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Abstract

Small polarons (SP) have been thoroughly investigated in 3d transition metal oxides
and they have been found to play a crucial role in physical phenomena such as charge
transport, colossal magnetoresistance and surface reactivity [1]. However, our knowledge
about these quasi-particles in 5d systems remains very limited, since the more delocalised
nature of the 5d orbitals reduces the strength of the Electronic Correlation (EC), making
SP formation in these compounds rather unexpected. Nevertheless, the Spin-Orbit cou-
pled Dirac-Mott insulator Ba2NaOsO6 (BNOO) represents a good candidate for enabling
polaron formation in a relativistic background, due to the relatively large EC (U ∼ 3 eV)
and Jahn-Teller activity [2]. Moreover, anomalous peaks in Nuclear Magnetic Resonance
(NMR) spectroscopy experiments suggest the presence of thermally activated SP dynam-
ics when BNOO is doped with Ca atoms. We investigate SP formation in BNOO both
from an electronic and structural point of view by means of fully relativistic first princi-
ples calculations. Our numerical simulations predict a stable SP ground state and agree
on the value of 810 K for the dynamical process peak found by NMR experiments.





Abstract

I polaroni piccoli (PP) sono stati intensivamente studiati negli ossidi contenti metalli
di tansizione con orbitali 3d e si sono rivelati cruciali nel determinare diverse propri-
età fisiche di questi materiali, come trasporto di carica, resistenza magnetica colossale e
reattivitá di superficie [1]. Tuttavia la nostra conoscenza riguardo queste quasi-particelle
in sistemi 5d é tutt’ora molto limitata. Infatti, la natura più delocalizzata degli or-
bitali 5d riduce l’intensità della correlazione elettronica (CE) e rende di conseguenza
la formazione di PP piuttosto improbabile. Ad ogni modo, l’isolante di Dirac-Mott
Ba2NaOsO6 (BNOO) rappresenta un buon candidato per l’eventuale formazione di PP
in un contesto relativistico, grazie al forte accoppiamento Spin-Orbita, la relativamente
grande CE (U ∼ 3 eV) e l’attività Jahn-Teller [2]. Per di più, picchi anomali registrati
in esperimenti di spettroscopia a risonanza magnetica nucleare (NMR) suggeriscono la
presenza di un moto di PP indotto termicamente, quando BNOO viene drogato con Ca.
In questo lavoro investighiamo quindi la formazione di PP in BNOO sia da un punto di
vista delle deformazioni strutturali che elettronico, attravverso calcoli numerici in uno
schema relativistico che non coinvolge parametri empirici (first principles). Le nostre
simulazioni numeriche confermano l’ipotesi dell’esistenza di una configurazione polaron-
ica stabile e concordano nel valore di ∼ 810 K per la posizione del picco anomalo nello
spettro NMR.
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Introduction

Small Polarons (SPs) are localized charges trapped by the potential well that they induce
in the crystal lattice, by displacing the surrounding ions. They are hence self-trapped
quasiparticles that can form even in perfect crystals, as was first suggested by Lev Lan-
dau [1]. Their impact on the electronic, structural and magnetic properties of crystalline
materials has been widely investigated in 3d Transition Metal Oxides (TMOs), where
Electronic Correlation (EC) plays a significant role in localizing such states [1, 3]. How-
ever, very little is known about these quasiparticles in 5d materials, where the more
delocalised nature of these orbitals reduces the strength of EC. A consequence of the
EC weakness is that the Mott insulating phase, characteristic of many 3d TMOs, hardly
set in. Nevertheless there are special cases where strong Spin-Orbit coupling (SOC) can
conspire with EC in order to open an insulating gap, as it has been found in the 5d

TMO Sr2IrO4 [4–6]. Materials showing this peculiar phase are now known as relativistic
or Dirac-Mott Insulators (DMIs) and among them the double perovskite Ba2NaOsO6

(BNOO) [7, 8] shows a particular balance between EC, strong SOC (λ ∼ 0.5 eV), Jahn-
Teller (JT) and magnetic interactions that makes it at the same time an intriguing
and difficult system to study. As an example of the complexity that can emerge from
the interplay of all these interactions, let’s consider that Nuclear Magnetic Resonance
(NMR) experiments [8] and first principles calculations [2] showed that BNOO is a mag-
netic oxide with an exotic canted anti-ferromagnetic (cAFM) ordering that is, moreover,
sustained by JT distortions.

Another fact that makes BNOO particular interesting is its behaviour under electron
doping, when Na is partially replaced by non-isovalent Ca. X-ray diffraction experiments
showed that in this way we obtain an alloy Ba2Na1–xCaxOsO6, in which the additional
charge is transferred from the Ca to the Os atoms and the latter go from a formal valece
of +7 in BNOO to +6 in Ba2CaOsO6, which is still a DMI [9]. But for other TMOs and

i



ii Introduction

especially for the protoypical DMI Sr2IrO4, the cation substitution process usually leads
to an Insulator-Metal transition [10–13]. Since BNOO has also a higher EC (U ∼ 3 eV)
with respect to other DMIs, we conjectured that the chemical doping in this material is
accompanied by SP formation, in such a way that the excess charge remains trapped all
along the process, preventing the transition. If this may still sound rather speculative,
earlier this year spin-lattice and spin-spin relaxation measurements, performed by using
23Na NMR spectroscopy, showed peaks typical of thermally activated SP hopping, similar
to those observed in lanthanum manganites [14]. Even though these results are yet to be
published, they strongly suggest the presence of SP dynamics at all Ca concentrations
between 12.5% and 90%.

We thereby set the stage for the exploration of SP formation in Ba2Na1–xCaxOsO6 by
calculating from first principles some quantities that could potentially bare the footprints
of SPs. We start by spending some words more, in chapter 1, on the physical concepts
that we rapidly mentioned above, as EC and SOC, and by presenting the core ideas that
make it possible to perform calculations on such complex systems in chapter 2. Then we
will give a deeper presentation of the double perovskite Ba2NaOsO6 in chapter 3 so that
we can eventually go through the results of the simulations in chapter 4 and answer to
the question of whether SPs do actually form in this material or not.

All the calculations in this work have been conducted using the Vienna Ab-initio
Simulation Package (VASP), developed by the group of Georg Kresse at the University
of Vienna [15–17], on the cluster at the Vienna Scientific Cluster (VSC) facility. Crystal
structure and charge density images have been produced using the VESTA software [18],
whereas band structure data have been extracted from VASP output using the Python
Materials Genomics (pymatgen) library [19].



Chapter 1

Physical background

TMOs represent a vast class of materials characterised by strong EC.
This makes ordinary band theory unable to describe their electronic
structure and leads to the formation of new phases, such as that of
Mott insulators and a variety of exotically ordered magnets [20]. Along
with EC, Crystal Field (CF), JT distortions and the SOC interaction
can in some cases be crucial in the understanding of TMOs’ physics
[21–23]. Moreover, these compounds are the playground for intriguing
phenomena such high-Tc superconductivity and colossal magnetoresis-
tance [24–26].
Among the variety of phenomena taking place in this class of materi-
als, polarons formation is one that has attracted particular attention
in the last century. The last decades in particular have seen a boost
in this field of physical research thanks to the development of compu-
tational techniques and facilities capable of attacking the complexity of
the electron-phonon interaction problem [1].
We shall briefly introduce in the following sections the main concepts
relevant to TMOs’ and polarons’ physics, within the scope of our work.
Each section in this chapter would indeed deserve and has been treated
in whole books.

1



2 1. Physical background

1.1 Electronic Correlation

The starting point for the study of crystalline materials is the band theory, developed
in the first half of the twentieth century (see e.g. [27]). In its simplest formulation,
electrons can be considered as a gas of non-interacting particles, which only interact
with the periodic potential arising from the (fixed) lattice of ions. Although this picture
allows us to understand some qualitative features of crystals, it clearly consists of a
rough approximation. This is particularly true in those cases where the electron-electron
interaction is more strong, such as in TMOs. One severely unphysical prediction of band
theory is that if a material has an odd number of electrons in the primitive cell, then it is a
conductor, no matter how large the distance between the atoms is. This is a consequence
of the Born-von Karman periodic boundary conditions and the Bloch theorem [27], which
predict that each band contains N wave vectors, where N is the number of sites in the
whole crystal. Therefore, each band contains 2N states, due to spin degeneracy. This
implies that in the case of an odd number of electrons in the primitive cell, there must
be a half-filled band and hence the material is a conductor. The distance between the
atoms in the crystal does not play any role in these considerations.

To delve further into this problem and introduce some notation that will be useful
later on, let’s analyse the problem in the Tight Binding (TB) approximation. Within this
scheme we take the electron wavefunction as a linear combination of atomic (localised)
wavefunctions φn (another choice is to use Wannier functions [27]) and assume that the
external potential V (r) due to the lattice can be written as the sum of local functions
U(r) centered at each site

V (r) =
∑
n

U(r − na) (1.1)

If we consider a one dimensional chain of atoms with a single valence electron and
non-degenerate levels, the TB Hamiltonian can be written in the second quantisation
formalism as

H = −t
∑
〈i,j〉,σ

c†iσcjσ + h.c. (1.2)

where the product of the fermionic creation and annihilation operators, c†iσ and cjσ

respectively, gives the hopping of an electron with spin σ from site j to site i. The
hopping constant t quantifies the probability for this process to take place and decreases
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with increasing lattice constant a. This quantity comes indeed from the hopping integral

tij =

∫
dr φ∗(r − ia)U(r − ia)φ(r − ja) (1.3)

if we assume that its value does not depend on the particular pair of nearest neighbours
considered. Going form the localised to the Bloch basis, we can calculate the dispersion
relation of Equation 1.2 obtaining

ε(k) = −2t cos ka (1.4)

which is a half-filled band, with bandwidthW = 4t and therefore our chain has a metallic
behaviour. In the limit of large lattice constant, i.e. large inter-atomic separation, the
hopping constant goes to zero and the band gets narrower, but it remains half-filled
throughout the whole limit process [20]. In simpler words, we could imagine a chain
with atoms one kilometer apart and it will still be a metal according to band theory,
even though we are far beyond the typical distance for bonding to occur.

Let’s now introduce electron-electron interaction. The simplest consideration that we
can do is to take into account the coulombic repulsion experienced by a hopping electron,
due to electrons at the arrival site. If an orbital already has an electron, an energy amount
U must be provided in order to put another electron in it. Moreover, the second particle
must have opposite spin with respect to the first, due to the Pauli principle. These
requirements are satisfied if we insert a second term into our Hamiltonian, obtaining

H = −t
∑
〈i,j〉,σ

c†iσcjσ + h.c. + U
∑
i

ni↑ni↓ (1.5)

which describes the so-called Hubbard model.

When an electron jumps in another site we end up with an empty (hole) and a
completely filled orbital, respectively at the initial and final sites. These exicitations now
can hop around in the crystal and form bands, according to Equation 1.2. They occupy
the lowest state in this band, which has energy −2t. Thus in forming this conductive
state we gained an energy equal to W and payed U .

From these considerations we can now argue that, when U & W , there is no energy
gain in the formation of the excited state and the electrons stay localized at their sites,
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even though from a band-theory picture the material would have been a metal. This
particular state of matter is called a Mott insulator and the Hubbard model is the
simplest one capable to describe it, along with the related Metal-Insulator Transition
(MIT).

1.2 Spin-Orbit Coupling

We make now a little digression into atomic physics in order to introduce the concept
of Spin-Orbit coupling (SOC), which along with EC is responsible for many peculiar
properties of compounds containing heavy atoms, such as the establishment of the Dirac-
Mott phase in Sr2IrO4 [22]. This coupling between spin and orbital degrees of freedom is
a relativistic effect that can be understood within the framework of the Dirac equation
for a spin 1/2 particle:

i~
∂Ψ

∂t
= cα · pΨ +mc2βΨ (1.6)

Here the particle is described by a four dimensional spinor Ψ, whose components repre-
sent the two spin degrees of freedom of the particle itself and those of its antiparticle.
The quantities α = (α1, α2, α3) and β are matrices defined as

αk =

(
0 σk

σk 0

)
β =

(
1 0

0 1

)
(1.7)

where σk are the Pauli matrices. The momentum operator p in Equation 1.6 is defined
as usual p = −i~∇. Let’s consider a stationary solution Ψ = ψ(r) exp(−iEt/~). If we
split the four component spinor ψ as

ψ(r) =

(
ψA(r)

ψB(r)

)
(1.8)

then, from Equation 1.6, we get the coupled equations for the two-components spinors
ψA and ψB

EψA − cσ · (p− qA)ψB +
(
qφ+mc2

)
ψA = 0, (1.9a)

EψB − cσ · (p− qA)ψA +
(
qφ−mc2

)
ψB = 0 (1.9b)
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where the coupling with an electromagnetic field (A, φ) has been taken into account.

Now, for an electron in an atom we can take A = 0 and φ to be spherically symmetric,
so that we can write qφ(x) = U(r). Equation 1.9a and Equation 1.9b become

EψA − cσ · p ψB −
(
U −mc2

)
ψA = 0, (1.10a)

EψB − cσ · p ψA −
(
U +mc2

)
ψB = 0 (1.10b)

Writing the energy as E = E ′ +mc2, from Equation 1.10b we get

ψB =
1

E ′ +mc2 − U(r)
σ · p ψA (1.11)

In a non-relativistic regime the kinetic term is much smaller than the mass energy, we
can thus write

ψB =
1

2mc

[
1− E ′ − U(r)

2mc2

]
σ · p ψA (1.12)

By inserting this expression into Equation 1.10a we get

E ′ψA −
1

2m
p2

[
1− E ′ − U(r)

2mc2

]
ψA − U(r)ψA −

1

4m2c2
(σ · p)U(r)(σ · p)ψA = 0 (1.13)

Using the identity
(σ ·A)(σ ·B) = A ·B + iσ · (A×B) (1.14)

we get
(σ · p)U(r)(σ · p)ψA = −i~(σ ·∇U)(σ · p)ψA

= −~2∇U ·∇ψA + ~
1

r

dU

dr
σ · (r× p)ψA

(1.15)

where the first term in the last equality gives rise to the so called Darwin term [28],
whereas the last one is the SOC one. Recalling that the orbital angular momentum is
L = r × p and the Pauli operator consists basically of the spin operator S = ~/2σ, we
get

HSOC = − 1

2m2c2

1

r

dU

dr
S · L ≡ ξ(r)S · L (1.16)

Let’s rewrite the Hamiltonian for the Hydrogen atom neglecting the Darwin term, which
isO(v2/c2), and the kinetic energy shift coming from the second term in the sqare bracket



6 1. Physical background

of Equation 1.13 as

H =
1

2
p2 + U(r) + ξ(r)S · L (1.17)

where atomic units are assumed. Using the commutation relation of the angular mo-
mentum operator we can prove that this Hamiltonian commutes neither with the orbital
angular momentum L nor with the spin S, we have indeed

[S · L, Lk] = i~(L× S)k = −[S · L, Sk] (1.18)

Therefore, the orbital angular momentum is not a conserved quantity anymore and we
cannot use the magnetic quantum number lz, related to the azimuthal component of L,
to describe our system. From Equation 1.18, on the other hand, we can easily see that
the SOC Hamiltonian commutes instead with the total angular momentum J = L + S.
Since the modulus squared of orbital angular momentum L2 and that of the spin S2

are still conserved quantity we can go from the original basis |l, lz, s, sz〉 to |j, jz, l, s〉
and use the total angular momentum j and its z-component to replace lz and sz. The
transformation matrix that connects these two basis is given by the Clebsch-Gordan
theorem [28]. Noticing that

S · L =
1

2

(
J2 − L2 − S2

)
(1.19)

we can calculate the expectation value of the SOC Hamiltonian on the new basis |j, jz, l, s〉:

〈j, jz, l, s|HSOC |j, jz, l, s〉 = 〈ξ(r)〉 j(j + 1)− l(l + 1)− 3/4

2
(1.20)

from which we see that the original (2l+ 1)-degenerate level is split into two levels with
total angular momentum j = |l − 1/2| and j = l + 1/2 except for the s-orbitals.

