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Chapter 1

Introduction

1.1 Introduction

Collecting and analysing data is an important element in any field of human
activity and research: through knowledge of the past, it’s possible to predict
the future and understand better the reality that surrounds us. In recent
years, the development of technologies, the growth of computing power, the
ability to collect and store huge amounts of data, has allowed the development
and increasingly massive use of software that exploits complex mathematical
models often ending up under the name of Artificial Intelligence models.

Even in sport, collecting and analyzing statistical data is Even in sport,
collecting and analyzing statistical data is attracting growing interest. Some
exemplar use cases are: improvement of technical/tactical aspect for team
coaches, definition of game strategies based on the opposite team play or
evaluation of the performance of players.

Other advantages are related to taking more precise and impartial judg-
ment in referee decisions: a wrong decision can change the outcomes of im-
portant matches. Finally, it can useful provide better representations and
graphic effects for example that make the game more engaging for the audi-
ence during the match.

In all high-level competition sports data is collected, for example, by
counting the points scored or the type of action performed by each athlete.
In the past when there were no alternatives, the collection of this type of
data was done exclusively manually, thanks to the physical presence of a
scout-man on the site of the sporting event: he transcribed everything that
happened filling out a match report.

Nowadays it is possible to delegate this type of task to automatic software
systems that can use cameras or even hardware sensors to collect images or
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data and process them. Compared to single scout-men, these systems are
more precise, faster and also collect much more data providing much more
complex statistics in real-time.

One of the most efficient methods to collect data is to process the video
images of the sporting event through mixed techniques concerning machine
learning applied to computer vision.

As in other domains, in which computer vision can be applied, in sport,
the main tasks are related to object detection, player tracking, and to the
pose estimation of athletes.

Nowadays this kind of task is by mathematical models that are a subcat-
egory of Artificial Neural Networks, called Convolutional Neural Networks
(CNN). Thanks to their internal architecture CNNs are very good to filter
important features inside the image to recognize specific shapes or objects.

Some of these models are already trained to perform this kind of task
and are available online. Those can be downloaded and reused, re-adapting
them with fine-tuning techniques to better cover the field of application in a
specific topic.

The goal of the present thesis is to apply different models of CNNs on
images of actions in volleyball matches, which is a team sport comparable to
many others where a group of people shares a game court and plays with a
ball.

Starting from video images of a volleyball match, we wanted to reproduce
a bird’s eye view of the playing court where are projected all the players
are projected, reporting also for each player the type of action she/he is
performing.

To train such a model, we used an online public database and expanded
the labels on it.

We extracted the players positions and poses from each frames in numeric
format. In the end, since we collected all the coordinates values of the player
body joints in each frame of the sequences, we had a new dataset that lets
us analyze the gesture data along the time and try to perform a gesture
recognition model that we could use to label the action type, close to each
player in the bird’s eye view.

Usually, to have all this data, it is common to merge different cameras
positioned in different points of view to rebuild the exact positions of each
detected object.

The present work focuses on the recognition of these actions from video
images of a single camera, which is less precise but can be retro-fitted to
footage already acquired with standard equipment, e.g. TV recordings.
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Chapter 2

Computer vision in Sport

2.1 State of the art

In sports, artificial intelligence was virtually unknown less than some years
ago, but today deep learning and computer vision are making their way into
a number of sports industry applications. Whether it is used by broadcasters
to enhance spectator experience of a sport or by clubs themselves to become
more competitive and achieve success, the reality is that the industry has
substantially increased its adoption of these modern techniques [4]. Com-
puter vision is interesting way to augment data collection because wearable
tracking equipment and sensors are not an option in a lot of sport.

For team sport in which there is a court of game images are acquired
through one or more cameras installed at close proximity of where the event
takes place.

Usually the task for such sport is the ball and player tracking. To do
that the calibration of the camera is the challenge. For fixed-angle cameras,
this could be done through scene calibration, but broadcast cameras present
additional challenges in that they often change their pan, tilt and zoom.

Computer vision has partially solved these limitations: thanks to machine
learning, some systems are now able to distinguish between the ground, play-
ers and other foreground objects.

Methods such as colour-based elimination of the ground in courts with
uniformly coloured surfaces allow computer vision models to detect the zones
of a pitch, track moving players and identify the ball. For instance, colour-
based segmentation algorithms are currently being used to detect the grass
by its green colour and treat it as the background of the image or video
frame, where players and objects move in front of it [4].

One of the key for computer vision in sports is player tracking. The

5



most advanced applications of computer vision in sport use automated seg-
mentation techniques to identify regions that likely to correspond to players
[4]. The results obtained from a computer vision system can be augmented
by applying machine learning and data mining techniques to the raw player
tracking data. Once key elements in an image or video frame are detected,
semantic information can be generated in order to create context on what
actions the players are performing (i.e. ball possession, pass, run, defend and
so on).

These techniques can label semantic events, and be used for advanced
statistical analysis of player and team performance. Suggestions can also be
constructed on the optimal positions of players on the pitch and be displayed
to coaches in a manner in which they can compare ideal player positioning
against their actual positions in a given play.

The vast opportunities created from this player tracking technology has
the potential to revolutionise training and scouting for players in sports [4].

In theModeling offensive player movement in professional basketball (Steven
Wu, Luke Bornn) - 2017, the authors say, referred to the introduction in 2013
of a A.I. computer vision system:

”player tracking data in all NBA arenas introduced an over-
whelming amount of on-court information - information which
the league is still learning how to maximize for insights into player
performance and basketball strategy” [22]

2.1.1 Tennis

In racket and bat-and-ball sports, such as Tennis, Badminton or Cricket,
computer vision has been widely used since the mid-2000s. Ball tracking
systems attempt to look through each camera image available to identify all
possible objects resembling the characteristics of a ball.

An example of the use of computer vision in tennis can be spotted in one
of the major tournaments in the sport. In 2017, Wimbledon partnered with
IBM to include automated video highlights picking up key moments in the
match by simply gathering data from players and fans, such as crowd noise,
player movements and match data [4].

Tracking system is based on the principles of triangulation using visual
images and timing data captured from high-speed cameras setup around
the stadium; and the cameras are calibrated and synchronised prior to each
event. The cameras are usually placed high above the courts in such a way
that they can capture the trajectory of the balls with minimal obstructions.
Although there has been some disputes with its line calling accuracy (up to

6



Figure 2.1: Representation of how cameras are positioned in a tennis court

3.6 mm error), it has been generally accurate except for some edge cases [3,
11].

In Tennis there were several portable applications working also as app on
smartphones, maybe the conditions that there are 2 or at most 4 players in
the court help to have a free visual field [3].

2.1.2 Auto racing

Argo AI/Ford Motor Company has used deep learning to develop self-driving
cars and is now expanding its application of deep learning to help improve
safety measures in the world of auto racing . They reportedly more accu-
rate results than humans in ability to identify a car that is experiencing a
malfunction during a race, alerting the driver before something bad happens
[20].
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2.1.3 Baseball

AI can be used for automation of sports journalism: the Associated Press is
working with Automated Insights, a North Carolina-based startup to expand
the media outlet’s coverage of games in Minor League Baseball (MiLB).

Their platform translates hard data from MiLB into narratives, using
natural language. As a result, AP has increased its reporting capacity to
cover 13 leagues and 142 MLB-affiliated teams.

In general sports works well for automated journalism since sports stats
are numbers-based. These data can be structured in a way which makes
automated articles easy to write [20].

2.1.4 Football

In football, FIFA certified goal line technology installations in major sta-
diums using a 7-camera computer vision system. It uses a goal detection
systems with multiple view high-speed cameras covering each goal area that
detect moving objects by sorting potential objects resembling the playing
ball based on area, colour and shape. With an accuracy error rate of 1.5cm
and a detection speed of 1s, it enables football referees to immediately decide
whether or not a ball has crossed the goal line and a goal should be awarded
[4].

Recently the video technology support for referees in making decision is
intensifying for all sports: also if there isn’t any relations with a A.I. system,
now we are used to the VAR (Video Assistant Referee) during the soccer
matches.

In a lot of sport referees take decision thanks to the computer vision
support

2.1.5 Basketball

Nowadays, statistics are starting to heavily influence strategy and player
evaluation. Player evaluation has also changed with more complex statistics,
that give a more accurate summary of the performance of the players. Optical
tracking allows a huge amount of new, finely detailed data to be collected,
causing an explosion of data and new analytic possibilities.

Every team in the NBA has the SportVu system implemented in their
facilities to collect information from every game [21].

SportVu uses six cameras and is capable of tracking the (x,y) positions of
the players along with the (x,y,z) position of the ball 25 times every second.
This data is combined with data from the scorers table, including game
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events like fouls and turnovers, the game and shot clock, the current score,
and other game elements.

Figure 2.2: Representation of how SportVu cameras are positioned

According to the NBA, SportVu automatically collects a huge amount
of statistics. These stats are combined into other hybrid player effectiveness
stats as well. This information is provided to teams as reports and data
visualizations [22, 21].

