
p1 = sgn(a1)|a2a3|L2L3

p2 = sgn(a2)|a1a3|L1L3

p3 = sgn(a3)|a1a2|L1L2

(2.99)

where sgn(ai) = 1 if oeai and eai are parallel, −1 if antiparallel. We see later the explicit

expression of ci.

From 2.99 we can easily derive the relation between the physical volume and the p′s

V = |a1a2a3|L1L2L3 =
√
|p1p2p3| (2.100)

Well, since the decoupling due to homogeneity between the time dependence and the

tensorial structure in the Ashtekar-Barbero variables we can directly consider ci and pj
as the variables of the classical phase space, and can be easily proved that satisfy the

following

{ci, pj} = 8πGγδij (2.101)

So the Bianchi-I phase space is 6-D, differently from the 2-D FRW.

We notice from 2.99 that such phase space variables depend strongly on the choice of the

elementary cell V , but don’t depend on the choice of the fiducial triads, co-triads and

metric.

Let’s now construct the constraints of the model at the classical level. As usual the

constraint surface within the Ashtekar-Barbero formalism is the following:Hµ ≈ 0

Gi ≈ 0

However as well as the isotropic case it can be easily proved that the Diffeo. and Gauss

constraints are authomatically satisfied cause homogeneity. Thus we are left with the
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Hamiltonian constraint:

C(N) = Cgrav.(N) + Cmatt.(N)

Where Cgrav.(N) is given by 2.3, while Cmatt.(N) is the hamiltonian constraint related to

a massless scalar field φ.

Let’s write down them explicitally, starting from the gravitational part. Firstly we notice

that following the same reasoning of the previous chapter, we can pass from the expression

2.3 to 2.5, obtaining

Cgrav. =
−εijk

16πGγ2

F i
abE

ajEbk

e
(2.102)

Now, recalling 2.15, that holds since homogeneity, and using 2.98, we have:

Cgrav. = −pjLj
√
oq(oeaj)pkLk

√
oq(oebk)

16πGγ2V 2
0 e

εjki ε
i
lmA

l
aA

m
b =

= −pjpkLjLk
oq(oeaj)(

oebk)

16πGγ2V 2
0 e

εjki ε
i
lmc

l(Ll)−1cm(Lm)−1(oela)(
oemb)

Now, since we assumed oqab = δab, that means oq = 1, oeaj = δaj, we have

Cgrav. = − plpm
V 2

0 16πGγ2e
clcmεlmkε

k
lm

Now, recalling that

εijkε
k
lm = δilδ

j
m − δimδj l

We have, evaluating explicitally the summations over contracted indices:

Cgrav. = − 1

8πGγ2V 2
0 e

(p1p2c
1c2 + p1p3c

1c3 + p2p3c
2c3)

Recalling that: e =
√
|det(E)| =

√
|p1p2p3|V −1

0 , and using 2.98 we finally have

Cgrav. = − 1

8πGγ2V0

√
|p1p2p3|

(p1p2c
1c2 + p1p3c

1c3 + p2p3c
2c3) =⇒

=⇒ Cgrav.(N) = −
∫
d3xN

1

V08πGγ2
√
|p1p2p3|

(p1p2c
1c2 + p1p3c

1c3 + p2p3c
2c3) =

= − N

8πGγ2
√
|p1p2p3|

(p1p2c
1c2 + p1p3c

1c3 + p2p3c
2c3) (2.103)

Now, instead of taking N = 1 (synchronous gauge) as in the isotropic case, the simplest

choice for N is

N =
√
|p1p2p3| (2.104)
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called harmonic gauge. We write the associated time variable τ to distinguish it from the

synchronous time t corresponding to the gauge fixing condition N = 1. Such variables

are in the following relation: N2dτ 2 = dt2. In this way:

Cgrav. = − 1

8πGγ2
(p1p2c

1c2 + p1p3c
1c3 + p2p3c

2c3) (2.105)

By the other side, for the matter constraint we have the same expression of the isotropic

case:

Cmatt. =
1

2

P 2
φ

V
(2.106)

and the whole Hamiltonian constraint:

C = − 1

8πGγ2
(p1p2c

1c2 + p1p3c
1c3 + p2p3c

2c3) +
1

2
P 2
φ (2.107)

where for the Matter part we assorbed 1
V

in the lapse function N as well as we did for

Cgrav.. The physical states of the classical theory lie on the constraint surface C ≈ 0.

The classical solution (ci(t), p
j(t)) is given by

dp1

dτ
= {p1, C} = −8πGγ

∂C

∂c1
=
p1

γ
(p2c

2 + p3c
3) (2.108)

dc1

dτ
= {c1, C} = 8πGγ

∂C

∂p1

= −c
1

γ
(p2c

2 + p3c
3) (2.109)

while the other time derivatives can be obtained by permutations.

Combining these equations with 2.99 we obtain

ci = γLiV −1
0 (a1a2a3)−1da

i

dτ
(2.110)

Now we can relate ci with the Hubble parameters

Hi =
dai
dt

1

ai

written in terms of the synchronous time t. If we write 2.110 in terms of Hi, recalling

that
d

dt
=

1√
|p1p2p3|

d

dτ

using 2.100 we have:

ci = γLiV −1
0 (a1a2a3)−1

√
|p1p2p3|

dai

dt
= γLiaiH i (2.111)
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Finally we want to find for this Bianchi I Universe the analogous of the first Fried-

mann equation. For this purpose we introduce a mean scale factor: a ≡ (a1a2a3)
1
3 that

encodes the physical volume 2.100 but ignores anisotropies. Then we can define the

mean Hubble parameter:

H ≡ d

dt
ln(a) =

d

dt
ln[(a1a2a3)

1
3 ] =

1

a

d

dt
(a1a2a3)

1
3 =

=
1

3a
(a1a2a3)−

2
3 (ȧ1a2a3 + a1ȧ2a3 + a1a2ȧ3) =

=
1

3

(
ȧ1

a1

+
ȧ2

a2

+
ȧ3

a3

)
=

1

3
(H1 +H2 +H3) (2.112)

Now, from the Hamiltonian constraint 2.107 that holds on-shell, calling ρmatt. = 1
2

P 2
φ

V 2 , we

have:

p1p2c
1c2 + p1p3c

1c3 + p2p3c
2c3 = 8πGγ2ρmatt.V

2

using 2.99 and 2.111 :

|a2
1a

2
2a

2
3| L2

1L
2
2L

2
3 (H1H2 +H2H3 +H1H3) = 8πGρmatt.V

2 =⇒

=⇒ H1H2 +H1H3 +H2H3 = 8πGρmatt. (2.113)

Then, combining 2.112 and 2.113 we obtain

H2 =
1

9
(H2

1 +H2
2 +H2

3 + 16πGρmatt.)

that can be rewritten as

H2 =
8πG

3
ρmatt. +

Σ2

a6
(2.114)

where

Σ2 =
a6

18
[(H1 −H2)2 + (H1 −H3)2 + (H2 −H3)2] (2.115)

is called shear term, and can be proved that classically is a constant of motion.

2.114 is the first generalized Friedman equation for the Bianchi-I Universe. We derived

it within the Ashtekar-Barbero formulaton, but it can be equivalently derived from the

canonical formulation of Einstein theory, by imposing the Hamiltonian constraint in the

variables (q, π). We notice that if we assume in 2.114: H1 = H2 = H3 we recover the

first Friedmann equation (k = 0).

These considerations will be useful to explore some features of the quantum model.
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Remark : as well as in the isotropic case we consider a massless scalar field φ not sub-

jected to an external potential. This means that also here Pφ is a constant of motion,

and φ grows linearly with τ . For this reason φ, or better 〈φ̂〉 is a good time parameter

for our system, and we’ll use it to solve the problem of time.

Let’s conclude this paragraph focusing on the reflection symmetries of the theory, that

will play an important role at the quantum level.

