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Abstract

Human society has always been shaped by its technology, so much that even ages and

parts of our history are often named after the discoveries of that time. The growth

of modern society is largely derived from the introduction of classical computers that

brought us innovations like repeated tasks automatization and long-distance commu-

nication. However, this explosive technological advancement could be subjected to a

heavy stop when computers reach physical limitations and the empirical law known

as Moore Law comes to an end. Foreshadowing these limits and hoping for an even

more powerful technology, forty years ago the branch of quantum computation was

born. Quantum computation uses at its advantage the same quantum effects that

could stop the progress of traditional computation and aim to deliver hardware and

software capable of even greater computational power. In this context, this thesis

presents the implementation of a quantum variational machine learning algorithm

called quantum single-layer perceptron. We start by briefly explaining the founda-

tion of quantum computing and machine learning, to later dive into the theoretical

approach of the multiple aggregator quantum algorithms, and finally deliver a versa-

tile implementation of the quantum counterparts of a single hidden layer perceptron.

To conclude we train the model to perform binary classification using standard bench-

mark datasets, alongside three baseline quantum machine learning models taken from

the literature. We then perform tests on both simulated quantum hardware and real

devices to compare the performances of the various models.



Introduction

The branch of computer science referred to as quantum computation studies how

to exploit properties of quantum mechanics for computational purposes. This ap-

proach is profoundly different from the classical computation based on classical bits

that can assume two possible states 0 or 1. Quantum computation instead, is built

upon the existence of a quantum bits or Qubits that can be found in state 1, 0, and

in a combination of the two. A more thorough description is presented in section 1.2.

While the studies for practical implementation of quantum hardware are fairly recent,

the theory begins in the early ’80s with Paul Benioff (1980) that defines a quantum

Turing machine based on a reversible Turing machine by Bennett (1973), and with

Richard P Feynman (1982) that asserted the need for quantum machinery for the

study of quantum phenomena in a conference in 1982.

The attention of the scientific community only rose in 1994 when Peter W. Shor

(1997) published "Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithm on a Quantum Computer", an article where he describes two algorithms

that could solve in (error bounded) polynomial-time problems that belong to the NP

complexity class for traditional methods. The consequences of this paper were impor-

tant, but the limited technology available at that time reduced the field to theoretical

speculation.

Today different quantum hardware are available in the private sector, but some com-
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panies like IBM (2022) allow researchers to use their quantum circuit. Nations and

organizations worldwide invest a lot of funds in this field (Temkin, 2021) and more

investments will come in the upcoming years.

In this thesis, we implement and test a quantum artificial intelligence model, com-

paring it to today’s standards. In particular, we show the implementation of a single

layer perceptron based on the MAQA theoretical framework (Macaluso, 2021) and we

perform a comparison between that and the models proposed for artificial intelligence

by the Qiskit library by training everything on real-world datasets. We also focus our

attention on the problem of state preparation, discussing and comparing the effect

that different approaches have on the models.

The Thesis is divided as follows:

• Chapter 1: Brief introduction to the principles that describe quantum mechanics

and introduction to quantum computation and its fundamentals properties.

• Chapter 2: Small introduction to machine learning, quantum machine learning

algorithms and the problem of state preparation.

• Chapter 3: Exposition of the multiple aggregators quantum algorithm, imple-

mentation of the proposed models and discussion about the benchmark models.

• Chapter 4: Discussion on the experiments, description of the standard datasets,

and analysis of the results.

• Chapter 5: Conclusions and outlook.
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Chapter 1

Quantum computation principles

This chapter explains the theory needed to understand quantum computation

and its fundamentals: Qubit, Quantum gates, and Quantum circuits. The topics are

covered mainly from a mathematical point of view without deepening too much in

the physical nature of the elements and quantum physics in general. The chapter is

proposed as an introduction to the concept of quantum computation, it explains the

basic elements allowing the reader to understand what will be presented in the rest

of the thesis.

1.1 Quantum mechanics’ principles

We start the introduction with a brief overview of quantum mechanics. Quantum

mechanics is the branch of physics that studies behaviors and properties of elements

at an atomic and subatomic scale. This theory was born in the early 1900 after the so-

called ultraviolet catastrophe. Following this event, Max Planck derived an equation

that described energy as not being continuous but quantized. In 1907 Albert Einstein

demonstrated that not only light is quantized but so are atomic vibration Einstein
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(1987) leading to the creation of two equivalent quantum mechanics theories in the

following years Schrödinger (1926)Heisenberg (1925).

In this section, we will focus on four postulates that describe quantum mechanics in

the formulation provided by Nielsen and Chuang Michael A. Nielsen (2010) and on

how these can be interpreted in favor of a new way to compute data.

1.1.1 Vector space postulate

Postulate 1. Associated to any isolated physical system is a complex vector space

with an inner product (that is, a Hilbert space) known as the state space of the system.

The system is completely described by its state vector, which is a unit vector in the

system’s state space.

For our purposes, we will consider a simple quantum system called qubit that

is described by two elements: an orthonormal basis in a two-dimensional complex

space and two complex coefficients subjected to the normalization condition (in-depth

explanation can be found in section 1.2). This postulate also tells us that every

quantum computation with classical data will involve a mapping operation to the

Hilbert space.

1.1.2 State evolution postulate

Postulate 2. The time evolution of the state of a closed quantum system is described

by the Schrödinger equation:

iℏ
d |ψ⟩
dt

= H |ψ⟩ . (1.1)

This postulate specifies how a closed quantum system evolves in continuous time.

In our experiments we can use a less refined postulate that can be directly derived

from postulate 2.
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Postulate 2.1. The evolution of a closed quantum system is described by a unitary

transformation. That is, the state |ψ⟩ of the system at time t1 is related to the state

|ψ′⟩ of the system at time t2 by a unitary operator U which depends only on the times

t1 and t2.

In this, we refer to a discrete time-step that corresponds to the application of

a unitary operation. In quantum computation, a unitary operator U , implemented

through the use of quantum gates (section 1.3) allows us to utilize quantum hardware

for computation.

A direct consequence of postulate 2.1 is the following theorem:

Theorem 1 (No cloning theorem). Quantum mechanics does not allow unknown

quantum state to be copied exactly. In quantum information theory it doesn’t exist a

unitary operation U that given two states |ψ⟩ and |s⟩ can copy |ψ⟩ in |s⟩

∄U | U(|ψ⟩ ⊗ |s⟩) = |ψ⟩ ⊗ |ψ⟩ .

This theorem is an evolution of the No-go theorem by James-Park Park (1970)

and it poses significant limitations to quantum computations since it limits our ability

to create multiple copies of the same quantum state efficiently.

Both postulates 2 and 2.1 consider a closed quantum system where quantum states can

evolve over time without any interaction with the external environment. However such

a perfect system cannot exist in reality, with the only exception being the universe as

a whole. For the experiment in this thesis, we will assume an error corrected quantum

hardware that can deal with external noise and faulty quantum operation by means

of quantum error correcting procedures.
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1.1.3 Measurement postulate

Even if we could create and maintain a closed system, the final stage of our

computation must result in a measurement of the quantum state. In that case, the

system will come into contact with the outside world and might undergo non-unitary

transformation. Postulate 3 describes what happens when the measurement action is

taken upon a closed quantum system.

Postulate 3. Quantum measurements are described by a collection {Mm} of mea-

surement operators. These are operators acting on the state space of the measured

system. The index m refers to the measurement outcomes that may occur in the exper-

iment. If the state of the quantum system is |ψ⟩ immediately before the measurement,

then the probability that result m occurs is given by

p(m) = ⟨ψ|M †
mMm |ψ⟩ (1.2)

and the state of the system after the measurement is

Mm |ψ⟩√
⟨ψ|M †

mMm |ψ⟩
(1.3)

The measurement operators satisfy the completeness equation:∑
m

M †
mMm = I (1.4)

The completeness equation expresses the fact that probabilities sum to one:

1 =
∑
m

p(m) =
∑
m

⟨ψ|M †
mMm |ψ⟩ . (1.5)

The measurement utilized in this thesis belongs to the category of measurement

of a qubit in the computational basis. This means that the measurement on a single

qubit is done through the measurement of two different operators M0 = |0⟩ ⟨0| and
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M1 = |1⟩ ⟨1|. These operators are Hermitian and M2
0 = M0, M2

1 = M1 complying

with the completeness relation I = M †
0M0 +M †

1M1 = M0 +M1. Suppose that we

have a qubit |ψ⟩ = α |0⟩+ β |1⟩ then the probability of obtaining an outcome 0 after

a measurement in M0 is

p(0) = ⟨ψ|M †
0M0 |ψ⟩ = ⟨ψ|M0 |ψ⟩ = |α|2 (1.6)

1.1.4 Composite system postulate

We now want to consider systems made up of more distinct physical systems, this

in practice expands the state space following postulate 4

Postulate 4. The state space of a composite physical system is the tensor product

of the state spaces of the component physical systems. Moreover, if we have systems

numbered 1 through n, and system number i is prepared in the state |ϕi⟩ then the joint

state of the total system is |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ . . .⊗ |ϕn⟩.

This postulate enables the superposition principle of quantum mechanics that

states: if |x⟩ and |y⟩ are two different states of a quantum system then their superpo-

sition α |x⟩ + β |y⟩ should be consider a quantum system where |α|2 + |β|2 = 1. The

possible combination of multiple quantum systems opens up the possibilities for the

use of entanglement and interference. The application of postulate 3 and 4 allows us

to derive what is called normalization condition: for a quantum register |ψ⟩ made of

one or more qubits described by means of the normal basis S = |i0i1 . . . in⟩

|ψ⟩ =
n∑

j=1

aj |ij⟩ (1.7)

the sum of the squared coefficient of each base vector aj must be 1

n∑
i=1

|aj|2 = 1 (1.8)

5



1.2 Qubit

Qubits are the foundation of quantum computation acting as the counterpart of

bits in classical computation. While bits are elements that have two distinct states 0

and 1, a qubit is a more complex element that can be found in both states 0 and 1

at the same time in what is called a superposition of states.

1.2.1 Mathematical representation

In order to obtain a meaningful mathematical description of a qubit we have to

describe it using the Dirac notation. The Dirac notation or Bra-Ket notation is used

to denote quantum states as vectors: we can denote a column vector as

v⃗ =


a1

a2
...

an

 = |v⟩ (1.9)

In quantum mechanics, |v⟩ is a state vector called "ket-v" and can be expressed as

the linear combination of the basis of its space. The complex conjugate transposed

of |v⟩ is called "bra-v" and is represented as:

⟨v| = vT =
[
a1 a2 . . . an

]
(1.10)

Following this definition, we obtain that ⟨v| is the adjoint of |v⟩ and vice-versa

|v⟩ = ⟨v|†

⟨v| = |v⟩†
(1.11)

When considering two vectors in a finite-dimensional space represented by fixed or-

thonormal basis vectors we can represent the inner product of two vectors v1 and w
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as:

⟨v|w⟩ =
[
v1 v2 . . . vn

]

w1

w2

...

wn

 =
n∑

i=0

viwi (1.12)

The scalar product in an Hilbert space owns the following properties:

• ⟨x|x⟩ ≥ 0 ∧ ⟨x|x⟩ = 0 =⇒ x = 0

• ⟨x|y⟩ = ⟨y|x⟩ in complex spaces ∀x, y ∈ V

• ⟨ax|y⟩ = a ⟨x|y⟩ ∀x, y ∈ V ∧ a scalar

For each vector v we can define its norm as:

∥ v ∥=
√
⟨v|v⟩ (1.13)

Another fundamental operation in the Hilbert space is the Kronecker product (or

tensor product). Given two vectors |v⟩, |w⟩ of size n, m the tensor product is computed

as:

|v⟩ ⊗ |w⟩ =


v1
...

vn

⊗

w1

...

wm

 =



v1w1

v1w2

...

v1wm

v2w1

...

vnwm


(1.14)

In this context, a Qubit can be seen as a normalized vector in the Hilbert space C2

were vectors |0⟩ and |1⟩, also represented as (1, 0)T and (0, 1)T , form an orthogonal

basis called standard computational basis S. A vector can be seen as the linear
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combination of the basis S in a n-dimensional space:

|ψ⟩ =
n∑

i=0

ai |Si⟩

In our case being C2 a two dimensional space we can represent a single qubit as:

|ψ⟩ = α |0⟩+ β |1⟩

|ψ⟩ represents a qubit if and only if the amplitudes α and β comply with the normal-

ization condition: |α|2+|β|2 = 1 with α, β ∈ C. This is necessary because the squared

module of the coefficient represents the probability with which the qubit collapses to

the relative basis when measured.

