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Abstract

In this thesis, we describe a study on the application of Machine Learning and Deep

Learning methods for Voice Activity Detection (VAD) and Speech Emotion Recognition

(SER). The study is in the context of a European project whose objective is to detect

disruptive situations in public transports. To this end, we developed an architecture,

implemented a prototype and ran validation tests on a variety of options.

The architecture consists of several modules. The denoising module was realized through

the use of a filter and the VAD module through an open-source toolkit, while the SER

system was entirely developed in this thesis. For SER architecture we adopted the use

of two audio features (MFCC and RMS) and two kind of classifiers, namely CNN and

SVM, to detect emotions indicative of disruptive situations such as fighting or shouting.

We aggregated several models through ensemble learning. The ensemble was evaluated

on several datasets and showed encouraging experimental results, even compared to the

baselines of the state-of the-art.

The code is available at: https://github.com/helemanc/ambient-intelligence
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Introduction

In recent years, thanks to the strong development of Artificial Intelligence techniques,

we have witnessed the spread of numerous technologies that accompany us in everyday

life. In many cases, the introduction of these technologies in the social context has led to

a marked improvement in the quality of life. Just think of the voice assistants installed

on our smartphones, which allow us to use our mobile, while driving, without having to

take our hands off the steering wheel; or, we could take the example of speech-to-text

systems which, in their noblest function, can be used by people suffering from degener-

ative diseases, such as Parkinson’s, in order to type messages with the sole use of their

own voice. These are just some of the examples of technologies that, thanks to the union

of Artificial Intelligence and voice analysis, can bring extraordinary results in our lives,

and this is exactly the context that this thesis fits in.

The work carried out for this thesis is part of the European research project H2020

- 5GMED [1, 2]. 5GMED aims to demonstrate advanced Cooperative Connected and

Automated Mobility (CCAM) and Future Railway Mobile Communications System ser-

vices (FRMCS) along the “Figueres – Perpignan” cross-border corridor between Spain

and France. It is a very broad project with a lot of partners and many objectives. Among

the various objectives of 5GMED, the project of this thesis pursues the development

of an AI application for the recognition of disruptive situations on public transports.

Disruptive situations include, for example, people fighting or screaming.

The development of such a technology would be of great importance, since it could

really have a strong social impact. However, these kinds of systems have never been

introduced in real scenarios, because they still present many scientific and technological

challenges.

1



INTRODUCTION 2

The main challenge is to build a model that is:

• speaker-independent

• gender-independent

• cross-linguistic

• robust to environmental noise

Having an architecture that respects all the aforementioned conditions requires an in-

depth scientific and technological study.

In particular, the problems listed above are widespread in all Speech Emotion Recogni-

tion systems, and not only among applications that must work in our reference context.

Public transport is just an example of context in which all these issues arise at the same

time, because transports are very noisy environments frequented by people of different

gender and ethnicity.

Achieving a good performance for SER is always a challenge because of the variability in

signals of speech emotion and speaker-dependent features. A lot of research works aimed

to extract typical features for speech emotions, such as INTERSPEECH 2009 Emotion

Challenge and the INTERSPEECH 2013 computational paralinguistics challenge [3]. Al-

though SER models can achieve a good performance no matter which type of input is

used, they still treat these features as general representations of emotions and ignoring

personalized differences.

In order to address this problem, we performed a meticulous work on the datasets that

we had available. The datasets used for this thesis project are RAVDESS, TESS, SAVEE

and CREMA-D.

In particular, we carefully balanced the number of speakers, of female and male voices

and of files per emotion when splitting the datasets into training, validation and test sets.

Unfortunately, as these datasets are all in English (mainly British or North American

accent), we were unable to construct a cross-linguistic model.

A good part of the work was spent on the data, not only to carry out this division, but

also to make them homogeneous and as realistic as possible due to the lack of real data.

In order to make the data realistic, a particular Data Augmentation strategy has been

developed.



INTRODUCTION 3

Thanks to a careful study of the recent literature, we identified which features we could

use to build the input of our models (MFCCs and RMS) and which classifiers (CNNs

and SVMs).

Several experiments have been performed to analyze the change in performances linked

to a combination of the following aspects:

• dataset

• features

• binary classifier

To do so, we built 96 different models; among them, we selected the 19 models that led

to the best performances.

The best models were integrated through ensemble learning and several aggregation

strategies were implemented.

Even though the application is not yet ready to be used in the real scenario (i.e. public

transports), we have obtained very satisfactory results.

The core of our work is the construction of the SER system. However, the overall

architecture is also composed of a denoising and a Voice Activity Detection module; the

latter has been realized through an open-source toolkit.

The main contributions introduced by this work are:

• the integration of the three modules to realize a working prototype (i.e. a self-

contained Python application) for disruptive situations detection

• the modeling of emotions in two classes: disruptive, non-disruptive

• the construction of a speaker-independent and gender-independent SER model



INTRODUCTION 4

The thesis is organized as follows:

• Chapter 1: presents the context in which this thesis project is inserted, that is the

European project H2020-5GMED.

• Chapter 2: provides the necessary background. The focus is on audio features,

architectures for speech recognition and literature review for VAD and SER.

• Chapter 3: outlines the proposed architecture, showing its building blocks and how

they are linked one to the other.

• Chapter 4: describes the open-source toolkit that we used to address VAD task

and its validation.

• Chapter 5: discusses the development of the speech emotion recognition system,

from the analysis of available datasets to the construction of the ensemble.

• Chapter 6: offers an analysis of the critical issues and possible margins for im-

provement of the application and discusses the challenges encountered during the

implementation of the SER system and possible future developments.

• Chapter 7 : concludes and suggests future extensions of this work.

• Appendices 1-5: provide further details on experimental setups and results and on

the developed application code.



Chapter 1

5GMED: Disruptive Situations

Detection in Public Transports

The work carried out for this thesis project is part of the European research project

H2020 - 5GMED [1, 2].

The 5GMED project is a very broad project that aims to demonstrate advanced Coop-

erative Connected and Automated Mobility (CCAM) and Future Railway Mobile Com-

munications System services (FRMCS) along the “Figueres – Perpignan” cross-border

corridor between Spain and France. The value proposition for this project is to deploy

a single infrastructure to be used by multi-stakeholder.

The project is enabled by a multi-stakeholder compute and network infrastructure de-

ployed by MNOs1, neutral hosts, and road and rail operators, based on 5G and offering

support for Artificial Intelligence functions.

The consortium coordinated by Cellnex Telecom includes 21 partners from 7 countries,

including the i2CAT Foundation of Barcelona, which is the research center where this

thesis project was carried out.

The main topics of 5GMED are:

• Cross-operator service orchestration

• Innovations in multi-connectivity supporting high-speed vehicles and trains

• Self-sustainable 5G access network infrastructure that can be deployed when power

and backhauling resources are scarce
1Mobile Network Operators

5



6

• Enhancements to speed up roaming transitions across MNOs and neutral hosts

• Novel high-speed access network architectures for railways

• The ability to support AI-enabled functions executing at the edge of the network

Among the various project objectives listed above, our project pursues the latter, namely:

”The ability to support AI-enabled functions executing at the edge of the network”.

In particular, among the functions managed by the i2CAT Foundation there is the cre-

ation of a system capable of identifying disruptive situations in public transports.

The great successes of Artificial Intelligence and recent discoveries in this field have al-

lowed the realization of the function mentioned above.

Artificial Intelligence will be used to detect situations inside the train that can be con-

sidered disruptive or risky, such as people shouting, fighting or talking in the silence car.

Also emergency words like “help” may be recognised by a Keyword Spotting (KWS)

algorithm. For this purpose, CCTV cameras will send live stream video and audio to

the AI Module located at the Edge Server. One or more Natural Language Processing

(NLP) architectures and techniques will classify the audio between normal and disrup-

tive, triggering an alarm when needed and allowing the Train Control Centre to remotely

manouver the camera in order to verify the alarm. Additionally, video stream may be

analysed by a Computer Vision model to confirm the detection of unexpected behaviours

that can indicate a disruptive situation.

In Figure 1.1 we can find the sequence diagram of a disruptive situation detected by the

AI Module and trasmitted to the Control Center to be analyzed.
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Figure 1.1: Sequence diagram of a disruptive situation detected by the AI Module and
transmitted to the Control Centre

Let’s describe in details the workflow showed in the figure above:

• The camera or cameras with microphones, located in the passengers car, send the

video/audio flow to the AI module (Ground AI) running on the Edge Server

If a disruptive situation is detected on the video/audio flow:

• An alarm is sent to the Control Center

• A sample of the video in which the disruptive situation was occurred is stored in

the Video Storage module

• The Control Centre informs to the Operator in train that a Disruptive situation

has been detected by the IA

• The Control Centre gets access to the cameras

• A RTSP2 session is opened with the cameras

• The cameras might be operated from the Control Centre to inspect the interior of

the passengers car and verify if a disruptive situation really exists

• The Control Center can forward the Stream live video to the Operator in train
2Real Time Streaming Protocol
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The architecture developed in this thesis project is part of the ”Ground AI” module

in Figure 1.1. In particular, we have been involved in creating an architecture capable

of analyzing the flow of audio arriving from the microphones placed on the train and

understanding whether continuous portions of audio can refer to disruptive situations

or not; the focus was placed on the analysis of the emotions within the portions of

audio which contain speech. Please refer to Section 3 for further details about the whole

architecture.



Chapter 2

Background

2.1 Audio Features

2.1.1 MFCC

Mel Frequency Cepstral Coefficients (MFCC) based features are very common and are

used in a lot of SER models, such as [4] and [5].

MFCC is the classic, efficient and successful approach used for speech-related tasks such

as gender identification by voice, speech recognition, speech emotion recognition and

many more. MFCC coefficients are successful because they are derived from human

speech patterns. [6]

The MFCC attempts to mimic the human ear, where the audio frequency is determined

as an Asymmetric Spectrum. The main steps of MFCC feature extraction are pre-

emphasis, frame-blocking, fast-Fourier transform (FFT), Mel frequency warping, and

discrete cosine transform (DCT) [7].

Figure 2.1 explains the MFCC extraction process from an audio signal.

9



2.1. AUDIO FEATURES 10

Figure 2.1: Block diagram for MFCC

The detailed description of various steps involved in the MFCC feature extraction is

explained below. Most of the details reported below have been taken from [8] and [9].

• Sampling and Quantization: even if this step is not strictly related to the

MFCCs computation pipeline, it is mandatory to perform it before starting the

process. As we know the audio wave is a continuous signal while the computer is a

digital machine that cannot directly represent the continuous signals, so we have to

convert these continuous signals into a discrete finite (i.e. digital) set of information;

this analog-to-digital conversion has two steps: sampling and quantization [9].

A signal is sampled by measuring its amplitude at a particular time; the sampling

rate is the number of samples taken per second. To accurately measure a wave,

we must have at least two samples in each cycle: one measuring the positive part

of the wave and one measuring the negative part. More than two samples per

cycle increases the amplitude accuracy, but less than two samples will cause the

frequency of the wave to be completely missed [9]. Thus, the maximum frequency

wave that can be measured is one whose frequency is half the sample rate (since

every cycle needs two samples) [9]. This maximum frequency for a given sampling

rate is called the Nyquist frequency. Although using higher sampling rates produces

higher ASR accuracy, we cannot combine different sampling rates for training and

testing ASR systems. Thus if we are testing on a telephone corpus like Switchboard

(8 KHz sampling), we must downsample our training corpus to 8 KHz. Similarly,

if we are training on multiple corpora and one of them includes telephone speech,

we downsample all the wideband corpora to 8 KHz [9]. In this thesis project we
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have decided to standardize all data to 16 KHz.

Amplitude measurements are stored as integers, either 8 bit (values from -128–

127) or 16 bit (values from -32768–32767). This process of representing real-valued

numbers as integers is called quantization; all values that are closer together than

the minimum granularity (the quantum size) are represented identically.

Sampling and Quantization correspond to what we will call later as Data Loading.

For further details please refer to Section 5.3.4.

• Pre-emphasis: is a filtering process that is used to process a signal before per-

forming feature extraction on it. The spectrum of speech has higher energy at

low frequencies compared to high frequencies. Through pre-emphasis, energies are

increased to high-frequency levels, thereby balancing the level of energies in the

spectrum. From a more technical point of view the purpose of pre-emphasis is

to balance the spectrum of voiced sounds that have a steep roll-off in the high-

frequency region. For voiced sounds, the glottal source has an approximately −12

dB/octave slope [10]. However, when the acoustic energy radiates from the lips,

this causes a roughly +6 dB/octave boost to the spectrum. As a result, a speech

signal when recorded with a microphone from a distance has approximately a

−6 dB/octave slope downward compared to the true spectrum of the vocal tract.

Therefore, pre-emphasis removes some of the glottal effects from the vocal tract

parameters. The most commonly used pre-emphasis filter is given by the following

transfer function:

H(z) = 1− bz−1 (2.1)

where the value of b controls the slope of the filter and is usually between 0.4 and

1.0 [10]. Pre-emphasis is considered a noise reduction tool because it reduces the

power of the noise without affecting the rest of the signal. [11]

• Framing: or Frame blocking and Windowing. It consists of splitting the signal

into several frames. The speech signal is a slowly time-varying or quasi-stationary

signal. For stable acoustic characteristics, speech needs to be examined over a

sufficiently short period of time. Therefore, speech analysis must always be carried

out on short segments across which the speech signal is assumed to be stationary.

These short segments are called windows.
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Inside this small window, we can roughly think of the signal as stationary 1, that is,

its statistical properties are constant within this region [9]. We extract this roughly

stationary portion of speech by using a window which is non-zero inside a region

and zero elsewhere, running this window across the speech signal and multiplying it

by the input waveform to produce a windowed waveform [9]. The speech extracted

from each window is called a frame. The windowing is characterized by three

parameters: the window size or frame size of the window (its width in milliseconds),

the frame stride, (also called shift or offset) between successive windows, and the

shape of the window [9]. To extract the signal we multiply the value of the signal

at time n, s[n], by the value of the window at time n, w[n]:

y[n] = w[n]s[n] (2.2)

Short-term spectral measurements are typically carried out over 20ms windows,

and advanced every 10ms [8]. Advancing the time window every 10 ms enables

the temporal characteristics of individual speech sounds to be tracked, and the

20 ms analysis window is usually sufficient to provide good spectral resolution of

these sounds, and at the same time short enough to resolve significant temporal

characteristics. The purpose of the overlapping analysis (i.e. windowing) is that

each speech sound of the input sequence would be approximately centered. On

each frame, a window is applied to taper the signal towards the frame boundaries.