In the isotropic case we could restrict our attention on the sector p > 0, even if we kept

the sign of p unfixed. This because by a side the classical Hamiltonian is invariant under:

Π(p) = −p (2.116)

since it depends on |p|, and even if the quantum Hamiltonian depends explicitally on

ŝgn(p) (in the sMMO quantization scheme) it can be proved that its total action on

physical states doesn’t depend on it. Moreover we recall that the transformation 2.116

physically means a change in the relative orientation between the axis of the triadic metric

and the physical one. This can be easily seen from 2.9. Clearly the physical metric qab
remains invariant under such transformation, which is global. In the Banchi I case we

have three reflections that make the Hamiltonian constraint unchanged, described by

three classical operators Πi, each of them corresponding to the flip of only an axis of the

triadic frame:

Π1(p1, p2, p3) = (−p1, p2, p3) (2.117)

2.2.2 Kinematical Hilbert space

Generalizing the procedure we followed for the isotropic case the elementary variables

we consider here for the quantization of the model are the three momenta pi and the

holonomies h(µi)
i evaluated along edges parallel to the three fiducial axis xi, with lenghts

µiLi with respect to the fiducial metric oqab. We recall that in the isotropic model

l = µV
1
3

0 , while here we take in account that Li 6= Lj for i 6= j. Thus

h
(µi)
i (c1, c2, c3) = 1 · cos(µici) + 2τisin(µici) (2.118)

As well as the isotropic case the matrix elements of such holonomy are linear combinations

of functions of kind exp(iµici). For this reason we can consider as variables of the classical

phase space directly Nµi = exp(iµici). Following instead the same consideration we did

in the previous Minisuperspace for the triad, the other three variables we consider here
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are pj.

In the isotropic case we considered as basis {|µ〉} for Hgrav. with the following features

N̂µ′ |µ〉 = |µ+ µ′〉

p̂ |µ〉 = p(µ) |µ〉 , with p(µ) =
4πγl2Pµ

3

〈µ|µ′〉 = δµµ′

Here a basis for the Kinematical Hilbert space is |µ1, µ2, µ3〉. We label such states with

the correspondent eigenvalue of p̂i. A generic state in such basis:

|ψ〉 =
∑

p1,p2,p3

ψ(p1, p2, p3) |p1, p2, p3〉 (2.119)

with

〈p1, p2, p3|p′1, p′2, p′3〉 = δp1p′1δp2p′2δp3p′3 (2.120)

Where δ here are Kronecker deltas, that as in the isotropic case allow to mimick the

structure of the full theory.

As we saw in the previous paragraph a change in the orientation of the axis of the tetrad

frame with respect to the physical one produces a change in sign of the correspondent

pi. This classical property can be implemented at the quantum level assuming that ψ

satisfies the following

Π̂1ψ(p1, p2, p3) = ψ(−p1, p2, p3) (2.121)

and since Π at the classical level doesn’t affect the physics, at the quantum level that

each operator has to commute with Π̂i. Therefore we can restrict our Kinematical Hilbert

space to the one spanned by states with a given eigenvalue of this operator. In particular

we assume

ψ(p1, p2, p3) = ψ(|p1|, |p2|, |p3|) (2.122)

so states that are eingenstates of Π̂i with eigenvalue +1.

Well, as in the isotropic case |p1, p2, p3〉 are not only eigenstates of p̂i, but also eigenstates

of geometric operators like the area and the volume. In particular for the state |p1, p2, p3〉
the action of the elementary operators is given byp̂1 |p1, p2, p3〉 = p1 |p1, p2, p3〉

N̂µ1 |p1, p2, p3〉 = ̂exp
(
iµ1c1

)
|p1, p2, p3〉 = |p1 + 8πγl2Pµ1, p2, p3〉

(2.123)
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and similarly for p̂2, p̂2, N̂µ2 , N̂µ3 . The only differences with respect to the isotropic case

is the absence of the factor 1
3
, that comes from a different prefactor in the Poisson braket

structure (2.101).

The whole Kinematical Hilbert space of the model is the tensor product

HKin = Hgrav.
Kin ⊗H

matt.
Kin (2.124)

Where Hmatt.
Kin = L2(R, dφ). On this space φ̂ acts by multiplication and P̂φ = −i~ ∂

∂φ
.

Let’s proceed now with the construction of the Hamiltonian operator.

2.2.3 The classical Hamiltonian constraint and its quantization

To construct a well defined quantum Hamiltonian operator we need to write the classical

Hamiltonian constraint in terms of the holonomies and the fluxes.

Let’s start with the curvature tensor F i
ab contained in the Hamiltonian constraint. For

such tensor we can use exactly the same expression we have in the isotropic case (2.29),

that is useful to rewrite here

F l
ab = lim

A�→0
−2

tr{[h(µ)
�ij
− 1]τ l}

A�

oeia
oejb (2.125)

Where here A� is the fiducial area of a rectangular plaquette. As we know from the full

theory we cannot promote the connection A to a quantum operator, and since F is a

combination of terms of kind AA, we cannot quantize the right hand side of the previous

expression. We can see this recalling that the quantum area in LQG is quantized with a

minimum non-zero value of the spectrum, and since we need to mimick the structure of

the full theory we cannot send A� to 0. We have to fix somehow the minimum area of such

plaquettes. As in the isotropic case we can do it making a parallelism with LQG, using so

the minimum value of the spectrum of the area operator. In the previous paragraph we

found that a state of the Kinematical Hilbert space of kind |p1, p2, p3〉 is eigenvalue of the
volume and area operators, and in this quantum state the faces of the fiducial cell V have

values |p1|, |p2|, |p3|. What is the analogous of such state in LQG? As in the isotropic

case, firstly we expect that the links of the graph associated with the LQG state have

to puncture all the faces of the fiducial cell V . Clearly such state cannot be perfectly

homogeneous, since to be so it should have an infinite number of links. However we can

achieve the best coarse grained geometry by assuming that such links carry spin j = 1
2
.

In this way the separation area between them is the smallest possible. Finally we have to
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understand how many links puncturing each surface such graph has to have. To simplify

the analysis we consider one of the the surfaces of the cell V , in particular one of the two

orthogonal to the x3 axis and we call it S12. As we previously said the area of such surface

for the state |p1, p2, p3〉 is |p3|. We also know that the area associated with each link of

the spin-network state puncturing a surface is ∆ = 4πγ
√

3l2P . If we consider rectangular

areas for each link, we need N links puncturing such surface such that

N∆ = |p3| (2.126)

Let’s call µ̄1 and µ̄2 the adimensional lenghts of the fiducial area associated with the

physical area of such plaquettes. We have that the fiducial area of such plaquettes is:

µ̄1µ̄2L1L2. By the other side, the fiducial area of the whole surface S12 is L1L2. Thus we

have

L1L2 = Nµ̄1µ̄2L1L2 ⇐⇒ N =
1

µ̄1µ̄2

(2.127)

Substituting this in 2.126 we have

|p3| =
∆

µ̄1µ̄2

(2.128)

Differently from the isotropic case this equation is not sufficient to determine µ̄1 and

µ̄2, but if we consider cyclic permutation of 2.128, so we consider the three orthogonal

surfaces of V we obtain

µ̄1 =

√
|p1|∆
|p2||p3|

µ̄2 =

√
|p2|∆
|p1||p3|

µ̄3 =

√
|p3|∆
|p1||p2|

(2.129)

We notice that as in the isotropic case these µ̄i are not fixed, but depend on the state

|p1, p2, p3〉 on which the operator F̂ acts.

The resulting curvature tensor

F l
ab = −2

tr{[h�ij − 1]τ l}
A�

oeia
oejb (2.130)

with

h�ij = h
(µ̄i)
i h

(µ̄j)
j h

(µ̄i)−1
i h

(µ̄j)−1
j

and A� = LiLjµ̄iµ̄j.