When we consider atoms with more than one electron, correlation effects must be
taken into account. Within a Mean Field (MF) approach we can write the atomic Hamil-
tonian as the sum of an independent-particle term HMF , a correction due to correlation
Hcorr and the spin-orbit contribution HSOC , which now looks like

HSOC =
∑
i

ξi(ri)Si · Li (1.21)
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We can distinguish between two perturbative regimes known as the LS-coupling (or
Russell-Saunders) and the jj-coupling regimes. They are extreme situations where we can
consider the SOC interaction (〈Hcorr〉 � 〈HSOC〉) or the correlation effect (〈HSOC〉 �
〈Hcorr〉) as a perturbation. The jj-coupling scheme is usually applied only to those
elements with very strong SOC, namely 4f and 5f compounds, whereas the LS-scheme
works quite well for 3d and 4d atoms. The case of 5d constitutes an intermediate situation
where the perturbative approach is not that accurate and we must therefore turn to
different methods [20].

1.3 Crystal Field

We discussed so far the role of SOC in isolated atoms, where the electronic states were
characterised by the spin S, the orbital angular momentum L and the total angular
momentum J quantum numbers. Now we want to move our discussion to crystals. Here
we have to consider that atoms are not in an isotropic environment anymore and therefore
the electrons move in a potential field that is not spherically symmetric. For this reason,
we cannot in principle describe electronic terms with the orbital L and total angular
momentum J quantum numbers, but should use instead the representations of the point
group of the crystal. However, we can introduce effective angular momenta, which allow
to discuss, at least qualitatively, localised states in crystals with the same language of
atomic physics [20].

In order to elucidate the role of the Crystal Field (CF), namely the anisotropic
field felt by the electrons in a crystal, we shall consider a Transition Metal (TM) atom
surrounded by oxygen atoms placed at the corners of an octahedron, as depicted in
Figure 1.3.1. From group theoretical arguments (see e.g. [20] and references therein) we
find out that the five degenerate d orbitals are split into a doublet eg and a low lying
energy t2g. The energy separation ∆CF between these two levels is called CF splitting.
Physically this can be understood by inspecting the orbital character of the eg and t2g
levels, namely by observing the spatial distribution of the spherical harmonics |lz〉 that
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Figure 1.3.1: Octahedrally coordinated TM atom (brown sphere). The figure has
been adapted from that of the unit cell of BNOO used in the calculations and therefore
the red spheres are oxygen atoms. Nevertheless, they could have been a general anion.

make up these states. If we choose a real combination of the basis functions |lz〉, we get

eg :


∣∣z2
〉

= |0〉 ∼ 1√
6

(
3z2 − r2

)
∣∣x2 − y2

〉
=

1√
2

(|2〉+ |−2〉) ∼ 1√
2

(
x2 − y2

) (1.22)

t2g :



|xy〉 = − i√
2

(|2〉 − |−2〉) ∼
√

3xy

|xz〉 = − 1√
2

(|1〉 − |−1〉) ∼
√

3xz

|yz〉 =
i√
2

(|1〉+ |−1〉) ∼
√

3yz

(1.23)

It turns out that eg orbitals have lobes pointing directly at lobes of the p orbitals of the
neighbouring oxygens, whereas t2g orbitals point at the space between the oxygen atoms
(see Figure 1.3.2). Therefore, eg electrons feel a stronger Coulomb repulsion than t2g

ones, due to the charge distribution of the oxygen atoms. This argument gives rise to
the point charge contribution [20].

Another effect to be considered in the determination of the CF splitting is the cova-
lency, namely the degree of overlap of the d orbitals of the TM atom with the p orbitals
of the oxygen ones. The larger the overlap, the higher is indeed the hopping probability
between the two sites and hence the kinetic energy. By looking once again at Figure 1.3.2,
it is clear that eg orbitals point directly at lobes of the oxygen p orbitals, whereas t2g
orbitals end up in regions with low p density. This implies that hopping elements for eg
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Figure 1.3.2: Charge distribution of the d-orbitals. (a) and (b) in the first row make
eg oritals in an octahedrally coordinated compound, whereas (c), (d) and (e) give rise
to the t2g ones. Picture taken from Khomskii [20].

are larger than those for t2g and, therefore, eg levels are shifted toward higher energies.

Since the triplet t2g states are orbitally degenerate, we can map them into an effective
orbital angular momentum l̃ = 1 eigenstates and correspondingly introduce an effective
total angular momentum J̃ =

∣∣∣S − l̃∣∣∣, . . . , S+l̃ [20, 29]. By using these effective momenta,
SOC splitting within the CF scheme can be qualitatively discussed as in the case of
isolated atoms1.

Another critical consideration to do is that ions are actually not fixed and a rear-
rangement of their configuration is indeed a quite common situation [20, 29, 30]. In order
to qualitatively understand the implications of such a process, let’s consider a tetragonal
elongation of our octahedron of Figure 1.3.1:

z → z + 2δ x→ x− δ y → y − δ (1.24)

1In our case of octahedral coordination actually, we should take l̃ = −1 in order to recover the same
ordering of SOC splitted l = 1 levels in an isolated atom. For further details see e.g. [20].
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with δ a positive small deformation. By pushing the oxygen atoms away from the TM,
both Coulomb repulsion and overlap of |z2〉 are reduced. On the other hand those of
|x2 − y2〉 are increased, so that eventually eg orbitals split. The same argument applies
for t2g orbitals as well.

Distortions like those mentioned above occur whenever there is an orbital denegeracy
besides the spin (Kramers) degeneracy, according to the Jahn-Teller theorem [30]. We
won’t discuss the interesting physics of the JT effect, because we didn’t analyse in details
the role of JT in our work. However, the splitting arising from JT distortions may
compete or play together with that of SOC [21]. This interplay has a crucial role for
instance in the determination of the magnetic ground state of BNOO [2] and a deeper
investigation of JT physics in BNCOO may constitute an interesting continuation of this
study.

1.4 Polarons

In the previous section we mentioned the JT theorem which connects the electronic
degrees of freedom to those of the lattice. It turns out however that this is not the only
possible way in which electrons and phonons, the quanta of lattice vibrations, can interact
with each other. In 1933 Lev Landau suggested that electron-phonon interactions could
lead to the self-trapping of charge carriers (electrons or hole) even in perfect crystals,
resulting in the formation of a quasiparticle, namely the polaron. An electron (hole) can
distort the crystal lattice around itself via Coulomb interaction. The ions thus displaced
produce in turn a polarisation field characterised by a potential well that, if deep enough,
may trap the charge carrier that was originally responsible for the field itself. This
situation is pictorially represented in Figure 1.4.1. The name polaron, evocative of the
process leading to the formation of these quasiparticles, was coined afterwards, in 1946,
by Solomon Pekar, who also proposed a first model based on the interaction of free
electrons moving in a ionic lattice, approximated as a polarizable continuum [1, 31].

Further developments of the concept came in the ’50s with the elaboration of effective
field theories by Herbert Fröhlich [33] and Theodore Holstein [34]. Their theories describe
two limiting cases: the weak limit of the electron-phonon coupling gives the Fröhlich
Hamiltonian, whereas the strong coupling is represented by the Holstein’s. The stronger
is the coupling, the smaller is the spatial extension of the quasiparticle. Thus the Fröhlich
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Figure 1.4.1: Pictorial representation of a polaron as a self-trapped charge in a crystal.
The figure has been taken from Natanzon et al. [32].

polaron is also one whose charge is distributed over many lattice sites and we speak of
large polaron. On the other hand, the Holstein polaron is called small polaron, because
the polaronic radius is smaller than the lattice parameter. The main differences between
large and small polarons are summarised in Table 1.1.

Large Polaron Small Polaron

Polaron radius � lattice parameter Polaron radius ∼ lattice parameter

Shallow state (∼ 10 meV below CBM) In-gap state (∼ 1 eV below CBM)

Coherent motion
(scattered occasionally by phonons)

Incoherent motion
(assisted by phonons)

Mobility µ� 1 cm2/Vs Mobility µ� 1 cm2/Vs

Decreasing mobility
with increasing temperature

Increaing mobility
with increasing temperature

Table 1.1: Relevant characteristics of large and small polarons. This table has been
adapted from [35].

From an electronic point of view large polarons are identified by shallow states, usually
few tens of meV below the conduction band maximum (CBM), whereas small polarons
are deep in-gap states, around 1 eV below CBM [35].

A crucial feature of polarons is their mobility. Besides that polarons do not need
defects to form, they are also different from defect states beacause of their ability to
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Figure 1.4.2: Transport measurements of anatase and rutile TiO2 doped with 5% Nb.
Resistivity ρ measurements (a) and (c) show the typical behaviour of large (anatase)
and small (rutile) polarons respectively. On the right side the Hall measurements in
panel (b) and (d) report a constant carrier density n for anatase, whereas that of rutile
increases with increases temperature. The plots are reproduced from Zhang et al. [36].

move in the crystal [1, 35]. As summarised in Table 1.1, the intensity of the electron-
phonon interaction affects the temperature dependence of the mobility. For large po-
larons, phonon scattering is unlikely and they have an almost free-carrier-like motion,
which is characterised by a decreasing mobility with increasing temperature. Small po-
larons motion occurs instead by phonon-assisted hopping and therefore the mobility
increases with increasing temperature. The dynamics of small polarons is described by
the Emin-Holstein-Austin-Mott (EHAM) theory, developed in the 1980s [1]. We present
the conceptual backbone and main results of the EHAM model in subsection 1.4.2 and
the Density Functional Theory (DFT) implementation of it that we used in our calcultion
in section 2.5.

An example of different dynamical behaviours of small and large polarons can be ob-
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served in the two polimorphs of TiO2, anatase and rutile. Figure 1.4.2 reports resistivity
and Hall measurements conducted on these materials, where the additional charge has
been supplied by Nb doping. Anatase shows an increasing resistivity ρ with increasing
temperature typical for large polarons, with a constant number of charge carriers n. On
the other hand rutile’s resistivity decreases with temperature and the carriers number
increases, as consequence of higher hopping probability [1].

Since the first experimental observation of polarons in 1963 [35], many types of these
quasiparticles have been discovered. They have been classified according to the kind
of interactions that favour the polaronic localisation, such as JT polarons and defect
polarons. For a complete list of the many cases and a thorough review we remand to [1].

We shall focus in the rest of this work on small polarons, leaving the reader interested
in the large ones with [1] and the references therein as a starting point for further
investigations.

1.4.1 Ground state energy and band narrowing

In order to go deeper into the physics behind the polaron problem and introduce at
least conceptually some of the key quantities that we calculated in our work, we shall
present here Holstein’s molecular-crystal model [34]. This is a toy model consisting of a
single electron in an one-dimensional chain of diatomic molecules, whose orientation and
center of gravity are fixed, but whose internuclear separations are allowed to oscillate
harmonically. We assume that oscillations at different sites are uncoupled, i.e. that the
actual optical spectrum is replaced by a single frequency ω (Einstein approximation).
Thus we can write the lattice part of the Hamiltonian as

HL =
ω

2

∑
n

(
p2
n + q2

n

)
(1.25)

where qn is the generalised coordinate describing the oscillation at site n and pn is
the conjugate momentum of qn. The harmonic oscillator natural units for the lattice
coordinates are assumed.

For what concerns the electron, it is assumed that it can be described in a tight-
binding approximation, which is the natural framework when we deal with wavefunctions
having spatial extension smaller than the lattice constant. We assume thereby that the
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interaction between the electron and the lattice can be written as the sum of a rapidly
decaying function U centered at each site:

V (r, {q}) =
∑
n

U(r − na, {q}) (1.26)

the short range condition can hence be expressed as U(a, {q}) � U(0, {q}). Therefore,
using the second quantisation formalism, the Hamiltonian for our system looks like

H = −t
∑
〈n,m〉

c†ncm + h.c. +
∑
n

[εn({q}) +Wn({q})]c†ncn +
ω

2

∑
n

bnb
†
n (1.27)

where c†n and cn are the fermionic creation and annihilation operators at site n, whereas
b†n and bn are the bosonic ones. The bosonic vacuum energy has been discarded from the
ionic term because it simply introduces an energy shift not relevant in our considerations.
The two quantities in the brackets of the second term represent respectively the energy
εn({q}) of the electron in an isolated molecule and the mean-field contribution Wn({q})
to this energy due to the interaction of the electron with the other molecules of the chain.

