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Abstract

Precision agriculture is a management strategy of agricultural activities based on data-
driven decisions. This enables smarter usage of the available resources (e.g., water and
crop) and ensures higher productivity. Following the integration of precision farming
with the internet of things, big data, and artificial intelligence, we are witnessing the
rise of “Agriculture 5.0”. In this context, WeLASER is a European project that aims to
create a system for managing weeding tasks by the adoption of robots equipped with laser
technology that recognizes and burns weeds; this prevents the usage of chemical pesticides
that can cause environmental damages. Such application involves the joint usage of robotic
agents and data from IoT devices (e.g., weather stations) to perform effective weeding
tasks. The goal of this thesis is to design, create, and test a data platform that enables
the interoperability of IoT devices and robotic agents as well as data-intensive analytics
on streaming data. Such data platform provides unified interfaces to collect, integrate,
and analyze real-time data as well as to manage historical data.
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1 Introduction

1.1 Precision Agriculture

The purpose of precision agriculture is to transform the information collected from the
fields into profitable decisions through a more efficient and informed management, max-
imizing production [53] and profits [106], while ensuring a more sustainable production
from an environmental point of view [29].

The concept of Agriculture 4.0 arises from the integration of concepts from the world
of telematics and data management to the world of precision agriculture to be able to
make more informed and data-driven decisions regarding field management through better
monitoring. An example of the application of said techniques is the health monitoring
of the crops: the traditional approach to check the health of the crop involves the use
of visual inspections of fields but this approach is not always practical due to the size of
the fields and is limited by the frequency at with which the inspections can be carried
out. It is also necessary to remember that visual-only analysis also makes it impossible
to identify problems not visible to the naked eye [104].

As a further step in the introduction of ICT technologies into agriculture, it is possible
to identify the concept of Agriculture 5.0 which provides for the introduction of robots and
AI systems [131] within normal operations, aiming to reduce the employment of personnel
in tedious tasks [17, 18, 19, 107]. Some example of application include the use of data
collected from drones to draw insights regarding plant health indices, plant counting and
yield prediction or the monitoring of livestock, for example by identify sick animals.

Further information about the growing interest in the sector can be obtained by exam-
ining the funding obtained by startups in these sectors, [5] shows how AI and ML-based
startups have registered a 450% increase in fundraising in the last years [81], while [1]
states that startups involved in smart agriculture have raised over 800 million dollars of
investment.

1.1.1 Internet of Things

Internet of Things (IoT) can be defined as “an open and comprehensive network of in-
telligent objects that can auto-organize, share information, data, and resources, reacting
and acting in face of situations and changes in the environment” [11].
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1 Introduction

In recent years, the IoT world has increasingly become a consolidated reality made up
of devices capable of interacting with the environment thanks to their ability to perform
measurements or interact with it thanks to actuators [67, 122]. Such an approach makes
it possible to proactively intervene in the environment while minimizing the involvement
of human operators [21].

The use of IoT technologies in agriculture is booming and represents the main driver of
Agriculture 4.0 [96], it is estimated that between 10% and 15% of american farmers use IoT
solutions to analyze over 1,200 million hectares on approximately 250,000 farms [129], [29]
also predicts that, by 2050, a productivity increase of 70% will be reached.

The adoption of IoT technologies for monitoring and data acquisition also allows saving
energy and water, as shown by studies conducted by OnFarm1, the typical farm can reduce
the cost of energy from 35$ to 17$ per hectare and a reduction in water consumption of
8% [96].

IoT systems are pervasive and heterogeneous, typically in the projects in which they
are inserted it is necessary to introduce Big Data technologies. Referring to the typical
characteristics of Big Data projects [41], we can highlight the following properties about
the collected data:

• Volume: considering the size of the areas that will be managed, it is inevitable
to assume that we could have to handle, potentially, tens/hundreds of sensors also
capable of generating high-dimensional data such as video streams generated by HD
cameras used for visual monitoring;

• Variety: different sensors will need to be employed for proper monitoring. These
heterogeneities in the devices will lead to heterogeneity in the data, both from the
point of view of the meaning and of the format;

• Velocity: sensors are always active entities, capable of generating and transmitting
data for their life cycle, potentially at high rates;

• Veracity: problems related to data quality can arise, for example, from damage to
sensors. Damage is likely since the sensors will be placed in the external environment
and will potentially have to remain there for a long time;

• Valorization: adopting these systems can be costly, both in terms of money and
the time required for training. We must be able to exploit the data to have a
return on the investment made. To enhance the data, these must be processed and
transformed into information useful for the decision-making process.

The need to integrate technologies from the BD world was also highlighted in [59],
where it is shown they are applied more and more frequently in projects in the agricultural

1http://www.onfarm.com/
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1.2 WeLASER Project

sector, [69] also cites 34 projects that use Big Data in tasks that, for example, comprise
food availability and security, handle weather and climate change, land management and
animal-based research.

1.1.2 Robotics

The introduction of robots in agriculture makes it possible to significantly increase produc-
tivity and reduce operating costs [99] but, despite exponential growth in the introduction
of robots [107], the costs of adoption are very high especially for smaller contexts [35].

Among the applications of robot in agriculture we can notice the introduction of au-
tonomous vehicles to automate cropping operations or the detection of unhealthy plants.

1.2 WeLASER Project

WeLASER is a project founded on the EU societal and environmental needs noted by the
European Commission in the call SFS-04-2019-2020 – “Integrated health approaches and
alternatives to pesticide use” - which aims to aims to merge technologies from the ICT
world like IoT, Big Data, and cloud technologies to build, assess and push into the market
a precision weeding equipment based on high-power laser sources and autonomous mo-
bile systems with the main objective of eliminating the use of herbicides while improving
productivity and competitiveness; such a system would eradicate health risks and environ-
mental adverse effects associated with the use of herbicides [125]. In Europe, the yearly
production of food is guaranteed by using 130 million tonnes of synthetic herbicides every
year (apart from other chemicals) which persists in the environment destroying non-target
plants, beneficial insects, and produce health effects in animals and humans, including
cancer, birth defects and disruption of the endocrine system.

Today it seems that the only alternative to the use of herbicide is mechanical weed
control by tillage which is fuel-consuming, aggressive for soil and roots, and increases
erosion. Alternative to this solutions are based on thermal effects as spot-flaming or
electrical resistance heating but such approaches are not a common solution in the market.

Weeding and cropping require the introduction of technologies that will enable to have
control over the environment, the degree of control depends both on technologies and
the context on which we operate. For example, [120] illustrates that in some scenarios,
such as indoor culture, we can exercise more control than other. As for the devices [120]
we can find an interesting distinction between Monitoring Devices and Power Devices,
in the first case, we have devices that will constantly monitor some parameters but not
require continuous communications while the latter are devices that require a high energy
consumption they produce data streams and have the ability to send alerts when certain
conditions are met.
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1 Introduction

WeLASER proposal is to use a plant-individual irradiation via a laser source which
could allow the use of thermal treatment with a moderate energy cost which also preserves
the soil.

1.2.1 Contribution

This thesis is carried out within the initial phases of the WeLASER project, the goal is to
create and test an architecture that allows the interoperability of IoT devices and robotic
agents, providing a unified platform for the collection and integration of data for allow
the integration of applications capable of carrying out analyzes, even in real time, on the
data.

The architecture that will be developed is similar to the concept of Data Platform: an
evolution [82, 108] of the concept of Data Lake. This extension is due to the need to go
beyond simple data storage. To make the most of the collected data it is necessary to
provide techniques and tools on several levels [114]. Needs of this type have been progres-
sively recognized by various suppliers, such as Google and Amazon, which have begun to
make available various tools to manage aspects ranging from ingestion, transformation to
analysis.

The developed architecture will be used to provide a demo for the WeLASER project,
to demonstrate the possibility of supporting the integration of heterogeneous and geo-
graphically distributed devices, performing data collection, real-time analyzes, and the
dynamic integration of new applications.
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2 Background and Related Work

This thesis is placed at the intersection between IoT and robotics systems, the aim is to
provide a basis for the development of the WeLASER project, placed in the context of
precision agriculture.

This chapter will serve as an introduction to the world of IoT and Robotics in the
context of Precision Agriculture, we will describe the state of the art and perform an
analysis of the challenges and open problems.

2.1 Internet of Things

Internet of Things (IoT) technologies enable the integration of a large number [4] of
sensors and devices capable of communicating in a smart environment, thus enabling an
exchange of information [75]. Among the sectors interested in these thematic, as enabling
to build intelligent and interconnected spaces and environments capable of merging the
physical and virtual world [25, 77], we can identify smart office, smart retail, smart
agriculture, smart water, smart transportation, smart healthcare, and smart energy [85,
49, 75]. The spread of IoT technologies is also enabled by the diffusion of technologies
from the telecommunications sector that allows for the embedding of wireless transmission
tools such as Bluetooth, WiFi, ZigBee, and GSM into the device. These technologies allow
transferring data to and from the devices allowing direct integration of the devices in the
physical world [75].

Among the fastest-growing trends in IoT, we can highlight the conjunction with Big
Data and Cloud environment which makes it possible to exploit more suitable technologies
to manage the high amount of data generated and ensure access to greater computing
power. In literature, various architectures have been proposed for managing Big Data in
conjunction with IoT [75, 49, 32, 132] while in [75] a standard and reusable architecture
has been proposed, here shown in Figure 2.1.

IoT Big Data analytics includes the steps involved in the analysis of data produced by
sensors [42] to discover trends, unknown patterns, hidden correlations, and new informa-
tion [40] to assist organizations and their business [102] giving the possibility to make
informed and data-driven decisions [119]. The possibility of analyzing unstructured data
that otherwise could not be handled with traditional techniques is also of fundamental
importance [46].