Now, let’s write this tensor in a more useful form. Recalling 2.26 for the isotropic case,
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here we have an analogous result with this form

h�ij = f(CiCjSiSj)1 + g(CiCjSiSj)τi + h(CiCjSiSj)τj + 4CiCjSiSjεijkτk (2.131)

where f , g, h are linear functions of their argument, and Ci = cos
(
µ̄ici

2

)
, Si = sin

(
µ̄ici

2

)
.

Thus

h�ij − 1 = f̃(CiCjSiSj)1 + g(CiCjSiSj)τi + h(CiCjSiSj)τj + 4CiCjSiSjεijkτk (2.132)

If now we multiply this by τ k and we make the trace, we notice that the first term

vanishes, since tr(τ) = 0. Moreover, recalling that

F k
ab = εkijA

i
aA

j
b = εkijc

icj(LiLj)−1oeia
oejb

the indices i, j, k have to be all different. This means that when we multiply the second

and third term in 2.132 by τ k, and then we make the trace they vanish. The only non-zero

contribution is given by the last term:

F̂ k
ab = −2

tr{[h�ij − 1]τ k}
A�

oeia
oejb = −8εij

kCiCjSiSj
tr{τ kτ k}
A�

oeia
oejb =

= 4εij
kCiCjSiSj

1

A�

oeia
oejb (2.133)

Now, to write it in a more convenient way we use the duplication formula for the sin:

sin(2x) = 2sin(x)cos(x):

F k
ab = εij

k

[
sin(µ̄ici)

µ̄iLi

sin(µ̄jcj)

µ̄jLj

]
oeia

oejb (2.134)

where as before the indices i and j in the quantities in the squared brakets have to be

thought as labelling factors of the components i, j of the fiducial triads. This is a very

useful form for such tensor, since it can be immediately quantized:

F̂ k
ab = εij

k

[ ̂sin(µ̄ici)

µ̄iLi

̂sin(µ̄jcj)

µ̄jLj

]
oeia

oejb (2.135)

We can proceed now with the quantization of the whole Hamiltonian constraint. Recalling

2.102, we have to quantize the term EaiEbk√
|det(E)|

. We can quantize it in a direct way, since

it contains only the variables pi of our phase space, and we already promoted them to
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quantum operators. Let’s write it explicitally in terms of pi:

Ea
jE

b
k√

|det(E)|
=
pjpkLjLkV

−1
0 V −1

0

√
oq
√
oq(oeaj )(

oebk)√
|p1p2p3|V −1

0

Thus the densitized hamiltonian constraint at the classical level:

Cgrav. =
−Nεijk

16πGγ2

F i
abE

a
jE

b
k

eV 2
0

=

= −
NpjpkLjLk

oq(oeaj )(
oebk)

16πGγ2V0

√
|p1p2p3|

· εijkεilm
[
sin(µ̄lcl)

µ̄lLl

sin(µ̄mcm)

µ̄mLm

]
(oela)(

oemb)

Now we assumed oeaj = δaj, thus:

Cgrav. = − NplpmLlLm

16πGγ2V0

√
|p1p2p3|

· εilmεilm
[
sin(µ̄lcl)

µ̄lLl

sin(µ̄mcm)

µ̄mLm

]
= − Nplpm

16πGγ2V0

√
|p1p2p3|

· εilmεilm
[
sin(µ̄lcl)

µ̄l

sin(µ̄mcm)

µ̄m

]
(2.136)

Now we integrate over d3x and we obtain the Hamiltonian constraint

Cgrav. =

∫
d3xCgrav = − Nplpm

16πGγ2
√
|p1p2p3|

· εilmεilm
[
sin(µ̄lcl)

µ̄l

sin(µ̄mcm)

µ̄m

]
(2.137)

As we did in the construction of the Hamiltonian constraint in terms of ci and pj (2.105)

we make the gauge fixing N =
√
|p1p2p3| and we have

Cgrav. =

∫
d3xCgrav = − plpm

16πGγ2
· εilmεilm

[
sin(µ̄lcl)

µ̄l

sin(µ̄mcm)

µ̄m

]
(2.138)

If now we expand εilmεilm, and we rewrite µ̄i in terms of pj through 2.129 we obtain

Cgrav =− 1

8πGγ2∆
[p1p2|p3|sin(µ̄1c1)sin(µ̄2c2) + p2p3|p1|sin(µ̄2c2)sin(µ̄3c3)+

p3p1|p2|sin(µ̄3c3)sin(µ̄1c1)] (2.139)

We can promote directly the previous expression to a quantum operator, obtaining the

quantized gravitational Hamiltonian constraint of this Minisuperspace

Ĉgrav =− 1

8πGγ2∆

[
p̂1p̂2 |̂p3| ̂sin(µ̄1c1) ̂sin(µ̄2c2) + p̂2p̂3|̂p1| ̂sin(µ̄2c2) ̂sin(µ̄3c3)+

p̂3p̂1|̂p2| ̂sin(µ̄3c3) ̂sin(µ̄1c1)
]

(2.140)
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For the moment we don’t care about the operator ordering. In order to obtain the action

of this operator on a state |p1, p2, p3〉 is sufficient to look at the action of the operator

exp(iµ̄ici), since the action of p̂i on such state is given by the first relation of 2.123. We

observe that as in the isotropic case we cannot use for such purpose the second relation

of 2.123, since here we have µ̄ that depends on pi. If in the isotropic case we have

̂
exp

(
iµ̄c

2

)
|p〉 = exp

(
µ̄
d

dµ

)
|p〉 = exp

(
4

3
πγ
√

∆l2P
1√
|p|

d

dp

)
|p〉 (2.141)

In the anisotropic case we have analougsly

̂exp(iµ̄1c1) |p1, p2, p3〉 = exp

(
8πγ
√

∆l2P

√∣∣∣∣ p1

p2p3

∣∣∣∣ ∂∂p1

)
|p1, p2, p3〉 (2.142)

Differently from the isotropic case this expression is difficult to manage, since are present

all the pi. For this reason we cannot proceed as in the isotropic case introducing the

differential operator ∂v = µ̄∂µ. In order to simplify it let’s introduce new dimensionless

variables

λi =

(
1

4π|γ|l2P
√

∆

) 1
3

sgn(pi)
√
|pi| (2.143)

In such a way that sgn(pi) = sgn(λi).

Thus we can introduce a new orthonormal basis {|λ1, λ2, λ3〉} in Hgrav
kin . These states are

again eigenstates of p̂i:

p̂i |λ1, λ2, λ3〉 = sgn(λi)

(
4π|γ|

√
∆l2P

) 2
3

λ2
i |λ1, λ2, λ3〉 (2.144)

The action of ̂exp(iµ̄1c1) on these states

̂exp(iµ̄1c1) |λ1, λ2, λ3〉 = exp

(
sgn(λ1)

λ2λ3

∂

∂λ1

)
|λ1, λ2, λ3〉 ≡ Ê1 |λ1, λ2, λ3〉 (2.145)

Where we introduce Êi as a short-hand notation. In the previous expression we used

the property of the Immirzi parameter γ = |γ|sgn(p1p2p3). Let’s analyze the action of

this operator. We notice that it contains the vector field ∂
∂λ1

, and similarly as we did in

the isotropic case we can conclude that it drags the wavefunction ψ(λ1, λ2, λ3) along the

direction λ1, of the quantity sgn(λ1)
λ2λ3

, where the factor 1
λ2λ3

is constant along such direction,
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since orthogonality. Thus its action on the state

Ê1 |λ1, λ2, λ3〉 = |λ1 +
sgn(λ1)

λ2λ3

, λ2, λ3〉 (2.146)

In particular the action of this operator vanishes is not defined for states of kind |λ1, 0, 0〉
since the wavefunction ψ doesn’t have support in λ1 =∞. This however is not a limitation

since such states are annihilated by the volume operator before Êi acts. With 2.143 in

hand we can rewrite the gravitational part of the quantum hamiltonian constraint 2.140

in terms of λi
Ĉgrav = Ĉ(1)

grav + Ĉ(2)
grav + Ĉ(3)

grav (2.147)

With

Ĉ(1)
grav =− π~l2P

̂√|λ1λ2λ3|
[ ̂sin(µ̄2c2) ̂sgn(λ2) ̂|λ1λ2λ3| ̂sgn(λ3) ̂sin(µ̄3c3)+

+ ̂sin(µ̄3c3) ̂sgn(λ3) ̂|λ1λ2λ3| ̂sgn(λ2) ̂sin(µ̄2c2)
] ̂√|λ1λ2λ3| (2.148)

Ĉ
(2)
grav and Ĉ(3)

grav are obtained from the previous expression through cyclic permutations.

