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Introduzione

La teoria dei nodi è la branca della topologia che studia il comportamento

di un cerchio, o di un’unione disgiunta di cerchi, chiamata link, nello spazio

R3. Per i risultati ottenuti nello studio di varietà di dimensione 3 e 4, la

teoria dei nodi è spesso considerata parte della topologia di dimensione bassa.

Problemi riguardanti i nodi emergono anche nella teoria della singolarità e

nella geometria simplettica. Notevoli sono anche le applicazioni ad altre

discipline scientifiche, in particolar modo la fisica e la biologia.

La nozione di equivalenza tra nodi è l’isotopia, che corrisponde a consi-

derare un nodo come un filo unidimensionale, flessibile ed elastico. Se però

dimostrare che due nodi sono equivalenti corrisponde a trovare un’isotopia

tra i due, per provare la non equivalenza è necessario dimostrare che una tale

isotopia non possa esistere. E’ quindi necessario studiare delle caratteristi-

che geometriche invarianti per isotopia. I primi invarianti trovati erano però

troppo difficili da calcolare.

Per questo motivo si studiano non tanto caratteristiche geometrico topo-

logiche dei nodi, ma piuttosto si cerca di utilizzare gli strumenti della topolo-

gia algebrica. Uno dei primi invarianti è stato il gruppo fondamentale del

nodo, definito come il gruppo fondamentale del complementare del nodo,

visto in R3 o, equivalentemente, in S3. Il primo invariante efficientemente

calcolabile è però il polinomio di Alexander, sviluppato contemporaneamente

negli anni venti da Alexander e Reidemeister. Lo sviluppo della teoria si

concentrò sullo studio delle proprietà del polinomio di Alexander, dandone

diverse interpretazioni (tra cui il calcolo di Fox), nonché sui legami con la

i



ii Introduzione

teoria della torsione di Reidemeister. Sempre tramite la teoria di Reidemei-

ster si ha un’interpretazione degli zeri del polinomio nell’ambito della teoria

della rappresentazione del gruppo fondamentale dei nodi.

Nel 1981 L. Kauffman caratterizza il polinomio di Alexander puramente

in termine combinatori. Considerando un nodo L, si focalizza su un incrocio

e chiama K+ il nodo in cui l’incrocio è ’positivo’ e K− il nodo con incrocio

’negativo’. Ottiene cos̀ı la seguente relazione, detta relazione di Alexander-

Conway,

• ∆O(t) = 1

• ∆K+(t)−∆K−(t) = (t1/2 + t−1/2)∆K(t)

dove ∆K(t) è il polinomio di Alexander di un dato nodo K. Questa re-

lazione permette di calcolare in maniera induttiva il polinomio, dal momento

che qualsiasi nodo può essere trasformato nel nodo banale con un numero

finito di cambi nel diagramma.

Nel 1984 Vaughan Jones, durante una ricerca sulla teoria delle algebre di

Von Neumann, scopre un nuovo polinomio per nodi orientati, il polinomio di

Jones. Questo polinomio è univocamente determinato dalle due condizioni

1. VO(t) = 1

2. tV K+(t)− t−1VK−(t) = (t1/2 + t−1/2)VK(t)

vedi [15].

La costruzione attraverso le relazioni 1 e 2 ha ispirato alcuni ricercatori

sulla possibilità di una possibile generalizzazione ad un polinomio in due

variabili. Nello stesso periodo, diversi autori hanno scoperto un nuovo poli-

nomio, o, meglio, differenti versioni isomorfe delle stesso polinomio, [12]. Il

nuovo invariante, il polinomio HOMFLY, prese il suo nome dalle iniziali dei

suoi 6 scopritori: J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W.B.R. Licko-

rish, D. Yetter. Al momento, sono conosciuti tre polinomi associati ai nodi:
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l’Alexander-Conway, quello di Jones e il polinomio HOMFLY, l’ultimo dei

quali contenente come casi particolari i primi due.

Nel 2001 Bigelow ha presentato una interpretazione geometrica del poli-

nomio di Jones, [2]. L’obiettivo di questa tesi è studiare una definizione omo-

logica del polinomio HOMFLY, sempre scoperta da Bigelow e pubblicata in

[4]. Questa è definita non sui nodi, ma sulle trecce. Il gruppo di trecce fu

introdotto da Emil Artin negli anni ’20 e presto emersero connessioni con la

teoria dei nodi. E’ infatti possibile ottenere link dalle trecce in una maniera

standard, con un’operazione chiamata chiusura. Per un teorema di Alexan-

der, è possibile ottenere ogni link come chiusura di un’opportuna treccia. Ve-

dremo quindi una definizione del polinomio HOMFLY in termini di chiusura

di trecce, più esattamente con una differente chiusura, chiamata ’plat clo-

sure’, definita su trecce con un numero pari di corde. Questa costruzione è

dovuta a Birman, [5].

Vediamo ora brevemente gli argomenti trattati nei vari capitoli.

Nel primo capitolo sono presentati i risultati classici della teoria dei nodi.

Il primo paragrafo è dedicato a illustrare le definizioni fondamentali della

teoria dei nodi e alla costruzione del primo invariante algebrico, il gruppo del

nodo. Nel secondo paragrafo definiamo il polinomio di Alexander in quattro

maniere diverse, attraverso spazi di ricoprimento, superfici di Seifert, calcolo

di Fox e relazioni del tipo 1 e 2, dette relazioni ’skein’. Nel terzo paragrafo è

introdotto il polinomio di Jones.

Il secondo capitolo è completamente dedicato alle trecce. Nel primo para-

grafo introduciamo differenti definizioni equivalenti del gruppo di trecce. Nel

paragrafo successivo sono studiate alcune delle sue proprietà. Il terzo para-

grafo è dedicato a investigare l’equivalenza tra trecce e link. Nell’ultimo

paragrafo sono presentati alcuni risultati relativi alla rappresentazione del

gruppo lineare, per arrivare a citare il teorema di linearità del gruppo di

trecce.

Nel terzo capitolo ci occupiamo del risultato principale della tesi, la

costruzione di una definizione omologica del polinomio HOMFLY. Nel primo
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paragrafo è definito il polinomio. Nel secondo paragrafo viene presentata la

costruzione geometrica utilizzata nei paragrafi successivi. Nei due successivi,

è definito un invariante sulle trecce, insieme a una spiegazione del suo signifi-

cato topologico. Nell’ultimo paragrafo dimostriamo il teorema fondamentale,

l’equivalenza dell’invariante definito sulle trecce e del polinomio HOMFLY.



Introduction

Knot theory is the branch of topology which studies the behaviour of a

circle, or of a disjoint union of circles, a link, in the space R3. Due to the

results concerning topological manifolds of dimension 3 and 4, knot theory is

often considered as part of low dimensional topology. Problems about knots

also emerge in singularity theory and in simplectic geometry. Remarkable are

also the applications in other scientific disciplines, as physics and biology.

The notion of knot equivalence is known as isotopy, which consists in con-

sidering a knot as a unidimensional thread, flexible and elastic. While proving

two knots’ equivalence is proving the existence of a particular isotopy, prov-

ing that two knots are not equivalent consists in showing the impossibility

of such an isotopy. It is thus necessart to study geometric features which

are invariant for isotopy. The first invariants found were very difficult to

compute.

This is the reason we do not study the geometrical-topological knot be-

haviour, but rather we try to use algebraic topology tools. One of the first

invariants was the knot fundamental group, defined as the fundamental group

of the knot complementary, seen in R3 or, equivalently, in S3. The first in-

variant effectively computable is the Alexander polynomial, developed at the

same time in the ’20 by Alexander and Reidemeister. Further developments

of the theory focused on the study of these polynomial proprieties, giving

different interpretations of it (like Fox calculus), as well as on the bonds

to Reidemeister torsion theory. Thanks moreover to Reidemeister’s theory

we have an interpretation of the zeros of the polynomial in the theory of

v
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representation of the knot fundamental group.

In 1981 L. Kauffman defines Alexander’s polynomial in a purely combi-

natorial way. Taking a knot K, we focus on a crossing and we call K+ the

knot where this crossing is ’positive’ and K− the knot where this crossing

is ’negative’. We obtain then the following relation, the Alexander-Conway

relation,

• ∆O(t) = 1

• ∆K+(t)−∆K−(t) = (t1/2 + t−1/2)∆K(t)

where ∆K(t) is the Alexander’s polynomial of a given know K. This rela-

tion allows to compute in an inductive way the polynomial, since every knot

can be transformed in the trivial knot with a finite number of transformations

of the crossing type in the diagram.

In 1984 Vaughan Jones, during a research on Von Neumann algebras,

found a new oriented knot polynomial, the Jones polynomial. This polyno-

mial is uniquely determined by the two conditions

1. VO(t) = 1

2. tV K+(t)− t−1VK−(t) = (t1/2 + t−1/2)VK(t)

see [15].

The construction via relations 1 and 2 pointed towards the possibility

of generalisation in two indeterminate. At the same time, different authors

discovered a new polynomial, or rather isomorphic versions of the same poly-

nomial, [12]. This new invariant, the HOMFLY polynomial, took its name

from the initials of the 6 discoverers: J. Hoste, A. Ocneanu, K. Millett, P.

Freyd, W.B.R. Lickorish, D. Yetter. At present, there are three main known

knot polynomials: the Alexander-Conway, the Jones and the HOMFLY poly-

nomials, the last one containing as particular cases the first two.

In 2001 Bigelow presented a geometric interpretation of the Jones polyno-

mial, see [2]. In this thesis we studied a homological definition of the HOM-

FLY polynomial, discovered as well by Bigelow, see [4]. This construction
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was not defined on the basis of knots, but braids. These were introduced by

Emil Artin in the 1920s. It is possible to pass in a standard way from braids

to links with an operation called closure. Through a theorem by Alexander,

it is possible to take each link as a closure of an opportune braid. There

is a definition of the HOMFLY polynomial in terms of closures of braids,

more exactly as plat closures of braids with an even number of strings. This

construction is due to Birman.

Now we briefly summarise the contents of this thesis.

In the first chapter we give the classic results of knot theory. The first

section is dedicated to illustrate the fundamental definitions of knot theory

and of the first algebraic invariant, the knot group. In the second section we

define the Alexander polynomial in four different ways, via covering spaces,

via Seifert surfaces, via Fox calculus and via skein relations. In the third

section we introduce the Jones polynomial.

The second chapter is dedicated to braids. In the first section we introduce

different equivalent definitions of the braid group. In the following section,

we study some of its proprieties. The third section is dedicated to investigate

the equivalence between braids and links. In the last section we see some

linear representations of braid groups, stating the linearity of braid groups.

In the third chapter we prove the main statement of this work, the build-

ing of a homological definition of the Homfly polynomial. In the first section

we define the polynomial. The fundamental geometric constructions are pre-

sented in the second section. In the following two sections, we define an

invariant on braids and we find a topological meaning for this invariant. In

the last section we prove the fundamental theorem, the equivalence of the

invariant on braids and the HOMFLY polynomial.
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Chapter 1

Knots

1.1 Knots and fundamental group

1.1.1 Definitions

Definition 1. A knot K is a smooth sub-variety in S3 diffeomorphic to the

circle S1. If S1 is oriented, the diffeomorphism preserves the orientation and

we say that the knot is oriented.

Example 1. The trivial knot:

{(x, y, z) ∈ S3| x2 + y2 = 1, z = 0}

Example 2. Knots lying on the surface of an unknotted torus in S3 are

called torus knots. Each knot torus can be specified by two coprime integers

p and q, where p is the number of windings along the longitude and q is the

number of windings along the meridian of the torus T 2.

Let us see an example of parametrization. The curve γp,q : S1 → R3 is

given by

θ 7→ (
cos(pθ)

1− sin(qθ)
,

sin(pθ)

1− sin(qθ)
,

cos(qθ)

1− sin(qθ)
).

Definition 2. A n-component link L is a smooth subvariety in S3 diffeomor-

phic to a disjoint union on n circles S1.

1



2 1. Knots

Definition 3. An isotopy between two knots K and K ′ in S3 is a map

h : [0, 1]× S3 → S3

(t, x) 7→ ht(x)

such that:

• h0 = IdS3

• ∀t ht is a diffeomorphism

• K ′ = h1(K)

Two knots K and K ′ are isotopic if and only if there is an isotopy h

between them.

Remark 1. The relation ’K is isotopic to K ′’ is an equivalence relation.

Definition 4. The knot obtained from K by inverting its orientation is called

the inverted knot and it is denoted by −K.

The mirrored knot of K is obtained by a reflection of K in a plane and

it is denoted by K∗.

A knot K is called invertible is K = −K up to isotopy and amphicheiral

if K = K∗ up to isotopy.

It is possible to define the notion of knot and isotopy also in the piecewise

linear category, rather than in the smooth category. It turns out that in three

dimensions, the smooth category and the piecewise category are the same,

so there is no substantial difference between the two definitions.

Definition 5. A knot diagram is a regular projection, i.e. it is such that

multiple points are double points with different tangent vectors, of a circle

S1 in the oriented plane R2, with an over-under information for every double

point.

Remark 2. The set of double points is a discrete set.
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Every diagram can be associated to a isotopy class of knots in S3. The

diagram is immersed in R2 × {0} and to every crossing just push the under

point in a smooth way so that it lies in the plane z = −ε, ε > 0.

Proposition 1.1.1. The set of regular projections is open and dense in the

space of all projections.

A proof of this proposition in PL situation can be find in [Bur85].

It follows from the proposition:

Theorem 1.1.2. Every knot in S3 is isotopic to a knot with regular projec-

tion in R2. Every knot can be defined as a diagram, up to isotopy.

Now we want to see how the condition of isotopy equivalence can be

expressed in terms of diagrams.

Theorem 1.1.3. Two knot are isotopic if and only if their diagrams are

connected by a finite sequence of Reidemeister moves or their inverses:

I

II

III
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A proof can be find, in the PL case, in [8].

Let L be an oriented link with two connected components, L = (K1, K2).

We can assign +1 to the crossing such as the one on the left and −1 to the

crossings such as the one on the right, obtaining a function ε(L) =
∑

c ε(c),

where c are all the crossing between D1 and D2.

Proposition 1.1.4. ε(L) is even and 1
2
ε(L) is invariant under Reidemeister

moves.

Proof. The first Reidemeister move does not change the linking number.

In the second Reidemeister move there is always one positive and one

negative crossing, so the move does not change the linking number.

The third Reidemeister move does not change the signs of the crossings.

Definition 6. The function lk(K1, K2) = 1
2
ε(L) is called the linking number

of the two connected components K1, K2 of L.

1.1.2 Knot groups

Remark 3. The fundamental group of a knot K is π1(K) = Z.

So the fundamental group does not give any useful information for com-

paring knots. The same is for homology and cohomology theory. Instead,

it is really useful to study the complement of the knot S3 − K, which is

a strong invariant. Actually, we do not study the space S3 − K, but the

space MK = S3 − V (K), where V (K) is a closed tubular neighbourhood of
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the knot K. They have the same homology, because they are homotopically

equivalent, but MK is a compact 3-manifold with boundary.

Theorem 1.1.5. • Hi(MK) =

{
Z, i = 0, 1

0, i ≥ 2

• There are two simple curves m and l in T 2 = MK ∩ V such that:

1. m ∩ l = {P}

2. m ∼ 0, l ∼ K in V (K)

3. l ∼ 0 in MK

4. lk(m,K) = 1, lk(l,K) = 0 in S3

m and l are determined up to isotopy in T 2 by these proprieties and are

called meridian and longitude of the knot K.

Proof. The first part is a direct consequence of the Mayer-Vietoris sequence.

S3 'MK ∪ V , MK ∩ V ' T 2. Being each one or a 2 or a 3 dimensional CW

complex, it is possible to apply the Mayer-Vietoris sequence.

0→ H∗(T
2)→ H∗(MK)⊕H∗(V )→ H∗(S

3)→ 0

From the homological proprieties of S3, T 2 and V ' S1 we obtain:

0→ H3(MK)→ Z→ Z→ H2(MK)→ 0

0→ Z⊕ Z→ H1(MK)⊕ Z→ 0

0→ Z→ H0(MK)⊕ Z→ Z→ 0

From the last two we have immediately that H0(MK) ' Z, H1(MK) ' Z.

Now, T 2 is the boundary of a compact orientable 3-manifold. The im-

mersion T 2 ↪→ C maps the group H2(T 2) 7→ 0, so that H2(MK) = 0,

H3(MK) = 0.

Now we take the isomorphism

Z⊕ Z ' H1(T 2)
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in the Mayer-Vietoris sequence. The generators ofH1(V ) ' Z andH1(MK) '
Z are determined up to the inverse. We can choose l, a representative of the

homology class of K, as a generator of H1(V ) with the condition that l be

homologous to 0 in H1(MK). So l is unique up to isotopy in T 2. Equiva-

lently, a generator of H1(MK) can be represented by a curve m in T 2 that

is homologous to 0 in V . With this choices of l and m we obtain a system

of generators of H1(T 2) ' Z⊕ Z. We can also assume that m is simple and

intersects l in one point, see [23].

The linking number proprieties follow from the construction.

The most important invariant of a knot (and of a link) is the so called

knot group (link group).

Definition 7. The group π1(ML), where L is a link, is called the link group.

Remark 4. Generally, we take as basepoint the point (0, i), viewing S3 as

a subspace of C2.

Remark 5. The knot group is independent of the choice of the orientation,

but the orientation defines uniquely the generators.

Theorem 1.1.6. Let K be a knot (L be a link). Let D be an associated

diagram, formed by n arcs and m crossings. The Wirtinger presentation of

the knot group is P =< x1, . . . , xn | r1, . . . , rn−1 >, where xi are meridians

passing for the basepoint associated to every arc and rj are the relations

associated to every crossing such that:

The theorem follows from a particular case of the Van Kampen theorem.
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Theorem 1.1.7. Let (X, x0) be a pointed topological space, union of two

open sets U1 and U2 such that U1∩U2 is arc-connected and x0 ∈ U1∩U2. Let

us also suppose that U2 is simply connected. Let i and j be the applications:

i : U1 ∩ U2 → U1

j : U1 → X

Then the application

j# : π1(U1, x0)→ π1(X, x0)

induces an isomorphism

π1(U1, x0)

i#(π1(U1 ∩ U2, x0))N
' π1(X, x0)

Proof. A proof can we found in [14].

Now we can prove the main theorem on the Wirtinger presentation.

Proof. We can take the knot K as being immersed in R3. Let XK be XK =

R3 −K. We take two sets U1, U2 ⊂ XK such that:

U1 = ({z ≥ −ε} ∪ {∞}) ∩XK

U2 = ({z ≤ −ε} ∪ {∞}) ∩XK

where, up to homeomorphism, we can take the basepoint x0 to be∞. Again

up to homeomorphism, we can choose ∞ such that ∞ /∈ K.

We can not apply directly theorem 1.1.7 because the intersection of the

two sets is closed. But in this situation it is not a big problem, because

3−manifolds can be always seen as CW-complexes and theorem 1.1.7 is true

also with closed sets.

Now we have a sequence

U1 ∩ U2
j→ U1

i→ XK
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Applying the Van Kampen theorem, i# induces an isomorphism

π1(U1,∞)

j#(π1(U1 ∩ U2))N
∼→ π1(XK ,∞)

Now we can take U1 as a 3-dimensional disk, and so U1 becomes home-

omorphic to a 3-dimensional disk without some arcs. By recursion, we can

apply many times the Van Kampen theorem. The group π1(U1,∞) is a free

group generated by the meridian associated to the arc. Instead U1 ∩ U2 is a

sphere minus n− 1 arcs. It remains to study j#.

For every crossing (positive or negative) there is a relation:

This is well defined up to conjugacy classes because we are taking the

normal set.

1.1.3 Knots classification

Definition 8. The peripheral system of a knot K is a triple (π1(MK), l,m),

where π1(MK) is the knot group, l and m are the homology classes of a

longitude and a meridian.