Generally, Hanning or Hamming windows are used [10], instead of a rectangular

one. This is done to enhance the harmonics, smooth the edges, and to reduce the

edge effect while taking the DFT on the signal.

• DFT spectrum: each windowed frame is converted into magnitude spectrum by

applying DFT:

X(k) =

N−1∑
n=0

x(n)e
−j2πnk

N 0 ≤ k ≤ N − 1 (2.3)

where N is the number of points used to compute the DFT. This operation has the

objective of understanding how much energy the signal contains at different fre-
1By contrast, in general, speech is a non-stationary signal, meaning that its statistical properties are

not constant over time.
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quency bands [9]. The equation above exploits the FFT (Fast Fourier Transform).

This implementation of the DFT is very efficient, but only works for values of N

that are powers of 2 [9].

• Mel Spectrum: Mel spectrum is computed by passing the Fourier transformed

signal through a set of band-pass filters known as Mel-filter bank. A mel2 is a

unit of measure based on the human ears perceived frequency; a mel is commonly

described as unit of pitch [9]. It does not correspond linearly to the physical

frequency of the tone, as the human auditory system apparently does not perceive

pitch linearly.

Mel scaling is performed as shown in Equation 2.4

mel(f) =

f if f ≤ 1kHz

C · log(1 + f
f0
) if f > 1kHz

(2.4)

where f denotes the physical frequency in Hz, and mel(f) denotes the perceived

frequency. Below the frequency f0 the Mel scale changes approximately linearly

with frequency, whereas above f0 it changes logarithmically; in particular the Mel

scale is approximately a linear frequency spacing below 1 kHz and a logarithmic

spacing above 1 kHz [8]. This is the result of measurements. The difference

between most formulas is the choice of the corner frequency f0, which is usually

chosen somewhere between 600 Hz and 1000 Hz; the most common value for f0 is

700. The constant C in 2.4 is normally chosen such that 1000 Hz correspond to

1000 mel:

C =
1000

log(1 + 1000
f0

)
(2.5)

– if we take the natural logarithm and f0 = 700 we get C = 1127 from Eq. 2.5

– if, instead, we use the logarithm with base 10, we obtain the other well-known

constant C = 2595

Since the logarithm is applied in 2.4, they are also called Log-Mel Filter Banks.

Filter banks can be implemented in both time domain and frequency domain. For

MFCC computation, filter banks are generally implemented in frequency domain.
2The name mel comes from the word melody to indicate that the scale is based on pitch comparisons.
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The center frequencies of the filters are normally evenly spaced on the frequency

axis. However, in order to mimic the human ears perception, the warped axis,

according to the nonlinear function given in Eq. 2.4, is implemented. The most

commonly used filter shaper is triangular, and in some cases the Hanning filter

can be found [10]. The triangular filter banks with Mel frequency warping is given

in Fig. 2.2. The Mel spectrum of the magnitude spectrum X(k) is computed by

multiplying the magnitude spectrum by each of the of the triangular Mel weighting

filters:

s(m) =

N−1∑
k=0

[|X(k)|2Hm(k)] 0 ≤ m ≤ M − 1 (2.6)

where M is total number of triangular Mel weighting filters [12] [13]. Hm(k) is the

weight given to the kth energy spectrum bin contributing to the mth output band

and is expressed as:

Hm(k) =



0 if k < f(m− 1)

2(k−f(m−1))
f(m)−f(m−1)

if f(m− 1) ≤ k ≤ f(m)

2(f(m+1)−k)
f(m+1)−f(m)

if f(m) < k ≤ f(m+ 1)

0 if k > f(m+ 1)

(2.7)

with m ranging from 0 to M − 1.
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Figure 2.2: Mel-filter bank

If we do not continue with the DCT calculation, we can stop here and use Log-Mel

Filter Banks as audio features; we will find them in our Voice Activity Detection

system (Section 4).

• DCT: since the vocal tract is smooth, the energy levels in adjacent bands tend

to be correlated. In the discrete cosine transform (DCT) stage, the mel spectrum

coefficient is converted into the time domain; in particular the DCT is applied to the

transformed Mel frequency coefficients and produces a set of cepstral3 coefficients

(MFCCs). Prior to computing DCT, the Mel spectrum is usually represented on a

log scale. This results in a signal in the cepstral domain with a quefrequency peak

corresponding to the pitch of the signal and a number of formants representing

low quefrequency peaks. Since most of the signal information is represented by

the first few MFCC coefficients, the system can be made robust by extracting only

those coefficients, ignoring or truncating higher order DCT components4 [10].

Finally, MFCC is calculated as:

c(n) =

M−1∑
m=0

log10(s(m))cos(
πn(m− 0.5)

M
) n=0,1,2,...,C-1 (2.8)

where c(n) are the cepstral coefficients, and C is the number of MFCCs.
3In Fourier analysis, the cepstrum is the result of computing the inverse Fourier transform (IFT) of

the logarithm of the estimated signal spectrum.
4That’s why we will limit our exploration to a range of MFCCs values between 13 and 26.
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Traditional MFCC systems use only 8–13 cepstral coefficients. The zero-th co-

efficient is often excluded since it represents the average log-energy of the input

signal, which only carries little speaker-specific information [8]. Precisely for this

reason we will exclude the zero-th coefficient in the Feature Extraction phase of

our Speech Emotion Recognition architecture.

MFCC has numerous advantages like simple calculation, better ability of distinction

and high robustness to noise. We have used MFCC features to represent audio samples

in the Speech Emotion Recognition System.

All the steps for the calculation of the MFCCs are wrapped inside the librosa.feature.mfcc

[14], the function that we used in the Feature Extraction phase for the Speech Emotion

Recognition system.
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2.1.2 RMS

RMS stands for Root-Mean-Square-Energy per frame. RMS is the measure of the loud-

ness of an audio signal; it is found by calculating the square root of the sum of the mean

squares of the amplitudes of the sound samples [15].

RMS formula is given in Equation 2.9:

xrms =

√√√√√√ 1

n

n∑
i=1

x2
i =

√
x2
1 + x2

2 + ...+ x2
n

n
(2.9)

We used this feature in our Speech Emotion Recognition system. The RMS feature has

been computed through Librosa’s librosa.feature.rms [16] function.
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2.2 Architectures for Speech Recognition

In this section we illustrate the main architectures used in our Voice Activity Detection

and Speech Emotion Recognition models. In particular, the key element of the Voice

Activty Detection system is a Convolutional Neural Network, while the main element of

the Speech Emotion Recognition system is an ensemble of Convolutional Neural Networks

and SVM classifiers.

2.2.1 Convolutional Neural Networks

Convolutional Neural Network is one of the most popular deep learning methods mani-

fested in areas of face recognition, handwriting recognition, and many other processing

and recognition problems. Convolutional Neural Networks were initially implemented

for computer vision (CV) tasks. In recent years, Convolutional Neural Networks (CNNs)

have also been widely applied in the field of natural language processing (NLP), due to

their good generation, and discrimination capability.

The CNN can be regarded as a variant of the standard neural network; instead of using

fully connected hidden layers, the CNN introduces a special network structure, which

consists of alternating so-called convolution and pooling layers [17].

In general, the mathematical operation that characterizes convolutional neural net-

works is, as it is possible to guess from the name itself, convolution. Convolution is

an important operation in signal and image processing. Convolution operates on two

signals (in 1D) or two images (in 2D): we can think of one as the “input” signal (or

image), and the other (called the kernel) as a “filter” on the input signal (or image),

producing an output signal (or image). So convolution takes two signals (or images) as

input and produces a third as output. Convolution is an incredibly important concept

in many areas of math and engineering.

In particular, a convolutional layer is composed by kernels that are convolved with

the input. A convolutional kernel divides the input signal into smaller parts, namely

the receptive field of the kernel. Furthermore, the convolution operation is performed

by multiplying the kernel with the corresponding parts of the input that are into the
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receptive field [18]. After this general introduction to Convolutional Neural Networks,

we analyze more in details their functioning and their use in Automatic Speech Recog-

nition. In carrying out the discussion of the next paragraphs, we will follow the outline

and contents presented in [17].

Organization of the Input Data to the CNN

When using the CNN for pattern recognition, the input data must be organized as a

set of feature maps that are fed into the CNN. This notion comes from image process-

ing, where it is intuitive to organize the input data as a two-dimensional (2-D) array,

consisting of the pixel values at the x and y coordinates (horizontal and vertical). For

color images, the RGB values (red, green, blue) can be considered as three different 2-D

feature maps.

CNNs pass a small window over the input image at both training and testing time, so

that the weights of the network looking through this window can learn from different

features of the input data, regardless of their absolute position within the input.

Weight sharing, or more specifically in our case, full weight sharing, refers to the decision

to use the same weights at each positioning of the window.

CNNs are also often referred to as local because the individual units computed at a

particular position of the window depend on features of the local region of the image

that the window is currently looking at.

When we consider 2D CNNs, the input image in the context of ASR can be roughly

thought of as a spectrogram, with static, delta, and delta-delta features (i.e., first and

second temporal derivatives) taking on the roles of red, green, and blue, or organized

as acoustic features (such as MFCC features) in a two-dimensional feature map where

one axis represents the frequency domain and the other the time domain. If we consider

the case of the spectogram, the features can be arranged as three 2-D feature maps

distributed along both frequency (using the frequency band index) and time (using the

frame number within each context window). In this case, a two-dimensional convolution

is performed (see below) to normalize both frequency and time variations simultaneously.

When we consider 1D-CNNs, in the context of ASR, the input signal can be considered

as a vector of shape (time_steps, number_of_features), where each time step corre-

sponds to a single window with a large amount of audio context (9-15 frames). In this
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case, the features are organized as a number of 1-dimensional feature maps. As a result,

a one-dimensional convolution is performed along the time axis.

Once the input feature maps are formed, the convolution layer and the pooling layer

apply their respective operations to generate the activations of the units in these layers

in sequence, as shown in Figure 2.3.

Similar to the units in the input layer, the units in the convolutional layer and the pool-

ing layer can also be organized into maps. In CNN terminology, a pair of convolutional

layers and pooling layers in sequence, as in Figure 2.3, is usually referred to as a CNN

”layer”. Thus, a deep CNN consists of two or more of these pairs in sequence. To avoid

confusion, we will refer to convolutional layers and pooling layers as convolutional layers

and pooling plies, respectively.

Figure 2.3: An illustration of one CNN layer ply and a pooling ply in succession, where
mapping from either the input layer or a pooling ply to a convolution ply is based on eq.
(2.11) and mapping from a convolution ply to a pooling ply is based on eq. (2.12) [17]

Convolution Ply

As shown in Figure 2.3, every input feature map (assume I total number), Oi(i=1...I)

is connected to many feature maps (assume J is the total number), Qj(j = 1...J),

in the convolution ply based on a number of local weight matrices ( I × J in total),

wi,j(i = 1...I; j = 1...J). The mapping can be represented as the well-known convolution

operation in signal processing. Assuming input feature maps are all one dimensional,



2.2. ARCHITECTURES FOR SPEECH RECOGNITION 21

each unit of one feature map in the convolution ply can be computed as:

qj,m = σ(

I∑
i=1

F∑
n=1

oi,n+m−1wi,j,n + w0,j), j = 1,...,J (2.10)

where oi,m is the m-th unit of the i-th input feature map Oi, qi,m is the m-th unit of

the j-th input feature map Qj in the convolution ply, wi,j,m is the n-th element of the

weight vector wi,j which connects the i-th input feature map to the j-th feature map of

the convolution ply.

F is called the filter size, which determines the number of frequency bands (or time

steps) in each input feature map that each unit in the convolution ply receives as in-

put. Equation 2.10 can be written in a more concise matrix form using the convolution

operator ⊛:

Qj = σ(

I∑
i=1

Oi ⊛ wi,j), j = 1,...,J (2.11)

where Oi represents the i-th input feature map and wi,j represents each local weight

matrix, flipped to adhere to the convolution’s operation definition.

Both Oi and wi,j are vectors if one dimensional feature maps are used, and are matrices

if 2-dimensional feature maps are used (where 2-D convolution is applied to the above

equation), as described in the previous section.

Figure 2.4 shows a representation of a 1-D convolutional kernel, considering as input a

vector of MFCCs features with shape (time_steps, number_of_features):

Figure 2.4: Visual representation of 1D convolutional kernel with MFCCs feature vector
as input
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The convolution operation itself produces lower-dimensional data; each dimension de-

creases by the filter size minus one, but we can pad the input with dummy values (both

dummy time frames and dummy frequency bands) to preserve the size of the feature

maps. Consequently, there could in principle be as many locations in the feature map

of the convolution ply as there are in the input.

Pooling Ply

As shown in Figure 2.3, a pooling operation is applied to the convolutional ply to produce

the corresponding pooling ply. The pooling ply is also divided into feature maps and

has the same number of feature maps as the number of feature maps in its convolution

ply, but each map is smaller.

The purpose of the pooling ply is to reduce the resolution of the feature maps. That is, the

entities in this ply serve as generalizations about the features in the lower convolutional

ply. Since these generalizations are in turn spatially localized in frequency, they are also

invariant to small variations in location. This reduction is achieved by applying a pooling

function to multiple units in a local region whose size is determined by a parameter called

pooling size.

This is usually a simple function such as maximization or averaging. The pooling function

is applied to each convolutional feature map independently. When the max-pooling

function is used, the pooling ply is defined as:

pi,m =
Gmax

n=1
qi,(m−1)×s+n (2.12)

where G is the pooling size, and s, the shift size, determines the overlap of adjacent

pooling windows.