Let’s observe that in 2.148 we make a precise choice in the operator ordering. As well as

in the isotropic case, it can be proved that this operator is invariant under the action of

Π̂i and self-adjoint. As we anticipated in the first paragraph of this section we assume

that the eigenstates of this operator are symmetric under parity, so the eigenfunctions in

these new variables

ψ(λ1, λ2, λ3) = ψ(|λ1|, |λ2|, |λ3|) (2.149)

Let’s conclude this paragraph with the construction of the matter Hamiltonian constraint.

We have exactly the same operator of the isotropic case

Ĉmatt =
P̂ 2
φ

2
= −~2

2

∂2

∂φ2
(2.150)

In the |φ〉 representation. Thus, the whole Hamiltonian constraint(
Cgrav −

~2

2

∂2

∂φ2

)
ψ(λ1, λ2, λ3, φ) = 0 (2.151)

We finally notice that the choice 2.104 allowed us to avoid a term in the Hamiltonian of

kind 1̂
V
, that is not only difficult to manage but has to be correctly ordered. If here we

follow exactly the same procedure of the isotropic case, we end up with an Hamiltonian
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constraint slightly different and more complicate, cause a different factor ordering. In the

next paragraph we proceed with a further simplification of Ĉgrav.

2.2.4 Simplification of Ĉgrav

In the isotropic case we introduced v(p) (2.34) such that

|v(p)| = (2πγl2P
√

∆)−1|p|
3
2 = (2πγl2P

√
∆)−1V

Here if consider |λ1λ2λ3| we have

|λ1λ2λ3| =
(

1

4π|γ|l2P
√

∆

)√
|p1p2p3| =

(
1

4π|γ|l2P
√

∆

)
V (2.152)

Thus if here we call

|v| = 2|λ1λ2λ3| (2.153)

we obtain an analogy between the two cases. As in the isotropic case, |v| is directly linked

with the volume of the elementary cell V

V̂ ψ(λ1, λ2, v) = 2π|γ|
√

∆|v|l2P ψ(λ1, λ2, v) (2.154)

That is the analog of 2.37 for this anisotropic model. Differently from the isotropic case

however it is not sufficient the variable v to completely determine the wavefunction, but

we need other two, which we choose to be λ1, λ2. Well, let’s proceed with the simplification

of the Hamiltonian constraint. Firstly we notice that we can rewrite 2.148 as a linear

combination of 24 terms of kind

Ĉ±±ij =
√̂
|v|Ê±i ̂sgn(λi)|̂v| ̂sgn(λj)Ê

±
j

√̂
|v| , i 6= j (2.155)

obtained keeping in account 2.153 and writing sin(µ̄ici) as complex exponentials. Now

we look at this constraint as acting on eigenfunctions of kind ψ = ψ(λ1, λ2, v), and in

particular on ψ = ψ(|λ1|, |λ2|, |v|) (requiring symmetry under parity). This simplify

enormously its expression, since we can use it to remove the factors ̂sgn(λi) from 2.155.

In order to to this explicitally let’s focus our attention on one of the 24 terms of kind
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2.155:

Ĉ−−21 ψ(λ1, λ2, v) =
√̂
|v|Ê±2 ̂sgn(λ2)|̂v| ̂sgn(λ1)Ê±1

√
|v| ψ(λ1, λ2, v) =

=
√̂
|v|Ê±2 ̂sgn(λ2)|̂v| ̂sgn(λ1)

√
|v − 2sgn(λ1)| ψ

(
λ1 −

2sgn(λ1)λ1

v
, λ2, v − 2sgn(λ1)

)
=

=
√̂
|v|Ê±2 ̂sgn(λ2)|̂v|sgn(λ1)

√
|v − 2sgn(λ1)| ψ

(
λ1 −

2sgn(λ1)λ1

v
, λ2, v − 2sgn(λ1)

)
=

=
√̂
|v|Ê±2 ̂sgn(λ2)|v|sgn(λ1)

√
|v − 2sgn(λ1)| ψ

(
λ1 −

2sgn(λ1)λ1

v
, λ2, v − 2sgn(λ1)

)
=

=
√̂
|v|Ê±2 sgn(λ2)|v|sgn(λ1)

√
|v − 2sgn(λ1)| ψ

(
λ1 −

2sgn(λ1)λ1

v
, λ2, v − 2sgn(λ1)

)
=

=
√̂
|v|sgn

(
λ2 − 2

sgn(λ2)λ2

v

)
|v − 2sgn(λ2)|sgn(λ1)

√
|v − 2sgn(λ1)− 2sgn(λ2)| ×

× ψ
(
λ1 −

2sgn(λ1)λ1

v − 2sgn(λ2)
, λ2 −

2sgn(λ2)λ2

v
, v − 2sgn(λ1)− 2sgn(λ2)

)
=

=
√
|v|sgn

(
λ2 − 2

sgn(λ2)λ2

v

)
|v − 2sgn(λ2)|sgn(λ1)

√
|v − 2sgn(λ1)− 2sgn(λ2)| ×

× ψ
(
λ1 −

2sgn(λ1)λ1

v − 2sgn(λ2)
, λ2 −

2sgn(λ2)λ2

v
, v − 2sgn(λ1)− 2sgn(λ2)

)
(2.156)

If now we require symmetry under parity of the wavefuncton, we can restrict the action

of the constraint on the positive octant (λ1 > 0, λ2 > 0, v > 0) of the wavefunction,

obtaining(
Ĉ−−21 ψ(λ1, λ2, v)

)∣∣∣∣
+octant

=
[√
|v|(v − 2)

√
|v − 4|

]
ψ

(
λ1
v − 4

v − 2
, λ2

v − 2

v
, v − 4

)
(2.157)

Remark: we observe that focusing on the positive octant here doesn’t mean that the

wavefunction has only positive arguments. At this stage we cannot exclude yet the

negative arguments (as we did in the isotropic case fixing L+
ε instead of L−ε ) since we

didn’t prove yet that the Hamiltonian constraint preserves such choice. We simply look

at the positive arguments since the analysis of the negative ones gives exactly the same

result, cause the symmetry assumption.

The action of Ĉ−−21 is now much more clear: it multiplies the wavefunction by functions

only of v, and the arguments of the wavefunction itself are modified in the following way:

the volume is shifted by 4, while λ1 and λ2 are modified by a factor depending exclusively

on the volume. Since all the other terms that compose the constraint have a similar form,

its action on the state ψ(λ1, λ2, v) depends mainly on the volume v of such state. This
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feature will be crucial to analyze the comparison between such Minisuperspace and the

isotropic one. Let’s write down for completeness the action of the other therms Ĉ±±21 on

such wavefunction(
Ĉ++

21 ψ(λ1, λ2, v)

)∣∣∣∣
+octant

=
[√

v(v + 4)(v + 2)
]
ψ

(
λ1
v + 4

v + 2
, λ2

v + 2

v
, v + 4

)
(
Ĉ+−

21 ψ(λ1, λ2, v)

)∣∣∣∣
+octant

=
[
v(v + 2)

]
ψ

(
λ1

v

v + 2
, λ2

v + 2

v
, v

)
(
Ĉ−+

21 ψ(λ1, λ2, v)

)∣∣∣∣
+octant

=
[
v(v − 2)

]
ψ

(
λ1

v

v − 2
, λ2

v − 2

v
, v

)
The terms with i or j equal to 3 are also simpler.

