FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Triennale in Matematica

DISTRIBUZIONI TEMPERATE

Tesi di Laurea in Analisi Matematica

Relatore: Chiar.mo Prof. BRUNO FRANCHI Presentata da: LUCIA GIAMPAOLI

II Sessione Anno Accademico 2010/2011

... Al mio caro amico Jack...

Introduzione

Lo scopo di questa tesi è presentare un'introduzione alla Teoria delle distribuzioni (in particolare distribuzioni temperate); vengono analizzati gli spazi di distribuzioni $\mathcal{S}'(\mathbb{R}^n)$ e $\mathcal{D}'_K(\mathbb{R}^n)$ (K è un compatto di \mathbb{R}^n), mettendo in evidenza le loro principali proprietà.

Viene inoltre dedicato un capitolo ad un esempio di distribuzione temperata che non è di tipo funzione, pur coincidendo con una funzione \mathcal{C}^{∞} fuori dall'origine, la distribuzione $\frac{1}{x}$.

Per poter trattare correttamente gli spazi di distribuzioni, i primi due capitoli di questo elaborato sono dedicati agli spazi numerabilmente normati.

Il primo capitolo è interamente rivolto agli spazi numerabilmente normati, alla loro definizione e alle loro principali proprietà.

Il secondo capitolo tratta due importanti esempi di spazi numerabilmente normati completi: lo spazio $\mathcal{S}(\mathbb{R}^n) = (S(\mathbb{R}^n), \| \|_1, \| \|_2, \ldots)$ (dove $S(\mathbb{R}^n)$ è lo spazio vettoriale delle funzioni a decrescenza rapida $S(\mathbb{R}^n) = \{f : \mathbb{R}^n \longrightarrow \mathbb{C}, f \in \mathcal{C}^{\infty}(\mathbb{R}^n), x^{\alpha}D^{\beta}f(x) \xrightarrow[\|x\| \to +\infty]{} 0 \quad \forall \alpha, \beta \quad \text{multi-indici} \} \}$ e lo spazio $\mathcal{D}_K(\mathbb{R}^n) = (C_K^{\infty}(\mathbb{R}^n), \| \|_1, \| \|_2, \ldots)$ (dove $C_K^{\infty}(\mathbb{R}^n)$ è lo spazio vettoriale delle funzioni $f : \mathbb{R}^n \longrightarrow \mathbb{C}, f \in \mathcal{C}^{\infty}(\mathbb{R}^n), supp f \subseteq K \text{ con } K = \prod_{j=1}^n [-a_j, a_j], a_j > 0$). In entrambi i casi viene fornita la costruzione di tali spazi numerabilmente normati, dimostrandone anche la completezza.

In questo capitolo, vengono inoltre affrontati due esempi di applicazioni lineari continue fra spazi numerabilmente normati: Moltiplicazione per una funzione e Trasformazione di Fourier. La parte relativa alla Trasformazione di Fourier è divisa in due casi: il primo caso in cui lo spazio di definizione è $\mathcal{S}(\mathbb{R}^n)$ e il secondo caso in cui lo spazio di definizione è $\mathcal{D}_K(\mathbb{R}^n)$.

Nel terzo capitolo vengono illustrati gli spazi di distribuzioni $\mathcal{S}'(\mathbb{R}^n)$, $\mathcal{D}'_K(\mathbb{R}^n)$ ovvero i duali rispettivamente degli spazi $\mathcal{S}(\mathbb{R}^n)$, $\mathcal{D}_K(\mathbb{R}^n)$ (insieme dei funzionali lineari continui rispettivamente su $\mathcal{S}(\mathbb{R}^n)$ e $\mathcal{D}_K(\mathbb{R}^n)$).

Si giunge quindi alla definizione di distribuzione ovvero, indicando con Φ uno qualunque fra gli spazi $\mathcal{S}(\mathbb{R}^n)$ e $\mathcal{D}_K(\mathbb{R}^n)$ e con Φ' uno qualuneque fra gli spazi $\mathcal{S}'(\mathbb{R}^n)$ e $\mathcal{D}'_K(\mathbb{R}^n)$, si ha che se $T \in \Phi'$, T è una distribuzione. In particolare se $\Phi = \mathcal{S}(\mathbb{R}^n)$, T è una distribuzione temperata.

Viene fornita inoltre la definizione di distribuzione di tipo funzione e di distribuzione temperata di tipo funzione. Esistono tuttavia distribuzioni temperate che non sono di tipo funzione: un esempio è dato dalla distribuzione δ di Dirac.

Viene infine esposta la definizione di Trasformata di Fourier di una distribuzione e alcune sue proprietà.

Il quarto e ultimo capitolo presenta un esempio di distribuzione temperata, la distribuzione $\frac{1}{x}$ dove $\frac{1}{x} \stackrel{def}{=} \partial ln |x|$.

Vengono analizzate le principali proprietà di tale distribuzione; in particolare $\frac{1}{x}$ è una distribuzione dispari e la sua trasformata di Fourier è $\mathcal{F}(\frac{1}{x}) = -\pi \ i \ sgn \ s$, anch'essa dispari in quanto la trasformata di Fourier mantiene la parità della distribuzione.

La nostra presentazione segue quella di [1], [2], [3]. I teoremi, le definizioni e le osservazioni di base ultilizzati nei capitoli appena descritti, sono stati riportati in una breve Appendice con cui si conclude questo elaborato.

Indice

In	troduzione	i
1	Spazi numerabilmente normati	1
2	Esempi di spazi numerabilmente normati	7
	2.1 Esempio 1: $(S(\mathbb{R}^n), \ \ _1, \ \ _2, \ldots) = \mathcal{S}(\mathbb{R}^n) \ldots \ldots \ldots$	8
	2.2 Esempio 2: $(C_K^{\infty}(\mathbb{R}^n), _1, _2,) = \mathcal{D}_K(\mathbb{R}^n)$	10
3	Distribuzioni $\mathcal{S}'(\mathbb{R}^n), \mathcal{D}'_K(\mathbb{R}^n)$	17
4	Applicazioni	23
A	Appendice	31
Bi	bliografia	35

Capitolo 1

Spazi numerabilmente normati

In questo capitolo viene introdotta la nozione di spazio numerabilmente normato per poi considerare, nel Capitolo 2, due importanti esempi di spazi numerabilemnte normati ovvero lo spazio $(S(\mathbb{R}^n), \| \|_1, \| \|_2, \ldots) = \mathcal{S}(\mathbb{R}^n)$ e lo spazio $(C_K^{\infty}(\mathbb{R}^n), \| \|_1, \| \|_2, \ldots) = \mathcal{D}_K(\mathbb{R}^n)$.

Prima di esporre teoremi e definizioni relativi agli spazi numerabilmente normati è necessaria una breve parte introduttiva e di notazione.

Breve Introduzione

Sia (X, || ||) uno spazio normato e sia $Y = \{(x_n)_{n \in \mathbb{N}} \text{ t.c. } (x_n)_{n \in \mathbb{N}} \text{ è una successione di Cauchy}\}.$

Si introduce la seguente relazione di equivalenza:

$$(x_n)_{n\in\mathbb{N}} \sim (y_n)_{n\in\mathbb{N}}$$
 se $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}} \in Y$ e $||x_n - y_n|| \underset{n\to+\infty}{\longrightarrow} 0$.
Sia $\overline{X} = Y_{/\sim} = \{[(x_n)_{n\in\mathbb{N}}] ; (x_n)_{n\in\mathbb{N}} \in Y\}$ dove $[(x_n)_{n\in\mathbb{N}}] = \{(y_n)_{n\in\mathbb{N}} ; (y_n)_{n\in\mathbb{N}} \sim (x_n)_{n\in\mathbb{N}}\}$.

Si può dotare \overline{X} di struttura di spazio vettoriale ponendo:

$$\bar{x} + \bar{y} = [(x_n)_{n \in \mathbb{N}}] + [(y_n)_{n \in \mathbb{N}}] = [(x_n + y_n)_{n \in \mathbb{N}}]$$
 (Somma)

$$c\bar{x} = c[(x_n)_{n \in \mathbb{N}}] = [(cx_n)_{n \in \mathbb{N}}]$$
 (Prodotto per scalare)

Inoltre si può introdurre su \overline{X} la seguente norma:

$$\|\bar{x}\| = \lim_{n \to \infty} \|x_n\|$$
 dove $\bar{x} = [(x_n)_{n \in \mathbb{N}}]$

Così si ha che $(\overline{X}, \| \|)$ è uno spazio normato completo.

Identficando x con $[(x_n)_{n\in\mathbb{N}}]$ (classe di equivalenza determinata dalla successione stazionaria), risulta $(X, \| \|)$ un sottospazio di $(\overline{X}, \| \|)$ denso in questo. $(\overline{X}, \| \|)$ si dice *completamento* di $(X, \| \|)$.

Notazione

Si scrive $\overline{X}^{\parallel \parallel}$ invece di \overline{X} e si dice che $\overline{X}^{\parallel \parallel}$ è il completamento di X rispetto alla norma $\parallel \parallel$.

Teorema 1.0.1.

Sia X uno spazio vettoriale e siano $\| \|_1$ e $\| \|_2$ due norme per X, confrontabili (vedi Definizione A.4 Appendice).

Se $(X, \| \|_1)$ e $(X, \| \|_2)$ sono completi allora le due norme sono equivalenti.

Dimostrazione.

Per definizione due norme sono confrontabili se una è più debole dell'altra; supponiamo per esempio che sia $\| \|_1$ più debole di $\| \|_2$; quindi $\exists c \in \mathbb{R}^+$ t.c. $\|x\|_1 \leq c \|x\|_2 \ \forall x \in X$.

Poniamo $X_1 = \overline{X}^{\parallel \parallel_1}$, $X_2 = \overline{X}^{\parallel \parallel_2}$ e per ipotesi si ha che $X = X_1 = X_2$.

Sia $l_{21}: X_2 \longrightarrow X_1$ un'applicazione t.c. $l_{21}(x) = x$, l_{21} è evidentemente lineare su e 1-1; inoltre $||l_{21}(x)||_1 = ||x||_1$ e per ipotesi $||x||_1 \le c ||x||_2 \Longrightarrow ||l_{21}(x)||_1 \le c ||x||_2$.

Allora l_{21} è continua (per Teorema A.0.14 Appendice). Essendo l_{21} biettiva e continua, essa ammette inversa continua, quindi $\exists c' \in \mathbb{R}^+$ t.c. $||x||_2 = ||l_{21}^{-1}(x)||_1 \leq c' ||x||_1 \ \forall x \in X$.

Quindi si ha $\left\Vert x\right\Vert _{2}\leq c^{\prime}\left\Vert x\right\Vert _{1}\ \forall x\in X.$

Da $\|x\|_1 \le c \|x\|_2$ e $\|x\|_2 \le c' \|x\|_1 \ \forall x \in X$ segue che le norme $\| \|_1$ e $\| \|_2$ sono equivalenti.

Definizione 1.1. Norme concordanti

Sia X uno spazio vettoriale e siano $\| \|_1$ e $\| \|_2$ due norme per X.

Le due norme si dicono *concordanti* se ogni successione in X, che sia di Cauchy sia rispetto a $\| \|_1$ che a $\| \|_2$ e che converga a zero rispetto ad una delle due norme, converge a zero anche rispetto all'altra norma.

Definizione 1.2. Spazio numerabilmente normato

Sia X uno spazio vettoriale e sia $\| \|_1, \| \|_2, \| \|_3, \dots$ un'infinità numerabile di norme per X.

Sia $\| \|_n$ più debole di $\| \|_{n+1} \ \forall n \in \mathbb{N} \$ e siano $\| \|_n$ e $\| \|_{n+1}$ concordanti.

Siano:
$$V_{\varepsilon,n}(x) = \{ y \in X ; \|y - x\|_n < \varepsilon, \ \varepsilon \in \mathbb{R}^+ \}$$
 e $\mathscr{B} = \{ \emptyset, V_{\varepsilon,n}(x) \text{ con } \varepsilon \in \mathbb{R}^+, n \in \mathbb{N}, x \in X \}.$

Allora \mathcal{B} è base di una topologia \mathcal{U} per X.

X munito di questa topologia si denota con $(X, || ||_1, || ||_2, ...)$ e si chiama spazio numerabilmente normato.

Osservazione 1.