11
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IoT Devices

Network Devices

IoT Gateway

Cloud

Big Data Analy�cs

API Dashboards

Figure 2.1: IoT and Big Data integration blueprint, adapted from [75]

In Figure 2.1 we can see a representation of the architecture of an IoT system [75]:

• Sensors: entity capable of reading environmental values;

• Actuators: entity able to interact with the surrounding environment;

• Gateway: manages a multitude of sensors and actuators. It handles the flow of data
between devices and allows to perform filtering operations on data;

• Controller: manages several gateways and performs high-level processing to convert
data into information;

• Middleware: the intermediary between the IoT subsystem and services. At this
level, aspects related to privacy and security can be managed. It also enables
interaction with cloud services;

• Applications: can interact with the middleware via API. They allow the end-user
to interact with the system.
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2.1 Internet of Things

2.1.1 Challenges and Open Issues

Heterogeneity and Integration The creation of a wide IoT ecosystem entails the con-
nection of, potentially, thousands of devices that are typically different from each other
for various aspects like different protocols or data formats [16]. To ensure interoperability
it is necessary to introduce layers that manage a preprocessing phase to standardize the
various formats [31] and heterogeneous sources [3].

In the IoT context variety in terms of format rigidity also comes into play: we can have
structured, semi-structured and unstructured data. In the case of semi and unstructured
data, it is necessary to provide within the integration phase that allows for a structure
to be obtained before proceeding with the integration [2]. One of the most common
examples is the use of text mining techniques to extract information such as entities and
relationships from a text.

Visualization Having GUI systems to analyze data allows to obtain better insights on
trends [124] is paramount to have a nice user experience but creating visualization systems
compatible with advanced Big Data indexing frameworks and which guarantee a low
response time is a complex task [75]. In [75] we can find a summary of specific needs:

• dimensionality reduction: facilitate the identification of patterns and outliers [13,
95, 30];

• parallelization: the need to decompose a problem in simpler tasks to leverage parallel
execution is emerging also for visualization algorithms [24];

• metadata management: metadata integration and visualization with dedicated tools
is emerging as a need trend [110, 39].

Management Having to manage a large number of devices also causes problems of an
administrative nature, just think of the costs in terms of energy and physical space. Other
problems emerge when we consider the increase in possible causes of faults and the need
to keep device configurations updated.

Security In 2017 there was a 600% increase in attacks against IoT devices [66] and
cybercrime has become the second most reported crime globally [45]. In many cases, the
intruders are not directly targeting the IoT device, but aim to use it as a weapon to attack
other elements of the infrastucture [6]. IoT systems seem to be easy targets for attackers
mostly because manufacturers often place great emphasis on cost, size, and usability, while
security aspects tend to be neglected [72], [72] also states that some producers implement
security practices mainly because the eventual exploitation of one of their IoT products
will damage the company’s image, thus demonstrating that safety is not one of the main
aspects typically taken into consideration during the developement of new products.
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Since sensors can collect a high volume of data, even of personal nature, the violation
of an IoT system poses several problems regarding users’ privacy. The proliferation of
analytic systems is leading more and more people to be reluctant to consent to the use of
systems of this type unless they are accompanied by strong service-level agreements [75].

2.2 Robotics
Robots have always been a fundamental element of industrial evolution, intending to
facilitate human work, for example, by performing dangerous tasks, like cleaning nuclear
sites [116], interventions in dangerous or inaccessible environments, such as maintenance of
submarine cables [60], but also, to improve the working conditions of people by relieving
them of the need to perform repetitive or stressful tasks. One of the peculiarities of
robots is their flexibility, given the possibility to easily reprogram a robot we can use it
for different tasks, without the need to redesign it.

Robots can take on varied shapes and sizes but the following components can always
be identified [83]:

• Main Body: links, joint, and other structural elements of the robots;

• Actuators: act like muscles in the. Under the command of the controller they are
able to activate the actuators which, in turn, allow the joints and links to move;

• Sensors: used to collect information about the outside world and the state of the
robot. One of the main necessities is to be able to accurately know the position of
each link of the robot;

• Controller: portion of the system delegated to control the movement by interacting
with the actuators. Its role is similar to that of the cerebellum in the nervous
system;

• Processor: performs calculations to determine how and where to move the robot
components. In a nervous system analogy it is the brain.;

• Software:

– Operating System: manages the processor;

– Robotic Software: software dedicated to the calculation of joint movements.
It interfaces with the controller;

– Application-Oriented Routines: programs written to control the robot or its
peripherals to perform tasks.

A major problem associated with the world of robotics is the limited resources of the
single entity [61]. To overcome this limit, starting from the 90s [47, 64], the idea of having
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2.2 Robotics

a “remote brain” to manage the robots emerged. In recent times these concepts are
finding more and more traction, resulting in the conceptualization of Cloud Robotics: [78]
the interconnection of robots over the cloud to overcome the limitation of the single
robot [103].

As highlighted in [103], a survey concerning more than 100 scientific articles from the
cloud robotics sector, we can highlight two main research lines:

• Cloud robotics system architecture: the study of architectures and protocols that
allow communication between robotic systems;

• Cloud robotics application: application of cloud robotics to typical problems of
robotics and automation systems such as computer vision systems, navigation,
grasping, or manufacturing.

Several projects [10, 123, 27] aimed at the convergence between the world of robotics
and the world of cloud computing to extend the capabilities of the single robot, however
with out being able to define an open ecosystem on the line of that Android or Linux. In
our case study, we will focus on the architectural aspects.

There are several frameworks for the management of robotic agents, but we will focus
on ROS due to its wide diffusion both in academia and the industry [73, 101]. ROS is
an open-source library that deals with issues related to the control and deployment of
robots. It is often defined as an Operating system since it provides low-level abstractions
(e.g. hardware abstraction, low-level device control, commonly used functionality, low-
level device control, message-passing between processes) but it is an application that runs
on Unix-based platforms.

One of the main features of ROS is its robust graph-based infrastructure that enables
Peer to Peer (P2P) communication between nodes, each one representing the abstraction
of a component. This allows developers to focus on a specific functionality by encapsu-
lating it within the node, effectively creating a service-based distributed system.

In Figure 2.2 it is possible to see an example of an application of the architecture. The
following parts can be highlighted:

• nodes: processes that perform a computation. To ensure greater modularity and
reuse of components, a robot can be defined as a set of nodes, each dedicated to the
management of a particular aspect;

• master: manages node registration, acts as a name server and, propagates configu-
ration changes;

• messages: used by nodes to communicate with each other, a message consists of a
data structure and data.
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Robot External System

Sensor
Node

Actuator
Node

Algorithm
Node

Ros Master

Sensor

/sense

/algo

Registra�on

Registra�on

Data Subscribe

Publish

SubscribePublish

Figure 2.2: Example of a ROS graph, adapted from [118]

• topics: messages are handled with publish/subscribe semantics. The use of this
methodology for the exchange of information allows for a high level of flexibility
given that publishers and subscribers do not need to know each other, they only
need to be aware of the existence of the topics and what information they can
receive/publish on them. Even external entities can interact with robots through
topics, for example, by reading the data produced and sending commands.

In the example pictured in Figure 2.2 we can see a robotic system composed by two parts:
the Robot itself and a generic External System. The robot is responsible to collect data
from the sensors via the Sensor Node while the External System takes care to execute an
algorithm abstracted via the Algorithm Node. The two system can communicate by using
topics: /sense is the topic reserved to send messages about “sensed” information collected
by the sensors, whilst /algo is used by the Algorithm Node to publish commands that
will be executed by the Actuator Node. An application of this example could be a robot
capable of moving around the environment thanks to the data collected by the sensor
which, at the same time, delegates a more complex part of computatio ton an external
service capable of influencing the movement of the robot.

Further analyzing Figure 2.2 it is possible to notice a criticality: despite two very
different areas of expertise are involved, namely low-level management of the robot, in-
cluding the interaction with the sensor hardware, and the integration of algorithms, the
same abstraction, ROS node, is employed. A solution of this kind requires the applica-
tion developer to have knowledge also in the field of robotics to interact with the rest of
the system as well as to create interfaces dedicated to interacting with a sub-part of the
system.
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2.2.1 Challenges and Open Issues

Artificial Intelligence and Deep Learning The use of techniques from the world of AI,
in particular Deep Learning and Reinforcement Learning, is increasingly spreading [92],
in particular as regards the possibility of having systems capable of adapting to changes
in the environment in which they operate [70], however many of the solutions adopted still
suffer from problems related to unpredictability and high computational cost. Another
challenge to consider is the availability of training data due to the high cost associated
with their generation, in addition to the technical difficulties.

In [93] seven challenges are identified:

• Learning complex, high-dimensional and novel dynamics: robots are called upon
to manage complex dynamics which, typically, would require the intervention of
human experts. The models that emerge from the training phase must be robust,
therefore able to function well even in the case of new situations. For example, they
must be able to interact with objects never seen before or move on surfaces never
seen before;

• Learning control policies in dynamic environment: it is necessary to have control
systems available to ensure safety, even of complex robots, such as multi-arm or
robot swarm, or when we need to operate them in environments characterized by
high uncertainty;

• Advanced manipulation: having a general and robust method to manage the grasp-
ing of deformable objects or objects characterized by complex shapes is still the
subject of research;

• Advanced object recognition: It is necessary to be able to estimate changes in shape
and state in deformable objects. Other tasks of this type include the ability to infer
the characteristics of unknown surfaces;

• Interpreting and anticipating human actions: robots need to be able to understand
human intentions when they have to interact with human operators in a collabo-
rative context. Among the most advanced applications of this type, we can find
“teaching by demonstration”: that is, the possibility of making robots learn new
functions through examples;

• Sensor fusion and dimensionality reduction: ability to combine information pro-
duced by different sensors to build a unified model;

• High-level task planning: ability to generate an execution plan to carry out a higher
level command.
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2 Background and Related Work

Task Delegation and Safetiness When designing a cloud robotic system we need to
choose carefully which tasks delegate to the cloud environment.

First, we need to take into account the trade-off between the energy required to perform
the needed algorithm locally and the energy required to transfer all the data needed to
perform the remote execution [62].