Similarly, if the average function is used, the output is calculated as:

pi,m = r

G∑
n=1

qi,(m−1)×s+n (2.13)

where r is a scaling factor that can be learned.
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2.2.2 Support Vector Machine

SVM is usually used as a binary classifier, but it can also be used as a multi-class

classifier. It is a highly effective tool for computing machine learning algorithms and is

widely used in all kinds of pattern recognition problems. In particular, it is known to

outperform other classifiers in cases where limited training data is available.

SVM is essentially based on using kernel features to nonlinearly map the original

features to a high-dimensional space, where the data is then well classified using a linear

manifold. SVM has been used extensively for classification (especially image classifi-

cation). It has been successful in applications such as thyroid disease detection [19],

mammogram classification in breast cancer detection [20], and even in poverty deter-

mination [21]. SVM has been shown to be particularly powerful in emotion detection

compared to linear discriminant classifiers and nearest neighbor classifiers. It has been

used as a classifier for sound-based emotion recognition [22] and showed high accuracy

[23]. Moreover, Deep Support Vector Machines were tested for speech emotion recog-

nition in [24] and achieved better results than previous studies. A decision tree SVM

model with Fisher feature selection for speech emotion recognition was also implemented

and achieved 98.29% accuracy [25]. Finally, an SVM classifier was also used in [23],

which performed very well on a speech emotion recognition task. Therefore, in this work,

we decided to use SVM as a classifier for our speech emotion recognition architecture,

since it can be considered as one of the most successful classifiers.

How SVM classifiers work

An SVM is one example of a classifier that estimates decision surfaces directly, rather

than modeling a probability distribution across the training data [26].

SVMs have demonstrated good performance on several classic pattern recognition prob-

lems [26]. Figure 2.5 shows a typical two-class problem in which the examples are

perfectly separable using a linear decision region. H1 and H2 define two hyperplanes.

The distance separating these hyperplanes is called the margin. The closest in-class and

out-of-class examples lying on these two hyperplanes are called the support vectors.
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Figure 2.5: C0 is the optimal hyperplane because it maximizes the margin, i.e. the
distance between the hyperplanes H1 and H2. Maximizing the margin indirectly results
in better generalization [26].

An SVM classifier is defined in terms of the training examples.

Real-world classification problems typically involve data that can only be separated using

a nonlinear decision surface. Optimization on the input data in this case involves the

use of a kernel-base transformation:

K(xi, xj) = ϕ(xi) · ϕ(xj) (2.14)

Kernels allow a dot product to be computed in a higher dimensional space without

explicitly mapping the data into these spaces [26].

A kernel-based decision function has the form:

f(x) =

N∑
i=1

αiyiK(x, xi) + b (2.15)

where αi are the weights for the training examples, as determined by the learning algo-

rithm, yi is a value in the range −1, 1 and K is the kernel function.
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The most widely used kernel functions are: [27]

• the simple linear kernel

KL(xi, xj) = xT
i · xj (2.16)

• the radial basis function kernel (RBF kernel)

KRBF (xi, xj) = exp(−γ||xi − xj||2) (2.17)

where γ is proportional to the inverse of the variance of the Gaussian function and

whose associated feature space is of infinite dimensionality

• the polynomial kernel

KP (xi, xj) = (1 + xT
i · xj)

p (2.18)

whose associated feature space are polynomials up to grade p

• the sigmoid kernel

KSIG(xi, xj) = tanh(axT
i · xj + b) (2.19)
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2.3 Related Work

In the following paragraphs we will analyze the latest works that have been published

in the areas of Voice Activity Detection and Speech Emotion Recognition. The greatest

criticality has been identified among the research works in Speech Emotion Recognition

and concerns the way in which the data is processed. It emerged that in most cases the

authors divide the datasets randomly; the main problem with this type of approach is

that files referring to the same actor are both in the training and in the validation set,

leading to very optimistic evaluations.

2.3.1 Voice Activity Detection

As will be mentioned in Section 4, current VAD techniques typically use a classifier to

make speech/non-speech predictions about each audio frame independently, together

with a temporal smoothing scheme to reduce noise in the classifier’s output.

One way to build a VAD system involves two GMMs, one trained on speech frames

and the other on non-speech frames, to predict the per-frame probability of speech,

followed by an ergodic hidden Markov model (HMM) that penalizes transitions between

speech and non-speech states to give temporal continuity to the prediction [28].

With the increasing availability of computing power, and the recent prominence of

Deep Learning, the use of Artificial Neural Networks (ANNs) for VAD has become more

popular than GMMs.

Su et al. had success using a 2D Convolutional Neural Network (CNN) based on spec-

tral features to detect possible speech segments for pitch classification [29]. The CNN

was used to exploit the highly shift-invariant structure of the harmonics in the spec-

trogram. Although this was not a VAD task, it was shown that CNNs can be used to

find precises regions of an audio signal that contain harmonics, similar to how periodic-

ity or harmonicity can be used to find candidate regions for detecting speech [30, 31] [32].

The use of Fully Connected Neural Networks (DNNs) has also been explored for VAD.
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Bai et al. investigated variants of an architecture with 3-hidden layers [33]. The small

variant had 128 nodes per hidden layer, while the large variant had 512 nodes per hidden

layer. Similar to Sohn et al. [34], Bai et al. also overlaid an HMM on top of the DNN to

capture temporal context and smooth out fluctuations in decisions. Although the large

variant was more informative due to greater non-linearity and trainable parameters, the

performance improvement over the small variant was negligible [32]. However, the large

variant was over 64 times slower in making decisions.

The underlying models and algorithms discussed so far have made a largely incor-

rect assumption about a noisy speech signal: the existence of speech within a discrete

segment is independent of other segments [32]. The use of HMMs in [33, 34] attempts

to improve this unrealistic assumption by making decisions not only the output of the

underlying model, but also on the decision of the previous frame. This has the effect

of penalizing transitions between the speech and non-speech states, resulting in much

smoother decision sequences.

In [35], Hughes et al. point out that while HMMs help to provide contextual information

when making decisions, they still have some fundamental shortcomings [32]:

1. Audio frame labels are not conditionally independent. HMMs assume that the

label for a given frame is conditionally independent of all other labels given the

labels of its neighboring frames. This is a simplification that is not true in practice.

2. For VAD tasks, the hidden state space of the HMM is often finite and binary:

speech and non-speech. This is a fundamental limitation on the information that a

given state can convey. More states with richer information could improve decision

making when conditioning on these states. However, developing more states, is

largely a heuristic approach, and it is not clear how these can be reconciled with

an underlying model that simply outputs the probability that a frame contains

speech.

3. HMMs and underlying models cannot be trained together. First, the underlying

model must be optimized, and then the HMM can be trained

4. Hughes et al. uses recurrent neural networks (RNNs) for VAD, which solve many

of the problems associated with the HMM-based architectures. RNNs are advanta-
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geous because they can be trained to jointly minimize frame-level errors while also

learning a continuous hidden state space that captures useful temporal context

going back arbitrarily far. The architecture in [35] consists of multiple recurrent

cells and feed-forward components, and also used an unconventional quadratic ac-

tivation scheme. It was shown to significantly outperform a GMM-State Machine

model, while requiring only tenth of the parameters [35].

More recent works than the above mentioned show the great advantage of using Convo-

lutional Neural Networks for VAD.

Shuo et al. proposed an alternative architecture that does not suffer from saturation

problems by modeling temporal variations through a stateless dilated convolution neu-

ral network (CNN). The proposed architecture differs from conventional CNNs in three

ways: it uses dilated causal convolution, gated activations and residual connections [36].

Jia et al. proposed an end-to-end neural network for Voice Activity Detection (VAD):

MarbleNet. MarbleNet is a deep residual network consisting of blocks of 1D time-channel

separable convolution, batch-normalization, ReLU and dropout layers. According to the

authors, when compared to a state-of-the-art VAD model, MarbleNet is able to achieve

similar performance with about 1/10 the parameter cost [37].
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In conclusion, following are some of the more recent approaches which have been devel-

oped as open-source toolkits:

• Pyannote Audio [38], having a Neural Network as underlying discrimination model.

• Ina Speech Segmenter [39] [40], as a CNN-based audio segmentation toolkit.

• WebrtcVAD [41], with a Gaussian Mixture Model (GMM) approach.

As specified in the Introduction, the creation of the architecture for VAD was not the

subject of this thesis, therefore we opted for the use of one of the open-source toolkits

listed above: Ina Speech Segmenter.

We will analyze in Section 4 the reasons that led us to choose this model and its main

features.
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2.3.2 Speech Emotion Recognition

A substantial amount of research has been carried out in the field of Speech Emotion

Recognition (SER). In this section, we present a brief review of the work done on emo-

tion detection from audio. Many of the current research methodologies are based on

two different classification approaches. The first is the use of classical classifers such as

SVM and shallow artificial neural networks (ANN) and the second is the use of classifers

based on deep learning approaches such as Convolutional Neural Networks (CNN) and

deep neural networks (DNN).

The research frequently presents innovative techniques in this era in order to increase

the performance of the SER and reduce the complexity of the overall system. Usually,

a SER system has two core parts, which have challenges that need to be solved for an

efficient emotion recognition system that include (i) the selection of the robust, discrim-

inative, and salient features of the speech signals and (ii) the classification methods in

order to accurately classify them accordingly [42].

In recent years, many researchers have focused on the use of Convolutional Neural

Networks for speech recognition and, in particular, for SER. In [17] the use and impact

of Convolutional Networks for speech recognition has been analyzed in details. In [43]

an extensive comparison of various approaches to speech based emotion recognition sys-

tems has been carried out. In particular, the researchers compared the use of different

features such as Log-Mel Spectrogram, Mel-Frequency Cepstral Coefficients (MFCCs),

pitch and energy in combination with the use of different neural architectures such as

Long Short Term Memory (LSTM), Convolutional Neural Networks (CNNs), Hidden

Markov Models (HMMs) and Deep Neural Networks (DNNs). The dataset used in [43] is

RAVDESS and the models were built to address both binary and multiclass classification.

Moreover, in [43] it has been pointed out that the choice of audio features impacts the

results much more than the model complexity. Similarly, some researchers in [44] used

several techniques with conventional vocal feature extraction (MFCC, STFT), along

with deep-learning approaches such as 2D-CNN, and also context-level analysis, by pro-

viding the textual data, and combining different approaches for improved emotion-level

classification. Here, the datasets used are RAVDESS and TESS and the classifier were

built to address multiclass classification tasks. Furthermore, also in [45] researchers
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used approaches based on CNN architectures and MFCC features; also in this work, the

authors focused on the audio recordings available in RAVDESS dataset. The model has

been trained to classify eight different emotions and the authors claim to have beaten

the 2020 state-of-the-art score on RAVDESS, achieving an average accuracy of 91%.

Researchers of [46] proposed a very interesting approach based on the use of different

features (MFCC, ZCR, HNR, TEO) and two different architectures: an autoencoder to

perform additional feature extraction and SVM as a classifier. Later, in [11] it has been

presented a classification of emotions using SVM and MFCCs; the authors achieved 97%

accuracy with TESS and 86% with IEMOCAP datasets, respectively. In [47] the authors

have used Linear Predictive Coding (LPC) apart from the MFCC feature extraction

method, before feature merging. Besides, they have performed a novel application of

Manta Ray optimization in speech emotion recognition tasks that resulted in a state-

of-the-art result in this field. Performances of this model have been evaluated using

SAVEE and EMO-DB, two publicly available datasets. The method proposed in [47]

outperformed all the existing methods in speech emotion analysis and, stating on what

has been reported in [47], it resulted in a decent result in these two datasets with a

classification accuracy of 97.49% and 97.68% respectively.

During the current year many other research works have been published. In [48] the

authors developed a 1D-CNN based approach using MFCC features; the approach has

been evaluated on RAVDESS dataset and it was reported an average accuracy which is

better than as compared to the existing SER models, with reduced computation cost.

Similarly, in [49] a 1D-CNN classifier with MFCC feature has been developed; also in

this case the performances were tested on RAVDESS dataset and the results achieved

in terms of accuracy are quite similar to [48]. In [50] the researchers built two parallel

CNNs to extract spatial features and a transformer encoder network to extract temporal

features, classifying emotions from one of 8 classes; they also performed a very interest-

ing data augmentation on RAVDESS dataset. Another interesting approach has been

presented in [51], in which an attention-based CNN-BLSTM model with the end-to-end

(E2E) learning method was proposed. The proposed method seems not to have achieved

as good results as those of the other works in terms of accuracy, but in reality it is a truly

avant-garde work since it is one of the only works that has dealt with a cross-language

architecture. In [23], researchers studied the impact of autoencoder based compact
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representation on emotion detection from audio, achieving very good performances on

TESS dataset. Finally, in [52] the authors performed many experiments on RAVDESS,

TESS and SAVEE dataset using CNN and MLP classifiers.

All the works mentioned above have been a source of inspiration for the construc-

tion of the baselines of the Speech Emotion Recognition architectures of this thesis

project. Unfortunately, it has not been possible in many cases to faithfully reproduce

these research works since they often lack either implementation details or details re-

garding the training parameters. Furthermore, all the works, except for [43], presented

solutions to solve the problem of multi-class classification, while we, taking a cue from

[43], had the need to make a strong assumption and split the emotions in two categories:

disurptive and non-disruptive. Please refer to Section 5.3.1 for further details.

A very important thing to point out is that the main problem with these approaches

is that in most cases [11, 23, 44, 45, 47, 48, 50, 52] the division between training,

validation and test set is done randomly. This type of division does not allow to achieve

the objectives mentioned above, since files of the same actor are both in the training set

and in the test set, leading to very optimistic evaluations.

We will address this problem by implementing a different splitting of data, so as to

take into account the different actors and genders in the datasets. This will allow

us to achieve the objectives set initially: to have a model gender-independent and

speaker-independent. Please refer to Section 5.3 for further details.



Chapter 3

Architecture

In this section we are going to present the architecture that has been built to address

the problem of ”Disruptive Situations Detection in Public Transports”.