X è sottospazio di $\overline{X}^{\|\cdot\|_n}$ $\forall n$ e $\overline{X}^{\|\cdot\|_{n+1}}$ è sottospazio di $\overline{X}^{\|\cdot\|_n}$. Quindi si ha

$$X \subseteq \ldots \subseteq \overline{X}^{\parallel \parallel_n} \subseteq \ldots \subseteq \overline{X}^{\parallel \parallel_1}$$
$$X \subseteq \bigcap_{n=1}^{\infty} \overline{X}^{\parallel \parallel_n}$$

Definizione 1.3.

Sia $(X, \| \|_1, \| \|_2, \ldots)$ uno spazio numerabilmente normato.

Una successione $(x_k)_{k\in\mathbb{N}}$ in X si dice di Cauchy se è di Cauchy rispetto a $\| \cdot \|_n \ \forall n \in \mathbb{N}$.

Equivalentemente la successione $(x_n)_{n\in\mathbb{N}}$ è di Cauchy in $(X, \| \|_1, \| \|_2, \ldots) \iff \forall \varepsilon \in \mathbb{R}^+ \text{ e } \forall p \in \mathbb{N}, \ \exists n(\varepsilon, p) \in \mathbb{N} \text{ t.c. } \|x_m - x_n\|_p < \varepsilon \text{ per } m, n > n(\varepsilon, p).$

Una successione $(x_k)_{k\in\mathbb{N}}$ in X si dice convergente se

$$\exists x \in X \text{ t.c. } x_k \xrightarrow[k \to +\infty]{\| \|_n} x \quad \forall n \in \mathbb{N}.$$

Equivalentemente la successione $(x_n)_{n\in\mathbb{N}}$ è convergente in $(X, \| \|_1, \| \|_2, \ldots) \iff \forall \varepsilon \in \mathbb{R}^+ \text{ e } \forall p \in \mathbb{N}, \ \exists n(\varepsilon, p) \in \mathbb{N} \text{ t.c. } \|x - x_n\|_p < \varepsilon \text{ per } n > n(\varepsilon, p)$ (cioè $x_n \xrightarrow[n \to +\infty]{} x \ \forall p \in \mathbb{N}$).

Osservazione 2.

Ogni successione convergente è di Cauchy ma non è vero il viceversa.

Uno spazio numerabilmente normato si dice completo se ogni successione di Cauchy è convergente.

Teorema 1.0.2.

 $Sia(X, || \|_1, || \|_2, \ldots)$ uno spazio numerabilmente normato. Si ha che $(X, \| \|_1, \| \|_2, \ldots)$ è completo $\iff X = \bigcap_{n=1}^{\infty} \overline{X}^{\| \|_n}$

Dimostrazione.

Sufficienza:

Per ipotesi si ha che $X=\bigcap_{n=1}^\infty\overline{X}^{\|\ \|_n}$, si vuole dimostrare che X è completo cioè che ogni successione di Cauchy in $(X,\|\ \|_1,\|\ \|_2,\ldots)$ è convergente in $(X, \| \|_1, \| \|_2, \ldots).$

Sia quindi $(x_n)_{n\in\mathbb{N}}$ una successione di Cauchy in $(X, \| \|_1, \| \|_2, \ldots)$ allora (per Definizione 1.3) si ha che la successione è di Cauchy in $(X, \| \|_p) \ \forall p \in \mathbb{N}$; quindi $\exists \bar{x}^{(p)} \in \overline{X}^{\parallel \parallel_p} \text{ t.c. } x_n \xrightarrow[n \to +\infty]{\parallel \parallel_p} \bar{x}^{(p)}.$

Considero ora l'applicazione $l_{p+1,p}: \overline{X}^{\|\cdot\|_{p+1}} \longrightarrow \overline{X}^{\|\cdot\|_p}$ lineare, continua, in generale non 1-1 t.c. se x_n converge a $\bar{x}^{(p)}$ in $X^{\| \cdot \|_p}$ e a $\bar{x}^{(p+1)}$ in $X^{\| \cdot \|_{p+1}}$ allora $l_{p+1,p}(\bar{x}^{(p+1)}) = \bar{x}^{(p)}$

 $\forall p$:

$$x_1, x_2, \dots, x_n \dots \begin{cases} \frac{\parallel \parallel_1}{\longrightarrow} \bar{x}^{(1)} \\ \frac{\parallel \parallel_2}{\longrightarrow} \bar{x}^{(2)} \\ \vdots \\ \frac{\parallel \parallel_p}{\longrightarrow} \bar{x}^{(p)} \\ \vdots \end{cases}$$

e per la convenzione fatta $l_{p+1,p}(\bar{x}^{(p+1)}) = \bar{x}^{(p+1)}$.

Dunque
$$\bar{x}^{(1)} = \bar{x}^{(2)} \dots = \bar{x}^{(p)} = \dots$$
.

Poiché per ipotesi $X=\bigcap_{n=1}^\infty\overline{X}^{\parallel\,\parallel_n},$ tutti i punti $\bar{x}^{(p)}$ coincidono con un punto di X, sia tale punto \bar{x} (si ha quindi $\bar{x}^{(p)} = \bar{x} \quad \forall p$).

Da $x_n \xrightarrow[n \to +\infty]{} \bar{x}^{(p)} = \bar{x} \quad \forall p$, segue che $x_n \xrightarrow[n \to +\infty]{} \bar{x}$ in $(X, \| \|_1, \| \|_2, \ldots)$ cioè si è dimostrato che la successione $(x_n)_{n \in \mathbb{N}}$ di Cauchy in $(X, \| \|_1, \| \|_2, \ldots)$ è convergente in $(X, \| \|_1, \| \|_2, \ldots)$ e quindi $(X, \| \|_1, \| \|_2, \ldots)$ è completo. Necessità:

Per ipotesi si ha che $(X, \|\ \|_1, \|\ \|_2, \ldots)$ è completo, si vuole dimostrare che $X = \bigcap_{n=1}^\infty \overline{X}^{\|\ \|_n}$. È già noto dall'Osservazione 1 che $X \subseteq \bigcap_{n=1}^\infty \overline{X}^{\|\ \|_n}$ quindi per dimostrare l'ugualianza basta provare che $X \supseteq \bigcap_{n=1}^\infty \overline{X}^{\|\ \|_n}$ cioè preso $x \in \bigcap_{n=1}^\infty \overline{X}^{\|\ \|_n}$ si deve verificare che $x \in X$.

Sia quindi $x \in \bigcap_{n=1}^{\infty} \overline{X}^{\parallel \parallel_n}$ allora $x \in \overline{X}^{\parallel \parallel_n} \ \forall n$ e poichè X è denso in $\bigcap_{n=1}^{\infty} \overline{X}^{\parallel \parallel_n}$ (vedi Breve Introduzione) $\Longrightarrow \exists x_n \in X \ \text{t.c.} \ \|x - x_n\|_n < \frac{1}{n}$.

Proviamo che $x_n \xrightarrow[n \to +\infty]{} x$ in $(X, \| \|_1, \| \|_2, \ldots)$ (cioè si deve verificare che $x_n \xrightarrow[n \to +\infty]{} x \quad \forall p \in \mathbb{N}$). Fissato ad arbitrio $p \in \mathbb{N}$ e preso n > p si ha che $\|x - x_n\|_p \le \|x - x_n\|_n < \frac{1}{n} \Longrightarrow \|x - x_n\|_p < \frac{1}{n}$ e quindi $x_n \xrightarrow[n \to +\infty]{} x \quad \forall p \in \mathbb{N}$. Segue così che $(x_n)_{n \in \mathbb{N}}$ è una successione di Cauchy in $(X, \| \|_1, \| \|_2, \ldots)$ e poiché per ipotesi questo è completo, si ha che $\exists \bar{x} \in X$ t.c.

 $x_n \underset{n \to +\infty}{\longrightarrow} \bar{x} \text{ in } (X, \|\ \|_1, \|\ \|_2, \ldots) \text{ cioè } x_n \underset{n \to +\infty}{\overset{\|\ \|_p}{\longrightarrow}} \bar{x} \quad \forall p \in \mathbb{N} \text{ e quindi poich\'e}$ è stato precedentemente ottenuto che $x_n \underset{n \to +\infty}{\overset{\|\ \|_p}{\longrightarrow}} x \quad \forall p \in \mathbb{N}, \text{ per unicit\`a del}$ limite segue che $x = \bar{x} \in X$ cioè $x \in X$. Si ha quindi che $X \supseteq \bigcap_{n=1}^{\infty} \overline{X}^{\|\ \|_n}$ e per quanto detto prima risulta $X = \bigcap_{n=1}^{\infty} \overline{X}^{\|\ \|_n}$.

Definizione 1.4. Sistemi equivalenti di norme

Sia X uno spazio vettoriale e siano $\|\ \|_1, \|\ \|_2, \dots$ e $\|\ \|'_1, \|\ \|'_2, \dots$ due sistemi di norme tali che $\|x\|_p \leq \|x\|_{p+1}$ e $\|x\|'_p \leq \|x\|'_{p+1}$ $\forall p \in \mathbb{N}$.

Si dice che il primo sistema è più debole del secondo se $\forall p \in \mathbb{N}, \exists q(p) \in \mathbb{N}$ tale che $\| \cdot \|_p$ è più debole di $\|x\|'_{q(p)}$.

I due sistemi si dicono equivalenti se ciascuno di essi è più debole dell'altro.

Teorema 1.0.3.

Due spazi numerabilmente normati $(X, \|\ \|_1, \|\ \|_2, \ldots)$ e $(X, \|\ \|'_1, \|\ \|'_2, \ldots)$ coincidono \iff i due sistemi di norme $\|\ \|_1, \|\ \|_2, \ldots$ e $\|\ \|'_1, \|\ \|'_2, \ldots$ sono equivalenti.

Capitolo 2

Esempi di spazi numerabilmente normati

In questo secondo capitolo vengono trattati due importanti esempi di spazi numerabilmente normati: lo spazio $(S(\mathbb{R}^n), \| \|_1, \| \|_2, \ldots) = \mathcal{S}(\mathbb{R}^n)$ e lo spazio $(C_K^{\infty}(\mathbb{R}^n), \| \|_1, \| \|_2, \ldots) = \mathcal{D}_K(\mathbb{R}^n)$. Inoltre vengono considerati alcuni esempi di applicazioni lineari continue fra spazi numerabilmente normati.

Premessa

Se $\alpha = (\alpha_1, \dots, \alpha_n)$ e $\alpha_j \in (\mathbb{N} \cup \{0\})$ per $j = 1 \dots, n$ si dice che α un è multi-indice. Si chiama lunghezza del multi-indice α :

$$|\alpha| = \sum_{j=1}^{n} \alpha_j = \alpha_1 + \alpha_2 + \ldots + \alpha_n$$

Si osserva che:

- 1. Se α, β sono due multi-indici, la scrittura $\alpha \geq \beta$ $(\alpha > \beta)$ significa $\alpha_j \geq \beta_j$ $(\alpha_j > \beta_j)$ per $j = 1 \dots, n$
- $2. |\alpha + \beta| = |\alpha| + |\beta|$
- 3. $\alpha! = \alpha_1! \alpha_2! \dots \alpha_n!$

4. Se
$$\alpha \geq \beta$$
 si ha $\binom{\alpha}{\beta} = \binom{\alpha_1}{\beta_1} \binom{\alpha_2}{\beta_2} \dots \binom{\alpha_n}{\beta_n}$

Sia $x \in \mathbb{R}^n$, si pone: $x^{\alpha} = x^{\alpha_1} \dots x^{\alpha_n}$. Sia $f : \mathbb{R}^n \longrightarrow \mathbb{C}$, si pone: $D^{\alpha} f = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}$ se tale derivata esiste. Se f è di classe $\mathcal{C}^{|\alpha+\beta|}$, risulta: $D^{\alpha}(D^{\beta}f) = D^{\beta}(D^{\alpha}f) = D^{\alpha+\beta}f$

Se $f, g: \mathbb{R}^n \longrightarrow \mathbb{C}$ sono di classe $\mathcal{C}^{|\alpha|}$, vale la seguente formula di Leibnitz:

$$D^{\alpha}(fg) = \sum_{\beta < \alpha} {\alpha \choose \beta} D^{\alpha - \beta} f D^{\beta} g$$

Esempio 1: $(S(\mathbb{R}^n), || ||_1, || ||_2, ...) = \mathcal{S}(\mathbb{R}^n)$ 2.1

Definizione 2.1. Spazio delle funzioni a decrescenza rapida

Una funzione $f: \mathbb{R}^n \longrightarrow \mathbb{C}$ si dice a decrecenza rapida se:

- 1. f è di classe \mathcal{C}^{∞}
- 2. $\lim_{\|x\| \to +\infty} x^{\alpha} D^{\beta} f(x) = 0 \quad \forall \alpha, \beta$ multi-indici

Si indica con $S(\mathbb{R}^n)$ lo spazio vettoriale delle funzioni a decrescenza rapida: $S(\mathbb{R}^n) = \{ f \in \mathcal{C}^{\infty}(\mathbb{R}^n), \ x^{\alpha} D^{\beta} f(x) \underset{\|x\| \to +\infty}{\longrightarrow} 0 \quad \forall \alpha, \beta \text{ multi-indici } \}$

Costruzione dello spazio numerabilmente normato $\mathcal{S}(\mathbb{R}^n)$

Introduciamo e definiamo la seguente norma:

per $p \in \mathbb{N}$

$$||f||_p = \sup_{x \in \mathbb{R}^n} \sup_{|\alpha| \le p} (1 + ||x||)^p |D^{\alpha} f(x)|$$

dove $f \in S(\mathbb{R}^n)$ e $\forall p \in \mathbb{N}$ vale $||f||_p \leq ||f||_{p+1}$.