1.2.2 Geometric representation

To better understand qubits, we can give a geometrical representation by associ-

ating |ψ⟩ with a point on the surface of a Bloch sphere (Poincaré et al., 1892). A

Bloch sphere is a sphere with a unitary radius where the two poles represent the two

basis states |0⟩ and |1⟩, it will be useful when talking about unitary quantum gates

since we can have a visual representation of the transformation applied to the qubit.

To further explain the process, we first need to recall some properties of complex

numbers. A complex number z = a + ib can be represented by (a, b) in a Cartesian

plan where one ax represents the real numbers and the other the imaginary ones.

From this representation, we can obtain the polar one by computing the module of

the complex vector z as r =
√
a2 + b2 and the angle ϕ between the vector and the ax

of the real numbers.

z is now identified by the pair (r, ϕ) that can substitute (a, b) in the original formula:

z = r(cos(ϕ) + i sin(ϕ)) (1.15)

8



Then we can use Euler’s formula to obtain:

z = r(cos(ϕ) + i sin(ϕ)) = reiϕ. (1.16)

Using the notation in 1.16 to change (a, b) we can write our qubit as |ϕ⟩ = r0e
ϕ0i |0⟩+

r1e
ϕ1i |1⟩. Thanks to the normalization condition we have that r20+r21 = 1, this allows

us to write r0 and r1 as coordinate of a point belonging to a circumference of unitary

radius: r0 = cos(ρ) and r1 = sin(ρ) with ρ = θ/2. This reduces the modules to be

dependent by the same parameter θ with 0 < θ < π:

|ϕ⟩ = cos(θ/2)eiϕ0 |0⟩+ sin(θ/2)eiϕ1 |1⟩ . (1.17)

Now we can extract the global phase eγ obtaining:

|ϕ⟩ = eiγ(cos(θ/2)ei |0⟩+ sin(θ/2)eiφ |1⟩) (1.18)

where φ = ϕ1 − ϕ0 and γ = ϕ0 with 0 < φ < 2π.

When applying the measuring operator on a qubit we can see that the global phase

eiγ doesn’t influence the statistics of measurement between the states |ψ⟩ and eiγ |ψ⟩:

⟨ψ|M †
mMm |ψ⟩ = ⟨ψ| e−iγM †

mMme
iγ |ψ⟩ (1.19)

for this reason, we can remove eiγ from the equation without altering the results. To

conclude we now see that the parameter φ can be seen as the angle of the projection

of a point on the xy plane while the parameter θ can be seen as the spherical angle

of a point for the axis z. The pair (φ, θ) describes now a point on the surface of a

unitary sphere where the poles correspond to the basis vectors |0⟩ and |1⟩:

θ = 0 =⇒ |ψ⟩ = |0⟩

θ = π =⇒ |ψ⟩ = |1⟩
(1.20)
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1.2.3 Quantum registers

The true advantages of quantum computation lie in the use of multiple qubits at

the same time or in the use of what is called a quantum register.

A quantum register is an ordered group of qubits used during a computation, the

difference between this and its classical counterpart can be found in the different

computational power they provide: a classical register is a group of n bits from which

we can identify 2n different states while a quantum register is made of n qubits and

generates a 2n-dimensional Hilbert space (C2n). Inside this space every normalized

vector is considered a possible state, and we can consider a quantum register |ψ⟩ as

the tensor product of n vectors |ij⟩:

|ψ⟩ =
n⊗

j=1

|ij⟩ ⇐⇒ |i1i2...in−1in⟩ . (1.21)

This formula is a direct use of postulate 4 and as it was already mentioned, the

composition of quantum systems generates interesting and useful properties: super-

position, interference and entanglement.

Superposition is the mathematical formulation for the quantum phenomena of particle-

wave duality1.We already saw an example of superposition when we considered a single

qubit. It can be described as the contemporary existence of two different states (in

our specific case we considered |0⟩ and |1⟩). When considering more than one qubit

we can see that the number of dimensions (i.e., the number of possible basis states)

of the system increase exponentially allowing us to evaluate many input state at the

same time.

Interference is closely related to the wave nature of quantum and describes how two

systems can interact depending on their sources or wavelength. One of the conse-

quences of interference could be the damage of the quantum state by external noise,
1Physical property of quantum that can be described simultaneously as particle and waves

without being fully described by one of the two formulations.
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but for our purpose, we consider a perfectly error-corrected system (Section 1.1.2)

where this phenomenon has no relevance in practice.

Entanglement is a property of a quantum state that allows a part to influence the

whole system, it is the property that allows us to define and perform critical pro-

cedures of quantum computation such as quantum teleportation and super-dense

coding. A more in-depth description of entanglement can be found in section 1.4

1.3 Quantum circuits and quantum gates

Like in classical computation to change the state of each fundamental unit we

utilize different gates depending on the transformation we desire. From postulate 2.1

we know that all transformation U on a quantum system can only be unitary, meaning

that for every U the relationship U †U = I must be true. This kind of transformation

also preserve the normalization condition as seen before.

A quantum circuit consists of applications of one or more quantum gates on one or

more qubits and it’s represented with a structure like the one shown in figure 1.1.

Each line corresponds to the qubits’ lifetime, following these lines we can see where

|q0⟩
U

|q1⟩ •

c

Figure 1.1: Example of a quantum circuit.

and when each gate is applied. Double lines indicate a classical bit used to store the

information after the measurement.

It is worth reminding that the symbol |·⟩ corresponds to a column vector and that the
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application of a unitary transformation can be seen from a mathematical viewpoint

as matrix multiplication.

1.3.1 Unitary gates on single qubits

Single qubit gates are operations that resemble the classical Not, they operate on

the state of a single qubit, and can be visualized as a shift in the position of the qubit

on the Bloch sphere. We will now describe in detail the most useful gates and the

class under which they fall: Pauli gates, Rotation gates and the common gates that

don’t belong to the previous classes.

Pauli gates are the gates that describe rotation with a fixed angle (π or 0) around

the axis. They can be written as:

I =

 1 0

0 1

 X = σx =

 0 1

1 0


Y = σy =

 0 −i

i 0

 Z = σz =

 1 0

0 −1

 (1.22)

and are represented in a quantum circuit as:

I X Y Z

Figure 1.2: Pauli’s gate representation in quantum circuits

The identity gate I is just an identity transformation that doesn’t influence the state

of the qubit. Later we will utilize this gate as a placeholder during the implementation

of quantum Single Layer Perceptron (qSLP) placing it instead of an operator that we

cannot yet implement (more details in section 3.3).

The Pauli X gate is the quantum equivalent of a classical NOT operator, in this
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context, since a qubit can be found in a superposition of states, its behavior is more

general and if it is applied to a qubit |ψ⟩ = α |0⟩ + β |1⟩ it switches the role of the

basis states:

X |ψ⟩ = X

 α

β

 =

 β

α

 (1.23)

This means that if |ψ⟩ is in a basis state it goes to the other:

X |0⟩ = |1⟩ X |1⟩ = |0⟩ . (1.24)

The Pauli Y applies π rotations around the y axis while the Z gate applies a rotation

of π around the z axis.

From the Paulis gate, we can derive the second class of gates rotation gate. They

can be obtained by exponentiating Pauli matrices as described by the equation 1.25.

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin θ

2
X =

 cos θ
2
−i sin θ

2

−i sin θ
2

cos θ
2


Ry(θ) ≡ e−iθY/2 = cos

θ

2
I − i sin θ

2
Y =

cos θ
2
− sin θ

2

sin θ
2

cos θ
2


Rz(θ) ≡ e−iθZ/2 = cos

θ

2
I − i sin θ

2
Z =

e−iθ/2 0

0 eiθZ/2

 .
(1.25)

Lastly, we want to focus our attention on three meaningful gates: Hadamard gate

(H), phase gate (S), and π/8 gate (also T gate):

H =
1√
2

 1 1

1 −1

 S =

 1 0

0 i

 T =

 1 0

0 exp(iπ/4)

 . (1.26)

In particular, the Hadamard gate is very important in quantum computation because

it allows us to put the qubit in standard superpositions and its application on |0⟩ and

|1⟩ produces two important states |+⟩ and |−⟩ that represent another possible basis

for a single qubit system. The H gate can be visualized as a rotation of π
2

around the
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y axis and a reflection over the yz plane. Its behavior, when applied on the states |0⟩

and |1⟩, can be seen in the following equation:

H |0⟩ = |0⟩+ |1⟩√
2

= |+⟩

H |1⟩ = |0⟩ − |1⟩√
2

= |−⟩

In figure 1.3 we show how the non-parametric gates discussed above are repre-

sented in a quantum circuit and their corresponding matrices.

Identity I

 1 0

0 1


Hadamard H

1√
2

 1 1

1 −1


Pauli X X

 0 1

1 0


Pauli Y Y

 0 i

−1 0


Pauli Z Z

 1 0

0 −1


Phase gate S

 1 0

0 i


π/8 Gate T

 1 0

0 exp(iπ/4)


Figure 1.3: Summary of the most important non parametric gates with name, quan-

tum circuit representation and associated matrices.
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1.3.2 Controlled gates

We now have a way to operate a single qubit but we still don’t know how two

or more qubits can interact. In this section, we will discuss the most important

multi-qubit gates and how they can exploit quantum effects in computation.

The first operator is the controlled not or CNOT gate: it applies an X gate to

a target qubit depending on the state of a control qubit, implementing what we can

write as "if control is true than negate target". Mathematically the CNOT gate can

be seen as an XOR gate and applies an addition modulo two (⊕) to the qubits:

|ψ⟩ = |ψ1, ψ2⟩
CNOT−−−−→ |ψ1, ψ2 ⊕ ψ1⟩ (1.27)

Controlled gates, like single qubits gates, can be written as a matrix, and for the

CNOT this matrix is the one we see in equation 1.28

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.28)

More generally we can implement a more generic phrase "if control is true then apply

f to target" with a controlled unitary gate. Suppose we have a unitary gate U with:

U =

 u00 u01

u10 u11

 (1.29)

We can implement a controlled U (cU) gate as follows:

CU =


1 0 0 0

0 1 0 0

0 0 u00 u01

0 0 u10 u11

 (1.30)
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The application of controlled unitary gates is very useful as they allow us to exploit

quantum parallelism by applying the same operation to every possible state of the

qubit at the same time. As an example suppose we want to apply a generic operation

Uf to an input state |0⟩ conditioned by the state |−⟩, we will obtain:

|−⟩ ⊗ |0⟩
cUf−−→ |−⟩ ⊗ |0⊕ f(−)⟩ = |0f(0)⟩+ |1f(1)⟩√

2
(1.31)

|−⟩ • |−⟩

|0⟩ Uf(c)
|f(0)⟩+|f(1)⟩√

2

Figure 1.4: Circuit representation of a generic cU operation on the qubits |−⟩ ⊗ |0⟩.

The last gate we present is called CCNOT or Toffoli gate. It is similar to the

CNOT gate but considers the state of two control qubits before applying the X gate.