The system consists of three main blocks designed to perform three different functions:

• Denoising

• Voice Activity Detection

• Speech Emotion Recognition

Figure 3.1: Proposed Architecture

In Figure 3.1 we can understand the general functioning of architecture. In the next

paragraphs we are going to describe in detail what are the main steps involved within

the system.
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Denoising

The first step is the denosing of the input signal. The application of a denoising filter

is fundamental considering the reference context (i.e. public transports). This function

is achieved by applying a Wiener filter to the samples of the audio signal. In signal

processing, the Wiener filter is a filter used to produce an estimate of a desired or target

random process by linear time-invariant (LTI) filtering of an observed noisy process,

assuming known stationary signal and noise spectra, and additive noise. In particular,

Wiener filter minimizes the Mean Square Error between the estimated random process

and the desired process [53].

For example, the known signal might consist of an unknown signal of interest that has

been corrupted by additive noise. The Wiener filter can be used to filter out the noise

from the corrupted signal to provide an estimate of the underlying signal of interest.

Summarizing, Wiener filters are characterized by the following:

• Assumption: signal and (additive) noise are stationary linear stochastic processes

with known spectral characteristics or known auto-correlation and cross-correlation

• Requirement: the filter must be physically realizable/causal (this requirement can

be dropped, resulting in a non-causal solution)

• Performance criterion: minimum mean-square error (MMSE) [53]

The method provided by SciPy [54] was used for the application of this filter.

Voice Activity Detection

The system is designed to perform continuous and real-time ”Disruptive Situations Detec-

tion”; the incoming audio is divided into frames lasting 5 seconds. Each audio fragment

is initially analyzed through the Voice Activity Detection system. In particular, in order

to be analyzed, the audio must be written in a temporary .wav file, which is used by the

network to perform the prediction. In order to realize the functionality in question, a

pre-existing model called inaSpeechSegmenter was used and validated. The authors of

this model have made public a Python API in order to be able to use the architecture in

inference [39, 40]; the API was used within this project in order to invoke the model and

perform segmentation of the incoming audio. The model returns a sequence containing
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information about the content of the audio track; in particular, the output allows you

to understand which fragments of the track contain speech and the duration of each of

them. Anything that is not recognized as a voice is classified as noise. 1 Our contribu-

tion consisted in carrying out the analysis of this output, performing the classification of

the audio file as ”Voice” or ”Noise”; this analysis was implemented through a rule-based

system based on the fact that if the audio track contains at least one segment classified as

”Voice”, then the audio is passed to the Speech Emotion Recognition system, otherwise

we passed to the analysis of the next snippet of incoming audio. Further details about

the architecture just described, and the validation of it, will be provided in Section 4.

Speech Emotion Recognition

As mentioned in the previous section, if the incoming audio contains voice, the audio

file is analyzed through the Speech Emotion Recognition (SER) system. The Speech

Emotion Recognition system was completely realized within the project of this thesis.

This architecture consists of an ensemble of classifiers (SVMs and Convolutional Neural

Networks) capable of distinguishing whether the incoming audio contains a ”disruptive”

or ”non-disruptive” type of emotion. Before being analyzed by the SER system, the

audio must be sampled, resampled at the sample rate of the audio files used to train the

model and the features described later in Section 5.3.6 must be extracted in order to be

used as model input. Further details regarding the Speech Emotion Recognition system

and the division of emotions into two classes can be found in Section 5.

In the following sections we will describe in detail each of the two blocks (VAD and

SER) and, at the end, we will provide a detailed description of the functioning of the

overall application, with the addition of the parts of the code which are necessary for its

functioning.

1The system also allows to distinguish between ”music”, ”voice” and ”noise” and to distinguish the
gender of the speaker. These features have not been exploited within this project.
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Voice Activity Detection

Voice activity detection (VAD), also known as speech activity detection or speech de-

tection, is the detection of the presence or absence of human speech, used in speech

processing [55]. The main uses of VAD are in speech coding and speech recognition.

VAD is an important enabling technology for a variety of speech-based applications.

Therefore, various VAD algorithms have been developed that provide varying features

and compromises between latency, sensitivity, accuracy and computational cost. Some

VAD algorithms also provide further analysis, for example whether the speech contains

male or female voice [39]. Voice activity detection is usually independent of language [55].

The typical design of a VAD algorithm is as follows:[55]

1. There may first be a noise reduction stage, e.g. via spectral subtraction. In our

case, as mentioned in Section 3, we decided to apply a Wiener filter on the input

signal to address the noise reduction task.

2. Then some features or quantities are calculated from a section of the input signal.

3. A classification rule (or a classifier1) is applied to classify the section of audio as

speech or non-speech; often this classification rule finds when a value exceeds a

certain threshold.

Figure 4.1 summarizes the steps listed above.

1Here we mean a classifier realized through a Machine Learning algorithm or a Deep Neural Network.
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Figure 4.1: A typical VAD scheme (prototype) for speech processing application

Independently from the choice of the VAD algorithm, a compromise must be made

between having voice detected as noise, or noise detected as voice (i.e. between false

positive and false negative) [55]; in particular, this kind of compromise is what we

needed to take into account during the validation phase of our VAD system. A VAD

operating in a mobile phone must be able to detect speech in the presence of a range of

very diverse types of acoustic background noise. In these difficult detection conditions,

as well as in public transports context, it is often preferable that a VAD should fail-safe,

indicating speech detected when the decision is in doubt, to lower the chance of losing

speech segments.

The biggest difficulty in the detection of speech in this environment is the very low

signal-to-noise ratios (SNRs) that are encountered. It may be impossible to distinguish

between speech and noise using simple level detection techniques when parts of the

speech utterance are buried below the noise.

The realization of the architecture for VAD was not the subject of the project of

this thesis, but a pre-existing model [39] was used and validated; this model proved to

be very effective. As mentioned in Section 2.3.1 we chose Ina Speech Segmenter model

to realize the VAD module of our architecture.

In the next section we are going to describe in details the model that we used.
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4.1 Ina Speech Segmenter

As mentioned in the previous section, we decided to use Ina Speech Segmenter to build

the VAD module of our application.

Before committing to this model, we analyzed other solutions such as WebrtcVAD[56]

and we were not satisfied. In particular, we found that WebrtcVAD lacks comprehensive

documentation, and the experiments we run on the data described in Section 4.1.2

showed a much lower accuracy compare to Ina Speech Segmenter. This tallies with the

comparative analysis carried out in [57].

Ina Speech Segmenter [39] is a CNN-based audio segmentation toolkit, designed for

conducting gender equality studies. It splits audio signals into homogeneous zones of

speech, music and noise. Moreover, this toolkit, in addition to VAD, provides the

possibility to tag signals by speaker gender (male or female). In the experiments, zones

corresponding to speech over music or speech over noise are tagged as speech.

The system uses log-mel filterbank features (2.1.1), together with 4 convolutional and 4

dense layers.

In Figure 4.2 we can see the architecture implemented in Ina Speech Segmenter.

Figure 4.2: CNN gender detection architecture, using input features of 68 concatenated
24-dimension filter banks frames [39].

As described in [39], the CNN architecture was implemented using Keras. Two 3x3

convolutional layers of 64 neurons are first used, followed by a 1x2 max-pooling layer,

aimed at providing invariance in the frequency domain. Two additional 3x3 layers of

128 neurons are then followed by a 2x2 max-pooling layer and a last 3x3 convolutional
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layer of 256 neurons. A maximal temporal pooling layer, in charge of selecting the most

discriminating pattern found in this relatively large time interval is finally used, and

followed by 4 dense layers of 512 neurons, associated to increasing dropout rates, before

the last softmax layer outputting 1 probability per gender. Each layer of the network is

followed by batch normalizations and ReLU activations.

As for the features used by the authors of [39] to represent the audio entering the

convolutional network, 24 Mel Scaled Filter Banks coefficients were used. As for energy

detection, a simple energy threshold is used to discard frames associated with low energy

[39].

Practically speaking, in order to use this architecture we needed to exploit the Python

API of Ina Speech Segmenter [58]. The instatiation of the Convolutional Model is made

through the intialization of the Segmenter object provided by the API.

Figure 4.3: Instatiation of Ina Speech Segmenter.

As can be seen in Figure 4.3 we needed to specify the following parameters:

• vad_engine='smn': it is the more recent engine and splits signal into speech, music

and noise segments.

• detect_gender=False: if set to True, performs gender segmentation on speech

segment and outputs labels ”female” or ”male”. Otherwise, outputs labels ”speech”.

Since we were not interested in gender segmentation, we have set it to False.

When you pass an input file path to the segmenter after it has been instantiated, it

performs the segmentation and returns a list of tuples, each containing the following

elements:

• label: it is a string which can match with speech, music or noEnergy

• start: the time in which the segment is a associated to different label than that

of the previous segment

• end: the time in which it is recognized that the assigned label no longer corresponds

to the current one
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The starting time instant of a segment corresponds to the ending time instant of the

previous segment.

The discussion of the characteristics of Ina Speech Segmenter that have been used

for the realization of the Voice Activity Detection system ends here, since we did not

need to use the other features made available by the API. In the next section we will

describe how we managed to use the information provided by the segmenter in order to

achieve our goals.

4.1.1 Perform VAD with Ina Speech Segmenter

As explained in the previous paragraph, we can use the Ina Speech Segmenter to obtain

a list of tuples characterized by different information.

In order to be able to use this information for a Voice Activity Detection architecture,

we decided to use a rule-based approach. In particular, we analyzed the labels that

the segment associates with the audio part coming into the system: if the number of

segments associated with the label speech is greater than zero, then we considered the

part of the input audio as containing speech, otherwise as noise.
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4.1.2 Validation

In this section we will analyze the way in which the validation process of the Voice

Activity Detection system was conducted. This process was aimed at evaluating the use

of this Voice Acitivity Detection architecture within the global architecture proposed in

this thesis.

Datasets

A combination of different audio sources was used to validate Ina Speech Segmenter. We

are going to list the data that were used:

• Two datasets of those that were used for the training and validation of the Speech

Emotion Recognition system (please refere to Section 5.2 for a detailed description

of the datasets):

– RAVDESS

– TESS

These two datasets were included because it is critical that the system recognizes

the presence of the voice in at least two of the datasets that were used for the

recognition of emotions within the voice.

• EMO-DB: the EMO-DB database [59] is a freely available German emotional

database. The database is created by the Institute of Communication Science,

Technical University, Berlin, Germany. Ten professional speakers (five males and

five females) participated in data recording. The database contains a total of 535

utterances. The EMODB database comprises of seven emotions: 1) anger; 2) bore-

dom; 3) anxiety; 4) happiness; 5) sadness; 6) disgust; and 7) neutral. The data

was recorded at a 48-KHz sampling rate and then downsampled to 16-KHz. We

downloaded the dataset from Kaggle [60]. The inclusion of this dataset served to

assess that the Voice Activity Detection system is not dependent on the language

of the incoming audio; this is a fundamental aspect to consider in the context of

public transports, since they are places frequented by a great variety of ethnic

groups.
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• A custom dataset made up of the union of the three datasets listed above, for

which all files have been modified by superimposing white noise on the original file.

Even if the white noise is not comparable to the noise present in the context of

public transports, it is essential to verify that the voice activity detection system

is able to work discreetly even in the presence of audio files whose sound is not

completely clean.

• A custom dataset consisting of some audio files extracted from the Google AudioSet

ontology [61]. The audio files that we have labeled as speech refer to video contents

present under the following AudioSet categories:

– Speech

– Laugh

– Scream

– Fear

– Monologue

The audio files that we have labeled as noise refer to video contents present under

the following AudioSet categories:

– Music Instruments (2 videos)

– Guitar (2 videos)

– Strange Instrument (1 video)

– Classic music concert (1 video)

– Car race noise (3 videos)

– Rural sounds (3 videos)

– Engine (2 videos)

– Dog (2 videos)

– Train (4 videos)

We ended up having 9506 audio files.

There was no need to worry about the length of the audio files as the segmenter accepts

files of any length; moreover, we did not have to implement any resampling strategy
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since the segmenter takes care of transforming all the input files into a temporary file

converted at 16 KHZ2 of sample rate before extracting the features.

Results

Evaluation was made on all datasets stated in (4.1.2). What we have achieved is a very

satisfying result. In particular, what emerged from the validation is the following:

• Accuracy: 98.002%

• Error Rate: 1.998% (i.e. percentage of misclassified files)

• None of the files on which we manually injected white noise was misclassified; this

means that all the speech files corrupted by noise have been classified as speech.

• Among the misclassified files, 108 files labelled as speech were labelled as noise.

• Among the misclassified files, 3 files labelled as noise were labelled as speech.

• Among the 108 misclassified files, 102 files belong to RAVDESS dataset and all

those files belong to female actresses. Most of these files refer to ”angry” and ”fear”

emotions.

The amount of misclassified files is so small that we are unable to generalize any of the

considerations made regarding misclassified files.

Given the high accuracy, we decided to include the Voice Activity Detection system thus

built within the overall architecture of this thesis project.

The only criticality identified is the time taken to instantiate the model, but it must be

said that once the Segmenter object is instantiated (i.e. when the system is started), the

prediction takes place in a very short time (around 1s).

2This is the sample rate used by the authors of Ina Speech Segmenter while building the architecture.
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Speech Emotion Recognition

In this chapter we address the task of Speech Emotion Recognition (SER), which consists

in detecting emotions from speech signals.

Speech is a rich, dense form of communication that can convey information effectively.

It contains two types of information, namely linguistic and paralinguistic. The former

refers to the verbal content, the underlying language code, while the latter refers to

the implicit information such as body language, gestures, facial expressions, tone, pitch,

emotion etc. Para-linguistic characteristics can help in understanding the mental state

of the person (emotion), gender, attitude, dialect, and more [43].

Recorded speech has key features that can be leveraged to extract information, such as

emotion, in a structured way.

There are two widely used representations of emotion: continuous and discrete.

In the continuous representation, the emotion of an utterance can be expressed as

continuous values along multiple psychological dimensions. According to Ayadi, Kamel,

Karray (2011) [62], “emotion can be characterized in two dimensions: activation and

valence.”

• Activation is the “amount of energy required to express a certain emotion” (p. 573)

and research has shown that joy, anger, and fear can be linked to high energy and

pitch in speech, whereas sadness can be linked to low energy and slow speech [43].

• Valence gives more nuance and helps distinguish between emotions like being angry

and happy since increased activation can indicate both (p. 573) [43].