Sia $S_p(\mathbb{R}^n)$ lo spazio vettoriale delle funzioni $f:\mathbb{R}^n\longrightarrow\mathbb{C}$ di classe \mathcal{C}^p e per ciascuna della quali vale $||f||_p < +\infty$.

Verifichiamo che $(S_p(\mathbb{R}^n), || \|_p)$ è completo.

Si deve quindi dimostrare che ogni successione di Cauchy in $(S_p(\mathbb{R}^n), \| \cdot \|_p)$ è convergente in $(S_p(\mathbb{R}^n), \| \|_p)$.

Sia quindi $(f_m)_{m\in\mathbb{N}}$ una successione di Cauchy in $S_p(\mathbb{R}^n)$ rispetto a $\|\cdot\|_p$; allora per definizione di successione di Cauchy si ha che

9

 $\lim_{\mu, v \to +\infty} \|f_{\mu} - f_{v}\|_{p} = \lim_{\mu, v \to +\infty} \sup_{x \in \mathbb{R}^{n}} \sup_{|\alpha| \le p} (1 + \|x\|)^{p} |D^{\alpha} f_{\mu}(x) - D^{\alpha} f_{v}(x)| = 0$

Ne segue che ogni successione $(D^{\alpha}f_{m})_{m\in\mathbb{N}}$ con $|\alpha| \leq p$ converge uniformemente su \mathbb{R}^{n} , quindi $\exists f_{0}$ di classe C^{p} tale che $D^{\alpha}f_{m} \xrightarrow[m \to +\infty]{} D^{\alpha}f_{0}$ uniformemente su \mathbb{R}^{n} .

 $\forall \varepsilon \in \mathbb{R}^+, \exists m_{\varepsilon} \in \mathbb{N} \text{ tale che } (1 + ||x||)^p |D^{\alpha} f_m(x) - D^{\alpha} f_{\mu}(x)| < \varepsilon \text{ per}$ $|\alpha| \leq p, \quad m, \mu > m_{\varepsilon} \text{ e } \forall x \in \mathbb{R}^n.$

Passando al limite per $\mu \longrightarrow +\infty$ si ha che:

$$(1+||x||)^p |D^{\alpha}f_m(x)-D^{\alpha}f_0(x)| \leq \varepsilon \text{ per } |\alpha| \leq p, \quad m>m_{\varepsilon} \text{ e } \forall x \in \mathbb{R}^n.$$

Poiché se una successione è di Cauchy rispetto ad una certa norma, la successione delle norme è limitata, si ha che:

$$\exists c \in \mathbb{R}^n \text{ t.c. } \|f_m\|_p = \sup_{x \in \mathbb{R}^n} \sup_{|\alpha| \le p} (1 + \|x\|)^p |D^{\alpha} f_m(x)| \le c \quad \forall m \in \mathbb{N}.$$

Da questa disegualianza e dalla precedente segue:

$$||f_0||_p = (1+||x||)^p |D^{\alpha}f_0(x)| = (1+||x||)^p |(D^{\alpha}f_0(x) - D^{\alpha}f_m(x)) + D^{\alpha}f_m(x)| \le (1+||x||)^p |D^{\alpha}f_0(x) - D^{\alpha}f_m(x)| + (1+||x||)^p |D^{\alpha}f_m(x)| \le \varepsilon + c \text{ per } m > m_{\varepsilon}, \ |\alpha| \le p \text{ e } \forall x \in \mathbb{R}^n.$$

Data l'arbitrarietà di ε segue che $||f_0||_p \le c \Longrightarrow ||f_0||_p < +\infty \Longrightarrow ||f_0||_p \in S_p(\mathbb{R}^n)$.

Da
$$(1 + ||x||)^p |D^{\alpha} f_m(x) - D^{\alpha} f_0(x)| \le \varepsilon$$
 per $|\alpha| \le p$, $m > m_{\varepsilon}$ e $\forall x \in \mathbb{R}^n$ segue $||f_m - f_0||_p \le \varepsilon \Longrightarrow f_m \xrightarrow[m \to +\infty]{} f_0$.

Abbiamo così ottenuto che $(f_m)_{m\in\mathbb{N}}$ di Cauchy in $(S_p(\mathbb{R}^n), \| \|_p)$ converge in $(S_p(\mathbb{R}^n), \| \|_p)$, dunque $S_p(\mathbb{R}^n)$ è completo.

Poiché vogliamo ottenere uno spazio numerabilmente normato, proviamo ora che le norme $\| \cdot \|_p$ sono concordanti.

Sia p < q e sia $(f_m)_{m \in \mathbb{N}}$ una successione in $S(\mathbb{R}^n)$ di Cauchy rispetto a $\| \|_q$ e convergente a zero rispetto a $\| \|_p$; per definizione di norme concardanti, bisogna verificare che la successione converge a zero anche rispetto a $\| \|_q$.

Poiché $(S_q(\mathbb{R}^n), \| \|_q)$ è completo, $\exists f_0 \in S_q(\mathbb{R}^n)$ tale che $\|f_m - f_0\|_q \xrightarrow[m \to +\infty]{} 0$. Ma per ipotesi $\|f_m\|_p \xrightarrow[m \to +\infty]{} 0$ e quindi $f_m(x) \xrightarrow[m \to +\infty]{} 0 \quad \forall x \in \mathbb{R}^n$, allora deve essere $f_0 = 0$ e quindi $\|f_m\|_q \xrightarrow[m \to +\infty]{} 0$.

Segue così che $\| \|_p$ e $\| \|_q$ sono concordanti.

Pioché $S_p(\mathbb{R}^n)$ è completo rispetto a $\| \|_p$, $\overline{S(\mathbb{R}^n)}^{\| \|_p}$ è un sottospazio di $S_p(\mathbb{R}^n)$, $S(\mathbb{R}^n) = \bigcap_{p=1}^{\infty} S_p(\mathbb{R}^n)$ e $S(\mathbb{R}^n) \subset \overline{S(\mathbb{R}^n)}^{\| \|_p}$ $\forall p$, si ha che

$$S(\mathbb{R}^n) = \bigcap_{p=1}^{\infty} \overline{S(\mathbb{R}^n)}^{\parallel \parallel_p}$$

quindi per il Teorema 1.0.2 (Capitolo 1) si ha che

$$S(\mathbb{R}^n) = (S(\mathbb{R}^n), || ||_1, || ||_2, \ldots)$$

è uno spazio numerabilmente normato completo.

2.2 Esempio 2: $(C_K^{\infty}(\mathbb{R}^n), || ||_1, || ||_2, ...) = \mathcal{D}_K(\mathbb{R}^n)$

Sia
$$a_j > 0$$
 per $j = 1, \dots n$ e $K = \prod_{j=1}^n [-a_j, a_j]$.

Indichiamo con $C_K^{\infty}(\mathbb{R}^n) (= D_K(\mathbb{R}^n))$ lo spazio vettoriale delle funzioni $f: \mathbb{R}^n \longrightarrow \mathbb{C}$ tali che:

- 1. f è di classe \mathcal{C}^{∞}
- 2. $supp f \subseteq K$

Costruzione dello spazio numerabilmente normato $\mathcal{D}_K(\mathbb{R}^n)$ Poniamo $\forall p \in \mathbb{N}$:

$$\|f\|_p = \max_{x \in K} \max_{|\alpha| \le p} |D^{\alpha} f(x)|, \quad f \in C_K^{\infty}(\mathbb{R}^n)$$

Si ha che $\forall p \in \mathbb{N}, \ \|\ \|_p$ è una norma (considerare che se f=0 su K allora f=0 su tutto \mathbb{R}^n) e vale $\|f\|_p \leq \|f\|_{p+1}$.

Vogliamo ottenere uno spazio numerabilmente normato quindi cominciamo provando che le norme $\|\ \|_p\,,\|\ \|_{p+1}$ sono concordanti.

Sia quindi $(f_m)_{m\in\mathbb{N}}$ una successione in $C_K^{\infty}(\mathbb{R}^n)$ convergente a zero rispetto alla norma $\| \|_p$ e di Cauchy rispetto alla norma $\| \|_{p+1}$; si deve dimostrare che la successione converge a zero anche rispetto a $\| \|_{p+1}$.

Poiché $(f_m)_{m\in\mathbb{N}}$ converge a zero nella norma $\| \|_p$ allora segue che se $|\alpha| \leq p$, $D^{\alpha}f_m \underset{m\to+\infty}{\longrightarrow} 0 = f_0$ uniformemente su K (e quindi su tutto \mathbb{R}^n) e poichè $(f_m)_{m\in\mathbb{N}}$ è di Cauchy rispetto a $\| \|_{p+1}$ allora per $|\alpha| = p+1$, $(D^{\alpha}f_m)_{m\in\mathbb{N}}$ converge uniformemente su K.

Allora $\exists f_{\alpha}$ continua e con il supporto contenuto in K tale che $D^{\alpha}f_{m} \xrightarrow[m \to +\infty]{} f_{\alpha}$ uniformemente su K per $|\alpha| = p + 1$.

Allora $f_{\alpha} = D^{\alpha} f_{0}$ ma $f_{0} = 0 \Rightarrow f_{\alpha} = 0 \Rightarrow D^{\alpha} f_{m} \xrightarrow[m \to +\infty]{} 0$ per $|\alpha| = p + 1 \Rightarrow \|f_{m}\|_{p+1} \xrightarrow[m \to +\infty]{} 0$ e ciò prova che $\| \|_{p}$ e $\| \|_{p+1}$ sono concordanti.

Sia $C_K^p(\mathbb{R}^n)$ lo spazio vettoriale delle funzioni $f: \mathbb{R}^n \longrightarrow \mathbb{C}$ tali che f è di classe C^p e $supp f \subseteq K$. Proviamo che $(C_K^p(\mathbb{R}^n), \| \|_p)$ è completo.

Sia $(f_m)_{m\in\mathbb{N}}$ una successione di Cauchy in $(C_K^p(\mathbb{R}^n), \| \|_p)$; si deve verificare che $(f_m)_{m\in\mathbb{N}}$ è convergente in $(C_K^p(\mathbb{R}^n), \| \|_p)$.

Poiché $(f_m)_{m\in\mathbb{N}}$ è una successione di Cauchy si ha che se $|\alpha| \leq p$ $\max_{x\in K} |D^{\alpha}f_{\mu}(x) - D^{\alpha}f_{v}(x)| \underset{\mu,v\to+\infty}{\longrightarrow} 0$. Allora $\exists f_{\alpha}$ continua, con il supporto contenuto in K tale che $D^{\alpha}f_{m} \underset{m\to+\infty}{\longrightarrow} 0 = f_{\alpha}$ uniformemente se $|\alpha| \leq p$. Allora $f_{\alpha} = D^{\alpha}f_{0}$ con $|\alpha| \leq p$, quindi $f_{0} \in \mathcal{C}^{p}$, inoltre $\operatorname{supp} f_{0} \subseteq K \Rightarrow f_{0} \in C_{k}^{p}(\mathbb{R}^{n})$. Da $|D^{\alpha}f_{m}(x) - D^{\alpha}f_{m+\mu}(x)| \leq \max_{x\in K} \max_{|\alpha|\leq p} |D^{\alpha}f_{m}(x) - D^{\alpha}f_{m+\mu}(x)| = \|f_{m} - f_{m+\mu}\|_{p} < \varepsilon \text{ per } m > m_{\varepsilon} \text{ e } |\alpha| \leq p$, facendo tendere μ all'infinito si ha che $|D^{\alpha}f_{m}(x) - D^{\alpha}f_{0}| \leq \varepsilon$ per $m > m_{\varepsilon}$, $|\alpha| \leq p$ $e \quad \forall x \in \mathbb{R}^{n}$. Quindi $\|f_{m} - f_{0}\|_{p} \leq \varepsilon$ per $m > m_{\varepsilon}$ cioè $f_{m} \xrightarrow[m\to+\infty]{} f_{0} \in C_{k}^{p}(\mathbb{R}^{n}) \Longrightarrow \Longrightarrow (C_{K}^{p}(\mathbb{R}^{n}), \|\cdot\|_{p})$ è completo.