Another factor to keep in mind is safety: if a robot is entirely dependent on cloud com-
putation a network interruption could cause an hazard on operators and the surrounding
environment [62]. If the robot was completely controlled via the cloud, a network outage
would result in a loss of control of the robot. Even simple slowdowns can cause damage;
if a robot equipped with a proximity sensor relies only on a computation performed in
the cloud environment, it may not be able to stop in time in front of an obstacle.

Abstractions ROS has made it possible to take many steps forward in the implementa-
tion of projects involving robotic agents, however the abstractions it makes available risk
being insufficient in the Cloud Robotics context [73, 117]. The presence of a high number
of agents and, potentially, geographically displaced, undermines the ROS model which
foresees a small number of robotic agents interacting in an environment.

To work smoothly in this new environment, we need new abstractions for two types of
developers: robotic system developers and cloud services developers. Robots developer
needs to be able to design and manage robots easily, while continuing to exploit the
possibility of reusing ready-made components as was the case with ROS. On the other
hand, cloud developers need to be able to interface with robotic systems without having
specific knowledge, so that they can focus on specific aspects of cloud projects.

This need also emerges in our case study: we will interface with a robotic agent that
performs a task and, at the same time, analyze the data it produces, together with the
data collected by a network of sensors.

18



3 Design

The WeLASER project aims to create a system that allows managing missions performed
by a heterogeneous set of robotic agents and IoT devices, such as weather stations and
cameras, to provide support for cropping and weeing operations. The ultimate aim of the
project is to create a solution that allows the cooperation of the various parts that make
up the system to perform the detection of the presence of weeds and then proceed with
their removal using a laser beam. To meet these requirement we have designed and built
a Data Platform that allows the integration of heterogeneous devices and the dynamic
deployment of new applications.

To make the system as general as possible, we have adopted a modeling based on
Domains and Missions. Domains are a conceptual collection of missions, that is, a set
of tasks that have something in common, for example all the missions carried out by an
organization. Missions are carried out by various types of devices while the devices can
also be defined as aggregates. In Figure 3.1 it is possible to see the relationships between
these elements.

In this chapter, we will detail the requirements and provide an architecture based on
the features that must be met and the necessary components.

3.1 Requirements

3.1.1 Device Management

The WeLASER projects requires managing a heterogeneous set of devices like, for exam-
ple, weather stations, cameras, and robots capable of navigating the terrain.

These devices use different protocols and technologies to communicate. From this
fact emerges the necessity to provide an abstraction that masks the peculiarities of the
individual devices [91, 34] and enables us to manage the entire life cycle [20] of the devices.

As introduced in Section 2.1.1, we will have to make two different types of interfaces
available, designed for two different types of users: the developers of the devices and the
developers of the Cloud system [52]:

• Developers of the cloud system should to be able to interact with devices as if
they were “black boxes”. This means that they must be able to obtain data from
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Figure 3.1: Interactions between Domain, Missions, and Devices

their sensors and submit commands without having to know about the underlying
mechanism;

• Developers of the devices have very in-depth knowledge in terms of sensors and
actuators but may not have in-depth knowledge of Cloud system. They should
be able to work without having in-depth knowledge of the cloud systems that will
manage the data produced by the devices.

We will also need to manage devices around the world, therefore we need to have a
service that allows us to collect information in real-time and to intervene remotely to
perform an initial debugging/investigation phase of problems without the need to go
on-site, thus reducing management costs [100].

As introduced in Section 2.1.1, we must keep security aspects into consideration when
building this kind of system. Devices can be the point of interest of attackers [109] or
put at risk the physical safety of the operators who have to interact with them [80]. To
deal this aspects we will need to introduce adequate authentication mechanism in order
to ensure that only the authorized devices can communicate with the rest of the system.

Requirements regarding Device Management comprehends: device creation, device de-
struction, device interaction, device authentication, seamlessly robot integration, and
remote administration.

3.1.2 Data Management

In the WeLASER project we will have to adjust the behavior of the robot on the basis
of the readings made by a heterogeneous set of sensors, both mounted on the robot and
scattered in the field. We therefore need a system capable to collect, store and use data
in a safe, efficient, and economical way [23]. As stated in Section 2.2.1 this is currently
an open issue in the field of Cloud Robotics.

This group of requirements can be detailed in:

• manage a diversified data level;

• archiving of data across multiple clouds and on-premises;
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• store data across multiple location, both on the cloud and on-premise;

• ensure high availability;

• make data available to a growing set of applications;

• topological organization;

• archiving and deleting of data based on retention programs and compliance require-
ments.

3.1.3 Incremental Service Integration

WeLASER will be developed incrementally, adding new applications or services from
time to time. This requirement is similar to the concept of Application Integration, de-
fined by Gartner1 as “the process of enabling independently designed applications to work
together” [28].

By allowing applications to work together and integrating new ones as new needs arise
within the project, we can guarantee a more agile evolution and, at the same time, reduce
the costs for the introduction of new functions. [128]

Achieving such a goal requires meeting several requirements:

• Make applications communicate: a mean of communication that enables the in-
teraction between applications while providing guarantees about the availability of
messages is needed;

• Having a shared data model: to ensure the interoperability of the various applica-
tions, it is necessary to have a data model defined and shared by the participants;

• Have well-defined interfaces (API): providing a set of well-defined APIs for each
application on the system reduces the time it takes to perform the integration.

The possibility of introduce new functionalities in a dynamic fashion will allow, in the
future, the possibility of adding functionality to the robot in the form of algorithms whose
computation can be delegated to cloud services. As introduced in Section 2.2.1, delegation
aspects are still an open topic in research.

Requirements regarding Incremental Service Integration can be summarized in:

• Each service should be self-contained;

• Services can be added and remove dynamically;

• Services need a well defined interface.
1https://www.gartner.com/en
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3.1.4 Near Real-Time Data Analysis

Big Data analysis is not just about batch analysis, i.e. complex computation over a large
amount of data, but also analyzing data streams: simpler computation over smaller sets
of continuously incoming data. In the WeLASER project we want to be able to analyze
the collected data in near-real time to make decisions about the functioning of the robot
and monitor the readings performed by the sensors.

The analysis of streaming data differs greatly from the standard analysis of data due
to its specific characteristics:

• Infinite dataset: data is always generated and ingested into the system, this means
that only a fraction of the dataset can be kept in memory;

• Infinite computation: the computation is always running and must be able to keep
up with the data. We must remember that an overflow may occur if we can’t keep
up with the stream, we need a plan to prevent this to happen, e.g.: auto-scalability;

• Low-latency and approximate result: approximation may be required to accommo-
date the low-latency requirement. A timely approximated result, with guarantees
about the correctness, is better than a late perfectly correct result.

3.2 Architecture
In this section, we will describe the high-level architecture of the system.

The architecture was derived from that of [75] (see Figure 2.1) with some changes. First
of all, the concept of the cloud was not considered as a level but as a pervasive element
that encompasses a large part of the architecture. Secondly, the concept of “application”
has been revised: we do not consider only an analytic service but a broader context that
allows the execution of a dynamic set of applications. Figure 3.2 shows the components
of the architecture and how they map to the requirements.

In the following sections we will show how the previously detailed requirements are met
by the introduced components.

3.2.1 Device Management

As introduced in Section 3.1.1 we will need to be able to manage the entire life cycle of a
heterogeneous set of devices.

With the term “device” we refer to “smart objects” as defined in [11]: any physical(e.g.:
board based on micro-controller connected to the network) or virtual(e.g.: a service that
performs analysis over a data stream) entity capable of being identifiable, connected to a
network, and able to measure, process and act [67, 122]. Devices, therefore, represent the
essential elements through which we can monitor and control a remote environment [51].
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In this project, we will use ”simulated” devices, i.e. software applications that emulate
the behavior of a physical device. This decision will allow us to focus on the architectural
aspects without bringing into play the complexities typical of the design and construction
of physical devices.

To enable device communication with the reminder of the system we have introduced the
“Device Gateway”: a component that, acting as an intermediary, allows communication
with cloud services even to devices that cannot do it natively.

The “Device Adapter” layer is introduced to standardize the different protocols and
technologies used by the device. Its purpose is to provide the devices with a point on
which they can transmit the data they have produced and, at the same time, provide a
uniform interaction model with the devices to the higher levels of the system. Various
frameworks are available for managing these aspects (e.g.: Amazon IoT [12], Google
IoT [48], Azure IoT [14], and Fiware [115]. A comparison between providers can be found
in [50].

Common functionality can be summarized in the following points [121]:

• Device Management: in some IoT scenarios the set of devices that will be managed
can be very vast, it is necessary to have specific tools to control the devices;

• Data ingestion: acquisition of data towards a repository. It is possible to act by
“pull” from the source to the repository or allowing the sources to “push” the data
to the repository;

• Data Storage: persistent storage of information. Different solutions can be employed
depending on the context of the problem (e.g.: relational DBs, non-relation DBs,
Data Lakes);

• Data Processing: knowledge extraction starting from raw data, in some cases the
processing can also start during the collection phase, for example by aggregating
different readings to be able to identify and correct spurious readings and reduce
the volume of data transmitted.

3.2.2 Data Management

The first component we encounter at this level is the Device Adapter : the responsible for
transmitting the data it has collected and processed to the Integration Middleware, a hub
through which users and applications can interact with a representation of the system as
a whole. Through this architecture it will be possible to access a complete and integrated
representation of the status information, but also to submit commands to the devices
which, thanks to the mediation of the device adapter, can be executed in a completely
transparent way, thus abstracting away the different characteristics of the devices, thus
provide a viable solution to the problems illustrated in Section 2.2.1.
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A middleware can be defined as software that allows the interconnection of applications
in a distributed system [15]. From the developer’s point of view, the presence of mid-
dleware allows the development of applications without having to worry about writing a
specific integration for each application, thus reducing the time and costs necessary for
the development of new features. In our case, the middleware will make it possible to
maintain the current state of the devices, using a coherent and homogeneous format, and
publish this information on the event bus so that such data can be used by the various
applications, as described in Section 3.1.2

Due to the large volume of data collected by organizations, it has become more and
more complex to use traditional data-warehouse systems for integration and analysis [44],
for meeting this new need the concept of Data Lake (DL) emerged. DL can be formally
defined as “a central repository system for storage, processing, and analysis of raw data,
in which the data is kept in its original format and is processed to be queried only when
needed. It can store a varied amount of formats in big data ecosystems, from unstructured,
semi-structured, to structured data sources.” [26], but they can also employ mechanisms
like metadata to describe and manage the data to facilitate its consumption [113].