44
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In the discrete representation, emotions can be discretely expressed as specific categories,

such as angry, sad, happy, etc. We are going to rely on this kind of representation.

Speech emotion recognition systems are pattern recognition systems, and are gener-

ally composed of three parts: (1) speech signal acquisition, (2) feature extraction, and

(3) emotion recognition through the use of classifiers [23].

Figure 5.1 shows the steps involved in every Speech Emotion Recognition process.

Figure 5.1: Block diagram of a general Speech Emotion Recognition system [23]
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The performance of an emotion recognition system purely relies on feature extracted

from the audio. They are broadly classified into time-based and frequency-based features.

Extensive research has been carried out to weigh in the pros and cons of these features.

There is no one particular sound feature which can perform well across all the sound

signal processing tasks. Additionally, features are hand-crafted to suit the requirements

of the problem in hand. With the advent of deep learning techniques, we have been

successful in extracting the hierarchical representation of the speech from these features

and identifying the underlying emotion in the speech. Hence, the performance of the

model in a particular speech recognition task is much more dependent on the choice of

the feature than the model architecture.[43]

Our emotion contains multiple features like Energy, Pitch, Rhythm, Loudness; these all

come under acoustical information. We need to extract all these features from the given

audio file using various pre-processing techniques known as feature extraction. By using

the Librosa module, we can convert our audio files to digital data by using features in

it like:

• Mel feature, which will be used to capture characteristic of the frequency of the

signal represented on the Mel scale

• MFCC feature, which is used to describe the spectrum of the spectrum i.e. short

term power spectrum of the given input audio file

• Chroma feature which is used to capture melodic and harmonic characteristics of

sound based on pitch of the given input audio file

• ZCR feature, which is used to specify the rate of sign changes of the particular

signal during the duration of the particular frame

• RMS feature, which is used to analyse the loudness in the given input audio file

since changes in loudness are important for extracting features in new input file

[52]

After extracting all these features, we can apply various classifiers for matching these

features with corresponding emotions. As specified in Section 2, here we are going to

use the MFCCs and RMS features.
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Despite extensive research in emotion recognition from speech, there are still several chal-

lenges such as imperfect databases, low quality of recorded utterances, cross-database

performance, and difficulties when it comes to speaker independent recognition as each

person has a different way of speaking [23].

One biggest challenge in this project is that many of the audio files may contain various

disturbances like background noise, low voice, etc., which will affect the accuracy of

the system; in particular, we are considering RAVDESS dataset, TESS dataset SAVEE

dataset and CREMA-D. The four datasets just mentioned are publicly available. An

ensemble of different classifiers has been built to address emotions as disruptive or non-

disruptive.

In this chapter we are going to analyze in details the whole process that made possible

the realization of the ensemble. This process includes a lot of steps that we are going

to summarize in the following section (5.1). After having schematically mentioned the

steps that allowed the construction of the architecture, we will proceed with the analysis

of the datasets used.
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5.1 Methodology

The flow diagram shown in Figure 5.2 explains the steps that led us from the selection

of the data to the selection of the models for the construction of the ensemble.

Figure 5.2: Flow diagram showing the steps of dataset selection, data preparation, mod-
els training and hyperparameters tuning

At first, researches in recent literature were analyzed in order to select the best datasets

for our purpose. After selecting the datasets (RAVDESS, SAVEE, TESS, CREMA -

please refer to Section 5.2 for further details), we conducted an in-depth exploratory

analysis, following the steps mentioned in the figure above. We then carried out the

preparation of the data in order to be used as input for our classification models. The

data preparation phase included all the steps illustrated in Figure 5.2. Subsequently, we

have built our classifiers and we have carried out the optimization of some parameters

and hyperparameters. After selecting the best parameters we proceeded by training

our algorithms and we performed the evaluation on Test data. Finally, we selected the

models which resulted in achieving good results on the test set.

Figure 5.3 summarizes the features that have been extracted in the Data Preparation

phase, the classifiers that have been built and the Datasets that we built to carry out

this analysis. It must be specified that even if we refer to them with the noise identifier,

data augmentation has been applied only on the training sets.
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Figure 5.3: The 96 different experiments conducted for building the speech emotion
classifier

Figure 5.4 explains the steps that have been followed in order to realize the last part of

the architecture: the ensemble of the best models.

Figure 5.4: Flow diagram showing the steps of the creation of the ensemble

As can be seen above, the architecture of the ensemble is made up of several classifiers

(the best models that we selected at the end of the flow in Figure 5.2) which are called

upon to make a prediction on the entry fragment of the voice. Each of them produces

a prediction and all these predictions are aggregated through an Aggregation Strategy.

As we will see later (Section 5.7), various strategies have been tried and evaluated. In

the end, the final prediction is produced and the incoming audio segment is classified as

disruptive or non-disruptive.
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5.2 Datasets

Several speech corpora have been created in a wide variety of languages for developing

emotional systems that work on audio [63]. They can be divided into three categories

[64]:

• Acted (or simulated), namely recorded by actors or trained volunteers. These are

the most straightforward datasets to train a model, but the further from real world

scenarios. As matter of fact, here the acoustic features of the utterances may be

exaggerated, while more subtle features may be ignored.

• Invoked, i.e., obtained provoking an emotional reaction using staged situations. As

compared to acted datasets, these are more naturalistic.

• Spontaneous, namely obtained by recording speakers in natural situations or ex-

tracting speech from movies, TV programs, call center conversations, radio talks.

These datasets are hard to obtain due to the difficulty to classify emotions in “wild”

situations, but are the most realistic.

From all available databases, we have selected the following:

• RAVDESS

• TESS

• SAVEE

• CREMA-D

The datasets listed above belong all to the acted category.

In the following sections we will analyse in detail the datasets that were used to train and

test the emotion recognition model developed in this thesis. We will provide an in-depth

description of the datasets and their main characteristics since nowadays the quantity

and quality of the data used to build Speech Emotion Recognition Systems represent the

biggest problem for the construction of robust models. Since our system is designed to

work within a real scenario we needed to pay attention to each of these aspects in order

to evaluate the possible performances of the model in the reference environment.

In particular, in the reference scenario, i.e. that of public transports, it is crucial to use
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a noise robust, gender-independent, speaker-independent, cross-linguistic system and to

do so requires meticulous data work.

5.2.1 Ryerson Audio-Visual Database of Emotional Speech and

Songs

The Ryerson Audio-Visual Database of Emotional Speech and Songs (RAVDESS) [65]

is a simulated and validated multimodal1 database of emotional speech and song; it was

released in 2018 by researchers of the SMART lab at Ryerson University in Toronto,

Ontario, Canada. For the audio data, the actors recorded the sentences both as normal

speech and as songs. The song data was not considered for this thesis. The audio

files were recorded at 16 bits per sample, at a sampling rate of 48 KHz and saved in

uncompressed wave format.

The database is gender balanced consisting of 24 professional actors (12 females and 12

males) of age range 21-33 year, speaking in a neutral North American accent. Each actor

recorded two lexically matched sentences in eight different emotions. The two sentences

are “Kids are talking by the door” and “Dogs are sitting by the door.” Moreover, the

eight emotions are neutral, calm, happy, sad, anger, fear, disgust, and surprise. The

emotion labels are included in the WAV audio file names. Out of the eight emotions,

seven of them were recorded twice per sentence – once with normal intensity and the

other time with stronger intensity. There was only one recording per sentence for the

neutral emotion since there is no strong intensity for this emotion.

All information regarding the specifics of each audio file is reported in the filename

identifiers as follows:

• Modality (01 = full-AV, 02 = video-only, 03 = audio-only).

• Vocal channel (01 = speech, 02 = song).

• Emotion (01 = neutral, 02 = calm, 03 = happy, 04 = sad, 05 = angry, 06 = fearful,

07 = disgust, 08 = surprised).

• Emotional intensity (01 = normal, 02 = strong). There is no strong intensity for

the ’neutral’ emotion.
1It contains both video and audio data.
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• Statement (01 = ”Kids are talking by the door”, 02 = ”Dogs are sitting by the

door”).

• Repetition (01 = 1st repetition, 02 = 2nd repetition).

• Actor (01 to 24. Odd numbered actors are male, even numbered actors are female).

So, here is an example of an audio filename: 02-01-06-01-02-01-12.mp4

This means the meta data for the audio file is:

• Video-only (02)

• Speech (01)

• Fearful (06)

• Normal intensity (01)

• Statement ”dogs” (02)

• 1st Repetition (01)

• 12th Actor (12) - Female (as the actor ID number is even)

We ended up having a total of 1,440 recording samples, with 24 actors x 2 sentences

x 8 emotions x 2 repetitions x 2 emotional intensity with the exception of the neutral

emotion. Thus, seven emotions have 192 data samples, and the neutral class has 96

data samples. The other datasets considered for the project of this thesis do not contain

the ”calm” class emotion and we also observe that human raters found it difficult to

distinguish ”neutral” and ”calm” emotions [43]. We manually listened to the audio files

from RAVDESS and also felt that emotions ”calm” and ”neutral” sounded very similar

to each other. For the two reasons listed above, we have decided to merge the ”neutral”

class and the ”calm” class under the ”neutral” label. So, in our dataset, six emotions

have 192 data samples and neutral class has 285 samples.

Although the union of these two classes led to an imbalance of the dataset, we decided

not to implement any resampling techniques as we experimentally proved that the use of

this technique led to an increase in the overfitting of the model. The motivation linked

to this behavior is that, being the amount of data limited to be able to train a neural

model, the replication of the data leads to an increase in variance.
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Even though the dataset can be downloaded directly from the authors’ site [65], for the

purpose of this project it has proved useful to download the dataset from Kaggle [66], as

it contains only the 1440 speech files that we needed2.

2The original datasets contains 7356 recordings including audio/song/video contents.
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5.2.2 Toronto Emotional Speech Set

The second dataset we considered is Toronto Emotional Speech Set (TESS)[67].

TESS is a simulated dataset created in 2010 by researchers from the University of Toronto

Psychology Department. In this dataset, there are 2800 unique speech files recorded by

two actresses aged 26 and 64 years, both of them speak a set of 200 target words in the

carrier phrase ”Say the word _____.”; so, just like RAVDESS, the sentences spoken

by the actors are lexically similar. Both actresses are from the Toronto area, speak

English as their first language, are university educated, and have musical training. For

26 years aged person, there are about 1401 unique speech files, and for 64 years aged

person, there are about 1399 unique speech files. Combining both these speech files, we

ended up having 2800 unique speech files and seven different emotions for each of them:

anger, disgust, fear, happiness, pleasant surprise, sadness, and neutral. All audio files

were recorded at 16-bits per sample, at a sampling rate of 24414 Hz, and saved in WAV

audio file format.[68] The emotion labels were extracted from the file names. The TESS

dataset can be downloaded from [69]. Just like RAVDESS, we preferred downloading

the dataset from Kaggle website [70].



5.2. DATASETS 55

5.2.3 Surrey Audio-Visual Expressed Emotion dataset

The third dataset we considered is Surrey Audio-Visual Expressed Emotion (SAVEE)

dataset [71].

In the SAVEE dataset, there are seven different emotions recorded by four native English

male speakers DC, JE, JK, and KL. They are postgraduate students and researchers at

the University of Surrey aged from 27 to 31 years. The database consists of 480 British

English utterances in total. The sentences were chosen from the standard TIMIT corpus

[72] and phonetically-balanced for each emotion. The emotions present in SAVEE are

seven and they have been described psychologically in discrete categories: anger, disgust,

fear, happiness, sadness and surprise. This categorization of emotions is supported by

the cross-cultural studies of Ekman [73] and studies of automatic emotion recognition

tended to focus on recognizing these [74]. The authors of the dataset did not report on

the recording characteristics (bit-per-sample, sample rate and audio file format).

Just like 5.2.1 and 5.2.2, we preferred downloading the dataset from Kaggle website [75].



5.2. DATASETS 56

5.2.4 Crowd-sourced Emotional Multimodal Actors Dataset

The fourth dataset used to develop the speech model in this thesis is Crowd-sourced

Emotional Multimodal Actors Dataset (CREMA-D). Just like RAVDESS (5.2.1) and

TESS (5.2.2), this is a simulated speech corpus. Like RAVDESS, CREMA-D is a multi-

modal dataset.

Actors who participated had ages ranging from 20 to 74 years old. There were 48 male

actors and 43 female actresses with a total of 91, and even though they came from differ-

ent ethnic backgrounds (African America, Asian, Caucasian, Hispanic, and Unspecified),

they were all English speakers. The speech recordings were done at 16-bits per sample,

at a sampling rate of 16 KHz, and saved in the WAV audio format. The actors recorded

twelve different emotionally neutral sentences:

• It’s eleven o’clock.

• That is exactly what happened.

• I’m on my way to the meeting.

• I wonder what this is about.

• The airplane is almost full.

• Maybe tomorrow it will be cold.

• I would like a new alarm clock

• I think I have a doctor’s appointment.

• Don’t forget a jacket.

• I think I’ve seen this before.

• The surface is slick.

• We’ll stop in a couple of minutes.

The actors recorded the above listed sentences in six different emotions of anger, disgust,

fear, happy, neutral, and sad, at four different intensity levels of low, medium, high, and

unspecified. Each emotion class has 1271 data samples, except for the neutral class,
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which has 1087 data samples, with a total of 7442 samples.

As will be recalled later in the exploratory data analysis (Section 5.2.5), we decided to

keep only the files marked with a high level of intensity in order to insert as little noise

as possible in the classification. We have experimentally verified that due to the poor

audio quality [68] of the files present in CREMA-D, keeping the files at any intensity

level cheated the classifier. Therefore, unfortunately, we had to drastically reduce the

number of samples in order to obtain a less robust, but more accurate classification. It is

no coincidence that this dataset is hardly ever taken into consideration in the literature

[76]. It is a pity to have to carry out this elimination of samples from such a large dataset

because, if the quality of the audio files were better, it would be possible to obtain robust

models with respect to the gender and accent independence from the speaker.