Remark 6. m and l commute, l ·m = m · l.
The pair (l,m) is uniquely determined up to a common conjugacy element

in π1(MK).
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Theorem 1.1.8. (Waldhausen)

Two knots K1 and K2 in S3 with peripheral systems (π1(MK1), l1,m1),

(π1(MK2), l2,m2) are equal if and only if there is an isomorphism ϕ : π1(MK1)→
π1(MK2) such that ϕ(l1) = l2 and ϕ(m1) = m2.

Proof. A proof can be found in [8].

Example 3. In theorem 1.1.8 the hypothesis K knot is essential. For links,

it is possible to find inequivalent links with homeomorphic complements. Take

the two links

J

K

J

K'

We can notice that K ′ is a trefoil knot, while K is the trivial knot. These

two knots are inequivalent, so the links must be inequivalent too. We now

show that their complements are homeomorphic. First, S3 − J is homeo-

morphic to S1 × intD2. Applying the homeomorphism h(z, w) = (z, zw),

after identification of S1 and D2 with sets of complex numbers, we have

h(K) = K ′. So S3 − (J ∪K) and S3 − (J ∪K ′) are homeomorphic.

1.1.4 Some examples

We want to compute the fundamental group of the trefoil knot.
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a

b c

We obtain the presentation:

ΓK =< a, b, c | ac = cb, cb = ba >=

=< a, b, c | c = bab−1, ac = cb >=< a, b| aba = bab >

Setting x = ab, y = aba, we have the presentation (that is not a Wirtinger

presentation), P =< x, y | x3 = y2 >.

We want now to show how the fundamental group allows to discriminate

different knots in a large class of knots, the torus knots.

Definition 9. Let S3 be such that S3 = W ∪W ′, where W is an unknotted

solid torus and T = W ∩W ′ is a torus, with orientation given by W . The

couple (W,W ′) is called a Heegard splitting of genus 1 of the oriented 3-sphere

S3.

Proposition 1.1.9. H1(T ) = µZ⊕νZ, where µ is the meridian and ν is the

longitude of T , such that they intersect in the basepoint P with intersection

number 1.

Any closed curve on T is homotopic to a curve µa · vb, a, b ∈ Z, with a

and b relatively prime.

Proof. A proof can be found in every book of algebraic topology, for example

[7] or [14].
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Definition 10. Let (W,W ′) be a Heegard splitting of genus 1 of S3. If K is

a simple closed curve on F with intersection numbers p, q with ν and µ, |p|,
|q| ≥ 2, then K is called the torus knot K(p, q).

Remark 7.

K(−p,−q) = −K(p, q)

K(p,−q) = K∗(p, q)

K(p, q) = K(−p,−q) = K(q, p)

Proposition 1.1.10. A presentation of the group Γ(p, q) of the torus knot

K(p, q) is

Γ(p, q) =< u, v | upv−q >

where u and v represents µ and ν. It has the following proprieties:

1. The centre is < ua >' Z.

2. m = urvs, l = upm−pq, ps+qr = 1, m and l are meridian and longitude

of K(p, q) for a suitable basepoint P .

3. K(p, q) and K(p′, q′) have isomorphic groups if and only if |p| = |p′|
and |q| = |q′| or |p| = |q′| and |q| = |p′|.

Proof. It follows from standard results in Heegard splitting, see [8].

Theorem 1.1.11. K(p, q) = K(p′, q′) if and only if (p′, q′) is equal to: (p, q),

(q, p), (−p,−q) or (−q,−p). Also, torus knots are invertible, but not am-

phicheiral.

Proof. Sufficiency has been proven in the previous proposition. Suppose

now K(p, q) = K(p′, q′). The centre Z(Γ) is a characteristic subgroup, so

Γ(p, q)/Z is a knot invariant. Also, the integers |p|, |q| are invariants of

Z|p| ∗ Z|q| and they are the orders of maximal finite subgroups of Z|p| ∗ Zq,
which are not conjugate. This proves the first part of the statement.
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Let now p, q be such that p, q > 0. There is an isomorphism ϕ :

Γ(p, q) → Γ(p′, q′) such that it maps the peripheral system (Γ(p, q),m, l)

in (Γ(p′, q′),m′, l′):

m′ = ϕ(urvs) = u′r
′
v′s
′

l′ = ϕ(up(crvs)−pq) = u′p(u′r
′
v′d
′
)−pq

where ps+ qr = ps′ − qr′ = 1, so that s′ = s+ jq and r′ = r + jp, for j ∈ Z.

The isomorphism ϕ maps the centre Z(Γ(p, q)) in Z(Γ(p′, q′)), so that

ϕ(up) = (u′p)ε, ε = ±1. We have

u′p(u′r
′
v′s
′
)pq = ϕ(up(urvs)−pq) = ϕ(up)ϕ(urvs)−pq = (u′p)ε(u′r

′
v′s
′
)−pq

and so (u′p)1−ε = (u′r
′
v′s
′
)−2pq, that is impossible. In fact, the homomorphism

Γ(p′, q′) → Γ(p′, q′)/Z(Γ(p′, q′)) maps the terms on the left to 1, while the

term on the right represents a non-trivial element.

1.2 The Alexander-Conway polynomial

1.2.1 The Alexander module

Definition 11. The infinite cyclic cover of a knot K is the regular cover X̃K

of the complement of the knot K, associated to the morphism:

h : π1(Xk,∞)→ H1(XK ,Z)

Let us give a constructive definition of the space. Let Ω(XK ,∞, x) be the

space of all paths from ∞ to the point x in XK . By the theory of covering

spaces, X̃K is defined as

{(x, γ), x ∈ XK , γ ∈ Ω(XK ,∞, x)}/ ∼

where ∼ is the relation:

(x, γ) ∼ (x, γ′)⇔ x = x′, h[γ′γ−1] = 0
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The group π1(XK ,∞) acts on X̃K via the application h, that factorises

by the quotient of H1(XK ,Z) ' Z. Let t be the generator of H1(XK). t

acts by a transformation t : X̃K → XK . So the transformations group of the

covering space is < t >, which acts on C∗(XK) by translation. More, it acts

on H∗(X̃K) and this action extends to the group ring Z[< t >] = Z[t±].

Definition 12. The Z[t±]-module H1(X̃K ,Z) is called the Alexander module

of the knot K.

Remark 8. H1(X̃K ;Z) is independent of the orientation of K, but the action

of Z[t±] is not. Changing the orientation exchanges t and t−1.

Definition 13. Let K be a knot and D an associated diagram. Let F be

the set of the connected bounded components of R2 −D. For every X ∈ F
we can define

γX : [0, 1]→ R̂3

where R̂3 = R3 ∪∞, such that

γX(t) = (xX , yX , tan(
π

2
(2t− 1)))

The curve γX is called a Seifert generator.

Proposition 1.2.1. The laces γX generate π1(XK).

Proof. As in the proof of the Wirtinger presentation of the knot group, it is

sufficient to apply the Van Kampen theorem to appropriate subsets.

Remark 9. If K ′ is a knot, K ′ ∈ S3, then [K ′] ∈ H1(MK). We denote

I(K ′) = lk(K ′, K). If lk(K ′, K) = 0, [K ′] = 0 ∈ H1(MK).

γX can be seen as a knot in MK , so by remark 9 γX ∈ H1(MK).

Remark 10. The action of the lace γX is

[γX ].∞̃ = tI(γX).∞̃
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Remark 11. For every face X, γ̃X is a path from ∞̃ to tI(γX).∞̃.

We can now prove the main theorem about the presentation of the Alexan-

der module.

Theorem 1.2.2. Let K be a knot and Z a face of a diagram D such that

I(γZ) = ±1. A presentation of the Alexander module H1(M̃K ,Z) as Z[t±]-

module is given by taking as generators the laces γX , X 6= Z, with relations

given on every crossing

by A− tB + tC −D = 0. We can identify the generators γX as the faces X,

X 6= Z.

Proof. Let γ̃X be a lift of γX , starting by the basepoint ∞̃. By definition:

∂γ̃X = γX .∞̃ − ∞̃ = tI(γX).∞̃ − ∞̃

We can define cX to be

cX = γ̃X −
tI(γX) − 1

tI(γZ) − 1
γ̃Z

So,

∂cX = ∂γ̃X − ∂
tI(γX) − 1

tI(γZ) − 1
γ̃Z = 0

and it is well defined [cX ] = [X].
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We want to apply the Mayer Vietoris sequence to the sets

V1 = MK −
⋃

c crossings

(xc, yc)× [−ε, 0]

V2 =
⋃

c crossings

Dr((xc, yc),
ε

2
)

We have V1 ∪ V2 'MK .

Let Ṽ1 and Ṽ2 be the images of the two sets in M̃K . If we take X1
K =⋃

X∈F γX ↪→ V1, we obtain a homotopy equivalence H1(X̃1
K)

∼→ H1(Ṽ1). As

a Z[t±]-module the cellular complex is free with basis ∞ at degree 0, γ̃X

at degree 1. We also have a definition for the boundary operator, so we

can compute the homology. We obtain that H1(Ṽ1) is free on Z[t±] with

basis {cX}, X 6= Z. Now we want to study Ṽ2. We have that V2 ' D2, so

Ṽ2 ' V2 × Z. Then H∗(Ṽ2) = 0 for every ∗ ≥ 1.

We also have that Ṽ1 ∩ Ṽ2 ' ∂V2 × Z, so that we have, for every crossing

c, S1 × Z. Let lc be

lc = S1
r ((xc, yc),−

ε

2
)× Z

Then the lace lc ∈ Ṽ1 is homologous to

˜γAγBγCγD

We have the following proprieties:

1. ũv = ũ(uṽ)

2. ũu = ũ(uũ)

3. ũ = uũ

We can also write ũ = t−I(u)ũ

˜γAγBγCγD = γ̃At
I(γA)−I(γB)γ̃Bt

I(γA)−I(γB)γ̃Ct
I(γA)−I(γB)−I(γC)+I(γD)γ̃D
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Applying I(γA) = I(γB) + 1, I(γC) = I(γD) − 1 and writing in additive

notation we obtain

γ̃A − tγ̃B + tγ̃C − γ̃D

Example 1. Let us calculate the Alexander module for the trefoil knot.

A

B

C
D3

1

2

I(γD) = ±1, depending on the orientation, so we can take D = Z. Now

we have for each crossing:

1. −A+B = 0

2. −tA+B − C = 0

3. B − tC = 0

We obtain then a presentation:
1 −t 0

−1 1 1

0 −1 −t


Definition 14. The Alexander polynomial ∆K(t) is defined as the determi-

nant of the presentation matrix, modulo ±t±k.
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Remark 12. Usually, it is written P
.

= Q for an equality modulo ±t±k of

two polynomials P and Q in Z[t±1].

Example 2. Using the matrix presentation computed above, we find that

the Alexander polynomial for the trefoil know is

∆K(t) = t2 − t+ 1
.

= 1− (t+ t−1)

1.2.2 Seifert surfaces

Proposition 1.2.3. A simple closed curve K ⊂ S3 is the boundary of an

orientable surface Σ, embedded in S3. Σ is called a Seifert surface.

Proof. A proof can be found in [8].

Definition 15. Suppose that M is a surface and that there is a solid cylinder

D2×[0, 1] such that (D2×[0, 1])∩F = {0, 1}×D2, respecting the orientation.

Let M ′ be such that M ′ = ((M − {0, 1})×D2) ∪ [0, 1]× ∂D2. M ′ is said to

be obtained from M by surgery along the arc [0, 1]× 0.

Two surfaces M and N are said to be tube equivalent if one is obtained

from the other by surgery along the arc [0, 1]× 0.

Theorem 1.2.4. Suppose that Σ and Σ′ are two Seifert surfaces for an ori-

ented link L in S3. Then there is a sequence of Seifert surfaces {Σ1,Σ2, . . . ,Σn}
with Σ1 = Σ and Σn = Σ′, such that, for every i, Σi and Σi−1 are tube-

equivalents.

Proof. A proof can be found in [17].

We will now use the Seifert surfaces to give a different interpretation of

the Alexander polynomial. The Seifert surfaces are connected compact and

oriented surfaces, then they are completely classified by their genus g.

Proposition 1.2.5. Let K be an oriented knot, Σ a Seifert Surface and K ′

a knot transversal to S. Then

lk(K,K ′) = I(Σ ∩K ′)
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where I(Σ, K ′) is the algebraic intersection.

Proof. We write the exact sequence:

H2(S3)→ H2(S3, VK)→ H1(VK)→ H1(S3)

For the homological proprieties of S3, H1(S3) = H2(S3) = 0, so there is

an isomorphism between the two middle terms. For homotopy equivalence

H1(VK) ' H1(K). We have now:

H2(S3, VK) ' H2(S3−
◦
V K , ∂(S3−

◦
V K)) ' H1(S3 − VK)

where the first equivalence is given by excision and the second by Poincaré

duality.

H1(S3 − VK) ' H1(S3 − V (K))∗ ' Z.[mK ]∗

Now, for [K ′] = lk(K,K ′).[MK ] ∈ H1(S3 − VK), we have

lk(K,K ′) =< [mK ]∗, [K ′] >= D[mK ]∗.[K ′]

Also, [Σ].[mK ] = 1, then [Σ] = D[mK ].

Proposition 1.2.6. There is a duality

H1(S3 − Σ)
∼→ H1(Σ) ' H1(Σ)∗.

This is called Alexander duality.

Proof.

H1(S3 − Σ) ' H1(S3−
◦
V Σ) ' H2(S3−

◦
V Σ, ∂(S3 − VΣ)) ' H2(S3, VΣ)

where the second equality is given by Poincaré duality and the last by exci-

sion. If we write the long exact sequence of (S3, VΣ) we obtain:

0→ H1(VΣ)→ H2(S3, VΣ)→ 0

and for homotopy equivalence H1(VΣ) ' H1(Σ).
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Proposition 1.2.7. The bilinear non-singular form

lk : H1(S3 − Σ)⊗H1(Σ)→ Z

is well defined.

Proof. We have a bilinear form:

ϕ : H1(S3−
◦
V Σ)⊗H2(S3 − VΣ, ∂(S3 − VΣ))→ Z

As we have already seen, H1(S3−
◦
V Σ) ' H1(S3 − Σ) and H2(S3 −

VΣ, ∂(S3 − VΣ)) ' H1(Σ). It is sufficient then to prove that this bilinear

form is the linking. Let K ′ be a knot in S3− VΣ and K ′′ be a knot in Σ. By

construction:

ϕ([K]⊗ [K ′]) = I(K ′,Σ′′) = lk(K ′, K ′′)

Let L be an oriented link and Σ a Seifert surface associated to L. We

have that Σ× [−1, 1] ⊂ S3−VL, with Σ×{0} = Σ. Let i± be the applications

i± : Σ → S3 − Σ given by i±(x) = x × ±1. If c is an oriented simple closed

curve in Σ, c± = i±∗ (c).

Definition 16. We can associate to the Seifert surface Σ of an oriented link

L the Seifert form

α : H1(Σ)⊗H1(Σ)→ Z

defined by α(x, y) = lk((i−)∗x, y).

Remark 13. By sliding with respect to second coordinate of Σ× [−1, 1] we

obtain:

lk(a−, b) = lk(a, b+)

Definition 17. Let {fi} be a basis of H1(Σ). We define the Seifert matrix

A associated to α the matrix whose component Aij is

Aij = α(fi, fj) = lk(f−i , fj) = lk(fi, f
+
j )
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Proposition 1.2.8. If {ei} ∈ H1(S3 − Σ) is a β-dual basis of {fi}, then

f−i =
∑

j Aijej and f+
j =

∑
iAijei.

It is possible to compute a presentation for the Alexander module by the

Seifert matrix.

Theorem 1.2.9. Let S be a Seifert matrix for a knot K. Then tS − ST is

a presentation matrix for the Alexander module H1(X̃K).

Proof. A proof can be find in [17]

Corollary 1.2.10. The Alexander polynomial can be computed as ∆K(t)
.

=

det(tS − ST ).

Example 4. Let us calculate the Seifert matrix S for the trefoil knot. We

can draw the trefoil know in a way such that it would be easier to see the

Seifert surface.

It is possible to see that

lk(a1, a
+
1 ) = −1

lk(a1, a
+
2 ) = 1

lk(a2, a
+
1 ) = 0

lk(a2, a
+
2 ) = 1

We obtain the matrix

S =

(
−1 1

0 1

)
We can compute the Alexander polynomial of the trefoil knot as

∆K(t) = det(tS − ST ) = −t2 − 1 + t
.

= 1− (t+ t−1)
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Example 5. We want to compute the Alexander polynomial for a more com-

plicated case, the twisted knots Kn defined as

a1
a2

where the lower part has 2n− 1 crossings.

For the Seifert surface Σ we can take the surface having as boundary the

knot, with generators for H1(Σ) represented by a1 and a2. Computing the

Seifert matrix, we find:

A =

(
1 0

−1 n

)
It follows that

tA− AT =

(
t− 1 1

−t n(t− 1)

)
whose determinant is n(t− 1)2 + t. So the Alexander polynomial is

∆Kn

.
= n(t2 − 2t+ 1) + t

.

We can notice that the trefoil knot is K1 and recover the above calculation.
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Using this definition it is very easy to prove some results about the

Alexander polynomial.

Theorem 1.2.11. For any oriented link L, ∆L(t)
.

= ∆L(t−1). For any

oriented knot K, ∆K(1) = ±1.

Proof. The first statement is just an application of the standard theorems

on linear algebra.

∆L(t−1) = det(t−1A− AT ) = t−n det(A− tAt) .
= det(tAt − A) = ∆L(t)

Now, let A be the Seifert matrix for K and Σ be the associated Seifert

surface. If Σ has genus g, H1(Σ) is 2g-dimensional and a basis is given

by {fi}. By theorem 1.2.9, ∆K(1) = ± det(A − AT ), where (A − AT )ij =

lk(f−i , fj) − lk(f+
i , fj), which is the algebraic number of intersections of fi

and fj on Σ. We can see A− AT as made by g blocks(
0 1

−1 0

)

in the diagonal and 0 elsewhere. So, computing the determinant, we have

proven the statement.

Corollary 1.2.12. For any knot K, ∆K(t)
.

= a0 +a1(t+ t−1)+a2(t2 + t−2)+

. . .+ an(tn + t−n), where ai are integers and a0 is odd.

Proof. If the degree of the Alexander polynomial ∆K(t) is odd, there is a

contradiction with theorem 1.2.11. By construction of the Seifert matrix, all

the ai must be integers. If we calculate ∆K(1) = a0 + 2a1 + . . . + 2an = ±1

we have that a0 ± 1 = 2(a0 + . . .+ an), so it has to be odd.

Remark 14. Usually, the signs for the coefficients ai are chosen such that

∆K(1) = 1.
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Corollary 1.2.13. Let L be an oriented link. Let L be the reflection of L

and rL its reverse. Then ∆L(t) = ∆L(t) = ∆rL(t).

Proof. If S is the Seifert matrix for L, then −A is the Seifert matrix for L

and AT is the Seifert matrix for rL.

1.2.3 Fox differential calculus

Given a group G, we want to define the group ring Z[G]. Let ν : G→ Z
be such that ν(g) = 0 except for a finite number of elements of G. The

homomorphism ν has the following proprieties:

• (ν1 + ν2)(g) = ν1(g) + ν2(g),

• (ν1ν2)(g) =
∑

h∈G(ν1(g)ν2(h−1g)).

Let us define the ’dual space’ G∗, consisting of elements g∗ such that

g∗(h) =

{
1 if g=h

0 otherwise

So, if g1, . . . , gk ∈ G and ni = ν(gi) we can set

ν = n1g
∗
1 + . . .+ nkg

∗
k

In the following we will denote Z[G] as ZG.

Remark 15. ZG is a commutative ring if and only if G is an abelian group.

Remark 16. If Φ : G → A, A abelian ring, then there exists an extension

Φ : ZG→ A, Φ ring homomorphism.