Following Holstein [34], we assume that Wn can be neglected and that εn depends
linearly on the ionic coordinate, so that we get eventually

H = −t
∑
〈n,m〉

c†ncm + h.c. +
ω

2

∑
m

bmb
†
m − g

∑
m

nm
(
b†m + bm

)
(1.28)

which is the Holstein Hamiltonian. Here nm is the electronic number operator and −g is
the constant that characterises the strength of the electron-phonon interaction. IfW = 4t

is now the bare bandwidth, we can define a dimensionless coupling constant λ = g2/ωW

and the adiabaticity parameter α = ω/t. The adiabatic limit corresponds to α → 0. In
the strong-coupling regime (λ > 1) characteristic of small polarons, we can apply the
Lang-Firsnov transformation (LF) to the Holstein Hamiltonian of Equation 1.28 [37, 38].
In this way, neglecting phonon emission and absorption during the hopping process, we
can evaluate the ground state energy of the Holstein Hamiltonian. This approximation
consists in taking a zero-phonon state as an ansatz for the ground state:

|n〉 = c†n |0〉 ⊗
∏
m

|0m〉 (1.29)
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where |0m〉 is the harmonic oscillator ground state at sitem. Now, the LF transformation
that we want to apply is given by

eS, with S = γ
∑
m

nm
(
b†m − bm

)
(1.30)

By means of a formula coming from the famous Baker-Campbell-Hausdorff one (see
Proposition 3.35 in [39]), we can easily find the transformed Hamiltonian

H = −t
∑
〈n,m〉

c†ncm exp
[
γ
(
b†m − bm

)
− γ
(
b†n − bn

)]
+h.c.+

ω

2

∑
m

bmb
†
m−

g2

2ω

∑
m

nm (1.31)

where the value γ = g/ω has been chosen in order to remove the original electron-phonon
term. Calculating the expectation value of this Hamiltonian on Equation 1.29 we get

E = −2te−g
2/2ω2 − g2

2ω
(1.32)

Comparing this expression with the TB energy −2t of a Bloch electron (delocalised
solution), we can see that the exponential factor shrinks the bare electronic band, a
phenomenon known as band narrowing. The second term instead can be identified with
the polaron ground state energy Epol: if the electron-phonon coupling is strong enough
the kinetic term is completely suppressed and we end up with a bound state with energy
Epol = −g2/2ω.

Even though the Holstein’s molecular chain is a toy model, it qualitatively presents
some aspects of small polaron physics that we will encounter in the following chapters.
In particular the polaron formation energy Epol is accessible in DFT calculation and we
will show how it is possible to calculate it in section 2.4.

1.4.2 Polaron hopping

Within Holstein’s molecular model described in the previous section, it is possible to
make some considerations about the motion of the small polaron [40]. In particular, it
is possible to show [40, 41] that this quasiparticles have a mobility

µ ∼ exp

(
−Ea
kT

)
(1.33)
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at sufficiently high temperature T . Here k is the Boltzmann constant and Ea is the energy
barrier for the hopping process, also called activation energy. Without going through all
the details of quantitatively precise derivation, we shall introduce the principal argument
of the EHAM theory [40], in order to understand how we can calculate the activation
energy Ea characteristic of the hopping process.

Let’s consider an electron hopping between two molecules. If q1 and q2 represent
respectively the sole degree of freedom of the first and the second molecule, then their
energy Aq2

1 and Aq2
2, where A is a constant. By placing an electron at molecule 1 we

lower the energy by Bq1, where B is another constant. Eventually we get a total energy
(with respect to a certain zero) for the system given by the molecule plus the electron
at site 1 equal to

Aq2
1 −Bq1 (1.34)

which has a minimum Emin
1 = −Aq2

0 for q1 = B/2A ≡ q0. We identify this equilibrium
situation as a polaron with energy Ep = Aq2

0. Now, if we want the electron to jump from
molecule 1 to molecule 2, it is necessary that it has the same energy at both sites

−Bq1 = −Bq2 (1.35)

and therefore the deformation must be the same for the two molecules. To get this
configuration we have to add an energy equal to A(q − q0)2 to the polaron at site 1 and
Aq2 to the molecule at site 2. Overall, the energy that we must provide to the system is

WH = A(q − q0)2 + Aq2 (1.36)

which has a minimum Ea = 0.5Ep for q = 0.5q0. Within this simple scheme, Ea represents
the activation energy if the process is non-adiabatic. In this case we can neglect the
electron’s kinetic energy, since it has little chance to hop during a single lattice excitation.
On the other hand, in the adiabatic case, the electron goes back and forth several times
between the two molecules during each excitation of the lattice. Emin and Holstein
[42] calculated that in this case the barrier is lowered by an amount equal to the half
bandwidth t of the electron

Ea = WH − t (1.37)

These considerations perhaps are more easily seen by introducing a single configurational
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coordinate x, such that q1 = q0(x+ 1) and q2 = q0x. The energy curves then become

E1 = −Ep + Epx
2 (1.38a)

E2 = −Ep + Ep(x− 1)2 (1.38b)

and consist in the two parabolas of Figure 1.4.3. The adiabatic case is represented by
the dashed line, which smoothly connects the two minima at x = 0 and x = 1.

Figure 1.4.3: Energy as a function of the configurational coordinate x. The two
parabolas E1 and E2 correspond respectively to the electron localised at site 1 and at
site 2. The adiabatic regime is represented with a dashed line. The labels show the
non-adiabatic hopping barrier WH and hopping contribution 2t that lowers the barrier
in the adiabatic case. The picture has been adapted from Deskins and Dupuis [43].

We will talk about the possible ways to evaluate the EHAM hopping barrier in DFT
calculations in section 2.5. This quantity can be then compared with values obtained
from NMR measurements, like those conducted on lanthanum manganites in [14], and
therefore is rather valuable for this work.
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Chapter 2

Modelling and methods

Modern computational modelling of materials rely on a variety of tech-
niques, all based on Density Functional Theory (DFT). The range
of application of this scheme covers system as different as molecules,
nanostructures, solids and surfaces, basically starting from the under-
standing of the properties of a gas of electrons [44]. Nevertheless, the
study of polarons and TMOs requires the development of particular
techniques and corrections on top of the standard formulations of DFT,
represented by the Local Density Approximation (LDA) or the Gener-
alised Gradient Approximation (GGA) schemes. Especially strong EC
and SOC, crucial in our system, require particular care when we want
to include them into DFT calculations. This chapter is hence aimed to
briefly present DFT and explain the methods we employed, in order to
give account for the main physical feature of BNOO with and without
the electron doping.

2.1 Density Functional Theory

The first official appearance of DFT dates back to 1964, in a paper [45] published by
Pierre Hohehnberg and Walter Kohn, who established the rigorous basis for the devel-
opment of this theory in the two famous theorems bearing their names (see subsec-
tion 2.1.2). The first germ of the idea behind DFT is however to be traced back to the
works of Llewellyn Thomas [46] and Enrico Fermi [47] in the late 1920s, which we will

19



20 2. Modelling and methods

immediately summerise in subsection 2.1.1.

If we devote so much attention to this particular theory here is because it turned
out to be a real game changer in material modelling, together with the devolopment of
calculators powerful enough to bear such kind of simulations. DFT provided us with a
tool that has recast the problem of finding the many-body wavefunction Ψ(x1, . . . , xN),
describing the electronic ground state in a material, into the drastically simpler search for
the electron density ρ(x). Therefore, after presenting DFT’s conceptual core, encoded
in the Hohenberg-Kohn (HK) theorems, we go down to the self-consistent Kohn-Sham
equations (see subsection 2.1.3), which are the actual equations implemented in DFT
codes, such as VASP. Some words are spent to show where exact results give way to
approximations, even though this topic could be and has been treated in whole books.

2.1.1 Prelude: The Thomas-Fermi model

As we said in the introduction to this section on DFT, the Thomas-Fermi model of an
electron gas [46–48] is considered the first to shift the attention of the electron density
instead of the many-body wavefunction in the search for the system’s ground state. So
let’s see what it is about.

The N electrons of an atom are described by an antisymmetric wavefunction Ψ(x1, ...,

xN), where xi = r, σi is a shorthand for the position and the spin of the i-th atom, and
the Hamiltonian H, which in atomic units looks like

H =
N∑
i=1

(
−1

2
∇2
i −

Z

ri

)
+

1

2

N∑
i 6=j

1

rij
(2.1)

with rij = |ri − rj|. As soon as the number of electrons is bigger than two, the electron-
electron interaction term, i.e the last on the right hand side of Equation 2.1, makes the
Schrödinger problem very difficult and clearly intractable when we consider condensed
matter numbers. Thus Thomas and Fermi suggested to use statistical methods in or-
der to approximate the electronic distribution around an atom. Specifically Thomas’
assumptions were [46]:

1. in the atom there is an external potential v(r), depending on the distance r from
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the nucleus, such that

v → 0 as r →∞,

vr → 1 as r → 0;

2. the electrons are distributed uniformly in the six-dimensional phase space for the
motion of an electron at the rate of 2 for each h3 volume;

3. relativistic corrections can be neglected.

Following [49], we can translate these statements into quantitative expressions. Let’s
divide the configuration space into cubes of volume ∆V = l3, each cube contains a free
electron gas with ∆N particles. These quantities ∆V and ∆N can have different values
in each cube. The electron energy in the box ∆V is

ε =
π2

2l2
(
n2
x + n2

y + n2
z

)
≡ π2

2l2
R2 (2.2)

If our boxes are big enough we can adopt the continuum limit and write the number of
different states with energy smaller than ε as

N(ε < ε) '
∫ π/2

0

dϕ

∫ π

0

dθ sin θ

∫ √2π−2l2ε

0

dR R2 =
∆V (2ε)3/2

6π2
(2.3)

therefore the number of energy levels between ε and ε+ δε is

g(ε)δε = N(ε+ δε)−N(ε) =
∆V (2ε)1/2

2π2
δε (2.4)

In order to calculate the total energy ∆E in our cell we need the probability for the
state ε to be occupied f(ε), which is the Fermi-Dirac distribution at zero kelvin, namely
a step function. Thus we get

∆E = 2

∫
dε g(ε)f(ε)ε =

∆V (2εF )5/2

10π2
(2.5)

where εF is the Fermi energy, which is related to the number of occupied state at zero
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kelvin as

∆N = 2

∫
dε g(ε)f(ε)ε =

∆V (2εF )3/2

3π2
(2.6)

By combining the previous two equations we can express the total energy of the cell ∆E

as a function of the electron density ρ = ∆N/∆V :

∆E =
3

5
εF∆N =

∆V

10π2

(
3π2ρ

)5/3 (2.7)

We can now write the kinetic energy of the free electron gas as the summation of ∆E

over all the cubic cells forming the configuration space:

TTF [ρ] = CF

∫
d3r ρ5/3(r), with CF =

3

10

(
3π2
)2/3 ' 2.87 (2.8)

which is a functional of the electron density ρ. By adding the Coulomb repulsion and the
electron-electron interaction term, following Thomas’ prescriptions, we get the Thomas-
Fermi functional

ETF [ρ] = TTF [ρ]− Z
∫

d3r
ρ(r)

r
+

1

2

∫
d3r1d3r2

ρ(r1)ρ(r2)

|r1 − r2|
(2.9)

We can now apply the variational principle to find the ground state electron density ρ0

and energy E0.
The Thomas-Fermi model, as we have presented it here, is a rather simple one. It has

the big flaw of not predicting the binding of atoms in molecules and, compared to other
methods, it has a lower accuracy [49]. Nonetheless it has the merit of having introduced
a shifting in perspective: it allows to determine the ground state of the system using
the information stored in the electron density ρ, which lives in the usual configuration
space with three coordinates and hence has a clear interpretation, whereas, in the usual
Schrödinger picture, we would have had to deal with the 3N -dimensional wavefunction
Ψ(x1, ..., xN).

2.1.2 The Hohenberg-Kohn theorems

The 1964 paper by Hohenberg and Kohn [45] shows that the Thomas-Fermi model is
an approximation of an exact theory, namely the DFT. Let’s rewrite the N -electrons
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hamiltonian Equation 2.1 in a more general form

H =
N∑
i=1

(
−1

2
∇2
i

)
+

1

2

N∑
i 6=j

1

rij
+

N∑
i=1

v(ri) (2.10)

where v(r) is an external potential. Then the normalised ground state wavefunction Ψ

can be determined by using the variational principle

E0 ≤ 〈Ψ|H|Ψ〉 (2.11)

The first HK theorem legitimises the use of the electron density ρ as basic variable, in
place of the electron number N and v:

Theorem 2.1.1 (1st Hohenberg-Kohn). The external potential v(r) is determined, within
a trivial additive constant, by the ground state density ρ(r).

Proof. Let ρ(r) the density for a non-degenerate ground state. Then the number of
electrons is trivially given by

N =

∫
d3r ρ(r) (2.12)

Now let’s assume that v and v′ are two external potentials which differ by more than a
constant and they both give the same density for the ground state. Thus we have two
Hamiltonians H and H ′ and two corresponding ground state wavefunctions Ψ and Ψ′.
We can now write the variational principle for H with Ψ as a trial wavefunction

E0 < 〈Ψ′|H|Ψ′〉 = 〈Ψ′|H ′|Ψ′〉+ 〈Ψ′|H −H ′|Ψ′〉

= E ′0 +

∫
d3r ρ(r)[v(r)− v′(r)]

(2.13)

On the other hand the variational principle for H ′ tells us that

E ′0 < 〈Ψ|H ′|Ψ〉 = 〈Ψ|H|Ψ〉+ 〈Ψ|H ′ −H|Ψ〉

= E0 +

∫
d3r ρ(r)[v′(r)− v(r)]

(2.14)

By adding these two inequalities we get a contradiction. Therefore, v and v′ can differ
only for a trivial constant if they provide the same density.
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Let’s make explicit the dependence on the external potential of the energy functional:

Ev[ρ] = FHK [ρ] +

∫
d3r ρ(r)v(r) (2.15)

where FHK [ρ], which contains the kinetic and the electron-electron contribution, is an
universal functional in the sense that it does not depend on the external potential. At
this point the second theorem of Hohenber and Kohn provides us with a variational
principle for the functional Ev[ρ]:

Theorem 2.1.2 (2nd Hohenberg-Kohn). For a trial density ρ̃(r) such that ρ̃(r) ≥ 0 and∫
d3r ρ̃(r) = N ,

E0 ≤ Ev[ρ̃] (2.16)

where Ev[ρ̃] is the energy functional of Equation 2.15.

Proof. From the first HK theorem we can say that the trial density ρ̃(r) determines its
own potential, Hamiltonian and wavefunction, respectively ṽ, H̃ and Ψ̃. We can use Ψ̃

as a trial wavefunction in the variational principle for H of Equation 2.10:

E0 = Ev[ρ] ≤
〈

Ψ̃
∣∣∣H∣∣∣Ψ̃〉

= FHK [ρ̃] +

∫
d3r ρ̃(r)v(r) = Ev[ρ̃]

(2.17)

Assuming that Ev[ρ] is differentiable and by introducing the Lagrange multiplier µ
we can write

δ

{
Ev[ρ]− µ

[∫
d3r ρ−N

]}
(2.18)

which follows from the variational principle Equation 2.16. Thus we have

µ =
δEv[ρ]

δρ
= v(r) +

δFHK [ρ]

δρ
(2.19)

The Lagrange multiplier µ represents the chemical potential of our system and Equa-
tion 2.19 constitutes the basic equation of DFT. If we knew the universal functional
FHK [ρ], then Equation 2.18 would be an exact equation for the ground state density ρ.
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But it turns out that to find an explicit expression for FHK [ρ] is a rather difficult task,
which to date no one managed to accomplish. However, numerous approximations for
FHK [ρ] have been suggested, but their effectiveness is system dependent, whereas the
exact functional would fit to any system. We dedicate the following subsection 2.1.3 to
the presentation of the relevant scheme and approximations for this study.