Its behavior can be represented in the phrase "if control 1 is true and control 2 is

true then apply X to target" and the representative matrix is:

CCNOT =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0


(1.32)

CNOT and CCNOT gates can be seen in figure 1.5
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|q0⟩
|q1⟩ •

(a) CNOT: |q0⟩ target and |q1⟩ control

|q0⟩
|q1⟩ •
|q2⟩ •

(b) CCNOT: |q0⟩ target and |q1⟩ and |q2⟩

control

Figure 1.5: Quantum gate representation for the CNOT (a) and CCNOT (b) gates.

1.4 Entanglement

Quantum entanglement is the physical phenomenon that doesn’t allow us to de-

scribe the state of a single unite of an entangled system without referencing the rest

of the system, even when the single parts are separated. This property is the core

of quantum mechanics and one of the most powerful tools in quantum computation.

Let’s consider a practical example of a quantum register:

Given a quantum register |ψ⟩ composed by two qubits, it can be described by the

linear combination of the basis vectors B = {|00⟩ , |01⟩ , |10⟩ , |11⟩} of the space C4

|ψ⟩ = a00 |00⟩+ a01 |01⟩+ a10 |10⟩+ a11 |11⟩ (1.33)

with |a00|2 + |a01|2 + |a10|2 + |a11|2 = 1 following the normalization rule. Same as it

was with a single Qubit here |axy|2 represents the probability that upon measurement

the system collapses in the state |xy⟩. When we measure the first Qubit the whole

system collapses and changes the possible combination and the relative probability.

If i0 is found in the state |0⟩ the system will go from the state at equation 1.33 to:

|ψ⟩ = a00 |00⟩+ a01 |01⟩√
|a00|2 + |a01|2

(1.34)

Losing |10⟩ and |11⟩ as possible combination and with re-normalized coefficients a0y.

In this example, we can see that the measurement of a single Qubit doesn’t influence

17



the probability of the other, but this changes if we entangle the states of the register.

Let’s consider now the EPR pair (or Bell state) discussed by Einstein, Podolsky, and

Rosen. During a mental exercise they hypothesize a pair of entangled particles (qubits

in this case) that can be described by the state:

|ψ⟩ = |11⟩+ |00⟩√
2

(1.35)

This register has the same probability to be found in the two states. The two qubits

are then separated and given to two different people, Alice and Bob, that start trav-

eling in opposite directions. As long as both qubits are still part of the same closed

system, upon measurement, both Alice and Bob can obtain one of the two states with

50% probability. This changes if, after traveling a great distance, Bob measures its

qubit forcing it to assume a specific value and making the whole system collapse. The

collapsed register now changes the probability of Alice’s qubit that once measured

will output the same results as Bob’s. In this case, the measurement of one qubit

influenced the whole register even at a great distance.

1.5 Measurement

We can describe measurement as the action that recovers the result 0 or 1 with

respective probability |α|2 and |β|2 from a qubit |ψ⟩ in the state |ψ⟩ = α |0⟩ + β |1⟩

leaving the qubit in one of the two basis. More generally we can perform measure-

ment with respect to a general {|a⟩ , |b⟩} orthonormal basis state but for the purpose

of this thesis we will always refer to the basis S = {|0⟩ , |1⟩}.

From postulate 3 in section 1.1.3 we can derive the definition of projective measure-

ment:

Definition 1 (Projective measurements). A projective measurement can be de-
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scribed by an observable M. An observable is a Hermitian operation on the observed

space. The observable can be decomposed thanks to the projection Pm onto its eigenspace:

M =
∑
m

mPm (1.36)

Here m are the eigenvalue and represent the possible outcome of the observation and

their probability can be described as

p(m) = ⟨ψ|PM |psi⟩ (1.37)

After the measurement and the retrieval of the outcome m, the system will collapse

into the new state:
Pm |ψ⟩√
p(m)

(1.38)

We focus on projective measurement because it has some advantageous properties,

in particular it is easy to compute average values of measures:

E(M) =
∑
m

mp(m)

=
∑
m

m ⟨ψ|Pm |ψ⟩

= ⟨ψ| (
∑
m

mPm)) |ψ⟩

= ⟨ψ|M |ψ⟩

This property allows us to simplify many calculation when applying a measurement

operation.
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Chapter 2

Quantum machine learning

This chapter will provide an in-depth description of the quantum machine learning

algorithms that constitute the state of the art. We will begin with a classical machine

learning introduction and with the challenge of state preparation. Later our focus

will shift onto specific examples of machine learning algorithms and their quantum

counterparts, in particular, we will see quantum variational algorithms, quantum

neural networks, and quantum kernel methods.

2.1 Classical machine learning

When we talk about machine learning we are referring to a subsection of the more

vast artificial intelligence field, where we have an agent that based on observation can

improve its performance. The previously mentioned observation can come from three

different sources based on the type of learning:

• Unsupervised learning : the agent learns pattern in the input even if there is

no explicit feedback. The most common problem is clustering, where the agent

tries to detect potentially useful cluster from unlabelled input examples.
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• Reinforced learning : the agent is rewarded or punished based on the outcomes of

its decision. A traditional example is an agent in a chess game that is rewarded

if its decisions lead to the victory of the match and punished if the match is

lost.

• Supervised learning : the agent has a set of input-output data and tries to learn

a function to map unseen inputs to outputs. An example can be the binary

classification of email into spam - not spam categories given some features of

the email itself.

In the following sections will focus on the third class of problems as they are the ones

that are considered in the experimental part of the thesis.

2.1.1 Supervised learning

We can formally describe it as:

Definition 2 (Supervised learning). Given a training set T of N example input

output pairs

T = {(x1, y1), (x2, y2), . . . (xn, yn)}

Where each yj was generated by an unknown function y = f(x). The algorithm aims

to discover a function h that approximates the true function f .

Here we call h the hypothesis function and we measure its accuracy on a set unseen

during training called test set. From this definition, we can distinguish two kinds of

problems: classification and regression.

A classification problem is one where yi ∈ Y and Y is a finite set of possible answers

much like the problem proposed before where email can be classified into one of the

two classes Y = {spam, not spam}. A regression problem is one where Y is continuous
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(E.g. a real number such as temperature).

When evaluating a hypothesis we make what is called a stationary assumption: there

is a probability distribution D over examples that remains stationary over time. each

data point is a random variable Ej whose observed value ej = (xj, yj) is sampled

from D and is independent of the previous example with the same prior probability

distribution over all variables:

P(Ej|Ej−1, Ej−2, ...) = P(Ej)

P(Ej) = P (Ej) = P (Ej−2) = ...

Examples that satisfy these assumption are called independent and identically dis-

tributed (i.i.d.).

The objective of a supervised ML model is to find a useful approximation to the

function f(x; θ) that underlies the predictive relationship between the input x, and

output y, for a fixed set of parameters θ. Assuming for simplicity an additive error,

the model of interest can be expressed as follows:

y = f(x; θ) + ϵ, (2.1)

where ϵ is a random variable whose conditioned probability distribution given x is

centred in 0.

Although Equation (2.1) provides a general mathematical formulation for super-

vised learning, several methods do not estimate a single function but explicitly calcu-

late multiple and diverse functions which belong to the same family and differ from

each other, either a set of parameters or the training data. In all these cases, the final

model results from the weighted average of the estimated functions where the target

variable is obtained by aggregating them:

y = f(x; θ) =
H∑

h=1

βhg(x; θh), (2.2)
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where f(x; θ) is the final output and g(x; ·) describes what we can call the function

component.

The calculation of g(x; θh) corresponds to a specific transformation of data x based

on θh, whose contribution to the final output is weighted by βh. The estimation of

a collection of functions component allows producing an extremely flexible model,

which is able to approximate the behaviour of complex patterns. Different choices

for β, g(x; ·) and θh determine different ML models commonly adopted in real-world

applications.

For instance, a single-layer neural network (or Single Layer Perceptron - SLP)

with H hidden neurons is a two-stage regression or classification model that takes as

input a training data x and H +1 sets of linear coefficients, and computes the target

variable as follows:

fSLP(x) = σoutput

[
H∑

h=1

βhσhidden (L(x; Θh))

]
, (2.3)

where σoutput is the identity function when the task is the function approximation.

The SLP assumes as function component g(x; ·) the activation function σhidden that

takes as input the linear combination L(x; θh) of the input vector x . If considering

a neural network with multiple hidden layers, the only difference in Equation (2.3) is

that the function component g(x; ·) is, in turn, a neural network.

2.1.2 Agent training

Now that we have defined what the agent has to achieve we show how it can

improve its hypothesis through the loss function.

We want an agent that obtains the best fit over unseen data, or equivalent, that can

well approximate the target function f . To do so we have to define the error rate

of the hypothesis as the rate of the wrong prediction it makes. Decreasing the error
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rate on the test set is the first way to improve a model, but we know that we cannot

evaluate it on the same set on which we perform training since it could become over-

fitted.

Furthermore, minimizing the error rate is not the best solution to improve perfor-

mances since often we need to give different weight on different errors (E.g. In a

regression with y = 1 a ŷ = 0.98 is better than ŷ = 0.1) and we need a function

that measures the utility in order to maximise it. We define the loss function L as a

function that computes the amount of utility lost when making a prediction ŷ.

L(x, y, ŷ) = Utility(using y = f(x))− Utility(using ŷ = h(x))

In general we want to minimize the loss function, in doing so we will estimate the

best hypothesis

2.2 State preparation

While creating a quantum algorithm the work can be divided into three different

parts: state preparation, circuit, and measurement. Measurement description can be

found in section 1.5 and subsection 1.1.3, and later we will discuss which qubits will

contain the wanted results as to take into consideration only useful outputs. Circuits

will be discussed in detail in chapter 3 when an implementation of the Multiple Ag-

gregator Quantum Algorithm will be presented. We focus now on state preparation,

the procedure that describes the encoding mechanism of classical data into quantum

states.

State preparation is still an open problem in quantum computing, in literature several

methodologies have been proposed but without reaching a satisfactory conclusion on

which is the best way to encode classical data into a quantum computer. The most

utilized techniques are Basis encoding and amplitude encoding, followed by Hamilto-
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nian encoding (see table 2.1). The first associates a computational basis state of an

n-qubit system with the state of n bits, the second stores classical vectors as quantum

state amplitudes, and the third associates the Hamiltonian of a system with a matrix

representing meaningful transformation to the original data (for more information see

Maria Schuld (2018).

Many quantum algorithms in the literature assume to employ QRAM (quantum

Encoding Number of qubits Runtime Input features

Basis N O(Np) Binary

Amplitude log(Np) O(Np) Continous

Hamiltonian log(Np) O(Np) Continous

Table 2.1: Strategies for encoding N point and p features into a quantum circuit

random access memory), a theoretical device that stores classical information as the

amplitudes of a quantum state (Giovannetti et al., 2007), but to this day is not clear

if such device can be created. A feasible alternative can be found in Mottonen et al.

(2004) that solve the problem of mapping an arbitrary state |ψ⟩ into the state |0, ..., 0⟩,

and once the circuit is found it’s reversed. In this case, some preprocessing is needed

since the real values need to be converted into angles to apply different controlled

rotations. This last method is used in practice during the implementation phase for

the circuit described in subsection 3.3.2.

The other two state preparation algorithms that will be used in this thesis are by

Shende et al. (2004) and Havlicek et al. (2018). The first one focuses on disentan-

gling a quantum register |ψ⟩ bringing it to a basis state and later reversing the circuit

similarly as in Mottenen et al.. The second was originally devised as a quantum

kernel method (subsection 2.5) and focuses on exploiting the higher dimension of the
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quantum space. Here the input data x⃗ ∈ Rn is transformed as

UΦ(x⃗) = exp

i ∑
S⊆[n]

ϕS(x⃗)
∏
i∈S

Pi

 (2.4)

Where P is a standard Pauli matrix and ϕS is the data-mapping function:

ϕS(x⃗) =

x0 if k = 1∏
j∈S(π − xj) otherwise

(2.5)

The circuit can contain many repetitions of this transformation but in this thesis, we

will focus on two different variations that we will call ZFeaturemap and ZZFeaturemap

following the naming convention from Qiskit (Table 2.2).