Risulta

$$C_K^{\infty}(\mathbb{R}^n) \subseteq \overline{C_K^{\infty}(\mathbb{R}^n)}^{\parallel \parallel_p} \subseteq C_K^p(\mathbb{R}^n)$$

e

$$C_K^{\infty}(\mathbb{R}^n) = \bigcap_{p=1}^{\infty} C_K^p(\mathbb{R}^n).$$

Quindi

$$C_K^{\infty}(\mathbb{R}^n) = \bigcap_{p=1}^{\infty} \overline{C_K^{\infty}(\mathbb{R}^n)}^{\parallel \parallel_p}$$

Per il Teorema 1.0.2 (Capitolo 1) segue che $\mathcal{D}_K(\mathbb{R}^n) = (C_K^{\infty}(\mathbb{R}^n), \| \|_1, \| \|_2, \ldots)$ è uno spazio numerabilmente normato completo.

Prima di considerare alcuni esempi di applicazioni lineari continue fra spazi numerabilmente normati, introduciamo alcune definizioni e teoremi utili.

Definizione 2.2.

Siano $(X, \| \|_1, \| \|_2, \ldots), (X', \| \|_1', \| \|_2', \ldots)$ due spazi numerabilmente normati $(X \in X' \text{ sullo stesso campo})$. Un'applicazione $T : X \longrightarrow X'$ si dice lineare se $\forall x_1, x_2 \in X \in \forall a_1, a_2$ appartenenti al campo di $X \in X'$ vale $T(a_1x_1 + a_2x_2) = a_1T(x_1) + a_2T(x_2)$.

L'applicazione si dice continua nel punto x_0 se $\forall V'_{\varepsilon,n}(0) = \{y \in X'; \|y\|'_n < \varepsilon, \ \varepsilon \in \mathbb{R}^+\}, \ \exists V_{\delta,p}(0) = \{x \in X; \ \|x\|_p < \delta, \ \delta \in \mathbb{R}^+ \text{ con } \delta \text{ e p dipendenti da } \varepsilon$ e n $\}$ tale che $x - x_0 \in V_{\delta,p}(0) \Longrightarrow T(x - x_0) \in V'_{\varepsilon,n}(0)$.

Osservazione 3.

Se T è continua in ogni punto di X allora è continua in ogni altro punto.

Teorema 2.2.1.

Siano $(X, \| \|_1, \| \|_2, \ldots), (X', \| \|_1', \| \|_2', \ldots)$ due spazi numerabilmente normati (sullo stesso campo) e sia $T: X \longrightarrow X'$ un'applicazione lineare. T è continua $\iff \forall p \in \mathbb{N}, \exists q(p) \in \mathbb{N}$ tale che T sia continua da $(X, \| \|_{q(p)})$ a $(X', \| \|_p')$.

Teorema 2.2.2.

Siano $(X, \|\ \|_1, \|\ \|_2, \ldots), (X', \|\ \|_1', \|\ \|_2', \ldots)$ due spazi numerabilmente normati (sullo stesso campo) e sia $T: X \longrightarrow X'$ un'applicazione lineare.

 $T \ \dot{e} \ continua \iff$

$$x_k \underset{k \to +\infty}{\longrightarrow} 0 \text{ in } (X, \| \|_1, \| \|_2, \ldots) \Longrightarrow T(x_k) \underset{k \to +\infty}{\longrightarrow} 0 \text{ in } (X', \| \|'_1, \| \|'_2, \ldots).$$

Esempi di applicazioni lineari continue fra spazi numerabilmente normati

Esempio 2.1. MOLTIPLICAZIONE PER UNA FUNZIONE

Definizione 2.3.

Sia Φ uno qualsiasi degli spazi $\mathcal{S}(\mathbb{R}^n)$, $\mathcal{D}_K(\mathbb{R}^n)$.

Una funzione $f: \mathbb{R}^n \longrightarrow \mathbb{C}$ si dice moltiplicatore per Φ se:

13

- 1. $f\phi \in \Phi \quad \forall \phi \in \Phi$
- 2. l'applicazione $\phi \longrightarrow f\phi$ da Φ a Φ è continua cioè $\phi_k \xrightarrow[k \to +\infty]{\Phi} 0 \Longrightarrow f\phi_k \xrightarrow[k \to +\infty]{\Phi} 0$

Proposizione 2.2.3.

Sia $\Phi = \mathcal{S}(\mathbb{R}^n)$, sia $f \in \mathcal{C}^{\infty}$ e $\forall \alpha \exists C_{\alpha} \in \mathbb{R}^+$ ed $\exists p_{\alpha} \in \mathbb{N}$ tali che $|D^{\alpha}f(x)| \leq C_{\alpha}(1+||x||)^{p_{\alpha}}$. Allora $f \in \mathcal{C}$ un moltiplicatore per $\mathcal{S}(\mathbb{R}^n)$.

Proposizione 2.2.4.

Sia
$$\Phi = \mathcal{D}_K(\mathbb{R}^n), K = \prod_{j=1}^n [-a_j, a_j].$$

Se $f \in \mathcal{C}^{\infty}$ allora $f \in un$ moltiplicatore per $\mathcal{D}_K(\mathbb{R}^n)$.

Esempio 2.2. TRASFORMAZIONE di FOURIER

Primo caso: $\Phi = \mathcal{S}(\mathbb{R}^n)$

Definizione 2.4.

Sia $\Phi = \mathcal{S}(\mathbb{R}^n)$, sia $f \in \mathcal{S}(\mathbb{R}^n)$, si definisce trasformata di Fourier di f:

$$\mathcal{F}(f(\xi)) = \widehat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\langle x,\xi\rangle} f(x) dx, \qquad \xi \in \mathbb{R}^n$$

dove
$$\langle x, \xi \rangle = \sum_{j=1}^{n} x_j \xi_j$$
.

Proposizione 2.2.5.

Se
$$f \in S(\mathbb{R}^n) \Longrightarrow f \in L^1(\mathbb{R}^n)$$
.

Proposizione 2.2.6.

Se
$$f \in S(\mathbb{R}^n) \Longrightarrow \widehat{f} \in S(\mathbb{R}^n)$$
.

Dimostrazione.

Siano α, β multi-indici. Dobbiamo dimostrare che $\widehat{f} \in S(\mathbb{R}^n)$ cioè che $\xi^{\alpha}D_{\xi}^{\beta} \widehat{f}(\xi) \underset{\|\xi\| \to +\infty}{\longrightarrow} 0.$

$$\xi^{\alpha} D_{\xi}^{\beta} \widehat{f}(\xi) = \xi^{\alpha} D_{\xi}^{\beta} \int_{\mathbb{R}^n} e^{-i\langle x, \xi \rangle} f(x) dx$$

Integrando sotto il segno di derivata si ottiene

$$\xi^{\alpha} D_{\xi}^{\beta} \int_{\mathbb{R}^{n}} e^{-i\langle x,\xi\rangle} f(x) \, dx = \xi^{\alpha} \int_{\mathbb{R}^{n}} D_{\xi}^{\beta} e^{-i\langle x,\xi\rangle} f(x) \, dx = (-i)^{|\beta|} \xi^{\alpha} \int_{\mathbb{R}^{n}} e^{-i\langle x,\xi\rangle} x^{\beta} f(x) \, dx =$$

$$= (-i)^{|\beta|} (i)^{|\alpha|} \int_{\mathbb{R}^{n}} (-i)^{|\alpha|} \xi^{\alpha} e^{-i\langle x,\xi\rangle} x^{\beta} f(x) \, dx =$$

Supponiamo che $\alpha=(0,\ldots,\frac{1}{j},\ldots,0)$ quindi $(-i)^{|\alpha|}\xi^{\alpha}=(-i\xi_1)^{\alpha_1}\ldots(-i\xi_j)^{\alpha_j}\ldots(-i\xi_n)^{\alpha_n}=-i\xi_j, \text{ allora riprendendo i calcoli precedenti si ha}$

$$= (-i)^{|\beta|} (i)^{|\alpha|} \int_{\mathbb{R}^n} (-i\xi_j) \ e^{-i\langle x,\xi\rangle} \ x^\beta \ f(x) \ dx = (-i)^{|\beta|} (i)^{|\alpha|} \int_{\mathbb{R}^n} (\frac{\partial}{\partial x_j} \ e^{-i\langle x,\xi\rangle}) \ x^\beta \ f(x) \ dx = (-i)^{|\beta|} (i)^{|\alpha|} \int_{\mathbb{R}^n} (-i\xi_j) \ e^{-i\langle x,\xi\rangle} (-i\xi_j) \ e^{-$$

Poiché la funzione integranda è sommabile, applicando l'Osservazione 18 (Appendice) si ha

$$= (-i)^{|\beta|} (i)^{|\alpha|} \lim_{N \to +\infty} \int_{B(0,N)} \left(\frac{\partial}{\partial x_j} e^{-i\langle x,\xi \rangle} \right) x^{\beta} f(x) dx =$$

Applicando l'integrazione per parti (si può integrare per parti su una regione illimitata in quanto l'integrale sul bordo della palla $\partial B(0, N)$ va a zero per $N \to +\infty$) si ottiene

$$= (-i)^{|\alpha| + |\beta|} \int_{\mathbb{R}^n} e^{-i\langle x, \xi \rangle} \ D_x^{\alpha}(x^{\beta} \ f(x)) \ dx = (-i)^{|\alpha| + |\beta|} \ \mathcal{F}(D_{\xi}^{\alpha}(\xi^{\beta} \ f(\xi)))$$

Se si dimostra che $D_x^{\alpha}(x^{\beta} f(x)) \in L^1(\mathbb{R}^n)$, usando il Teorema A.0.18 (Appendice) si ha che $\mathcal{F}(D_{\xi}^{\alpha}(\xi^{\beta} f(\xi))) \underset{\xi \to +\infty}{\longrightarrow} 0$ che è proprio ciò che si vuole dimostrare.