If we now look back at the Thomas-Fermi functional given in Equation 2.9, we recog-
nise that the sum of kinetic term TTF [ρ] and the mean field electron-electron interaction
term is just an approximation of FHK [ρ]. Indeed, the Thomas-Fermi model can be seen
as the first and simplest application of the HK theorems.

The HK theorems, as presented in this section, require an electron density that is
v-representable, namely a density associated with the antisymmetric wavefunction of
the ground state of an Hamiltonian of the form Equation 2.10. However, they can be
extended to hold also for more general densities, called N-representable densities. Such
densities must satisfy the following requirements [49]:

ρ(r) ≥ 0 (2.20a)∫
d3r ρ(r) = N (2.20b)∫
d3r

∣∣∇ρ1/2(r)
∣∣2 <∞ (2.20c)

Moreover, the requirement of a non-degenerate ground state can be relaxed. For further
details we remand to specialised books as [49, 50].

2.1.3 The Kohn-Sham equation

The Thomas-Fermi model simply takes into account the classical coulombic electron-
electron interaction

J [ρ] =
1

2

∫
d3r d3r1

ρ(r)ρ(r1)

|r− r1|
(2.21)

and replace the general kinetic energy functional T [ρ] with that of a non-interacting
electrons system. However, to refine this model is not an easy task [49]. A successful
approach to incorporate exchange and correlation effects is that of Kohn and Sham
[51]. This consists in a mapping of the system of interest into a non-interacting one, in
such a way that they are both described by the same ground state density ρ. For N
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non-interacting electrons we can write the Hamiltonian as

Hs =
N∑
i=1

(
−1

2
∇2
i + vs(ri)

)
(2.22)

which has the exact ground state described by the Slater determinant

Ψs =
1√
N !

det[ψ1 · · ·ψN ] (2.23)

where the spin-orbitals ψi are the lowest eigenstates of the one-particle Hamiltonian hs:

hsψi =

[
−1

2
∇2
i + vs(ri)

]
ψi = εiψi (2.24)

Thus the kinetic functional for the non-interacting system is given by

Ts[ρ] =

〈
Ψs

∣∣∣∣∣
N∑
i=1

−1

2
∇2

∣∣∣∣∣Ψs

〉
=

N∑
i=1

〈
Ψi

∣∣∣∣−1

2
∇2

∣∣∣∣Ψi

〉
(2.25)

Even though this mapping requires a non-interacting v-representable density, a formula-
tion with N -representable densities is possible [49].

We can now separate out the non-interacting kinetic energy and the classical part of
the coulombic interaction and rewrite the universal functional of the HK theorem as

F [ρ] = T [ρ] + Vee[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] (2.26)

where Exc[ρ] is called exchange-correlation functional and is defined as

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ] (2.27)

The non-interacting density can be expressed in terms of the spin-orbitals ψi as

ρ(r) =
∑
i,s

|ψ(r, s)|2 (2.28)

and we can apply the variational principle of the second HK theorem, performing the
variation on the space of spin-orbitals [49]. With a suitable basis we get the self-consistent
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Kohn-Sham equation [
−1

2
∇2 + veff

]
ψi = εKSi ψi (2.29)

where the effective potential veff is given by

veff (r) = v(r) +
δJ [ρ]

δρ
+
δExc[ρ]

δρ
= v(r) +

∫
d3r1

ρ(r1)

|r− r1|
+ vxc(r) (2.30)

So far the procedure is exact: we can solve Equation 2.29 self-consistently, build the
density from Equation 2.28 and eventually get the ground state density from the energy
functional. The total energy can be written also as

E0 =
N∑
i=1

εKSi − J [ρ] + Exc[ρ]−
∫

d3r ρ(r)vxc(r) (2.31)

Thus the total energy is not simply the sum of the orbital energies. Nevertheless, there
is a theorem by Janak [52] which states that

∂E

∂ni
= εKSi (2.32)

where ni is the occupation of the i-th Kohn-Sham orbital. For what concerns the Kohn-
Sham orbitals ψi, they have no physical meaning, as their auxiliary nature clearly sug-
gests [49].

However, the exchange-correlation functional Exc[ρ] remains unsettled. The search
of an accurate form for Exc[ρ] has encountered tremendous difficulties [49]. The simplest
approximation was introduced by the same Khon and Sham and is called local density
approximation (LDA). They assumed that

ELDA
xc [ρ] =

∫
d3r ρ(r)εxc[ρ(r)] (2.33)

where εxc is the exchange-correlation energy per particle of a uniform eletron gas with
electron density ρ. Basically, we are saying with this formula that the exchange-correlation
energy of a non-uniform system can be obtained by applying the uniform electron gas
results to an infinitesimal region of the system.

The exchange-correlation energy per particle εxc can by split into an exchange and a
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correlation part as
εxc(r) = εx(r) + εc(r) (2.34)

where the exchange part εx can be calculated exactly, whereas the correlation one can
be accurately calculated using Monte-Carlo simulations [49].

An improvement to LDA functionals is given by the Generalised Gradient Approxi-
mation (GGA), where the exchange-correlation energy per particle depends also on the
gradient of the density:

EGGA
xc [ρ] =

∫
d3r ρ(r)εxc[ρ(r),∇ρ(r)] (2.35)

2.1.4 Spin Density Functional Theory

The description of magnetic materials requires us to consider spin degree of freedom.
In 1973 Rajagopal and Callaway, starting from the Dirac equation, reformulated DFT
considering Special Relativity[53]. Indeed, they proved that the ground state total energy
of a system of electrons in their ground state is a unique functional of the four current
Jµ. We are not so interested in the special form of Jµ in our discussion. Suffice it to say
that it contains the electron density ρ, the spin density s and the electron current [44].
Nowadays, we do not usually take care of electron density in DFT calculation and HK
theorems of subsection 2.1.2 are generalised considering the total energy as functional of
only ρ and s. If we introduce the density matrix

ραβ(r) =
N∑
i

ψ∗i (r;α)ψi(r; β) (2.36)

with the greek indices staying for up or down spins, total and spin densities can be
written as

ρ(r) =
∑
αα

ραα(r), s(r) =
1

2

∑
αβ

ραβ(r)σαβ (2.37)
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and the variational principle of the second HK theorem can be restated as E0 ≤ E[ραβ].
Following the same arguments of subsection 2.1.3, we can write the Kohn-Sham equation[

−1

2
∇2 + v(r) + vH(r)

]
ψi(r;α) +

∑
β

vXCαβ (r)ψi(r; β) = εKSi,α ψi(r;α) (2.38)

where the exchange-correlation potential matrix is given by the functional derivative of
Exc with respect to the density matrix. If we define the quantities

vxc =
vxc11 + vxc22

2µB
, Bxc

x =
vxc12 + vxc21

2µB
, Bxc

y = i
vxc12 − vxc21

2µB
, Bxc

z =
vxc11 − vxc22

2µB
(2.39)

then Kohn-Sham equation can be rewritten as[
−1

2
∇2 + v(r) + vH(r) + vxc(r) + µBσ ·Bxc(r)

]
Ψi(r) = εiΨi(r) (2.40)

where Ψi is the two component spinor defined as

Ψi(r) = ψi(r; 1)χ↑ + ψi(r; 2)χ↓ (2.41)

From Equation 2.40 we can see that when spin degrees of freedom are considered, ex-
change and correlation effects may give rise to an effective magnetic field Bxc. This
gives account for magnetic ordering phenomena [44]. Moreover, SOC can be taken into
account within this formalism.

The generalisation of the local density approximation expressed in Equation 2.33 to
the spin density functional theory is given by

ELSDA
xc [ραβ] =

∫
d3r ραβ(r)εxcαβ[ραβ(r)] (2.42)

and in this case we speak about Local Spin-Density Approximation (LSDA).

2.2 The Dudarev’s correction

The analysis of TMOs by means of LSDA turned out to by quite unsuccessful, despite
the great improvement that this method has brought about for other materials [54–56].
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To cite just a couple of examples, it correctly reproduces the magnetic ground state of
the NiO-MnO series, but a the same time it predicts materials such as CoO and FeO to
be metals, whereas they are known to be insulators. Moreover, the L(S)DA estimation
of the band gap of NiO and MnO turns out to be an order of magnitude smaller than
experimental values [54].

The main reason for such an inadequacy has to be addressed to the strongly correlated
nature of electrons in TM atoms1 and the fact that in LSDA we consider a local exchange-
correlation potential of a non-intercating electron gas. We saw however in section 1.1
that the Hubbard model can describe qualitatively some features of strongly correlated
electrons as the Mott Insulator transition. We might expect therefore that adding a
Hubbard-like penalty term in the DFT total energy, can lead to more consistent results.
This is indeed the case in the Dudarev’s scheme [55], where besides the standard LSDA
functional, we consider also the effect of the following Hamiltonian:

HU =
U

2

∑
m,m′,σ

n̂m,σn̂m′,σ +
U − J

2

∑
m′ 6=m,σ

n̂m,σn̂m′,σ (2.43)

where the latin indices run over the magnetic quantum numbers ([−2, 2] for d-electrons)
and σ gives account for the two spin polarisations. The constant U and J are given
by spherically averaged matrix elements of the screened electron-electron interaction. If
EU [ρ] is the energy functional associated with the Hamiltonian in Equation 2.43, we can
write a corrected functional as

ELSDA+U [ρ] = ELSDA[ρ] + EU [ρ]− Edc[ρ] (2.44)

where Edc[ρ] is called double counting functional [57] and it is introduced in order to
remove the part of EU that is supposed to be already included in the LSDA functional.
There is no unique choice for Edc[ρ] [58].

Following Dudarev et al. [55], we assume that the double counting term is so that
the LSDA+U functional reduces to the standard LSDA one, when there is no orbital

1This argument applies for the f -block elements as well.
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polarisation, i.e. in the atomic limit (integer occupation of the orbitals). Thus

Edc = 〈integer Nσ|HU |integer Nσ〉

=
U

2

∑
σ

NσN−σ +
U − J

2

∑
σ

Nσ(Nσ − 1)
(2.45)

where Nσ is the total number of d-electrons with spin projection σ. For integer occupa-
tion, we should remember that nm,σ is idempotent in order to get the second expression
in Equation 2.45. The general case of partial occupations is treated in the Unrestricted
Hartree-Fock (UHF) approximation

EU = 〈fractional Nσ|HU |fractional Nσ〉UHF

=
U

2

∑
m,m′,σ

nm,σnm′,σ +
U − J

2

∑
m′ 6=m,σ

nm,σnm′,σ
(2.46)

Therefore, subtracting Equation 2.45 from Equation 2.46 we get the Dudarev’s correction

ELSDA+U = ELSDA +
U − J

2

∑
m,σ

nm,σ − n2
m,σ (2.47)

Notice that here the two integrals U and J enter just as a difference so that we can
define Ueff = U − J , which is the parameter to be set in VASP calculations when the
Dudarev’s method is selected.

2.3 Constrained magnetic moments

Magnetic materials can show non conventional non-collinear configurations usually driven
by SOC [2, 6]. In this case the magnetic moments do not lie all on the same direction as
in ferro- or antiferromagnets. Because of this peculiar kind of alignment, in the analysis
of such materials, it is useful to constrain the direction of the magnetic moments, in
order to understand how their energy depends on the canting angle. This can be done
in VASP by applying a penalty energy contribution to the total energy which looks like

Ep = λ
∑
I

[
MI − M̂0

I

(
M̂0

I ·MI

)]
(2.48)
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where the index I runs over all atomic sites, M̂0
I is the direction of the magnetic moments

as imposed in the input file (INCAR) and MI is the integrated magnetic moment for
each ion, i.e.

MI =

∫
ΩI

d3r FI(|r|)m(r) (2.49)

where FI is a cut-off function, which goes smoothly to zero as it approaches the bound-
aries of the atomic sphere ΩI with radius RI .

The relevant parameters to be set in the calculations are RI and λ. The former allows
a correct integration of the magnetic moments. A good RI value should be large enough
to get a meaningful value of the magnetisation, but, at the same time, too large values
would give spurious results, because the integration region would trespass into that of
the near ions. On the other hand, the parameter λ controls the strength of the penalty
energy and the effectiveness of the constraint. Finely tuned value of λ are required in
order to prevent the penalty energy contribution to interfere with the accuracy of the
calculations.

2.4 Polarons in DFT

Usually there is no guarantee that DFT+U calculations lead to the correct small polaron
ground state [3]. Charge carriers can localise at different sites that could be not equivalent
to each other. The resulting different configurations might therefore constitute spurious
minima, to which the calculations converge instead of the true ground state. Actually,
most of the times, DFT does not predict charge localisation at all and particular strategies
must be devised.

First of all, we have to introduce excess charge into the system, this can be accom-
plished either by putting some kind of defects in the unit cell or by means of some
artificial method. For instance, VASP allows to add electrons to the system with a
specific flag in the input file, namely NELECT [59]. Accordingly, we should initialise
the magnetic moment of the desired site with a value that is ∼ µB larger than that of
the same site in the pristine material, in order to give account for the spin of the extra
electron.

Once excess charge has been introduced, one possibility for inducing the calculation
to converge toward a localised solution is to manually perturb the lattice symmetry by
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introducing distortions around the desired site, at which we would like to trap the charge.
By pushing away the nearest neighbours from the selected site of about 7% the original
bond length, the calculations converge into a polaronic solution in most cases. For all
calculations in this work, the initial distortions were always between 5% and 10%. Instead
of manually perturb the lattice, we can achieve the same goal by chemical substitution:
the original atom at the site where charge localisation should occur is substitute with
another one that has one electron more. The ionic positions are subsequently let to relax
in order to get a tentative structure from which the polaronic solution can be obtained.
Since in this work we didn’t use chemical substitution in this regard, we remand to [3]
for further details. Eventually we can check whether the solution is actually polaronic or
not by inspecting the local magnetic moment at the selected site and the ionic distortions
around it. The spin of the trapped electron should bring a ∼ µB contribution that makes
magnetic moment of the polaronic site at least ∼ 0.5µB larger than those at other sites.
If charge localisation does not take place, on the contrary, the excess charge spreads over
many sites and therefore no discernable spin density should appear at any site. From

Figure 2.4.1: The picture, taken from Reticcioli et al. [3], show the interpretation of
the polaron formation energy Epol, the strain energy Est and the electronic gain energy
Eelg. The lattice on the right is that of rutile TiO2 of [3].

an electronic point of view, we would find the footprint of the polaron in the Density Of
States (DOS) and in the band structure. As we mentioned in section 1.4, small polarons
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present themeselves with the formation of in-gap states having almost no dispersion, due
to the band narrowing (see subsection 1.4.1).