DL differs from the more traditional Data Warehouse model by using a flat architecture,
where each element has a unique identifier and a set of associate metadata [79], while
addressing a set of common problems related to Big Data:

• Various types of data: different information have to use a different format, varying
from structured to semi-structured and, recently, unstructured data [7];

• Frequent updates: data changes constantly, and keeping pace with such velocity
poses significant challenges. Traditional solutions which require the use of a fixed
schema now are posing a threat to the ability to adapt to newer representation;

• Large amounts of data: a single machine is no longer capable to handle all the
required volume of data, particularly if time series came into play.

Solutions like DL provides a high degree of flexibility, required to address the charac-
teristic veracity and variety of Big Data, but an adequate level of maintenance is needed
to avoid drift of the quality, resulting in the so-called “Data Swamp” [89].

Today cloud data platforms provide several tools for operating ingestion, transforma-
tion, and analysis on data but, as described in [39], what is lacking is smart support to
handle descriptive metadata and appropriate mechanism to maintain them despite var-
ious projects that have, partially, address the problem [74, 105, 97, 88]. Metadata are
information about the actual data (e.g. schema, information, semantic, and provenance)
which ensure that data can be easily found, trusted, and used, they can be automatically
extracted during the ingestion phase and collected in a catalog and classified in different
categories [98]:
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• Intra dataset: describe a single dataset;

• Inter-dataset: describe the relationship between datasets;

• Global: contextual layer on the data.

The collection of metadata and its correct management brings numerous advantages
like:

• Object profiling and search: Searching, selecting, and describing the objects stored
in the DL; even perform a complex query based on schema description;

• Provenance and versioning: describe at different levels of detail the objects, the
transformations, and relationships;

• Orchestration support: we can trigger a workflow based on some properties stored
in the metadata repository.

3.2.3 Incremental Service Integration

In order to dynamically integrate new application to the system, as described in Sec-
tion 3.1.3, we leverage an “Event Bus” fed with the data collected by the “Integration
Middleare”.

The presence of the integration middleware ensure a common representation of the
information while the presence of an event bus allows the different applications to com-
municate and access the data they need to operate without worrying about the presence
of the underlying levels and avoiding the use of point-to-point communication between
the various applications, thus simplifying interactions. We will use an event bus based
on the concept of publish-subscribe in order to allow applications to logically group the
messages they send and to be able to receive only the messages they are interested in.

This kind of deploy can be seen as microservice-based deploy, architectural style that
structures an application through a collection of small and independent services [127]
where each microservice is oriented to the resolution of a specific problem, this allows to
have an excellent decomposition. These features make the implementation faster, since
it is possible to build new features by relying on other components already present in
the system, and the provision of these features to users, thanks to the greater ease of
deployment.

The primary purpose of this organization is to ensure the independence of services and
facilitate their evolution [22]; furthermore, from a cloud perspective, it is interesting to
note that the independence of the various services allows being able to scale the resources
assigned to each one independently, making them particularly interesting for deployment
in cloud contexts [71].
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The adoption of microservices architectures is also linked to the increasingly frequent
adoption of AGILE design methodologies [76] and the DevOps techniques [63], typically
a team can be fully responsible for the management of a service, ranging from design to
deploy. Its also worth notice that the adoption of this architectural style comes with some
hurdles [130], most notably is the need to define the correct decomposition granularity
and management of the deployment of these solutions.

3.2.4 Neal Real-Time Data Analysis

Given the presence of an event bus, it is possible to integrate applications that allow
real-time analysis by simply deploying and starting to consume from the event bus.

Thanks to a cloud deployment we can take advantage of auto-scaling mechanisms to
guarantee processing with low latencies, as requested in Section 3.1.4.

At the moment three services that leverage real-time analysis have been identified:

• Dashboard: we want to provide a dashboard through which the user can visualize
the current status of the devices, issue commands and interact with other services;

• Average Temperature: a mission can be made up of several devices capable of
performing similar readings. The purpose of this service is to calculate the average
temperature of the sensors in a given field. In this way, it will be possible to obtain
a more precise reading, even in the event of the presence of defective sensors;

• Collision Detection: since several elements will have to move in the same physical
space, it will be important to avoid collisions. For this purpose, a collision detection
service has been provided. This service will monitor the movements of the devices
by generating a notification if two devices are too close.

26



3.2 Architecture

Integration Middleware

Device Adapter

Event bus

Application 2Application 1

Devices

Device Gateway

D
evice 

M
anagem

ent

D
at

a 
M

an
ag

em
en

t

S
ervice 

Integration
R

eal T
im

e 
A

nalysis

DL

Figure 3.2: Architectural blueprint
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The purpose of this chapter is to discuss a viable implementation of the architecture pre-
sented in Section 3.2. The architecture is organized around FIWARE, since this framework
is a technological requirement stated in the grant agreement of the project.

We will introduce FIWARE, one of the main technologies underlying the implemented
architecture, to give an overview of remarkable aspects of this technology and the inter-
action between the main components used.

For each function, the components that contribute to satisfying the involved needs
will be introduced. For each component, we will describe its peculiar aspects and the
interactions it has with other elements of the architecture.

In the end, services related to Analytics on Stream Data will be detailed.

4.1 Introduction to FIWARE
FIWARE [115] is an open-source, cloud-based infrastructure for IoT platforms founded
by the European Union and the European Commission with goal of “[...] build an open
sustainable ecosystem around public, royalty-free and implementation-driven software
platform standards that will ease the development of new Smart Applications in multiple
sectors”. The FIWARE project comprises both a set of standards based on NGSI-2 [36]
and a rich catalog of components called General Enablers (GEs).

In Figure 4.1 we can see the interactions between the components that we will introduce,
while in the reminder of this section we will give more details about each of them.

4.1.1 Orion Context Broker

Orion Context Broker (OCB) manages the context, a representation of the current state,
and acts as a broker between context producer and context consumers by providing a
rich set of HTTP API through which, for example, we can query the context and create
subscriptions that will be triggered upon certain conditions. The presence of a Context
Broker is the mandatory requirement to have a “Powered by FIWARE” platform. In Fig-
ure 4.2 we can see the main components of OCB, each of them will be further detailed.

Context The context is a representation of the current state of the system [87]. Within
the context we can find information relating to both real devices, such as a temperature
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Figure 4.1: FIWARE components used and their interactions

sensor, and virtual entities, for example an aggregation of readings from multiple sensors.
For each entity that makes up the system we will have a corresponding representation

within the context, thanks to this representation we can have a single point to query the
system about the current state of a component or submit the execution of commands.

We can identify two main advantages in this representation:

• simplicity: everything is represented via entities composed by attributes;

• flexibility: entities not necessarily model things from the real world but can also
model things in the virtual world, for example, an alarm. Real and virtual en-
tity will share the same abstraction, i.e. they will be indistinguishable as far as
representation is concerned.

FIWARE provides two abstractions to allow interaction with the context: producers,
entities able to create and update information within the context like sensors, and con-
sumers, entities that need to access context data in order to perform a task. The boundary
between these two types of elements is often not well defined since an entity can act at
the same time both as a producer and as a consumer. An example could be smartphones
that periodically transmit information about its usage and, at the same time, receive
information that will be displayed to the user.

Subscriptions Context consumers, in addition to directly querying OCB, can take ad-
vantage of the Subscription mechanism to automatically receive relevant information when
certain conditions are met. Subscriptions can be created by sending a specific request,
containing details about the conditions of interest and the HTTP endpoint that must
receive the notification, to the OCB.
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Figure 4.2: Orient Context Broker architecture

1 curl -iX POST \
2 "http://{ORION_IP:ORION_PORT/v2/subscriptions" \
3 -H 'Content-Type: application/json' \
4 -H "fiware-service: openiot" \
5 -H "fiware-servicepath: /" \
6 -d '{
7 "description": "Notify Draco of all device changes",
8 "subject": {
9 "entities": [{ "idPattern": ".*" } ]

10 },
11 "notification": {
12 "http": { "url": "http://'${DRACO_IP}':'${DRACO_PORT_EXT}'/v2/notify" }
13 }
14 }'

Listing 4.1: Subscription registration example

In Listing 4.1 we can see an example of the creation of a subscription via an HTTP
request made with curl. The subscriptions are comprised of two main parts: subject, the
trigger condition, and notification, the endpoint that will receive the notification.

Through subject, various parameters can be specified, for example:

• device type: it is possible to limit the validity of a condition to a specific type of
device;

• idPattern: using this parameter it is possible to limit the scope of validity of a
subscription to a group of specific devices. For example, if we know that a certain
type of sensors produces a payload that requires particular management procedures,
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we can give them a deviceID that follows a particular pattern and use the same
pattern when defining the subscription;

• condition: through condition we can more precisely define the changes that must
occur for a given parameter. For example, it is possible to define two subscriptions
for the thermometers, one that manages the ”low temperature” case and one for
the ”high temperature” case.

Service Group Service Groups (SG) are logical groupings of devices, they can be used to
define scopes for entities and subscriptions. When defining an SG it is necessary to define
the corresponding apikey: an authorization credential used by the devices to interface
with the group to which they belong. It is also necessary to indicate the context broker to
which the group will refer and the default type of entity that will be managed. The last
configuration parameter is resource, in the example it has been set as an empty string
because we are managing MQTT devices; in the case of HTTP devices, it will indicate the
endpoint with which they will communicate with IoTA. In Listing 4.2 can see an example
of SG creation.