The dataset is available online at [77], but, just like for the previous mentioned datasets,

we downloaded the dataset from Kaggle [78].
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5.2.5 Exploratory Data Analysis

In order to carry out a comprehensive study, to correctly prepare the data and to correctly

interpret/justify the results obtained experimentally, it was strategic to carry out a

thorough exploratory analysis of the data. We will therefore list below the analysed

aspects and the considerations made on the four datasets described in the previous

sections. Most of the aspects we are going to analyse are those that define the so-called

scope 3 of the dataset [63].

Emotion Labels per Dataset

RAVDESS TESS SAVEE CREMA-D
fear • • • •
disgust • • • •
neutral • • •
calm •
happy • • • •
sadness • • • •
surprise • • •
angry • • • •

Table 5.1: Emotions per Dataset

As can be seen from Table 5.1, not all datasets contain the same categories of emotions.

In particular, it can be noted that the CREMA-D dataset contains neither ”neutral”

nor ”calm” or ”surprise”. As stated in the description of the dataset in Section 5.2.4,

the original dataset contains files in the ”neutral” category, but having selected only

audio files recorded with a high level of emotional intensity, this category was naturally

excluded. In particular, this label was excluded because, as repeatedly stated in the

literature, it is not possible to express ”neutral” emotions at different levels of intensity

without changing the intention and therefore the category of the emotion itself.

It would certainly be interesting in the future to carry out experiments involving

CREMA-D again, by including the files that refer to the ”neutral” emotion.

Moreover, as can be seen from the Table 5.1, no dataset, except for RAVDESS, contains

files labelled with the emotion ”calm”.
3The scope of a database design consists of several kinds of variation in a database like number of

speakers, speaker gender, type of emotions, number of dialects, type of language and age.[63]
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For this reason, as previously specified in Section 5.2.1, we merged ”neutral” and ”calm”

in RAVDESS, without implementing resampling strategies to rebalance the dataset.

Gender Balance

The RAVDESS dataset is very rich in nature given that it does not suffer from gender

bias; moreover, it consists of wide range of emotions and at different level of emotional

intensity [43].

Other datasets, such as Surrey Audio-Visual Expressed Emotion (SAVEE) and Toronto

Emotional Speech Set (TESS), consist of audios from only male and female actors re-

spectively, and therefore they present a strong gender imbalance.

As regards CREMA-D we can say that the dataset is quite gender-balanced since it

contains 48 male actors and 43 female actresses.

Language

Language Accent
RAVDESS English North American
TESS English North American
SAVEE English British
CREMA-D English Mixture of Accents

Table 5.2: Languages of the Datasets

As can be seen from the Table 5.2 all the datasets we used refer to the English language;

the only thing that varies between the various datasets in this case is the accent of the

actors. It would certainly be interesting to expand this research by including datasets

referring to different languages in order to implement a cross-linguistic model, like the

one carried out in [3].

It might also be interesting to observe how much the generalisation ability of the model

for the emotion recognition task changes as the language varies and to see how strong

the correlation is between the language spoken and the emotion expressed.
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Audio Quality and Volume

In general, the aspects that characterise audio files are as follows:

• Bit-depth: the higher the bit-depth, the more dynamic range can be captured.

Dynamic range is the difference between the quietest and loudest volume of an

instrument, part or piece of music. A typical value seems to be 16 bit or 24 bit. A

bit-depth of 16 bit has a theoretical dynamic range of 96 dB, whereas 24 bit has a

dynamic range of 144 dB.

• Channels: usually 2, meaning you have one left speaker and one right speaker.

• Sample rate: audio signals are analog, but we want to represent them digitally;

this means that we want to discretize them in value and in time. The sample rate

gives how many times per second we get a value. The unit is Hz. The sample

rate needs to be at least double of the highest frequency in the original sound,

otherwise we get aliasing. Human hearing range goes from ∼20Hz to ∼20KHz, so

we can cut off anything above 20KHz; this means that the use of a sample rate of

more than 40KHz is useless.

We could retrieve the information listed above by looking at the subtype attribute of

the SoundFile [79] object in Python. In reality, we discovered that the information

retrieved by the use of attributes and methods of SoundFile do not refer to the original

characteristic of the audio, but to characteristics of the SoundFile object, which applies

some modification while reading audio files. So, to retrieve the exact information about

it, it is better to refer directly to the description of the datasets provided by the authors.

Table 5.3 shows the difference between the characteristics retrieved through the SoundFile

object of Python and the characteristics listed by the authors of the datasets:

SoundFile Authors’ Description
Bit Depth Channels Sample Rate (Hz) Bit Depth Channels Sample Rate (Hz)

RAVDESS 16 1 16000 16 1 48000
TESS 16 1 44100 16 1 24414
SAVEE 16 1 16000 - 1 -
CREMA-D 16 1 16000 16 1 16000

Table 5.3: Audio Characteristics of audio files for each dataset. In orange, the audio
characteristics retrieved through SoundFile. In yellow, the audio characteristics provided
by the authors of the datasets
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We decided to take a closer look at the characteristics of the audio files because we

noticed, through listening to the files, that the quality and volume of the recordings

appears to differ between datasets. In particular, it is possible to notice a huge difference

between the quality and clarity of the audio of RAVDESS and the characteristics of

CREMA-D.

A special note should be made of the quality of the RAVDESS dataset, which is the most

widely used in the literature, not least because of the excellent quality of the record-

ings. Extensive validation and reliability tests have been performed by the creators of

RAVDESS dataset. From a “pseudo-randomly chosen set of 298 stimuli, consisting of

174 speech and 124 song presentations,” 247 naive participants were asked to make three

judgements on three classes: “category of the emotion, strength of the emotion, and

genuineness of the emotion” [65]. In [43], the authors observed that approximately 73

% of the rater-chosen emotion were well-acted by the actors, ensuring the reliability of

the classification of the emotions and the audio content.

The difference between the quality of the audio files of RAVDESS and CREMA-D was

also measured quantitatively by the authors themselves: the CREMA-D dataset has

fewer categories for the classification tasks, but CREMA-D holds the accuracy of 63.6%

from human recognition for six categories which are less than RAVDESS at 72.3% for

eight categories. [76].

Starting from these considerations present in the literature, we decided to carry out

an in-depth analysis of this issue to avoid misclassification problems due to the merging

of the datasets. In particular, from a qualitative analysis it was possible to notice that

audio files referring to the emotion ”angry” were clearly distinguishable in RAVDESS,

SAVEE and TESS, while they were practically assimilable to ”normal” in CREMA-D.

Therefore, after this qualitative analysis, we wanted to verify quantitatively what was

previously described. To do so we checked the mean of the amplitude in dB and the

median of the Root Mean Squared Error (RMS), for each dataset and for each emotion.

Both the amplitude in dB and the RMS are two measures to understand the loudness

of an audio file.

As can be seen from Tables 5.4 and 5.5 the level of loudness for the same emotion varies

between the different datasets.
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RAVDESS TESS SAVEE CREMA-D
fear -46.64 -26.96 -30.69 -27.40

disgust -51.79 -34.38 -37.01 -32.24
neutral -61.54 -38.74 -42.40 -

calm -59.53 - - -
happy -51.27 -35.07 -28.84 -27.47

sadness -56.89 -39.51 -38.81 -36.95
surprise -54.04 -29.67 -29.04 -
angry -43.45 -25.70 -29.30 -16.91

Table 5.4: Median of the Amplitude in dB for each dataset, for each emotion.

RAVDESS TESS SAVEE CREMA-D
fear 0.010 0.113 0.049 0.054

disgust 0.051 0.079 0.020 0.021
neutral 0.025 0.062 0.027 -

calm 0.021 - - -
happy 0.009 0.130 0.030 0.045

sadness 0.003 0.079 0.034 0.008
surprise 0.007 0.124 0.029 -
angry 0.018 0.152 0.059 0.124

Table 5.5: Mean of the Median of the RMS for each dataset, for each emotion.

Since this could introduce noise during the classification task, we tried to equalise the

loudness level of the different datasets through volume normalisation.

We have performed volume normalisation through the use of ffmpeg-normalize [80].

The normalization is performed with the loudnorm filter from ffmpeg, which was orig-

inally written by Kyle Swanson. It brings the audio to a specified target level. This

ensures that multiple files normalized with this filter will have the same perceived loud-

ness.

After performing the normalisation process on all files in each dataset, we performed a

qualitative analysis of the generated files by listening to some of them.

The qualitative analysis showed that the intention of the normalised files is different to

that of the original files. This means that after normalisation, for example, files labelled

as ”angry” seem to belong to the ”neutral” category. In order to verify quantitatively

what emerged from the qualitative analysis, we carried out some experiments using the

convolutional model that we will describe later. The results and settings of the various

experiments are reported in the Appendix A.1. As is evident from the results, using the

audio files normalized according to the previously described strategy does not lead to
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improvements in the results, rather to a worsening.

The results therefore confirm what is possible to understand by listening to normalized

files, that is, after normalization, the volume of the different audio files is equalized but

the intention of the voice present in the audio is ruined; therefore it is possible that the

labels are no longer characteristic of the file after normalization.

In conclusion, normalization is not a viable path in order to be able to match the quality

of the different datasets.

Average length

The average length of the audio files ranges from 2 to 5 seconds for all datasets considered

[81]. As will be described later in the data preparation section, a fixed length (5 seconds)

was chosen and the longest and shortest files were cut and padded respectively.

As for the padding, used the median value of the representation of the sampled audio

file.
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5.3 Data Preparation

In the following sections we will describe all the steps involved in the preaparation of the

data to train our classification models. Specifically, the phases we are going to describe

are the following:

• Labels Encoding

• Train, Val, Test Split

• Data Augmentation

• Data Loading

• Choosing a fixed length

• Feature Extraction

• Data Standardization

Our objective was to analyze the change in performances linked to a combination of the

following variables:

• dataset

• features

• classification model

To pursue this objective we ended up having 96 different models to test.

In the next sections we will describe how we defined the input data of our models and

what differentiate one model from another.
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5.3.1 Labels Encoding

For the purpose of this research we have developed a model capable of classifying an

emotion either as non-disruptive or as disruptive. In order to divide emotions into these

two categories we have taken our cue from the division made in [43] between positive

(non-disruptive in our case) and negative (disruptive in our case) emotions.

In particular, we decided to split the emotions as follows:

• Disruptive Emotions (label = 1): anger, sadness, fear, disgust

• Non-Disruptive Emotions (label = 0): neutral, happiness, surprise

In order to devise this division, it was important to think about what could be the

”disruptive” situations in the context of public transports and consequently make as-

sumptions to state which emotions (among those available) could characterise the

situations identified.

Within the vast universe of possible ”disruptive situations in public transports” we

decided to consider:

• disputes between passengers

• possible cases of physical violence

• possible cases of non-compliance with rules

Following common sense we came to the conclusion that the emotions that could be

encountered in the situations identified are:

• anger: possible emotion expressed by passengers during disputes with other pas-

sengers/controller or during telephone conflicts

• sadness: possible emotion expressed by passengers before/during/after a conflict

• fear: possible emotion expressed by the attacked passenger or by the frightened

crowd if involved in a disruptive situation

• disgust: possible emotion of displeasure expressed by passengers directly involved

in a conflict or observing the conflict; possible emotion of displeasure expressed by

passengers criticising other passengers who violate the regulation
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The division of emotions into disruptive and non-disruptive and the description of disrup-

tive situations would require the development of a topology of emotions and situations by

a heterogeneous team of experts. Not having the necessary professional figures available,

we reasoned on the problem based on common sense and our previous knowledge, but in

order to be able to use the model in the real scenario it would undoubtedly be necessary

to refine this part of problem-design as previously mentioned.
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5.3.2 Train, Val, Test Split: the need of a Gender-Independent

and Speaker-Independent model

In the initial experiments we used a random division of the dataset into training, vali-

dation and test sets, replicating the approach of some of the state-of-the-art articles [23,

52, 76, 82–84].

At an early stage we decided to use RAVDESS, TESS and SAVEE for training and

CREMA-D for final validation/testing. This choice was dictated by the fact that we

wanted to expand RAVDESS consistently and the only way to do this without unbalanc-

ing the genders was to work with TESS and SAVEE together; recall that TESS contains

only female voices, while SAVEE contains only male voices. We therefore combined

the three datasets to construct and randomly split the training, validation and test set.

As evident from the experimental results in the Appendix A.2, the convolutional model

trained on these data was affected by significant overfitting. After some verifications

we came to the conclusion that the cause of the overfitting did not reside only in the

architecture used, but mainly in the data used for the training; that is, we realised that

by randomly dividing the dataset, many files referring to the same actor were present

both in the training set and in the validation set, leading to overfitting on the actor itself

and therefore to a non-objective evaluation of the model.
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Given the use case, we thought that in order to build a robust architecture it was

necessary to have a model:

• gender-independent

• speaker-independent

To do so, we divided each dataset in a way that:

• each set had the same male and female voices

• the same actor would not repeat in the training, validation and test set

In realizing this dataset splitting we took a cue from [43].

After splitting the datasets we obtained what is shown in Figure 5.5:

Figure 5.5: Distribution of genders and actors among the available datasets after carrying
out the splitting
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We need to specify few things about Figure 5.5:

• RAVDESS: after the splitting, each set is gender balanced.

• SAVEE: since the dataset contains only male actors, the sets are not gender bal-

anced.

• TESS: since the dataset contains only female actresses, the sets are not gender

balanced. Moreover, since the datasets is made up of only two actresses, in order

to build a consistent division, we needed to get rid of the validation set.

• CREMA-D: after the splitting, each set is gender balanced. In particular, in or-

der to obtain that division we proceeded as follows: after taking only the audio

files with high intensity and checked which audio files belong to males or females

(manually), each actor had 5 audio files associated. Since we had 235 males files

and 220 females files, we decided to randomly remove 3 males actors from this list

(3 actors * 5 files). In the end we ended up having 32 actors-per-gender in the

training set, 6 actors-per-gender in validation set and 6 actors-per-gender in the

test set.