Last but not least, a quantity that usually is readily derivable from DFT calculations
is the polaron energy Epol that we introduced in subsection 1.4.1. There is no universally
accepted definition for such an energy, but in recent years the one proposed in e.g. [1, 3]
has been widely adopted in the field. By selectively turning on or off charge localisation,
we can define the following energies:

Eloc
dist: total energy of the system with charge localisation and lattice distortions;

Edeloc
unif : total energy of the system with delocalised charge carriers and uniform lattice;

Edeloc
dist : total energy of the system with delocalised charges constrained into the lattice of

the polaronic configuration;

which allow us to define also this set of polaronic energies:

Epol = Eloc
dist − Edeloc

unif (2.50)

Est = Edeloc
dist − Edeloc

unif (2.51)

Eelg = Eloc
dist − Edeloc

dist (2.52)

whose interpretation is depicted in Figure 2.4.1. The first one, Equation 2.50, is the
polaron formation energy and it tells us whether the polaronic solution is more convenient
than one with delocalised charge carriers. The strain energy Est represents the structural
cost to accomodate the excess charge instead of letting it spread over a uniform lattice.
The last one, the electronic gain energy Eelg, constitutes the electronic energy gained in
the localisation of the carrier via electron-phonon interactions. We can see therefore the
polaron formation as the result of two processes of adjustment:

Epol = Est + Eelg (2.53)

that of the lattice and that of the electrons, respectively encoded into Est and Eelg.
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2.5 Hopping: Linear Interpolation Scheme

In the previous section we considered only polaron ground state properties. However,
polarons are characterised by their ability to move around the lattice. It turns out
that for small polarons there exist different DFT approaches [3] capable to model, to
a certain extent, their dynamics. The simplest one is the Linear Interpolation Scheme
(LIS) [3, 43, 60] and it is directly connected to the EHAM theory that we presented in
subsection 1.4.2. We choosed it because of its relatively smaller computational cost and
more straightforward implementation when compared to e.g. the Nudged Elastic Band
(NEB) method.

The LIS scheme consists in a sequence of static calculations along a trajectory that
connects two polaronic configurations, say one with charge localised at site A and the
other one at site B, defined as linear interpolation of the polaronic distortions between
the two sites. By introducing the reaction coordinate x ∈ [0, 1], analogous to the config-
urational coordinate x of subsection 1.4.2, then this trajectory q(x) is obtained from the
ionic coordinates as in configuration A qA and those as in configuration B qB as

q(x) = qA + x(qB − qA) (2.54)

At chosen values of x we perform electronic self-consistent calculations in order to cal-
culate the configuration’s energy E(x). With these data it is then possibile to build the
adiabatic curve of Figure 1.4.3 and extract the activation energy Ea. In order to obtain
the non-adiabatic barrier instead, we have to calculate the two parabolas of Figure 1.4.3
and find their intersection point. This can be done by forcing the charge localistion first
say at site A and calculating the total energy for different values of x. Then the same
calculations are performed with the charge at site B and eventually the intercept can be
evaluated e.g. by fitting the two curves [3].

In our case, preliminary NMR measurements suggested that the hopping process is
thermally activated and hence adiabatic [43], thereby we applied only the first scheme.
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Chapter 3

The Double Perovskite BNCOO

The double perovskite BNOO is characterised by many interesting prop-
erties, such as its cAFM ordering accompanied by the Dirac-Mott insu-
lating state. Moreover, X-rays experiments showed that, upon chemical
substitution of Na with Ca, the material preserves this relativistic phase
instead of undergoing an insulator-metal transition.
We spend in this chapter some words on the properties of these rela-
tivistic Osmates, identified by the chemical formula Ba2Na1–xCaxOsO6.
At the same time, we introduce the principal parameter of our ab-initio
calculations.

BNOO is a double perovskite with rock-salt ordering of the B cations [7, 9]. It has a
face centered cubic (fcc) crystal structure with space group Fm3m and lattice constant
a = 8.285 66(5)Å as measured from room temperature powder X-ray diffraction [9].
Figure 3.0.1 shows a

√
2a ×

√
2a × a unit cell rotated by 45° with respect to the c axis

and slightly expanded in the ab plane. Yellow and brown octahedra are respectively
centered at Na and Os atoms. Oxygen atoms are represented in red and barium in
green.

This cell has been chosen instead of the primitive one in order to easily compare
the results from the pristine (x = 0) and the doped (x = 0.125) case, where one Na
is substituted with a Ca atom. Moreover, such transformed cell allowed us to easily
deal with the canted magnetic moments of BNOO [2], having the cell x-axis along the
direction [1 1 0] of the resulting magnetic moment.

37
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Figure 3.0.1: Super cell of BNOO used in the calculations. The octahedra centered
at Na and Os atoms are represented in yellow and brown respectively. O atoms are in
red and Ba in green.

By chemically substituting sodium with calcium atoms the unit cell expands accord-
ing to the Vegard’s law. We report the values of the lattice constant as measured in
powder X-ray diffraction experiments for different calcium concentrations in Table 3.1,
even though we will focus only on the pristine and x = 0.125 cases in this work.

3.1 Physical properties of BNOO

BNOO is a heptavalent Os (5d1) compound with unique properties. With one electron
per osmium site we would expect BNOO to be a metal, but dc resistivity and infrared re-
flectivity measurements showed that this is actually an insulator [7]. From first principle
calculations, Xiang et al. [61] were able to attribute the opening of the insulating gap to
the cooperative effect of electron correlation and SOC, making of BNOO a Dirac-Mott
Insulator (DMI). Tight-binding analysis allowed to evaluate the hopping matrix element
t ∼ 0.05 eV that couples adjacent octahedra and the Hubbard U ' 3.3 eV associated
with moving an electron from one octahedron to another one [61]. In line with these
estimations and the calculations of Fiore Mosca et al. [2], we used Ueff = 3.4 eV in our
simulations.

Another peculiar characteristics of BNOO is its magnetic phase. Typically, simple
oxides of osmium, such as OsO2 and BaOsO3, are Pauli paramagnets due to the large
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x a (Å)

0.000 8.285 66(5)
0.125 8.296 93(3)
0.250 8.304 52(3)
0.375 8.318 01(4)
0.500 8.329 85(6)
0.750 8.343 49(3)
0.900 8.352 89(3)
1.000 8.357 80(2)

Table 3.1: Lattice constant a at different Ca concentrations x as measured in room
temperature powder X-ray diffraction experiments [9].

spatial extension of the 5d orbitals [7]. But more complex oxides, like La2NaOsO6 and
Ba2LiOsO6, appear to show local moment behaviour. Among them, BNOO is the one
with the largest magnetic moments (∼ 0.2µB) in the ordered phase appearing below
Tc ' 6.3 K, which turned out to be an exotic canted anti-ferromagnetic (cAFM) phase
with the resulting magnetic moment direct along the [1 1 0] axis [2, 8]. This structure can
be understood by looking at Figure 3.1.1. Alternating planes can be identified where the
magnetic moments are respectively aligned at a canting angle +φ and −φ with respect to
the [1 1 0] direction. Let’s call 1 and 2 the two inequivalent planes, respectively coloured
in blue and red in panels (a) and (c) of Figure 3.1.1. From first principle calculations
Fiore Mosca et al. [2] obtained for the canting angle φ ' 67°. The exotic cAFM pattern
appears in BNOO along with staggered JT distortions, represented in panel (b) and
(c) of Figure 3.1.1. Osmium octahedra show in fact an overall expansion (Q1 mode)
and tetragonal distortions in the (0 0 1) planes (Q2 and Q3 modes): in the blue plane
the direction of largest expansion is [1 0 0], whereas in the red one is [0 1 0], as can be
understood from panel (c) and (d) of Figure 3.1.1. Notice that these directions do not
correspond to those in the computational unit cell of Figure 3.0.1 labelled by the same
miller indices. These distortions can be characterised by three of the fifteen generalised
coordinates necessary for the Oh symmetry of the octahedral structure, namely Q1, Q2
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Figure 3.1.1: Magnetic ordering and JT distortions of BNOO. Panels (a) and (d)
show the cAFM phase, with canting angle φ ' 67°. Panels (b) and (c) clarify the
staggered pattern of the JT effect. The figure comes from Fiore Mosca et al. [2].

and Q3. Following Van Vleck [62], these are defined as

Q1 = (X1 −X4 + Y2 − Y5 + Z3 − Z6)/
√

6 (3.1a)

Q2 = (X1 −X4 − Y2 + Y5)/
√

2 (3.1b)

Q3 = [X1 −X4 + Y2 − Y5 − 2(Z3 − Z6)]/2
√

3 (3.1c)

where Xi, Yi, Zi represent the difference in the coordinate of the i-th atom between the
distorted and the symmetric structures. The particular labelling takes as first atom the
one on the positive x-axis, those on positive y- and positive z-axis follow. The last three
are on the negative sides [62]. For BNOO Fiore Mosca et al. [2] obtained the values
reported in Table 3.2. The variable θ is defined as the arctangent of Q2/Q3.

The data in Table 3.2 will be useful later on, when we will look at the polaronic
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Q1 Q2 Q3 θ
plane 1 0.03159 0.00875 0.00164 79.35
plane 2 0.03159 -0.00875 0.00164 -79.35

Table 3.2: Generalised coordinate for the JT distortions in BNOO as calculated by
Fiore Mosca et al. [2].

distortions, to understand how they modify the original JT pattern observed in the
pristine material.

3.2 Chemical substitution: BNCOO

Electrons can be injected into BNOO by chemically substituting sodium with calcium
atoms. The so obtained compound Ba2Na1–xCaxOsO6 has been studied by means of first
principle calculations, X-ray diffraction and X-ray absorption spectroscopy at different
calcium concentrations x by Kesavan et al. [9]. When sodium is fully substituted we end
up with the double perovskite Ba2CaOsO6, where osmium atoms have a formal valence
of +6 and the Dirac-Mott gap is still open. This is a rather peculiar fact, considered that
the prototypical compound of this class, Sr2IrO4, along with 3d perovskites, undergoes
a MI transition upon doping [9].

Recent results suggest that Ba2CaOsO6 presents a ferro-octupolar magnetic ordering
[63–66] and therefore a magnetic phase transition has to occur. Moreover, spin-lattice
and spin-spin relaxation measurements performed with 23Na NMR spectroscopy showed
anomalous peaks recalling those observed in lanthanum manganites, which were asso-
ciated with a thermally activated SP dynamics [14]. These results have not yet been
published but they strongly suggest that a similar process occurs in Ba2Na1–xCaxOsO6

at all Ca concentration between 12.5% and 90% sampled during the experiments. In par-
ticular, for the first sample (x = 0.125), the experimental team evaluated the activation
energy for the hopping process to be ∼ 810 K.

To investigate the robustness of the Dirac-Mott phase and to understand whether the
SP-character of the NMR peaks is confirmed by DFT modelling are the main reasons
that have motivated this study. In order to test the hypothesis of SP formation upon
chemical doping of BNOO, we performed calculations for the pristine and the x = 0.125

cases. We will refer to the latter as BNCOO. The results are matter of the next chapter.
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Chapter 4

Results

SPs arise from electron-phonon interaction and therefore their footprint
can be found in both the electronic and crystal structures. Moreover,
they are characterised by being mobile quasiparticles, which can move
overcoming an energy barrier, when they are thermally excited. We
thereby performed ionic relaxtion calculations to identify the polaronic
lattice distortions and, from the instantaneous ground state structure
thus obtained, we calculated the electronic density of states and band
structure, where SPs appears as in-gap states. Eventually we simulated
the SP hopping to evaluate the energy barrier for the dynamical process
and compare it with the value estimated from NMR measurements.
We present in this chapter the results produced by our calculations for
these quantities, showing at the same time where further investigation
is required and from which aspects future works might start.

4.1 Pristine BNOO

As a first step for our calculations, we reproduced the principal results of [2, 9] using the√
2a×

√
2a× a supercell of Figure 3.0.1. Having at our disposal the data on the pristine

material is useful in order to recognise whther a polaron does form when we employ the
conventional doping method (see section 2.4). Moreover, they served as a benchmark for
the setup of the calculations. Common to them all is the 4× 4× 6 k-points grid and the
energy cut-off Ecut = 580 eV for the plane wave basis set. The Perdew-Burke-Ernzerhof
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[67] approximation for the exchange-correlation functional has been used throughout this
work.

Figure 4.1.1: Density of states of pristine BNOO. The grey shaded area represents
the total DOS, whereas the contrbution of the t2g and eg orbitals of osmium atoms and
of the p one of oxygen atoms are drawn respectively in blue, green and red (dashed).

For BNOO we took as lattice constant a = 8.287Å and fixed the magnetic moments
to the ground state cAFM ordering, with canting angle φ = 67°, of Fiore Mosca et al.
[2]. This has been achieved using the constrained magnetic moments flag in VASP and
λ = 10 (see section 2.3). As atomic radius for the integration, we took the Wigner-Seitz
radius reported in the potential files (POTCARs) [59].

First we let the ionic position to change in order to find the istantaneous ground
state configuration. This has been done using a quasi-Newton algorithm [59, 68] with
a tolerance of 0.005 eV/Å for the forces acting on each atom. We thus obtained the JT
staggered pattern of section 3.1 reported in Table 4.1. The results are in accordance
with those of Fiore Mosca et al. [2], also reported in Table 3.2.

Q1 Q2 Q3 θ
plane 1 0.029 0.011 0.002 78.5
plane 2 0.029 -0.011 0.002 -78.5

Table 4.1: Generalised coordinate for the JT distortions in BNOO.

From the structure obtained after the ionic relaxation, we calculated the DOS re-
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ported in Figure 4.1.1. In the plot the osmium t2g and eg levels along with the p orbital
contribution of the oxygen atoms are highlighted with colors. The large overlap of the
osmia 5d orbitals with the p ones of neighbouring oxygens is clearly visible from the four
peaks around the Fermi level. The insulating gap of ∼ 0.50 eV is opened by EC and
SOC as can be seen from the DOS plot reported in [9] and the supplementary materials
of [2].

Figure 4.1.2: Band structure of the pristine BNOO supercell. The picture shows a
small region of the spectrum around the Fermi energy.