1 curl -iX POST \
2 'http://localhost:4041/iot/services' \
3 -H 'Content-Type: application/json' \
4 -H 'fiware-service: openiot' \
5 -H 'fiware-servicepath: /' \
6 -d '{
7 "services": [
8 {
9 "apikey": "4jggokgpepnvsb2uv4s40d59ov",

10 "cbroker": "http://orion:1026",
11 "entity_type": "Thing",
12 "resource": ""
13 }
14 ]
15 }'

Listing 4.2: Service Group creation example

As you can see in Listing 4.2 the request is sent to the IoTA specifying also two addi-
tional headers: service and servicepath. The first header is used to identify the name
of the group and, consequently, the name of the collection that will be used to store the
context information of the devices belonging to the group. The second header option is
used to define an hierarchical decomposition of groups. Lastly, entity_type provides a
default type for each device which has made a request, in case if a type is not provided
by the device.
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4.1.2 IoT Agent

IoT Agent (IoTA) is a component that lets a group of devices interact with the OCB.
Different devices use different protocols, with IoTA we can overcome those differences and
connect the various devices to the context broker. IoTA, like OCB, uses the NGSI-V2 [36]
specification to ensure interoperability and provide and HTTP API.

It is possible to have multiple IoTAs in the system, one for each protocol used by the
devices, some examples are:

• IoTAgent-JSON [55] - a bridge between HTTP/MQTT messaging (with a JSON
payload) and NGSI;

• IoTAgent-LWM2M [56] - a bridge between the Lightweight M2M protocol and NGSI;

• IoTAgent-UL [57] - a bridge between HTTP/MQTT messaging (with an Ultra-
Light2.0 payload) and NGSI;

• IoTagent-LoRaWAN [58] - a bridge between the LoRaWAN protocol and NGSI.

IoTA provides two different types of communications interfaces: Southbound and North-
bound. The first interface responds to the need to submit commands to devices while the
second allows devices to be able to publish the information they have acquired within the
context.

Southbound interface - Commands This interface enables communications that flow
from the context to the devices, thus allowing to request devices to perform certain actions.

When someone requests to execute a command on the device the OCB will route that
request to IoTA which will then connect to the device and request the actual execution.
Upon completion, the context is updated to reflect the completion.

In Figure 4.3 we can see a visual representation of the southbound traffic:

1. The user performs a request to OCB to execute a command on a device;

2. OCB recoves the entity from the context;

3. OCB notes that the entity is managed by IoTA so sends a new requests to IoTA to
invoke the command;

4. IoTA receives the request and passes it to the device; in the meantime OCB is
informed that the command is pending;

5. IoT Device performs the action associated to the command then returns the result
to IoTA;

6. IoTA passes the result to OCB;

7. OCB updates the context.
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Figure 4.3: Southbound traffic example, adapted from [37]

Northbound interface - Measurements Devices can autonomously update the context
information with the mediation of IoTA. Devices will send the newly available readings
to IoTA which will, in turn, connect to OCB which will update the context, making the
information available to the other components of the system.

In Figure 4.4 we can see a visual representation of the northbound traffic which can be
summarized in:

1. IoT Devices send measurements and send the results to IoTA;

2. IoTA receives the update and passes the result to OCB;

3. OCB performs a context update.

4.1.3 Draco

FIWARE Draco is a project derived from Apache NiFi [9] to which it adds some operations
designed to make it easier to interact with the FIWARE ecosystem. We will refer to the
system with the name “Draco” but all the considerations made here are valid for both
products. Draco is a data ingestion platform that can collect data from different sources,
perform computations, and send the results to other systems.

Draco is based on the concepts of the Flow-Based programming [38], which is the
definition of computation through a network of “Black Bock” processors that execute
specific operations. The application is not seen as a single entity but as a succession of
processes between which data is moved. In the context of Draco, the data is represented
by FlowFile. A FowFile correlates a set of Attributes, typically a unique identifier, name,
size, and other user-definable attributes, with data.

As we can see in Figure 4.5, Draco architecture is composed of a few components:
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• FlowFile Repository: a “Write-Ahead Log” (or data record) of the metadata of
each of the FlowFiles that currently exist in the system. The FlowFile metadata
includes all the attributes associated with the FlowFile, a pointer to the actual
content of the FlowFile (which exists in the Content Repository) and the state of
the FlowFile, such as which Connection/Queue the FlowFile belongs in. This Write-
Ahead Log provides Draco the resiliency it needs to handle restarts and unexpected
system failures. The FlowFile Repository acts as Draco’s Write-Ahead Log, so as
the FlowFiles are flowing through the system, each change is logged in the FlowFile
Repository before it happens as a transactional unit of work, this allows the system
to know exactly what step the node is on when processing a piece of data;

• Content Repository: where the content of all FlowFiles are stored, typically is the
largest of the repositories. The Content Repository holds the FlwoFile’s content on
disk and only read it into JVM memory when it’s needed;

• Provenance Repository: where the history of each FlowFile is stored. The history
is required to provide the Data Lineage of each piece of Data, every time an event
occurs to a FlowFile a new provenance event is created and stored. The provenance
event is handles as a snapshot of the FlowFile, after being stored, it will not change
until its deletion. The Provenance Repository holds all of these provenance events
for a period of time after completion;
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Figure 4.5: Draco architecture from NiFi official documentation

• Webserver: provides a web interface to interact with the system. Thanks to this
interface we can define the flow which will handle the data and monitor the status
of the applications;

• Flow Controller: runs the computations:

• Extensions: provides the execution environment for extensions.

All the repositories (FlowFile Repository, Content Repository, Provenance Repository)
leverage a pluggable implementation, in this way we can transparently use different tech-
nologies for storing the data.

In Figure 4.6 we can see an example of a flow configured via the Web interface:

• NGSIV2-HTTP-Input: acts as an HTTP endpoint which receives messages from
OCB through subscriptions;

• NGSITOMySQL: process incoming subscriptions and saves their content into a
MySQL DB specified inside the block’s configuration:

• LogAttribute: saves logs.

As shown in Figure 4.7, Draco can also be deployed inside a Cluster. In this case, every
node executes the same operation but on a different subset of the data. Apache Zookeeper
is used to elect the coordinator and every node reports heartbeat and status information
to FIWARE. A primary node is also elected. When deployed in ”cluster mode” we can
interact with every instance, any modification will be replicated across all nodes.
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Figure 4.6: Draco flow example

4.2 Architecture

In this section we will describe the FIWARE-based architecture we have developed. First
an overview will be provided to describe the overall functioning, then we will proceed with
a discussion aimed at the individual components.

In Figure 4.8 we can see the proposed architecture based on FIWARE. The implemen-
tation of the architecture follows what is described in Chapter 3 but it was necessary to
introduce a new component, Draco, to allow the extraction of the information collected
by the integration middleware (FIWARE Context Broker) and move it to the event bus
(i.e.: to perform data routing).

Each component of the architecture was deployed using Docker containers, this allowed
us to maintain a high level of isolation between the parts and, at the same time, ensured
us the ability to easly replicate the execution environment.

The colors used in Figure 4.8 indicate:

• blue: components developed using components from the FIWARE catalog;

• green: the MQTT Broker, acting as Device Gateway for the devices;
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Figure 4.7: Draco Cluster architecture from NiFi official documentation [9]

Device Management Data Management Service Integration Stream Analysis
MQTT Broker
IoT Agent
FIROS
OCB
Draco
Kafka
Visual Dashboard
Mission Manager
Domain Manager
Collision Manager
Replay Manager

Table 4.1: Summary of components and features. The cells in which there is a checkmark
indicate that the component contributes to satisfying the functionality.

• grey: storage solution, realized with MongoDB;

• red: Kafka event bus;

• yellow: developed services.

In Table 4.1 we can see a summary of the functionality and the involved components.

4.2.1 Device Management

The purpose of the components linked to the device management functions is to allow
the integration of the devices with the system, abstracting the differences between tech-
nologies and protocols, ultimately allowing the interoperability of different devices and
the transferring of collected data to the upper levels.

Devices

Two types of devices have been simulated: thermometers and cameras. Thermometers
can transmit the readings of a temperature sensor whereas the cameras are in charge
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Figure 4.8: Final architecture based on Fiware

of periodically transmitting an image. In addition to these peculiarities, both types of
devices can transmit information about their position (latitude and longitude) and execute
basic commands like on and off. In both cases, devices have been realized using JavaScript
for the implementation and the MQTT protocol to handle communications.

To allow a device to communicate with the rest of the infrastructure, first of all, a
registration request must be sent to IoTA, in Listing 4.3 an example.

1 curl \
2 -iX POST \
3 "http:/IoTA_IP:IoT_PORT/iot/devices" \
4 -H 'Content-Type: application/json' \
5 -H 'fiware-service: openiot' \
6 -H 'fiware-servicepath: /' \
7 -d '{
8 "devices": [{
9 "device_id": "camera1",

10 "entity_name": "urn:ngsi-ld:camera:1",
11 "entity_type": "Camera",
12 "transport": "MQTT",
13 "commands": [
14 { "name": "on", "type": "command" },
15 { "name": "off", "type": "command" }
16 ],
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17 "attributes": [
18 { "object_id": "img", "name": "Image", "type": "String" },
19 { "object_id": "stat", "name": "Status", "type": "Boolean" },
20 { "object_id": "time", "name": "Time", "type": "Integer" }
21 ]
22 }]
23 }'

Listing 4.3: Device registration example

Looking at the requests we can highlight some interesting aspects.
First of all, fiwre-service and fiware-servicepath are sent as headers, as described

in Section 4.1.1, to specify which grouping the devices belong to.
Another interesting point is the configuration of the attributes. For each attribute two

identifier,object_id and name are specified, this solutions allows to map the names of
the variables used by the device to transmit the data in the names of the changes on the
integration middleware side (OCB). This allows to use compact names within the devices
to reduce bandwidth consumption and more meaningful names within the context to allow
users to interpret the information represented more easily.