This leads to have available a lot of new type of statistics data, this
remind to the Moneyball case [16, 18]. Moneyball is the story of the Oakland
Athletics in the late 1990s and early 2000s, and how they, one of the poorest
teams in the MLB, performed as well as the richest teams, re-evaluating the
way a baseball how players are selected and engaged [14].

They wrote a book and also made a movie about this story.
The Athletics attempted to find statistical indicators of player perfor-

mance, demonstrating that the previous method was not so efficient.
This allowed them to draft players than other teams overlooked, and get

them for a reasonable price. This, in turn, allowed them to stretch the small
budget further, and compete with times with double the amount of money
[moneyball , 14].
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Figure 2.3: Visualization of smoothed empirical acceleration vectors for Le-
Bron James for 2013/11/01 vs. the Brooklyn Nets

2.1.6 Volleyball

In volleyball a similar system was tested in 2014, at the FIVB Volleyball
Women’s Club World Championship in Zurich. It had six cameras placed
around the court and connected to a computer [1].

Moreover in volleyball in all the high national matches a check video
system is working in support to the referees to evaluate if the ball is ”in” or
”out” and for other actions. The video check can be called by each team in
case of doubt. The system is called Videocheck, but it doesn’t make statistics:
it gives only support to the referee decisions.

It is possible to choose between the 19, 12 or 8 cameras System. The
complete version of the Videocheck system is composed by 19 cameras with
cameras positioned in this way (fig. 2.4):

• Line Cameras - 8+2 cams (1-8 and C-D)

• Net Cameras - 2 cams (A-B)

• Scene Camera - 1 cam (S)

• Block Touch - 6 cams (J-K-L-R-T-Y)
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Figure 2.4: Representation of how Videocheck cameras are positioned

2.2 Challenges Of Computer Vision

Despite the great potential that computer vision, there are still critical chal-
lenges that need to be overcome, because human eyes are more trained in
recognizing posture or solve tracking problems with occlusion players
because other players in the court.

Tracking of sports players is also particularly challenging due to the fast
and erratic motion, similar appearance of players in team sports, and often
close interactions between players.

Also tracking the ball is a further challenge in team sports, where several
players can occlude the ball (i.e. a ruck in Rugby Union), and it is possible
that players are in possession of the ball with either their hands or between
their feet.[4]

In general the problem is not related only to how the eye works, but in
general it depends also to the experience that humans have in all the other
topics in the real world and it’s very difficult to replicate our inherited knowl-
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edge of the world in a computational model, mostly because we associate a
semantic meaning to everything around us.
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Chapter 3

Background: Machine Learning
and Computer Vision

3.1 Computer Vision

Computer vision is an interdisciplinary field that deals with how computers
can gain high-level understanding from digital images or videos. The history
and the evolution in this field is very long, but nowadays the most effec-
tive systems are models of particular artificial neural networks which try to
optimize e discover the most important feature inside images exploiting the
spatial information inside a image. The tasks in Computer Vision includes,
concern extraction of high dimensional data from the real world in order
to produce numerical or symbolic information, that can be meaningful and
processed by a software or another system.

It can perform a variety of tasks in a wide range of fields, from self-driving
cars to medical diagnosis.

That includes object or event detection, object tracking, pose estimation,
face recognition, image restoration and everything concerns the analysis of
images.

In Computer Vision we can have different task domains:

• Image Classification: given an image we expect a discrete label as
output. We assume that there is only one object in the image.

• Classification with Localization: we expect not only ”What”
but also ”Where” the object is.present in the image. The output of
this further task is a numerical vector which define a Bounding Box
area in the image.
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• Object Detection: the image has not only one object, but can contain
multiple objects. The task is to classify and localize all the objects in
the image drawing several bounding boxes.

• Semantic Segmentation: the task is to label at the pixel level of an
image with a corresponding class. The output is not more bounding
boxes but is an high resolution image (typically of the same size of the
input image).

• Instance segmentation: a semantic segmentation wherein along with
pixel level classification, we expect the computer to classify each in-
stance of a class separately.

Computer Vision aims also to replicate parts of the complexities in human
vision system and visual perception. In the last years the trend that has
dominated the field is the incorporation of machine learning techniques, that
are more flexible in understanding the variability in the real world, because
they can generalize better

3.2 Machine Learning

Machine learning is an application of artificial intelligence (AI) that provides
systems the ability to automatically learn and improve from experience with-
out being explicitly programmed [7]

According to this definition the term ”machine learning” refers to algo-
rithms that learn through experience just how humans do, and a software
model to learn to provide a desired output through experience needs data
that describes historical states or in general examples to understand how it
has to behave.

A data-driven approach in learning brings out a lot of well known prob-
lems related to the data, it is the core of autonomous processes in A.I.

Data often are biased, incomplete, noisy, not representative of the real
world and this lead to train not perfect models. But this just the way used
by our brain does, and despite and just for this imperfection it’s represent a
good way to generalize and interpret the surrounding world.

Not perfect but very close to that we define intelligence, and since we auto
define ourselves intelligence, therefore whatever looks like us surely must be
intelligence.
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3.3 Deep Learning

Neural networks are one of the most popular and most famous machine
learning techniques. They are based on a simplified model of an organic
brain, composed of individual “units” that take in multiple real-valued inputs
and output a single real-valued output.

These “units” are essentially perceptrons that evaluate a weighted linear
combination of its inputs with an activation function that provide the non
linearity to the function [17].

Units are arranged into layers that feed their outputs to each other. Ul-
timately, a final output row that dictates the outcome of feeding the data to
the neural network, usually this is a classification.

The actual layout of the network, activation functions used, method to
update the weights, and connections between the layers vary. Variants of
neural networks exist that are better suited to images, recurrent data, and
other data types [17].

3.4 Convolutional Neural Networks

CNN is an artificial neural network with an architecture inspired by the
animal visual cortex. A Cnn network has convolutional layers (for feature
extraction) and usually on the tail a dense fully connected layer (for the
classification task).

Figure 3.1: A Convolutional Neural Network model

The layers of CNNs exploit filters along the depth of a input (usually
an image or a time series) extracting from a generic input information that
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represent the features composition of every specific input data.
In fact applying specific filters (or kernels) sliding over the input the

network extracts the so-called feature maps, that are the visual properties of
each image.

IN 2012 a new paradigm model was proposed in ILSRVC competition
named Alexnet which, instead to apply a fixed pre-computed representation
of the features of the images, learns representation directly from the task
combining different classifier layers using a non linear function (activation
functions like Relu) that let to the model to learn the best representation by
combining and sharing image attributes in a best way.

Indeed sharing attributes is useful to achieve the goal having a smaller
spatial representation of features than the previous approach, avoiding the
curse of dimensionality that exists for example a linear classifier like Knn
that defines a new hyperplane for each new feature.

Using fully connected layers would make the model too precise and can
lead to overfit it, moreover the parameters that we’ll use, would be squared in
the image size, therefore fc-layers are not efficient in computer vision tasks.

Convolutional layers instead apply kernels to the image to obtain detailed
information from local areas by a cross correlation between neighboring pix-
els.

Convolutional operations can be interpreted as matrix multiplications: if
we reshape inputs and outputs, the result matrix is a sparse matrix, which
shares parameters across its rows, naturally adapts to varying input sizes, is
equivariant to translations of the input, and since it can be used in parallel
computation (gpu), is very efficient in memory and in time.

3.4.1 Receptive Fields

The most of computer vision task need not only large scale information but
also detailed information from local areas, this is what the convolutional
operations perform.

These operations lead to the definition of Receptive Fields on different
levels of the network models.

Receptive fields are those pixels that affects the units of the next convo-
lutional layer, they define the location and the size of the region in the input
that produces the feature in a following layers.

A convolutional unit only depends on a local region (patch) of the input
and each size grows linearly with the number of layers. On the contrary, in
a fully connected layers, each unit has access to all the input region.

Not all pixels in a receptive field contribute equally to an output unit’s
response: pixels at the center of a receptive field have a much larger impact
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Figure 3.2: Receptive Fields over the layers

on output since they have more ”paths” to contribute to the output.
The challenge for convolutional architectures is to design a model so that

its receptive fields covers the entire relevant input image region saving re-
sources.

Indeed to compute attributes corresponding to a large portion of the high
resolution input, we would need too many layers (a very depth network) to
let the final layer to cover the whole input. To obtain larger receptive fields
with a limited number of layers, we downsample the activations inside the
network or use other techniques like striding, pooling or dilated convolutions.

Pooling operations and dilated convolutions turn out to be effective ways
to increase the receptive field size quickly.

Dilations introduce ”holes” in a convolutional kernel: while the number
of weights in the kernel is unchanged, the weights are no longer applied to
spatially adjacent samples, but to a larger area.

Dilated convolutions make the receptive field grow exponentially and the
number of parameters grow linearly.