After that splitting, the distribution of samples-per-class in the Training Set, before and

after the Labels Encoding, is the following (Table 5.6):

RAVDESS TESS SAVEE CREMA
RAVDESS

TESS
SAVEE

RAVDESS
TESS

SAVEE
CREMA

disgust 160 200 30 64 390 454
surprise 160 200 30 - 390 390
sadness 160 200 30 64 390 454
angry 160 400 30 64 590 654
fear 160 200 30 64 390 454

happy 160 - 30 64 190 254
neutral 240 200 60 - 500 500

disruptive (1) 640 1000 120 256 1760 2016
non-disruptive (0) 560 400 120 64 1080 1144

Table 5.6: Distribution of samples-per-class in the Training Sets. In orange the count
of emotions before performing Labels Encoding, in green the count of emotions after
performing Labels Encoding. Where a value is not indicated, it means that the emotion
is not present in the dataset. For the TESS dataset the happy emotion is not present
because the actress who acted for this emotion happened by chance in the Test Set.
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5.3.3 Data Augmentation: Noise Addition

All speech recordings in the above-mentioned datasets were done in the absence of back-

ground noise, in a “noiseless” environment. The only noise that is audible in these

recordings is a combination of the inherent static noise created by the recording equip-

ment, and the echoes coming from the surroundings. In real-world applications, however,

conversations in a “noiseless” environment are very rare because there is always some

noise around people during a conversation [68].

Furthermore, in our specific use case, that of railway transport, we must consider that

there are certain environmental noises typical of the reference context; these noises must

necessarily be taken into account in order to ensure that the final speech emotion recog-

nition model is robust even in the case of malfunctioning/absence of a denoising module.

A new set of data was created from the clean speech recordings by introducing some

background noise to them.

It is impossible to consider all possible types of background noises when creating the

new dataset with added background noise. Therefore, three noise samples were selected

for the purpose of this study [68]. The audio files were downloaded from [85] and [86].

The noise samples selected are:

• Inside Train Sound: a recording of inside of a train.

• Freight Train: a recording of a freight-train passing by with squeaky wheels.

• Small Crowd: a recording of children playing in a playground.

The ”Small Crowd” sample is under an attribution 3.0 license, the ”Freight Train” sample

is of public domain and the ”Inside Train Sound” is under an attribution of Standard

YouTube license. The reason behind selecting these specific noise samples was to cover

some of the general properties of common background noises in our context. For example,

the playground background noise is a variation of the cocktail party noise where the noise

created is from people talking in the background; this is a very common situation in a

train. The other two kind of noises represent very typical sound that can be heard inside

a moving train. In particular, ”Inside Train Sound” refers to a type of noise that can be

detected by the microphone if it is placed near the passengers, while the other refers to

a type of noise that the microphone can detect if it is placed near the mechanical parts
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of the train or near the passageways between carriages.

After these three noise samples were selected, the noise addition procedure was carried

out using the PyDub library of Python [87].

The pipeline to add the noise to the audio files includes the following steps:

1. randomly pick one of the 3 noise samples

2. check duration of voice audio file from the dataset

3. compute chunks of the selected noise sample with the same duration of the voice

audio file

4. pick a random chunk

5. compute the loudness of both noise and voice file in dB

6. compute the absolute difference in dB

7. lower the volume of the noise file of a quantity equal to the absolute difference minus

2 dB; this was done to make the voice sound a bit stronger than the background

noise

8. add noise to the audio sample of the training dataset by overlaying the chunk with

the voice audio file

9. export the new file (i.e. audio file affected by noise)

The pipeline showed above has been followed for each sample of each Training Set; for

Training Set here we refer to the sets computed for each dataset along with the speaker-

gender splitting (please refer to Section 5.3.2).

As can be seen from the steps listed above, to prevent the machine from learning the

noise features, two precautions were taken [68]:

1. First, each noise sample is more than fifteen seconds long, with the ”Inside Train

Sound” 2-minutes long, ”Freight Train” noise 16-seconds long, and ”Small Crowd”

noise 19-seconds long. The clean speech samples were roughly two to five seconds

long for all datasets. The Python code randomly took chunks of noise audio

samples of the size of the clean speech samples and added both together to create
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the noise-added samples. This ensured that the same part of the noise samples

was not being added to the clean speech data.

2. Second, also, for each clean speech sample, only one noise-added sample was gen-

erated, where noise type was randomly chosen as discussed above. Thus, the final

dataset contained the same amounts of clean speech and noise-added samples.

Figure 5.6 summarizes the details of the final datasets. The numerical identifiers in the

Figure 5.6 will be used later to identify the individual experiments carried out.
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Figure 5.6: Dataset naming convention followed in this project together with the number
of samples.
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5.3.4 Data Loading

In order to work with audio files stored in a .wav format, we needed to transform

them into a useful represention; to do so, we decided to read the audio files using the

librosa.load [88] function. The function just mentioned loads an audio file as a float-

ing point time series. The target sampling rate has been set to 16 KHZ, resampling all

audio files which have a sample rate different from it (please refer to Section 5.2.5 to

retrieve information about the sample rate of the original audio files).

We must specify that the function just mentioned will be the same one used in the Final

Architecture to process the input audio.

5.3.5 Choosing a fixed length

Since our training models work with fixed size inputs, and considering that all the audio

samples of our datasets have different duration (between 2 and 5 seconds), we needed to

make all the input audios into a fixed length (duration) by trimming or padding them

appropriately.

Signals shorter than the chosen-length were padded using the median value of the audio

representation in samples, while signals longer than the chosen-length were truncated.

We fixed the audio duration to 5 seconds; since 1 second of audio at a sample rate of 16

KHZ is represented by 16000 samples, each audio file padded/truncated at 5 seconds of

duration is represented by 80000 samples (i.e. chosen_length = 80000).

In order to select the best value for the chosen_length parameter we ran many times

the Experiment 1.1 by varying the audio length between 3 and 5 seconds.

We observed an interesting pattern: by increasing the length of audio samples, the

accuracy of the model increased from a value of 81 % to 88 %. This behaviour lead

us thinking that by padding the shorter files with the median, we were adding useful

information for the purpose of classification.
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5.3.6 Feature Extraction

The task of emotion classification involves two stages. The first stage is feature extraction

followed by classification. As previously mentioned in Chapter 2, here MFCC and RMS

are the speech featured considered. In particular, our objective was to analyze the change

in performances linked to a combination of the following variables:

• dataset

• features

• classification model

In order to pursue that objective, we decided to perform different experiments:

• Convolutional Model

– Experiment 1: 12 MFCCs

– Experiment 2: 12 MFCCs + RMS

– Experiment 3: 25 MFCCs

– Experiment 4: 25 MFCCs + RMS

• SVM Model

– Experiment 5: 12 MFCCs (mean)

– Experiment 6: 12 MFCCs (mean) + RMS (mean)

– Experiment 7: 25 MFCCs (mean)

– Experiment 8: 25 MFCCs (mean) + RMS (mean)

As mentioned in Section 5.3.4, we first load the data, resampling each audio file at

16 KHZ. Then we proceed with the extraction of the MFCCs features through the Li-

brosa’s function librosa.feature.mfcc [14]. We left all the parameters at their default

value, except for n_mfcc and sr, i.e. the parameters to specify the desired number of

MFCCs and the sampling rate respectively. Librosa’s librosa.feature.mfcc function

really just acts as a wrapper to librosa's librosa.feature.melspectrogram() [89]

function (which is a wrapper to librosa.core.stft [90] and librosa.filters.mel

functions [91]).
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All of the parameters pertaining to segementation of the audio signal - namely the frame

and overlap values - are specified in the Mel-Scaled Power Spectrogram function (with

other tuneable parameters specified for nested core functions).

We can specify these parameters as keyword arguments in the librosa.feature.mfcc()

function; all extra **kwargs parameters are fed to Librosa’s

librosa.feature.melspectrogram()) and subsequently to librosa.filters.mel

functions. By default, the Mel-Scaled Power Spectrogram window and hop length

parameters are:

• n_fft = 2048 (i.e. length of the FFT window)

• hop_length = 512 (i.e. number of samples between successive frames)

The output of the MFCC function can be computed as follows:

output_length =
(seconds) · (sample_rate)

hop_length (5.1)

We used sr = 16000 (i.e. 16 kHZ sample rate), and, as specified in Section 5.3.5, we

decided to cut and pad all audio files to 5 seconds. So, the output lenght of our MFCCs

function was:

output_length =
(5s) · (16000Hz)

512
= round(156.25) = 157 (5.2)

The MFCCs function output is an array of shape (n_mfccs, output_length); the

meaning is that there are n_mfccs over output_length audio samples. We transpose

the array to match the input requirements of the 1D Convolutional Neural Network.

In particular, the 1D convolutional Neural Network takes as input arrays of shape

(batch_size, time_steps, features), where time_steps is represented by what we

called output_length.

For Experiment 1 and Experiment 2 the input feature vector has the following shapes

respectively: (batch_size, 157, 12) and (batch_size, 157, 25)4.

For all the experiments that include the use of the SVM Model (so experiments from 5

to 8) we needed to have a 1-dimensional feature vector. To do so, we decided to use a
4This means that we have an array representing a temporal series of 157 time steps, each of which

characterized by 25 features.
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summary statistic of the MFCCs: the average value for each MFCC coefficient.

We ended up having a number of features per audio file equal to the number of MFCC

components and each of this number represents the average value of the component

along all the audio samples.

So, for Experiment 5 and Experiment 7 the input feature vector has the following shapes

respectively: (12,) and (25,).

For Experiment 2, Experiment 4, Experiment 6 and Experiment 8 the RMS feature

has been added to the MFCCs feature vector. As specified in Section 2, the RMS is

root-mean-square (RMS) value for each frame; the RMS feature is computed through

Librosa’s librosa.feature.rms [16] function. For Experiment 2 and Experiment 4 we

concatenated the RMS values to the feature vectors computed for Experiment 1 and

Experiment 3 respectively; we ended up having feature vectors with the following shapes

resepctively: (batch_size, 157, 13) and (batch_size, 157, 26).

For Experiment 6 and Experiment 8 we computed the average RMS value along all the

frames of an audio file and we concatenated this value to the feature vectors previously

obtained for Experiment 5 and Experiment 6. We ended up having feature vectors with

the following shapes resepctively: (13,) and (26,).

We need to specify that in reality we always computed 13 or 26 MFCCs, but we

have always get rid of the first MFCC component (C_0) (obtaining 12 or 25 MFCCs)

since it represents the mean value of the input signal, which carries little signal specific

information. [92]

From now on we will identify the single experiments using the following naming conven-

tion:

ID_experiment.ID_dataset

where ID_dataset refers to the identifier shown in Figure 5.6.

For example Experiment 1.1 has the following characteristics: 12 MFCCs (Experiment

1) + RAVDESS dataset (Dataset 1). Combining all the datasets and all the experiments

we ended up testing 96 different models.
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5.3.7 Data Standardization

After performing feature extraction we scaled data for each of our experiments. We tried

both normalization and standardization in Experiment 1.1 settings and we achieved bet-

ter performances with data standardization. Standardization is performed by subtract-

ing the mean of a feature from that feature value and then dividing it by the feature’s

standard deviation. This ensures that the feature values have a mean of zero and has

a standard deviation of one. Machine learning algorithms like SVM are sensitive to un-

scaled data [68].

For each experiment we scaled our data using the StandardScaler function provided

by scikit-learn [93]. In particular, we fitted the StandardScaler on each of our features-

training-sets and we transformed the validation and the test set according to that scaler.
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5.4 Architectures

In this section we will present the characteristics of the architectures used in this project

for the Speech Emotion Recognition module. In particular, two approaches were tested:

a convolutional model and an SVM classifier. In both cases the objective was the real-

isation of a binary classifier able to distinguish disruptive and non-disruptive emotions

within a segment of speech. The Convolutional Neural network was implemented using

Tensorwflow Keras and the SVM classifier was created through one of its implementations

present in scikit-learn [94]. We will first analyse the characteristics of the convolutional

model and then of the SVM classifier.

5.4.1 Convolutional Model

The model of classification of emotions here proposed is based on a deep learning strategy

based on Convolutional Neural Networks (CNN) and Dense layers.[95] The deep neural

network designed for the classification task is reported operationally in Table 5.7.

Layer (type) Output Shape Param #
=========================================
conv1d (Conv1D) (None, 157, 256) 15616
___________________________________________
activation (Activation) (None, 157, 256) 0
___________________________________________
max_pooling1d (MaxPooling1D) (None, 39, 256) 0

___________________________________________
dropout (Dropout) (None, 39, 256) 0
___________________________________________
conv1d_1 (Conv1D) (None, 39, 128) 163968
___________________________________________
activation_1 (Activation) (None, 39, 128) 0
___________________________________________
max_pooling1d_1 (MaxPooling1D) (None, 9, 128) 0
___________________________________________
dropout_1 (Dropout) (None, 9, 128) 0
___________________________________________
flatten (Flatten) (None, 1152) 0
___________________________________________
dense (Dense) (None, 64) 73792
___________________________________________
dense_1 (Dense) (None, 1) 65
___________________________________________
activation_2 (Activation) (None, 1) 0
==========================================
Total params: 253,441
Trainable params: 253,441
Non-trainable params: 0

Table 5.7: Model architecture used for CNN Model
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Our CNN network consists of two blocks, each built of a 1-dimensional Convolution

layer, Activation function (ReLu), 1-dimensional Pooling layer 4 × 4 and Dropout of

60% in the first block and 50% in the second one. The two blocks were followed by two

fully connected dense layers and a Sigmoid activation function, as we are dealing with

a binary-classification problem.

To determine the class of emotions we rounded the prediction made by the network to

the nearest integer, using 0.5 as the threshold value.

The Rectified Linear Unit (ReLu) allows us to obtain a large value in case of activation

by applying this function, as a good choice to represent hidden units [45]. Pooling can,

in this case, help the model to focus only on principal characteristics of every portion of

data, making them invariant by their position [45].

The architecture just described was built starting from the convolutional approaches

mentioned in Section 2.3.2.

Before obtaining the the model architecture described in Figure 5.7, we have tested the

model on Experiment 1.1 settings, by changing the kernel sizes. After few attempts we

manually selected the configuration that lead to best performances.

Then, we tested the model on Experiment 1.1 settings one time more, by changing the

amount of Dropout. After few attempts we manually selected the amount of dropout

that led to best perfomances.