Finally, we can notice that two identifiers, device_id and entity_name, are supplied
for the device. This need arises from the fact that it is necessary to be able to identify
the device both from the point of view of OCB, with entity_name, and IoTA, with
device_id.

To be able to receive commands, devices must register as a subscriber on the /<API-
KEY>/<DEVICE-ID>/cmd MQTT topic. API-KEY is the api key of the service group they
belong, while DEVICE-ID is the identifier of the device (device_id in Listing 4.3). The
received messages will contains a simple JSON that maps the name of the command into
an object containing parameters for the execution.

After executing the command, a message containing the execution result must be sent
on the /<API-KEY>/<DEVICE-ID>/cmdexe topic. In Section 4.1.2 it is possible to see the
complete flow of communication.

Measurements are sent by posting a message on the topic /<API-KEY>/<DEVICE-ID>/attrs.
The message will contain a key-value pair for each attribute we want to update. In Fig-
ure 4.3 it is possible to see the complete flow of information.

MQTT Broker

To put in communication devices and IoTA we use the MQTT protocol, a publish-
subscribe-based messaging protocol frequently used in IoT projects. As MQTT broker we
used Apache Mosquitto [33] with a custom configuration file which enforces the use of a
password for user authentication. Said password is distributed to devices via a .env file
and mounted inside the broker’s container.
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Figure 4.9: Robot simulation environment

FIROS and Robot Simulator

FIROS is a tool developed within the context of the FIWARE project to facilitate com-
munication between ROS-based robots and cloud services through the mediation of FI-
WARE’s OCB.

The main advantage of FIROS is the transparent integration of robots within the ecosys-
tem: once the robot has been correctly registered we can interact with it like any other
entity within the system by accessing the collected data and submitting commands. These
interactions can take place by hiding the presence of ROS at the robot level as FIROS
is in charge of acting as an intermediary. The simulated robotic agents were developed
by Centre for Automation and Robotics of the UPM-CSIC [54] and are executed inside a
dedicate docker container which also handles ROS and FIROS.

In Figure 4.9 we can see the robot running in its simulation environment.

IoT Agent

IoT agent, already introduced in Section 4.1.2, is used to allow the integration of devices,
thus enabling the interaction between devices and the system by providing an abstraction
of the presence of different technologies and protocols in the underlying levels.

4.2.2 Service Integration

The purpose of the Service Integration Levels is to provide a platform for integrating new
functionality. Thanks to the presence of the event bus, new applications can be inserted
dynamically to consume the data produced by the devices.

To develop the event bus we decided to use Kafka, an open-source stream processing
platform developed by the Apache Software Foundation [8], this decision was made be-
cause of the possibility of easily scaling the solution and to ensure interoperability with
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Figure 4.10: Kafka’s Architecture

an existing architecture that uses this technology.
In Figure 4.10 we can see the main components of Kafka’s architecture:

• Broker: maintains several specialized queues and handles the replication, a mech-
anism that ensures data availability when a broker goes down. For each topic, a
partition is elected a ”master” while the others will act as ”slaves”, when a partition
master fails a fail-over mechanism handles the election of a new master to allow the
resume of normal operation. Producers and Consumers will interact with the broker
which contains the leader partition;

• Producer: can publish messages on topics;

• Consumer: can consume the messages present in the topics they are subscribed to.
Each consumer is in charge of maintaining an offset for each partition to keep track
of the position of the last consumed message. The offset is periodically transmitted
to the broker so that the consumer, in the event of a restart due to a failure, can
request it again and resume consuming from where it was interrupted;

• Topic and partitions: the broker can manage several queues called topics, in this
way it is possible to group messages concerning the same topic. Kafka allows you to
split a queue into multiple partitions to be able to divide it among multiple brokers,
this is particularly usefull In Big Data contexts where it is possible that a queue
cannot be contained entirely within a single broker.

Each message can be seen as a line of a record containing two elements: a Key (optional)
and the Content. The presence of the key ensure that messages with the same key are
placed in the same partition.

To ensure better performance, messages are transmitted in groups called batches. It is
possible to configure the batch size to adjust the tradeoff between latency and throughput:
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as the size of the batch increases we will have a greater throughput but at the expense of
a greater latency due to having to wait for a sufficient number of messages before starting
the transmission. Compression techniques are also applied to the batch to reduce their
footprint during transmissions.

Kafka provides three different semantics for message delivery:

• Exactly once: each message is sent only once and no messages will be lost;

• At least once: default behavior. It is preferable to send a message several times
than to lose it. If the producer does not receive a confirmation of receipt from the
broker then the message is sent again;

• At most once: each message is delivered only once, to be used when a message should
be lost than consumed twice. It is necessary to intervene on some configuration
parameters:

– Producer side: disable send retry;

– Consumer side: it is necessary to communicate the new offset to the broker
immediately after obtaining the message but before consuming it. This way if
the consumer fails; during processing it is not retried after the reboot.

Since we have used kafka both to allow the interconnection of services and to guarantee
the possibility of accessing data in real time, we have defined two groups of topics, service
and data.

• service.*: used for communications regarding services. Each service will listen on
a specific topics to receive command and send response;

• data.*: used to handle streams of data:

– data.raw: raw data captured from devices;

– data.collision: stream of the detected collisions;

– data.domainID.realtime: real-time devices update for the specified domain.
Contains updates for all the missions associated to the specified topic;

– data.domainID.realtime.missionID: real-time updates for the specified mis-
sion;

– data.missionID.replay.replayID: used to send the replied data of mis-
sionID.

For data.* topics, we decided to use a finer granularity to give the possibility to ap-
plications to focus on specific aspects, to reduce the workload associated with filtering
operations. This choice offers particular advantages when the applications must be exe-
cuted on machines that are not particularly performing.
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Figure 4.11: Draco Flow

4.2.3 Data Management

The purpose of data management services is to take care of data management. These re-
quirements include the ingestion of data coming from devices, processing, routing towards
the layers that will handle the data integration.

This section will describe the components that will take care of these features and their
use.

FIWARE Context Broker

OCB allows to provide, with the help of a MongoDB instance, a unified representation
of the current state of the devices. This representation, thanks to the mediation of the
underlying levels, abstracts the differences between the devices. OCB provides users with
a series of APIs that allow access to information and submit commands to the devices,
thus acting as a hub for interactions. The possibility of defining subscriptions described
in Section 4.1.1 has been exploited to ensure that every modification is directed towards
Draco, the component that will take care of the processing and routing part towards the
event bus.

Draco

In the context of Data Management, Draco takes care to handle the processing pipeline,
showed in Figure 4.11, Through which we can manage all the necessary aspects, ranging
from ingestion, preprocessing to data distribution. The main aspects involved in the
processing are:

• Ingest OCB Notifications: Draco acts as a sink of all the notifications generated by
OCB. In this way, we collect all the events, both those concerning the devices and
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those concerning the robotic agents;

• Data Preprocessing: after the ingestion phase, the data is brought to the portion of
the pipeline dedicated to preprocessing. During these operations, attributes, derived
from the content, are added to the FlowFile to facilitate subsequent operations;

• Save Images in HDFS: images obtained from camera will be saved on HDFS. The
FlowFiles coming from the cameras are routed to a pipeline dedicated to image
management that performs a simple ETL before saving the extracted images inside
HDFS;

• Save Mission Data: this part of the Draco flow takes care of storing the preprocessed
data in a MongoDB instance dedicated to mission persistence. Stored events are
grouped by missions within specific collections.

4.3 Analytics on Streaming Data
This section discusses the services that perform analysis on data streams or provide sup-
port services. The services have been grouped into three macro-categories: near real-time,
i.e. services that analyze in near real-time the data produced by the system, debugging,
i.e. support services that allow you to analyze past events of the system, and data man-
agement, i.e. support services that deal with initiating analyzes.

4.3.1 Near-Real Time Analysis

Dashboard

The dashboard service consists of a NodeJS [84] application that provides interfaces to
interact with other applications and monitor the current state of the system. The solutions
adopted in the creation of the dashboard allow for the transparent management of both
IoT devices and robots, thus respecting the detailed requirements in Section 3.1.1 and
providing a possible solution to the problems analyzed in Section 2.2.1. The web server
listens to Kafka topics dedicated to other services to keep the dashboards updated, for
example by adding a new mission to the list of those available. This service uses the Proxy
Service to allow pages running on clients to receive events published on kafka topics

The visual dashboard is composed by two main parts, the map (Figure 4.12) and the
cards (Figure 4.13). The map, developed with OpenLayers [86], displays the real-time
position of the devices whereas the card displays the current status of the device and the
available commands. In both cases, we used a color-based approach to differentiate based
on the type of device.

Cards are built dynamically by generating a table following the JSON object represen-
tation of the device and inserted under the map, each one represents the current state
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Figure 4.12: Visual Dashboard, topic selector and map

Figure 4.13: Visual Dashboard, devices card

and the available commands of a device. It’s worth noticing that devices and robots are
seamlessly represented and differences between devices are smoothly handled, we can see
different types of devices shown side-by-side and managed with the same tools.

Figure 4.14 shows a detail of the topic selection display. There are two default topics,
collision and canary, which allow, respectively, to view the collisions and some demonstra-
tion devices that are deployed during system setup. As previously mentioned, by listening
to the Domain Manager and the Mission Manager, topics dedicated to the visualization
of domain and missions are automatically created. When a domain is visualized, the data
of all its missions are displayed whilst a mission is visualized only the data of the devices
that take part in said mission are displayed.