Figure 3.3: Dilated Convolutions over the layers

With Skip-residual blocks introduced with ResNets the network has Skip-
connections and use different paths to preserve the information of the pre-
vious layer, therefore features can be learned with a large range of different
receptive fields.
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By introducing n skip-residual blocks, the networks utilize 2n different
paths and therefore features can be learned with a large range of different
receptive fields

Figure 3.4: Resnet model

As models evolved the receptive fields increased (this is a natural con-
sequence of the increased number of layers). In the most recent networks,
the receptive field usually covers the entire input image: the context used by
each feature in the final output feature map includes all of the input pixels

3.4.2 CNN models

Features Extraction from an image is the key for the most of computer vision
task. To perform that, different models were proposed in the last years that
let us to understand better the image properties:

• Alexnet the first modern feature extractor

• VGG repetition of regular stages. Each stage has same receptive field
of larger convolutions but requires less params and computation, and
introduces more non-linearities.

• ResNet Residual blocks and Bottleneck Residual blocks

• InceptionNet layers with different kernel size and StemLayer + Glob-
alAvgPool Classifier

• DenseNet shortcut connections.

• DLA hierarchical layer aggregation

Nowadays a lot of variants and new architectures are tested to improve
more and more the capability of a system in specific tasks and different
models are applied according to them.
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ConvNet Model Recept.Field Effect.Stride Effect.Padding Year
alexnet v2 195 32 64 2014
vgg 16 212 32 90 2014

mobilenet v1 315 32 126 2017
mobilenet v1 075 315 32 126 2017

resnet v1 50 483 32 239 2015
inception v2 699 32 318 2015
resnet v1 101 1027 32 511 2015
inception v3 1311 32 618 2015
resnet v1 152 1507 32 751 2015
resnet v1 200 1763 32 879 2015
inception v4 2071 32 998 2016

inception resnet v2 3039 32 1482 2016

Source: https://distill.pub/2019/computing-receptive-fields/

3.4.3 MobileNet

MobileNet is a Convolutional neural network developed by google which is
trained on the ImageNet dataset, majorly used for Image classification in cat-
egories and target estimation. It is a lightweight model which uses depthwise
separable convolution to deepen the network and reduce parameters, com-
putation cost, and increased accuracy. MobileNetV2 added an expansion
layer in the block to get a system of expansion-filtering-compression called
Inverted Residual Block

3.5 Object Detection

In Object Detection, Regional Proposal Network (RPN) based approaches
such as R-CNN series that need two shots, one for generating region propos-
als, one for detecting the object of each proposal, This is very expensive in
term of computational cost.

For that reason other models were developed hold like YOLO and Single
Shot Detector (SSD) that detect multiple objects within the image just taking
”Only Look Once” or in ”one Single Shot”, making the task much faster.
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3.5.1 You only Look Once (YOLO)

Yolo treats detection as regression dilemma which takes an input image and
learns the class possibilities with bounding box coordinates. It is based on
fully connected network (FCN).

YOLOv3 uses a features extractor called Darknet and trained on Ima-
geNet. It makes detections at three different scales (three different sizes at
three different places in the network).

It divides every image into a grid of S × S and every grid predicts N
bounding boxes and confidence. The confidence reflects the precision of the
bounding box and whether the bounding box in point of fact contains an
object in spite of the defined class. Then a classification score for every box
for each class is given.

3.5.2 Single Shot Detector (SSD)

SSD runs a convolutional network on input image only one time and computes
a feature map. Then run a small 3 × 3 sized convolutional kernel on this
feature map to foresee the bounding boxes and categorization probability.

SSD also uses anchor boxes at a variety of aspect ratio comparable to
Faster-RCNN and learns the off-set to a certain extent than learning the
box. In order to hold the scale, SSD predicts bounding boxes after multiple
convolutional layers.

3.5.3 PoseNet

Posenet[19] is a real-time pose detection technique with which you can detect
human beings’ poses in Image or Video. It works in both cases as single-mode
(single human pose detection) and multi-pose detection (Multiple humans
pose detection).

Posenet is a deep learning TensorFlow model that allows you o estimate
human pose by detecting body parts such as elbows, hips, wrists, knees,
ankles, and form a skeleton structure of your pose by joining these points.

It is trained with a MobileNet Backbone and its outputs is a pose, con-
taining both a pose confidence score and an array of 17 keypoints.

Each keypoint contains a keypoint position and a keypoint confidence
score. Again, all the keypoint positions have x and y coordinates in the
input image space, and can be mapped directly onto the image.
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Figure 3.5: the 17 keypoints detected by a Posenet

3.5.4 Centernet

CenterNet[23] is an anchorless object detection architecture. This structure
has an important advantage in that it replaces the classical NMS (Non Maxi-
mum Suppression) at the post process, with a much more elegant algorithm,
that is natural to the CNN flow. This mechanism enables a much faster
inference.

Object area definition is crucial in Object Detections: most detectors use
multiple basic boxes, or anchors, to encode their predictions by brute force
methods. Each spatial cell in the output feature map predicts several boxes.
Each box prediction is encoded as x- and y- offsets relative to the cell center,
and width- and height-offsets relative to the corresponding anchor.

This leads to the generation of many garbage predictions: the post pro-
cessing checks for overlapping predictions and the selection method to choose
the right bounding boxes is not certain because the selection is made setting
handcrafted thresholds.

If the overlap is too high (typically IoU > 0.7) then the predictions are
assumed to refer to the same object, therefore is discarted. At the same
manner, also if the prediction is too low is discarded.

This method is very expensive (also for a single object) because forces
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Figure 3.6: Centernet: Objects as points (center of the objects)

the network to decode all the predictions before the NMS, performing more
time and power consuming operations on mostly irrelevant predictions.

Anchors are out Machine Learning processes: not differentiable and hard
to train but they have a huge effect on the quality of the model.

The proposal by Zhou et al.[23] was to treat objects as points1 and regress
their sizes or other properties starting from that points, that represents the
center of the object to detect. In this way the Objects detection task is now
a Keypoints detection task.

Points are assigned based on location, and there aren’t more huge garbage-
predictions to select and discard by handcraft defined thresholds. There is
only one positive “anchor” per object

At training-set preparation, they draw a map with delta functions at
ground-truth box centers. A gaussian filter blur the centers, generating a
smooth distribution that reaches a peak at object centers. The model uses
two prediction heads: one trains to predict the confidence heat map, the
other head trains, as in other detectors, to predict regression values for box
dimensions and offsets, which refers to the box center predicted by the first
head.

1Other model using similar strategy: CornerNet (detects 2 corners that define Bbs),
ExtremeNet (2 corners + center). Both require a combinatorial grouping stage after
keypoint detection, very slow. CenterNet extract points without the need for grouping or
post processing.
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Figure 3.7: The Centernet model architecture

3.6 Mean Average Precision (mAP)

In computer vision, mAP is a popular evaluation metric used for object
detection (i.e. localisation and classification). Localization determines the
location of an instance (e.g. bounding box coordinates) and classification
tells you what it is (e.g. a dog or cat).

In order to calculate mAP, first, you need to calculate AP per class.
Object detection systems make predictions in terms of a bounding box

and a class label.
For each bounding box, we measure an overlap between the predicted

bounding box and the ground truth bounding box. This is measured by IoU
(intersection over union). For object detection tasks, we calculate Precision
and Recall using IoU value for a given IoU threshold.

Precision measures how accurate your predictions are

PRECISION(p) =
TP

TP + FP

TP = True Positives (Predicted as positive as was correct)
FP = False Positives (Predicted as positive but was incorrect)
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That also means that for a prediction, we may get different binary TRUE
or FALSE positives, by changing the IoU threshold. Recall measures how
well you find all the right targets. The Recall for positive is:

RECALL(r) =
TP

TP + FN

TP = True Positives (Predicted as positive as was correct)
FN = False Negatives (Failed to predict an object that was there)

Figure 3.8: Precision Recall curve

The general definition for the Average Precision (AP) is finding the area
under the precision-recall curve above.

AP =
∫ 1

0
p(r)dr

3.6.1 PASCAL VOC

For the PASCAL VOC challenge, a prediction is positive if IoU ≥ 0.5. Also,
if multiple detections of the same object are detected, it counts the first one
as a positive while the rest as negatives.

In Pascal VOC, an average for the 11-point interpolated AP is calculated.

AP =
1

11

∑
r∈(0,0.1,...,1)

pinterp(r)
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The AP summarizes the shape of the precision-recall curve, and, in VOC
2007, it is defined as the mean of precision values at a set of 11 equally spaced
recall levels [0,0.1,. . . ,1] (0 to 1 at step size of 0.1)

Mean Average Precision (mAP) is the averaged AP over all the object
categories.

3.6.2 COCO mAP

Usually, as in VOC, a prediction with IoU ¿ 0.5 is considered as True Positive
prediction. It means that two predictions of IoU 0.6 and 0.9 would have equal
weightage. Thus, a certain threshold introduces a bias in the evaluation
metric. One way to solve this problem is to use a range of IoU threshold
values, and calculate mAP for each IoU, and take their average to get the
final mAP.

mAPCOCO =
mAP0.50 +mAP0.55 + ...+mAP0.95

10

For COCO, AP is the average over multiple IoU (the minimum IoU to
consider a positive match).