Name Repetition P ϕS

ZFeaturemap 2 Z Pauli’s matrix x

ZZFeaturemap 2 ZZ Pauli’s Matrices x

Table 2.2: Two specific instances of Pauli feature maps that will be used in this thesis.

2.3 Quantum variational algorithm

Quantum variational algorithms, proposed by Moll et al. (2017) and Wecker et al.

(2015) are among the most promising algorithms for the noisy intermediate quantum

computing era (NISQ). They consist in exploiting both quantum and classical tech-

nology for optimization problems and are constituted by three main parts: a quantum

parametric circuit, a quantum measurement operation, and a classical update rule for

the parameters (Figure 2.1).
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Figure 2.1: Structure of a Quantum variational algorithm. In the image the green

highlights the quantum part while the blue the classical.

Source: Macaluso et al. (2020b)

In quantum variational algorithms the data x is preprocessed in a classical environ-

ment to be inserted into a quantum state through a state preparation circuit, |x⟩ is

then passed in the parameterized circuit U(x, θ) that starts with randomly initialized

parameters. The circuit is run n times until a prediction f(x, θ) can be computed.

The procedure finishes by classically updating the parameters and starting again the

cycle (See algorithm 1).

Machine learning applications of variational algorithms can be found in Biamonte

et al. (2016), Ristè et al. (2015), and Benedetti et al. (2019), but we will focus on

the proposal made by Schuld et al. (2018). They presented a low-depth variational

algorithm for classification that exploits amplitude encoding to perform a single-qubit

measurement and parametric gates to keep a general use case.

While being very promising, variational algorithms often encounter the problem of

Barren Plateaus (McClean et al., 2018): the exponential dimension of the Hilbert

space reduces the probability that the gradient along any dimension is non-zero,
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Algorithm 1 Quantum variational algorithm
θ ← ran()

for x ∈ X do

x′ ← preproces(x)

|x⟩ ← state preparation(x)

f(x, θ)← executen(U(|x⟩ , θ))

θ ← update(θ)

end for

specifically it gets exponentially small as a function of the number of qubits utilized.

From a practical viewpoint, it means that quantum variational algorithms are not

suitable for running on more than a few qubits.

2.4 Quantum neural networks

With Neural Network (NN) we define a type of Machine learning algorithm in-

spired by a biological neural network.

2.4.1 Classical NN

Classical NN originated in 1943 with the "neuron" devised by McCulloch and

Pitts (1943) (figure 2.2) Here the partial output of a single neuron is computed as the

sum of the weighted inputs and the bias. The result is then passed through what is

called an activation function (note that most of the time the activation functions are

non-linear functions).
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i

Figure 2.2: The figure shows the structure of a neuron. Here y = f(
∑n

i=1(xiwi) + b).

The neuron is the building block of modern neural networks that are built by

stacking multiple neurons in layers. We can highlight three types of layers based on

their purpose: input, output, and hidden. The relative positions and link between

layers depend on the type of neural network and its depth. In a feed-forward network

each layer ni takes in input the layer ni−1 and is the input for layer ni+1. Training is

done through the computation of the loss and the gradient descent that updates the

weights in a procedure called backpropagation.

The most simple neural network is called single hidden layer perceptron (SLP): it is

a fully connected feed-forward network where the inputs are connected to a single

hidden layer that feeds the outputs. We will see its quantum counterpart in section

3.3.

2.4.2 Quantum architectures

With quantum neural networks, we refer to a class of quantum algorithms that

takes inspiration from classical neural networks without producing a precise quan-
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tum counterpart, but simulating layers by using parametrized gates. As of today, no

quantum algorithm can encode the output of a classical neural network into a quan-

tum state. Many proposal have been presented in literature (Gupta and Zia, 2002;

J. Faber, 2002; Schuld et al., 2014a,b; Schützhold, 2002; Trugenberger, 2002), but all

face the same problem: quantum mechanics postulates forbid the use of non-linear

operations on quantum states. From a classical machine learning perspective this

means that, in principle, it’s impossible to embed a non-linear activation function

in quantum neural networks Some models are also based on the Hopfield networks

(Hopfield, 1982) focusing on associative memory that is derived by neuroscience rather

than machine learning (Behrman et al., 1999; J. Faber, 2002; Toth et al., 1996).

Recently many have proposed quantum neural networks that exploit hybrid ap-

proaches, one example of a concrete implementation in a near-term processor is given

by Tacchino et al. (2018). They introduced a model for binary classification that

utilizes a perceptron-like updating rule, revealing exponential advantages in storage

resources with respect to classical alternatives.

2.5 Quantum kernel methods

Support vector machines (SVM) is a supervised learning technique useful when

there’s no prior knowledge about the domain, it creates a maximum margin separator

and tries to linearly separate the data with a hyper-plane. Usually, this is not possible

so SVM utilizes what is called a kernel trick to add meaningful dimensions that allow

for a linear separation. SVM are classified as non-parametric methods even if they

retain only a small fraction of examples without the need to preserve all.

The objective of an SVM is to find the hyper-plane that can separate different classes

of data with the largest margin as in figure 2.3a, if this is not possible a kernel

function can be applied to exploit higher dimensions as we can see in figure 2.3c.
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The SVM algorithm has a time complexity of O(log(ϵ−1poly(N,M)) where N is the

dimension of the feature space, M the number of training vectors and ϵ the accuracy

(Stephen Boyd, 2004).

Quantum SVM exploits the higher dimensional of the Hilbert space to better divide

(a)
(b)

(c)

Figure 2.3: Different applications of svms: 2.3a shows linearly separable data and

the hyperplane that maximise margins, 2.3b shows non separable data that can be

moved in higher dimension through a kernel function to make them separable 2.3c

the data with a smaller cost, It was proved by Rebentrost that a quantum support

vector machine can be implemented with O(logNM) run time in both training and

classification (Rebentrost et al., 2013).

Schuld and Killoran (2018) explored the relationship between quantum state and

feature maps, highlighting the need for both quantum computing and kernel method

of computation in high dimensional Hilbert space. In their paper they state that

encoding a vector x into a state |ψ(x)⟩ is equivalent to the feature mapping action.

Despite the predicted advantages, a full quantum algorithm for SVM still doesn’t

exist but new technologies could create new use-cases for SVM that, as of today, is

limited due to computational effort.

For the rest of the thesis when talking about SVM we will refer to the approach
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presented by Havlicek et al. (2018) that focuses on creating a variational circuit, that

generates a separating hyperplane in the quantum feature space (Farhi et al., 2017;

Farhi and Neven, 2018; Kandala et al., 2017; Mitarai et al., 2018) .

2.6 Research contribution

The main contribution of this thesis is the realization of a generalized quantum

Single Layer Perceptron (qSLP) by means of the Multiple Aggregator Quantum Al-

gorithm (MAQA), a theoretical framework for quantum machine learning proposed

by Macaluso (2021). The MAQA leverages the three main properties of quantum

computing (superposition, entanglement, and interference) to reproduce all machine

learning models based on the idea of function aggregation. One of such models is

the classical Single Layer Perceptron, whose quantum counterpart is implemented in

this thesis. Specifically, we produce the source code for a generic qSLP as a quantum

variational algorithm.

The original proposal for the qSLP has many theoretical advantages over its clas-

sical counterpart thanks to the universal approximation theorem that tells us that

SLPs can approximate any continuous bounded function given enough nodes. In the

context of quantum computing, we can devise a quantum single-layer perceptron ar-

chitecture where the number of neurons in the hidden layer scales exponentially with

the number of qubits, whereas the classical counterpart scales only linearly. Fur-

thermore, we propose the first-ever realization of the generalized qSLP, built as a

parametrized quantum circuit that can be plugged in and trained alongside other

quantum architectures belonging to the most popular library for quantum computing

(qiskit). This allows us to produce extensive experiments on real-world datasets, with

models trained on simulations on classical machines and quantum computers.

Finally, we compare the implementation of the generalized qSLP with the other
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three quantum architectures trained: a quantum support vector machine and two

types of quantum neural network classifiers. The experiments suggest that our algo-

rithm performs on par or better than the other models at the cost of a higher number

of qubits.
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Chapter 3

Methodology

In this chapter, we will describe the architecture of the models used for the ex-

periments. For each model, we will provide the circuit and a description of the effect

that it has on the input data.

Firstly, we will describe the multiple aggregator quantum algorithms (MAQA) as it

was defined by Macaluso (2021) since it is the theoretical foundation for the quantum

single layer perceptron implemented in the experiments. The MAQA framework in-

troduces an exponential scaling in the number of the aggregated function with respect

to a classical machine learning approach. Furthermore, it opens the possibility to im-

plement many quantum machine learning models not yet present in the literature.

Second we discuss the theoretical foundations of a quantum single layer perceptron

and how it can be utilised as a quantum variational algorithm.

In the third section, we describe the main focus of the thesis: two implementation for

qSLP.

Lastly, we present three baseline models taken from the literature, in particular we

will introduce two quantum neural network classifiers and a quantum support vector

classifier, all proposed by qiskit as basic quantum machine learning models.
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3.1 MAQA

The multiple aggregator quantum algorithm leverages three properties of quantum

computing (entanglement, superposition and interference) to aggregate in a quantum

state the sum of many different transformation of the input. It holds the theoreti-

cal ability to reproduce all machine learning models that can be represented by the

function 2.2, providing advantages over classical models. Here we propose a short

description of the algorithm, for a more in-depth description refer to Macaluso (2021)

The algorithm starts with d qubits in the control register and n qubits in the data

register and it is divided into four main parts: state preparation, multiple trajectories

in superposition, transformation via interference, and measurement.

3.1.1 State preparation in MAQA

We already discussed state preparation in section 2.2. While the specific routine

for state preparation will be discussed alongside each model in the following sections,

we will now refer to two different state preparations: Sx and Sβ. The first one is the

state preparation circuit for the n-qubit data register and is applied to encode the

inputs in a quantum state. The second is the circuit for the d-qubit control register

and it is utilized to encode a set of parameters {βi}i=0,...,2d−1.

|ϕ0⟩ = (Sβ ⊗ Sx) |0⟩control ⊗ |0⟩data =
1√
2d

2d−1∑
k=0

βi |k⟩ ⊗ |x⟩ (3.1)

3.1.2 Multiple trajectories in superposition

The second step aims to generate 2d different transformation of the inputs by en-

tangling each possible state to a qubit in the control register. This unitary transforma-
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tion on the inputs depending on a set of parameters Θ and a function G(θ1, θ2, ..., θ2d)1

The implementation of G can be accomplished in d steps with two entanglement op-

eration g(x; θi,1) and g(x; θi,2) between the ith control qubit and |x⟩. This is typically

done with a controlled operation that targets |x⟩ and uses as control the states of

the current control qubit. To summarize, the second step of the multiple aggregation

quantum algorithm produces:

|ϕ1⟩ = G(θ1, θ2, ..., θ2d) |ϕ0⟩ (3.2)

=
1√
E

2d−1∑
k=0

βk |k⟩G(θk) |x⟩ (3.3)

=
1√
2d

2d−1∑
k=0

βk |k⟩ |g(x, θk)⟩ (3.4)

This formulation can be obtained if for the generic control qubit ci we perform two

steps:

• A controlled unitary C(1)G(θi,1) is executed to entangle |x⟩ with the state |1⟩

of the control qubit ci:

|ϕi,1⟩ =
(
C(1)G(θi,1)

)
|ci⟩ ⊗ |x⟩

=
(
C(1)G(θi,1)

)
(ai |0⟩+ bi |1⟩)⊗ |x⟩

= (ai |0⟩ |x⟩+ bi |1⟩G(θi,1) |x⟩)) (3.5)

• Then a controlled unitary C(0)G(θi,2) is executed to entangle |x⟩ with the state

|0⟩ of the control qubit ci

|ϕi⟩ =
(
C(0)G(θi,2)

)
|ϕi,1⟩

=
(
C(0)G(θi,1)

)
(ai |0⟩ |x⟩+ bi |1⟩G(θi,1) |x⟩))

= (ai |0⟩G(θi,2) |x⟩+ bi |1⟩G(θi,1) |x⟩)) (3.6)
1Note that the generic assumed in the general formulation will assume a specific implementation

in section 3.3
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This process is repeated d times and produces 2d different transformations, potentially

leading to an exponential speed-up with respect to classical methods.