Remark 17. If Φ : G → G′ is a group homomorphism, then Φ admits an

extension Φ : ZG→ ZG, Φ a ring homomorphism.

Let θ : G→ Z be the trivial morphism, θ(g) = 1 ∀g ∈ G. This morphism

can be extended to aug : ZG→ Z, aug(
∑k

i=1 nigi) =
∑k

i=1 ni.
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Definition 18. A derivation D is an application D : ZG→ ZG such that

1. D(ν1 + ν2) = D(ν1) +D(ν2),

2. D(ν1ν2) = (Dν1)aug(ν2) + ν1D(ν2).

Remark 18. If g1, g2 ∈ G, D(g1g2) = D(g1) + g1D(g2).

Proposition 1.2.14. If D is a derivation then

• D(
∑

i nigi) =
∑

i niD(gi),

• D(n) = 0, ∀n ∈ Z,

• ∀g ∈ G, Dg−1 = −g−1Dg,

Proof. The first statement is a trivial consequence of linearity.

D(1) = D(1 · 1) = D(1) + 1 · D(1) = D(1) + D(1), then D(1) = 0. By

linearity, D(n) = 0 ∀n ∈ Z.

0 = D(1) = D(g−1g) = D(g−1) + g−1D(g), then D(g−1) = −g−1D(g).

Proposition 1.2.15. ∀n > 0 Dgn =
∑n−1

i=0 g
i and Dg−n = −

∑−1
i=−n g

i.

Proof. It is easily seen by induction on n.

Theorem 1.2.16. Let F be the free group generated by n elements,

F =< x1, . . . , xn > .

For every generator xi of F there is an unique derivation Di = ∂
∂xi

in ZF
such that

∂xj
∂xi

= δij

Proof. The proof, made by Fox, is included in his works [9], [10] and [11].

Corollary 1.2.17. Let h1(x), . . . , hn(x) be such that h1(x), . . . , hn(x) ∈ Z[F ].

It exists an unique derivation D in ZF such that Dxj = hj(x). For all

f(x) ∈ ZF , Df(x) =
∑ ∂f

∂xj
hj(x).
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Theorem 1.2.18. β : f(x) 7→ f(x)− f(1) is a derivation.

f(x)− f(1) =
∑

1

∂f

∂xi
(xi − 1)

Theorem 1.2.18 is called the fundamental theorem of Fox calculus.

LetG be a group and P be a finite representation, P =< x1, . . . , xn| r1, . . . , rk >.

Let Fn =< x1, . . . , xn > be the free group generated by x1, . . . , xn, H the

normal subgroup generated by r1, . . . , rk. Then Fn/H ' G, g 7→ ḡ. This

function can be extended to ZFn → ZG, a 7→ ā.

Definition 19. The Fox matrix associated to the group G with presentation

P is the k × n matrix with coefficients in ZG

F (G,P ) = (
∂ri
∂j

), 1 ≤ i ≤ k, 1 ≤ j ≤ n

We now show that the Fox matrix is well defined, i.e. it is independent of

the choice of the presentation P . To do that, we will use the so-called Tietze

presentation.

Definition 20. Let A and A′ be two matrices with coefficients in the same

ring R. A and A′ are T -equivalent if it is possible to obtain one from the

other by a sequence of following operations or of their inverses:

1. permutations of rows and columns

2. adding to a row (respectively column) a linear combination of other

rows (respectively columns)

3. changing the matrix A by the matrix(
1 ∗
0 A

)

Theorem 1.2.19. Let P =< x1, . . . , xn| r1, . . . , rk > be a presentation of

the group G. If P ′ is another presentation, then it is possible to obtain P ′

from P by a finite number of Tietze transformations and their inverses:
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1. adding a new relation r such that r ∈ H,

2. adding a new generator x and a relation xw, where w is a word in

x1, . . . , xn.

Proof. A proof can be found in [18].

Theorem 1.2.20. Let P and P ′ be two finite representations of the same

group G. Then the Fox matrices F (G,P ) and F (G,Q) are T -equivalent.

Proof. A permutation of rows and columns corresponds to a permutation of

generators and relations.

Let now P =< x1 . . . , xn| r1, . . . , rk > be a presentation of G. We add a

relation s ∈ H. So,

s =
m∏
i=1

uir
εi
i u
−1
i

where ui is a word in xi, εi = ±1, ri ∈ H. We can split it in three different

cases and get the propriety for linearity.

Case s = r1r2. In ZFn, ∂s
∂xi

= ∂r1
∂xi

+r1
∂r2
∂xi

. So in ZG we get ∂s
∂xi

= ∂r1
∂xi

+ ∂r2
∂xi

,

that is adding a row.

Case s = uru−1, r ∈ H, u word in x1, . . . , xn.

∂s

∂xi
=

∂u

∂xi
+ u(

∂r

∂xi
− ru−1 ∂u

∂xi
) = u

∂r

∂xi
+ (1− uru−1)

∂u

∂xi

So ∂s
∂xi

= u ∂r
∂xi

+ (1− s) ∂u
∂xi

. In ZG we have

∂s

∂xi
= u

∂r

∂xi

which is multiplying a row on the left.

Case s = r−1, r ∈ H.
∂s

∂xi
= −r−1 ∂r

∂xi

So ∂s
∂xi

= − ∂r
∂xi

, multiplying a row for −1.
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Now, if P ′ =< x1, . . . , xn, x| xw, r1, . . . , rk >, we get the matrix

F (G,P ′) =

(
1 ∂w/∂xi

0 F (G,P )

)

Definition 21. Let R be a commutative ring, α : ZG→ R a homomorphism,

F (G,P, α) = α(
∂ri
∂xj

)

We call E(G,P, α) the ideal generated by the minors of order n− 1.

Lemma 1.2.21. E(G,P, α) is independent of the presentation P .

Proof. If P ′ is another presentation of the group G, then F (G,P, α) and

F (G,Q, α) are T -equivalent.

Permuting rows and columns and adding linear combination of rows

(columns) to another row (column) leaves unchanged the minors. We have

just to check the case F is changed in F ′ =

(
1 ∗
0 F

)
, where ∗ is a n − 1

array. F has n columns, while F ′ has n+ 1-columns.

Every minor of F of order n− 1 lies in a minor of F ′ of order n, so that

E ⊂ E ′.

Every minor of order n of F ′ is a linear combination of minors of F of

order n− 1, so E ′ ⊂ E.

1.2.4 Fox differential calculus for knots groups

Let us now focus on knots groups. LetK ⊂ S3 be a knot, ΓK = π1(S3−K)

the knot group. We take P =< x1, . . . , xn| r1, . . . , rn−1 > as the Wirtinger

presentation of ΓK . Let α : ΓK → Z be such that α(xi) = t, ∀i, 1 ≤ i ≤ n.

We have Z[Z] = Z[t, t−1], the ring of Laurent polynomials. We can extend α

to α : Z[ΓK ]→ Z[t, t−1], a ring homomorphism. In the following we will call,

with a little abuse of notation, α = α.
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Definition 22. The Alexander ideal of a knot K is E(K) = E(ΓK , α).

Theorem 1.2.22. E(K) is a principal ideal.

Proof. The fundamental theorem of Fox calculus implies that if

x ∈ Fn =< x1, . . . , xn >,

then

x− 1 =
n∑
j=1

∂x

∂xj
(xj − 1).

Also,

ri − 1 =
n∑
j=1

∂ri
∂xj

(xj − 1),∀ i = 1, . . . , n− 1.

So,
∑n

j=1
∂ri
∂xj

(x̄j − 1) = r̄i − 1 = 0 and
∑n

j=1 α( ∂ri
∂xj

) = 0 in Z[t, t−1].

We have then that if the matrix is F = (aij),
∑n

j=1 aij = 0, ∀ i : 1 ≤ i ≤
n−1. If c1, . . . , cn are the columns of F (ΓK , F, α) = (aij), then c1 + . . .+cn =

0.

By definition, the Alexander ideal is generated by det(A1), . . . , det(An).

We have

det(A1) = det(c2, . . . , cn) = det(c2 + . . .+ cn, c3, . . . , cn) =

det(−c1, c3, . . . , cn) = − det(A1).

So, with similar considerations, we get det(Ai) = det(±Aj) and E(K) is

then generated by only one of the det(Ai).

Theorem 1.2.23. A generator of the ideal E(K) is the Alexander polynomial

∆K(t).

Proof. A proof can be found in [8] or [17].



1.2 The Alexander-Conway polynomial 29

Remark 19. All the considerations above can be done if we took the Wirtinger

presentation. If we have another presentation, it is not true in general that

the ideal E(K) is generated by a minor Ai.

Example 6. We want to compute the Alexander polynomial for the trefoil

knot using the Fox calculus.

P =< x1, x2, x3| x3x2x
−1
3 x−1

1 , x1x3x
−1
1 x−1

2 >

is the Wirtinger presentation of the trefoil knot. So we have

∂r1

∂x1

=
∂x3x2x

−1
3 x−1

1

x1

=
∂x3x2x

−1
3

∂x1

+ x3x2x
−1
3

∂x−1
1

∂x1

= −x3x2x
−1
3 x−1

1

∂r1

∂x2

=
∂x3x2x

−1
3 x−1

1

x2

=
∂x3

∂x2

+ x3
x2x

−1
3

∂x2

= −x3 + x3x2
∂x−1

3 x−1
1

∂x2

= x3

∂r1

∂x3

=
∂x3x2x

−1
3 x−1

1

∂x3

=
∂x3

∂x3

+ x3
∂x2x

−1
3 x−1

1

∂x3

=

1 + x3x2
∂x−1

3 x−1
1

∂x3

= 1− x3x2x
−1
3

In the same way we get

∂r2

∂x1

= 1− x1x3x
−1
1 ,

∂r2

∂x2

= −x1x3x
−1
1 x−1

2 ,
∂r1

∂x3

= x1

So, seeing now it in ΓK, we get

∂r1

∂x1

= −1,
∂r1

∂x2

= x3,
∂r1

∂x1

1− x1

∂r2

∂x1

= 1− x2,
∂r2

∂x2

= −1,
∂r2

∂x3

= 1− x1

and applying α we get the matrix

F (ΓK , P, α) =

(
−1 t 1− t

1− t −1 t

)
So, det(A1) = t2 + 1− t, det(A2) = 1 + t2 − t and det(A3) = 1 − t + t2,

so that ∆K(t)
.

= det(Ai), i = 1, 2, 3.
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Let us now see what happens if we take a group representation that is not

Wirtinger’s. We take as presentation

Q =< a, b| a2b−3 > .

We had calculated it by passing by the presentation < x, y|xyx = yxy >

and taking xyx = a, xy = b. So, α(x) = t3, α(y) = t2. We have

∂r

∂a
= (1 + a),

∂r

∂b
= a2(−b−1 − b−2 − b−3)

So we get

F (ΓK , Q, α) = (1 + t3 − 1− t2 − t4).

By factorisation

1 + t3 = (1 + t)(1− t+ t2)

1 + t2 + t4 = (1 + t+ t2)(1− t+ t2)

and E(K) = ∆K(t) = 1− t+ t2.

Example 7. We want now to compute the Alexander polynomial for a generic

torus knot K(p, q). We have seen that a Wirtinger presentation is

Q =< x, y| xp = yq > .

As above, α(x) = tq, α(y) = tp.

F (ΓK(p,q), Q, α) = (
1− tpq

1− tq
− tpqt−p(1− t−pq)

1− t−p
)

The highest common factor of (1− tpq)/(1− tq) and (1− tpq)/(1− tp) is

(1− t)(1− tpq)
(1− tp)(1− tq)

= ∆K(p,q).

We can see that if we take p = 3, q = 2, that is the trefoil knot, we get

(1− t)(1− t6)

(1− t3)(1− t2)
=

(1− t)(t4 + t2 + 1)(1− t2)

(1− t)(t2 + t+ 1)(1− t2)
=

(1− t)(t2 − t+ 1)(t2 + t+ 1)(1− t2)

(1− t)(t2 + t+ 1)(1− t2)
= t2 − t+ 1

the same as in the previous computation.
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1.2.5 The Alexander-Conway polynomial

We will now show how it is possible to normalise the Alexander polyno-

mial such that it has no more the ambiguity concerning multiplication by

units of Z[t±]. We start by some considerations about Seifert matrices.

Definition 23. Let A be a square matrix over Z. A square matrix B such

that

B =


A λ 0

0 0 1

0 0 0


or

B =


A 0 0

ηT 0 0

0 1 0


where λ is a column and ηT a row, is called an elementary enlargement of

A, and respectively A is called an elementary reduction of B. Two matrices

A and B are said to be S-equivalent if they are related by a sequence of ele-

mentary enlargements, elementary reductions and unimodular congruences,

i.e. there is P , det(P ) = ±1, B = P TAP .

Theorem 1.2.24. If A and B are two Seifert matrices for an oriented link

L, then A and B are S-equivalent.

Proof. Suppose that A is a n×n matrix corresponding to a Seifert surface Σ

and to a choice of a basis of H1(Σ,Z). If the basis of H1(Σ,Z) is changed, the

matrix A is changed by a unimodular congruence. Now suppose we change

the Seifert surface. We can take another surface Σ′, tube equivalent to Σ. Let

{fi}1≤i≤n be a basis for H1(Σ,Z).We can then choose a basis for H1(Σ′,Z)

as the homology class of the curves {fi} and of two curves fn+1, fn+2, such

that fn+1 goes over the solid cylinder and fn+2 around the middle of it.

By definition, fn+2 can be chosen such that it is disjoint from all curves

{fi}, 1 ≤ i ≤ n, so that lk(f±n+2, fi) = 0, ∀i 6= n− 1. By definition, and with

a nice choice of orientations, either lk(f+
n+1, fn+2) = 0 and lk(f−n+1, fn+2) = 1,
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or lk(f+
n+1, fn+2) = 1 and lk(f−n+1, fn+2) = 0. So in the first case we have a

Seifert matrix of the form 
A λ 0

a b 1

0 0 0


that is congruent to 

A λ 0

0 0 1

0 0 0


In the second case, we have 

A 0 0

ηT 0 0

0 1 0


So matrices relatives to different Seifert surfaces are S-equivalent.

Definition 24. Let S be the matrix associated to a Seifert surface Σ of a

link L. The Alexander-Conway polynomial is ∆L(t) ∈ Z[t±1/2] defined as

∆L(t) = det(t1/2S − t−1/2ST ).

Remark 20. Up to unit of Z[t±1/2], ∆L(t) is the Alexander polynomial of

L, that is why we are keeping the same notation.

Theorem 1.2.25. The Conway-normalised Alexander polynomial is a well-

defined invariant of the oriented link L.

Proof. We have, for P unimodular congruence,

det(t1/2P TSP − t−1/2P TSTP ) = (det(P ))2 det(t1/2S − t−1/2S).

Now, let S ′ such that

S ′ =


S λ 0

0 0 1

0 0 0

 .
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So,

(t1/2S ′ − t−1/2S ′T ) =


t1/2S − t1/2St t1/2λ 0

−t−1/2λT 0 t1/2

0 t−1/2 0


which has the same determinant as t1/2S − t−1/2ST . In the same way, the

other type of elementary enlargement of S has no effect on the determinant.

Theorem 1.2.26. For oriented links L, the Alexander-Conway polynomial

∆L(t) ∈ Z[t±1/2] is such that ∆unknot(t) = 1.

Moreover, we take three different links that are the same except in a ball

where they are like

From left to right, we call them L+, L− and L0 and we have

∆L+(t)−∆L−(t) = (t−1/2 + t1/2)∆L0(t).

Proof. Let Σ0, Σ+ and Σ− be Seifert surfaces for L0, L+ and L−. L+ and L−

can be constructed by adding a short twisted strips to Σ0. Let {f2, f3, . . . , fn}
be oriented closed curves forming a basis for H1(Σ0,Z). For H1(Σ±,Z) we

can take {f1, f2, . . . , fn}, where f2, . . . , fn are the same curves forming the

basis of H1(Σ0,Z) and f1 is a curve going once along the twisted strips. Let

S0 be the Seifert matrix for L0. The Seifert matrix for L− is then

S− =

(
N λ

η S0

)
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whereas the Seifert matrix for L+ is

S+ =

(
N − 1 λ

η S0

)

Now, computing det(t1/2S+−t−1/2ST+)−det(t1/2S−−t1/2ST−) gives exactly

det(t1/2S0 − t−1/2S0).

1.3 The Jones polynomial

1.3.1 Definition by Kaufmann brackets

Definition 25. The Kauffman bracket is a function from unoriented link

diagrams to Laurent polynomials with integer coefficients in an indeterminate

A, <>: D → Z[A±], such that

1. < unknot >= 1,

2. < D q unknot >= (−A−2 − A2) < D >,

3. < C+ >= A < C1 > +A−1 < C2 >.

where C+, C1 and C2 are such that

The third propriety means that the three link diagrams are the same,

except near a point where they differ in the way indicated in the picture.

Remark 21. The bracket polynomial of a diagram with n crossings can be

calculated by expressing it as a sum of 2n diagrams with no crossings, then

applying proprieties 1 and 2.
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We want now to see what happens changing the diagram D by a Reide-

meister move.

Lemma 1.3.1. If a diagram D is changed by a Reideimesteir move of first

type, its bracket changes in the following way:

< R+
1 >= −A3 < R0 >, < R−1 >= −A−3 < R0 >

where R+
1 , R−1 and R0 are such that, from left to right,

Proof. We have

< R+
1 >= A < R0 q unknot > +A−1 < R0 >=

= (A(−A−2 − A2 + A−1)) < R0 >= −A3 < R0 >

and

< R−1 >= A < R0 > +A−1 < R0 q unknot >=

= (A+ A−1(−A−2 − A2)) < R0 >= −A3 < R0 > .

So it is clear that the Kauffman bracket is not an invariant for link dia-

grams, but it is possible to renormalise it to have an invariant.

Lemma 1.3.2.

< R+
2 >=< R2 >, < R+

3 >=< R3 >

where R+
2 and R2 are, from left to right
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and R+
3 and R−3 are, from left to right

So < D > is invariant under Reidemeister moves of second and third type.

Proof. It follows from the proprieties of the diagram and from lemma 1.3.1.

For the second Reidemeister move we make the following simplifications:

Now, by iteration, we get:

< D1 >= A−1 < D2 > +A < D3 >=

A−1(A < D4 > +A−1 < D5 >) + A(A < D6 > +A−1 < D−7 >).

By definition of the bracket and noticing that < D5 >=< D6 > we get

< D5 > (−A−2 − A2 + A−2 + A2)+ < D7 >=< D7 >

For the third Reidemeister move we get:
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1 2

3 4

We pass from 1 to 3 and from 2 to 4 by a Reidemeister move of second

type. Then

< R+
3 >= A < D1 > +A−1 < D2 >=

= A < D3 > +A−1 < D4 >=< R−3 >

Definition 26. We call the sum of the signs of all the crossings of a diagram

D of an oriented link the writhe w(D) of the diagram.

Remark 22. The writhe w(d) is not a link invariant. It is invariant for the

second and the third Reidemeister move, but not for the first.

Theorem 1.3.3. Let D be a diagram of an oriented link L. Then

(−A)−3w(D) < D >

is an invariant of the oriented link L.
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Proof. By lemma 1.3.2 and remark 22 this expression is invariant for second

and third Reidemeister move. By the computation done for the first Reide-

meister move we have that is also unchanged for first Reidemeister move.

Definition 27. Given a diagram D of a link L, we define the Jones polyno-

mial V (L) as the Laurent polynomial in t1/2 with integer coefficients, defined

by

V (L) = ((−A)−3w(D) < D >)t1/2=A−2 .

For theorem 1.3.3, V (L) is well defined.

1.3.2 Definition by skein relations

As for the Alexander-Conway polynomial, we now show that it is possible

to define it using skein relations.