AP@[.5:.95] corresponds to the average AP for IoU from 0.5 to 0.95 with
a step size of 0.05. For the COCO competition, AP is the average over 10
IoU levels on 80 categories (AP@[.50:.05:.95]: start from 0.5 to 0.95 with a
step size of 0.05).

3.6.3 COCO Keypoint Evaluation

Tresholding the IoU defines matches between the ground truth and predicted
objects and allows computing precision-recall curves. Defining an analogous
similarity measure to define an Object Keypoint Similarity (OKS) which
plays the same role as the IoU, like AP/AR for keypoints detection [15].

COCO defines the Object Keypoint Similarity as:

OKS =

∑
i exp (−d2i /2s

2k2
i ) δ (vi > 0)∑

i δ (vi > 0)

Where di is the Euclidean distance between the detected keypoint and the
corresponding ground truth, vi is the visibility flag of the ground truth (the
detector’s predicted vi are not used), s is the object scale, and ki is a per-
keypoint constant that controls falloff.

To compute OKS, we pass the δ through an unnormalized Guassian with
standard deviation ski
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For each keypoint this yields a keypoint similarity that ranges between 0
and 1. These similarities are averaged over all labeled keypoints (keypoints
for which vi > 0). Predicted keypoints that are not labeled (vi = 0) do not
affect the OKS.

Perfect predictions will have OKS = 1 and predictions for which all key-
points are off by more than a few standard deviations si will have OKS ∼ 0.

The OKS is analogous to the IoU. Given the OKS, we can compute AP
and AR just as the IoU allows us to compute these metrics for box/segment
detection [15].
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Chapter 4

The Project

The project was developed with the Gluon framework that provides pre-
trained models for object detection and pose estimation and other useful
functionalities in machine learning for computer vision.

We used also a public labeled datasetof volleyball images released by
Mostafa S. Ibrahim et al.[12, 13] to get target information about the type of
player action in the images.

We also use that dataset as base to augment the description of the data:
we manually labeled court shape information in several frames to train our
custom centernet network from scratch, starting from the centernet model
used for pose estimation[2, 23].

4.1 COCO Dataset

The COCO dataset is a large-scale dataset for many computer vision tasks.
The main features: 1.5 million object instances, 80 categories of objects,
250,000 people poses, Object segmentation, 330K images (>200K labeled)

COCO dataset is composed of image files and annotation files. The an-
notation file is a JSON containing all metadata about the class of the target
objects in the images, category (or subcategories), position and size of bound-
ing boxes, area, polygons for segmentation, keypoints, file details of source
images

The COCO dataset format

For our test we used the images in train2017.zip and val2017.zip and the
annotations in annotations trainval2017.zip

{
” i n f o ” : { . . . } ,
” l i c e n s e s ” : [ . . . ] ,
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” images ” : [ . . . ] ,
” annotat ions ” : [ . . . ] ,
” c a t e g o r i e s ” : [ . . . ] ,
” s egment in fo ” : [ . . . ]

}

annotation section The annotation section contains all the information
about the position, the segmentation and the keypoints of the objects inside
the images. The elements in the set of annotations can contain bbox data,
segmentation data (which are a list of polygon vertices), keypoints data (a
set of coordinates).

There is one annotation for each object and one or all the three type of
data can be.

” annotat ions ” :
[

{ ” segmentat ion ” : {” counts ” : ” . . . . ” , ” s i z e ” : [ width , he ight ]} ,
” image id ” : image id ,
”bbox” : [ x , y , w, h ] ,
”num keypoints ” : keypo ints nr ,
” area ” : int ,
” i scrowd ” : 0 |1 ,
” keypo ints ” : [ x1 , y1 , c1 , x2 , y2 , c2 , . . . , xk , yk , ck ] ,
” id ” : annotat ion id ,
” c a t e go ry i d ” : c a t i d

} , . . .

]

contains the body part locations and detection confidence formatted as
x1,y1,c1,x2,y2,c2,.... c is the confidence score.

Bounding boxes have a special flag iscrowd to determine if the content
should be treated as a crowd (no keypoints) or a person (should have key-
points).

In general, iscrowd is set for a bounding box that contains many small
instances of people, such as an audience at a tennis match

categories section

” c a t e g o r i e s ” :
[

{
” supercategory ” : ” person ” ,
” id ” : 1 ,
”name” : ” person ” ,
” keypo ints ” : [ ” nose ” , ” l e f t e y e ” , ” r i g h t e y e ” , ” l e f t e a r ” , ” r i g h t e a r ” , ” l e f t s h o u l d e r ” ,
” r i g h t s h ou l d e r ” , ” l e f t e l b ow ” , ” r i gh t e lbow ” , ” l e f t w r i s t ” , ” r i g h t w r i s t ” , ” l e f t h i p ” ,
” r i g h t h i p ” , ” l e f t k n e e ” , ” r i gh t kne e ” , ” l e f t a n k l e ” , ” r i g h t ank l e ” ] ,

” s k e l e t on ” : [ [ 1 6 , 1 4 ] , [ 1 4 , 1 2 ] , [ 1 7 , 1 5 ] , [ 1 5 , 1 3 ] , [ 1 2 , 1 3 ] , [ 6 , 1 2 ] , [ 7 , 1 3 ] , [ 6 , 7 ] ,
[ 6 , 8 ] , [ 7 , 9 ] , [ 8 , 1 0 ] , [ 9 , 1 1 ] , [ 2 , 3 ] , [ 1 , 2 ] , [ 1 , 3 ] , [ 2 , 4 ] , [ 3 , 5 ] , [ 4 , 6 ] , [ 5 , 7 ] ]
}

]
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4.2 GLUON package

Gluon [9] package is a high-level interface for MXNet designed to be easy
to use while keeping most of the flexibility of low level API.
GluonCV [10] is a Deep Learning Toolkit for Computer Vision that pro-
vides implementations of state-of-the-art (SOTA) deep learning algorithms
in computer visions.

GluoCV aims to help engineers, researchers, and students quickly proto-
type products, validate new ideas and learn computer vision, making avail-
able some libraries that let to test or train models very easily, and provides
also several pre-trained network models for different tasks.

In particular for our project we used 2 pre-trained models for the object
detection task (players and ball) and for the pose estimation task

For the detection task we used a yolo3 mobilenet1.0 trained on COCO
model

For the pose estimation task we used a alpha pose resnet101 trained on
COCO model in Gluon you can reset all the classes you don’t need, so for
the object detection we kept only ”person” and ”sports ball”

import mxnet as mx
from gluoncv import model zoo , data , u t i l s
from gluoncv . data . t rans forms . pose import de t e c t o r t o a l pha po s e ,

heatmap to coord a lpha pose

ctx = mx. gpu (0 )
de t e c t o r = model zoo . get model ( ’ yo lo3 mobi l enet1 . 0 coco ’ ,

p r e t r a in ed=True , ctx=ctx )
pose net = model zoo . get model ( ’ a l pha pos e r e sne t101 v1b coco ’ ,

p r e t r a in ed=True , ctx=ctx )

de t e c t o r . r e s e t c l a s s ( [ ” person ” , ” spo r t s b a l l ” ] ,
r eu s e we i gh t s =[” person ” , ” spo r t s b a l l ” ] )

4.3 Volleyball Dataset

For the project we used a public dataset that contains several sequences of
several volleyball matches of international women/men competitions. We’ll
refer to this dataset also with the name of ”original dataset”.

The dataset was released by Mostafa S. Ibrahim et al.[12, 13] as sup-
port for a paper describing a deep temporal model for the group activity
recognition problem from volleyball plays.

They annotated 4.830 frames from 55 videos with 9 player action labels
and 8 team activity labels. For each annotated frame, other 40 frames (20
before and 20 after) are in the dataset, therefore in total there are 198.030
frames (around 60GB).
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All the frames are in front of the court, from the long side of the game
court.

The possible labels for player action are: Waiting,Setting, Digging, Falling,
Spiking, Blocking, Jumping, Moving, Standing 1

The dataset is divided in 55 different folders, one for match numbered
from 0 to 54 2.

Each main folder contains an annotation.txt file and other folders with
41 images inside. The 41 images inside are 41 frames that compose a video
sequence of an volleyball action of the match of the parent folder (0..54).

− 0
| − annotat ions . txt # one fo r a l l the s u b f o l d e r s in 0
| − 1000 −

| − 980 . jpg
| − 981 . jpg
| . . .
| − 1000 . jpg
| . . .
| − 1019 . jpg
| − 1020 . jpg

. . . . .
− 1

| − annotat ions . txt # one fo r a l l the s u b f o l d e r s in 1
. . . . .

. . .
− 54

Only the central frame contains the labels of the type of action for all the
players.