3.1.3 Transformation via interference

The third step in the process is to apply a generic quantum gate F to the data

register.

|ϕf⟩ =
(
1
⊗d ⊗ F

)
|ϕd⟩

=
(
1
⊗d ⊗ F

) 1√
E

2d−1∑
k=0

β |k⟩ |g(x; Θk)⟩


=

1√
E

2d−1∑
k=0

β |k⟩ |f ∗(x; Θk)⟩

=
1√
E

2d−1∑
k=0

β |k⟩ |f ∗
k ⟩ (3.7)

Here we make the assumption that F (G(x; θk) on the quantum state |x⟩ is equivalent

to the target function f ∗
k . In this third step of the algorithm, we apply a function

F on the circuit, but its application is propagated to all the 2d superpositions. This

could be a crucial advantage when we need to repeat many times the application of

the same function as we do for the activation function of a neural network layer with

lots of neurons.

3.1.4 Measurement

The fourth and last step is the measurement. We apply a measurement operator

like the one described in section 1.5 and subsection 1.1.3 to the data register, obtaining

the weighted average of all 2d functions in a quantum version of equation 2.2.
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The application of the measurement can be represented as follows:

⟨M⟩ = ⟨ϕf |1⊗d ⊗M |ϕf⟩

=
2d−1∑
k=0

β′ ⟨k|k⟩ ⊗ ⟨f ∗
k |M |f ∗

k ⟩

=
2d−1∑
k=0

β′ ⟨f ∗
k |M |f ∗

k ⟩

=
2d−1∑
k=0

β′ ⟨Mk⟩

=
2d−1∑
k=0

β′fk = fagg (3.8)

where fk = ⟨f ∗
k |M |f ∗

k ⟩ and β′
k = |βk|2 with βk following the normalization condition∑

k |βk|2 = 1.

Following this procedure we are able to extract the result by measuring only the

data register, furthermore we are able to change the learning algorithm by specifying

different Sβ, Sx, {G(θi,1), G(θi,2}i=0,...,d−1 and F .

3.2 Variational algorithm for qSLP

This section describes how we use the MAQA framework to extend the quantum

single layer perceptron Macaluso et al. (2020b) as variational algorithm.

A quantum variational algorithm can be divided in three parts, the classical update

rule, the quantum circuit measurement and a parametric quantum circuit. In this

section we dissect the quantum parametric circuit in three distinct sub-parts that

depend on the specific implementation and that are specific for a quantum single

layer perceptron: state preparation, linear gate operators and activation function.
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3.2.1 State preparation

The state preparation algorithm utilized is a data amplitude encoding method

that associates quantum amplitudes with a real vector of observations at the cost

of introducing a normalization constraint. The normalized vector x ∈ R2n can be

described as:

|x⟩ =
2n∑
k=1

xk |k⟩ ↔ x =


x1
...

x2n

 (3.9)

This allows using the index register to indicate the kth feature. Furthermore, we

only need n qubits to encode a vector of 2n elements meaning that if an algorithm is

polynomial in n it will be poly-logarithmic when computed in a quantum environment.

3.2.2 Linear gate operators

A parametric variational circuit U(θ) is composed by a series of parametric gates

each one with a set of parameters {θl}l=1,...,K . Formally U(θ) is the product of L

matrices
∏L

l=1 Ul each representing a single or multi qubits gate. The gates need to

have learnable parameters, and to achieve that in the single-qubit gate we utilize a

G defined by the unitary 2× 2 matrix (Barenco et al., 1995):

G(α, β, γ) =

 eiβcos(α/2) eiγsin(α/2)

−e−iγsin(α/2) e−iβcos(α/2)

 (3.10)

Thus, we can write each Ul in terms of Gi, a single qubit-gates acting on the ith qubit:

Up = 11 ⊗ . . .⊗Gi ⊗ . . .⊗ 1n (3.11)

where n is the total number of qubits in the quantum system. Furthermore this

representation allows us to compute the gradient analytically (Schuld et al., 2018).
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3.2.3 Activation functions

Building an activation function is, to date, one of the biggest obstacles to the

construction of a theoretical and complete quantum neural network. The restriction

imposed by postulates 2.1 forces us to use linear transformations, meaning that it

might be impossible to embed a non-linear activation in a qSLP.

One of the most famous approaches comes from Cao et al. (2017) that proposed a

repeat-until-success approach to achieve non-linearity. This technique has the non-

trivial limitation of requiring the input to be in the range [0, π/2], which is a severe

constraint for real-world scenarios. Another possible method consists in the applica-

tion of quantum splines (QSpline) (Macaluso et al., 2020a), that approximate non-

linear functions via quantum algorithms. Although the QSpline is a fitting method

to compute the value of non-linear functions, it uses the HHL as subroutine which is

a full coherent protocol with high computational requirements.

An implementation of a non-linear activation function is beyond the scope of this

thesis, and for this reason, in the practical implementation, we set a single unitary

matrix (1 gate) as a placeholder. However, the algorithm still provides a parametric

circuit able to train a qSLP for a given activation function Σ. The architecture can

natively incorporate any implementation for Σ and it allows for the training of its

parameters, like for instance, the one described by Hu (2018).

3.3 qSLP

This section provides the first part of the research contribution of this thesis by

describing the development of a quantum single layer perceptron from the theory in

section 3.1 and 3.2.

The advantages that come from the possibility of developing a quantum single hidden
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layer perceptron derive from the universal approximation theorem and the exponen-

tial scaling in the number of neurons provided by a quantum implementation. From

these properties, we know that, by using a qSLP, it is theoretically possible to ap-

proximate any continuous function on a closed and bounded subset of R.

In subsection 2.1.1 we described the single hidden layer neural network as an aggre-

gation of functions (Equation 2.3), now we will explain in detail how the two different

proposed implementations work by describing their defining elements.

3.3.1 Single data qubit qSLP

We refer to the single data qubit qSLP as one of the two implementations proposed

in this thesis. As the name suggests, the single data qubits qSLP only relies on a

single qubit to store the data.

As we discussed in the previous sections the parametric quantum circuit of a quantum

single layer perceptron is composed of four parts: state preparation, linear parametric

gate operators or ansatz, activation function, and measurement operation. After the

measurement, a classical update rule is applied and the parameters are updated.

State preparation. The state preparation phase differs between the control qubits

and the data qubits. The control qubits start from the state |0⟩ and a parametric

Ry(βi) gate is applied. On the other hand, the encoding of the data qubit is slightly

more sophisticated and relies on the procedure described by Shende et al. (2004) that

performs the operation of bringing a quantum state to the state |0 . . . 0⟩ and then

reverses the circuit. For a single qubit this translates into two parametric rotation

Ry(x1), Rz(x2) where {x1, x2} are two feature representing the input data x. For

simplicity in equation 3.12 we consider the case with only one control qubit, but this
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procedure can easily be extended to for any positive integer number d.

|Φ1⟩ =
(
Ry(β)⊗ Sx

)
|Φ0⟩ =

(
Ry(β)⊗ Sx

)
|0⟩ |0⟩

= (β1 |0⟩+ β2 |1⟩)⊗ |x⟩ = β1 |0⟩ |x⟩+ β2 |1⟩ |x⟩), (3.12)

Where Sx = Ry(x1) ·Rz(x2), |β1|2 + |β2|2 = 1 and β1, β2 ∈ R

|c0⟩ : RY (β)

|x⟩ : RY (x0) RZ (x1)

Figure 3.1: Quantum circuit for state preparation in a single data qubit qSLP with

d = 1.

Ansatz. In the ansatz we exploit the procedure described in section 3.1 to generate

two different linear operations in superposition, each entangled with a control qubit.

We now show how a circuit with d = 1 is built:

• First a controlled U3 gate is applied to the data qubit based on the state |1⟩ of

c1. A generic cU3 gate works as in equation 3.13 (IBMQiskit, 2022).

cU3(ζ, ϕ, λ) q0, q1 = I ⊗ |0⟩⟨0|+ U3(ζ, ϕ, λ)⊗ |1⟩⟨1| (3.13)

For our purpose we will utilize θi,j = {ζ, ϕ, λ}j for j = 1, 2 indicating the cU3

gate. The transformation is described in the following equation:

|ϕi,1⟩ =
[
C(1) ⊗ U3(θi,1)

]
|ϕi−1⟩

=
[
C(1) ⊗ U3(θi,1)

]
(αi |0⟩+ βi |1⟩)⊗ |x⟩

= (αi |0⟩ |x⟩+ βi |1⟩U3(θi,1) |x⟩) (3.14)
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• Then we apply a Pauli X gate on the ith control qubit:

|ψi,2⟩ = [X ⊗ 1] |ϕi,1⟩

= (αi |1⟩ |x⟩+ βi |0⟩U3(θi,1) |x⟩) (3.15)

• Finally we apply the second cU3 gate:

|ϕi⟩ =
[
C(1) ⊗ U3(θi,2)

]
|ϕi,2⟩

= (αi |1⟩U3(θi,2) |x⟩+ βi |0⟩U3(θi,1) |x⟩) (3.16)

When the circuit presents more than one control qubit (d > 1) we repeat this proce-

dure for all control qubits, ending up with the state:

|ϕd⟩ =
1√
2d

2d−1∑
k=0

βk |k⟩G(θk) |x⟩

=
1√
2d

2d−1∑
k=0

βk |k⟩ |g(x; θk)⟩ (3.17)

Where G(θk) is the product of d different cU3(θi,j) for i = 1, . . . , d and j = 1, 2

|c1⟩ : • X •

|x⟩ : U3 (θ1,1) U3 (θ1,2)

Figure 3.2: Example circuit for the ansatz of a single data qubit qSLP with d = 1

Activation function. Since an efficient implementation of a non-linear activation

function doesn’t exist yet (as we discussed in subsection 3.2.3), we use an unitary

matrix 1 as a placeholder.
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|c1⟩ : RY (β1) • X •

|c2⟩ : RY (β2) • X •

|x⟩ : S (x[0], x[1]) U3 (θ1,1) U3 (θ1,2) U3 (θ2,1) U3 (θ2,2) 1

Figure 3.3: Quantum circuit of single data qubit qSLP with d = 2

Measurement. To obtain the needed result we don’t have to measure the whole

register |ϕ⟩. We can just perform expectation measurement with the Pauli-Z operator

acting on the quantum state |x⟩:

⟨M⟩ = ⟨Φ0|U †(β, θ)(1⊗ σz ⊗ 1)U(β, θ) |Φ0⟩ = π(x; β, θ), (3.18)

Where U(β, θ) represents the qSLP circuit. To estimate π(·), we have to run the

circuit multiple times. It is useful to see that the results can be obtained by a single

measurement of the data qubit, leaving the control qubits untouched. An example of

a more general, complete circuit with d = 2 is shown in figure 3.3.

Classical post-process One of the advantages of this model is the possibility to

build a quantum circuit and to insert it in a standard function provided by the qiskit

library (IBMQiskit, 2022). The function handles the classical part of the variational

algorithm, but we have to provide an interpreter and a loss function.