Proposition 1.3.4. The Jones polynomial is a function

V : {oriented links in S3} → Z[t±1/2]

such that V (unknot) = 1 and that

t−1V (L+)− tV (L−) + (t−1/2 − t1/2)V (L0) = 0

where L+, L− and L0 mean that the diagrams are the same, except in a

neighbourhood of a point where is as in the following picture, reading from

left to right:
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Proof. Let us take into consideration the diagrams C1 = L0, C2 of the defi-

nition of the Kauffman bracket. We have

< L+ >= A < C1 > +A−1 < C2 >, < L− >= A−1 < C1 > +A < C2 >

so that A < L+ > −A−1 < L− >= (A2 − A−2) < L0 >.

By definition, w(L+)− 1 = w(L0)) = w(L−) + 1 and so

−A4V (L+) + A−4V (L−) = (A2 − A−2)V (L0).

Up to the substitution t1/2 = A−2 we have the thesis.

Example 8. We want now to calculate the Jones polynomial for the right

and left trefoil.

We take the diagram

1

2 3

4 5

So we get that

< D1 >= A < D2 > +A−1 < D3 >=

= A(A−1 < D4 > +A < D5 >) + A−1 < D3 >= −A−3 − A5 + A−7.

All the crossings are positive, so that w(D) = 3. Then the Jones polynomial

is

V (3+
1 ) = ((−A)−9(A−7 − A−3 + A−5))t1/2=A−2 = −t4 + t3 + t.
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Now we do the same computation for the left trefoil.

1

2 3

4 5

Then

< D1 >= A < D2 > +A−1D3 =

= A < D2 > +A−1(A−1 < D4 + A < D5 >) = A7 − A−5 − A3

In this case w(D1) = −3 and the Jones polynomial is

V (3−1 ) = ((−A)9(A7 − A−5 − A3))t1/2=A−2 = −t−4 + t−3 + t−1

We have then shown that the right trefoil and the left trefoil are not iso-

topic, so that the trefoil knot is not amphicheiral.



Chapter 2

Braid groups

2.1 Some equivalent definitions

2.1.1 Configuration spaces

Definition 28. Let ∆ ⊂ Cn, n ∈ N be

∆ = ∪ni,j=1{zi = zj}, i 6= j.

Let C and Confn be such that C = Cn−∆ and Confn(C) = (Cn−∆)/Sn,

where Sn is the group of permutation on n elements.

Remark 23. The space C, associated to the map C → Confn(C), is a

covering space of Confn(C) and the associated group is Sn.

Remark 24. Up to homeomorphism, it is possible to consider just points in

the interior of D2 ⊂ C.

Let ∗ be the point on the real line, ∗ = {2k−1−n
n

, 1 ≤ k ≤ n}.

Definition 29. We call n-pure braid group the group

Pn = π1(C, ∗).

We call n-braid group the group

Bn = π1(Confn(C), ∗).

41
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2.1.2 Diagrams

Let I be the closed interval [0, 1] ⊂ R. A topological interval is a topo-

logical space homeomorphic to I.

Definition 30. A geometric braid on n strings, n ≥ 1, is a set b ⊂ C × I
formed by n disjoints topological intervals, the strings of b, such that the

projection C× I → I maps each string homeomorphically onto I and

b ∩ (C× {0}) = ∗ × {0}

b ∩ (C× {1}) = ∗ × {1}

where ∗ is the set of points defined above. We can label the n points by

P = (p1, . . . , pn) = {1, . . . , n}.

Remark 25. Every string of b meets each C × {t}, t ∈ I, in exactly one

point and connects a point in P × {0} to a point in P × {1}.
We can associate to each string b a permutation π ∈ Sn such that

b(Pi, 1) = π(i).

An example of geometric braid is:



2.1 Some equivalent definitions 43

The underlying permutations is (3 4).

We want now to define a class of isotopy for braids, as it is for knots.

Definition 31. Let b and b′ be two geometric braids. They are said to be

isotopic if there is a continuous map F : b× I → C× I such that

• for each s ∈ I Fs : b → C × I is an embedding, whose image is a

geometric braid on n strings,

• F0 = idb : b→ b,

• F1(b) = b′.

Remark 26. If b and b′ are isotopic, then the underlying permutations πb

and πb′ must be the same.

Proposition 2.1.1. The relation of isotopy is an equivalence relation. We

call the equivalence classes braids on n strings.

We want now to introduce a canonical operation between two braids. We

will see that the set of geometric braids with this operation is actually a

group.

Definition 32. Let b1 and b2 be two n-strands geometric braids. We define

b = b1b2 as the set of points {z, t} ∈ C × I such that {z, 2t} ∈ b1, for

0 ≤ t ≤ 1/2 and {z, 2t− 1} ∈ b2 for 1/2 ≤ t ≤ 1. b is still a geometric braid

with n strands.

Remark 27. If b1 is isotopic to b′1 and b2 is isotopic to b′2, then b1b2 is isotopic

to b′1b
′
2.

As we have done for knots, we would like to represent geometric braids

on the plane. In the following we will identify C with R2.

Definition 33. A braid diagram on n strands is a set D ⊂ R× I, union of

n topological intervals, such that:

• the projection R× I → I maps each strand homeomorphically onto I,



44 2. Braid groups

• every point of ∗ × {0, 1} is the endpoint of a unique strand,

• every point of R× I belongs to at most two strands. At each crossing

these strands meet transversely, with one undergoing and the other

overgoing.

Remark 28. By compactness of the strands, the number of crossing of a

diagram D is finite.

Proposition 2.1.2. Every geometric braid can be represented by a braid

diagram.

Every braid diagram represents a geometric braid, up to isotopy.

Definition 34. Two braid diagrams D and D′ on n strands are said to be

isotopic if there is a map F : D × I → R× I such that

• F (D × {s}) is a braid diagram on n strands ∀s ∈ I,

• D0 = D,

• D1 = D′.

Theorem 2.1.3. Two braid diagrams D and D′ define the same geometric

braid if and only if it is possible to get one from the other by a sequence of

diagram moves and their inverses as following:
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Proof. A proof can be found in [16].

2.1.3 Presentation

Let σi and σ−1
i be the braids:

i+1ii+1i

with all the other strands being straights.

Theorem 2.1.4. The braid diagrams are generated by σ1, σ2, . . ., σn−1.

The group Bn admits a presentation:

P =< σ1, . . . , σn−1| (1), (2) >

where (1) and (2) are the relations:

1. σiσi+1σi = σi+1σiσi+1, ∀i : 1 ≤ i ≤ n− 2

2. σiσj = σjσi, ∀i, j : |i− j| ≥ 2

Conditions 1 and 2 can be represented by the following diagrams:
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i i+1 i+2 i i+1 i+2

i i+1 i+1ij jj+1 j+1

Proof. It is trivial that every diagram can be constructed by a sequence of

elements σi and σ−1
i .

The three diagram movements of theorem 2.3.1 are covered by relations

(1) and (2) and by σiσ
−1
i = 1.

Corollary 2.1.5. The group B2 is the infinite cyclic group generated by the

element σ1.

Remark 29. ∀i : 1 ≤ i ≤ n− 1 we have:

σiσi+1σi = σ−1
i+1σiσi+1, σ

−1
i σ−1

i+1σi = σi+1σ
−1
i σ−1

i+1, σ
−1
i σ−1

i+1σ
−1
i = σ−1

i+1σ
−1
i σ−1

i+1,

σiσ
−1
i+1σ

−1
i = σ−1

i+1σ
−1
i σi+1, σ

−1
i σi+1σi = σi+1σiσ

−1
i+1.

∀i, j : ‖i− j| ≥ 2

σ−1
i σj = σjσ

−1
i , σiσ

−1
j = σ−1

j σi, σ
−1
i σ−1

j = σ−1
j σ−1

i .

Proposition 2.1.6. If s1, . . . , sn−1 are elements of a group G satisfying the

braid relations, then there is a unique group homomorphism f : Bn → G

such that si = f(σi) ∀i : 1 ≤ i ≤ n− 1.
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Proof. Let Fn be such that Fn =< σ1, . . . , σn−1 >. There is a unique group

homomorphism f̃ : Fn → G such that f̃(σi) = si. This homomorphism

induces a group homomorphism f : Bn → G if and only if f̃(r) = f̃(r′) for

all braid relations r = r′.

For the first braid relation:

f̃(σiσi+1σi) = sisi+1si = si+1sisi+1 = f̃(σi+1σiσi+1).

For the second braid relation:

f̃(σiσj) = sisj = sjsi = f̃(σjσi).

Let Sn be the group of permutations on n elements. Let τi = (i i + 1)

be a transposition. Sn is generated by the elements τi, i = 1, . . . , n− 1, such

that τ 2
i = 2. Also, τiτi+1τi = τi+1τiτi+1 ∀i : 1 ≤ i ≤ n − 1 and τiτj = τjτi

|i− j| ≥ 2.

Theorem 2.1.7. Sn admits a presentation P such that

P =< τ1, . . . , τn−1| τ 2
i = 1 ∀i, (1), (2) >

where (1) and (2) are the relations of theorem 2.1.4.

By proposition 2.1.6, there exists a unique group epimorphism π : Bn →
Sn such that τi = π(σi), ∀i : 1 ≤ i ≤ n− 1.

Proposition 2.1.8. The group Bn, n ≥ 3, is nonabelian.

Proof. Sn, n ≥ 3, is a nonabelian group and π : Bn → Sn is an epimorphism.

So also Bn is non abelian.

Proposition 2.1.9. The map i : Bn → Bn+1, i(σj) = (σj) ∀ j = 1, . . . , n−1

is an injective homomorphism.
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We can see this map on geometric braids as the map sending every braid

β ∈ Bn in itself, with an additional straight strand on the far right. We have

then a sequence of inclusions B1 ⊂ B2 ⊂ B2 ⊂ . . ..

Composing i with the projection π : Bn+1 → Sn+1 it is the same than

composing π : Bn → Sn with the inclusion Sn ↪→ Sn+1. So there is a

commutative diagram

Bn −→ Sn

↓ ↓
Bn+1 −→ Sn+1

Example 9. By definition, B3 =< σ1, σ2| σ1σ2σ1 = σ2σ1σ2 >.

This is exactly the knot group of the trefoil knot, as we have computed

in the first chapter. We can represent it also as < a, b| a2 = b3 >. We can

notice that, with that presentation, the element a2 lies in the center of B3.

Proposition 2.1.10. The group Bn admits a presentation with two genera-

tors.

Proof. Let α and β be such that α = σ1, β = σ1σ2, . . . , σn−1,

For 1 ≤ i ≤ n− 2 we have βσi = σi+1β.

(σ1σ2 . . . σn−1)σi = σ1σ2 . . . σi−1σiσi+1σiσi+2 . . . σn−1 =

σ1σ2 . . . σi−1σi+1σiσi+1 . . . σn−1 = σi+1(σ1σ2 . . . σn−1).

So it is easy to see that σi = βi−1αβ1−i and that α, β generate all Bn.

2.1.4 Mapping class groups

In the following Pn represents a set of n points on the real line of C (or

equivalently on the line R× {0} ⊂ R2).

Definition 35. Let Diff(D2, Pn, S
1) be the set of diffeomorphisms f : D2 →

D2 such that f(Pn) = Pn and f |S1 = IdS1 , also called self diffeomorphisms.

Let Diff0(D2, Pn, S
1) be the set of the self diffeomorphisms f : D2 → D2
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such that every f is isotopic to IdD2 , i.e. there is a continuous family ft(x)

of self diffeomorphisms such that f0(x) = f(x) and f1(x) = x.

Proposition 2.1.11. Diff0(D2, Pn, S
1) is a normal subgroup of Diff(D2, Pn, S

1).

Proof. It is easy to see that Diff0(D2, Pn, S
1) is a subgroup.

If f ∈ Diff0(D2, Pn, S
1), g ∈ Diff(D2, Pn, S

1) then g−1fg ' g−1Idg '
gg−1 ' IdD2 .

Definition 36. Let Dn
2 be D2 with a choice of a set of n points Pn. We

define M(Dn
2 ) as

M(Dn
2 ) =

Diff(D2, Pn, S
1)

Diff0(D2, Pn, S1)
.

Theorem 2.1.12. M(D0
2) = M(D2) is trivial.

Proof. We use the Alexander trick. Let f be such that f ∈ Diff(D2, S
1).

Let us take

h(s, reiθ) =

{
f( r

1−se
iθ), r ≤ 1− s

reiθ, r ≥ 1− s

Corollary 2.1.13. Let f ∈ Diff(D2, Pn) be such that f(ai) = ai, where ai

are segments linking every point i to the point i+ 1 and 1 to S1, i.e.

Then f is isotopic to the identity.
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Proof. If f is the identity on the segments, then it is isotopic to the identity in

a small open set U such that a1, . . . , an ⊂ U . (D2−Pn)−U is diffeomorphic

to D2, so we can apply theorem 2.1.12, f ' Id in (D2 − Pn) − U . Then

f ' Id in (D2 − Pn)− U .

We want now to find a group of generators for M(Dn
2 ). We take n = 2,

so that P2 = {(−1/2, 0), (1/2, 0)}.
Let t : D2 → D2 be

t : rei2πθ 7→ rei2π(θ+1−r).

The map t is a diffeomorphism such that t((1/2, 0)) = (−1/2, 0), t((−1/2, 0)) =

(1/2, 0). We can represent it as:

Now we extend this function to every n. Let pk and pk+1 be two points

and U an open set diffeomorphic to D2 and such that pi /∈ U for i 6= k, k+ 1.

We can define tk as acting as t on U and being the identity on D2 − U .

Proposition 2.1.14. The functions tk, 1 ≤ k ≤ n − 1, satisfy the braid

relations

• titi+1ti = ti+1titi+1, ∀i : 1 ≤ i ≤ n− 2,

• titj = tjti, |i− j| ≥ 2.

Proof. The second relation follows from the construction. We just have to

check the first one.

So titi+1ti = ti+1titi+1.
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Theorem 2.1.15. Let ψ : Bn →M(Dn
2 ) be defined by

ψ(σk) = tk.

Then ψ is an isomorphism.

Proof. We show that ψ is an isomorphism by defining an inverse.

Let f be inDiff(D2, Pn, S
1). f is isotopic to the identity inDiff(D2, S

1).

Let h : [0, 1]× [0, 1]→ D2 be (s, z) 7→ hs(z), h0 = Id, h1 = f .

σf : s 7→ hs(Pn) is then a braid and tk 7→ σk. σf is well-defined because

Diff(D2, S
1) is contractible. It is sufficient to see that σ is an homomor-

phism, σgf = σgσf .

Let hs be an isotopy from Id to g and h′s be an isotopy from Id to f .

Then hs ◦ f is an isotopy from f to g ◦ f and h′s(hs ◦ f) is an isotopy from

Id to g ◦ f . So this is a morphism.
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2.2 Proprieties

2.2.1 Pure braid group

Let us focus on the projection π : Bn → Sn. The kernel of π is a group,

called the pure braid group Pn. Its elements are called pure braids on n

strands. A geometric braid on n strands represents an element in Pn if and

only if every strand starting by (i, 0, 0) ends in (i, 0, 1), ∀i : 1 ≤ i ≤ n.

We want to find a set of generators for this group. The group Pn is

generated by elements Ai,j, 1 ≤ i < j ≤ n such that

Ai,j = σj−1σj−2 . . . σi+1σ
2
i σ
−1
i+1 . . . σ

−1
j−2σ

−1
j−1

represented by the geometric braid

Pn is a normal subgroup of Bn. Moreover, the braids Ai,j are all conjugate

each other in Bn.

Proposition 2.2.1. Let αi,j be α = σj−1σj−2 . . . σi. Then for 1 ≤ i < j <

k ≤ n

αj,kAi,jα
−1
j,k = Ai,k, σiAi,jσ

−1
i = Ai+1,j.

Proof.

αj,kAi,jα
−1
j,k = σk−1σk−2 . . . σjσj−1 . . . σi+1σ

2
i σ
−1
i+1 . . . σ

−1
j−1σ

−1
j . . . σ−1

k = Ai,k.

σiσj−1 . . . σi+1σ
2
i σ
−1
i+1 . . . σ

−1
j−1σ

−1
i = σj−1 . . . σi+2σiσi+1σ

2
i σ
−1
i+1σ

−1
i σ−1

i+2 . . . σj − 1−1 =

= σj−1 . . . σi+2σi+1σiσi+1σ
−1
i+1σ

−1
i σi+1σ

−1
i+2 . . . σ

−1
j−1 = Ai+1,j.
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Remark 30. The inclusion i : Bn → Bn+1 maps Pn to Pn+1, an homomor-

phism i|Pn : Pn → Pn+1. As in Bn, we can see this application geometrically

as the addiction of a vertical strand on the far right. Moreover, Pn → Pn+1

is injective.

We want now to define a forgetting homomorphism fn : Pn → Pn−1. Let

b be a pure braid. By definition, the i-th strand connects (i, 0, 0) to (i, 0, 1).

By convention, we eliminate the n-string.

Remark 31. If b is isotopic to b′, then fn(b) is isotopic to fn(b′).

By remark, the function fn is well defined from Pn to Pn−1 and it is a

group homomorphism.

Proposition 2.2.2. If i : Pn−1 → Pn is the natural inclusion and fn : Pn →
Pn−1 is the forgetting homomorphism, then fn ◦ i = idPn−1.

The proposition easily follows from the geometric construction.

Corollary 2.2.3. i : Pn−1 → Pn is into and fn : Pn → Pn−1 is onto.

Let Un be ker(fn : Pn → Pn−1). There is an exact sequence

0→ U → Pn → Pn−1 → 0

There is a section i : Pn−1 → Pn, so the sequence splits and

Pn = Un o Pn−1.

Then every braid β ∈ Bn can be written as β = i(β′)βn, where β′ ∈ Pn−1

and βn ∈ U .

In particular, ker(Pn → Pn−1) = π1(C − {z1, . . . , zn−1}) = Fn−1, the free

group on n− 1 generator.

Iterating this construction, we obtain that Pn = Fn−1oFn−2o. . .oF2oF1,

so that

β = β2β3 . . . βn,

βi ∈ Ui ⊂ Pi.
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Proposition 2.2.4. The group Pn admits a normal filtration

1 = U (0)
n ⊂ U (1)

n ⊂ . . . ⊂ U (n−1)
n = Pn

such that U
(i)
n /U

(i−1)
n is a free group of rank n− i for all i.

Proof. Take U
(0)
n = 1 and

U (i)
n = ker(fn−i+1 . . . fn−1fn : Pn → Pn−1)

for all i, 1 ≤ i ≤ n− 1. Then

U (i)
n /U (i−1)

n ' ker(fn−i+1 : Pn−i+1 → Pn−i) = Un−i+1.

Corollary 2.2.5. The group Pn is torsion free.

Proof. The group Pn can be decomposed as semidirect product of free groups,

which are torsion free.

Theorem 2.2.6. The group Pn admits a presentation with n(n−1)
2

generators

{Ai,j}, 1 ≤ i < j ≤ n and relations

A−1
r,sAi,jAr,s =



Ai,j if s < i.

Ai,j if i < r < s < j.

Ar,jAi,jA
−1
r,j if s = i.

Ar,jAs,jAi,jA
−1
s,jA

−1
r,j if i = r < s < j.

Ar,jAs,jA
−1
r,jA

−1
s,jAi,jAs,jAr,jA

−1
s,jA

−1
r,j if r < i < s < j.

Proof. We have seen that {Ai,j} generate Pn. The relations can be proven

by drawing the diagrams. For example, for the second relation:
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i r s j

It is easy to see that this is actually Ai,j. All the other relations are

proven in the same way, see [13].

Corollary 2.2.7. Pn/[Pn, Pn] ' Zn(n−1)/2.

Proof. It is sufficient to show that the elements Ai,j are linearly indipendent,

i.e. it is sufficient to construct a group homomorphism li,j : Pn → Z such

that li,j(Ar,s) = 1 for (r, s) = (i, j), li,j(Ar,s) = 0 otherwise.