The annotations are in the annotations.txt files, one for each match
(0..54).

Each row contains a flat list of elements, the first one is the number of
frame in the middle, which is also the name of the folder and the name of
the jpg file inside. Like in the example here below in the annotation file of
folder ”/0” if a row contains 24425.jpg as first element, it means that the full
path of the middle frame is /0/24425/24425.jpg and the other 40 files that
make up the video sequence in the subfolder, will be named from 24405.jpg
to 24445.jpg

Here below there is an example of the data inside:

. . .
24425 . jpg r−pass 945 423 74 178 moving 889 332 75 125 d igg ing
865 323 82 106 standing 678 315 68 127 moving 578 402 57 131 standing
556 443 120 151 standing 430 475 75 173 moving 469 287 43 134 moving
412 342 57 131 standing 381 408 65 130 standing
297 324 44 150 standing 151 337 57 125 standing

1We remind to the appendix 6.2 for the basic rules and player actions definition of
volleyball.

2The complete list of the associations between folder and competition is in Appendix
section 6.1.
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. . .
18756 . jpg r s p i k e 203 473 74 149 d igg ing 203 405 61 128 d igg ing
471 350 53 117 standing 717 387 49 197 b lock ing 707 352 56 183 b lock ing
783 472 75 105 wai t ing 883 430 88 152 sp i k i ng 918 409 63 121 standing
963 423 94 157 standing 1023 396 60 111 d igg ing
. . .

The first element in each row is the file name of the middle frame, the
second one is a label of the main action of the sequence and after a there is
a series of couple of values composed by bounding box definition (a set of 4
numbers) and the label for each of them. Each couple in the format X Y W
H label defines the bounding box of each player and its action

Figure 4.1: example of labels for the middle frame in each sequence

We also use dataset to create new annotations: we manually labeled court
shape information in several frames to train our custom Centernet network
from scratch, starting from the Centernet model used for pose estimation [2,
23].

4.4 Tasks architecture

To reach our goal we have to go through several steps:

• detection of the ball

• detection of the players

• labeling all the players in our detection, migrating the labels from the
original dataset

• detection of the court area
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• filtering players from all the people detected thanks to the court area

• tracking the players along the frames

• detection of the poses of the players

• calculate the homography matrix

• positioning the players on 2D representation of the court with associ-
ated the action type

4.5 Labels migration

Since our aim is to have coordinates of the gesture of each player along the
time, we had to extend the existing annotations of the type action (currently
in one only frame over 41), applying a object detection model to migrate the
labels that we already had, over all the other frames.

4.5.1 Players Detection

First of all we performed a detection task for the ball and the persons on the
image.

Before the detection we have to pre-process the image for the detector
with preset data transforms. Here we specify that we resize the short edge
of the image to 512 px.

x , img = data . t rans forms . p r e s e t s . yo lo . l o a d t e s t (
frame , shor t =512)

This function returns two results:
- the first is a NDArray with shape (batch size, RGB channels, height, width).
It can be fed into the model directly.
- the second one contains the images in numpy format to easy plotting. Since
we only loaded a single image, the first dimension of x is 1.

At this point we can run the detector:

c l a s s IDs , s co re s , bounding boxs = de t e c t o r ( x )

And we got 3 arrays:
- class IDs : the class of the detected objects (1 for person, 37 for sports ball)
- scores : the score assigned to the detection
- bounding boxs : the bounding box coordinates of the object in the image

In this way, we got bounding boxes of all the players defined with our
Gluon model. The first problem was to perform the migration of labels from

32



Figure 4.2: The workflow of the project tasks
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the original dataset where the bounding boxes were manually set to perform
a training task.

To match detected bounding boxes with ground-truth ones, we used the
Intersection Over Union (IOU) value over all the bounding boxes in the two
images of the middle frame (the once with labels), therefore we obtained
labels on our bounding boxes without having to manually annotate them.

4.5.2 Players Tracking

Since we had the bounding boxes for all the other 40 frames of the sequence,
we needed now to implement a tracking method which preserved the corre-
spondence of the same player between one frame and another to assign on
the unlabeled frames, the label of the action type that we have in the original
dataset

In the beginning, to perform the tracking task, we tried to use simply
the IOU, but it didn’t work well. The main issue was that the players move
during the play, of course. This cause problems of occlusions and also the
position can reverse when two players cross each other.

To solve this issue we implemented a simple tracking algorithm, who kept
memory of the players’ movements along the frames.

Starting from the middle frame (the one with labels), we sliding frame
by frame before on left direction (over 20 frames before) and then on right
direction (for the 20 frames after). At each slide of 1 frame, we searched for
the bounding box in that frame having a correspondence with the previous
labeled frame to put over the same player the action type he was performing,
to have in the end the same label for the same player in every frames of the
entire sequence.

Since it’s quite normal that during the play two players cross each other,
and when it happens the bounding box of the occluded player disappear, we
needed a method we to deal with this problem. So we implemented a sort
of memory of movements for each player, by calculating the position (the
center of their bounding boxes) for each frame, keeping stored them in an
array that we used at every new sliding step to predict the position in the
next frames.

To find a match with a bounding box at the next frame, we calculated IOU
based on the prediction of the new position (not on that previous detected
position).

In case of occlusion the array is preserved for next steps: for all the
bounding boxes not found anymore, we search in previous frames the values
of the ghost bounding boxes and copy the predicted values until it doesn’t
appear in the detection again.
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Despite it’s a very simple tacking system, this method perform very well
also in absence of occlusion because if a player is moving in a direction, is
more likely find her where the speed of the direction predict her position.

4.6 Poses detection

To perform this task, we process the tensor used for the player detection and
use also its outputs (class IDs, scores, bounding boxs).

Alpha Pose network, which is our pose detector, expects the input has the
size 256x192, and the human is centered. So we need to crop the bounding
boxed area for each human, and resize it to 256x192, then finally normalize
it.

In order to make sure the bounding box has included the entire person,
we slightly upscale the box size.

pose input , upsca le bbox = de t e c t o r t o a l pha po s e ( img ,
c l a s s IDs , s co re s , bounding boxs )

Figure 4.3: The pose detection in the volleyball court

An Alpha Pose network predicts the heatmap for each joint (keypoint).
After the inference the model searches for the highest value in the heatmap
and map it to the coordinates on the original image.

predicted heatmap = pose net ( pose input )
pred coords , con f id ence = heatmap to coord a lpha pose (

predicted heatmap , upsca le bbox )

To display the pose estimation results it’s possible to use a Gluon function
ax = u t i l s . v i z . p l o t k eypo i n t s ( img , pred coords , con f idence ,

c l a s s IDs , bounding boxs , s co re s ,
box thresh =0.5 , keypo in t th r e sh =0.2)

p l t . show ( )
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The skeleton labels that would be drawn on the detected human. Each
joint is mapped to a unique number. This is the complete mapping of the 17
keypoints in AlphaPose 3:

{0 , ”Nose” } , {1 , ”LEye” } , {2 , ”REye” } , {3 , ”LEar” } , {4 REar ” } ,
{5 , ”LShoulde r ” } , {6 , ”RShoulde r ” } , {7 , ”LElbow” } , {8 ”RElbow” } ,
{9 LWrist” } , {10 , ”RWrist” } , {11 , ”LHip” } , {12 , ”RHip” } ,
{13 , ”LKnee” } , {14 , ”Rknee” } , {15 , ”LAnkle” } , {16 , ”RAnkle”}

The pose estimation model has great dependency on the resolution of the
camera.

If the player or the camera moves too fast, the player shown in the video
might not be clear enough for the model to detect humans and label the pose
skeletons accurately and precisely. And also in case of occlusion for sure you
can’t get any poses

As well as the occlusions, also for the poses, if we cannot get the pose in
a frame, we copy the closer player’s pose in the time (the first we find, before
or after).

Unlike the occlusion in the previous step and thanks to it, the lack of
poses, due to the occlusion or other, is easier to solve because we already
have the player identification along the frame.

We decided to copy the values from the closer frame because, instead to
have empty vectors along the time, we think that it’s better having a kind
of still image in a training task process.

4.7 Court detection

This is an important part of the project, because we were in front of a big
issue: we needed to find the exactly position of the court to calculate the
homography matrix and can draw the bird’s eye view of the players’ position.

Moreover the shape of the court let us to filter a lot of garbage bounding
boxes founded during the person detection step, saving time in the IOU
search for tracking task and also to define important rules to filter people
very close to the court and who easily can be confused with players (i.e.
coaches, referees, ball boys)

4.7.1 Related work

The court is usually detected by classic computer vision algorithms, but it
should be correctly detected even when the camera moves from a side to the
other of the court, when camera zooms.

3See also the Fig. 3.5 for the graphical view
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Certain videos can be more challenging for court detection than others:
for example, when the court is partially out of the frame, when the brightness
is either very low or very high or when the player occludes a large portion of
a court line (it happens often in volleyball matches).