The corresponding bands are reported in Figure 4.1.2, where twenty points have been
taken between each pair of high symmetry points. We did not use the band-unfolding
technique, which is usually employed in supercell calculations, because of some problems
with the software. Therefore, the symmetry points in this plot (and in those of all the
subsequent band structures) are to be intended as those of the tetragonal supercell. We
referred to [69] for the labelling of the k-space path.
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4.2 Conventional doping

For the discussion of polarons it is useful to indroduce labels that identify the osmium
atoms in our unit cell. Therefore, we report in Figure 4.2.1 a simplified version of the
supercell of Figure 3.0.1 with only the osmium and oxygen atoms, where we numbered
the formers starting from those in plane 2. The complete labelling can be read in the
figure.

Figure 4.2.1: Unit cell without the Ba and Na atoms. The osmium sites has been
numbered starting from plane 2, in order to discuss the polaronic solutions.

We added one excess charge to the system first manually, i.e. by inserting an addi-
tional electron to the unit cell by means of the flag NELECT available in VASP [59].
The case of chemical doping is analysed later on in section 4.3. In order to trigger locali-
sation we manually distort the lattice around the desired site, as described in section 2.4.
Taking as a reference the localisation site, each cartesian coordinate of the neighbour-
ing oxygen atoms has been enlarged by 7% of the original value and then we let the
ion positions to relax. We performed this operation at four different sites, two for each
magnetically inequivalent plane.

In Table 4.2 we report the distortions of the bonds between osmium and its neigh-
bouring oxygen atoms due to polaron formation. We calculated them with respect to
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the structure of the pristine material, including the JT distortions. The reference bond
lengths of the OsO6 octahedra can be read from Table A.1. The results are expressed
using the coordinates defined in section 3.1, which means that, for instance, Z3 refers
to the oxygen atom above the osmium and hence lying along the [0 0 1] direction. Since
distortions are always smaller than 0.4% but for the octahedron around the localisation
site, we characterise here only the structure of the latter in four different cases. A dif-

site X1 (%) X4 (%) Y2 (%) Y5 (%) Z3 (%) Z6 (%) Ep (meV)

1 2.4 1.7 0.9 0.9 2.2 2.2 113
2 2.1 2.1 0.5 1.2 2.2 2.2 112
7 1.0 1.0 2.0 2.0 2.3 2.3 130
8 0.9 0.9 2.0 2.0 2.3 2.3 132

Table 4.2: Bond length distortions due to polaron formation at different sites as
obtained with conventional doping, with respect to the pristine structure. In the last
column is reported the polaron energy Ep for each configuration.

ference in total energy of ∼ 20 meV between the sites lying in the two different planes
of Figure 3.1.1 can be noticed from the last column. This unexpected asymmetry may
be ascribed to the different deformation of bonds along the same axis, suggesting that
more accurate calculations could be necessary. We repeated these structural calculations
with the magnetic moments costrained in the directions of the cAFM of pristine BNOO
(φ = 67°) but still free to vary their modulus. Also in this case the ∼ 20 meV is observed
between the two planes and thereby we suspect that this asymmetry does not arise from
magnetism. For the sites 1 and 2 (plane 2) we can see in Table 4.2 that the distortions
in the Xi are about two times bigger than those in the Yi. This is enough to change the
symmetry of the polaronic site that, according to Equation 3.1b, is now characterised by
a Q2 value with opposite sign with respect to the pristine case (compare e.g the bond
lengths in Table A.1 and Table A.2).
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site Q1 (Å) Q2 (Å) Q3 (Å) θ (°)

1 0.068 0.003 -0.006 153
2 0.068 0.005 -0.006 136
7 0.069 -0.002 -0.007 -167
8 0.069 -0.004 -0.007 -150

Table 4.3: Generalised coordinates for the JT-polaron distortions measured with re-
spect to the symmetric octahedra.

The new values for the generalised coordinate Qi are reported in Table 4.3, where
the bond length distortions are measured with respect to symmetric octahedra having
Os–O bond 1.870Å long. The same happens also for the polaron in plane 1, but with
the roles of Xi and Yi exchanged.

The magnetic moments were allowed to relax from the cAFM pattern of the pristine
material (see section 3.1). Even though no variations have been observed for the z-

site mx (µB) my (µB) φ (°)

1 0.339 -0.744 -66
2 0.314 -0.754 -67
3 0.314 -0.754 -67
4 0.339 -0.744 -66
5 0.410 0.720 60
6 0.351 0.775 66
7 0.313 0.807 69
8 0.426 1.495 74

Table 4.4: Magnetic moment components in the xy-plane and relative canting angle
φ for the configuration with the polaron localised at site 8.

component, a slight rotation in the xy plane has occurred, as can be seen from the new
values of the canting angle reported in Table 4.4, where the case for the polaron at site
8 is analysed. In particular we can see that, at the polaronic site, the magnetic moment
is about two times larger than that at other sites.

The polaron energy Ep reported in Table 4.2 has been calculated from a delocalised
solution, obtained adding an electron with NELECT to the structure of the pristine
material, i.e. without manually distort the lattice around any osmium atom. The density
of states and magnetic moment components in the xy-plane are reported respectively in
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Figure 4.2.2 and Table 4.5. In this case we can see that the system is metallic and there

Figure 4.2.2: Density of states for the delo-
calised solution with NELECT.

site mx (µB) my (µB)

1 0.347 -0.838
2 0.347 -0.838
3 0.347 -0.838
4 0.347 -0.839
5 0.361 0.872
6 0.363 0.872
7 0.358 0.868
8 0.360 0.872

Table 4.5: Non
zero magnetic
moment com-
ponents for
the delocalised
solution with
NELECT.

is no magnetic moment significantly larger than the others to signal charge localisation.
On the other hand, when localisation is triggered by manually distorting the lattice,

we obtain a DOS as that reported in the bottom panel of Figure 4.2.3 for localisation at
site 8, which confirms the formation of a SP-like in-gap state. The blue and red dashed
lines in the graph indicate that the major contribution to the polaronic states arises from
the t2g orbitals of the osmium at the localisation site and the p-orbitals of its oxygen
nearest neighbours. Since the two curves are very similar to each other, we can expect
strong d− p hybridisation. The calculated indirect band gap is 0.31 eV.

By inspecting the band structure of the supercell, reported in Figure 4.2.4, we can
see that the polaronic feature in the DOS is given by two bands arising from the t2g
orbitals of the osmium at the site of localisation. This was somewhat unexpected as
usually two in-gap states are characteristic of bipolarons [1, 3], which are bound states
of two polarons. If we compare the band structure of Figure 4.2.4 with that of the
pristine material in Figure 4.1.2, we can deduce that the lowest polaronic band PB1
has been pulled out from the valence band, wheras the other (PB2) comes from the
additional electron, as observed in the other cases of small polaron formation reported
in the literature [3]. We confirmed this observation by looking at the total occupacy of
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Figure 4.2.3: Density of states of BNOO with one additional electron localised at site
8 (bottom) compared to the pristine one (top). The polaronic peak appears just below
the Fermi level and it is mostly due to the t2g levels (blue) of osmium and the p levels
of the neighbouring oxygen atoms (red dashed). The contribution of the t2g orbitals
of the other osmium atoms is also shown in green.

the osmium 8 t2g orbitals and of the p ones belonging to its neighbouring oxygens. The
difference between the pristine and the polaronic solution, excluding the polaronic bands
PB1 and PB2, is ∆q ' 1.1. If only the osmium t2g orbitals are considered, the same
calculation gives ∆q ' 0.4, confirming once again the strong p− d hybridisation.

We can further investigated this peculiar electronic structure by looking at the orbital
character of the polaronic bands. Table 4.6 shows the Γ-point wavefunction projection
onto the lm-projector for l = 2 at the polaronic sites. As we did not introduce the Projec-
tor Augmented Wave (PAW) implemented in VASP, we remand to [17] for a presentation
of this technique and definition of a projector function. As far as we are concerned, this
can be understood as a projection onto the Ylm spherical harmonic centered at the de-
sired site. Before we move to this analysis however, some considerations must be done
in order to correctly interpret VASP’s output. In section 1.3 we gave a definition of t2g
and eg orbitals in a reference frame that was rotate by 45° with respect to that of our
calculations. Let’s focus on a OsO6 octahedron. From Figure 4.2.1 we can see that in
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Figure 4.2.4: Band structure of the supercell around the band gap with one electron
more added through the NELECT method. The green dots represent the projection
onto the t2g orbitals at site 8, where the polaron is localised.

the (0 0 1) plane the oxygen atoms lie on the [1 1 0] and [1 1 0] directions, whereas in the
theoretical discussion of section 1.3 they were on the [1 0 0] and [0 1 0] directions. If we
rotate the wavefunction of Equation 1.22 and Equation 1.23 in order to adapt them to
our case, we find out that the d-orbitals transform as∣∣z2

〉
−→

∣∣z′2〉∣∣x2 − y2
〉
−→ − |x′y′〉

|xy〉 −→
∣∣x′2 − y′2〉

|yz〉 −→ i√
2

( |y′z′〉 − |x′z′〉 )

|xz〉 −→ i√
2

( |y′z′〉+ |x′z′〉 )

(4.1)

where we can notice that the 45° rotation exchanges the |x2 − y2〉 and |xy〉 states. There-
fore, in the reference frame used by VASP, |x2 − y2〉 belongs to the t2g orbitals and |xy〉
to the eg ones. We can now recognise in Table 4.6 that the polaronic bands consist of
the t2g orbitals of the osmium atom at which the polaron localises. This insight was
necessary also to correctly calculate the orbitally projected DOS of Figure 4.1.1 and
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Figure 4.2.3. From Table 4.6 we can observe, moreover, that in plane 1 the less en-

site band orbital
dxy dyz dz2 dxz dx2−y2

1 PB1 0.001 0.007 0.000 0.132 0.115
PB2 0.000 0.224 0.001 0.009 0.021

2 PB1 0.001 0.021 0.000 0.107 0.131
PB2 0.000 0.206 0.001 0.034 0.007

7 PB1 0.000 0.213 0.001 0.012 0.035
PB2 0.001 0.022 0.000 0.135 0.095

8 PB1 0.001 0.159 0.001 0.033 0.069
PB2 0.001 0.077 0.001 0.115 0.061

Table 4.6: Orbital projection of the polaronic bands PB1 and PB2 at the Γ point for
different sites. Excess charge introduced with the NELECT method.

ergetic band has a prevalent dyz character, whereas in the more energetic one the dxz
contribution is dominant. On the other hand, in plane 2, a reversed condition can be
observed.

Eventually we calculated the partial charge distribution associated to the polaronic
bands, obtaining Figure 4.2.5, where the yellow isosurface represents the charge density
at 1.5× 10−3 Å−3. Here we can clearly see that these bands are localised. The relative
great amount of charge density on the oxygen atoms around site 8 confirm the strong
p− d hybridisation that we observed in the projected DOS of Figure 4.2.3.

4.2.1 Hopping

In order to test whether the SP-model is compatible with the experimental NMR data,
we studied the hopping of this quasiparticle between osmium sites using the linear inter-
polation scheme (LIS) exposed in section 2.5. We report in this work the results for the
hopping process taking place between two sites within the same plane, namely that be-
tween sites 7 and 8 for plane 1 and that between sites 1 and 2 for plane 2. The interesting
case of the hopping between two different planes is currently still under investigation.

We performed a self-consistent electronic relaxation at eight different configurations
between those of the polaron fully localised at the starting site and at the final one.
Figure 4.2.6 and Figure 4.2.7 show the total energy of the unit cell measured from
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Figure 4.2.5: Charge distribution (yellow) of the polaron localised at site 8 with the
NELECT method. This corresponds to the density level 1.5× 10−3 Å−3 arising from
the two polaronic bands PB1 and PB2 (see Figure 4.2.4 and Table 4.6). The blue
plane represents plane 1.

that of the starting configuration (first point on the left of the plots) as a function
of the reaction coordinate, namely the parameter which interpolates between the two
polaronic structures. Both curves are consistent with an adiabatic, thermally activated
process, which we would expect from the EHAM theory of subsection 1.4.2. Since the two
endpoints have the same energy, we calculated the activation energy Ea = kBTa as the
difference between the halfway configuration energy (reaction coordinate 0.5) and that
of the starting point, obtaining Ta(1→ 2) ' 603 K and Ta(7→ 8) ' 754 K respectively,
close to the experimental value. The difference between these two values, corresponding
to ∼ 15 meV, is compatible with that of the polaronic energies seen in Table 4.2: the
more stable the polaron, the higher is the energy barrier that it has to overcome in order
to hop.
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Figure 4.2.6: Total energy as a function of the reaction coordinate for the hopping
process between site 1 (inset blue arrow) and site 2 (inset green arrow) in plane 2.
Energies are measured from that of the polaron fully localised at site 1. The curve is
consitent with that of a thermally activated process with Ta(1→ 2) ' 603 K.

Figure 4.2.7: Total energy as a function of the reaction coordinate for the hopping
process between site 7 (inset blue arrow) and site 8 (inset green arrow) in plane 1.
Energies are measured from that of the polaron fully localised at site 7. The curve is
consitent with that of a thermally activated process with Ta(7→ 8) ' 754 K.
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4.3 Polaron in BNCOO

Charge injection in the double perovskite BNOO can be experimentally realised by sub-
stituting Na with Ca atoms. Therefore, it is interesting to go beyond the NELECT
method and study polaron formation in Ba2Na1–xCaxOsO6. Nevertheless, due to the
complexity of this material, the present work is limited to the analysis of the sample
with 12.5% Ca concentration, to which we will refer as BNCOO.

First we add one Ca atom to the unit cell of Figure 3.0.1 and performed a volume
relaxation, starting from the lattice constant reported in Table 3.1 for our concentration
(x = 0.125). Since the unit cell of the pristine material contains eight Na atoms, by
substituting just one of them we get the desired concentration. Thus we get a lattice
constant a = 8.294Å close to the experimental value. This result required us to choose
potentials which include also p-electrons among the valence ones for Na and Ca.

For BNCOO the polaron appeares by itself when we let the ionic position to relax and
also when we don’t, contrarily to the usual situation encountered in DFT calculations for
polaron in 3d TMOs. It is useful at this point to report (see Figure 4.3.1) osmium atoms
arrangement as in Figure 4.2.1 with the added calcium. The spontaneous localisation

Figure 4.3.1: Simplified unit cell with only the osmium, oxygen and calcium (blue)
atoms. The osmium atoms are numbered as in Figure 4.2.1.

occurs at site 8, which is just above (and below) the calcium atom. Nevertheless, in order
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to obtain localisation at other sites, manual distortions are required as in the NELECT
case.