Even if we only need the value of the data qubit as we discussed before, in practice, the

function measures the whole quantum register |ϕ⟩ and transforms the bits obtained

in an integer. The interpreter is a function f(m) that takes an integer m representing

the result of the measurement π(ϕ; β, θ) and computes the true result of the quantum

computation. Since we only need to measure the data qubit, our interpreter is a

simple bit-wise and operation that returns the value of |x⟩ based on its index on the
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quantum register:

f(x, β, θ) =

1 if π(ϕ; β, θ) ∧ 2d ̸= 0

0 otherwise
(3.19)

where 2d indicates the index of |x⟩ on the register |ϕ⟩ because it comes after d

control qubits. We can interpret Eq. (3.19) directly as a probability distribution for

a binary classification problem, whose final output is one of two possible classes.

The loss function we utilize is the Sum of Squared Error (SSE) loss:

SSE = Loss(Θ;D) =
N∑
i=1

[yi − f (xi; Θ)]2 . (3.20)

Lastly, since we utilize a state preparation function that doesn’t allow the use of a

gradient base optimizer we utilize the Constrained Optimization By Linear Approxi-

mation (COBYLA) optimizer (Powell, 2007, 1994, 1998).

3.3.2 Padded qSLP

The second implementation we propose is called padded qSLP. It utilizes a two-

qubit data register where the input data are padded, encoded through a different

state preparation technique, and processed by a different ansatz. As we did in the

previous section we present now the implementation’s details:

State preparation. The input data is normalized and preprocessed through a func-

tion fp(x) that given the classical data in input, it returns five rotation angles x̂i for

i = 0, . . . , 4 used as parameter for multiple rotation gates. The circuit is then built

by applying a sequence of cX gates, Ry(xi) and X gates as we can see in figure 3.4.

For a more in-depth explanation of this state preparation technique see Motten et al..

Mottonen et al. (2004).
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At the same time, the control qubits are initialized through a parametric rotation

Ry(βi).

|c1⟩ : RY (β0)

|c2⟩ : RY (β1)

|x0⟩ : RY (x̂0) • • X • • X

|x1⟩ : RY (x̂1) RY (x̂2) RY (x̂3) RY (x̂4)

Figure 3.4: Example of a state preparation circuit in a padded qSLP with d = 2

For simplicity, from now on, we will refer to the state preparation of the data as

the procedure Sx. The mathematical formalization of a circuit where d = 1 is the

following:

|Φ1⟩ =
(
Ry(β)⊗ Sx

)
|Φ0⟩ =

(
Ry(β)⊗ Sx

)
|0⟩ |0⟩

= (β1 |0⟩+ β2 |1⟩)⊗ |x⟩ = β1 |0⟩ |x⟩+ β2 |1⟩ |x⟩), (3.21)

Ansatz As in single data qubit qSLP we generate multiple linear operations at the

same time by exploiting superposition and entanglement. For each control qubit ci

with i = 1, ..., d we repeat the same five steps considering four different set of pa-

rameters θi,j = {ζ, ϕ, λ}i,j for j = 1, ..., 4 indicating the different cU3 gates (Equation

3.13).

• Apply cU3(θi,2) and cU3(θi,2) gates to the two data qubits |x0⟩, entangling them

with the excited state of ci,
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• Apply a Toffoli gate (CCNOT) targeting |x1⟩, based on the excited state of |ci⟩

and |x0⟩.

• Apply a X gate to |ci⟩:

• Repeat the first step and apply a cU3(θi,3) and cU3(θi,4) respectively on |x0⟩ and

|x1⟩, entangling them with the excited state of |ci⟩.

• Lastly Apply another CCNOT gate targeting |x1⟩ and controlling the excited

state of |ci⟩ and |x0⟩

After we repeat this d times we end up with the following state:

|ϕd⟩ =
1√
2d

2d−1∑
k=0

βk |k⟩G(Θk) |x⟩

=
1√
2d

2d−1∑
k=0

βk |k⟩ |g(x; Θk)⟩ (3.22)

Where G(Θk,j) is the product of d different cU3 gates and their respective parameter

sets Θk for k = 1, . . . , d applied on the quantum register |x⟩ = |x0 x1⟩. A more

intuitively view can be seen in figure 3.5 where an example of ansatz circuit for

padded qSLP with d = 1 is presented.

c1 : • • • X • • •

x0 : U3 (θ1,1) • U3 (θ1,3) •

x1 : U3 (θ1,2) U3 (θ1,4)

Figure 3.5: Example circuit of the ansatz of a padded qSLP with d = 1

47



Activation function. Since an efficient non linear activation function doesn’t exists

to this day (as we discussed in subsection 3.2.3), we use an unitary matrix 1 as a

placeholder and we apply it to both |x0⟩ and |x1⟩.

Measurement The measurement can be expressed as the expected value of the

Pauli-Z operator acting on the quantum state |x1⟩:

⟨M⟩ = ⟨Φd|U †(β, θ)(1⊗ σz ⊗ 1)U(β, θ) |Φd⟩ = π(x1; β, θ), (3.23)

Where U(β, θ) represents the qSLP circuit. To estimate π(·), we have to run the

circuit multiple times. It is useful to see that the results can be obtained by a single

measurement of one of the data qubits, leaving the other qubits untouched.

|c1⟩ : RY (β) • • • X • • •

|x0⟩ :

S (x̂0, x̂1, x̂2, x̂3, x̂4)

U3 (θ1,1) • U3 (θ1,3) • 1

|x1⟩ : U3 (θ1,2) U3 (θ1,4) 1

Figure 3.6: Quantum circuit for padded sQLP with d = 1

Classical update. One of the advantages of this model is the possibility to build a

quantum circuit and to insert it in a standard function provided by the qiskit library.

The function handles the classical part of the variational algorithm but we have to

provide an interpreter and a loss function.

Even if we only need the value of one qubit in the data register, as we discussed

before, in practice, the function measures the whole quantum register and transforms

the bits obtained in an integer. The interpreter is a function f(m) that takes in input

an integer m representing the result of the measurement π(ϕ; β, θ) and computes the
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true result of the quantum computation. Since we only need to measure one of the

data qubits, our interpreter is a simple bit-wise and operation that returns the value

of |x1⟩ based on its index on the quantum register:

f(x, β, θ) =

1 if π(ϕ; β, θ) ∧ 2d+1 ̸= 0

0 otherwise
(3.24)

where 2d+1 indicates the index of |x1⟩ on the register |ϕ⟩ because it comes after d

control qubits and |x0⟩. We will perform binary classification, for this reason, the

possible results are in {1, 0}. As loss function we utilize the Sum of Squared Error

(SSE) loss introduced in subsection 3.3.1. Lastly, we utilize Constrained Optimization

By Linear Approximation (COBYLA) (Powell, 2007, 1994, 1998) as optimizer.

3.4 Baseline models.

This section presents the implementation of two classes of quantum classifiers

(quantum neural network classifier QNNC and quantum support vector classifier

QSVC) developed from an initial proposal by the qiskit library.

First, we present two QNNC models. The proposed quantum neural network clas-

sifiers are variational algorithms, and, as such, they are constituted by a quantum

parametric circuit, a measurement operation, and a classical update rule.

The two implementations presented in the following sections have different quantum

circuits, but the same measurement and post-processing are applied. For this reason,

we will first describe the state preparation and ansatz of each model and later present

how the results are extracted and how the parameters are updated.

Finally, we discuss the implementation of the QSVC, focusing on its kernel method.

All the models in this section utilize a 2-qubit register to encode the data vector.
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3.4.1 QNNC v1

QNNC v1 is the first baseline model based on the qnnc structure proposed by

qiskit. The difference between the two architecture is small but it can highly influence

the final performance. We included both models in the study since they seem to

perform better in different scenario.

State preparation. The state preparation is done employing a ZZFeature-map. A

ZZFeature-map is a state preparation circuit that was first introduced as a quantum

kernel method. It belongs to the family of Pauli expansion circuits, and it makes

heavy use of the U1 gate, a unitary gate that can be represented by the matrix:

U1(λ) =

1 0

0 eiλ

 (3.25)

The procedure to build the ZZFeature-map is the following:

• Apply a Hadamard gate to each qubit, leaving it in a superposition.

• Apply U1(2x0) gate to |q0⟩ and U1(2x1) to |q1⟩.

• Apply a cX gate with |q1⟩ as target and |q0⟩ as control.

• Apply a U1(γ) on |q1⟩ with γ = 2 ∗ (π − x0) ∗ (π − x1)

• Lastly, apply a cX gate as in the second step.

Where {x0, x1} are two feature that represent the input x. In the end, the register

undergoes the transformation described in section 2.2.

The circuit can be seen in figure 3.7.
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q0 : H U1(2 x0) • •

q1 : H U1(2 x1) U1(2 (π − x0) (π − x1))

Figure 3.7: ZZFeature-map: state preparation circuit for QNNC v1

Ansatz For the ansatz, we utilize the real amplitude circuit, a heuristic trial wave

function typically used as an ansatz in chemistry applications or, like this case, classi-

fication circuits in machine learning. it consists in the application of Ry(θj) rotations,

cX entanglements gates and Ry(θj) again to each qubit. The name, real amplitudes,

comes from the fact that the prepared state will only contain real amplitude numbers

where their complex part is always 0.

The circuit of a QNNC v1, represented in figure 3.8, uses four parameters θi with

i = 1, ..., 4

q0 : H U1(2 x0) • • Ry (θ0) • Ry (θ2)

q1 : H U1(2 x1) U1(2 (π − x0) (π − x1)) Ry (θ1) Ry (θ3)

Figure 3.8: QNNC v1 complete circuit.

3.4.2 QNNC v2

QNNC v2 is the second baseline model based on the original proposal by qiskit. It

has a more simple state preparation circuit but a more complex ansatz when compared

to QNNC v1, effectively showing how a small change in the quantum circuit can

change the performance.
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State preparation The state preparation for QNNC v2 is done with the ZFeature-

map circuit. Similar to the aforementioned ZZFeature-map, the ZFeature-map is a

state preparation technique that belongs to the Pauli expansion circuits group. It

was firstly described by Havlicek et al. (2018) as a kernel method and, in the case of

a two-qubit register, it consists in the application of an H gate, followed by a U1 gate

on both the qubits.

q0 : H U1(2 x0)

q1 : H U1(2 x1)

Figure 3.9: ZFeature-map: State preparation circuit for QNNC v2.

Ansatz The ansatz utilized is Real amplitude as in QNNC v1. The difference be-

tween the two models is in the number of repetitions. In QNNC v2 we repeat twice

the pair {Ry(θi), cX} before the final rotation, increasing the number of parameter

θi

q0 : H U1(2 x0) Ry (θ0) • Ry (θ2) • Ry (θ4)

q1 : H U1(2 x1) Ry (θ1) Ry (θ3) Ry (θ5)

Figure 3.10: QNNC v2 complete circuit
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3.4.3 Measurement and classical process in QNNC

This subsection explains the measurement operations and the classical part of the

QNNC models. Since they have the same basic structure and the same number of

qubits, the training strategy explained here is applied for both.

Measurement Since the input data is encoded in the two qubits of the register and

the ansatz involves both, all of them are measured at the end of the computation.

Classical computation The final result will be a two-digit binary number inter-

preted as an integer m. We reverse the bit to integer transformations and apply

a function f(q0, q1) that, given the two bits representing the measurement results,

computes the predicted class through the parity function:

f(q0, q1) = q0 ⊕ q1 (3.26)

The parity function computes the number of bits with value 1 and returns 0 if the

number is even (even parity) or returns 1 if the number is odd (odd parity).

The loss is computed as the sum of squared error (SSE) (see subsection3.3.1), and

the whole process is optimized with the COBYLA optimizer.