It’s possible find several work about sports court estimation and the most
of them uses at the beginning a Gaussian blur on the black/white image to
reduce on the noises and Canny edge detection to find the edges. Finally a
Hough line transform [5] is applied to find intersections of white lines.

Also we tried to use this method and results are quite good but not
so stable, because were strictly depending on the brightness conditions and
other factors.

Figure 4.4: Canny alg. applied to the volleyball court

Another way is to exploit different colors between inside and outside the
game court. But as the previous one, also this methods is very dependent
on visual elements of the each court, so every time it would be necessary
calibrate the camera or the algorithm in any new site.

4.7.2 ”Courts as Points”

The solution that we propose exploits a recent model in object detection
called Centernets (see 3.5.4).

Since Centernets are very effective at find keypoints, in particular human
pose, we tried to build a Centernet that instead searching for human joints,
searches for line joints of a volleyball court.
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Starting from the code, written for detecting human joints using center-
nets in mxnet [2], which is a porting of the ”Object as Points” [23], we modi-
fied the architecture of the regressor head (that used to find the 17 joints) to
find, instead, 10 keypoints over images containing a volleyball match scene.

After customizing the model for our needs, to perform the training we
needed an adequate dataset. The best solution was to re-use the images into
the original dataset that already we used for the detection task.

Therefore, we manually labeled 500 different images, selecting them from
only 12 different match-folders (0-9, 44, 45) over 54 available.

For each images we targeted 10 keypoints, corresponding to the joints of
the court lines.

We adopted the COCO dataset format (see 4.1) to collect our data, so
following its schema we needed to have a set of images in the images section,
a set of labels in annotations section.

In the categories section we defined our custom model in the keypoints
section, reporting the name of all our keypoints, numbering them from 0 to
9 starting from the top-left corner.

Figure 4.5: Indexes for the 10 keypoints

We defined also the skeleton of the joints of volleyball court, like we
defined it. The skeleton definition is just the list of the connections between
2 vertexes, for example in the human skeleton schema, some of them represent
the limbs.
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Figure 4.6: How we labeled our dataset

, ” c a t e g o r i e s ” : [ { ” supercategory ” : ” game court ” , ” id ” : 1 , ”name” : ” game court ” ,
” keypo ints ” : [ ” l e f t −top” , ” l e f t −down” , ” l e f t −middle−top” , ” l e f t −middle−bottom” ,
” center−top” , ” center−bottom” , ” r ight−middle−top” , ” r ight−middle−bottom” ,
” r ight−top” , ” r ight−bottom” ] ,
” sk e l e t on ” : [ [ 0 , 1 ] , [ 0 , 2 ] , [ 1 , 3 ] , [ 2 , 3 ] , [ 2 , 4 ] , [ 3 , 5 ] , [ 4 , 5 ] , [ 4 , 6 ] ,
[ 5 , 7 ] , [ 6 , 7 ] , [ 6 , 8 ] , [ 7 , 9 ] , [ 8 , 9 ] ] } ] }

To manually target all the 500 photos we used a simple tool, then we build
ourselves another tool to refine the tagging: we tracked also the information
depending on the type of visibility of every keypoints in the frame: For each
photo we annotated the coordinates of each 10 keypoints and also if they
are visible, occluded in the scene (by a player) or out of frame, according to
these indexes: 0:None, 1:Occluded, 2:Visible.

In fact, the COCO dataset format provides that the keypoints definition
is a set of triplets (xk, yk, ck). xk, yk are the coordinates of the point,
the ck is a point confidence parameter whose value has different meanings
depending on the dataset. We didn’t use it in the training process but we
collected and annotated it anyway, mostly to identify how many keypoints
have a ck > 0 and calculate the number keypoints to assign in the param
”num keypoints” of the dataset as COCO dataset format requires.

Again, this third parameters can be useful in future training process works
For each items in the dataset, we defined also bbox value, which define

the rectangle circumscribed to our volleyball court (in blue in the figure).
After the tagging, we calculate that simply getting the min top/left and

the max bottom/right values. This another element that the model predict
together to the 10 keypoints and can be very useful.

. . . ,
{

” image id ” :8027014 ,
”bbox” : [ 0 , 4 0 5 , 1 2 80 , 2 2 2 ] ,
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”num keypoints ” : 7 ,
” keypo ints ” : [ 83 , 415 , 2 , 0 , 0 , 0 , 506 , 420 , 2 , 419 , 614 , 2 ,

713 ,422 ,2 ,700 ,615 ,1 ,923 ,423 ,2 ,
984 , 617 , 2 , 0 , 0 , 0 , 0 , 0 , 0 ] ,

” id ” :8027014 ,
” c a t e go ry i d ” : 1

} ,
. . .

Here is an example of how our keypoints annotation was made for each
image, according to the COCO format.

As you can see also in Fig. 4.6, 3 keypoints are Not Visible (index: 1, 8,
9) and 1 keypoint is Occluded (index: 5). In fact, the JSON assigns:
- (0, 0, 0) for the keypoint 1, 8, 9
- (700, 615, 1) for the keypoint 5
- (xk, yk, 2) for all the other visible keypoints

4.7.3 Training

After the definition of our court detector, customized the regression head of
the centernet, now we had also the dataset in COCO format, ready to be
used on our training model.

Figure 4.7: The output of the 10 court keypoints by our detector

We had 497 ground truth frames (it means about 4.970 points) and we
divided them in train set of 430, and validation set of 67.
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We trained set a CenterNet architecture with resnet18 network for 2D
object detection.

We run the training for 700 epochs, using a NVIDIA RTX 2080 it takes
less than 2 hours.

At the end of the training, our dectector were able to detect all the
keypoints of the game court in a volleyball-match image.

4.7.4 Results

The results are quite impressive, because applying our detector over all the
other 43 match-folders, that the detector didn’t ever see before, the keypoints
are found very well. It works in different conditions: different brightness,
different camera zoom or point of view. It looks very robust in front of a lot
of noisy conditions.

The interesting thing of our new detector is that it can retrieve not only
the keypoints in the frame, but also those not in the scene. This means that
we have the prediction also of the ghost keypoints, with negative coordinates
or coordinates overflowing the size of the frame.

Having good points of reference for detecting the court is very impor-
tant, because the court area, helps other parts of a complex system like this
(filtering for example in detection task other people), and also lets to calcu-
late some other interesting statistics, that before we can’t (distance between
players or dense maps on the court drawn from each player).

Figure 4.8: Distribution of the confidence scores
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Figure 4.9: Distribution of the IOU values

4.7.5 Evaluation

It’s not easy to understand how to find a metric to evaluate our task: in the
end, this is an object detection task or better an object segmentation task.
We could evaluate it by using the COCO mAP (see section 3.6 about mAP).

We didn’t have a test dataset, we performed it over our validation dataset
composed of 68 frames.

In the prediction task, the average of the score confidence of the bounding
box (and the points) and is 0.93% in all the cases except one > 0.8% (see
histogram fig.4.8).

We considered both the Ground Truth shape and the prediction shape,
calculating the area defined by only court points present in the frame scene
(vk ̸= 0).

Also the average of the IoU between the Ground Truth and the predicted
court is 0.91% in all the cases > 0.8% (see histogram fig.4.9).

With this dataset and our detector, the Recall is always equal to 1. The
calculation of the COCO mAP is:

mAP[.5]=1, mAP[.55]=1, mAP[.65]=1, mAP[.7]=1, mAP[.75]=1, mAP[.8]=1,
mAP[.85]=67/68, mAP[.9]=48/68, mAP[.95]=6/68

The COCO mAP = 0.87794

4.8 Bird view making

Having the position in the image of all the joints ( most of them) of the game
court, we find the homography matrix quite easily, because we know very well
the game court dimensions and the relative distances of all the court points
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in the reality.
We can use the opencv function cv2.findHomography that does it for

us, but it requires at least 4 correspondent points between the 2 images to
calculate the right matrix. At least 4, but we can put inside the 2 arrays
(src pts, dst pts) how many points we want to be more accurate.

Even if our detector find ghost keypoints out the scene, since we can’t be
sure about their prediction (neither the network could be of it, since it hasn’t
any point of reference on it), during the Homography Matrix calculation, we
kept only all the keypoints that are inside the frame, and exclude those
that are outside. We don’t lack of keypoints for this task, because we have
available usually 8 or 9 keypoints over 10 in most of frames and in the worst
of the cases (zoom or close view on one side of the court) we have always 6
or more keypoints.

So after filtering the two lists, we can get the homographymatrix (H).

H, mask = cv2 . findHomography ( s r c p t s , d s t pt s , cv2 .RANSAC, 5 . 0 )

src pts are the points in the image, dst pts instead are the points of a
fixed 2D court image. The size of the two arrays has to be the same, so every
time we arrange the two array according to how many point are visible in
the sec pts

Now that we have our homography matrix (H), one for each frame, we can
see how the whole image is projected in the 2D image model (see Fig.4.14)
or add all the players’ positions, by using another function of Opencv.