The automatic trapping causes some trouble when we want to evaluate the polaron
energy and a particular strategy must be devised to obtain a delocalised configuration.
To overcome this difficulty we used again the flag NELECT, but this time to remove
an electron. In this way we could let the ionic lattice to relax and accomodate the
new bigger Ca atom, which otherwise attracts the additional electron to its vicinity.
We subsequently reintroduced the electron into the relaxed starcture and performed a
static self-consistent calculation, which eventually led to a delocalised solution. The
DOS and non zero components of the magnetic moments are reported respectively in
Figure 4.3.2 and Table 4.7. If we try to relax the ionic position after having reinserted

Figure 4.3.2: Density of states for the delo-
calised solution with x = 0.125.

site mx (µB) my (µB)

1 0.343 -0.832
2 0.354 -0.821
3 0.354 -0.821
4 0.343 -0.831
5 0.342 0.804
6 0.359 0.845
7 0.357 0.848
8 0.358 0.844

Table 4.7: Non
zero magnetic
moment com-
ponents for
the delocalised
solution with
x = 0.125.

the electron, the system converges once again toward the polaronic solution. Since such
a relaxation would presumably bring the system toward a lower energy, the (positive)
polaron energy Ep that can be obtained from this method, without the final relaxation,
is only an upper bound for the real value. We calculated it for the polaron localised at
different sites, as can be seen from Table 4.8. The reported values have been obtained
without the constraint of the magnetic moments and they show little or no dependence on
the distance between the polaronic site and the Ca atom, considering that a difference
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of the order of ∼ 10 meV can depend on the system falling in different non collinear
magnetic configurations, which are very close in energy and thereby difficult to probe.
Nevertheless, we did not analyse in depth the magnetic behaviour of the polaron in this
work. We can also notice that, compared to the NELECT case, the difference of the
polaron energies for sites in different plane is disappeared, with the clear exception of
site 8. Even for BNCOO, this fact does not depend on whether the magnetic moment
directions are constrained or not.

site distance from Ca (Å) Ep (meV)

1 4.171 128
2 4.166 123
3 4.166 129
4 4.168 123
5 - -
6 7.183 129
7 7.183 120
8 4.147 212

Table 4.8: Polaron energy and distance from the calcium atom for the polaron localised
at different sites with x = 0.125. The values for site 5 are missing do to convergence
problems.

It is interesting in this case to look at the distortions of all the osmium octahedra
that can be read from Table 4.9 for the polaron localised at site 8. Large variations of

site X1 (%) X4 (%) Y2 (%) Y5 (%) Z3 (%) Z6 (%)

1 1.8 0.4 -0.9 -0.8 -0.3 -0.3
2 -0.1 -0.3 -0.4 1.0 -0.2 -0.2
3 -0.3 -0.1 1.0 -0.4 -0.2 -0.2
4 0.4 1.8 -0.8 -0.9 -0.3 -0.3
5 0.0 0.0 0.2 0.2 -0.2 -0.2
6 -0.1 -0.2 0.4 0.4 -0.1 -0.1
7 -0.2 -0.2 0.4 0.4 0.0 0.0
8 0.4 0.4 1.5 1.5 3.1 3.1

Table 4.9: Bond length distortions due to polaron formation at site 8 and the Ca atom
in BNCOO, with respect to the pristine structure.

the bond lengths can be found at the five inequivalent octahedra near the calcium atom
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(sites 1, 2, 3, 4 and 8), comparable with those of the polaronic site. They always involve
the Os–O bonds pointing toward the calcium atom, making it clear that this defect
breaks the original JT symmetry of the neighbouring octahedra. Only site 8 preserves
it, even though the sign of Q2 is inverted as in the NELECT case. This clearly comes
from the special position of this site that lies between two Ca atoms. The data presented
in Table 4.9 can also be compared with the bond lengths in Table A.8. We report the

site Q1 (Å) Q2 (Å) Q3 (Å) θ (°)

1 0.066 0.022 0.003 82.9
2 0.065 -0.018 0.001 -86.3
3 0.065 -0.018 0.002 -83.2
4 0.066 0.022 0.001 86.4
5 - - - -
6 0.068 -0.007 -0.006 -132
7 0.068 -0.009 -0.006 -127
8 0.065 -0.002 -0.021 -174

Table 4.10: Generalised coordinates for the polaronic distortions measured with respect
to the symmetric octahedra.

values of the generalised coordinate Qi at the polaronic sites in Table 4.10, measured
with respect to symmetric octahedra having Os–O bond length equal to 1.871Å. In
this case, the inversion of Q2 does not occur for sites 1 and 4 in plane 2. Moreover, by
comparing these numbers with those in Table 4.3, we can see that in plane 2 Q2 is also
∼ 10 times bigger with respect to its value for the NELECT polaron. This clearly arises
from the large distortions intrduced by the Ca atom.

From the point of view of the electronic structure, the DOS reported in Figure 4.3.3
for the polaron localised at site 8 show the formation of an in-gap peak, typical of small
polarons. The contribution of the osmium t2g orbitals and the p ones of the oxygen
atoms around the localisation site have been highlighted with colors, which indicate the
orbital character of the polaronic feature. As in the NELECT case of Figure 4.2.3, this
is mostly due to the t2g orbitals of site 8, which are strongly hybridised with p orbitals
of the neighbouring oxygen atoms. The energy gap is in this case equal to 0.32 eV.

Once again the band structure of Figure 4.3.4 reveals that there are two polaronic
bands PB1 and PB2.
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Figure 4.3.3: Density of states of BNCOO with polaron localised at site 8 (bottom)
compared to the pristine one (top). The polaronic band appears just below the Fermi
level and it is mostly due to the t2g levels (blue) of osmium and the p levels of the
neighbouring oxygen atoms (red dashed). The contribution of the t2g orbitals of the
other osmium atoms is also shown in green.

Figure 4.3.4: Band structure of BNCOO supercell with the polaron localised at site
8. The projection onto the t2g orbitals of site 8 is shown with green dots.
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By comparing them with those of the NELECT case in Figure 4.2.4, we can see that
in BNCOO they appear to be more flat and hence better localised. We can take a look,
also in this case, at the orbital occupancies reported Table 4.11. We show only the
occupations for the sites also present in Table 4.6 for the NELECT case.

site band orbital
dxy dyz dz2 dxz dx2−y2

1 PB1 0.001 0.000 0.000 0.105 0.158
PB2 0.000 0.182 0.001 0.035 0.019

2 PB1 0.001 0.014 0.000 0.082 0.148
PB2 0.000 0.205 0.001 0.033 0.007

8 PB1 0.000 0.256 0.001 0.007 0.010
PB2 0.001 0.002 0.001 0.167 0.063

Table 4.11: Orbital projection of the polaronic bands PB1 and PB2 at the Γ point
for different sites in BNCOO.

It it interesting to notice that the orbital symmetry has not changed much for sites 1
and 2, even though in BNCOO the Ca atom enforces large and asymmetric distortions.
But if we recall the asymmetry affecting these sites in the NELECT case, showed in
Table 4.2, we can see that it was of the same kind of that arising from the accomodation
of Ca in BNCOO. Nevertheless, this seems to be accidental, since we can see no reason
behind the bond length difference for oxygen atoms lying on the same axis in the in the
symmetric environment of the cell without Ca. For site 8, on the other hand, in each
band the dxz and dyz orbitals are less mixed compared to the NELECT case.

For what concerns the hopping process, the simulation in BNCOO presented more
difficulties than in the NELECT case, due to the strong tendency of the polaron to
localise at site 8. We report the EHAM curve for the hopping occuring in plane 2 in
Figure 4.3.5. The evaluation of the energy barrier turns out to give Ta = 801 K, very
close to the value furnished by the NMR experiments.

For the hopping between site 7 and 8 in plane 1, we managed to evaluate only
the middle point (reaction coordinate 0.5) with constrained directions of the magnetic
moments. In this way we obtained Ta = 835 K for the barrier as seen going from site 7
to 8 and Ta = 1860 K for the other way round. This asymmetry was to be expected due
to the higher Ep at site 8.
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Figure 4.3.5: Total energy as a function of the reaction coordinate for the hopping
process between site 1 (inset blue arrow) and site 2 (inset green arrow) in plane 2.
Energies are measured from that of the polaron fully localised at site 1. The curve is
consitent with that of a thermally activated process with Ta ' 801 K.
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Conclusions

The Spin-Orbit coupled double perovskite Ba2NaOsO6 (BNOO) presents peculiar prop-
erties as it has been proved by both experimental and theoretical works [2, 7–9, 70].
This is a Dirac-Mott Insulator (DMI), whose gap is opened by the interplay of Elec-
tronic Correlation (EC) and Spin-Orbit coupling (SOC) interaction. The relativistic
insulating phase is moreover followed by an exotic cAFM ordering and a concomitant
magnetic moment of ∼ 0.2µB per unit formula along the [1 1 0] direction. This magnetic
pattern appears toghether with staggered Jahn-Teller (JT) distortions of the osmium oc-
tahedra. Among the known DMIs and especially compared to the prototypical Sr2IrO4,
BNOO has a relatively large EC (∼ 3 eV) that makes it a possible candidate for Small
Polaron (SP) formation in a relativistic background. Very little is indeed known about
these quasiparticles in 5d Transition Metal Oxides (TMOs), whereas they have been
thoroughly studied in the lighter 3d ones.

As far as we know, we reported in this work the first numerical evidence of SP
formation in such a class of materials. Our first principle calculations, within the
GGA+U+SOC scheme, show localised lattice distortions around a single Os atom of
about the 2% of the bond lengths in the pristine material. These modifications change
in most cases the symmetry of the JT pattern of the pure BNOO, by inverting the sign
of the Q2 coordinate at the polaronic site. The lattice distortions are accompanied by
the formation of the typical SP in-gap states in the electronic structure. By inspecting
the local magnetic moments and observing the electron density associated with these
states, we recognised a localised charge in one of the OsO6 octahedra.

We studied SP formation first by adding just one electron (NELECT doping) to
BNOO and then in the doped osmate Ba2Na1–xCaxOsO6 with 12.5% Ca concentration
(BNCOO), where the introduction of a defect brings a further degree of complexity.
In both cases we confirmed that the polaronic configuration is more stable than the
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delocalised one by calculating the polaron energy Ep. In the NELECT case we got
Ep = 132 meV, whereas in BNCOO the presence of Ca atom hindered the convergence
toward a delocalised solution and only the evaluation of an upper bound for Ep was
possible. One site is particularly favoured for SP formation where Ep . 213 eV, whereas
in the other this energy is reduced of about 100 meV. From the band structure with both
NELECT and chemical doping we found that the polaronic state is actually composed
by two bands, instead of a single one. This turned out to be quite unexpected because
usually it is a feature of bipolarons, i.e bound states of two polarons [1, 3]. Therefore, a
deeper analysis of the character of these states and the processes behind their formation
is required.

Another aspect that we didn’t analyse but it is crucial for the physics of the doped
compound Ba2Na1–xCaxOsO6 is the magnetic phase diagram. The cAFM ordering of
pristine BNOO change into an ferro-octupolar one in Ba2CaOsO6 [9, 66]. Since the
polaron comes with a large magnetic moment (∼ µB) compared to those of the osmium
atoms, it could play a significant role in such a transition. Besides this, the JT distortions,
which have been shown to determine the canted magnetic phase of BNOO, are modified
by the SP and therefore a perturbation of this ordering is to be expected. Morevover,
the question on which are the precise roles of EC and SOC is yet to be answered. In
particular, does the SOC interaction help the SP formation or hinder it?

As a last step, we addressed the problem of SP hopping, both for the NELECT and
the chemical doped cases, using the Linear Interpolation Scheme based on the Emin-
Holstein-Austin-Mott (EHAM) theory [1, 3, 40, 42]. We analysed this process between
two sites lying both in one of the two magnetically inequivalent planes. For both kinds
of doping we calculated the energy-reaction coordinate curve, which we found to be
consistent with a thermally activated process according to EHAM. Nevertheless, for
BNCOO we managed to do so only for the plane containing the Ca atom, due to the
limited time and difficulty arising from the preferential localisation in the site above Ca.
For the plane without Ca we could only evaluate the energy barrier from the middle
point. But without the full curve we cannot decide whether the process is thermally
activated, as suggested by the NMR experiments, or mediated by quantum tunneling.
Even though this results are still to be refined and completed for the chemically doped
case, the estimations for the activation energy that we got (801 K in BNCOO) are in
good agreement with the position of the peak observed in NMR experiments at 810 K.
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We conclude therefore that our relativistic DFT model confirms the formation of SP
in the Spin-Orbit coupled osmate Ba2Na1–xCaxOsO6 and sets out the basis for future
investigations at different Ca concentrations and in other 5d compounds.
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Appendix A

Bond length tables

A.1 pristine BNOO

pristine BNOO

site x1 (Å) x4 (Å) y2 (Å) y5 (Å) z3 (Å) z6 (Å)

1 1.8861 1.8861 1.9020 1.9020 1.8901 1.8901
2 1.8861 1.8861 1.9020 1.9020 1.8901 1.8901
3 1.8861 1.8861 1.9020 1.9020 1.8901 1.8901
4 1.8861 1.8861 1.9020 1.9020 1.8901 1.8901
5 1.9020 1.9020 1.8861 1.8861 1.8901 1.8901
6 1.9020 1.9020 1.8861 1.8861 1.8901 1.8901
7 1.9019 1.9020 1.8862 1.8861 1.8901 1.8901
8 1.9020 1.9019 1.8862 1.8861 1.8901 1.8901

Table A.1: Bond lengths of the osmium octahedra in pristine BNOO.
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A.2 NELECT doping

NELECT polaron at site 1

site x1 (Å) x4 (Å) y2 (Å) y5 (Å) z3 (Å) z6 (Å)

1 1.9305 1.9173 1.9193 1.9207 1.9315 1.9315
2 1.8978 1.8908 1.9025 1.8974 1.8872 1.8872
3 1.8939 1.8860 1.8996 1.9049 1.8875 1.8875
4 1.8851 1.8828 1.9021 1.9020 1.8929 1.8929
5 1.8837 1.9034 1.8947 1.8942 1.8907 1.8907
6 1.9004 1.9035 1.8940 1.8767 1.8915 1.8915
7 1.8990 1.9043 1.8784 1.8932 1.8912 1.8912
8 1.9049 1.8961 1.8885 1.8859 1.8910 1.8910

Table A.2: Bond lengths of the osmium octahedra with the NELECT polaron at site
1.