The data of the devices shown on the interface are obtained by consuming the appro-
priate Kafka topics. The acquisition of data from the topics takes place directly through
the web browser with the mediation of the Proxy Service, a service which consists of an
HTTP API implemented through a simple application developed with NodeJS. Applica-
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Figure 4.14: Visual Dashboard, topic selection example

Figure 4.15: GeoJSON file containing information about the boundaries of the fields

tions can send a GET to /api/register/:topic, the response will contain the address
of the WebSocket that can be used to consume the desired topic. Applications that con-
sume through the socket are also able to use it to publish messages on the corresponding
Kafka topic by sending a message containing a JSON object to the previously instantiated
socket, proxy will take care of what is received on the correct Kafka topic.

Geo-Referenced Analytics

The purpose of this service is to serve as an example to verify the possibility of executing
geo-referenced queries on the entities that make up the system. As a case study, we
choose to compute the average temperature registered by thermometers in a field since,
as illustrated in Section 1.1.1, the devices may have data quality issues, and performing
an aggregation could be a viable solution to provide a more reliable result.

To determine belonging to a field, a SpatialJoin was performed between the position of
the thermometer and the content of the file that contains the fields to a polygon that de-
scribes their boundaries. Figure 4.15 shows the GeoJSON file which contains information
about the boundaries of the filed whereas Figure 4.16 shows the execution steps involved.

This service was created using the SparkStreaming [111] library in its Structured [112]
version, the implementation took place using Scala, while the SpatialJoin operation was
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performed using the GeoSpark [43] library.
An Spatial Join is a join-like operation where matches are not found based on the value

of a key but on geometric properties, in this case, the presence of a point (device position)
within a polygon (description of the boundaries of a field) was verified. This operation
made it possible to extend the device information by adding a reference to the field, used
later during the grouping operation.

As you can see in Figure 4.16, a grouping based on the event time was used. This means
that the grouping was performed based on the time at which the event was generated and
not on its arrival inside the system.

Alerting

The purpose of this service is to calculate the Haversine Distance [94] between the devices
to determine which devices are too ”close”, therefore with a distance below a certain
threshold value, and generate a collision on a dedicated Kafka topic to make the informa-
tion available also to other services. In our demo the dashboard will show a representation
of the collisions, in fig. 4.18 we can see an example of said visualization.

In Figure 4.17 it is possible to see the steps that make up the collision detection service.
First of all, only the information of interest is extracted, that is the information about the
GPS position and the event time (time in which the device generated the measurement
at which the GPS value refers). For each device, only the last known position is then
kept. At this point, the possible pairs of devices are generated and then proceed to a filter
operation which allows limiting the selection only to the pairs that have a distance lower
than the predetermined threshold value. At this point, the collisions are broadcast on a
dedicated Kafka topic, data.collision, so that other services can use this information.

It is interesting to highlight a choice made about the format adopted for collisions.
Collisions were represented with a format compatible with that of the Fiware entities to
make their management more homogeneous, this solution was adopted to better respect
the requirement stated in Section 3.1.2.Figure 4.19 shows a comparison between collisions
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Figure 4.18: Collision Detection, example of collisions

and devices1.
For each collision we store:

• ID: id of the collision;

• Type: collision type;

• Distance: the computed distance between the involved devices;

• Time: when the collision occurred;

• Device information: for every device we store id, timestamp, latitude and longitude.

4.3.2 Debugging - Replay

To make the functioning of a mission debuggable, the Replay Management service has
been added.

This service takes advantage of the Data Management services provided by Draco de-
scribed in Section 4.2.3. During the data management a copy of the events that occurred
in the system is saved in a dedicate MongoDB instance. The purpose of this service is to
access the stored copy and retransmit past events, respecting the original timing. Having
a shared format for Robot and Device gave us the possibility to manage these two entities
homogeneously.

1values and metadata omitted for the sake of brevity
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Figure 4.19: Collision Detection, comparison between collisions and device format

This service allows you to perform a replay of the missions and consists of two sub-
services: Replay Manager (RM) and Replay Execution (RE). The first takes care of receiv-
ing replay requests from users and then starts a replay executor dedicated to managing
the specific replay while the latter takes care of managing a specific replay. The replay
takes place by acquiring data from the MongoDB instance dedicated to the persistence
of mission data and the subsequent re-transmission on a dedicated topic.

Have to separate components provides several advantages:

• simpler data handling: since each RE will manage a specific replay, its implementa-
tion will be simpler than an implementation that provides for the management of
multiple replays for multiple missions;

• easier to handle multiple replays: since every RE will handle a specific replay hav-
ing multiple replay running means to have multiple RE. This also enables to have
multiple replays of the same mission;

• responsiveness: having an entity dedicated to the execution of the replay, discon-
nected from the entity to which users turn to request an execution, allows you to
keep the system constantly responsive, even in the event of any malfunctions during
a replay;
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4.3.3 Data Managment - Domain and Mission Management

To meet the need introduced in Section 3.1.1 we have developed two services: Domain
Manager (DM) and Mission Manager (MM).

DM enables the creation of “domains”, i.e. collections of missions, whilst MM handles
the starting and stopping of “missions”, i.e. group of devices that works together.

Through the MM it is possible to specify the name of the mission to be started or
stopped. In the case of startup, the MM will take care of starting the docker containers
needed to run the devices, while in the case of stopping they will proceed with their stop.
Both services are implemented using Python [126] and the kafka-python [68] library to
interface with Kafka. Interaction with docker containers takes place through a bash script
that the container runs on the physical machine via an SSH connection.
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In this chapter, we will describe the tests that were performed to evaluate the overall
performance of the architecture.

To evaluate performance we designed a scenario consisting of a set of MQTT devices
that periodically transmit information about their status and a final consumer, thus pro-
viding an end-to-end system. Data produced by the devices, thanks to the mediation
of the MQTT broker, are received by IoTA which is in charge of informing OCB of the
change, at this point, OCB will generate a notification for Draco who will manage the
routing. Data, in the end, will be published on a Kafka topic to be consumed by a Kafka
Consumer, represented by a Python script, which will consume the messages.

Different types of tests have been planned. Each type aims to verify how a certain
configuration parameter (e.g.: number of devices, transmission period, number of sub-
scriptions, payload size) affects performance. For each test, the aim is to evaluate the
variation in performance with respect to the reference parameter, while keeping the others
fixed. The test can be summarized in:

• period: starting from 5 messages per second, we reduce the period until we reach
625 messages per second. The remaining variables remain unchanged between the
various experiments. See Table 5.2

• device: starting from 1 device, we increase the device number until we reach 625
messages per second. The remaining variables remain unchanged between the vari-
ous experiments. See Table 5.3

• payload: starting from 1KB we progressively increase the payload to 100KB, the
remaining variables remain unchanged between the various experiments. See Ta-
ble 5.3

• subscription: starting from 1 subscription we progressively add new subscription
until we reach 6 active subscriptions, the remaining variables remain unchanged
between the various experiments. See Table 5.4
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Period (ms) Devices (#) Subscriptions (#) payload (byte) Messages/Second
1000 5 1 1000 5
100 5 1 1000 50
40 5 1 1000 125
20 5 1 1000 250
10 5 1 1000 500
8 5 1 1000 625

Table 5.1: Tests performed on periods

Period (ms) Devices (#) Subscriptions (#) payload (byte) Messages/Second
200 1 1 1000 5
200 10 1 1000 50
200 25 1 1000 125
200 50 1 1000 250
200 100 1 1000 500
200 125 1 1000 625

Table 5.2: Tests performed on devices

Period (ms) Devices (#) Subscriptions (#) payload (byte) Messages/Second
200 50 1 1000 250
200 50 1 10000 250
200 50 1 50000 250
200 50 1 65000 250
200 50 1 80000 250
200 50 1 100000 250

Table 5.3: Tests performed on payload

Period (ms) Devices (#) Subscriptions (#) payload (byte) Messages/Second
200 25 1 1000 125
200 25 2 1000 250
200 25 3 1000 375
200 25 4 1000 500
200 25 5 1000 625
200 25 6 1000 1250

Table 5.4: Tests performed on subscriptions
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Figure 5.1: Draco architecture

5.1 Setup
Three machines equipped with 64Gb of RAM and AMD Ryzen 5 3600 6-Core CPU where
used in order to distribute the workload:

• Machine 1: Devices;

• Machine 2: OCB, IoTA, MQTT Broker, and Kafka Broker;

• Machine 3: Draco and Kafka Consumer.

In the remainder of the section, we will describe the main components involved and some
salient parts of the configurations adopted.

Devices Devices involved in these experiments consists of a simple “logger” implemented
as a simple JavaScript program capable of transmitting the current time, a payload, and
its status (running/not running). Like seen in Section 4.2.1, devices communicate through
MQTT with the Fiware ecosystem, during their operation they produce a log file storing
the device identifier, status, and current time.

Draco The Draco flow in figure Figure 5.1 shows the steps involved in the ingestion of
the incoming data, the processing, and the production of data on the Kafka topic.

We can summarize the processing steps in:

1. ListenHTTP acts as a webserver and receives all the context updates from OCB,
using SplitJson we then isolate every entity contained in every subscription

2. EvaluateJsonPath and UpdateAttribute are used to extract some fields from the
messages, namely the device id and the event time

3. AddDracoTimestamp adds a timestamp that represents the moment when Draco has
finished processing the data, thus symbolizing the time needed by a webserver to
process the data
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4. PublishKafkaRecord will publish the collected topic on Kafka, thus enabling the
consumer to collect the desired data

Kafka Consumer The consumers consists in a Python scripts executed inside a Docker
container.

This service receives every message produced by Draco (i.e.: every status update from
the devices) and logs them to a file containing:

• deviceID: id of the device that generated the data

• deviceStatus: status of the device that generated the data

• kafkaTimestamp: timestamp associated to the consumed message

• dracoTimestamp: when the message was process by Draco

• deviceTimestamp: when the message was created by the Device

• consumerTimestamp: when the message was processed by the Consumer

5.1.1 Optimization

To ensure better performance than those obtainable with the basic configurations, we
intervened on various system components. Noteworthy configurations will be outlined
below.