Per dimostrare che $D_x^{\alpha}(x^{\beta}f(x)) \in L^1(\mathbb{R}^n)$ basta verificare che $D_x^{\alpha}(x^{\beta}f(x)) \in S(\mathbb{R}^n)$ (vedi Proposizione sopra). Verifichiamo quindi che $D_x^{\alpha}(x^{\beta}f(x)) \in S(\mathbb{R}^n)$ cioè che $x^{\tau}D_x^{\sigma}D_x^{\alpha}(x^{\beta}f(x)) \xrightarrow[x \to +\infty]{} 0$ con τ, σ multi-indici. $x^{\tau}D_x^{\sigma}D_x^{\alpha}(x^{\beta}f(x)) = x^{\tau}D_x^{\sigma+\alpha}(x^{\beta}f(x))$ e utilizzando la formula di Leibnitz

(vedi Premessa di questo capitolo) si ottiene

15

$$x^{\tau}D_x^{\sigma+\alpha}(x^{\beta}f(x)) = \sum_{0 \le \gamma \le \sigma+\alpha} {\sigma+\alpha \choose \gamma} D^{\sigma+\alpha-\gamma} x^{\beta} x^{\tau} D^{\gamma}f(x) =$$

Inoltre utilizzando la seguente Osservazione:

sia
$$\eta = \sigma + \alpha - \gamma$$
 $D^{\eta} x^{\beta} = \frac{\partial^{\eta_1}}{\partial x_1^{\eta_1}} \dots \frac{\partial^{\eta_n}}{\partial x_n^{\eta_n}} x_1^{\beta_1} \dots x_n^{\beta_n} = C_{\eta,\beta} x_1^{\beta_1 - \eta_1} \dots x_n^{\beta_n - \eta_n}$ si ottiene

$$\begin{split} &= \sum_{0 \leq \gamma \leq \sigma + \alpha} \binom{\sigma + \alpha}{\gamma} C_{\sigma + \alpha - \gamma, \beta} \ x^{\beta - \sigma - \alpha + \gamma} \ x^{\tau} \ D^{\gamma} f(x) = \\ &= \sum_{0 \leq \gamma \leq \sigma + \alpha} \binom{\sigma + \alpha}{\gamma} C_{\sigma + \alpha - \gamma, \beta} \ x^{\beta - \sigma - \alpha + \gamma + \tau} \ D^{\gamma} f(x) \in S(\mathbb{R}^n) \ \text{in quanto per ipotesi} \ f(x) \in S(\mathbb{R}^n). \end{split}$$

Allora
$$D_x^{\alpha}(x^{\beta}f(x)) \in S(\mathbb{R}^n) \Longrightarrow \mathcal{F}(D_{\xi}^{\alpha}(\xi^{\beta}f(\xi))) \underset{\xi \to +\infty}{\longrightarrow} 0$$
 e quindi
$$\xi^{\alpha}D_{\xi}^{\beta}\widehat{f}(\xi) = (-i)^{|\alpha|+|\beta|} \mathcal{F}(D_{\xi}^{\alpha}(\xi^{\beta}f(\xi))) \underset{\xi \to +\infty}{\longrightarrow} 0 \Longrightarrow \widehat{f}(\xi) \in S(\mathbb{R}^n).$$

Quindi la trasformata di Fourier \mathcal{F} è un'applicazione da $S(\mathbb{R}^n)$ a $S(\mathbb{R}^n)$; essa è evidentemente lineare. Inoltre $\mathcal{F}: S(\mathbb{R}^n) \xrightarrow[1-1]{su} S(\mathbb{R}^n)$; se $f \in S(\mathbb{R}^n)$, posto $g(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i\langle x,\xi\rangle} f(\xi) d\xi$ risulta $\mathcal{F}(g) = f$ cioè la g è l'inversa della f.

Osservazione 4.

Se
$$f_m \xrightarrow[m \to +\infty]{\mathcal{S}(\mathbb{R}^n)} 0 \implies \mathcal{F}(f_m) \xrightarrow[m \to +\infty]{\mathcal{S}(\mathbb{R}^n)} 0.$$

Quindi $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \xrightarrow[1-1]{su} \mathcal{S}(\mathbb{R}^n)$ lineare, continua e dotata di inversa continua (perché $\mathcal{F}(\mathcal{F}(f))(-\xi) = (2\pi)^n f(\xi)$).

Secondo caso: $\Phi = \mathcal{D}_K(\mathbb{R}^n)$

Sia
$$\Phi = \mathcal{D}_K(\mathbb{R}^n)$$
 $(K = \prod_{j=1}^n [-a_j, a_j]).$

Sia $f \in \mathcal{C}_K^{\infty}(\mathbb{R}^n)$, si definisce trasformata di Fourier di f:

$$\mathcal{F}(f)(x) = \widehat{f}(x) = \int_{\mathbb{R}^n} e^{-i\langle x, t \rangle} f(t) dt, \qquad x \in \mathbb{R}^n$$

Questa funzione si può prolungare su tutto \mathbb{C}^n ponendo:

$$\widehat{f}(z) = \int_{\mathbb{D}^n} e^{-i\langle z, t \rangle} f(t) dt, \qquad z \in \mathbb{C}^n$$

.

Si ha che $\mathcal{F}: \mathcal{D}_K(\mathbb{R}^n) \longrightarrow \mathcal{Z}_a(\mathbb{C}^n)$ è lineare e continua dove $\mathcal{Z}_a(\mathbb{C}^n) = (Z_a(\mathbb{C}^n), \| \|_1, \| \|_2, \ldots)$ è uno spazio numerabilmente normato completo e $Z_a(\mathbb{C}^n)$ è lo spazio delle funzioni intere $\phi: \mathbb{C}^n \longrightarrow \mathbb{C}$ per ciascuna delle quali risulta, $\forall p \in \mathbb{N}$:

$$\|\phi\|_p = \sup_{z \in \mathbb{C}^n} \sup_{|\alpha| \le p} \left| z^{\alpha} \phi(z) e^{-\sum_{j=1}^n a_j |y_j|} \right| < +\infty$$

con z = x + iy e $a = (a_1, \dots, a_n), a_j > 0$ per $j = 1, \dots, n$. $\| \cdot \|_p$ è una norma e $\forall \phi \in Z_a(\mathbb{C}^n)$ e $\forall p \in \mathbb{N}$ $\| \phi \|_p \le \| \phi \|_{p+1}$.

Capitolo 3

Distribuzioni $\mathcal{S}'(\mathbb{R}^n), \ \mathcal{D}'_K(\mathbb{R}^n)$

Teorema 3.0.7.

Sia $(X, \|\ \|_1, \|\ \|_2, \ldots)$ uno spazio numerabilmente normato.

Sia X_p' il duale di $(X, \| \|_p)$ cioè lo spazio vettoriale dei funzionali lineari continui su $(X, \| \|_p)$. Se $f \in X_p'$, posto $\| f \|_p' = \sup_{\| x \|_p \le 1} |f(x)|$, risulta $\| \|_p'$

una norma e $(X'_p, \| \|'_p)$ uno spazio di Banach.

Si ha inoltre che $X_p' \subseteq X_{p+1}' \ \forall p \in \mathbb{N}$ e se X' è il duale di $(X, \| \|_1, \| \|_2, \ldots)$ cioè lo spazio vettoriale dei funzionali lineari continui su $(X, \| \|_1, \| \|_2, \ldots)$ allora $X' = \bigcup_{p=1}^{\infty} X_p'$.

Definizione 3.1. Spazi di distribuzione $\mathcal{S}'(\mathbb{R}^n), \ \mathcal{D}'_K(\mathbb{R}^n)$.

Sia Φ uno qualunque fra gli spazi $\mathcal{S}(\mathbb{R}^n)$, $\mathcal{D}_K(\mathbb{R}^n)$. Sia Φ' l'insieme dei funzionali lineari continui su Φ (applicazioni lineari continue da Φ a \mathbb{C}).

Se $T \in \Phi'$ si dice che T è una distribuzione; in particolare se $\Phi = \mathcal{S}(\mathbb{R}^n)$ si dice che \mathbf{T} è una distribuzione temperata.

Il valore di T in $\phi \in \Phi$ si denota con $< T|\phi>$ o anche con $< T_x|\phi(x)>$ o semplicemente con $T(\phi)$.

Osservazione 5.

Dal Teorema 2.2.2 (Capitolo 2) si ha che se $T \in \Phi^*$ (Φ^* insieme dei funzionali lineari su Φ), T è una distribuzione \iff

$$\phi_k \xrightarrow[k \to \infty]{\Phi} 0 \implies \langle T | \phi_k \rangle \xrightarrow[k \to \infty]{\Phi} 0.$$

Per Teorema 3.0.7(visto sopra) e Teorema A.0.14(Appendice) si ha che,

se $T \in \Phi^*$, T è una distribuzione \iff

$$\exists C \in \mathbb{R}^+ \ \text{ed} \ \exists p \in \mathbb{N} \ \text{t.c.} \ |\!< T|\phi>\!| \leq C \left\|\phi\right\|_p \quad \forall \phi \in \Phi.$$

Per esempio sia $\Phi = \mathcal{S}(\mathbb{R}^n), T \in \mathcal{S}'(\mathbb{R}^n) \iff$

$$|\langle T|\phi\rangle| \le C \|\phi\|_p = C \sup_{x \in \mathbb{R}^n} \sup_{|\alpha| \le p} (1 + \|x\|)^p |D^{\alpha}\phi(x)| \quad \forall \phi \in \mathcal{S}(\mathbb{R}^n).$$

 $Osservazione\ 6.$

Se $T_1, T_2 \in \Phi'$, la notazione $T_1 = T_2$ significa $< T_1 | \phi > = < T_2 | \phi > \quad \forall \phi \in \Phi$. Siano $T_1, T_2 \in \Phi'$, $T_1 + T_2$ si chiama somma di T_1 e T_2 ed è la distribuzione così definita:

$$< T_1 + T_2 | \phi > = < T_1 | \phi > + < T_2 | \phi > \quad \forall \phi \in \Phi.$$

Sia $T \in \Phi'$ e $c \in \mathbb{C}$, cT si chiama prodotto di c per T ed è la distribuzione così definita:

$$\langle cT|\phi \rangle = c \langle T|\phi \rangle \quad \forall \phi \in \Phi.$$

In tal modo Φ' è uno spazio vettoriale.

Definizione 3.2.

 $K_p(\mathbb{R}^n)$ per $1 \leq p < +\infty$ è lo spazio delle funzioni $f: \mathbb{R}^n \longrightarrow \mathbb{C}$ L-misurabili e tali che per ciascuna di esse, $\exists M \geq 0$ per cui $x \longrightarrow \frac{|f(x)|^p}{(1+||x||^2)^M}$, $x \in \mathbb{R}^n$, è sommabile.

 $(K_{\infty}(\mathbb{R}^n)$ è lo spazio delle funzioni $f: \mathbb{R}^n \longrightarrow \mathbb{C}$ L_misurabili e tali che per ciascuna di esse, $\exists M \geq 0$ per cui $\underset{x \in \mathbb{R}^n}{ess} \sup \frac{|f(x)|^p}{(1+\|x\|^2)^M} < +\infty$).

Osservazione 7.

Se $f \in K_p(\mathbb{R}^n) \Longrightarrow f \in L^1_{loc}(\mathbb{R}^n)$ (dove $L^1_{loc}(\mathbb{R}^n)$ è l'insieme delle funzioni $f : \mathbb{R}^n \longrightarrow \mathbb{C}$ sommabili sui compatti di \mathbb{R}^n).

Osservazione 8.

Se
$$f \in L^1_{loc}(\mathbb{R}^n)$$
 e $\int_{\mathbb{R}^n} f(x)\phi(x) dx = 0 \quad \forall \phi \in C_0^{\infty}(\mathbb{R}^n) \Longrightarrow f(x) = 0$ q.d.

Definizione 3.3.

Sia
$$\Phi = \mathcal{D}'_K(\mathbb{R}^n), f \in L^1_{loc}(\mathbb{R}^n).$$

Definiamo

$$|\langle T_f | \phi \rangle| := \int_{\mathbb{R}^n} f(x)\phi(x) dx \quad \forall \phi \in \mathcal{D}_K(\mathbb{R}^n)$$

 T_f è una distribuzione ed è detta distribuzione di tipo funzione.

Definizione 3.4.

Sia
$$\Phi = \mathcal{S}'(\mathbb{R}^n), f \in K_p(\mathbb{R}^n), 1 \le p \le +\infty.$$

Definiamo

$$|\langle T_f | \phi \rangle| := \int_{\mathbb{R}^n} f(x) \phi(x) dx \quad \forall \phi \in \mathcal{S}(\mathbb{R}^n)$$

 T_f è una distribuzione temperata ed è detta distribuzione temperata regoalre o di tipo funzione.

(In questo caso, affinchè l'integrale converga, non basta supporre $f \in L^1_{loc}(\mathbb{R}^n)$ ma è necessario supporre $f \in K_p(\mathbb{R}^n)$).

Vediamo adesso un esempio di distribuzione temperata.

Esempio 3.1. DISTRIBUZIONE δ DI DIRAC

Sia δ così definita:

$$<\delta|\phi>=\phi(0)\quad\forall\phi\in\mathcal{S}(\mathbb{R}^n)$$

 δ è un funzionale lineare su $\mathcal{S}(\mathbb{R}^n)$; inoltre si ha che se $\phi_k \xrightarrow[k \to +\infty]{\mathcal{S}(\mathbb{R}^n)} 0 \Longrightarrow \langle \delta | \phi_k \rangle = \phi_k(0) \xrightarrow[k \to +\infty]{} 0 \Longrightarrow \delta \in \mathcal{S}(\mathbb{R}^n)$ cioè δ è una distribuzione temperata e viene detta distribuzione di Dirac.

 δ però non è una distribuzione di tipo funzione; infatti $\nexists f \in L^1_{loc}(\mathbb{R}^n)$ tale che $<\delta|\phi>=\int\limits_{\mathbb{R}^n}f(x)\phi(x)\,dx \quad \forall \phi\in\mathcal{C}_0^\infty(\mathbb{R}^n)$

(si tenga presente che se $\phi \in \mathcal{C}_0^{\infty}(\mathbb{R}^n) \Longrightarrow \phi \in S(\mathbb{R}^n)$).