We recall that the state ψ(λ1, λ2, v) is eigenfunction of the volume operator, and we also

know that the classical singularity corresponds to ai = 0, so V = 0. Let’s consider then

a state ψ(λ1, λ2, v) that at the initial time φ0 is equal to zero for v = 0 (has no support

in v = 0). We want see if it can reach the volume v = 0, or better if ψ is different

from zero for v = 0 at late times. In order to do this let’s decompose the Hilbert space

Hgrav
Kin in a singular and regular part: Hgrav

Kin = Hgrav
sing ⊕ Hgrav

reg , where states belonging to

the singular space have support only on v = 0, while the ones belonging to the regular

one have support on {v ∈ R, v 6= 0}. Now, all the operators in 2.155 have
√̂
|v| on the

right, so they annihilate each state belonging to Hgrav
sing . Therefore Hgrav

sing is left invariant

by time evolution. Moreover, since the prefactors in the action of the operators Ĉ±±ij ,

and in particular the fact that for each prefactor of kind v ± 2 or v ± 4, there is another

operator with a prefactor in its action of kind v∓ 2 or v∓ 4, the Hamiltonian constraint

preserves the structure of Hgrav
reg . This means that the two spaces are decoupled by the

Hamiltonian constraint, and if one starts with a regular state, he ends up after any time

evolution with a regular one. If we make the same well-motivated physical assumption

that nowadays the Universe wavefunction has a contribution from the |v = 0〉 state that

is null or very small, this contribution must have been preserved during time evolution,

until the Planck regime. Thus we can remove it by hand, and focusing on the regular

sector of the Hilbert space. In this way we have that also in the Bianchi I case the

singularity is resolved already at the Kinematical level. To analyze better the physical

states of the model let’s write the action of the full hamiltonian constraint

∂2
φψ(λ1, λ2, v, φ) =

πG

2

√
v
{[

(v + 2)
√
v + 4

]
ψ+

4 (λ1, λ2, v, φ)−
[
(v + 2)

√
v
]
ψ+

0 (λ1, λ2, v, φ)−

−
[
(v − 2)

√
v
]
ψ−0 (λ1, λ2, vφ) +

[
(v + 2)

√
|v − 4|

]
ψ−4 (λ1, λ2, v, φ)

}
(2.158)
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where ψ±0,4 are defined in the following way

ψ±4 (λ1, λ2, v, φ) =ψ

(
v ± 4

v ± 2
· λ1,

v ± 2

v
· λ2, v ± 4, φ

)
+ ψ

(
v ± 4

v ± 2
· λ1, λ2, v ± 4, φ

)
+

+ ψ

(
v ± 2

v
· λ1,

v ± 4

v ± 2
· λ2, v ± 4, φ

)
+ ψ

(
v ± 2

v
· λ1, λ2, v ± 4, φ

)
+

+ ψ

(
λ1,

v ± 2

v
· λ2, v ± 4, φ

)
+ ψ

(
λ1,

v ± 4

v ± 2
λ2, v ± 4, φ

)
(2.159)

and

ψ±0 (λ1, λ2, v, φ) =ψ

(
v ± 2

v
· λ1,

v

v ± 2
· λ2, v, φ

)
+ ψ

(
v ± 2

v
· λ1, λ2, v, φ

)
+

+ ψ

(
v

v ± 2
· λ1,

v ± 2

v
· λ2, v, φ

)
+ ψ

(
v

v ± 2
· λ1, λ2, v, φ

)
+

+ ψ

(
λ1,

v

v ± 2
· λ2, v, φ

)
+ ψ

(
λ1,

v ± 2

v
λ2, v, φ

)
(2.160)

Let’s analyze now the expression 2.158. Its right-hand side is a difference equation de-

pending on v, in which the steps for v are uniform: as well as in the isotropic case the

v-argument of the wavefunction is v, v± 4 as in the isotropic case (2.44).Thus the action

of the Hamiltonian constraint produces Superselection sectors. As in the first model, we

can construct a lattice L+
ε with ε ∈ (0, 4] made of points

L+
ε = {v = ε+ 4n, n ∈ N} (2.161)

We notice that differently from the isotropic case, since the assumption on the symmetry

under parity of the wavefunctions we don’t look at L−ε . Well, the Hamiltonian constraint

preserves the subspaces Hε
Kin made of wavefunctions with argument v ∈ L+

ε , and as

well as in the isotropic case we can look at solutions of the constraint in such subspace

of the whole Kinematical Hilbert space. Even if we restrict our attention to a precise

superselection sector, the explicit solution of 2.158 cannot be found analytically, but as

in the isotropic case only numerically. We also notice that if we fix a superselection

sector (or equivalently the v-argument of the wavefunctions), we cannot do the same for

λ1 and λ2. This because if we start with a state with support on a lattice λ = nλ0,

the Hamiltonian operator modifies such support on the lattice λ =
(
v±2
v

)
nλ0, that is

completely different from the initial one. Although in this model we have to deal with this

further complication that produces difficulties to interpret and control the anisotropies

of the Universe, we have that the evolution in volume is qualitatively similar to the one
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of the isotropic model. For what concerns the anisotropies we can notice that the λ

factors appear only in the arguments of the wavefunctions, and not on the prefactors.

Moreover, they appear rescaled by factors of kind v±a
v±b , where a, b = 0, 2, 4. This means

that for large volume (low density) they go to 1, and more precisely as 1 + O
(
ρmat
ρP

)
.

This means that in such semiclassical regime the quantum correctionsfor the anisotropies

become smaller and smaller. As well as we did in the isotropic case, since the difficulty to

find the analytic solution of the Hamiltonian constraint, in the next section we introduce

briefly the effective equations for this anisotropic model, and through them we study the

solution in a qualitative way.

2.2.5 Effective dynamics in Bianchi I

As we did in the isotropic case we can look at the effective dynamics of the Bianchi I

quantization, in order to capture some qualitative feature of the exact solution. Following

the same procedure of the isotropic case, in order to reach the effective equations of

Bianchi I we can compute the mean value of the Hamiltonian constraint on semiclassical

states

〈ψSC | Ĉ |ψSC〉 (2.162)

with Ĉgrav given simply by 2.139 and |ψSC〉 peaked on given p1, p2, p3. Thus we have

Ceff. = Ceff.
grav + Ceff.

matt = 0 (2.163)

with

Ceff.
grav =− p1p2p3

8πGγ2∆

[
sin(µ̄1c1)sin(µ̄2c2) + sin(µ̄2c2)sin(µ̄3c3) + sin(µ̄3c3)sin(µ̄1c1)

]
(2.164)

Looking at 2.164 we notice that since sin(x) is at most equal to 1, we have

−3

8πGγ2∆
+ ρmatt. ≤ 0 ⇐⇒ ρmatt. ≤

3

8πGγ2∆
= ρcrit. (2.165)

where the critical density ρcrit. is exactly the one found in the isotropic case (ρcrit. ∼
0.41ρP ). Thus we see already at this stage that also the effective evolution of this model

avoids the classical singularity. As we did in the isotropic case, effective equations are

derived by solving the Hamilton equations of motion for the variables pi and ci. If we
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make calculations we obtain

dp1

dτ
=
p1
√
p1p2p3√
∆γ

cos(µ̄1c1)
[
sin(µ̄2c2 + sin(µ̄3c3)

]
(2.166)

dc1

dτ
= −p2p3

∆γ

[
sin(µ̄1c1)sin(µ̄2c2) + sin(µ̄1c1)sin(µ̄3c3) + sin(µ̄2c2)sin(µ̄3c3)+

+
µ̄1c1

2
cos(µ̄1c1)(sin(µ̄2c2) + sin(µ̄3c3))− µ̄2c2

2
cos(µ̄2c2)(sin(µ̄1c1) + sin(µ̄3c3))

− µ̄3c3

2
cos(µ̄3c3)(sin(µ̄1c1) + sin(µ̄2c2))

]
(2.167)

equatons for the other phase space variables are obtained through cyclic permutations.