Let β be a braid and D an associated braid diagram. We can orient the

strands of this diagram from the level t = 0 to the level t = 1. So we have

two functions l+i,j(D) and l−i,j(D), such that l+i,j is the number of crossing of

D where the ith strands goes over the jth strand from left to right and l−i,j is

the number of crossing of D where the ith strands goes over the jth strand

from right to left. Let li,j be li,j = l+i,j − l−i,j.
The function li,j is invariant under Reidemeister moves on D, so it is

well defined, li,j : Pn → Z. It is straightforward to see that li,j(Ar,s) = 1 if
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(r, s) = (i, j), 0 otherwise.

Definition 37. A group G is residually finite if for each g ∈ G− {1} there

is a homomorphism f from G to a finite group, f(g) 6= 1.

Proposition 2.2.8. Free groups are residually finite and a semidirect product

of two finitely generated residually finite groups is residually finite.

Proof. A proof of the first fact can be found in [18], while a proof of the

second can be found in [19].

Corollary 2.2.9. Bn is residually finite and so are all its subgroups.

Proof. We have seen that Pn is a semidirect product of free groups, so it

is residually finite. Moreover, every extension of a residually finite group

by a finite group is still residually finite, because the intersection of a finite

family of subgroups of finite index is a subgroup of finite index. Now, Bn is

an extension of Pn by Sn, which is a finite group, so that Bn is residually

finite too. It is easy to see that every subgroup of a residually finite group is

residually finite.

Corollary 2.2.10. f in : Pn → Pn−1 is defined as the map forgetting the ith

string, for i = 1, 2 . . . , n. The kernel of f in is a free group of rank n− 1 with

free generators Ai,1, . . . , Ai−1,i, Ai,i+1, . . . , Ai,n.

Proof. Let αi,n be α = σn−1σn−2 . . . σi and let β be a pure braid in Pn. We

take into consideration the braid αi,nβα
−1
i,n
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1 i-1 i i+1 nn-1

β

Applying fn, the usual forgetting homomorphism, we find

fn(αi,nβα
−1
i,n) = 1n−1f

i
n(β)1n−1 = f in(β).

So we have that f in(β) = fn(αi,nβα
−1
i,n) and then

ker(f in) = α−1
i,n ker(fn)αi,n = α−1

i,nUnαi,n.

Now, by the proprieties of Pn, we get that conjugating by α−1
i,n transforms

the set {Aj,n}j=1,2,...,n−1 into the set {Ai,1 . . . , Ai−1,i, Ai,i+1 . . . , Ai,n}.

2.2.2 The center of Bn

Definition 38. The center of a group G is the set

Z(G) = {h ∈ G| hg = gh, ∀g ∈ G}.

Remark 32. Z(G) is a subgroup of G.

Definition 39. Let ∆n ∈ Bn be the braid

∆n = (σ1σ2 . . . σn−1)(σ1σ2 . . . σn−2) . . . (σ1σ2)σ1.

∆n is called the Garside element.
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Example 10. For n = 6 the Garside element is

1 2 3 4 5 6

Lemma 2.2.11. σi∆n = ∆nσn−i, ∀i = 1, . . . , n− 1,

Proof. We will see it by induction.

If n = 2 it is trivial. If n = 3, we have

σ1(σ1σ2)σ1 = σ1σ2σ1σ2, σ2(σ1σ2)σ1 = σ1σ2σ1σ1

Take i = 2, . . . , n− 1. Then

σi(σ1σ2 . . . , σn−1)(σ1σ2 . . . , σn−2) . . . (σ1σ2σ1) =

= σ1σ2 . . . σiσi−1σiσi+1 . . . , σn−1(σ1σ2 . . . , σn−2) . . . (σ1σ2σ1) =

= (σ1σ2 . . . σi−1σiσi+1 . . . σn−1)σi−1∆n−1 = ∆nσn−i

Take now the case i = 1.

σ1σ1σ2 . . . σn−1σ1σ2 . . . σn−2∆n−2 = σ1σ1σ2σ1σ3 . . . σn−1σ2σ3 . . . σn−2∆n−2 =

= σ1σ2σ2σ3 . . . σn−1σ2σ3 . . . σn−2∆n−2 = σ1σ2σ1σ2σ3σ2 . . . σn−1σ3 . . . σn−2∆n−2 =

= σ1σ2σ3 . . . σn−1σ1σ2 . . . σn−2σn−1∆n−2 = ∆nσn.
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Corollary 2.2.12. Let θn be θn = ∆2
n. Then σiθn = θnσi. Moreover, θn =

i(θn−1)γn, where

γn = A1,nA2,n . . . An−1,n

and i : Pn−1 → Pn is the natural inclusion.

Theorem 2.2.13. Z(Bn) = Z(Pn) is the infinite cyclic group generated by

θn.

Proof. We have seen that θn ∈ Z(Bn). We should prove that every element

of Z(Bn) is a power of θn. We start by focusing on P2.

For n = 2 it is obvious, because P2 is the infinite cyclic group generated

by σ2
1 = θ2.

Let now β be in Z(Pn), n ≥ 3. We can decompose β as β = i(β′)βn,

β′ = fn(β) ∈ Pn−1 and β ∈ Un. We can notice that the braid γn commutes

with any elements of i(Pn−1). Moreover, β commutes with γ, because we

have supposed β ∈ Z(Pn). So γ commutes with βn = i(β′)−1β and the group

G generated by γ and βn is an abelian group, G ⊂ Un. Un is a free group, so

all its subgroups are free groups too. This implies that G is an infinite cyclic

group.

Let li,j : Pn → Z be the homomorphism defined in Corollary 2.2.7.

l1,n(γ) = 1, so γ is a generator of G and ∃k : βn = γk. By the induc-

tion assumption there is m such that β′ = fn(β) = (θmn−1). Then we have

li,n = k ∀i = 1, 2, . . . , n−1, so it is independent from i. Since β ∈ Z(Pn), also

σn−1βσ
−1
n−1 ∈ Z(Pn) and li,n(σn−1βσ

−1
n−1) is independent from i. By definition

we obtain

l1,n(σn−1βσ
−1
n−1) = l1,n−1(β) = m.

ln−1,n(σn−1βσn−1) = ln−1,n(β) = k.

and m = k and β = i(θn−1γ)k = θkn.

For n ≥ 3 the center of Bn projects to the trivial subgroup of Sn, because

Z(Sn) = {1}. So Z(Bn) ⊂ Z(Pn). Since θn ∈ Z(Bn), Z(Bn) = (θn).
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Corollary 2.2.14. Bm and Bn are isomorphic if and only if m = n.

Proof. The image of Z(Bn) in Bn/[Bn, Bn] is a subgroup of Z of index n(n−
1). If Bn is isomorphic to Bm then m(m− 1) = n(n− 1), so that m = n.

2.2.3 Homotopy groups

Theorem 2.2.15. Let (Sn, s0) and (X, xo) be two topological pointed spaces.

Let πn(X, x0) be the set of homotopy classes of maps f : Sn → X such

that f(s0) = x0. Then πx(X, x0) is a group, called the n-homotopy group of

(X, x0).

Proof. A proof can be found in every book of algebraic topology, see [14] or

[7].

Proposition 2.2.16. πn(X, x0) is a commutative group for n ≥ 2.

Definition 40. A map p : E → X is locally trivial if and only if ∀x ∈ X there

is a neighbourhood V = Vx and a homeomorphism p−1(V )
∼→ p−1(x) × V

such that there is a commutative diagram

p−1(V )
∼→ p−1(x)× V

↓ ↓
V → V

Theorem 2.2.17. Let p : E → X, X arc connected, be a locally trivial

fibration. Let e0 be in E, p(e0) = b0, F = p−1(b0) and f0 ∈ F . There is a

long exact sequence in homotopy:

. . .→ πn(F, f0)→ πn(E, e0)→ πn(X, x0)→ πn−1(F, f0)→ . . .→ π1(F, f0)

→ π1(E, e0)→ π1(X, x0)→ π0(F, f0)→ π0(E, e0)→ π0(X, x0)→ 0.

A proof can be found in [14].

Corollary 2.2.18. If p is a covering map, then πn(F ) = 0 for n ≥ 2 and

πn(E) ' πn(X) for n ≥ 2
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Corollary 2.2.18 follows from theorem 2.2.17 by setting πn(F ) = 0 in the

long exact sequence.

Let us now focus on the configuration spaces. There is a map

p : Cn −∆n → Cn−1 −∆n−1

such that p((z1, . . . , zn)) = (z1, . . . , zn−1), so that

p−1((q1, . . . , qn)) = C−Qn−1

where Qn−1 = {q1, . . . , qn−1}. The map p is locally trivial.

Theorem 2.2.19. πk(Confn(C)) = 0 for k ≥ 2, n ≥ 1.

Proof. We apply theorem 2.217 and corollary 2.2.18. F = C − Qn−1 ∼
∨n−1
i=1 S

i, so πk(F ) = 0 for k ≥ 2.

We prove it by induction of n. For n = 1, Conf1(C) = C and so we have

the claim.

For n > 1 we take the sequence:

. . .→ πk(F )→ πk(Cn −∆n)→ πk(Cn−1 −∆n−1)→ . . .

By induction, πk(Cn−1 − ∆n−1) = 0 for k ≥ 2 and we have seen that

πk(Cn−1 −∆n−1) = 0, so that πk(Confn(C)) = 0 for k ≥ 2.

2.3 Representation of links by braids

2.3.1 Construction of links by braids

Definition 41. Let L be a link in the solid torus T = D2 × S1. L is called

a closed n-braid if L meets each 2-disk D2 × {z}, z ∈ S1, transversely in n

points.

Remark 33. The projection V → S1 restricted to L gives a n-fold covering

L→ S1.
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We provide L with the canonical orientation obtained by lifting the coun-

terclockwise orientation of S1.

Definition 42. Two closed braids in V are isotopic if they are isotopic as

oriented links.

Remark 34. A link in V does not need to be isotopic to a closed braid in

V , as for example a link lying inside a small 3-ball in V .

Such links are called closed n-braid because, given a braid β on n strands,

there is a standard way to obtain from it a closed n-braid in the solid torus

V . A solid torus can be seen as the cylinder D2 × I with identifications

(x, 0) ∼ (x, 1). So, given a braid β, take the geometric braid b ⊂ D2 × I.

Then b̂, image of b in the projection D2 × I → V , is a closed n-braid in V .

Proposition 2.3.1. Let β be a n-braid and b a geometric braid associated

to β. The isotopy class of b̂ depends only on β.

Proof. Let b and b′ be two geometric braids in D2×I. Then b is isotopic to b′,

i.e. there is an isotopy of D×I constant on the boundary and transforming b

in b′. This isotopy induces an isotopy between b̂ and b̂′ in V , thus the isotopy

class of b̂ does not depend on the choice of the geometric braid.

Theorem 2.3.2. For any n ≥ 1 and any β and β′ ∈ Bn with geometric

braids b and b′, the closed braids b̂ and b̂′ are isotopic in the solid torus if and

only if β and β′ are conjugate in Bn.

Proof. A proof can be found in [16].

Definition 43. Let β be a braid diagram. The closure β̂ of β is the link

diagram obtained by joining the bottom endpoints with the top endpoints

by n standard arcs. We call the oriented link which diagram is β̂ as β̂ too.

Proposition 2.3.3. Two closed braid diagrams D and D′ in S1×I represent

isotopic closed braids in the solid torus S1 × I × I if and only if D can be

transformed in D′ by a finite sequence of isotopies and Reidemeister moves.



2.3 Representation of links by braids 63

Proof. A proof can be found in [16].

Example 11. If 1n is the trivial braid on n strands, its closure is the union

on n disjoints trivial links.

Example 12. Let β be β = σ2
1. Then β̂ is the knot:

By computing the fundamental group, it is possible to see that β̂ is actually

isotopic to the trefoil knot.

Example 13. Let β be β = σ−1
1 σ−1

2 . . . σ−1
n−2σn−1σn−2 . . . σ2σ1 be a braid on n

strands. Its closure β̂ is isotopic to the disjoint union of n− 1 trivial knots.

For example, for n = 4

2.3.2 Alexander’s theorem

We give now an equivalent definition of closed braid in R3. Let l =

{(0, 0)} × R ⊂ R3 be the coordinate axis meeting the plane R2 × {0} at the
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origin O = (0, 0, 0). We can choose a positive direction of rotation about l

as the counterclockwise direction about O in the plane R2 × {0}.

Definition 44. An oriented geometric link L ⊂ R3 − l is a closed n-braid if

the vector from O to any point X ∈ L rotates in the positive direction about

l when X moves along L in the direction determined by the orientation of L.

Lemma 2.3.4. The two definitions are equivalent.

Proof. Let D2 be a disk lying in an open half-plane bounded by l in R3 and

having its center in R2 × {0}. Now, rotating D around l we obtain a solid

torus V = D2 × S1. The assumption then follows by considering that, if D

is big enough, a given link L ⊂ R3 − l lies in V .

Theorem 2.3.5. Any oriented link in R3 is isotopic to a closed braid.

Proof. Any link in R3 is isotopic to a polygonal link, so it is sufficient to

prove the theorem for such links. By moving the vertices of L we can assume

that L ⊂ R3− l, where l = {(0, 0)}×R, and that the edges of L do not lie in

planes containing the axis l. Let AC be an edge of L, labeling the vertices

such that L is oriented from A to C. The edge AC is said to be positive

(resp. negative) if the vector from the origin 0 ∈ l to a point X ∈ AC rotates

in the positive (resp. negative) direction about l when X moves from A to

C. By the assumption that AC does not lie in a plane containing l, AC is

necessarily positive or negative. The edge AC is now said to be accessible if

there is a point B ∈ l such that the triangle ABC meets L only along AC.

If all edges of L are positive, L is a closed braid.

Let AC be a negative edge of L. It is possible to replace AC with a

sequence of positive edges. Assume AC is accessible. Then there exists

B ∈ l such that the triangle ABC meets L only along AC. In the plane

containing ABC we take a bigger triangle AB′C containing B in its interior,

meeting l only at B and meeting L only along AC.
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B

A

C

B'

l

We can replace then the edge AC with the two positive edges AB′ and

B′C, a ∆-move ∆(AB′C). Then the resulting polygonal link is isotopic to L

and has one negative edge fewer than L.

Assume now that the edge AC is not accessible. Let B be in L and let P

be in AC such that the segment PB meets L only at P . Now it is possible to

thicken this segment inside the triangle ABC to obtain a triangle P−BP+

meeting L along its side P−P+. Then P−P+ is an accessible subsegment

of AC. Since AC is compact it is possible to split it into a finite number

of consecutive accessible subsegments. Then we apply to each of them the

∆-move as above choosing distinct points B ∈ l and choosing B′ such that

it does not lie in the other edges of L. Since AC does not lie in a plane con-

taining l, the triangles determining the ∆ -moves meet only at the common

vertices of the consecutive subsegments of AC. Then they replace AC ⊂ L

with a finite sequence of positive edges, beginning at A and ending at C and

the resulting polygonal link is isotopic to L. Applying this procedure to all

negative edges of L we obtain a closed braid isotopic to L.

In his proof, Alexander modifies the diagram of an oriented link to ob-

tain a closed braid, by changing the geometry of the picture. Applying his

method, it is frequent to obtain a diagram with many more crossings than

the initial one. This is why in application is usually used an other algorithm,

which gives a upper bound to the number of crossing added. The algorithm

can be found in [25].
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2.3.3 Markov theorem

We have a method for building a link diagram as a closed braid. Now

we want to investigate the other problem: how to describe all braids with

isotopic closures in R3.

We have seen that if two braids β and β′ are conjugate then they have

isotopic closures, but the converse is not true.

Example 14. Let us take σ1, σ−1
1 ∈ B2. They are not conjugate each to the

other, but their closures are both isotopic to the trivial knot.

Example 15. Let i : Bn → Bn+1 be the natural embedding of Bn in Bn+1.

Let β be a braid in Bn. Then the braids σni(β) and σ−1
n i(β) have isotopic

closures. Also, their closures are isotopic to β̂.

Definition 45. Two braids β and β′ are said to be M-equivalent if they can

be related by a finite sequence of moves M1 and M2, and their inverses, given

by

1. if β, γ ∈ Bn, β 7→ γβγ−1;

2. if β ∈ Bn, i : Bn → Bn+1 is the canonical embedding, β 7→ σ±1
n i(β).

The moves M1 and M2 are called Markov moves.

Remark 35. The relation of M-equivalence is an equivalence relation.

Remark 36. Two braids can be M-equivalent also if they have a different

number of strands.

Example 16. Let us show that the braids σ1 and σ−1
1 ∈ B2 are equivalent.

σ1 ∼ σ−1
2 σ1 ∼ (σ1σ2)−1(σ−1

2 σ1)(σ1σ2) =

= σ−1
1 σ−1

2 σ−1
1 σ2

1σ2 = σ−1
1 σ−1

2 σ1σ2 =

= σ2σ
−1
1 σ−1

2 σ2 = σ2σ
−1
1 ∼ σ−1

1 .
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Theorem 2.3.6. Two braids have isotopic closures in R3 if and only if they

are M-equivalent.

Proof. A proof can be found in [16].

Corollary 2.3.7. Let Λ be the set of all isotopy classes of nonempty oriented

links in R3. The mapping
∐

n≥1Bn → Λ assigning to a braid the isotopy class

of its closure induces a bijection from the quotient set
(
∐

n≥1Bn)

∼
∼→ Λ.

From corollary 2.3.7, it is possible to define functions acting on braids

and such that they are well defined on their closures, i.e. on links.

Definition 46. A Markov function with values in a set E is a sequence of

functions {fn : Bn → E}n≥1, satisfying the following conditions:

1. ∀ n ≥ 1 and ∀ α, β ∈ Bn,

fn(β) = fn(α−1βα)

2. ∀ n ≥ 1 and all β ∈ Bn,

fn(β) = fn+1(σni(β)), fn(β) = fn+1(σ−1
n (β)).

Proposition 2.3.8. Any Markov function {fn : Bn → E}n≥1 determines an

E-valued isotopy invariant f̂ of oriented links in R3.

Proof. Let L be an oriented link in R3. For Alexander theorem, it is possible

to take a braid β ∈ Bn such that L is isotopic to β̂. Let f̂(L) be f̂(L) = fn(β).

Let β′ be another braid whose closure is isotopic to L. β and β′ are M-

equivalent, so there is a finite sequence of Markov moves starting from β′

and ending in β. By definition the Markov functions are invariant on M-

moves, so the function f̂ is well defined. Let now L′ be an oriented link

isotopic to L. Let β ∈ Bn be a braid whose closure is isotopic to L. Then

the closure of β is also isotopic to L′ and f̂(L) = fn(β) = f̂(L′).
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2.4 Representations of braid groups

2.4.1 The Burau representation

Definition 47. Let us take n ≥ 2. For i = 1, . . . , n−1 we take the following

n× n matrix over the ring Λ = Z[t±]:

Ui =


Ii−1 0 0 0

0 1− t t 0

0 1 0 0

0 0 0 In−i−1

 .

where Im denotes the unit m×m matrix. If i = 1 the first matrix disappears,

and so does the second if i = n− 1.

Remark 37. For t = 1 the matrices Ui become the permutation matrices.

Proposition 2.4.1. The matrix Ui is invertible with inverse given by

U−1
i =


Ii−1 0 0 0

0 0 1 0

0 t−1 1− t−1 0

0 0 0 In−i−1

 .

Proposition 2.4.2. The matrices Ui, i = 0, . . . , n − 1 satisfy the following

proprieties:

1. UiUj = UjUi, ∀i, j = 0, . . . , n− 1 : |i− j| ≥ 2,

2. UiUi+1Ui = Ui+1UiUi+1, ∀i = 0, . . . , n− 2.

Proof. These two propositions are proven by direct computation.

It is possible to define a group homomorphism ψn : Bn → GLn(Λ), n ≥ 2,

by ψn(σi) = Ui. By proposition 2.4.1 and proposition 2.4.2 this is well

defined.
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Definition 48. The map ψn : Bn → GLn(Λ) such that ψn(σi) = Ui is called

the Burau representation of Bn.