MongoDB index OCB doesn’t create any index or database collection by default. In
this scenario, like suggested in the performance tuning guide [90], we have create an index
for the entities collection before running the tests.

ulimit Configuration for OCB and IOTA As suggested in the official docker image of
IOTA[65] we have increased the resources assigned to the user inside the docker container
via the ulimit directive of docker-compose. We have set the values for core and memlock to
“60000000” to roughly match the available RAM (64GB) on the physical machine which
is running the container.

loglevel Configuration for OCB and IOTA The presence of the console log could
negatively affect the performance of the Fiware components. To avoid such issues we
have set the log-level to “ERROR”. By doing so we are still able to debug the most
serious error but without the greater overhead generated by the default “INFO” level. As
reported in the performance-tuning guide there are situations in which the switch between
log level WARN and log-level info could lead to an increase of performance up to 50% [90]
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Figure 5.2: Cumulative reception rateo

5.2 Results

The purpose of this section and to present the collected results. All the configurations
described at the beginning of this chapter have been analyzed, both as regards the number
of messages exchanged and the delay.

First, to highlight the general behavior of the architecture, the overall results will
be presented in the form of aggregated graphs. Some detailed graphs about the most
interesting situations will be presented below.

5.2.1 Cumulative

The average results of the various experiments were collected in this group of graphs.
The purpose is to make it possible to quickly view the trend of the metrics of interest, i.e.
the rate of receipt of messages and average end-to-end delay, as the number of messages
handled per second or the payload increases.

Reception Rateo The graphs in Figure 5.2 represent the relationship between messages
sent by devices and received by the consumer as the number of messages handled per
second or the payload changes.

We can see that:
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Figure 5.3: Average delay

• in A and B there is a marked drop in the reception of messages after exceeding
500msg/sec;

• in C we can notice that after 50KB we have a marked drop in reception of messages;

• in D we expected to see an increase in reception due the multiple subscriptions
registered. This is observed for upto three subscription but after this value this
assumption no longer holds.

Delay The graphs in Figure 5.3 have been computed realizing the average end-to-end
delay. The aim is to visualize the progress of the experiment as the metric of interest
varies while eliminating the presence of the peaks highlighted in Section 5.2.3. We can
notice that:

• in A, B, and D we keep the same end-to-end delay while the number of messages
handled per second varies;

• in C we see a rapid rise in the delay after 65KB. This is compatible with what was
observed in Section 5.2.2.
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Figure 5.4: Message count distribution in time, “devices” testing

5.2.2 Number of messages

In this set of experiments we can see the trend of the count of the record messages. Every
graph is composed by a sub-graph for each experiment configuration. On the X axis we
can see the time of the experiment while on the Y axis we can see the massage count for
every component:

• Device: messages sent by the devices

• Draco: messages received by Draco

• Kafka Consumer: messages received by the kafka consumer

Device It is possible to notice how up to 250msg/sec the behavior of the system is
stable, with the exception of some small oscillations, while beyond this value the system
stops being reliable given the presence of moments in which no messages are recorded.
See Figure 5.4

Period In this case the system is reliable up to 500msg/sec despite a little misalignment.
Over this value the system becomes unreliable. See Figure 5.5
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Figure 5.5: Message count distribution in time, “period” testing

Payload The system remains reliable with payloads up to 50KB, over this value we can
see some misalignment like those showed before. See Figure 5.6

Subscriptions The system managed to behave correctly with up to 3 subscriptions,
meaning a total of 375msg/sec with results in line with those seen previously. See Fig-
ure 5.7

5.2.3 Delay

The aim of this group of graphs is to visualize the delay introduced by each step the
computation, namely:

• Draco: time elapsed between sending by the device and the end of the computation
of Draco;

• Kafka/Draco: delay introduced by Draco to publish the messages on the Kafka
Broker;

• Kafka Consumer: delay introduced by the consumer.
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Figure 5.6: Payload: Message count distribution in time

Device In Figure 5.8 we can notice that in every scenario we had some peak delays
but the peak value increased progressively with the number of messages, reaching peaks
of 1500ms with more than 500msg/sec, thus in correspondence of what discussed in Sec-
tion 5.2.2. It is also possible to notice how the greater delay is introduced by the reception
of messages by Draco.

Period We can draw conclusions similar to those seen previously in Section 5.2.3: pro-
gressive increase of the delay peaks that exceed 1000ms introduced by the reception of
messages by Draco with 500msg/sec, like in Section 5.2.2.

Payload At 65KB we can see a uniform delay of 6000ms which rises to more than 8000ms
with 100KB. These results, as shown in Figure 5.9, are compatible with those discussed
in Section 5.2.2 where we noticed a misalignment at 6500KB.

Subscriptions In these experiments there was no progressive increase in the delay as
the number of messages handled increases, this observation is in contrast to what was
observed in Section 5.2.2 where with 500msg/sec we noticed a misalignment.
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Figure 5.7: Message count distribution in time, “subscription” testing

5.2.4 Conclusions

• Payload: the maximum payload handled by the system without message loss is
50Kbyte with 250msg/sec, see Figure Figure 5.3 subplot C;

• Subscriptions: as highlighted in Figure 5.3 sub-figure D, during the tests concerning
the subscriptions, the system behaved correctly only up to 3 subscriptions, thus
recording a triplication of messages. However, it should be noted that in this case,
each Subscription concerns each entity in the system, thus causing a multiplication
of the sent messages, in a real scenario such a situation is difficult to find;

• We have noticed a cap of 500msg/sec handled correctly in almost every situation;

• In all tested circumstances an IoTA crash was detected, leading to the loss of mes-
sages.
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Figure 5.8: Delay distribution in time, “devices” testing
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Figure 5.9: Delay distribution in time, “payload” testing
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6 Conclusion and Future Work

This thesis introduces the basis of the Data Platform for WeLASER, a project funded
by the European Union in the context of precision agriculture. WeLASER stands at an
intersection between IoT and Robotics, it is, therefore, necessary to put these two worlds
in communication by providing mechanisms that allow the interoperability of technologies,
including with external modules made available thanks to services Cloud. The purpose
of the thesis is the creation of a Data Platform that allows an end-to-end interaction
between devices and applications: we want to be able to collect, store and process, even
in real-time, the data produced by the device, creating a complete ecosystem also capable
to regulated the functioning of the devices by submitting commands.

The problems of the sectors involved were analyzed to identify the most interesting
issues and the main challenges that must be faced. After the study of the literature,
an architecture was designed to guarantee the possibility of acquiring data from devices,
whether they are IoT devices or robotic agents, managing their integration, and, finally,
sharing them with various applications through an event bus. The proposed architecture
was finally implemented using Fiware: an ecosystem of open-source components designed
to provide an infrastructure for cloud-based IoT project based on open standards.

To verify the possibility of extending the architecture with new applications, we have
also designed and built a set of services capable of interacting with data, even in real
time:

• Dashboard: the dashboard allows to visualize the status of the system in real-time,
also adapting to types of unknown devices, and acts as a control panel for other
applications;

• Collision Detection: this services executes real-time geo-referenced analytics to mon-
itor the movement of devices, issuing an event when two devices are too close;

• Device administration: allows the start and stop of missions, in this way it is possible
to insert and remove devices from the system dynamically;

• Replay management: service which, by exploiting the information stored by the
component of the system responsible for data processing, allows the retransmission
of the stored data. In this way, it is possible to carry out analyzes on these data again
by exploiting the applications already developed but also to perform debugging
operations.
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To verify the performance offered by the architecture, tests were carried out to verify
the performance trend as the workload changes. These tests took into consideration
parameters such as number of devices, update frequency, and size of the payload.

Future developments concern two fronts: the WeLASER project as a whole, as further
years of development are expected starting from what has been produced up to this point,
and extensions relating to the proposed architecture.

• Define a unified data-model for the entities: it is necessary to define a uniform model
for the representation of entity data. The architecture made available allows the
integration of homogeneous devices but to make the most of this possibility it is
necessary to define more accurate modeling of the devices. The devices could be
produced by different organizations, having a defined and well-documented standard
would facilitate interoperability. Also in our example which saw the collaboration
of two organizations, us and the Centre for Automation and Robotics of the UPM-
CSIC [54], it is possible to see a discrepancy in the representations of the entities;

• Integration with new analysis services: to ensure compliance with the requirements
of the WeLASER project, it will be necessary to integrate new analysis services, in
particular Artificial Intelligence systems aimed at performing analysis on the images
collected by the cameras;

• Integration with real devices: for now simulated devices have been used, integrating
real devices will entail the introduction of new problems related to their manage-
ment. Progress in this direction is already being studied/developed in other realities
connected to the WeLASER project;

• Improve domain and mission modeling: domains and missions have been modeled
in an extremely simplified way for the sole purpose of creating a working demo
of the system, it is necessary to proceed with a more detailed modeling phase to
define more accurately what these entities effectively are. A possible solution could
include their representation as a Fiware entity. Such a solution could allow uniform
modeling with the rest of the system and also act as a container for the aggregate
data produced, such as the average temperature collected by the weather stations
present within the mission, or on the status of the mission such as, for example, the
progress. Missions are currently hard-coded within the mission manager. It would
be useful to provide a configuration interface for missions through which specify
device type, number, and parameters. Saving mission templates could also be an
interesting feature;

• Metadata integration: at present, only the data relating to the sensor are collected
but, to ensure quality management with future extensions, it will also be necessary
to collect and manage metadata.Among the main advantages of the introduction of
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metadata we can identify the management of provenance and profiling. Data prove-
nance is metadata pertaining to the history of a data item, it essentially describe a
transformation pipeline, including the origin and the performed operations. Object
profiling includes all the functionalities aimed at searching, selecting and describing
the stored entities;

• Further performance testing: we have currently verified the performance of the
architecture using end-to-end tests aimed at measuring the delay and the total
number of messages. Further tests could be performed verifying the variation of
the performances with the variation of the architecture used. Extensions can also
concern the evaluation of individual components and the definition of a set of metrics
aimed at measuring the architecture as a whole, independently of the elements that
compose it;
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