Figure 4.10: The projected image using Homography

s e l f . court homography = cv2 . perspect iveTrans form ( pos p laye r s , H) [ 0 ]
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pos players is an array containing the feet position of the players, they
are points, estimated by using the middle point of bottom borders of their
bounding boxes.

In some scenes there are some occlusions that made the detection of a
player very difficult, especially in blocking actions where players are very
close and make the same movements, overlaying each other in symmetric
manner.

To cope with this problem, we lower the threshold of the confidence in
person detection in first steps. It was not a big problems in training (be-
cause we have the initial bounding boxes where the players are), but in the
prediction this can be a problems.

We exploit our detector in it, since now we have the position of each
player in the court we can distinguish the player that are in the left or in
the right side very easily. Moreover, thanks to the detector we can calculate
more precisely also the distance from the borders and the net. This is very
important, because some other people are very close to the court (coaches
and referees) and they can be wrongly recognized as players.

Figure 4.11: The keypoint positions using Homography

To get rid of false positives in the court, we adopted some simple rules,
assigning scores according to the score in the detection task or to the distance
from the net and the distance from the sidelines.

If a person is detected over the court, we can’t have doubt: that’s a player.
Problem is when there are detection outside. We can’t exclude that those

are players, because sometimes players go out form the court for different
reasons: to retrieve a ball in a defense action, but very often there take a run
to jump before spiking.
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Figure 4.12: In orange, the extension of the court according the probability
of the player presence

More a detected person is far away from the middle of the court (where
there is the net), less probability, that is a player.

We augmented in some way the court area along the sidelines where we
expect there can be players (Fig. 4.12)

Figure 4.13: Position assignment according to the side and probability

The scores are used also after in an ordered list grouped by court side:
only the first six players for side are drawn in the 2D model. Otherwise it
could be that in a more crowded side of the court, there were more players
with higher score than the other side.

4.9 Labeling model

Now we have for each sequence and for each frame in it a lot of data along the
time: the player’s position in 2D projected image, the poses of the players,
the labels for each of them about the action they are performing.
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There are networks that would let to detect action type in sports, also
Gluon has got a pre-trained model ready to use for this task [8].

But we wanted to explore the possibility to analyze and recognize each
action type starting from coordinates of all the poses along the time that we
can collect by the alpha pose detector.

In fact, for each sequence we had all the poses of each player along 41
frames. Our idea is that a action type can be recognizable also from a single
frame, but having the sequence also along the time of all the poses, we could
exploit also the temporal dimension. Having a detector working on numerical
data and not on frames in a video sequence has less data to analyze and it’s
faster.

Figure 4.14: Our goal: having a bird view of players and their actions

For each player we had 41 poses, each pose has 17 (x,y) coordinates of
skeleton joints. So, we had action information in two dimensions and wanted
use it.

4.9.1 Pose encoding

The encoding of data is crucial, because we can make a representation of the
reality in different way. In machine learning is very important how to encode
data and to keep a semantic correspondence between the real world and your
numeric encoding.

We tried different type of encoding but mainly two type: one with the
coordinates of points, the other one with the cosine of the angles between
the joints.
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Encoding with Coordinates

It’s the easier way because you can put in the network the data that you have
already collected, hoping it understand the relative position of each player.

We tried to do in different manners to test all the possibilities and if there
were some difference in using a method rather than another.

The first one was to get the poses coordinates as they were: with absolute
values over the images.

The second method was to find the center of the each bounding box and
calculating the relative coordinates from it, normalizing the values between
0 and 1 all the values.

This method has some problems, because the center of the bounding boxes
along the time is not always the same, not only because the area occupy by a
person can change according his body position, but also because the detector
could get wrong the real dimension of the area (also per occlusion problems)

Comparing the pose coordinates frame by frame, with a center that can
change continuously respect to real center is not so stable.

A solution that we tried has been instead of the center of the bounding
box, to use a joint of the player, and specifically a joint that is in a center
position for the body ( ankle seems a good candidate).

Another help in encoding could be to treat all the players with the same
point of reference respect to court side.

The players on the left side make the same kind of actions of the players
on the right side, but flipped with respect to the net. It is like they are in
front of a mirror.

To simplify the task, we flipped all the data coming from a side: we could
do it because we knew which players where on the left and which on the
right, thanks our court detector and the homography.

Another reduction of data dimension for the input of the network was
to exclude some joints: for example quite often the gesture in volleyball are
symmetric, digging, setting, blocking. Only spiking is not, but the most
relevant variations are related to the arms (or better: the movements of the
arms are enough to understand that that player is performing a spike).

So we kept in consideration to analyze only about 10 over 17 keypoints
positions, excluding one side of the human body.

Encoding with Angles

Angle probably is a better encoding than the coordinates one.
Coordinates encoding is very heavy compared to the angle one: each point

has to be encoded with 2 values (x,y). It means that we need 34 numbers to
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define 17 joints. For angles (or cosine of angle) we need only 17.
Moreover angle representation is space invariant, scale invariant and ro-

tation invariant (also if here maybe it doesn’t matter).
Nevertheless it’s a good definition about what we need: all the action

types provide specific pose, that are quite standard. Measuring the width of
the corners on specific pose should be enough to determinate a schema for
all the different action types.

Again as vertex also for this encoding we used a ankle joint as reference.
We we encoded all the joints vertex with their connections, we tried also to
reduce the number of the encoding (keeping only the angle of legs and arms
for example) or adding new correlations between body joints not naturally
connected, but that could be very informative (for example the wrist with
the knee).

In some test we added also some distance (for example wrist from foot)
and also a movement factor, using as input the variation of her position
respect to the court: in fact, if we encode every player using an internal point
of reference, we lost movements information of that player in the context of
court.

4.9.2 Results

We tried to use different type of simple model, with not so much hidden
layers: CNN with 1D-ConvLayer, LSTM and Dense networks.

Related work use also Graph Convolutional networks or Spatio Temporal
Graph Convolutional Networks for gesture detection.

In all our tests, we didn’t get have a good prediction output.
We changed a lot of data encoding or detector models and then we inves-

tigated better over the dataset that we made up. In the end we found that
the detection task worked quite well, and also the tracking task.

But the pose detection didn’t work so well: we found that for a lot of
player, pose detection didn’t work (no output).

Some problems were due to rapid movements of the players (especially in
spiking), this didn’t let the detector to recognize the poses.

In other cases, the closeness between teammates confused the detector
Another problems was that the labeling on the original dataset had dif-

ferent logic of naming, that overlap each other, for example we can have a
kind of movements that in dataset is labeled as ”moving” but also as ”spik-
ing”. One label didn’t exclude the other. This can be quite ambiguous for
the detector in training, therefore we tried to exclude all the action types
out of Spiking, Digging and Blocking, during the training but results didn’t
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change: our dataset was not so informative to complete the action detection
task.
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Chapter 5

Conclusion

Starting from a problem of action type detection in volleyball, we have
tested different techniques in machine learning and computer vision applied
to sports.

The sub tasks are the detection of the ball, the players, and the playing
court and the player’s tracking in the video.

Our goal was to be able to collect as much information as possible starting
from a simple video recordings with one camera on the long side of the court.

We leveraged a public dataset with several sequences of 50 different in-
ternational volleyball matches. Each sequence had the middle frame labeled
with action type over all the players, but all the other frames were unlabeled
.

We augmented the information over this dataset, adding players tracking
along the time on the other frames, and used the frames of the dataset to
also label the court area.

We performed detection and pose tasks with Gluon CV toolkit using pre-
trained models and we created a custom centernet network from scratch to
perform the court detection task.

For the goal of the project and also for the intermediate steps, recognizing
precisely the shape of the court of the game was quite crucial.

For this reason, we created a dataset, labelling it with different images
containing volleyball match scenes from the previous dataset, annotating 10
keypoints delimiting the playing court (4 corners of the rectangle, the middle
line and the two lines that divide each side to the “3 meters” from the net).

Related works in sports court detection task, often use algorithms from
classic computer vision field (Canny with Hough), which are very sensitive
to environment variations like brightness or to the changes in camera shot
(zoom or moving) and in the most of case they have to be calibrate in site.

Instead, our centernet model by a data-driven approach, it’s able to rec-
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ognize the 10 keypoints of the joints in a volleyball court and performs the
task very well.

It’s very robust to variations of points of view and perspective. It can
find also ghost points out the frame (predicting where they are in the space
not in frame) Thank to the precision of our detector we are able to calculate
the homography of the frame on a 2D court model in bird view and to draw
over it all the players.

We tried also to train a network to recognize action type in volleyball
starting from coordinates that define players’s poses along the time. We
didn’t succeed in it, mainly because the quality of the dataset that we have
built is limited, due to the complexity to retrieve poses from images so crowd
and using only one camera.
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Chapter 6

Appendix

6.1 The volleyball dataset

Dataset url

https://github.com/mostafa-saad/deep-activity-rec

File readme.txt

We collected a new dataset using publicly available YouTube volleyball videos.
We annotated 4830 frames that were handpicked from 55 videos with 9 player
action labels and 8 team activity labels. We used frames from 2/3 rd of the
videos for training, and the remaining 1/3 rd for testing. The list of action
and activity labels and related statistics are tabulated in following tables.