Remark 38. The Burau representations {ψn}n≥1 are compatible with the

natural inclusions i : Bn → Bn+1 for any β ∈ Bn, i.e.

ψn+1(i(β)) =

(
ψn(β) 0

0 1

)
.

Definition 49. A group homomorphism ϕ : G→ G′ is said to be faithful is

its kernel is trivial.

Theorem 2.4.3. The Burau representation {ψn} is faithful for n = 2, 3,

unfaithful for n ≥ 5.

Proof. ker(ψn) ⊂ ker(ψn+1). Then it is sufficient to prove the unfaithfulness

for n = 5. This can be made by showing a non-trivial element in Bn such

that his image in GLn(Λ) is 0. Set

γ = σ4σ
−1
3 σ−1

2 σ2
1σ
−1
2 σ−2

1 σ−2
2 σ−1

1 σ−5
4 σ2σ3σ

3
4σ2σ

2
1σ2σ

−1
3

Then the commutator ρ = [γσ4σ
−1, σ4σ3σ2σ

2
1σ2σ3σ4] is a non trivial ele-

ment in ker(ψ5) ⊂ B5.

Let us see the case n = 2, B2 ' Z. Then it is sufficient to see that Un 6= I2

∀n ∈ Z0. We have (1,−1)U = (−t, t) = −t(1,−1). Then (1,−1)Uk =

tk(1,−1) for all k ∈ Z. Then Uk 6= Uh for k 6= h and < U >= Z.

The proof for the case n = 3 can be found in [16].

Remark 39. The vector (1, 1, . . . , 1) is an eigenvector for every matrix Ui.

By remark 39, it is possible to decompose the representation matrix in

a direct sum of a 1-dimensional representation and of a n − 1-dimensional

representation. Let P be the matrix

P =


1 1 . . . 1

0 1 . . . 1
...

. . . . . .
...

0 . . . 0 1


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Then P−1UiP is the matrix

(
Ũi 0

0 1

)
, where Ũi is the matrix, for 1 <

i < n− 1

Ũi =



Ii−2 0 0 0 0

0 1 t 0 0

0 0 −t 0 0

0 0 1 1 0

0 0 0 0 In−i−2


For i = 1 and i = n− 1 the matrix is

Ũ1 =


−t 0 0

1 1 0

0 0 In−3

 Ũi =


In−3 0 0

0 1 t

0 0 −t


The group homomorphism ψ̃n : Bn → GLn−1(Λ) such that ψn(σi) = Ũi

is called the reduced Burau representation.

2.4.2 A homological description of the Burau repre-

sentation

We want now to understand the geometric meaning of the Burau repre-

sentation. To do that, we shall remember that braid groups can be defined

as mapping class groups on punctured disks, as it has been done in 2.1.4.

Remark 40. H1(D2 − {x}) = Z, generated by the class of loops encircling

x in counterclockwise direction. Each loop represents k times the generator,

where k is the winding number of the loop around x.

Remark 41. Hn(D2 − Pn) = Zn, where Pn are n distinct points. The

generators are the classes of small loops encircling only one point in Pn in

the counterclockwise direction.

Definition 50. Let γ be a loop in D2 − Pn. We define the total winding

number of γ as the sum of its winding numbers around x1, . . . , xn. The total

winding number defines a homomorphism H1(Dn)→ Z.
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Let D̃n → Dn be the regular covering corresponding to the homomor-

phism H1(Dn)→ Z such that (k1, . . . , kn) 7→ k1 + . . . + kn. Then the group

of covering transformations of D̃n is Z, a multiplicative group with generator

t. Thus the group H1(D̃n) acquires the structures of a Λ-module.

Let d ∈ ∂D be a basepoint for Dn. Any diffeomorphism d : Dn → Dn

lifts uniquely to a diffeomorphism h̃ : D̃n → D̃n which fixes the fiber over

d pointwise. Thus there is an induced homomorphism Bn → Aut(H1(D̃n))

defined by h→ h̃∗, where h̃∗ is a Λ-linear automorphism of H1(D̃n). We will

see that this map is equivalent to the reduced Burau representation.

Definition 51. Let α, β be two embedded arcs in Dn with endpoints in the

set Pn, n ≥ 4. Let α̃, β̃ be lifts of α and β to D̃n. Then

< α, β >=
∑
k∈Z

(tkα̃ · β̃)tk ∈ Λ

where (tkα̃ · β̃) is the algebraic intersection of the arcs tkα̃ and β̃ in D̃n. This

intersection is also called Blanchfield intersection.

Remark 42. The sum is finite and it is defined up to multiplication by a

power of t depending on the choices of the lifts α̃ and β̃.

Now, to compute < α, β > it is possible to deform α with respect to β

and compute the geometric intersection. We call εp the intersection sign of

the two loops at an intersection point p ∈ α∩β. We determine also a number

kp ∈ Z by the following. Let us take two points p, q ∈ α ∩ β. Then kp − kq
is the total winding number of the loop going from p to q along α and then

from q to p along β. Then

< α, β >=
∑
p∈α∩β

εpt
kp

For 1 ≤ j ≤ n let aj be the oriented segment joining qj and qj+1, where

qi are points in Pn. Let us link aj to the point (−1, 0) ∈ D2 that we take as

basepoint. For all j let bj be a vertical segment, oriented downward, passing

for the middle of aj. Let ãj and b̃j be their lifts.
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Remark 43. The lifts b̃j represent a basis for H1(D̃n
2 , ∂D2).

The lifts ãj represent a basis for Hom(H1(D̃n
2 , ∂D2)).

We have seen in 2.1.4 that we can take as generators of the braid group

Bn the half twists tk. Let us see how a half twist acts on the generators bj

and aj. We find, focusing on a neighborhood of 4 punctures points

So, by using the definition of the Blanchfield intersection, we obtain the

matrix 
1 t 0

0 −t 0

0 1 1

 .

that is exactly the matrix of the reduced Burau representation.

2.4.3 Krammer-Bigelow-Lawrence representation

We introduce now the Krammer-Bigelow-Lawrence representation, a faith-

ful linear representation of Bn.

Definition 52. Let Dn
2 be Dn

2 = Dn − Pn, where Pn = {q1, . . . , qn}. Let Cn

be Cn = (Dn
2 ×Dn

2 −∆)/ ∼, where ∆ = {(x, y) ∈ Dn
2 ×Dn

2 | x = y} and ∼
is the equivalence relation (x, y) ∼ (y, x) for any distinct x, y ∈ Dn

2 .

A closed curve α : [0, 1] → Cn can be written in the form α(s) =

(α1(s), α2(s)), s ∈ [0, 1] and α1, α2 are arcs in Dn
2 such that {α1(0), α2(0)} =
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{α1(1), α2(1)}. Thus the arcs α1 and α2 are either loops or can be composed

one with the other.

Remark 44. The curves α = (α1, α2) form a closed oriented one-manifold

γ mapped to Dn
2 .

Let a(α) ∈ Z be the total winding number of γ around the points

{q1, . . . , qn}. For the construction of the space, α1(s) 6= α2(s) ∀s ∈ [0, 1].

Then it is well defined the map

s 7→ α1(s)− α2(s)

|α1(s)− α2(s)

Composing this map with the projection S1 → RP 1 we obtain a loop in

RP 1. We call b(α) the corresponding element in H1(RP 1). So we have a

map ψ : H1(C)→ Z[q±1, t±1] such that α 7→ qa(α)tbα.

There is a regular covering C̃ → C associated to the kernel of ψ, so that

the generators q, t acts on C̃ as commuting covering transformations. Now

any diffeomorphism h of Dn
2 induces a diffeomorphism C → C by h({x, y}) =

{hx, hy}. We denote this diffeomorphism with h too. The diffeomorphism h

lifts to a map h̃ : C̃ → C̃. Thus there is a representation Bn → Aut(H2(C̃))

such that [h] ∈ Bn maps to the automorphism h̃∗ of H2(C̃).

Theorem 2.4.4. The representation Bn → Aut(H2(C̃)) is faithful for all

n ≥ 1.

Proof. A proof can be found in [16] or in [26].

The proof consists in a homological construction, as it has been done for

the Burau representation. This construction is far more complicated, but it

allows to prove that braid groups are linear, a statement really difficult to

prove only with algebraic methods.
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Chapter 3

The HOMFLY polynomial

3.1 Construction of the polynomial

3.1.1 Definition

Let L+, L− and L0 be three links such that they are the same, except

in the neighbourhood of a point where they are as shown in the following

diagram, reading from left to right.

We want to define a polynomial PL such that

xPL+(x, y, z) + yPL−(x, y, z) + zPL0(x, y, z) = 0.

Remark 45. From this polynomial it is possible to recover the Alexander-

Conway and the Jones polynomial.

∆L(t) = PL(1,−1, t1/2 − t−1/2)

75
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VL(t) = PL(t,−t−1, t1/2 − t−1/2)

Moreover, being an homogeneous polynomial in 3 variables, it is possible

to take it as a non-homogeneous polynomial in two variables. In literature

usually it is taken the polynomial PL(l,m) = PL(l, l−1,m), so the relation

becomes:

lPL+1(l,m) + l−1PL−1 +mPL0 = 0

Theorem 3.1.1. There is a unique function

P : {Oriented links in S3} → Z[l±,m±]

well defined up to isotopy such that P (unknot) = 1 and

lPL+(l,m) + l−1PL−(l,m) +mPL0 = 0

We will see a proof in the next section. Other proofs of theorem 3.1.1 can

be found in [12] or in [17].

Definition 53. Given an integer N > 1, we call invariant of type AN the

polynomial satisfying:

• PN(unknot) = 1

• q(N+1)/2PN(L+1)− q−(N+1)/2PN(L−1) = (q1/2 − q−1/2)PN(L0)

In the following chapters we will build a homological definition for this

invariant.

There is a theorem claiming that it is possible to reconstruct the HOM-

FLY polynomial by the values of the invariant of type AN , see [21] or [24]

for a more complete explanation. This is why we can say that we are able to

construct a general homological definition for the HOMFLY polynomial.
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3.1.2 Construction by Hecke algebra

Proposition 3.1.2. The symmetric group Sn admits a presentation

Sn =< τ1, . . . , τn−1| 1, 2, 3 >

where τi = (i i+ 1) and

1. τ 2
i = 1, ∀ i : 1 ≤ i ≤ n− 1,

2. τiτj = τjτi, ∀ i, j : 1 ≤ i < j − 1 ≤ n− 2,

3. τiτi+1τi = τi+1τiτi+1, ∀ i : 1 ≤ i ≤ n− 2.

The group operation in Sn is written from left to right, so that for example

(1 2)(2 3) = (1 3 2)

Proof. A proof can be found in every book of algebra, for example [1].

Remark 46. It is possible to identify Sn−1 with the subgroup of permuta-

tions in Sn leaving n fixed.

Definition 54. Given a permutation π ∈ Sn such that π(n) = j, we define

bπ(τi) = (j j + 1)(j + 1 j + 2) . . . (n− 1 n) · bπ′(τi)

where π′ ∈ Sn−1.

Proposition 3.1.3. Let Wn be Wn = {bπ(τi)|π ∈ Sn}. The elements of Wn

satisfy the Schreier condition:

• if bπ(τi) = w(τi)τk then w(τi) = bπ·τ−1
k

(τi),

• bid is the empty word.

Also, bπ(τi) are of minimal length and τn−1 occurs at most once in each

bπ(τi) ∈ Wn.

Proof. A proof can be found in [8].
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Definition 55. Ŝn =< τ̂1, τ̂2, . . . , τ̂n−1| 1, 2 > where

1. τ̂iτ̂j = τ̂j τ̂i, ∀ i, j : 1 ≤ i < j − 1 ≤ n− 2,

2. τ̂iτ̂i+1τ̂i = τ̂i+1τ̂iτ̂i+1, ∀ i : 1 ≤ i ≤ n− 2

and such that inverses are not allowed. Then Ŝn is a semigroup.

There is a canonical homomorphism k : Ŝn → Sn such that k(τ̂i) = τi.

Let b̂π and Ŵn be respectively b̂π = bπ(τ̂i) and Ŵn = {b̂π | π ∈ Sn}.
We should see now what happens to the products b̂π τ̂k = b̂ρ. There are

two cases:

1. the class of b̂π τ̂k contains a representative b̂ρ ∈ Wn

2. the class of b̂π τ̂k does not contain a representative b̂ρ ∈ Wn

Remark 47. The first case occurs when the strings crossing at τk do not

cross in bπ, ρ = πτk. In the second case they do and b̂π τ̂k = b̂ρτ̂
2
k , so that

b̂π · τ̂k =

{
b̂ρ, ρ = πτk

b̂ρτ̂
2
k , ρτk = π

Let Mn be a free module of rank n! over a unitary commutative ring R

using the n! words of Wn. We take the generator ci instead of τ̂i, 1 ≤ i ≤ n−1

and we take w(ci) = w′ci if and only if ŵ(τ̂i) = ŵ(τ̂i). Let Mn be the free

R-module with basis Wn(ci) = {bπ(ci)|π ∈ Sn}, so that cj = bτj(ci) ∈ Wn(ci).

Introducing an associative product in Mn we get an R-algebra Hn(z) of rank

n!.

Definition 56. Let C2
k be C2

k = zck+1, 1 ≤ k ≤ n−1 for some fixed element

z ∈ R. Then

bπ(ci) · ck =

{
bπτk(ci), first case

zbπ(ci) + bρ(ci), ρτk = π second case

By iteration we can define a product for the elements of the basis Wn(ci)

and so a product on Mn.
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Lemma 3.1.4. The product defined above is associative on Wn(ci).

Proof. A proof can be found in [8].

Definition 57. The module Mn, seen as an R-algebra of rank n! is a Hecke

algebra. It is denoted by Hn(z).

Proposition 3.1.5. Let R be a commutative unitary ring, z ∈ R. The

algebra generated by elements {ci, 1 ≤ i ≤ n− 1| 1, 2, 3} with

1. cici+1ci = ci+1cici+1, ∀i : 1 ≤ i ≤ n− 2,

2. cicj = cjci, ∀i, j : 1 ≤ i < j − 1 ≤ n− 2,

3. c2
i = zci + 1, ∀i : 1 ≤ i ≤ n− 1

is isomorphic to the Hecke algebra Hn(z).

Corollary 3.1.6. c−1
j = cj − z.

Proof. (cj − z)cj = c2
j − zcj = zcj + 1− zcj = 1.

Let R = Z[z±, v±] be the 2-variable ring of Laurent polynomials. We

denote by Hn(z, v) = Hn the Hecke algebra with respect to R.

Proposition 3.1.7. Given a braid group Bn, ρv : Bn → Hn defined by

ρv(σj) = vcj defines a group representation.

Proof. A proof can be found in [8].

Remark 48. There are natural inclusions Hn−1 ↪→ Hn, Wn−1(ci) ↪→ Wn(ci).

Let H be H = ∪∞n=1Hn, W (ci) = ∪∞n=1Wn(ci), H1 = R. By remark 48, H

and W (ci) are well defined.

Definition 58. Let απ in Z[z±, v±], a, b ∈ Hn, a′ ∈ Hn−1. A function

tr : Hn → Z[z±, v±, T ]

is called a trace on H if, ∀n ∈ N it has the following proprieties:
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• tr(
∑

π∈Sn
απbπ) =

∑
π∈Sn

απtr(bπ),

• tr(ab) = tr(ba),

• tr(1) = 1

• tr(a′cn−1) = T · tr(a′)

Lemma 3.1.8. There exists only one trace on H.

Also, ∀a ∈ Hn, tr(ac−1
n ) = tr(acn)− z · tr(a) = (T − z) · tr(a).

Proof. A proof can be found in [8].

We will now use the language of Hecke algebras to prove the existence

of the HOMFLY polynomial. In the following we will not be using this

convention, but the one used in 3.1.1.

Proposition 3.1.9. Let Hn be the Hecke algebra over Z[z±, v±, T ].

Let ρv : Bb → Hn be such that rv(σi) = vci is a representation

Let Pξn be Pξn = kn · tr(ρv(ξn)), ξn ∈ Bn, for some kn ∈ Z[z±, v±, T ]. By

the proprieties of the trace, Pξn ∈ Z[z±, v±, T ] is invariant under conjugation

of ξn in Bn. So Pξn can be seen as a polynomial Pξ̂n assigned to the closed

braid ξn.

To turn effectively Pξn to an invariant of the link represented by ξn we

have to see that it is invariant under Markov moves, see [20]. Assume

kn · tr(ρv(ξn)) = jn+1tr(ρv(ξn))

As tr(ρv(ξnσn)) = v · tr(ρv(ξn · cn)) = v · T · tr(ρv(ξn)), we have kn =

kn+1 · v · T . Moreover, we have

kn+1tr(ρv(ξnσ
−1
n )) = kn+1v

−1tr(ρv(ξn)c−1
n ) = kn+1v

−1(T − z) · tr(ρv(ξn))

and so kn = kn+1 · v−1(T − z). We have then v−1(T − v) = vT , so that

T =
zv−1

v−1 − v
.
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We can now compute inductively kn as

kn+1 = kn ·
1

v · T
= kn · z−1(v−1 − v)

with the condition k1 = 1. So

kn =
(v−1 − v)n−1

zn−1
.

Theorem 3.1.10. The Laurent polynomial

Pξn(z, v) =
(v−1 − v)n−1

zn−1
· tr(ρ(ξn))

is an invariant of the oriented link K represented by ξ̂n. This polynomial is

the HOMFLY polynomial of the oriented link K, where ξn ∈ Bn is a braid.

Proof. The proof follows from the considerations above and from the fact the

ρξn = 1 if ξn is the trivial braid.

Corollary 3.1.11. The trivial braid with n strings represents the trivial link

with n components. Its HOMFLY polynomial is (v−1−v)n−1

zn−1 .

Proposition 3.1.12. Let L+, L− and L0 be as in 1.1. Then there is a skein

relation

v−1PL+ − vPL− = zPL0 .

A proof can be found in [8].

Remark 49. Using the skein relations, it is possible to compute the HOM-

FLY polynomial in an algorithmic way. Choosing a crossing, we set, accord-

ing to the sign

P = v2PL− + vzPL0

P = v−2PL+ − v−1zPL0

where we take two new diagrams with crossing changed according to the

figures. So we get an iterating algorithm, where, by changing crossings, we

simplify the knot. This algorithm is very difficult to compute directly for

knots with a large number of crossings, because it has an exponential time

complexity.
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We end this section by computing the HOMFLY polynomial for the right

and left trefoil knot.

Example 17. We start by the right handed trefoil. The circles indicate where

we are applying the skein relation.

So we have

P = v2PL−1 + zvP0 = v2 + zv(v2v
−1 − v
z

+ zv) =

= v2 + v2 − v4 + z2v2 = −v4 + 2v2 + z2v2

For the left handed trefoil, we have, by the same considerations:

P = −v−4 + 2v−2 + z2v−2.

3.2 The configuration space

3.2.1 Construction of the space

We start now by defining the configuration space C, which is the base

for all the geometric constructions in this chapter. Let q be a transcendental

complex number with unit norm 1, i.e. such that qk 6= qh for every q 6= k,

q, k ∈ Z.

We want to deal with oriented braids, so we have to define a proper subset.

Let p = (c1, . . . , ck) be a k-tuple of elements of {0, N + 1}. Let p1, . . . , pk

be points in the unit disk in the complex plane, called punctured points. Up
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to diffeomorphism, we can choose the puncture points as lying on the real

line. To each point pi we can associate the number ci, called the colour of the

puncture point. The disk D with coloured puncture points is denoted as Dp.

Now, braids preserving the colours of the puncture points form a subgroup

of the braid group Bk, called the mixed braid group Bp.