If we assume small µ̄ici we recover the classical relations 2.108 and 2.109. Moreover if

we compute the effective shear term, so the quantum corrected 2.115 we have that it is

no longer constant along physical solutions, and at late times it tends to a certain value,

equal in the contracting and expanding phase.

Numerical simulations have been made to solve this set of equations, and it has been

found that instead of having a single bounce, we have a bounce for each anisotropic

direction. This can be physically understood since cause anisotropy the wavefunction

doesn’t reach the minimum spatial lenght at the same time φ in all the directions, so

reaches more times the Planck regime (in energy density).

Such simulations also show that the bounces really happen for ρ < ρcrit.. This is inter-

preted with the fact that what matters for the bounce is the whole energy density of the

system, and in an anisotropic dynamics also gravitational waves play a role.

2.2.6 Accuracy of the effective equations for the Bianchi I Min-

isuperspace

In this section we follow the same considerations about the effective dynamics in the

isotropic Minisuperspace to show why also in the anisotropic case we expect that the

effective equations reproduce well the numerical simulations of the exact dynamcs. As

in the isotropic case we evaluate the fluctuations of the observables and we show that

they can be sent to 0 for observables that capture "large" degrees of freedom of the

gravitational field.

Firslty we show the accuracy of the effective equations for the Wheeler-DeWitt theory:
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we start with the classical phase space given byc̃i = ciL
−1
i

p̃1 = p1(L2L3)−1, p̃2 = p2(L1L3)−1, p̃3 = p3(L1L2)−1
(2.168)

With this choice the symplectic structure of the classical theory:

{c̃i, p̃j} =
8πGγ

V0

δij (2.169)

We can proceed directly with the quantization, obtaining

[̂
c̃
i
, ̂̃pj] = i~

8πGγ

V0

δij (2.170)

From the previous one, using the Robertson inequality:

∆c̃i∆p̃j ≥
4πG~γ
V0

δij (2.171)

where if we send V0 → +∞ the product of the uncertainties goes to 0. This means that

with the choice of a large fiducial cell V physical states can be sharply-peaked on some

point of the phase space (c̃i, p̃i) at each time, showing so semiclassicality. Let’s proceed

now with the Loop quantization of this model.

In this section, as in the previous one we restrict our attention on the positive octant

(pi ≥ 0). We smear as before the variables c̃i through the holonomies with components

given by combinations of functions of kind

exp(iµiLic̃i) (2.172)

that also here we consider as three of the six variables of the classical phase space. To

loop quantize the theory we firstly evaluate the classical Poisson brakets between the

variables of the phase space. However for problems of operator ordering ambiguity we

look at Ṽ 2 instead of Ṽ . The considerations we make are equivalent in the two cases.

{
exp(iµiLic̃i), Ṽ

2
}

=
8πGγ

V0

[
∂

∂c̃i

(
eiµiLic̃i

) ∂
∂p̃i

p̃1p̃2p̃3

]
=
i4πGγµiLi

V0

(p̃1p̃2p̃3)

p̃i
eiµiLic̃i

(2.173)
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We notice that in the previous result there is no problem for the ordering since p̃1p̃2p̃3
p̃i

and

eiµiLic̃i Poisson-commute. Then we apply the Dirac rule, obtaining

[êiµiLic̃i , ̂̃V 2

] = −~4πGγµiLi
V0

̂̃p1
̂̃p2
̂̃p3̂̃pi êiµiLic̃i (2.174)

Similarly:

{
exp(iµic̃iLi), p̃j

}
=

8πGγ

V0

[
∂

∂c̃i
(eiµiLic̃i)

∂

∂p̃i
p̃j

]
=
i8πGγLiµi

V0

eiµiLic̃iδij (2.175)

And their quantization:

[
êiµiLic̃i , ̂̃pj] = −8πGγ~µiLi

V0

êiµic̃iLiδij (2.176)

The other Poisson brakets (thus also the commutators) vanish.

With this in hand we can compute the product of the uncertainties:

∆Ṽ 2∆

(
sin(µiLic̃i)

µiLi

)
≥ 1

2

∣∣∣∣〈[̂̃V 2

,
̂sin(µiLic̃i)

µiLi

]
〉
∣∣∣∣ =

2πG~γ
V0

∣∣〈̂̃p1
̂̃p2
̂̃p3̂̃pi ̂cos(iµiLic̃i)〉

∣∣
(2.177)

∆p̃j∆

(
sin(µiLic̃i)

µiLi

)
≥ 1

2

∣∣∣∣〈[̂̃pj, ̂sin(µiLic̃i)

µiLi

]
〉
∣∣∣∣ =

4πG~γ
V0

|〈 ̂cos(iµiLic̃i)〉|δij (2.178)

Thus also in the loop quantization we notice that for states of the Kinematical Hilbert

space for which V0 → +∞ the product of the uncertainties goes to 0. This means that

there exists a large class of initial states (the ones with large V0) for which the exact

dynamics is governed by the effective Hamiltonian. This explains why for such initial

states the numerical simulations and the effective solutions are in strong agreement.

As in the isotropic case we can show the same concept from a different perspective:

since numerical simulations of the effective equations show the existence of bounces, thus

a minimum for the volume Ṽ , we can see for what value of Ṽ (that we call Ṽqf ) the

quantum fluctuations become important, and compare such value with the minimum

volume that the solution can assume (ṼBounce).

To make this calculation we assume as in the isotropic case as source a scalar field (perfect

fluid) with a constant equation of state

p = ωρ (2.179)
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with −1 ≤ ω ≤ 1. Since we have to deal with the quantum Hamiltonian constraint, as in

the previous paragraph we need to consider the holonomies along paths of fiducial lenght

µ̄iLi, where µ̄i are given by the Improved dynamics prescription 2.129:

exp(iµ̄1L1c̃1) =exp

(
i

√
p1∆

p2p3

L1c̃1

)
= exp

(
i

√
p̃1L2L3∆

p̃2L1L3p̃3L1L2

L1c̃1

)
=

=exp

(
i

√
p̃1∆

p̃2p̃3

c̃1

)
(2.180)

The other two are obtained with cyclic permutations of the indices.

As in the isotropic case here we use the following notation λ =
√

∆. The effective

Hamiltonian of the system in such variables:

Ceff. = − V0Ṽ

8πGγ2λ2

[
sin(µ̄1c̃1L1)sin(µ̄2c̃2L2) + sin(µ̄2c̃2L2)sin(µ̄3c̃3L3)+

+ sin(µ̄1c̃1L1)sin(µ̄3c̃3L3)
]

+ (V0Ṽ )2ρ (2.181)

with

ρ =
ρ0

Ṽ n
(2.182)

and n = 1 + ω ∈ [0, 2]. It can be easily shown by the continuity equation for ρ that nor

ρ neither ρ0 depend on V0.