Se esistesse $f \in L^1_{loc}(\mathbb{R}^n)$ come detto, poiché $< \delta | \phi > = \phi(0)$ si avrebbe che $\int_{\mathbb{R}^n} f(x)\phi(x) dx = 0 \quad \forall \phi \in \mathcal{C}_0^{\infty}(\mathbb{R}^n)$ con $supp \ \phi \subset \mathbb{R}^n - \{0\}$; allora (per Osservazione 8) sarebbe f(x) = 0 q.d. e quindi $< \delta | \phi > = \int_{\mathbb{R}^n} f(x)\phi(x) dx = 0$ $\forall \phi \in S(\mathbb{R}^n)$, contrariamente alla definizione di δ .

Definizione 3.5. Prodotto di una distribuzione per una funzione

Sia Φ uno qualunque degli spazi $\mathcal{S}(\mathbb{R}^n)$, $\mathcal{D}_K(\mathbb{R}^n)$.

Sia Φ' l'insieme dei funzionali lineari continui su Φ .

Se $T \in \Phi'$ e f è un moltiplicatore per Φ , allora $fT \in \Phi'$ dove fT è così definita: $\langle fT|\phi \rangle := \langle T|f\phi \rangle \quad \forall \phi \in \Phi$.

fT si chiama prodotto di T per f ($fT \in \Phi'$ perché per definizione di moltiplicatore si ha che $f\phi \in \Phi$ e che $\phi_k \xrightarrow[k \to \infty]{\Phi} 0 \Longrightarrow f\phi_k \xrightarrow[k \to \infty]{\Phi} 0$ cioè l'applicazione $\phi \longrightarrow f\phi$ da Φ à Φ è continua.)

Definizione 3.6. α _derivata di una distribuzione

Sia $T \in \Phi'$ e sia α un multi-indice. Chiamiamo $\alpha_{-}derivata$ di T e la denotiamo con $\partial^{\alpha}T$, l'elemento di Φ' così definito:

$$<\partial^{\alpha}T|\phi> = (-1)^{|\alpha|} < T|D^{\alpha}\phi> \quad \forall \phi \in \Phi$$

(La definizione è ben posta perché D^{α} è un'operazione lineare continua da Φ a Φ).

Proposizione 3.0.8.

Valgono le seguenti proprietà:

• Se α, β sono multi-indici e $T \in \Phi'$ si ha:

$$\partial^{\alpha}(\partial^{\beta}T) = \partial^{\alpha+\beta}T = \partial^{\beta}(\partial^{\alpha}T)$$

Dimostrazione.

Usando la definizione di α -derivata di una distribuzione si ha che $\forall \phi \in \Phi$:

$$<\partial^{\alpha}(\partial^{\beta}T)|\phi> = (-1)^{|\alpha|} <\partial^{\beta}T|D^{\alpha}\phi> = (-1)^{|\alpha|+|\beta|} < T|D^{\beta}(D^{\alpha}\phi)> =$$

$$= (-1)^{|\alpha+\beta|} < T|D^{\alpha+\beta}|\phi> = <\partial^{\alpha+\beta}T|\phi>.$$

(Allo stesso modo si dimostra $\partial^{\beta}(\partial^{\alpha}T) = \partial^{\alpha+\beta}T$; basta invertire l'ordine di α e β nella dimostrazione appena fatta).

• Se $T_1, T_2 \in \Phi$ si ha:

$$\partial^{\alpha}(T_1 + T_2) = \partial^{\alpha}T_1 + \partial^{\alpha}T_2$$

Dimostrazione.

Usando la definizione di α -derivata e la definizione di somma (vedi Osservazione 6) si ha che $\forall \phi \in \Phi$:

$$<\partial^{\alpha}(T_{1}+T_{2})|\phi> = (-1)^{|\alpha|} < T_{1}+T_{2}|D^{\alpha}\phi> =$$

$$= (-1)^{|\alpha|} < T_{1}|D^{\alpha}\phi> + (-1)^{|\alpha|} < T_{2}|D^{\alpha}\phi> = <\partial^{\alpha}T_{1}|\phi> + <\partial^{\alpha}T_{2}|\phi> =$$

$$= <\partial^{\alpha}T_{1}+\partial^{\alpha}T_{2})|\phi>.$$

Osservazione 9.

Se f è una funzione dotata di $D^{\alpha}f$ e queste hanno una certa regolarità, allora $\partial^{\alpha}f = D^{\alpha}f$. In particolare quanto detto è vero se $f \in \Phi$.

Osservazione 10.

Sia H la funzione di Heaviside; $H: \mathbb{R} \longrightarrow \mathbb{R}$ tale che H(x) = 1 se x > 0, H(x) = 0 se $x \le 0$.

Poichè $H \in K_{\infty}(\mathbb{R})$, H è una distribuzione temperata. Si ha che:

$$<\partial H|g> = - < H|D(g)> = - < H|g'> = -\int_{\mathbb{R}} H(x)g'(x) dx = -\int_{0}^{+\infty} g'(x) dx = g(0).$$

Quindi $\partial H = \delta$ in quanto ∂H è tale che $\langle \partial H | g \rangle = g(0)$.

(Come distribuzione, H ha derivata $\partial H = \delta$ ma quest'ultima non è la derivata ordinaria di H; DH(x) = 0 se $x \neq 0$, non esiste in x = 0 e $D^+H(0) = +\infty$, $D^-H(0) = -\infty$).

Definizione 3.7. Trasformata di Fourier di una distribuzione

Sia Φ uno qualunque fra gli spazi $\mathcal{S}(\mathbb{R}^n)$, $\mathcal{D}_K(\mathbb{R}^n)$, sia $T \in \Phi'$.

Definiamo la trasformata di Fourier della distribuzione T, $\mathcal{F}(T)$ ponendo:

$$<\mathcal{F}(T)|\phi> = < T|\widehat{\phi}> \quad \forall \widehat{\phi} \in \Phi \quad \text{con} \quad \widehat{\phi(x)} = \int_{\mathbb{P}^n} e^{-i < x,y>} \phi(y) \, dy.$$

La definizione è corretta, infatti:

-Se $\Phi = \mathcal{S}(\mathbb{R}^n)$ la trasformata di Fourier è un'applicazione lineare, continua, su, 1-1 di $\mathcal{S}(\mathbb{R}^n)$ su $\mathcal{S}(\mathbb{R}^n)$; se $\phi_k \xrightarrow[k \to \infty]{\mathcal{S}(\mathbb{R}^n)} 0 \Longrightarrow \widehat{\phi_k} \xrightarrow[k \to \infty]{\mathcal{S}(\mathbb{R}^n)} 0$. Quindi se $T \in \mathcal{S}'(\mathbb{R}^n) \Longrightarrow \mathcal{F}(T) \in \mathcal{S}'(\mathbb{R}^n)$.

-Se $\Phi = \mathcal{D}_K(\mathbb{R}^n)$ la trasformata di Fourier è un'applicazione lineare, continua, 1-1 di $\mathcal{D}_K(\mathbb{R}^n)$ su $\mathcal{Z}_a(\mathbb{R}^n)$; se $\phi_k \xrightarrow[k \to \infty]{\mathcal{D}_K(\mathbb{R}^n)}{0} \longrightarrow \widehat{\phi_k} \xrightarrow[k \to \infty]{\mathcal{Z}_a(\mathbb{R}^n)}{0}$. Quindi se $T \in \mathcal{D}_K'(\mathbb{R}^n) \Longrightarrow \mathcal{F}(T) \in \mathcal{Z}_a'(\mathbb{R}^n)$.

Proposizione 3.0.9.

Valgono le seguenti proprietà:

• Se
$$T_1, T_2 \in \Phi' \Longrightarrow \mathcal{F}(T_1 + T_2) = \mathcal{F}(T_1) + \mathcal{F}(T_2)$$

• Se
$$T \in \Phi' \Longrightarrow \partial^{\alpha} \mathcal{F}(T) = \mathcal{F}((-ix)^{\alpha} T_x)$$

Dimostrazione.

Se $\widehat{\phi} \in \Phi$ anche $\widehat{D^{\alpha}\phi} \in \Phi$ e per definizione di α -derivata di T e di trasformata di Fourier di T si ha:

$$<\partial^{\alpha} \mathcal{F}(T)|\phi> = (-1)^{|\alpha|} < \mathcal{F}(T)|D^{\alpha}\phi> = (-1)^{|\alpha|} < T|\widehat{D^{\alpha}\phi}> =$$

$$= (-1)^{|\alpha|} < T_x|(ix)^{\alpha} \widehat{\phi(x)}> = < (-ix)^{\alpha}T_x|\widehat{\phi}> = < \mathcal{F}((-ix)^{\alpha}T_x)|\phi>.$$

• Se $T \in \Phi' \Longrightarrow (\mathcal{F}(\partial^{\alpha}T))_x = (ix)^{\alpha}(\mathcal{F}(T))_x$

Dimostrazione.

Se $\widehat{\phi} \in \Phi$ anche $\widehat{D^{\alpha}\phi} \in \Phi$ e usando la definizione di α -derivata di T e di trasformata di Fourier di T si ha:

$$\langle \mathcal{F}(\partial^{\alpha} T) | \phi \rangle = \langle \partial^{\alpha} T | \widehat{\phi} \rangle = (-1)^{|\alpha|} \langle T | D^{\alpha} \widehat{\phi} \rangle =$$

$$= (-1)^{|\alpha|} \langle T | \widehat{(-iy)^{\alpha} \phi}(y) \rangle = (-1)^{|\alpha|} \langle (\mathcal{F}(T))_x | \widehat{(-ix)^{\alpha} \phi}(x) \rangle =$$

$$= \langle (ix)^{\alpha} (\mathcal{F}(T))_x | \phi(x) \rangle.$$

Capitolo 4

Applicazioni

In questo capitolo viene dato un esempio di distribuzione temperata; prima di considerare tale esempio vengono esposti alcuni teoremi, definizioni e osservazioni utili.

Definizione 4.1. Prodotto tensoriale di due distribuzioni temperate

Sia $S \in \mathcal{S}'(\mathbb{R}^n)$, $T \in \mathcal{S}'(\mathbb{R}^p)$, sia x un punto di \mathbb{R}^n e y un punto di \mathbb{R}^p . Si chiama prodotto tensoriale (o diretto) di S per T la distribuzione temperata $S \otimes T \in \mathcal{S}'(\mathbb{R}^{n+p})$ così definita:

$$\langle S_x \otimes T_y | \phi(x, y) \rangle = \langle S_x | \langle T_y | \phi(x, y) \rangle \rangle \quad \forall \phi \in \mathcal{S}(\mathbb{R}^{n+p})$$

Teorema 4.0.10.

Le distribuzioni temperate soluzioni dell'equazione $x^{\alpha}T = 0$ (con $x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$) sono tutte e sole quelle date dalla formula:

$$T = \sum_{j=1}^{n} \sum_{k=0}^{\alpha_j - 1} S_{x_1 \dots x_{j-1} x_{j+1} \dots x_n}^{(k,j)} \otimes \delta_{x_j}^{(k)} \quad con \quad S_{x_1 \dots x_{j-1} x_{j+1} \dots x_n}^{(k,j)} \in \mathcal{S}'(\mathbb{R}^{n-1}(x_1, \dots, x_j, x_{j+1}, \dots, x_n))$$

Teorema 4.0.11.

Sia $f \in K_p(\mathbb{R}^n)$, $p \geq 1$, $T \in \mathcal{S}'(\mathbb{R}^n)$, $T = \partial^{\alpha} f$. Sia $\phi : \mathbb{R}^n \longrightarrow \mathbb{C}$ di classe $\mathcal{C}^{|\alpha|}(\mathbb{R}^n)$ e sia $D^{\beta}\phi \in K_{p'}(\mathbb{R}^n)$ per $|\beta| = |\alpha|$, $(p' = \frac{p}{p-1})$.

Allora esiste $T\phi(=\phi T)$.

Teorema 4.0.12.