Now, suppose m = (c′1, . . . , c
′
m), c′i ∈ {1, 2, . . . , N}. We define a space C̃

as the set of m-tuples (x1, x2, . . . , xm), xi ∈ D, such that:

• if 1 ≤ i < j ≤ m and |c′i − c′j| ≤ 1, ⇒ xi 6= xj

• if 1 ≤ i ≤ m, 1 ≤ j ≤ k and |c′i − cj| = 1, ⇒ xi 6= pj

We can consider the subgroup of permutations W ⊂ Sm such that c′i =

c′w(i) for all i = 1, . . . ,m. W induces an action on C̃. We call Cm(Dp) the

quotient of C̃ by this action.

The m-tuple (x1, . . . , xm) can be seen as a configuration of m points in D,

which we call mobile points. Every mobile point has colour assigned by the

array m. The first condition implies that two mobile points can coincide if

and only if their colours differ by at least two. The second condition implies

the same for a mobile point and a punctured point.

We have defined the configuration space, so the next step will be studying

its fundamental group. It is natural to try to represent its elements by using

braids. We can take the set p + m as

p + m = (c1, . . . , ck, c
′
1, . . . , c

′
m)

So it is well defined the braid group Bp+m. Let G be the subgroup of those

mixed braids whose first k strands are straight. Now, if a pair of strands is

such that the colours differ by at least two, we can change the over/under

information of the crossing. Then the group π1(C) is the group obtained by

quotienting G by this relations.

We have defined the configuration space in a very general fashion, but in

the following we will focus on a particular case. We take p as the 2n-tuple

p = (0, N + 1, 0, N + 1, . . . , 0, N + 1)
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In this way, the braid β we want to study is just an element in Bp, where

we take the strands whose colour is 0 as oriented downwards and the strands

whose colour is N + 1 as oriented upwards. Now, every knot or link can be

reconstructed from the plat closure of such a braid β, where the plat closure

β̂ is the knot or link obtained by joining adjacent pairs of nodes at the top

and at the bottom of β. A proof of this statement can be found in [5].

Let m = Nn and m be the m-tuple

m = (1, 2, . . . , N, 1, 2, . . . , N, . . . , 1, 2, . . . , N)

We denote the configuration space Cm(Dp) as C. Now, we take an ho-

momorphism ρm : π1(C) → {±qk|k ∈ Z}. We associate at every positive

crossing of a representation of g ∈ π1(C) as a braid group

• −q−1 if the two strands have the same colour

• q1/2 if the two strands have colours differing by one

• 1 otherwise

Let ρm(g) be the product of all the terms associated to the crossings of

a braid diagram. If we want it to be invariant by the second Reidemeister

move, it is straightforward to define a negative crossing as the reciprocal of

the analogous positive crossing. Also, the third condition implies that this is

well defined. For the definition of the space, the number of crossing whose

strand colours differ by 1 is even, so the exponent of q is effectively an integer.

Now, we want to define a homomorphism ρp : Bp → {±qk/2|k ∈ Z}. As

earlier, we associate to every positive crossing of a braid representation of g

• qN/2 if the two strands have the same colour

• q−(N+1)/2 otherwise

As before, to every negative crossing we associate the reciprocal term

associated to the analogous positive crossing and we define ρp(g) as the

product of all the terms associated to the crossings.
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3.2.2 A torus and a ball

We want now to define two geometric spaces, a torus and a ball, in the

configuration space C. We will use later these two spaces to define the

invariant Q(β). In particular, we want to define an immersed m-dimensional

torus and an embedded m-dimensional ball.

As usual, we can take S1 = {|z| = 1, z ∈ C} and T = S1 × S1 × . . .× S1.

We also define A = S1∩{z ∈ C| =(z) ≥ 0} and B = S1∩{z ∈ C| =(z) ≤ 0}.
Let γ1, . . . γN be such that

where the point on the left is p1 and the point on the right is p2. Assume that

γi is parametrised so that γi|A is a loop around p1 and γi|B is a loop around p2.

We assume that the γi are parametrised so that γi(1) 6= p1, p2 is on the real

line. We label these curves so that p1 < γ1(1) < γ2(1) < . . . < γN(1) < p2.

Remark 50. γi(A) is a concentric loop around p1 and γi(B) is a concentric

loop around p2.

3.2.3 Construction in the case N=2

We suppose N = 2. We start by constructing the immersion Φ : T → C.

Proposition 3.2.1. There is an immersion Φ1 : B × A→ C such that

Φ1|∂(B×A) = (γ1 × γ2)|∂(B×A)

Φ1 can also be chosen such that, for every x1, x2 ∈ Im(Φ1)

• x1 ∈ D2(γ1(B)), the closed disk bounded by γ1(B),
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• x2 ∈ D2(γ2(A)), the closed disk bounded by γ2(A),

• given (x1, x2), ∃ i such that xi ∈ γ1(B) ∩ γ2(A).

Proof. If (γ1 × γ2)|∂(B×A) is nullhomotopic in C, it is possible to extend Φ1

to a function on B × A, which implies the statement.

(γ1 × γ2)|∂(B×A) = (γ1 × γ2)|(∂B×A)∪(B×∂A) =

= (γ1(1), γ2(s))(γ1(s), γ2(1))− (γ1(s), γ2(1))(γ1(1), γ2(s))

Let α : A→ C, β : B → C be given by

α(s) = (γ1(1), γ2(s))

β(s) = (γ1(s), γ2(1))

As a braid, α can be represented as

where the strands on the far left and on the far right represent p1 and p2,

the punctured points. The strands are also coloured, from left to right, as

0, 1, 2, 3. Because we are dealing with coloured braids, we can change the

lower point of intersection in such a way that the third strand passes under

the first strand. By applying the second Reidemeister move, we obtain α′

such that
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In the same way, β is homotopic to β′ = (α′)−1. Then αβ − βα = 0 and

(γ1 × γ2)|∂(B×A) is nullhomotopic.

Now, let C ′ and C ′′ be such that

C ′ = {(x1, x2) ∈ C| x1, x2 satisfy the three conditions}

and

C ′′ = {(x1, x2) ∈ C| x1, x2 ∈ D2(γ1(B)) ∩D2(γ2(A))}.

It is possible to find an homotopy between α and α′ lying completely in C ′

and we can also assume that α′ lies in C ′′. With the same considerations for

β, we have that α′β′ − β′α′ is null homotopic as a loop in C ′′.

Now, it is straightforward to prove the following proposition.

Proposition 3.2.2. Φ : T → C defined as

Φ(s1, s2) =

{
Φ1(s1, s2) ∀(s1, s2) ∈ B × A

(γ1(s1), γ2(s2)) otherwise

is an immersion.

3.2.4 Construction for general values of n

We want to define Φ : T → C for general values of N . Let Φ1, . . . ,ΦN be

functions

Φi : B × A→ D ×D



88 3. The HOMFLY polynomial

such that

Φi|∂(B×A) = (γi × γi+1)|∂(B×A)

and such that for all (xi, xi+1) ∈ Im(Φi)

• xi 6= xi+1

• xi ∈ D2(γi(B))

• xi+1 ∈ D2(γi+1(A))

• at least one between xi and xi+1 lies in D2(γi(B)) ∩D2(γi+1(A))

Now suppose (s1, . . . , sN) ∈ T . We let xi, i = 1, . . . , N be such that

• if si−1, si ∈ A then xi = γi(si)

• if si ∈ A and si−1 ∈ B then xi is the second coordinate of Φi−1(si−1, si)

• if si, si+1 ∈ B then xi = γi(si)

• if si ∈ B and si+1 ∈ A then xi is the first coordinate of Φi(si, si+1)

By convention, s0 ∈ A−B and sN ∈ B − A. Φ(s1, . . . , sn) = (x1, . . . , xn).

Proposition 3.2.3. Φ : T → C, defined as Φ(s1, . . . , sn) = (x1, . . . , xn), is

well defined.

Proof. If at least two of the conditions apply in the definition of xi, then they

all give xi = γi(si).

Since either x1 = γ1(s1) or x1 is the first coordinate of Φ(s1, s2), x1 6= p1

and similarly xN 6= p2.

We now check that xi 6= xi+1, ∀i = 1, . . . , N − 1.

We can suppose si ∈ A. Then for the first two conditions, xi should lie

in D2(γ1(A)) and xi+1 should not, thus xi 6= xi+1. The same if xi+1 ∈ B. If

si ∈ B and si+1 ∈ A, Φ(si, si+1) = (xi, xi+1), so xi 6= xi+1.
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Proposition 3.2.4.

ρm ◦ Φ#(π1(T )) = {1}

Proof. The group π(T ) = Z × Z × . . . × Z is generated by gi : S1 → T ,

i = 1, . . . , N , such that

gi(s) = (γ1(1), . . . , γi−1(1), γi(s), γi+1(1), . . . , γN(1))

The loop gi can be represented as a mixed braid with N +2 strands, with

every braid straight except the strand with colour i, describing a figure of

eight. We have two positive crossings involving a pair of strands with colours

i and i−1 and two negative crossings involving a pair of strands with colours

i and i+ 1. By definition of ρm, ρm(gi) = 1. Every g ∈ π1(T ) is combination

of elements gi, so ρm being a homomorphism, ρm(g) = 1.

Let X be X = D2(γ1(B))∩D2(γN(A)), CX = {(x1, . . . , xN) ∈ C| ∃i, xi ∈
X} and TX = {(s1, . . . , sN ∈ T | ∃i, si ∈ B and si+1 ∈ A)}. So Φ(TX) ⊂ CX

and Φ(T −TX) is a disjoint union of N + 1 embedded N -balls. If X is small,

it is possible to ignore Φ(TX) and just consider Φ(T − TX).

We have defined T as an oriented N -dimensional sub-manifold of C. We

want now to see that it is a pointed space, with a canonical choice for the

basepoint t. We start by N points t1, . . . , tN in the disk such that

• ti ∈ γi(B)

• =(ti) < 0

• γN(1) < <(t1) < <(t2) < . . . < <(tN) < p2

Then t = (t1, . . . , tN) is the canonical basepoint of T .

We want now to define a basepoint for C. For every i = 1, . . . , N , τi :

I → D is a vertical edge, τi(0) lying in the lower half of ∂D and τi(1) = ti.

x = τ(0) is the canonical basepoint for C and τ is a path between the two

basepoints
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We now define an embedded ball in C. We start by the open N - ball

S = {(s1, . . . , sN) ∈ RN | 0 < s1 < . . . < sN < 1}. We parametrise the edge

from p1 to p2 by γ : I → D. We can define an embedding ψ : S → C by

ψ(s1, . . . , sN) = (γ(s1), . . . , γ(sN))

We want now to define a canonical basepoint for S. Let ηi : I → D be a

vertical edge from xi to a point in γ. η : I → C is the map

η(s) = (η1(s), . . . , ηN(s))

such that η(0) = x. We take the basepoint of S as s = η(1), and η becomes

a path from the basepoint x of C to the basepoint s of S.

We have defined S and T in the case C1 = C1,...,N(D0,N+1). We can define

an embedding
∐

nC1 → C by gluing together n copies of D0,N+1. By taking

n copies of the immersed torus and of the embedded ball, we obtain the

general construction.

3.3 The invariant on braids

3.3.1 Definition

Now we define the invariant for a braid β by using the two spaces T and

S.

Remark 51. β is a diffeomorphism from D to itself, β({p1, . . . , p2n}) =

{p1, . . . , p2n} and is such that it preserves the colours of the punctured points.

β induces an application from C to C, that we will also call β.

By construction, C is a 2m-dimensional manifold, while S and T are two

immersed m-manifolds. We can assume, up to isotopy, that they intersect

transversely at a finite number of points y1, . . . , yk. To each intersection

point yi we associate the sign at the intersection, εyi . We consider the path
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ξy = (β ◦ τ)(γ1)(γ2)(η), where γ1 is a path in β(T ), γ1(0) = β(t), γ1(1) = y

and γ2 is a path in S, γ2(0) = y, γ2(1) = s. So we have:

< S, β(T ) >=
∑

y∈S∩β(T )

εyρm(ξy)

It is very hard to compute directly this intersection. It is also necessary

to show that this definition is well defined, independent from the choices of

paths. This is why we are going to search an interpretation of this intersection

using algebraic topology.

3.4 A homological definition

Let L be the flat complex line bundle over C with monodromy given by

ρm. If we take (C, τd), where τd is the discrete topology, we can think of L

as a covering space of C, with every fibre given by C.

We denote by Hm(C;L) the m-dimensional homology of C with local

coefficients. We denote by H lf
m (C;L) the m-dimensional locally finite homol-

ogy of C with local coefficients. In the following, we will write Hm(C) for

Hm(C;L). See the appendix A for the two definitions.

Theorem 3.4.1. Hm(C) and H lf
m (C, ∂C) are isomorphic.

Proof. A proof can be found in [22].

Theorem 3.4.2. Hm(C) and Hom(Hm(C),C) are conjugate-isomorphic.

Proof. The theorem is an easy consequence of the universal coefficients the-

orem. A prove can be found in [14].

Corollary 3.4.3. H lf
m (C, ∂C) and Hom(Hm(C),C) are conjugate isomor-

phic. Also, there is a sesquilinear pairing:

< ·, · >: H lf
m (C, ∂C)×Hm(C)→ C

Remark 52. β induces an automorphism β# : π1(C) → π1(C) such that

ρm ◦ β# = ρm.
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By remark 52, β lifts to an action on L, so there are induced actions on

Hm(C), Hm(C, ∂C) and H lf
m (C).

We can identify the fibre over a point x with C. We have two lifts T̃ and

S̃ of the torus T and the ball S, leading to the following proposition.

Proposition 3.4.4. < S, β(T ) > is the sesquilinear pairing of S ∈ H lf
m (C, ∂C)

and β(T ) ∈ Hm(C). It has the following proprieties:

• < S, β(T ) >=
∑

y∈S∩β(T ) εyρm(ξy)

• it is invariant under the action of Bp

• if v1, v2 ∈ Hm(C), v′1, v
′
2 ∈ H lf

m (C, ∂C) are their images, then

< v′1, v2 >= (−1)m< v′2, v
′
1 >

Proof. The existence of the pairing is given by previous considerations. The

proprieties are proven in every book of algebraic topology, for example [14]

or [7].

Definition 59.

Q(β) =
ρp(β)

[N + 1]qm/2
< S, β(T ) >

where [N + 1], the quantum integer corresponding to N + 1, is

[N + 1] =
q(N+1)/2 − q−(N+1)/2

q1/2 − q−1/2

3.4.1 Barcodes

Definition 60. Let CR be CR = {(x1, . . . , xn) ∈ C| <(xi) = xi, ∀i =

1, . . . N}.

Lemma 3.4.5. The map H lf
m (CR) → H lf

m (C) induced by inclusion is an

isomorphism.

Proof. A proof can be found in [3].
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Definition 61. A code sequence is a permutation of the sequence p + m

containing p as a subsequence.

Let S ′ be a connected component of CR and let y be y = (y1, . . . , ym) ∈ S ′,
yi 6= yj ∀i, j, yi 6= pj ∀i, j. We call c = (c1, . . . , cm+n) a sequence of colours

of mobile points and puncture points, reading from right to left on the real

line. By definition, c is a code, representing S ′.

We want now to see some conditions about the code sequence. If there

is i ∈ {1, . . . N} such that |ci − ci+1| ≥ 2, then it is possible to exchange ci

and ci+1 without altering the connected component of CR. This follows from

the construction of C and the conditions about the movements of the mobile

points.

Definition 62. The code sequences are equivalent if they are related by

exchanges between ci and ci+1, where at least one among ci and ci+1 lies in

{1, . . . , N} and |ci+1 − ci| ≥ 2.

If a code sequence c is equivalent to a code sequence whose first or last

entry lies in {1, . . . N}, then c is said to be trivial.

Remark 53. The equivalence classes of code sequences are in bijective cor-

respondence with the connected components of CR.

Proposition 3.4.6. Let c be a sequence and S ′ the associated connected

component of CR.

If c is trivial, S ′ is homeomorphic to the upper half space in Rm.

If c is not trivial, S ′ is homeomorphic to an open m-ball.

Proof. If c is trivial, then S ′ contains a point (y1, . . . , ym) such that y1 or ym

lies in ∂D.

If c is not trivial, every point in S ′ is a configuration of points between

p1 and p2n.

Proposition 3.4.7. Let Rm
+ be the upper half space in Rm. Then

H lf
m (Rm

+ ) = 0,

H lf
m (Rm) = C.
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Proof. A proof can be found in [14] or in [6].

3.4.2 Basis for the homology

Let us choose a non zero element in H lf
m (S ′) associated to a given non-

trivial code sequence c. By lemma 3.4.5 and proposition 3.4.6 this is a basis

for H lf
m (C), for which we should choose an orientation and a lift to L.

Let < ·, · > be the non-degenerate sesquilinear pairing

< ·, · >′: H lf
m (C)×Hm(C, ∂C)→ C

Then we can define a basis for Hm(C, ∂C) by dualising the basis for H lf
m

with respect to the pairing. We will now give a geometric construction of the

homology classes.

Let D2 be a disk in the complex plane and let E1, . . . , Em be properly

embedded vertical edges in D2, Ei ∩ Ej = ∅, ∀i 6= j and pi /∈ Ej ∀i, j. Now,

the product of these edges is an embedded closed m-ball in C. We will call

this ball Z. We can take the code sequence c = (c1, . . . , cm+n), given by the

sequence of colours of the punctured points or of vertical edges.

It is possible to lift every Z to L, representing an element in Hm(C, ∂C).

Definition 63. Z denotes both the embedded m-ball and an element in

Hm(C, ∂C). Z will be called the barcode corresponding to the code sequence

c.

Remark 54. Two equivalent code sequences give rise to the same barcode

in Hm(C, ∂C), up to choices of lifts to L.

Proposition 3.4.8. If c is a trivial code, then any barcode corresponding to

c is zero.

A basis for Hm(C, ∂C) is given by non-zero barcodes corresponding to

each non-trivial code sequence c.
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Proof. Let S ′ be a component of CR and Z be a barcode. If S ′ and Z

correspond to the same non-trivial code sequence c, then S ′ ∩ Z = {point},
so, up to choices of orientations and lifts, < S ′, Z >= 1. Instead, if S ′ and

Z correspond to different code sequences, then S ∩Z = ∅ and < S ′, Z >= 0.

Thus the basis is well defined as the dual of the basis of H lf
m (C).

3.4.3 The image of T

In this paragraph we want to compute T in H lf
m (C) and in Hm(C, ∂C).

To start, we suppose n = 1.

Remark 55. If n = 1, the only non trivial sequence is (0, 1, . . . , N + 1). We

will call simply as Z its barcode, product of the edges 1, . . . , N in order and

we choose a lift to L such that it contains the point 1 in the fibre over the

basepoint x.

Proposition 3.4.9. The image of T ∈ H lf
m (C) is (q − 1)mS.

Proof. Having assumed n = 1, by remark 55 there is only one non-trivialcode

sequence, so H lf
m (C) = C and T = λS.

We have defined T by figures of eight γ1, . . . , γN and Z by edges E1, . . . , EN .

By construction, γi intersects Ei at two points, y+
i and y−i . So, T and Z in-

tersect at the 2N points

(y±1 , . . . , y
±
N)

Every such point contributes a monomial ±qk to < T,Z >.

Let t be t = (y−1 , . . . , y
−
N) such that the orientation of the intersection at

y−i is positive. Thus t contributes 1 to < T,Z >′.

Let us compute by induction the contributions of the other points. Let y,

y′ be points differing at the mobile point of colour i. We can assume y taking

the value y−i and y′ taking the value y+
i . We define a loop η, η(0) = η(1) = y′,

such that it follows a path in T from y to y′ and then back to y′ along a path

in Z. A braid representing it is such that all the strands are straight, with the
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exception of the strand of colour i, which makes a positive full twist around

the strands of colour i + 1, . . . , N + 1. By construction, ρm(η) = q. So if y

contributes ±qk to < T,Z >′, then y′ contributes ∓qk+1, with the sign given

by the opposite orientation.

So all the contributions give

< T,Z >′=
N∑
k=0

(−1)k

(
N

k

)
qk = (1− q)N

Proposition 3.4.10. The image of T ∈ Hm(C, ∂C) is (1 + q + . . .+ qN)Z.