Now, in order to find Ṽqf , so the volume at which quantum fluctuations become relevant

we need to evaluate the following:

∆Ṽ∆

(
sin(µ̄1c̃1L1)

λ

)
(2.183)

Using the Robertson inequality we have

∆Ṽ∆

(
sin(µ̄1c̃1L1)

λ

)
≥ 2πGγ~

V0

|〈 ̂cos(µ̄1c̃1L1)〉| (2.184)
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In fact

∆Ṽ∆

(
sin(µ̄1c̃1L1)

λ

)
≥ 1

2λ

∣∣∣∣〈[̂̃V , ̂
sin

(√
p̃1∆

p̃2p̃3

c̃1

)]
〉
∣∣∣∣ =

1

2λ

∣∣∣∣〈i~{Ṽ , sin(
√
p̃1∆

p̃2p̃3

c̃1

)}
〉
∣∣∣∣ =

=
4π~Gγ
V0λ

∣∣∣∣〈( ∂

∂p̃1

Ṽ

)
∂

∂c̃1

sin

(√
p̃1∆

p̃2p̃3

c̃1

)
〉
∣∣∣∣ =

2π~Gγ
V0

∣∣∣∣
√
p̃2p̃3

p̃1

cos

(√
p̃1∆

p̃2p̃3

c̃1

)√
p̃1

p̃2p̃3

∣∣∣∣ =

=
2π~Gγ
V0

|〈 ̂cos(µ̄1c̃1L1)〉| (2.185)

Then we evaluate

∆Ṽ∆

(
sin(µ̄1c̃1L1)

λ

sin(µ̄2c̃2L2)

λ

)
≥ 1

2

∣∣∣∣〈[̂̃V , ̂sin(µ̄1c̃1L1)

λ

] ̂sin(µ̄2c̃2L2)

λ
+

+
̂sin(µ̄1c̃1L1)

λ

[̂̃V , ̂sin(µ̄2c̃2L2)

λ

]
〉
∣∣∣∣ =

2πG~γ
V0λ

∣∣∣∣〈 ̂cos(µ̄1c̃1L1) ̂sin(µ̄2c̃2L2) + ̂sin(µ̄1c̃1L1) ̂cos(µ̄2c̃2L2)〉
∣∣∣∣

(2.186)

We want to reconstruct the uncertainty on the gravitational part of the effective Hamil-

tonian constraint. To do this we evaluate

∆Ṽ∆

(
sin(µ̄1c̃1L1)

λ

sin(µ̄2c̃2L2)

λ
+
sin(µ̄1c̃1L1)

λ

sin(µ̄3c̃3L3)

λ
+
sin(µ̄2c̃2L2)

λ

sin(µ̄3c̃3L3)

λ

)
≥

≥ 2πG~γ
V0λ

∣∣∣∣〈 ̂cos(µ̄1c̃1L1) ̂sin(µ̄2c̃2L2) + ̂sin(µ̄1c̃1L1) ̂cos(µ̄2c̃2L2) + ̂cos(µ̄1c̃1L1) ̂sin(µ̄3c̃3L3)+

+ ̂sin(µ̄1c̃1L1) ̂cos(µ̄3c̃3L3) + ̂cos(µ̄2c̃2L2) ̂sin(µ̄2c̃3L3) + ̂sin(µ̄2c̃2L2) ̂cos(µ̄3c̃3L3)〉
∣∣∣∣

(2.187)

Now, since we are assuming large V0, we can consider the validity of the effective Hamilto-

nian constraint 2.181, and plug it in the left-hand side of the previous relation, obtaining:

∆Ṽ∆

(
8πGγ2V0ρ0

Ṽ n−1

)
≥ 2πG~γ

V0λ

∣∣∣∣〈 ̂cos(µ̄1c̃1L1) ̂sin(µ̄2c̃2L2) + ̂sin(µ̄1c̃1L1) ̂cos(µ̄2c̃2L2)+

+ ̂cos(µ̄1c̃1L1) ̂sin(µ̄3c̃3L3) + ̂sin(µ̄1c̃1L1) ̂cos(µ̄3c̃3L3)+

+ ̂cos(µ̄2c̃2L2) ̂sin(µ̄2c̃3L3) + ̂sin(µ̄2c̃2L2) ̂cos(µ̄3c̃3L3)〉
∣∣∣∣ (2.188)

As in the isotropic case we can assume ∆Ṽ small, and write

∆

(
1

Ṽ n−1

)
∼ n− 1

Ṽ n−2
∆Ṽ (2.189)
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Substituting it in 2.188, and assuming that the relation is saturated we have

∆Ṽ 2

Ṽ n−2
=

~
4γλ2ρ0V 2

0 (n− 1)

∣∣∣∣〈 ̂cos(µ̄1c̃1L1) ̂sin(µ̄2c̃2L2) + ̂sin(µ̄1c̃1L1) ̂cos(µ̄2c̃2L2)+

+ ̂cos(µ̄1c̃1L1) ̂sin(µ̄3c̃3L3) + ̂sin(µ̄1c̃1L1) ̂cos(µ̄3c̃3L3)+

+ ̂cos(µ̄2c̃2L2) ̂sin(µ̄2c̃3L3) + ̂sin(µ̄2c̃2L2) ̂cos(µ̄3c̃3L3)〉
∣∣∣∣ (2.190)

The volume Ṽqf for which the quantum fluctuations become important is given imposing

Ṽ ∼ ∆Ṽ :

Ṽqf =

(
~

4γλρ0V 2
0 (n− 1)

) 1
4−n
∣∣∣∣〈 ̂cos(µ̄1c̃1L1) ̂sin(µ̄2c̃2L2) + ̂sin(µ̄1c̃1L1) ̂cos(µ̄2c̃2L2)+

+ ̂cos(µ̄1c̃1L1) ̂sin(µ̄3c̃3L3) + ̂sin(µ̄1c̃1L1) ̂cos(µ̄3c̃3L3)+

+ ̂cos(µ̄2c̃2L2) ̂sin(µ̄2c̃3L3) + ̂sin(µ̄2c̃2L2) ̂cos(µ̄3c̃3L3)〉
∣∣∣∣ 1
4−n

(2.191)

And we notice that independently from the precise value of n, for V0 arbitrarily large Ṽqf
is arbitrarily small. Let’s look now at ṼBounce. To find it we have to solve the following

dṼ

dτ
=
{
Ṽ , C

}
(2.192)

Using 2.181 we have

∂Ṽ

∂τ
= −

{
C, Ṽ

}
= −8πGγ

V0

(
∂C

∂c̃1

∂Ṽ

∂p̃1

+
∂C

∂c̃2

∂Ṽ

∂p̃2

+
∂C

∂c̃3

∂Ṽ

∂p̃3

)
= (2.193)

=
Ṽ

γλ2

{[
cos(µ̄1c̃1L1)sin(µ̄2c̃2L2) + cos(µ̄1c̃1L1)sin(µ̄3c̃3L3)

] µ̄1L1Ṽ

2p̃1

+

+
[
sin(µ̄1c̃1L1)cos(µ̄2c̃2L2) + cos(µ̄2c̃2L2)sin(µ̄3c̃3L3)

] µ̄2L2Ṽ

2p̃2

+

+
[
sin(µ̄2c̃2L2)cos(µ̄3c̃3L3) + +sin(µ̄1c̃1L1)cos(µ̄3c̃3L3)

] µ̄3L3Ṽ

2p̃3

}
(2.194)

Recalling 2.129, we can simplify it

∂Ṽ

∂τ
=

Ṽ

2γλ

{
sin(µ̄2c̃2L2 + µ̄1c̃1L1) + sin(µ̄3c̃3L3 + µ̄1c̃1L1) + sin(µ̄2c̃2L2 + µ̄3c̃3L3)

}
(2.195)
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We notice that if we restore isotropy µ̄1 = µ̄2 = µ̄3 ≡ µ̄, L1 = L2 = L3 ≡ V
1
3

0 , and

c̃1 = c̃2 = c̃3 ≡ c̃ we recover exactly the isotropic equation of motion for Ṽ (2.84).

Well, even if the solution of such equation is highly non-trivial, we notice that it doesn’t

contain V0. This has to hold also for the solution. Moreover numerical simulations [26]

confirm that the solution bounces in the deep Planck regime, thus even if we cannot find

analytically Ṽbounce we know that exists. So the solution is bounded from below, and such

bound doesn’t depend on V0. Thus for V0 sufficiently large, independently from the exact

value of ṼBounce the solutions never reach the value of the volume Ṽqf for which quantum

fluctuations become important (so the regime in which the effective equations loose their

validity).