Sia $f \in K_p(\mathbb{R}^n)$, $p \geq 1$, $T = \partial^{\alpha} f$; sia $\phi : \mathbb{R}^n \longrightarrow \mathbb{C}$ di classe $\mathcal{C}^{|\alpha|}(\mathbb{R}^n)$ con $D^{\beta} \phi \in K_{p'}(\mathbb{R}^n)$ per $|\beta| = |\alpha|$, $p' = \frac{p}{p-1}$ e sia $\omega : \mathbb{R}^n \longrightarrow \mathbb{C}$ di classe $\mathcal{C}^{|\alpha|}(\mathbb{R}^n)$ con $D^{\beta} \omega \in K_{\infty}(\mathbb{R}^n)$ per $|\beta| = |\alpha|$.

Allora $T(\phi \omega) = (T\phi)\omega$ (associatività del prodotto).

Definizione 4.2.

Sia $a = (a_1, \dots, a_n) \in \mathbb{R}^n$ con $a_1 \dots a_n \neq 0$.

Se $f: \mathbb{R}^n \longrightarrow \mathbb{C}$, poniamo:

$$(\pi_a f)(x) = f(a_1x_1, \dots, a_nx_n) = f(ax)$$

Se $T \in \mathcal{S}'(\mathbb{R}^n)$ definiamo $\pi_a T$ ponendo:

$$<\pi_a \ T|g> = \frac{1}{|a_1 \dots a_n|} < T|\pi_{\frac{1}{a}} \ g> \qquad \forall g \in \mathcal{S}(\mathbb{R}^n), \quad dove \ \frac{1}{a} = (\frac{1}{a_1}, \dots, \frac{1}{a_n}).$$

Osservazione 11.

Se
$$T \in \mathcal{S}'(\mathbb{R}^n)$$
 si ha: $T = \frac{1}{(2\pi)^n} \pi_{-1} \mathcal{F}(\mathcal{F}(T))$.

Definizione 4.3. Distribuzione pari e dispari

Sia $T \in \mathcal{S}'(\mathbb{R})$, si dice che T è una distribuzione pari se $T = \pi_{-1} T$, dispari se $T = -\pi_{-1} T$.

Osservazione 12.

Sia $T \in \mathcal{S}'(\mathbb{R})$; se T è pari (dispari), allora $\mathcal{F}(T)$ è pari (dispari).

Dimostrazione.

Supponiamo che T sia pari; si deve verificare che $\mathcal{F}(T)$ è pari cioè che $\forall g \in \mathcal{S}(\mathbb{R}) < \pi_{-1} \mathcal{F}(T)|g> = < \mathcal{F}(T)|g>.$

$$<\pi_{-1} \mathcal{F}(T)|g> = <\mathcal{F}(T)|\pi_{-1} g> = =$$

= $= <\pi_{-1} T|\mathcal{F}(g)> = = <\mathcal{F}(T)|g>.$

Si può ora considerare l'esempio di distribuzione temperata.

Esempio 4.1. DISTRIBUZIONE TEMPERATA : $\frac{1}{x}$

Si pone

$$x^{-1} = \frac{1}{x} \stackrel{def}{=} \partial \ln|x| \tag{4.1}$$

dove ln indica il logaritmo naturale.

 $x \longrightarrow \ln |x|, \ x \in \mathbb{R}$, appartiene a $K_1(\mathbb{R})$ $(\exists M \ge 0 \ t.c. \ x \longrightarrow \frac{|\ln |x||}{(1+||x||^2)^M}$ è sommabile) e quindi $\partial \ln |x| \in \mathcal{S}'(\mathbb{R})$.

Per $x \neq 0$ cioè su $]0, +\infty[$ e su $]-\infty, 0[$, $\frac{1}{x}$ coincide con la funzione $x \longrightarrow \frac{1}{x}$. Sia infatti $g \in \mathcal{S}(\mathbb{R})$:

- se $\sup_{x} g \subset]0, +\infty[$, allora $\exists \varepsilon > 0$ t.c. g(x) = 0 per $-\infty < x \le \varepsilon$ e si ha che:

$$<\frac{1}{x}|g(x)> = <\partial \ln|x| |g(x)> = (-1)\cdot <\ln|x| |\frac{d}{dx}g(x)> = -<\ln|x| |g'(x)> =$$

$$= -\int_{\varepsilon}^{+\infty} \ln x \cdot g'(x) dx = -[\ln x \cdot g(x)]_{\varepsilon}^{+\infty} + \int_{\varepsilon}^{+\infty} \frac{1}{x} g(x) dx = 0 + \int_{-\infty}^{+\infty} \frac{1}{x} g(x) dx =$$

$$= \int_{-\infty}^{+\infty} \frac{1}{x} g(x) dx \implies <\frac{1}{x}|g(x)> = \int_{-\infty}^{+\infty} \frac{1}{x} g(x) dx.$$

- se $supp \ g \subset]-\infty, 0[$, allora $\exists -\varepsilon < 0$ t.c. g(x)=0 per $-\varepsilon < x < +\infty$ e si ha che:

$$<\frac{1}{x}|g(x)> = <\partial \ln|x| |g(x)> = (-1)\cdot <\ln|x| |\frac{d}{dx}g(x)> = -<\ln|x| |g'(x)> =$$

$$= -\int_{-\infty}^{\varepsilon} \ln(-x)\cdot g'(x) dx = -[\ln(-x)\cdot g(x)]_{-\infty}^{-\varepsilon} + \int_{-\infty}^{\varepsilon} \frac{1}{x} g(x) dx = \int_{-\infty}^{-\varepsilon} \frac{1}{x} g(x) dx =$$

$$= \int_{-\infty}^{+\infty} \frac{1}{x} g(x) dx \implies <\frac{1}{x}|g(x)> = \int_{-\infty}^{+\infty} \frac{1}{x} g(x) dx.$$

Osservazione 13.

Si ha che:

$$x \cdot \frac{1}{x} = 1 = \frac{1}{x} \cdot x \tag{4.2}$$

Dimostrazione.

Per Teorema 4.0.11 (di questo Capitolo) è verificata l'ugualianza $x \cdot \frac{1}{x} = \frac{1}{x} \cdot x$.

Proviamo ora che $x \cdot \frac{1}{x} = 1$, quindi si deve dimostrare che $\forall g \in \mathcal{S}(\mathbb{R})$ $< x \cdot \frac{1}{x} | g(x) > = <1 | g(x) >$; vediamolo:

$$< x \cdot \frac{1}{x} | g(x) > = < x \, \partial \ln |x| \, |g(x) > = < \partial \ln |x| \, |xg(x) > = (-1) \cdot < \ln |x| \, |\frac{d}{dx} (x \cdot g(x)) > =$$

$$= - \int_{-\infty}^{+\infty} \ln |x| \, (g(x) + x \, g'(x)) \, dx = - \int_{-\infty}^{+\infty} \ln |x| \, g(x) \, dx - \int_{-\infty}^{+\infty} (x \, \ln |x|) \cdot g'(x)) \, dx =$$

$$= - \int_{-\infty}^{+\infty} \ln |x| \, g(x) \, dx - [x \, \ln |x| \cdot g(x)]_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty} (\ln |x| + 1) g(x) \, dx =$$

$$= - \int_{-\infty}^{+\infty} \ln |x| \, g(x) \, dx - [x \, \ln |x| \cdot g(x)]_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty} \ln |x| \, g(x) \, dx + \int_{-\infty}^{+\infty} 1 \cdot g(x) \, dx =$$

$$= \int_{-\infty}^{+\infty} 1 \cdot g(x) \, dx = < 1 |g(x) > \Longrightarrow < x \cdot \frac{1}{x} |g(x) > = < 1 |g(x) > \Longrightarrow x \cdot \frac{1}{x} = 1$$

Osservazione 14.

 $\frac{1}{x}$ è una distribuzione dispari.

Dimostrazione.

Si deve verificare che $\forall g \in \mathcal{S}(\mathbb{R}) - \langle \pi_{-1} \left(\frac{1}{x} \right) | g(x) \rangle = \langle \frac{1}{x} | g(x) \rangle.$

$$<\pi_{-1}\left(\frac{1}{x}\right)|g(x)> = <\frac{1}{x}|\pi_{-1}|g(x)> = <\partial\ln|x||g(-x)> = (-1)<\partial\ln|x||\frac{d}{dx}g(-x)> =$$

$$= +\int_{-\infty}^{+\infty}\ln|x|\cdot g'(-x)\,dx = \int_{-\infty}^{+\infty}\ln|x|\cdot g'(x)\,dx = <\ln|x||g'(x)> = (-1)<\partial\ln|x||g(x)> =$$

$$= -<\frac{1}{x}|g(x)> \Longrightarrow <\pi_{-1}\left(\frac{1}{x}\right)|g(x)> = -<\frac{1}{x}|g(x)> \Longrightarrow$$

$$\implies$$
 $- < \pi_{-1} \left(\frac{1}{x}\right) | g(x) > = < \frac{1}{x} | g(x) > .$

Osservazione 15.
$$\mathcal{F}\left(\frac{1}{x}\right) = -\pi \ i \ sgn \ s$$

Dimostrazione.

Per prima cosa proviamo che : $\partial sgn x = 2\delta$.

Si deve quindi verificare che $\forall g \in \mathcal{S}(\mathbb{R}) < \partial sgn \ x | \ g(x) > = 2 < \delta | \ g > 1$

$$\langle \partial sgn \ x | \ g(x) \rangle = (-1) \langle sgn \ x | \ \frac{d}{dx}g(x) \rangle = -\langle sgn \ x | \ g'(x) \rangle =$$

$$= -\int_{0}^{+\infty} 1 \cdot g'(x) \, dx - \int_{-\infty}^{0} (-1) \cdot g'(x) \, dx = -\int_{0}^{+\infty} g'(x) \, dx + \int_{-\infty}^{0} g'(x) \, dx =$$

$$= -(-q(0)) + q(0) = 2q(0) = 2 \langle \delta | \ q \rangle \Longrightarrow \langle \partial sqn \ x | \ q(x) \rangle = 2 \langle \delta | \ q \rangle$$

Ne segue che $\mathcal{F}(\partial sqn \ x) = \mathcal{F}(2\delta) = 2\mathcal{F}(\delta) = 2 \cdot 1 = 2.$

D'altra parte per proprietà della trasformata di Fourier (vedi terza proprietà Proposizione 3.0.9 Capitolo 3) si ha che : $\mathcal{F}(\partial sgn x) = (is)\mathcal{F}(sgn x)$.

Quindi si ha:

$$s \mathcal{F}(sgn x) = \frac{\mathcal{F}(\partial sgn x)}{i} = \frac{2}{i} = -2i \tag{4.3}$$

Consideriamo ora $c \in \mathbb{C}$ e l'equazione sT = c, le cui soluzioni sono date da una qualunque $T \in \mathcal{S}'(\mathbb{R})$ tale che sT = c.

Abbiamo precedentemente verificato che $s \cdot \frac{1}{s} = 1$ (vedi Osservazione 13), quindi una soluzione dell'equazione sT = c è $T = c \cdot \frac{1}{c}$.

Ogni altra soluzione si ottiene sommando a questa, una soluzione di sT=0e ogni soluzione di quest'ultima equazione è fornita da $T = k\delta$ con k costante arbitraria (vedi Teorema 4.0.10). Quindi ogni soluzione dell'equazione sT = c è data da $T = c \cdot \frac{1}{s} + k\delta$.

Osserviamo che la (4.3) è della forma sT = c quindi si ha:

$$\mathcal{F}(sgn\ x) = -2i \cdot \frac{1}{s} + k\delta$$
 con k costante arbitraria.

Si ha che $sgn\ x$ è dispari quindi per Osservazione 12 (vista prima), anche $\mathcal{F}(sgn\ x)$ è dispari, inoltre $\frac{1}{s}$ è dispari e δ è pari, allora deve essere k=0, quindi $\mathcal{F}(sgn\ x)=-2i\cdot\frac{1}{s}$.

Da questa si trae: $\mathcal{F}\left(\frac{1}{s}\right) = -\frac{1}{2i} \mathcal{F}(\mathcal{F}(sgn\ x))$

e applicando l'Osservazione 11 (vista prima), si ottiene

$$-\frac{1}{2i}\mathcal{F}(\mathcal{F}(sgn\ x)) = -\frac{2\pi}{2i}\pi_{-1}sgn\ x = -\frac{\pi}{i}sgn(-x) = \frac{\pi}{i}sgn\ x =$$

$$= -\pi\ i\ sgn\ x \implies \mathcal{F}\left(\frac{1}{s}\right) = -\pi\ i\ sgn\ x.$$

Definizione 4.4. Prodotto di distribuzioni temperate

Siano $f, \phi, f\phi \in K_1(\mathbb{R}^n)$. Allora la distribuzione temperata $f\phi (= \phi f)$ si chiama prodotto delle distribuzioni temperate $f \in \phi$.