3.4.4 QSVC

The quantum support vector classifier (QSVC) utilized in this thesis implements

the theoretical aspects discussed in 2.5. We chose to use a ZZFeature-map as kernel

method. As the name suggests, this state preparation technique allows us to map the

input features into a quantum feature space that is inherently bigger. Even if the name

is the same, this circuit is twice deeper than the one presented in subsection 3.4.1.

This design choice comes from the fact that to obtain an advantage over classical

computation, the feature mapping in a quantum state should be hard to simulate
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classically, and for this reason, we decided to utilize a more complex circuit. In figure

3.11 we can see the feature mapping circuit.

q0 : H U1 (2 x0) • • H U1 (2 x0) • •

q1 : H U1 (2 x1) U1 (γ) H U1 (2 x1) U1 (γ)

Figure 3.11: ZZFeature map with two repetitions. Here γ = 2 (π − x0) (π − x1)

3.5 Discussion

As discussed in section 3.3 we were able to build a quantum single layer perceptron

through the use of the multiple aggregator quantum algorithm frameworks. Since the

architecture follows the theoretical approach proposed by Macaluso (2021), it can

natively generate an exponential number of neurons while scaling only linearly in the

number of steps. The state preparation for both implementations of qSLP uses an

amplitude encoding strategy that grants us exponential advantages in terms of space

complexity while encoding the data register. This also implies a poly-logarithmic

advantage in the number of parameters when comparing it with its classical counter-

part.

One thing that seems different between qSLP and its classical implementation is

the normalization constraint (subsection: 1.1.4) that is applied to the data and the

weights in a quantum scenario. However, in traditional neural networks, rescaling

inputs and limiting weights’ magnitude are common strategies adopted, called re-

spectively batch normalization and weight decay. Thus the constraints introduced

by quantum computations are the automatic implementation of ad-hoc procedures

specific for neural networks.
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From a computational viewpoint, the training of a classical neural network has a com-

putational cost in terms of operations O(NpHL), that scales linearly with respect to

the number of observations N , the features p , the hidden neurons H and the train-

ing epochs L. Even if modern GPU and parallel computing grant a speed up in the

process, when the number of neuron H greatly increases, as required for SLP to be a

universal approximator, it becomes impossible to train an algorithm in a reasonable

amount of time. In comparison, our quantum single hidden layer perceptron has a

lower cost in term of complexity: O(NndL), where N and L represent observation

and training epochs, and n = log(p) and d = log(H).

Importantly, the cost of state preparation and measurement must be taken into ac-

count when discussing the overall complexity of a qSLP: here the measurement op-

eration is only applied to a restricted number of qubits (one in our case since we

perform binary classification), reducing its cost to a multiplication constant that can

be ignored. However, state preparation can greatly increase the complexity of a cir-

cuit, and when qSLP deals with big datasets, it needs an efficient encoding strategy,

since even the ones adopted in this thesis scale linearly with respect to N and p.
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Chapter 4

Experiments

The second part of the research contribution of this thesis is exposed in this chap-

ter. We will present here the testing of the qSLP models defined in the previous

chapter and the comparison of our model with the baseline in terms of accuracy on

real-world benchmark datasets.

We implemented the models through the Qiskit library, a software framework for

optimization and quantum computation. This library can be used for both quantum

and hybrid computation, allowing the use of quantum objects like qubits and quan-

tum gates, together with classical elements like variables and functions. One of the

advantages of the models we implemented is the full compatibility with the standard

library function that handles the training of supervised machine learning algorithms

(like we mentioned in section 3.3).

We selected two multi-class datasets and divided them into five smaller datasets for

binary classification, aiming to find the best parameters {β⋆, θ⋆} for each model. Af-

ter the training, we compared the results with the baseline models proposed by the

library and trained by us.
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4.1 Dataset description

The simulation of a quantum system is a challenging task even for a small-sized

model, for this reason, we utilized small samples of data from the dataset divided

into train set (80%) and test set (20%). Furthermore, since the complexity of the

simulation scales exponentially with the number of qubits utilized, the model utilizes

a maximum of two qubits to encode the data, and the datasets’ features are reduced

by applying a principal component analysis (PCA) (Hotelling, 1936; Pearson, 1901).

PCA is a linear transformation that shifts the data into a new coordinate system such

that the new variables contain the greatest variance in the first coordinate, the second

greatest in the second coordinate, and so on. The performance of PCA is measured

by the explained variance of the new features; the total variance of the new variables

is equal to the variance of the old ones and the performance is computed as the ratio

of the variance of the principal components utilized, over the total variance.

The input data we use consists of the first two components computed by the PCA

and the expected variance of each model will be reported in the following subsections.

The data used in the experiment come from the benchmark datasets MNIST (Deng,

2012) and Iris (Anderson, 1936; Fisher, 1936).

4.1.1 MNIST dataset

The Modified National Institute of Standards and Technology database (MNIST)

is a large dataset containing images of handwritten digits that is commonly used as

a standard benchmark for machine learning techniques and image processing algo-

rithms. The dataset contains a train set of 60000 records and a test set of 10000

records (Kussul and Baidyk, 2004). Each record consists of black and white 28× 28

images classified in one of ten classes representing the digit in the image. Each image

can be seen as a vector of binary 784 features (0 if the pixel is withe and 1 if it’s
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Figure 4.1: Image representation of the digits 0 and 9 in the MNIST dataset

black).

Since the current implementation of the models works for binary classification prob-

lems we consider only a subset of two different classes: classes {0, 9} in one experiment

and classes {3, 8} in another (from now on we will refer to this two partial datasets

as MNIST09 and MNIST38). Furthermore, since each model utilizes inputs with

only two features, we compute more significant features through the use of PCA

that changes the feature space, resulting in a new set of features with changed vari-

ance. From this new set of features, we take the two most representative components

achieving a 31% explained variance in MNIST09 and 20% in MNIST38 (Figure 4.2).

(a) MNIST09 (b) MNIST38

Figure 4.2: Scatter plot of the first two principal component of MNIST09 4.2a and

MNIST38 4.2b. The x axis represents the first component while the y the second.

The first two components explain 31% of variance in MNIST09 and 20% in MNIST38.
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For our training, we choose a set of 200 elements divided into train and test set

with an 8 by 2 ratio.

4.1.2 Iris

The Iris flower dataset is a collection of data used to quantify the morphological

variation of Iris flowers of three related species. The data consists of 50 examples

for each species (Iris setosa, Iris virginica and Iris versicolor). For each record, the

dataset contains four features representing the length and the width in centimeters

of the flower’s petals and sepals. The dataset is a standard benchmark for the test of

classification and clustering algorithms.

Figure 4.3: Original scatterplot matrix of the Iris dataset

Since the proposed models only supports binary classification we create three

different datasets considering two classes at the time: virginica-versicolor (ViVe
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(a) SeVe (b) SeVi (c) ViVe

Figure 4.4: Scatter plot of the first two component of SeVe 4.4a, SeVi 4.4b, and ViVe

4.4c. The x axis represents the first component while the y the second. They explain

respectively the 98.0% (SeVe), 98.4% (SeVi), and 92.3% (ViVe) of the total variance.

dataset), setosa-virginica (SeVi dataset), and setosa-versicolor (SeVe dataset). Fur-

thermore since the models have two-feature input we have to change the four features

using PCA to another feature space. Each transformed dataset has different explained

variance: 98.0% (SeVe), 98.4% (SeVi), and 92.3% (ViVe).

Lastly, It can be useful for future considerations to note that the setosa class, in the

original feature space, is linearly separable from the other two and that this behavior

is still present after the PCA (see figure 4.4a and 4.4b)

4.2 Models training

In our experiments, we considered nine different models based on the four ar-

chitecture described in chapter 3. We choose to train one quantum support vector

classifier (section 3.4.4), two quantum neural network classifiers (section 3.4), and six

quantum single layer perceptron (section 3.3) of which three are single data qubits

qSLP and three are padded qSLP. The different qSLP models are defined by the type
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of qSLP architecture and the number of control qubits. In table 4.1 we show the

specifics of each model reporting the number of qubits used for the data, the number

of control qubits, and the depth of the circuit. With the term depth of a circuit, we

indicate the longest path in a quantum circuit, also called critical path, that depends

on the optimization level and the architecture of the processor it runs on. Often the

gates utilized are not native to the processors the circuit runs on, and they need to

be transpiled in a series of equivalent operations supported by the device. The depth

of the circuits, both the original and transpiled in the simulator, are shown in the

table.

Model n d Total qubits depth Transpiled depth

QSVC 2 - 2 10 10

QNNC v1 2 - 2 13 13

QNNC v2 2 - 2 9 9

pad qSLP 1 2 1 3 52 37

pad qSLP 2 2 2 4 93 64

pad qSLP 3 2 3 5 134 91

sdq qSLP 1 1 1 2 13 12

sdq qSLP 2 1 2 3 23 22

sdq qSLP 3 1 3 4 33 31

Table 4.1: Summary of the specifics for the models we trained. Here d is the number

of control qubits, n is the number of data qubits, depth and Transpiled depth are the

length of the longest path of the circuit expressed in the number of gates respectively,

for the circuit as we designed and for the circuit executed on the backend.

The training is done on a QASM simulator, a backend that emulates the execu-

tion of a quantum computer on a real device, including noise models that affect the
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computation. Specifically, we utilized the Aer Simulator, a simulator belonging to

the qiskit library that mimics an actual device sampling 1024 execution of the circuit

to compute the final result.

When training the model we aim to find the parameter of the quantum circuit (β, θ).

In the absence of the activation function Σ the final quantum state of the register |ϕ⟩

is represented as:

|ψ⟩ = 1√
2d

2d−1∑
k=0

βk |k⟩ |g(x, θk)⟩ (4.1)

Which is a linear transformation of the input data and defines a linear classifier.

Notice that Pr(yi = 1|xi) for a given observation xi corresponds to the square of the

linear transformation of hidden neurons with coefficients βj.

The results of training on a simulated quantum computer can be seen in table 4.2.

MNIST09 MNIST38 SeVe SeVi ViVe

QSVC .97 .82 1.0 1.0 .96

QNNC v1 .86 .55 .93 1.0 .93

QNNC v2 .85 .80 .96 1.0 .89

pad qSLP 1 .89 .86 1.0 1.0 .83

pad qSLP 2 .91 .85 1.0 1.0 .83

pad qSLP 3 .92 .84 1.0 1.0 .83

sdq qSLP 1 .86 .79 1.0 1.0 .8

sdq qSLP 2 .87 .85 1.0 1.0 .8

sdq qSLP 3 .88 .84 1.0 1.0 .79

Table 4.2: Accuracy on the training set of each model for each dataset. The best

results for each dataset are highlighted. The training is performed on a simulated

quantum processor.
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4.3 Results

Each model has been trained on all five datasets to better compare the perfor-

mances of different architectures when applied in different scenarios. The trained

models are then tested on an unseen set of records in both simulated and real quan-

tum processors.

4.3.1 Tests on simulated hardware

The performances on the test set (reported in table 4.3) highlight the potential of

the proposed models since they achieve high test accuracy in almost all datasets (94%

on MNIST09, 82% on MNIST38 100% on SeVe and SeVi, and only 65% on ViVe). The

accuracy is, in most cases, on par with the best performing baseline (QSVC) except

for the ViVe dataset. One great achievement is the ability of the qSLP of reaching

more than 80% of accuracy on the MNIST38 dataset, outperforming all baselines on

the dataset with the smaller explained variance. In all experiments the test accuracy

is in line with the training accuracy, hence the models are not affected by overfitting.
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MNIST09 MNIST38 SeVe SeVi ViVe

QSVC .94 .8 1.0 1.0 1.0

QNNC v1 .86 .46 .85 1.0 1.0

QNNC v2 .83 .8 .95 .95 .8

pad qSLP 1 .93 .82 1.0 1.0 .65

pad qSLP 2 .89 .81 1.0 1.0 .65

pad qSLP 3 .94 .81 1.0 1.0 .6

sdq qSLP 1 .81 .81 1.0 1.0 .65

sdq qSLP 2 .83 .76 1.0 1.0 .65

sdq qSLP 3 .83 .78 1.0 1.0 .6

Table 4.3: Accuracy on the test set for each model for each dataset, performed with

a simulated quantum processor. The best results for each dataset are highlighted.