This argument proves the validity of the effective equations in Bianchi I for large V0 initial

states, and justifies formally the strong agreement between the numerical simulations of

the effective dynamics and the analytic one.
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Appendix A

Wheeler-DeWitt theory

To quantize General Relativity following the Wheeler-DeWitt approach we use the Dirac

program for the quantization of constrained systems, starting from the classical hamilto-

nian formulation of Einstein gravity in terms of the canonical variables qab(x) and πcd(y).

Thus we promote the phase space variables qab(x) and πcd(y) to quantum operators, and

we promote the classical Poisson brakets to commutators:

[q̂ab(x), π̂cd(y)] = i~δcd(ab)δ3(x− y)

[q̂ab(x), q̂cd(y)] = 0

[π̂ab(x), π̂cd(y)] = 0

where: δcd(ab) ≡
1
2
(δcaδ

d
b + δcbδ

d
a)

. Here π̂ and q̂ are abstract operators written in this way. We can look at a representation

of them in terms of the generalized coordinates:

q̂ab(x)
.
= qab(x) , π̂ab(x)

.
= −i~ δ

δqab(x)

that is the analogous of the coordinate representation for classical QM. These operators

act on states ψ which are wavefunctional of the form: ψ[qab(x)], written in the same

representation. At this point we have to face the first serious issue of this approach:

we should define a scalar product for the space of configurations of q, and this is not

simple. But let’s ignore for the moment this problem and proceed with the program.

Supposing that we have been able to construct our Kinematical Hilbert space with a well

defined measure, now we have to promote the classical constraints to quantum operators:

Ĥµψ = 0

We can do this in two steps:
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Hkin
Ĥa=0−−−→ Hdiff.

Ĥ0=0−−−→ Hphys.

So we pass from the initial Kinematical Hilbert space, to the physical Hilbert space, with

an intermediate step given by the Hilbert space of Diffeo. invariant states: Hdiff.. For

the constraint equations we will use their smeared version. Let proceed with order and

solve the first equation: ∫
Σ

d3xNaĤ
aψ[qab] = 0

We recall that:

Ha = −2
√
q∇b

(
πab
√
q

)
=⇒ Ĥa .

= −2
√
q∇c

[(
1
√
q

)(
− i~ δ

δqca

)]
Thus, the wavefunctionals belonging to Hdiff. have to satisfy

2i~
∫
d3xNa

√
q∇c

[
1
√
q

(
δ

δqca

)]
ψ[qca] = 0

Now, remembering that

∇c(A
bBc) = (∇cA

b)Bc + (∇cB
c)Ab

We have

2i~
∫
d3x∇c

(
Na

1
√
q

δ

δqca
ψ[qca]

)
√
q − 2i~

∫
d3x∇cNa

δψ

δqca
=

− 2i~
∫
d3x∇bNc

δψ

δqbc
= 0

where in the last line we neglect boundary terms using Gauss theorem. Now, since qbc is

symmetric under the exchange b, c we can write:

2i~
∫
d3x∇(bNc)

δψ

δqbc
= 0

And remembering that 2∇(bNc) = δ ~Nqbc

2i~
∫
d3x(δ ~Nqbc)

δψ

δqbc
= i~

∫
d3xδ ~Nψ = 0

Which is solved by functionals that are invariant under spatial diffeomorphisms, i.e.

ψ[qbc + 2∇(bNc)] = ψ[qbc]
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So we recovered a condition that allow us to construct Hdiff.. Here however arises the

same problem we found previously: we are not able to define a scalar product for this

Hilbert space, so we cannot proceed with the Dirac program. If however we omit also

this issue and we impose the Hamiltonian constraint at the quantum level, we obtain

Ĥ(N)ψ(qab) = 0 (A.1)

A.1 is called Wheeler-DeWitt equation in vacuum. Even if we can write it explicitally, in

general we cannot find any generic property for the solution as we did in the previous

case. If there are issues in this theory like the construction of the Hilbert spaces brought

to the formulation of Loop Quantum gravity, there are other issues like the problem of

time and the ambiguity of the operator ordering that this theory shares with LQG. We

don’t focus on them here but directly in the Loop context.
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Appendix B

A toy model for Einstein Gravity: the

free relativistic particle

Let’s consider the following classical action

S = −m
∫
dτ

√
−ηµν

dxµ

dτ

dxν

dτ
(B.1)

This is the action of a free relativistic particle in a fixed Minkowski space-time; m is the

rest mass of the particle and τ the proper time.

The action B.1 is invariant under the reparametrization

τ −→ λ = λ(τ) (B.2)

We can look at this theory as governing the dynamics of a relativistic particle, but also

in a different way: instead of considering the variables xµ as the space-time coordinates

of the particle we can consider them as four different fields that live in a 1-D space

parametrized with τ . In this perspective the Lorentz-Poincarèe transformations under

which the theory is invariant have to be seen as internal symmetries of the fields xµ, while

B.2 is the only coordinate transformation that leaves the action unchanged.

If in General Relativity a generic diffeomorphism takes the form

xµ −→ x′µ = xµ + εξµ(x), ε << 1 (B.3)

here a generic diffeomorphism, that is the infinitesimal version of B.2 has the form:

τ −→ τ ′ = τ + εf(τ), ε << 1 (B.4)
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Well, under this transformation the fields are subjected to an infinitesimal variation δxµ:

δxµ −→ x′µ = xµ + δx′µ (B.5)

that is a gauge transformation of the theory.

Since the theory is invariant under such gauge transformation of the fields, we can consider

it as a constrained system, and as we expect from a theory that shows gauge invariance

once we formulate it in the Hamiltonian form we expect a first class constraint that

generate such gauge transformation. Let’s construct explicitally such first class constraint

in the Hamiltonian context.

From the action B.1 we can introduce the canonical momentum

pµ =
∂L

∂ẋµ
=

mẋµ√
−ẋαẋα

(B.6)

From the previous relation and the lagrangian of this system we can construct directly

the canonical Hamiltonian of the model

Hc = pµẋ
µ − L =

mẋµẋµ√
−ẋαẋα

+m
√
−ẋµẋµ = 0 (B.7)

The fact that the canonical Hamiltonian vanishes is a signal that such system is generally

covariant, as well as Einstein theory of gravity.

We can easily recover from B.6 the only primary constraint of this system called Hamil-

tonian constraint:

H0 = pµp
µ +m2 = 0 (B.8)

In fact, from B.6:

pµp
µ =

m2ẋµẋµ
−ẋαẋα

= −m2 (B.9)

It is primary since we don’t need to use the equations of motion to derive it. Moreover,

since such constraint is unique is also a first class constraint (it Poisson commute with

itself). It can be shown that the Hamiltonian constraint is the generator of the gauge

transformations of the theory. Following the Dirac prescription for constrained systems

we define the Hamiltonian of the system:

H = Hc +NH0 = NH0 = N(pµp
µ +m2) (B.10)
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Where N(τ) is the Lagrange multiplier associated with the constraint.

Following the Dirac theory only physical solutions live on the hypersurface of the phase

space

H = 0 (B.11)

thus using the Dirac notation H ≈ 0. But looking at B.10 this means that H0 ≈ 0, that

is true only if

pµ ≈ mẋµ√
−ẋαẋα

(B.12)

This implies that for unphysical states pµ cannot be evaluated using B.6.

We notice that the Hamiltonian has the form (Lagrange multiplier)×(constraint), and
this means that by definition the system is generally covariant. The action with the Dirac

prescription:

S(xµ, N) =

∫
dτ [pµẋ

µ −N(pµp
µ +m2)] (B.13)

As we can see explicitally in B.10 H and H0 generate the same transformations, and since

H generates the time translations while H0 the gauge transformations of the theory, this

system as well as the Einstein theory is affected by the problem of time (the gauge orbits

and the dynamical orbits on the constraint surface coincide).
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