Proof. As above, let γ1, . . . , γN be the figures of eight used to define T . It is

possible to isotope T so that the set X is below [p1, p2], obtaining for example

if N = 3:

Let {ai, bi} be such that {ai, bi} = γi ∩ [p1, p2], <(ai) < <(bi). So there

are 2N ordered points ai, . . . , aN , b1, . . . , bN . For i = 0, . . . , N let

yi = (a1, . . . , ai, bi+1, . . . , bN)

Each one of these N + 1 points is a point of intersection between S and

T , such that each contributes a monomial ±qk to < S, T >. With this choice
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of orientations, the signs of the intersections of S and T at yi are positive

for every i. Also, yN contributes 1 to < S, T >. As in the previous proof,

we assume that η is a loop, η(0) = η(1) = y, following a path in T from yi

to yi−1, and then a patch in S from yi−1 to yi. Again, if we see this loop as

a braid, all the strands are straight, except the strand of colour i, acting as

in the last proof. So again ρm(η) = q. So, if yi contributes qk, yi contributes

qk−1. Then

< S, T >= 1 + q + . . .+ qN

and comparing with < S,Z >= 1 we obtain the claim.

Proposition 3.4.11. The image of T ∈ H lf
m (C) is (q − 1)mS.

Proof. By construction of T , the general case is a trivial consequence of the

case n = 1.

3.4.4 Partial bar codes

We had defined S as the product of N -balls S1, . . . , SN . Being Z the

non-trivial barcode for n = 1, let Zi be

Zi = S1 × . . .× Si−1 × Z × Si+1 × . . .× SN

with basepoint s lying in Zi. So the path η determines a lift of Zi to L,

giving an element in H lf
m (C, ∂C).

Proposition 3.4.12. (q − 1)NS = (1 + q + . . .+ qN)Zi ∈ H lf
m (C, ∂C).

Proof. For the case n = 1, by previous computation we have

T = (1 + q + . . .+ qN)Z1, T = (q − 1)NS

.

We assume now n > 1. We start by stretching T and using excision to

obtain a disjoint union of bar codes, where one is Zi and the others are trivial
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code sequences. Such a barcode is 0 ∈ H lf
m (C, ∂C), since one of the vertical

edges can be slid to the boundary of the disk, ending the construction for

n = 1.

We want now to do something similar for the case n > 1. Let m′ be

m′ = (1, 2, . . . , N, j), j = 1, . . . , N . Let C ′ be the configuration space

C ′ = Cm′(D(0,N+1))

Let S ′ be the product of the N -ball in C(1,...,N)(D(0,N+1)) and a circle of

colour j around [p1, p2]. S ′ is a (N + 1)-dimensional sub-manifold of C ′.

For homotopy equivalence, π1(S ′) = Z, generated by g. The loop g can

be represented by a braid with straight strands, with the exception of the

strand of colour i making a positive full twist around the other strands, so

that ρm(g) = 1. So it is possible to lift S ′ to L, representing an element in

H lf
m (C) also called S ′.

We want now to show that S ′ = 0 ∈ H lf
m (C). Assuming N = 1, S ′ is

simply the product of an edge γ between the two puncture points and a

circle δ around γ. We call Z the barcode corresponding to the only non-

trivial sequence (0,1,1,2). Let E and E ′ be the two vertical edges of colour 1

between the two punctured points, E being to the right of E. So we can see

Z as a closed 2-ball, being the product of E and E ′.

We have E ∩ (γ ∪ δ) = {a1, a2, a3}, E ′ ∩ (γ ∪ δ) = {b1, b2, b3}. We then

have 4 points of intersection between S ′ and Z,

• y1 = (a2, b1)

• y2 = (a2, b3)

• y3 = (a1, b2)

• y4 = (a3, b2)

We are supposed to have chosen y1 such that its contribution is 1. Now,

for i = 2, 3, , 4, ξi is a loop following a path in Z from y1 to yi and a path in

S ′ from yi to y1. So we obtain
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• ρm(ξ2) = (q1/2)2 = q

• ρm(ξ3) = (−q−1)−1 = −q

• ρm(ξ4) = (−q−1)(q1/2)2 = −1

We have assumed that the sign of the intersection at y1, ε1, is equal to

1. It is easy to see that the signs of intersection are the same for couples

(ai, bj) and (ai, bk), (aj, bi) and (ak, bi). Also, the intersections at a1 and a3

have opposite signs. Then

< S ′, Z >′= 1− q − (−q) + (−1) = 0

If N > 1, the only non-trivial code sequence is

(0, 1, . . . , j − 1, j, j, j + 1, . . . , N,N + 1)

with corresponding barcode Z, product of vertical edges E1 . . . , Ej−1, Ej,

E ′j, Ej+1, . . . , EN , such that Ek has colour k, E ′j has colour j. Let yk be the

point of intersection between Ek and [p1, p2]. Given a point of intersection

between S ′ and Z, it must include the mobile points yk, ∀k 6= j, which

remain the same throughout the proof. The computation is the same as in

the case N = 1.

3.5 The equivalence of the two invariants

3.5.1 Invariance under movements

We want now to show that the invariant for braids we have defined, q(β),

is such that q(β) = p(β̂). As proven in [5], we have to see that q(β) is

invariant under certain moves to give q(β) = q′(β̂). Then, it is sufficient to

see if q′ respects the skein relations and if it is such that q′(unknot) = 1.

Let σ′i be σ′i = σ2iσ2i+1σ2i−1σ2i, i = 1, . . . , b− 1.
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Lemma 3.5.1. σ2
1β, σiβ, βσ2

1 and βσi respects the orientation of braids.

Proof. As a braid, σ′i is

2i-1 2i 2i+1 2i+2

So adding β at left or at right is compatible with the orientations, i.e.

with the colours The same for σ2
1.

Proposition 3.5.2. Q(σ2
1β) = Q(σiβ = βσ2

1) = Q(βσi) = Q(β).

Proof. By construction of q2
1 and ρp

ρp(σ2
1β) = q−(N+1)ρp(β)

It is sufficient to show that σ2
1S = qN+1S, by proprieties of the sesquilinear

pairing. We can assume that, as a function, σ2
1 acts as the identity on S, so

it is sufficient to restrict it on the fibre over s. Let ξ be ξ = (σ2η)(η). This

path is represented by a braid in which strands of colour 1, . . . , N make a

positive full twist around two with colours 0 and N + 1. For example, for

n = 2 and N = 2
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So it is easy to see that

ρm(ξ) = (q1/2)2N+2 = qN+1

so that σ2
1(S) = qN+1S.

Now we want to compute Q(σ′i(β)). We get

ρp(σ′iβ) = q−1ρp(β)

As in the previous case, it is sufficient to show σ′iS = qS. We can again

assume that the function σ′i acts as the identity on S ⊂ C and we let ξi be

ξi = (σ′iη)η. This is a braid in which two collections of N parallel strands

1, . . . , N form a large figure of X, enclosing two strands of colours 0 and

N + 1. Then

ρm(ξi) = (q−1)N(q1/2)2N+2 = q

and σi(S) = qS.

To show the two remaining cases, it is sufficient to notice that in this

case we have to study the action on T and to show that σ2
1T = qN+1T and

σ′iT = qT . The proof is the same as in the two previous cases.
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In the following, we denote by σ2112 the braid σ2σ
2
1σ, that is

Proposition 3.5.3.

Q(σ2112β) = Q(βσ2112) = Q(β)

Proof.

ρp(σ2112β) = q−1ρp(β)

As in the previous proposition, it is sufficient to show that in H lf
m (C, ∂C)

we have

σ2112S = qS

By construction of the spaces Zi, it is sufficient to show that σ2112Z2 =

qZ2. As before, we can choose the function σ2112 such that it acts as the

identity on Z2 ⊂ C. So it is sufficient to focus on the fibre over s. Let ξ

be ξ = (σ2112η) = η. ξ is represented by a braid in which strands of colour

1, . . . , N wind in parallel around a strand of colour 0, so that ρm(ξ) = q,

which implies the claim.

By the proprieties of the sesquilinear pairing, proving Q(βσ2112) = Q(β)

is equivalent to proving Q(β−q) = Q(β). We have the identities
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• qm/2 = qmqm/2

• [N + 1] = [N + 1]

• ρp(β−1) = ρp(β)

Then it is sufficient to show

< S, β−1(T ) >= qm< S, β(T ) >

that is equivalent to

< β(T ), T >= (−1)m< T, βT >,

the symmetry property of the pairing

3.5.2 The Markov Birman stabilization

Definition 64. Let p′ = (0, N + 1, 0, N + 1, . . . , 0, N + 1) be a 2n-tuple and

i : Bp → Bp′ the inclusion map, i.e. the map sending the braid to itself

and adding at the right two straight brands of colour 0 and N + 1. The

Markov-Birman stabilization of β is the braid

β′ = (σ−1
2n+1σ2nσ2n+1)i(β)

Proposition 3.5.4. Let β be a braid and β′ its Markov-Birman stabilization.

Then Q(β′) = Q(β).
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Proof. Let m′ be the m + N -tuple (1, . . . , N, 1, . . . , N, . . . , 1, . . . , N), D′ =

Dp′ , C
′ = Cm′(D

′) and S ′ and T ′ the embedded m′-ball and the immersed

m′-torus in C ′. Then

< S ′, β′(T ′) >=< S, β(T ) >

by the identities

• ρp(β′) = qN/2ρp(β)

• qm′/2 = qN/2qm/2

Let now Zn ⊂ C and Z ′N ⊂ C ′ be defined by replacing the second to

rightmost N -ball of S ′ by a barcode. So we have

< Z ′n, β
′(T ′) >=< Zn, β(T ) >

which is equivalent to

< σ(Z ′n), i(β)(T ′) >=< Zn, β(T ) >

with σ = σ−1
2n+1σ

−1
2n σ2n+1. It is sufficient to compute this intersection.

Let D3 be a disk with three punctured points. We imagine D3 as the set

of points in D′ to the right of a vertical line between p2n−1 and p2n. So we

can identify the three punctured points with p2n, p2n+1 and p2n+2. We can

define an embedding

Cm(D′ −D3)× C(1,...,N)(D3)→ C ′

Assuming that Zn lies in Cm(D′ −D3) and taking Sn+1 as the N -ball in

C(1,...,N)(D3), we get

Z ′n = Zn × Sn+1

Then

σ(Z ′n) = Zn × σ(Sn+1)
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Now, let D2 be a disk with two punctured points. As above, we can

imagine it as the set of points in D′ to the right of a vertical line between

p2n and p2n+1, so that we can identify the two punctured points with p2n+1

and p2n+2. There is an embedding

Cm(D′ −D2)× C(1,...,N)(D2)→ C ′

Assuming that T lies in Cm(D′−D2) and letting TN+1 be theN -dimensional

torus in C(1,...,N)(D2), we get

T ′ = T × Tn+1

so that

i(β)(T ′) = β(T )× Tn+1

By the above computation, we obtain

< Z × σ(Sn+1), β(T )× Tn+1 >=< Z, β(T ) >

Any point of intersection between Z × σ(Sn+1) and β(T ) × Tn+1 lies in

the intersection of the two product spaces

Cm(D′ −D3)× C(1,...,N)(D2)

So it is sufficient to show that

< σ(Sn+1), Tn+1 >= 1

By restriction, we can see this intersection pairing as being between sub-

manifolds of C(1,...,N)(D3). We should now compute directly this pairing.

There is one point of intersection y between σ(Sn+1) and Tn+1. We can

assume the sign of this intersection to be positive. Now, both σ(Sn+1) and

Tn+1 have associated paths from a configuration of points on ∂D3 to y, paths

that are homotopic relative to endpoints, which completes the proof. For

example, in the case N = 1 we have
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3.5.3 Equivalence with the HOMFLY polynomial

Definition 65. Let Kn be the subgroup of B2n generated by

{σ1, σ2σ
2
1σ2, σ2iσ2i−1σ2i+1σ2i, 1 ≤ i ≤ n− 1}.

Theorem 3.5.5. Let β1 and β2 be two braids, L1 and L2 the associated plat

closures. L1 and L2 are isotopic if and only if, after adding a suitable number

of trivial loops to each component of L1 and L2, we obtain two braids β′1 and

β′2 such that they are in the some double coset of B2 modulo the subgroup

K2n.

A proof can be found in [5]

So, in the two above paragraphs we have proved the following theorem

Theorem 3.5.6. There exists an invariant of knots P ′ such that P ′(β̂) =

Q(β), where β̂ is the plat closure of β.

We have now all the necessary tools to prove the equivalence between the

invariant P ′ and the HOMFLY polynomial.

Theorem 3.5.7.

P ′(β̂) = P (β̂)
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Proof. It has been proven in [12] that there exists an unique polynomial P

such that

• P respects the skein relation,

• P (unknot) = 1.

Then it is sufficient to show that P ′ also respects the two conditions.

We begin by proving that P ′ respects the skein relation. Let β+ and β−

be

β+ = σ−1
2 σ1σ2β, β− = σ−1

2 σ−1
1 σ2β.

Up to isotopy, it is sufficient then to show

q(N+1)/2Q(β−)− q−(N+1)/2Q(β+) = (q1/2 − q−1/2)Q(β)

By definition

• ρp(β+) = qN/2ρp(β)

• ρp(β−) = q−N/2ρp(β)

So we should show

q1/2 < S, β−(T ) > −q−1/2 < S, β+(T ) >= (q1/2 − q−1/2) < S, β(T ) >

We can take, instead of S, the subspace Z2, so that we can restrict to

show

q1/2 < Z2, β−(T ) > −q−1/2 < Z2, β+(T ) >= (q1/2 − q−1/2) < Z2, β(T ) >

that is equivalent to

< σ−1
2 (σ1 − 1)(1 + qσ−1

1 )σ2(Z2), β(T ) >= 0

We will not compute the intersection pairing, but we will show that in

H lf
m (C, ∂C) we have

σ−1
2 (σ1 − 1)(1 + qσ−1

1 )σ2(Z2) = 0
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Let D3 be a three times punctured disk, which can be identified with

the set of points in D to the left of a vertical line between p3 and p4, such

that the three punctured points can be identified with p1, p2 and p3. Let C1 =

C(1...,N)(D3) and m2 be them−N -tuple m2 = (1, . . . , N, 1, . . . , N, . . . , 1, . . . , N)

and C2 = Cm2(D −D3). We consider the embedding

C1 × C2 → C.

Taking S1 as the N -ball in C1 and Z ′ as an (N −m)-manifold in C2 we

have

Z2 = S1 × Z ′.

σ1 and σ2 are such that they act as the identity on D − D3. Thus it is

sufficient to show that in H lf
N (C1)

σ−1
2 (σ1 − 1)(1 + qσ−1

1 σ2)(S1) = 0

Let now D′3 be D′3 = σD3, a three times punctured disk with colours,

from left to right, 0, 0 and N + 1. Let C ′1 be C ′1 = C(1,...,N)(D
′
3) and S ′1 be

S ′1 = σ2S1. Then we have

(σ1 − 1)(1 + qσ−1
1 )(S ′1) = 0

in H lf
N (C ′1).

It is easy to see that in this setting there are only two non-trivial se-

quences, (0, 1, 2, . . . , N + 1, 0) and (0, N + 1, N, . . . , 1, 0). Let Z be the bar-

code corresponding to the non-trivial code sequence (0, 1, 2, . . . , N+1, 0). So

S ′1 and Z do not intersect and < S ′1, Z >′= 0.

Instead, σ1(S ′1) and Z intersect at a single point, and so do σ−1
1 (S ′1) and

Z. The two intersection points are such that their signs are the same. We

assume that the two points of intersection coincide on y. Now, each of σ1(S ′1)

and σ−1
1 (S ′1) are associated to a path from y to x, paths that differ by the

direction the points of colours 1, . . . , N pass around the middle puncture

point, so that

< σ−1
1 (S ′1), Z ′ >′= q < σ1(S ′1), Z > .
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By computation,

< (σ1 − 1)(1 + qσ−1
1 )(S ′1), Z >′= 0.

Let Z be the barcode corresponding to (0, N + 1, N, . . . , 1, 0) and let us

assume that σ1 acts as the identity on Z. So we have

< S ′1, Z >′=< σ−1
1 (S ′1), Z >′

and by computation

< (σ1 − 1)(1 + qσ−1
1 )(S ′1), Z >′= 0.

So we have proven that P ′ respects the skein relation. We now see that

P ′(unknot) = 1. Suppose n = 1 and β is the identity braid. We have proven

that

< S, T >= 1 + q + . . .+ qN

and so

Q(β) =
1

[N + 1]qN/2
(1 + q + . . .+ qN) = 1

So we have proven that P ′(β̂) = Q(β) = 1, which ends the proof.
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Appendix A

Local Coefficients via Bundles

of Groups

Definition 66. Let E and X be two topological spaces and let p be a map

p : E → X such that each point of X admits a neighborhood U for which

there is a homeomorphism ϕU : p−1(U) → U × G taking each p−1(x) to

{x} × G by a group isomorphism. The map p is called a bundle of groups,

the subsets p−1(x) are called the fibers of p and E is said to be a bundle of

groups with fiber G.

Remark 56. If we take (G, τD), where τD is the discrete topology, p is a

covering space.

Let σi : ∆n → X be a singular n-simplex in X and let ni : ∆n → E be a

lifting of σi. We can then take finite sums
∑m

i=1 niσi. Given two lifts ni and

mi of the same lift σi, we can define their sum as (ni+mi)(s) = ni(s)+mi(s),

which is still a lift of σi. So we have defined an abelian group Cn(X;E). We

want it to be a chain complex.

We can define a boundary homomorphism ∂ : Cn(X;E) → Cn−1(X;E)

by

∂(
∑
i

niσi) =
∑
i,j

(−1)jni|v0,...,v̂j ,...,vnσi|v0,...,v̂j ,...,vn

We can notice that the boundary is linear and it acts on σi as the

111
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usual boundary for singular homology. Then it is obvious that ∂2 = 0 and

(C∗(X;E), ∂) is a chain complex, whose homology groups are denoted as

H∗(X;E).

Let f : X → X ′ be a map. We want to find conditions for which it

induces a map in homology with local coefficients. Let p′ : E ′ → X ′ be a

bundle of groups. We define E as

E = {(x, e′) ∈ X × E ′| f(x) = p′(e′)}

and p : E → X as p(x, e′) = x. Let f̃ : E → E ′ be f̃(x, e′) = e′. By

definition, the fiber p−1(x) is the set {(x, e′) ∈ X × E| f(x) = p′(e′)}, so

that f̃ is a bijection between p−1(x) and p′−1(f(x)) and p−1(x) has a group

structure.

By definition of bundle of groups, ϕ′ : (p′)−1(U ′)→ U ′ ×G is an isomor-

phism. Let U be U = f−1(U ′) and let ϕ be ϕ : p−1(U)→ U ×G, defined by

ϕ(x, e′) = (x, ϕ′2(e′)). So ϕ admits as inverse and then it is an isomorphism

on each fiber. The bundle of groups p is called the pullback of p′, or the

induced bundle.

Let us now define the cohomology groups. Let Φ be a function from the

set of singular n-simpleces to E, assigning to each σ ∈ ∆n a lift Φ(σ) ∈ E. Let

Cn(X;E) be the group of such functions. The definition of the coboundary

map δ : Cn(X;E) → Cn+1(X;E) is exactly as in singular cohomology, so

that δ2 = 0 and (Cn(X;E), δ) is a cochain complex. Let Hn(X;E) be the

cohomology of such a complex.

We now define the homology groups H lf
n (X;G). Let σ : ∆n → X be a

singular simplex. We take the set C lf
n of locally finite chains, which are formal

sums
∑

σ gσσ, gσ ∈ G, such that every x ∈ X admits a neighborhood U such

that U meets the images of a finite number of σ with gσ 6= 0. The boundary

operator is obviously well defined, because if σ satisfies the condition, so

does its boundary. The homology H lf
∗ (X;G) is the homology of this chain

complex.
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