4.3.2 Quantum processors

To better understand the power of our models we also included a series of tests

performed on real quantum devices. Qiskit allows for the use of 24 different quantum

processors with registers of different sizes and different specifics, named after the city

they are placed in.

Processors belong to certain families depending on the size and the scale of the circuit

possible on the chip. This is primarily determined by the number of qubits and the

connectivity graphs, dividing them in four groups: Eagle, Hummingbird, Falcon, and

Canary. The Eagle family has one processor with 127 qubits and more scalable pack-

aging technologies than the other families. The Hummingbird family has a hexagonal

qubit layout and up to 65 qubits depending on the specific processor. The Falcon

are platforms for medium-scale circuits, valuable for demonstrating performance and
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scalability improvements. Lastly, the processors in the Canary family are constituted

by an optimized 2D lattice layout with up to 16 qubits.

Each processor has also different specifications regarding the quantum volume, a

measurement of the performance of gate-base quantum computer regardless of the

underlying technology, and circuit layer operation per flops (CLOPS) (Wack et al.,

2021) that measures the speed of the device. Such values can vary a lot based on the

processor’s family and versions giving us an idea of their computation’s quality and

speed.

One key difference in the processor is the different graph connections of the qubits,

if qubits are directly connected, they can interact easily, and the computation might

be subjected to fewer errors. In figure 4.5 we show the two possible structures of a

Falcon processors as examples of different structures. The specification for all the

devices can be found in the official documentation at IBMQuantum (2021)

(a)
(b)

Figure 4.5: The figures show the graph view of the processors at ibm_bogota 4.5a

and ibm_lima 4.5b. Both are part of the Falcon family of IBM quantum processors

Source: IBMQuantum (2021)
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4.3.3 Tests on real devices

Lastly, we tested our models on the real devices that IBM lends to the general

public. Many of the devices mentioned in the previous section have restricted access

and can be utilized only by members of the IBM quantum network. For this reason,

we only used processors from the Falcon family with five qubits and with a QV up

to 32, since they can be accessed by everyone. Each test chooses the device to use

depending on their availability from the list presented in table 4.4.

As we can see in Table 4.5, the accuracy of every model on the test set decreases on

Device Qubits QV CLOPS

ibmq_manila 5 32 2.8K

ibmq_bogota 5 32 2.3K

ibmq_quito 5 16 2.5K

ibmq_belem 5 16 2.5K

ibmq_lima 5 8 2.7K

Table 4.4: List and specifics of the real devices on which the models could be tested.

The choice was made at test time considering the availability of each device

average with respect to the performance on a simulated environment. This is to be

expected since real devices are subjected to external noise and are way less reliable

than simulations. Unfortunately QVSC tests on MINST09 and MNIST38 couldn’t

be performed on a real devicedue to computational limitation.

An interesting phenomenon is that for the ViVe dataset we see a downward trend in

the accuracy when increasing the controls qubit in the padded qSLP, and at the same

time, on average the padded qSLP performs much worst than single data qubit qSLP

or the other benchmark models in all dataset. Consulting table 4.1 we can observe an

inverse correlation between the depth of the circuit and the accuracy, and we see that
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single data qubits qSLP has a depth number roughly three time smaller than padded

qSLP when transpiled in the simulator1. This trend highlights how much the effect of

noise in the system increases when the number of gates in the computation increases,

since the accuracy tends to deteriorate more when more qubits, and consequently

more gates, are present in the tested circuit.

MNIST09 MNIST38 SeVe SeVi ViVe

QSVC - - 1.0 1.0 .95

QNNC v1 .81 .51 .95 1.0 .95

QNNC v2 .85 .83 1.0 1.0 .89

pad qSLP1 .68 .51 .60 .50 .60

pad qSLP2 .63 .69 .65 .70 .55

pad qSLP3 .51 .51 .50 .60 .5

sdq qSLP1 .83 .79 1.0 1.0 .55

sdq qSLP2 .84 .78 1.0 1.0 .70

sdq qSLP3 .76 .80 1.0 1.0 .65

Table 4.5: Accuracy of the models tested on a real device. We can observe a negative

correlation between the complexity of the tested circuit and the accuracy. This is

likely generated by the noise affecting the quantum processor that has a higher impact

when a high number of gates is involved.

From these experiments, we can also conclude that with the current technology,

the single data qubit sQLP is a more reliable choice when running on a real device,

because, even if it has slightly worse performance on the simulation compared with

the padded version, in a real processor the smaller depth produces less noise derived

1Even if the depth depends on the chosen quantum processor, we can safely assume the depth

of padded qSLP to be much greater of the one of sdq qSLP
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errors, preserving the simulated accuracy.

4.4 Future works

In this thesis, we showed how our qSLP, in both versions of the model, has the

capability of becoming one of the standards for quantum machine learning, since it

can reproduce and even surpass in terms of accuracy the benchmarks proposed in the

literature. However, this ability is highly dependent on two factors: the implemen-

tation of an efficient routine that emulates non-linear activation functions and the

future computational power of quantum hardware.

The true strength of this model is in the intrinsic ability of the implementation to

produce the effect that n neurons have in a classical model with just log(n) steps.

This potentially could allow us to exploit the universal approximation theorem, but

we still don’t have enough quantum computational power to test it. Since the work

of this thesis was limited to a test on five qubits hardware a natural follow up would

be to test the models on better processors increasing the number of control qubits d.

Concerning the other current limitation, as we already discussed in subsection 3.2.3,

we still do not have an efficient way to emulate non-linear functions and we are limited

by the linearity constraint of quantum mechanics. One possible direction for future

studies could try to take advantage of the modular architecture of qSLP and change

it by switching the proposed state preparation circuit in favor of one that performs

feature mapping since it has been proven by Goto et al. (2020) that machine learning

models induced from the quantum-enhanced feature space are universal approxima-

tors of continuous functions.

As technology progresses the number and the computational power of quantum pro-

cessors increases, and we could experiment with different, bigger, and more complex

datasets. An increase in both the number of observations, that today imposes a limit
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on the model’s training, and in the number of features used to make the prediction,

could allow us to increase our performance since they could provide more comprehen-

sive training and more feature to guide the classification. Another direct follow-up

in this direction could be experimenting on different classes of problems, including,

but not limited to, multi-class classification and regression, that are natively sup-

ported by the MAQA framework. As mentioned before, our testing was limited by

the computational power of the quantum processors available to us Falcon family of

processors, but more complex experiments could be done by someone with access to

more powerful machines from other families (Hummingbird, Eagle)

One last subject that was not discussed in this thesis is the possibility to change the

gates of qSLP’s ansatz from a cU3 to other parametrized gate to alter the function

g(x, ·). This operation is supported by the proposed implementation and can be easily

tested.

To summarize, our model is very promising but the current technological and theo-

retical state of the art doesn’t allow us to properly conduct a complete evaluation of

its potential. On top of that our model focuses only on binary classification, which

is one of many possible applications of the MAQA framework, and proposed specific,

even if modular, implementations in both the state preparation and ansatz circuits.

Here we produced the first-ever implementation of a quantum variational algorithm

for a single layer perceptron and we demonstrated the potentiality of this system.

Still, many questions remain open, and with them, many opportunities for further

improvement.
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Chapter 5

Conclusions

Quantum machine learning (qML) is a very promising branch of quantum compu-

tation, where rich possibilities are offered by just a small amount of qubits. However,

the computational advantages over classical machine learning have yet to be proven,

and qML techniques are limited by the state preparation phase and by the application

of an arbitrary number of gates.

In this thesis, we gave an overview of the MAQA framework and we showed how

it can be utilized to implement a quantum single layer perceptron (qSLP). The key

idea behind the proposal is to take advantage of properties of quantum computation

like entanglement, superposition, and interference, to create a more efficient version

of the classical algorithm. We propose an implementation of qSLP as an aggregator

of multiple functions g(x, ·) where each function propagates the input on a different

quantum trajectory, all of which are in superposition with each other. The speedup

provided by our model derives from the ability to create an exponentially large num-

ber of neurons in a linear number of steps and from the possibility of propagating

a function to each quantum state by applying it only once. This allows building a

model with an incredible descriptive power capable of being a universal approximator
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if equipped with a proper activation function.

We presented the implementation for a general model with a variable number of con-

trol qubits, that allows great flexibility when dealing with the small size of modern

quantum hardware. Indeed, our qSLP can be created with a number of qubits as

low as two. Furthermore, the resulting quantum circuit is modular and it gives the

possibility to change the ansatz’s parametric gates, the activation function and the

state preparation circuit, making it able to exploit more advanced techniques as soon

as they are found.

We provided two implementations of the algorithm that differ in the size of the data

register and the formulation of the ansatz and the state preparation. Both encode

the classical input with an amplitude encoding technique, but the first one utilizes

only one qubit to store the data while the second uses a two qubits register. The

second step, the ansatz, entangles the control register with the data register through

the use of controlled not and controlled parametric rotations, to achieve the wanted

superposition of multiple functions. An activation function F is finally applied on the

data qubit and through quantum interference, it is propagated to all trajectories in

superposition. Here F only contributes to the overall time complexity in an additive

manner while the same operation in a classical setting would affect complexity in a

multiplicative way.

Following the original design of MAQA, the qSLP is treated as a quantum variational

algorithm, meaning that the results are measured from the circuit, and then the pa-

rameters are updated classically. In our implementation the measurement, that is

usually a very expensive operation, reveals one of the advantages of the model, since,

to obtain the results we only have to perform it on a small subset of the qubits,

greatly reducing the complexity.

The model we presented has been implemented utilizing the qiskit library for quantum

computing. It is a flexible and highly customizable model. Different state prepara-
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tion circuits besides the one presented can be plugged in allowing for more exhaustive

future research. It can change the parametric gates in the ansatz and it is also com-

patible with the standard functions since it was designed to be consistent with the

qiskit library.

Alongside our model, we presented and implement other architectures already existing

in the literature: two quantum neural network classifiers and one quantum support

vector classifier. These architecture are then utilized as the baseline for our tests.

Lastly, one of this thesis contributions is the testing of our model on the real-world

benchmark datasets MNIST and Iris, to perform binary classification. The experi-

ments demonstrated the ability of the model to correctly classify linearly separable ob-

servations while highlighting the need for a non-linear activation function to improve

performance on discerning overlapping records. Furthermore, when the performance

on a test set is compared to the baseline, our architecture stands at the same level

as today’s standards and outperforms them in some situations. It is also worth men-

tioning that, as expected, the model performance in the simulation increases when

more control qubits are used (hence more nodes in the hidden layer), since, theoret-

ically, thanks to the universal approximation theorem, a single layer perceptron can

approximate any continuous bounded function, given enough nodes.

The main challenge for the near future is to tackle the problem of designing routines

to emulate non-linear functions in a quantum scenario, or to find alternatives to sur-

pass what is today the biggest obstacle for a complete quantum neural network as

a quantum variational algorithm. Furthermore future works might include the test

with more complex or more populated dataset, changes in the structure of the state

preparation function, and changes in the parametric gates of the ansatz.

To conclude, quantum machine learning, much like quantum computing, is still at

its beginning stage. We are moving our first step towards new technologies and we

still understand very little of how they can bring us advantages. Nonetheless, many
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researches suggest that quantum computing could change the way we think about

problems like machine learning, giving us benefits we would have never expected.
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