Group Activity Class No. of Instances
Right set 644
Right spike 623
Right pass 801
Right winpoint 295
Left winpoint 367
Left pass 826
Left spike 642
Left set 633
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Action Classes No. of Instances
Waiting 3601
Setting 1332
Digging 2333
Falling 1241
Spiking 1216
Blocking 2458
Jumping 341
Moving 5121
Standing 38696

Notes

The dataset is 55 videos.
Each video has a directory for it with sequential IDs (0, 1...54)

Train Videos: 1 3 6 7 10 13 15 16 18 22 23 31 32 36 38 39 40 41 42 48 50 52 53 54
Validation Videos: 0 2 8 12 17 19 24 26 27 28 30 33 46 49 51

Test Videos: 4 5 9 11 14 20 21 25 29 34 35 37 43 44 45 47

• Inside each video directory, a set of directories corresponds to annotated
frames (e.g. volleyball/39/29885)

• Each frame directory has 41 images (20 images before target frame,
target frame, 20 frames after target frame)

• You can use such window as your temporal window.

• Scenes change in fast manner in volleyball, hence frames beyond that
window shouldn’t represent belong to target frame most of time.

• In our work, we used 5 before and 4 after frames.

• Each video directory has annotations.txt file that contains selected
frames annotations.

• Each annotation line in format: Frame ID Frame Activity Class Player
Annotation Player Annotation ...

• Player Annotation corresponds to a tight bounding box surrounds each
player

• Each Player Annotation in format: Action Class X Y W H

53



Informal info

Following is a list of youtube videos. Downloading the video and extracting
the frames with correct resolution, bit rate..etc might be challenging.

The frame sequences in each folder come from this matches:

Folder Match Competition
0 China vs USA FIVB World Grand Prix 2015 720P
1 Brazil vs Russian Fed - Women’s Volleyball Quarterfinal London 2012
2 Brazil vs USA - Women’s Volleyball Final London 2012 Olympic Games
3 Live - Brazil vs China FIVB World Grand Prix Finals 2015
4 Live - Brazil vs France FIVB Volleyball World League Finals 2015
5 Live - Brazil vs Japan FIVB World Grand Prix Finals 2015
6 Live - Brazil vs Russia FIVB World Grand Prix Finals 2015
7 Live - Brazil vs USA FIVB Volleyball World League Final 2015
8 Live - China vs Italy FIVB World Grand Prix Finals 2015
9 Live - China vs Russia FIVB World Grand Prix Finals 2015
10 Live - France vs Poland FIVB Volleyball World League Final 2015
11 Live - Italy vs Brazil FIVB World Grand Prix Finals 2015
12 Live - Italy v Turkey FIVB Volleyball Girls’ U18 World Championship Peru 2015
13 Live - Italy vs Japan FIVB World Grand Prix Finals 2015
14 Live - Italy vs Russia FIVB World Grand Prix Finals 2015
15 Live - Japan vs China FIVB World Grand Prix Finals 2015
16 Live - Japan vs Russia FIVB World Grand Prix 2015
17 Live - Poland vs Italy FIVB Volleyball World League Final 2015
18 Live - Serbia vs France FIVB Volleyball World League Finals 2015
19 Live - Serbia vs Poland FIVB Volleyball World League Final 2015
20 Live - USA vs Brazil FIVB World Grand Prix Finals 2015
21 USA vs China 26 July 2015 - Week 5 Final Round - 2015 FIVB World Grand Prix
22 Live - USA vs France FIVB Volleyball World League Final 2015
23 Live - USA vs Italy FIVB World Grand Prix Finals 2015
24 Live - USA vs Japan FIVB World Grand Prix Finals 2015
25 Live - USA vs Poland FIVB Volleyball World League Finals 2015
26 Live - USA vs Russia FIVB World Grand Prix Finals 2015
27 Live - USA vs Serbia FIVB Volleyball World League Final 2015
28 Men’s Volleyball Pool B - BRA v SRB London 2012 Olympics
29 Men’s Volleyball Pool B - BRA v USA London 2012 Olympics
30 Men’s Volleyball Preliminary - BRA v GER London 2012 Olympics
31 Men’s Volleyball Preliminary Round - AUS v POL London 2012 Olympics
32 Men’s Volleyball Preliminary Round - RUS v SRB London 2012 Olympics
33 Men’s Volleyball Preliminary Round USA v TUN - Highlights London 2012 Olympics
34 Men’s Volleyball Quarter-Finals - BUL v GER London 2012 Olympics
35 Men’s Volleyball Quarterfinals - ITA vs USA London 2012 Olympics
36 Men’s Volleyball Quarter-Finals - POL v RUS London 2012 Olympics
37 Volleyball - Men - BRA-RUS London 2012 Olympic Games
38 Volleyball - Men - BRA-TUN London 2012 Olympic Games
39 Volleyball - Men Bronze Final London 2012 Olympic Games
40 Volleyball - Men Gold Final - VC RUS-BRA London 2012 Olympic Games
41 Volleyball - Men RUS-USA London 2012 Olympic Games
42 Volleyball - Men SF 2 BRA-ITA London 2012 Olympic Games
43 Volleyball Men’s Preliminary Pool A Italy v Bulgaria - Full Replay London 2012 Olympics
44 Volleyball - Women Bronze Final JPN-KOR London 2012 Olympic Games
45 Volleyball - Women SF 2 BRA-JPN London 2012 Olympic Games
46 Women’s Volleyball Pool A - ITA v JPN London 2012 Olympics
47 Women’s Volleyball Pool A - ITA v RUS London 2012 Olympics
48 Women’s Volleyball Pool A - JPN V GBR London 2012 Olympics
49 Women’s Volleyball Pool B - BRA v TUR London 2012 Olympics
50 Women’s Volleyball Pool B - Korea v USA London 2012 Olympics
51 Women’s Volleyball Pool B - CHN v KOR London 2012 Olympics
52 Women’s Volleyball Pool B - USA v Brazil London 2012 Olympics
53 Women’s Volleyball Preliminary Round - ITA v ALG London 2012 Olympics
54 Women’s Volleyball Quarter Finals - JPN v CHN London 2012 Olympics
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6.2 Basic Volleyball Rules for Playing the Game

[6]

• A court of game divided by a net in the middle

• Six players on the court for each team, that stay on their half of the
court

• Each team can hit the ball for a maximum of three times per side and
then the ball has to go on the opponent’s side of the court.

• A player may not hit the ball twice in succession (A block is not con-
sidered a hit)

• A ball hitting the floor inside or the boundary line is ”in”, is “out” if
touches everything else.

• It is illegal to catch and hold the ball, the touch has to be quick

• At higher competition, the officiating crew may be made up of two refs,
line judges, scorer, and an assistant scorer

Players can perform six basic skills: serve, pass, set, attack, block and
dig. Each of these skills comprises a number of specific pose:

Serve

A player stands behind the inline and serves the ball, in an attempt to drive
it into the opponent’s court.

Pass

A player making a forearm pass, it also called reception, it includes not only
preventing the ball from touching the court but also making it reach the
position where the setter is standing quickly and precisely.

The pass involves two specific techniques: underarm pass (or bump),
where the ball touches the inside part of the joined forearms and overhand
pass, where it is handled with the fingertips, like a set, above the head.
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Set

The set is usually the second contact that a team makes with the ball. The
main goal of setting is to put the ball in the air in such a way that it can
be driven by an attack into the opponent’s court. The setter coordinates
the offensive movements of a team, and is the player who ultimately decides
which player will actually attack the ball.

As with passing, one may distinguish between an overhand and a bump
set. As with a set or an overhand pass, the setter/passer must be careful to
touch the ball with both hands at the same time. If one hand is noticeably
late to touch the ball this could result in a less effective set, as well as the
referee calling a ’double hit’ and giving the point to the opposing team.

Attack

The attack, also known as the spike, is usually the third contact a team
makes with the ball The object of attacking is to handle the ball so that it
lands on the opponent’s court and cannot be defended. A player makes a
series of steps (the ”approach”), jumps, and swings at the ball.

A ’bounce’ is a slang term for a very hard/loud spike that follows an
almost straight trajectory steeply downward into the opponent’s court and
bounces very high into the air. A ”kill” is the slang term for an attack that
is not returned by the other team thus resulting in a point.

Block

Blocking refers to the actions taken by players standing at the net to stop or
alter an opponent’s attack. A block that is aimed at completely stopping an
attack, thus making the ball remain in the opponent’s court, jumping and
reaching to penetrate with one’s arms and hands over the net and into the
opponent’s area.

Dig

Digging is the ability to prevent the ball from touching one’s court after a
spike or attack, particularly a ball that is nearly touching the ground. In
many aspects, this skill is similar to passing, or bumping
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