NELECT polaron at site 2

site x1 (Å) x4 (Å) y2 (Å) y5 (Å) z3 (Å) z6 (Å)

1 1.8882 1.8944 1.8999 1.9065 1.8868 1.8868
2 1.9257 1.9254 1.9115 1.9243 1.9314 1.9314
3 1.8818 1.8821 1.9048 1.9056 1.8917 1.8917
4 1.8919 1.8847 1.9005 1.9090 1.8869 1.8869
5 1.9059 1.9061 1.8906 1.8705 1.8923 1.8923
6 1.8928 1.9088 1.8903 1.8867 1.8895 1.8895
7 1.9081 1.8951 1.8904 1.8843 1.8896 1.8896
8 1.9002 1.9016 1.8811 1.8943 1.8903 1.8903

Table A.3: Bond lengths of the osmium octahedra with the NELECT polaron at site
2.
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NELECT polaron at site 7

site x1 (Å) x4 (Å) y2 (Å) y5 (Å) z3 (Å) z6 (Å)

1 1.8910 1.8881 1.9031 1.8945 1.8899 1.8899
2 1.8817 1.8903 1.9005 1.9018 1.8911 1.8911
3 1.8904 1.8816 1.9018 1.9005 1.8911 1.8911
4 1.8880 1.8909 1.8945 1.9031 1.8899 1.8899
5 1.9020 1.9020 1.8903 1.8903 1.8873 1.8873
6 1.9009 1.9010 1.8857 1.8858 1.8909 1.8909
7 1.9207 1.9207 1.9229 1.9230 1.9339 1.9339
8 1.9004 1.9005 1.8936 1.8937 1.8867 1.8867

Table A.4: Bond lengths of the osmium octahedra with the NELECT polaron at site
7.

polaron at site 8

site x1 (Å) x4 (Å) y2 (Å) y5 (Å) z3 (Å) z6 (Å)

1 1.8830 1.8915 1.8995 1.9012 1.8908 1.8908
2 1.8909 1.8885 1.9022 1.8939 1.8903 1.8903
3 1.8885 1.8909 1.8939 1.9022 1.8903 1.8903
4 1.8915 1.8831 1.9012 1.8995 1.8908 1.8908
5 1.9009 1.9009 1.8858 1.8858 1.8909 1.8909
6 1.9027 1.9027 1.8897 1.8896 1.8874 1.8874
7 1.9008 1.9008 1.8935 1.8935 1.8865 1.8865
8 1.9187 1.9188 1.9245 1.9246 1.9342 1.9342

Table A.5: Bond lengths of the osmium octahedra with the NELECT polaron at site
8.
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A.3 Chemical doping

BNCOO polaron at site 2

site x1 (Å) x4 (Å) y2 (Å) y5 (Å) z3 (Å) z6 (Å)

1 1.9209 1.8886 1.8956 1.9042 1.8760 1.8760
2 1.9212 1.9191 1.8988 1.9513 1.9274 1.9275
3 1.8736 1.8762 1.9300 1.8925 1.8920 1.8920
4 1.8854 1.9175 1.8981 1.9051 1.8764 1.8764
5 1.9089 1.9090 1.8886 1.8689 1.8930 1.8931
6 1.8952 1.9094 1.8903 1.8868 1.8891 1.8891
7 1.9052 1.8930 1.8945 1.8884 1.8904 1.8904
8 1.8835 1.8847 1.8688 1.8808 1.9160 1.9160

Table A.6: Bond lengths of the osmium octahedra with the polaron at site 2 in
BNCOO.

BNCOO polaron at site 6

site x1 (Å) x4 (Å) y2 (Å) y5 (Å) z3 (Å) z6 (Å)

1 1.9213 1.8832 1.8959 1.9047 1.8755 1.8756
2 1.8805 1.8700 1.8908 1.9284 1.8926 1.8926
3 1.8699 1.8806 1.9283 1.8908 1.8926 1.8926
4 1.8832 1.9213 1.9047 1.8959 1.8755 1.8755
5 1.9075 1.9075 1.8897 1.8897 1.8852 1.8852
6 1.9158 1.9158 1.9289 1.9289 1.9364 1.9364
7 1.9014 1.9013 1.8871 1.8871 1.8909 1.8909
8 1.8915 1.8914 1.8691 1.8690 1.9134 1.9134

Table A.7: Bond lengths of the osmium octahedra with the polaron at site 6 in
BNCOO.
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BNCOO polaron at site 8

site x1 (Å) x4 (Å) y2 (Å) y5 (Å) z3 (Å) z6 (Å)

1 1.9149 1.8881 1.8973 1.8985 1.8788 1.8788
2 1.8797 1.8773 1.8953 1.9238 1.8887 1.8887
3 1.8773 1.8797 1.9238 1.8954 1.8887 1.8887
4 1.8881 1.9148 1.8985 1.8973 1.8787 1.8787
5 1.9055 1.9055 1.8841 1.8841 1.8895 1.8895
6 1.9045 1.9045 1.8898 1.8898 1.8860 1.8860
7 1.9018 1.9018 1.8914 1.8914 1.8877 1.8877
8 1.9096 1.9096 1.9141 1.9141 1.9501 1.9501

Table A.8: Bond lengths of the osmium octahedra with the polaron at site 8 in
BNCOO.
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Appendix B

Charge density of the polaronic bands

We report here the charge density of the polaron bands PB1 and PB2 as calculated from
the NELECT case.
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(a) Top view PB1. (b) Side view PB1.

(c) Top view PB2. (d) Side view PB2.

Figure B.0.1: The figure shows the isosurface at 1.6× 10−3 Å−3 of the charge density
of the polaronic bands. In particular, panels (a) and (b) contains respectively the top
and the side views for the band PB1, whereas panels (c) and (d) show those for band
PB2. The oxygen atoms are labelled according to the convention of section 3.1. In
panels (a) and (c) we have X1, Y2, X3, Y4 ordered anticlockwise, starting from the
upper right oxygen (red sphere). At the center there is Z3. In panels (b) and (d),
on the other hand, there are Z3 (top), Y5 (middle left), X1 (middle right) and Z6

(bottom).



Appendix C

VASP input files

In this appendix we reoport a typical POSCAR and INCAR file used for structural
relaxation. The INCARs for static electronic calculation differ only for the missing ‘ionic
relaxation’ section. The lines beginning with # are comments. An explanation of the
flags not mentioned in the text can be found at [59].

C.1 Polaron localisation POSCAR

BNCOO_localise_at_8
1.00000000000000
11.7300526040000008 0.0000000000000000 0.0000000000000000
0.0000000000000000 11.7300526040000008 0.0000000000000000
0.0000000000000000 0.0000000000000000 8.2943997399999994

Na Ca Os Ba O
7 1 8 16 48

S e l e c t i v e Dynamics
Di rec t

0.0000000000000000 0.0000000000000000 0.5000000000000000 F F T
0.0000000000000000 0.5000000000000000 0.5000000000000000 F T T
0.5000000000000000 0.0000000000000000 0.5000000000000000 T F T
0.2500000000000000 0.2500000000000000 0.0000000000000000 T T F
0.2500000000000000 0.7500000000000000 0.0000000000000000 T T F
0.7500000000000000 0.2500000000000000 0.0000000000000000 T T F

75
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0.7500000000000000 0.7500000000000000 0.0000000000000000 T T F
0.5000000000000000 0.5000000000000000 0.5000000000000000 T T T
0.2500000000000000 0.2500000000000000 0.5000000000000000 T T T
0.2500000000000000 0.7500000000000000 0.5000000000000000 T T T
0.7500000000000000 0.2500000000000000 0.5000000000000000 T T T
0.7500000000000000 0.7500000000000000 0.5000000000000000 T T T
0.0000000000000000 0.0000000000000000 0.0000000000000000 F F F
0.0000000000000000 0.5000000000000000 0.0000000000000000 F T F
0.5000000000000000 0.0000000000000000 0.0000000000000000 T F F
0.5000000000000000 0.5000000000000000 0.0000000000000000 T T F
0.2500000000000000 0.0000000000000000 0.2500000000000000 T F T
0.2500000000000000 0.5000000000000000 0.2500000000000000 T T T
0.7500000000000000 0.0000000000000000 0.2500000000000000 T F T
0.7500000000000000 0.5000000000000000 0.2500000000000000 T T T
0.0000000000000000 0.2500000000000000 0.2500000000000000 F T T
0.0000000000000000 0.7500000000000000 0.2500000000000000 F T T
0.5000000000000000 0.2500000000000000 0.2500000000000000 T T T
0.5000000000000000 0.7500000000000000 0.2500000000000000 T T T
0.2500000000000000 0.0000000000000000 0.7500000000000000 T F T
0.2500000000000000 0.5000000000000000 0.7500000000000000 T T T
0.7500000000000000 0.0000000000000000 0.7500000000000000 T F T
0.7500000000000000 0.5000000000000000 0.7500000000000000 T T T
0.0000000000000000 0.2500000000000000 0.7500000000000000 F T T
0.0000000000000000 0.7500000000000000 0.7500000000000000 F T T
0.5000000000000000 0.2500000000000000 0.7500000000000000 T T T
0.5000000000000000 0.7500000000000000 0.7500000000000000 T T T
0.1356302350000007 0.1344814600000035 0.5000012519999970 T T T
0.1356302350000007 0.6344814300000010 0.5000012519999970 T T T
0.6356302499999984 0.1344814600000035 0.5000012519999970 T T T
0.6356302499999984 0.6344814300000010 0.5000012519999970 T T T
0.3643697799999970 0.3655185399999965 0.4999987480000030 T T T
0.3643697799999970 0.8655185699999990 0.4999987480000030 T T T
0.8643697500000016 0.3655185399999965 0.4999987480000030 T T T
0.8643697500000016 0.8655185699999990 0.4999987480000030 T T T
0.3633339699999993 0.1355583369999991 0.4999982710000026 T T T
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0.3633339699999993 0.6355583670000016 0.4999982710000026 T T T
0.8633339410000005 0.1355583369999991 0.4999982710000026 T T T
0.8633339410000005 0.6355583670000016 0.4999982710000026 T T T
0.1366660300000007 0.3644416630000009 0.5000017289999974 T T T
0.1366660300000007 0.8644416329999984 0.5000017289999974 T T T
0.6366660589999995 0.3644416630000009 0.5000017289999974 T T T
0.6366660589999995 0.8644416329999984 0.5000017289999974 T T T
0.1133339699999993 0.1144416630000009 0.0000000000000000 T T F
0.1133339699999993 0.6144416329999984 0.0000000000000000 T T F
0.6133339410000005 0.1144416630000009 0.0000000000000000 T T F
0.6246699999999999 0.6258899999999999 0.0000000000000000 T T F
0.3753300000000000 0.3741100000000000 0.0000000000000000 T T F
0.3866660300000007 0.8855583670000016 0.0000000000000000 T T F
0.8866660589999995 0.3855583369999991 0.0000000000000000 T T F
0.8866660589999995 0.8855583670000016 0.0000000000000000 T T F
0.3856302200000030 0.1155185399999965 0.0000000000000000 T T F
0.3741900000000000 0.6270700000000000 0.0000000000000000 T T F
0.8856302499999984 0.1155185399999965 0.0000000000000000 T T F
0.8856302499999984 0.6155185699999990 0.0000000000000000 T T F
0.1143697649999993 0.3844814600000035 0.0000000000000000 T T F
0.1143697649999993 0.8844814300000010 0.0000000000000000 T T F
0.6258100000000000 0.3729300000000000 0.0000000000000000 T T F
0.6143697500000016 0.8844814300000010 0.0000000000000000 T T F
0.0000000000000000 0.0000000000000000 0.2284899949999968 F F T
0.0000000000000000 0.5000000000000000 0.2284899949999968 F T T
0.5000000000000000 0.0000000000000000 0.2284899949999968 T F T
0.5000000000000000 0.5000000000000000 0.2513400000000000 T T T
0.0000000000000000 0.0000000000000000 0.7715100050000032 F F T
0.0000000000000000 0.5000000000000000 0.7715100050000032 F T T
0.5000000000000000 0.0000000000000000 0.7715100050000032 T F T
0.5000000000000000 0.5000000000000000 0.7486600000000000 T T T
0.2500000000000000 0.2500000000000000 0.2715100050000032 T T T
0.2500000000000000 0.7500000000000000 0.2715100050000032 T T T
0.7500000000000000 0.2500000000000000 0.2715100050000032 T T T
0.7500000000000000 0.7500000000000000 0.2715100050000032 T T T
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0.2500000000000000 0.2500000000000000 0.7284899949999968 T T T
0.2500000000000000 0.7500000000000000 0.7284899949999968 T T T
0.7500000000000000 0.2500000000000000 0.7284899949999968 T T T
0.7500000000000000 0.7500000000000000 0.7284899949999968 T T T

C.2 Representative INCAR file

SYSTEM = BNCOO_8

# opt im i sa t i on
NCORE = 24
LREAL = A

# dos
ISMEAR = 0
SIGMA = 0.01
ISYM = −1

# e l e c t r o n i c min imisat ion
ALGO = Fast
ISTART = 0
ENCUT = 580
LMAXMIX = 4

# magnetism
LSORBIT = T

MAGMOM = 24∗0 .0 0 .7815 −1.8410 0 .0000
0 .7815 −1.8410 0 .0000
0 .7815 −1.8410 0 .0000
0 .7815 −1.8410 0 .0000
0 .7815 1 .8410 0 .0000
0 .7815 1 .8410 0 .0000
0 .7815 1 .8410 0 .0000
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1 .1723 2 .7615 0 .0000 192∗0.0
I_CONSTRAINED_M = 1
RWIGS = 1.164 1 .746 1 .413 1 .979 0 .820
LAMBDA = 10
M_CONSTR = 24∗0 .0 0 .7815 −1.8410 0 .0000

0 .7815 −1.8410 0 .0000
0 .7815 −1.8410 0 .0000
0 .7815 −1.8410 0 .0000
0 .7815 1 .8410 0 .0000
0 .7815 1 .8410 0 .0000
0 .7815 1 .8410 0 .0000
0 .7815 1 .8410 0 .0000 192∗0.0

# mixing
AMIX = 0.1
BMIX = 0.0001
AMIX_MAG = 0.2
BMIX_MAG = 0.0001

# Dudarev
LDAU = T
LDAUTYPE = 2
LDAUL = −1 −1 2 −1 −1
LDAUU = 0.0 0 .0 3 .4 0 .0 0 .0
LDAUJ = 0.0 0 .0 0 .0 0 .0 0 .0
LDAUPRINT = 2

# i on i c r e l a x a t i o n
IBRION = 1
ISIF = 2
NSW = 60
EDIFFG = −0.005

# output
#LPARD = T
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#IBAND = 529
LORBIT = 11
LORBMOM = T
LWAVE = T
LCHARG = T
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