Se $f\phi$ e $(\partial_i f)\phi$ sono distribuzioni temperate, poniamo:

$$f \partial_j \phi \stackrel{def}{=} \partial_j (f \phi) - (\partial_j f) \phi$$

Osservazione 16.

Se $f \in K_p(\mathbb{R}^n)$, $\phi \in K_{p'}(\mathbb{R}^n)$, $1 \le p \le +\infty$, $\frac{1}{p} + \frac{1}{p'} = 1$, $(p' = +\infty)$ se p = 1, p' = 1 se $p = +\infty$), allora $f \phi \in K_1(\mathbb{R}^n)$.

Esempio 4.2.

Sia $f: \mathbb{R} \longrightarrow \mathbb{C}$ di classe \mathcal{C}^1 con $f' \in K_1(\mathbb{R})$; allora posto $\frac{1}{x} = \partial \ln |x|$, esiste $\frac{1}{x}f$.

Si osserva che $f \in K_{\infty}(\mathbb{R})$; infatti $f(x) = f(0) + \int_{0}^{x} f'(t) dt$ e quindi

$$|f(x)| \le \left(\int_{0}^{x} \left| \frac{f'(t)}{(1+t^2)^M} dt \right| + |f(0)| (1+x^2)^M \le C(1+x^2)^M$$

per certe costanti positive M e C.

Allora poiché $\partial \ln |x| \in K_1(\mathbb{R})$, per l'Osservazione appena vista, si ha che $x \longrightarrow f'(x)\partial \ln |x| \in K_1(\mathbb{R})$ e $x \longrightarrow f(x)\partial \ln |x| \in K_1(\mathbb{R})$.

Quindi per definizione di prodotto di distribuzioni temperate si ha:

$$\frac{1}{x}f = \partial(f \,\partial \ln|x|) - f'\partial \ln|x| \tag{4.4}$$

Teorema 4.0.13.

Sia $f \in \mathcal{C}^1(\mathbb{R}), f' \in K_\infty(\mathbb{R}).$

Allora ogni distribuzione temperata T tale che xT=f, è della forma:

$$T = \frac{1}{x} \cdot f + C\delta$$
, C costante arbitraria.

Dimostrazione.

Per ipotesi $f \in \mathcal{C}^1(\mathbb{R})$ e $f' \in K_{\infty}(\mathbb{R})$, allora per l'Esempio 4.2 (appena visto), esiste il prodotto $\frac{1}{x} \cdot f$.

Inoltre per la (4.2) (Osservazione 13) e per il Teorema 4.0.12 risulta

$$f = (\frac{1}{x} \cdot x)f = \frac{1}{x} \cdot (xf) = \frac{1}{x} \cdot (fx) = (\frac{1}{x} \cdot f)x = x(\frac{1}{x} \cdot f) = xT \Longrightarrow$$

$$\Longrightarrow \frac{1}{x} \cdot f \text{ è soluzione di } xT = f.$$

Dal Teorema 4.0.10 segue inoltre che ogni soluzione $(\in \mathcal{S}'(\mathbb{R}))$ di xT = f è $\frac{1}{x} \cdot f + C\delta$, con C costante arbitraria.

Appendice A

Appendice

Vengono riportati teoremi, definizioni e ossevazioni utilizzati nei capitoli di questo elaborato.

Definizione A.1. Spazio topologico

Sia X un insieme, $X \neq \emptyset$ e sia $\mathcal U$ un sottoinsieme di $\mathscr P(X)$ (insieme delle parti di X) tale che:

- $\bullet \ \emptyset \in \mathcal{U}$
- $X \in \mathcal{U}$
- $U_{\alpha} \in \mathcal{U} \quad \forall \alpha \in \mathcal{A} \implies \bigcup_{\alpha \in \mathcal{A}} U_{\alpha} \in \mathcal{U}$

•
$$U_k \in \mathcal{U}$$
 $k = 1, ..., n \implies \bigcap_{k=1}^n U_k \in \mathcal{U}$

Allora si dice che \mathcal{U} è una topologia per X e si indica con (X,\mathcal{U}) il relativo spazio topologico.

Gli elementi di \mathcal{U} si chiamano aperti.

Definizione A.2. Base di una topologia

Sia (X, \mathcal{U}) uno spazio topologico.

 \mathscr{B} sottoinsieme di \mathcal{U} è detta base se ogni $U \in \mathcal{U}$ è unione di elementi di \mathscr{B} .

32 A. Appendice

Definizione A.3.

Siano $\mathcal{U}_1, \mathcal{U}_2$ due topologie per lo stesso insieme $X, X \neq \emptyset$.

Si dice che la topologia \mathcal{U}_1 è più debole di \mathcal{U}_2 (o equivalentemente \mathcal{U}_2 è più forte di \mathcal{U}_1) se $\mathcal{U}_1 \subseteq \mathcal{U}_2$.

Se ciascuna delle due topologie è più debole dell'altra, allora esse coincidono $(\mathcal{U}_1 = \mathcal{U}_2)$.

Definizione A.4. Norme confrontabili

Sia X uno spazio vettoriale (su $\mathbb R$ o su $\mathbb C$) e siano $\| \ \|_1$ e $\| \ \|_2$ due norme per X.

Si dice che $\|\ \|_1$ è più debole di $\|\ \|_2$ (o equivalentemente $\|\ \|_2$ è più forte di $\|\ \|_1$) se $\exists c \in \mathbb{R}^+$ t.c. $\|x\|_1 \leq \|x\|_2$ $\forall x \in X$.

Due norme si dicono *confrontabili* se una di esse è più debole dell'altra.

Due norme si dicono equivalenti se ciascuna di esse è più debole dell'altra.

Definizione A.5.

Sia (X, || ||) uno spazio normato (spazio vettoriale dotato di norma).

Una successione $(x_n)_{n\in\mathbb{N}}$ in X si dice di Cauchy se

$$\forall \varepsilon > 0 \quad \exists \bar{n} \in \mathbb{N} \quad \text{t.c.} \quad \|x_n - x_m\| < \epsilon \quad \forall n, m \in \mathbb{N} \quad n, m > \bar{n}$$
 (equivalentemente $\|x_n - x_m\| \underset{n, m \to +\infty}{\longrightarrow} 0$).

Una successione $(x_n)_{n\in\mathbb{N}}$ si dice convergente in X se

$$\exists x \in X \text{ t.c. } ||x_n - x|| \underset{n \to +\infty}{\longrightarrow} 0 \text{ (si scrive } \lim_{n \to +\infty} x_n = x).$$

Definizione A.6. Spazio completo (o di Banach)

Uno spazio normato (X, || ||) si dice *completo* o *di Banach* se ogni successione di Cauchy in X è convergente in X.

Teorema A.0.14.

Siano X, X' spazi vettoriali normati, sia $T: X \longrightarrow X'$ un'applicazione lineare. Sono equivalenti:

- 1. T è continua in zero
- 2. T è continua in X

3. $\exists c > 0$ t.c. $||Tx|| < ||x||_X$ $\forall x \in X$ (T è limitata).

Teorema A.0.15 (di Banach dell'applicazione lineare aperta).

Siano $(X, \| \|)$ e $(X', \| \|')$ due spazi di Banach e sia $T: X \xrightarrow{su} X'$ lineare e continua.

Allora se $A \stackrel{.}{e}$ un aperto di $X \Longrightarrow T(A) \stackrel{.}{e}$ un aperto di X'.

Teorema A.0.16.

Siano $(X, \| \|)$ e $(X', \| \|')$ due spazi di Banach e sia $T: X \xrightarrow[1-1]{su} Y$ lineare e continua.

Allora T è un omeomorfismo (cioè anche T^{-1} , che è lineare, è continua).

Definizione A.7.

Sia X un insieme, $S \subseteq \mathcal{P}(X)$, S si dice σ_{-} algebra se:

- 1. $\emptyset, X \in \mathcal{S}$
- 2. $A \in \mathcal{S} \Longrightarrow A^c \in \mathcal{S}$
- 3. $A_k \in \mathcal{S} \quad \forall k \in \mathbb{N} \implies \bigcup_{k=1}^{\infty} A_k \in \mathcal{S} \ (\mathcal{S} \text{ è chiusa rispetto alle unioni numerabili}).$

La coppia (X, S) è chiamata spazio misurabile e gli elementi di S sono chiamati insiemi misurabili.

Definizione A.8.

Se $X \neq \emptyset$ è uno spazio topologico, la σ -algebra \mathcal{S} generata dagli insiemi aperti è chiamata σ -algebra di Borel.

Definizione A.9.

Sia S una σ_{-} algebra, si definisce misura l'applicazione $\mu: S \longrightarrow [0, +\infty]$ t.c. valgono:

- 1. $\mu(\emptyset) = 0$
- 2. se $A, B \in \mathcal{S}, A \subseteq B \Longrightarrow \mu(A) < \mu(B)$ (monotonia)

A. Appendice

3. se
$$A_k \in \mathcal{S} \quad \forall k \in \mathbb{N} \quad \text{e} \quad A_k \cap A_h = \emptyset \quad \text{per } k \neq h \Longrightarrow \mu(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu(A_k)$$

La terna (X, \mathcal{S}, μ) è detta spazio di misura.

Definizione A.10. Spazi L^p

Sia X uno spazio metrico, localmente compatto (cioè ogni punto ha un intorno compatto) e σ_- finito ossia $X = \bigcup_{j=1}^{\infty} K_j$ con $\mu(K_j) < \infty$.

Sia (X, \mathcal{S}, μ) uno spazio di misura, sia $f: X \longrightarrow \overline{\mathbb{R}}$, $f \mathcal{S}_{-}$ misurabile, sia $1 \leq p < \infty$.

Allora

$$f \in L^p(X,\mu) \iff \int_X |f|^p d\mu < \infty$$

Osservazione 17.

Lo spazio $L^1(X,\mu)$ è lo spazio delle funzioni sommabili in quanto

$$f \in L^1(X,\mu) \iff \int_X |f| \ d\mu < \infty$$

Definizione A.11. Trasformata di Fourier in \mathbb{R}^n

Sia $f \in L^1(\mathbb{R}^n), \xi \in \mathbb{R}^n$.

Si definisce trasformata di Fourier di f in \mathbb{R}^n :

$$\mathcal{F}(f(\xi)) = \widehat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\langle x,\xi\rangle} f(x) \, dx$$

Proposizione A.0.17.

Se $f \in L^1(\mathbb{R}^n) \Longrightarrow \widehat{f}$ continua e limitata.

Teorema A.0.18.

Se
$$f \in L^1(\mathbb{R}^n) \Longrightarrow \lim_{\xi \to \infty} \widehat{f}(\xi) = 0.$$

Osservazione 18.

Se
$$f \in L^1(\mathbb{R}^n) \Longrightarrow \int_{\mathbb{R}^n} f(x) dx = \lim_{N \to \infty} \int_{B(0,N)} f(x) dx$$
.

Bibliografia

- [1] B. Pini, Lezioni sulle distribuzioni. Bologna, 1979.
- [2] I. M. Gelfand; G. E. Shilov, Generalized functions. Vol. 1. Properties and operations. Academic Press, New York-London, 1964.
- [3] I. M. Gelfand; G. E. Shilov, Generalized functions. Vol. 2. Spaces of fundamental and generalized functions. Academic Press, New York-London, 1968.

Ringraziamenti

Il primo, più grande e sentito ringraziamento va alla mia famiglia, per il sostegno, la forza, la carica e l'affetto che mi ha dato in ogni momento della mia vita. In particolare ringrazio la mia sister che ha sopportato i miei nervosismi prima degli esami e che mi rallegra le mattine con le sue canzoni. Un ringraziamento al Professor Franchi, per la disponibilità con cui ha seguito questa tesi.

Grazie a tutti i miei splendidi amici: agli amici Pesaresi, per tutti i bei momenti passati insieme e agli amici Bolognesi, per la loro simpatia e disponibilità, per le mille ore passate a lezione e per le serate trascorse insieme. Un Grazie speciale a Giachi, per la nostra amicizia e per il sostegno che ci siamo dati per affrontare questi tre anni, per le lunghe chiaccherate al telefono, per tutte le volte che mi ha ascoltato, capito e creduto in me.