In the end, we tested the model another time by changing the number of neurons of the

firs Fully Connected Layer. As in the other trials, we manually selected the number of

units that led to the best performances.

We built 4 different networks in order to work with the different feature vectors de-

scribed in Section 5.3.6. These networks differ only for the input shape; the models

were able to work with (n_samples, n_mfccs) input shapes, where n_samples is always

equal to 157 and n_mfccs can be 12,13,25,26 depending on the experiment.

Being a binary classification task, we used Binary Crossentropy as loss function. More-

over, we used Adam as optimizer.
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For each of our experiments we performed a Randomized Search, with 3 k-folds, on the

following parameters:

• kernel initializer: uniform, lecun uniform, glorot uniform, glorot normal, he normal,

he uniform

• bath size: 4, 8, 16

• learning rate for Adam Optimizer: 0.001, 0.0001, 0.00005

To implement the Randomized Search we exploited its scikit-learn implementation [96].

For sake of reproducibility we set the random seed always equal to 7.

After running the Randomized Search, we selected the best configuration of parameters

for each experiment; the evaluation was carried out taking into account the accuracy

metric.

Then, we ran the best model of each experiment using the following Keras callback

strategies:

• Reduce Learning Rate on Plateau: reduce learning rate when a metric (ac-

curacy in our case) has stopped improving. We left all the parameters at their

default value except for:

– monitor: quantity to be monitored. We set this value to ’training_accuracy’

during the Hypeparameter Optimization phase and to ’val_accuracy’ during

the Training phase.

– factor: factor by which the learning rate will be reduced. We have set this

value to 0.5

– patience: number of epochs with no improvement after which learning rate

will be reduced. After some experiments, we have set this value to 4.

– mode: one of ’auto’, ’min’, ’max’. In ’min’ mode, the learning rate will be

reduced when the quantity monitored has stopped decreasing; in ’max’ mode

it will be reduced when the quantity monitored has stopped increasing; in

’auto’ mode, the direction is automatically inferred from the name of the

monitored quantity. We have set this value to ’max’.

– min_lr: lower bound on the learning rate. After some experiments, we have

set this value to 0.000001
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• Early Stopping: stop training when a monitored metric has stopped improving.

We left all the parameters at their default value except for:

– monitor: quantity to be monitored. We set this value to ’training_loss’ during

the Hypeparameter Optimization phase and to ’val_loss’ during the Training

phase.

– patience: number of epochs with no improvement after which training will be

stopped. We have set this value to 45

– restore_best_weights: whether to restore model weights from the epoch with

the best value of the monitored quantity. If False, the model weights obtained

at the last step of training are used. An epoch will be restored regardless of

the performance relative to the baseline. If no epoch improves on baseline,

training will run for patience epochs and restore weights from the best epoch

in that set. We have set this value to True.

• Class Weight: estimate class weights for unbalanced datasets. The use of Class

Weight was necessary in order to deal with the slight imbalance of classes present

in our datasets. The datasets are slightly unbalanced due to the fact that to take

into account the gender, the speaker, and the binary division of the lables we have

not been able to maintain a perfect balance between the classes. To rebalance the

classes after splitting we would have had to use oversampling techniques, which

caused overfitting on the model, or undersampling which led to a too significant

loss of data, since the datasets were already very limited. For more details about

the distribution of classes, please refer to Section 5.3.2.

The results and model validation for each experiment will be presented in Section 5.5.
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5.4.2 SVM Model

The second model that we used was SVM. In order to use the SVM model we exploited

the implementation provided by scikit-learn [94].

For each of our experiments we performed a Randomized Search with 3 k-folds on the

following parameters:

• kernel: RBF, linear

• C5: 0.1, 1, 10, 100

We left all the other parameters at their default values.

After running the Randomized Search, we saved the best configuration of parameters

and so the best classifier for each experiment. As for the Convolutional Model, also in

this case it was necessary to use Class Weight, for the same reasons mentioned in the

previous paragraph.

Further details about the models selected will be presented in Section 5.5.

5Regularization parameter. The strength of the regularization is inversely proportional to C. Must
be strictly positive. The penalty is a squared l2 penalty.
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5.5 Experiments

As previously mentioned in Section 5.3, we have optimized, trained and validated 96

different models. These models are the result of the combination of all the datasets we

have built (please refer to the Fig. 5.6 for more details) and all the features we have

used (please refer to Section 5.3.6 for more details).

Here are the two lists of datasets and features used, for which the number in the number-

list corresponds to the number used to build the experiment identifier.

Datasets:

1. RAVDESS

2. RAVDESS_noise

3. TESS

4. TESS_noise

5. SAVEE

6. SAVEE_noise

7. CREMA

8. CREMA_noise

9. RAVDESS_TESS_SAVEE

10. RAVDESS_TESS_SAVEE_noise

11. RAVDESS_TESS_SAVEE_CREMA

12. RAVDESS_TESS_SAVEE_CREMA_noise

Features:

1. 12 MFCCs

2. 12 MFCCs + RMS energy

3. 25 MFCCs
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4. 25 MFCCs + RMS energy

5. 12 MFCCs (mean along audio frames)

6. 12 MFCCs (mean along audio frames) + RMS (mean along audio frames)

7. 25 MFCCs (mean along audio frames)

8. 25 MFCCs mean along audio frames) + RMS mean along audio frames)

Architectures:

• Convolutional Neural Network

• SVM

So, recalling what has been stated in Section 5.3.6, the single experiments are identified

using the following naming convention:

ID_experiment.ID_dataset

where ID_dataset refers to the identifier shown in Figure 5.6.

All experiments and introduced datasets are available at https : / / github . com /

helemanc/ambient-intelligence.

It must be specified that, as stated in Section 5.3.6, features 1 to 4 were used for the

Convolutional Model, while features 5 to 8 were used for the SVM model.

As already mentioned in Section 5.4, for each of the models we have performed an op-

timization phase of some parameters and hyperparameters and we have saved the best

configuration for each model.

The best model for each experiment was re-trained on the experiment reference train-

ing set and was subsequently tested on the experiment reference test set. What has

just been said means that, for example, the model for Experiment 1.1, which refers to

the RAVDESS dataset, was tested on the test set extracted from RAVDESS, while the

model for Experiment 1.9, which refers to the combination of the RAVDESS-SAVEE-

TESS datasets was tested on a test set which is the concatenation of the three respective

test sets.

For each experiment, we proceeded to save the learning curves and the classification

report in order to analyze the results obtained and to be able to select the best models

https://github.com/helemanc/ambient-intelligence
https://github.com/helemanc/ambient-intelligence
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to be used later in the model ensemble.

It should be noted that, in order to obtain the predictions of the Convolutional model,

and therefore to be able to obtain results in terms of metrics for the comparison of the

models, the output value6 of the network has been rounded using 0.5 as threshold value.

This means that all the predictions of the network with a value greater than or equal to

0.5 have been rounded to 1 (label corresponding to the disruptive class); vice versa for

the other class. Different strategies for the treatment of predictions were tested later, in

the validation phase of the ensemble (Section 5.7). Undoubtedly, it would be interesting

to repeat the experiments and try different threshold values. These considerations are

not necessary for SVM, which by its nature does not work with and does not return prob-

ability values; so, for the evaluation of the single models we exploited the predictions

computed through the predict method of the scikit-learn SVM implementation. Later,

for the evaluation of the aggregation strategies of the ensemble, we will use another ap-

proach that allows us to work with the probabilities associated by the SVM classifier to

each of the two classes. Please refer to Section 5.7 for further details.

In order to reuse the best models within the ensemble, it was necessary to save the

different data-scalers trained on the training sets of each experiment. Please, refer to

Section 5.3.7 for further details about Data Standardization.

In the next section we will show the results of the experiments.

6Result of the application of a sigmoid function
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5.6 Results

In this section we are going to discuss our results.

Comparisons are based on the following indicators:

• Learning Curve: we exploited the observation of the learning curve in order to

evaluate the amount of overfitting of the model on the training data.

• Accuracy: we used this metric only to evaluate the models of the experi-

ments for which the test sets are class-balanced. Accuracy is defined as follows:
TP+TN

TP+FP+TN+FN

• F1 score: we used this metric to evaluate all models and especially those with

unbalanced test sets.

F1 score is defined as the harmonic mean of Precision and Recall. Before giving

the formula to compute F1 score, let’s define what Precision and Recall are:

– Precision: TP
TP+FP

of each class

– Recall: TP
TP+FN

of each class

Then, let’s define F1 score:

– F1 score: 2·P ·R
P+R

where P stands for Precision and R for Recall

Since the F1 score is an average of Precision and Recall, it means that the F1 score

gives equal weight to Precision and Recall:

– A model will obtain a high F1 score if both Precision and Recall are high

– A model will obtain a low F1 score if both Precision and Recall are low

– A model will obtain a medium F1 score if one of Precision and Recall is low

and the other is high

F1 score allows us to make interesting assessments, since in our system we pre-

fer that the amount of false positives (i.e. non-disruptive situations classified as

disruptive) is greater than the amount of false negatives (i.e. non-disruptive situa-

tions classified as disruptive). In particular, in our context it is better that there

are false alarms rather than undetected alarms. Therefore, for the purposes of
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the assessment, we took into account the F1 score on the positive class (i.e. 1 =

disruptive). High F1 score values on the positive class, in all cases in which it is

not possible to use accuracy, are a symptom, for us, of the goodness of the model.

We are going to list the characteristics of the models that, in our opinion, have led to

the best performances. They are 19 models in total, out of 96.

Table 5.8 reports the experiment identifier, the type of the classifier and the performance

of the models in terms of accuracy and F1 score. The table containing the results of all

models can be found in Appendix A.3.

Experiment ID Classifier Accuracy F1 score
(positive class - 1)

F1 score
(negative class - 0)

1.1 CNN 0.88 0.88 0.87
1.2 CNN 0.85 0.85 0.85
1.6 CNN 0.85 0.85 0.85
1.8 CNN 0.87 0.87 0.67
2.1 CNN 0.82 0.81 0.82
2.2 CNN 0.80 0.79 0.81
2.8 CNN 0.87 0.92 0.64
2.10 CNN 0.85 0.85 0.86
2.12 CNN 0.73 0.75 0.70
3.1 CNN 0.89 0.90 0.89
3.2 CNN 0.90 0.91 0.89
3.12 CNN 0.70 0.74 0.64
4.1 CNN 0.89 0.90 0.89
4.2 CNN 0.85 0.85 0.85
6.8 SVM 0.83 0.90 0.58
7.8 SVM 0.82 0.89 0.42
7.10 SVM 0.85 0.91 0.53
8.8 SVM 0.85 0.91 0.53
8.10 SVM 0.88 0.88 0.87

Table 5.8: Results achieved by the models that showed best performance among all the
experiments; they are 19 out of 96. Models have been evaluated in terms of a accuracy
and F1 score. In green, the CNN and SVM model that that showed best results among
all CNN and SVM models respectively.
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In the table above we have also highlighted the best convolutional model and the best

SVM model: 3.2 and 8.10 respectively.

From the learning curves of the convolutional models in Appendix A.3, it emerges that

in all cases there is an overfitting problem. We show below the learning curve of model

3.2 as an example:

Figure 5.7: Learning curve for Experiment 3.2

We believe that this problem can only be solved by working on the architecture itself.

In particular, we believe that this may be the only solution to the problem because:

• Data Augmentation has already been implemented by extending the datasets with

noisy files

• The unbalancing of the classes occurred after the division of the dataset by gender

is managed through the class_weight in the training phase

– Undersampling was avoided in order not to reduce the size of the dataset too

much.

– Oversampling has been avoided in order not to generate overfitting since the

audio files do not differ too much from each other

Furthermore, a careful observation of the results obtained allows us to conclude that:

• Experiment 1.1: the training dataset is quiet balanced and the model is robust

since it is gender-independent and speaker-independent (thanks to the strategy

followed for the construction of the dataset).

• Experiment 2.2: the training dataset is quiet balanced and the model is robust

since it is gender-independent and speaker-independent. This model is more robust

than Experiment 1.1, since the training set contains noisy file too. So, this model

is more robust to noise than the one of Experiment 1.1.
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• Experiment 1.6: the dataset is quite balanced and the model is quite robust since

is speaker independent, but we cannot conclude if the model is gender-independent

or not because the training set and the test set contain only male actors.

• Experiment 1.8: the training is not balanced; the elements fo class 0 are a way

less than elements of class 1 (50 vs 25). So it is not surprising that the model

classifies correctly element of class 1 and uncorrectly elements of class 0. We can

think to use this model in the ensemble because the F1 score for the positive class

is high, and as was stated above, we prefer having more false positives than false

negatives.

• Experiment 2.1: the considerations that we can make about this model are not

so distant from what we stated for Experiment 1.1. Comparing this model with

the one of Experiment 1.1 we can say that the energy feature is misleading for the

purpose of classification, because performances of Experiment 2.1 are worse than

performances of Experiment 1.1.

• Experiment 2.2: the considerations that we can make about this model are not

so distant from what we stated for Experiment 1.2. Comparing this model with

the one of Experiment 1.2 we can say that the energy feature is misleading for the

purpose of classification, because performances of Experiment 2.2 are worse than

performances of Experiment 1.2.

• Experiment 2.8: for this model the same considerations made for Experiment

1.8 hold; this means that by adding the energy (RMS) feature we are not

adding a useful source of information for the purpose of classification.

• Experiment 2.10: This is one of the more robust models since we use 3

different datasets for training; so, we can conclude that this model is quite robust

w.r.t. gender, speaker and noise.

• Experiment 2.12: the accuracy of the model is lower than Experiment 2.11

because in the training set we are mixing files which have a very different audio-

quality. Despite the low accuracy, we can still say that the model learns something,

so it could be interesting to not exclude it in the ensemble; it could be useful having

it and see how it weights the overall decision in the ensemble.
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• Experiment 3.1: for this model the same considerations made for Experiment

1.1 hold. In addition to that, we can observe that using 25 MFCCs as input

features the perfomances are better than with 12 MFCCs; so, maybe, in

this case the use of a greater amount of MFCC components help the classifier to

achieve its task.

• Experiment 3.2: for this model the same considerations made for Experiment

1.2 hold. In addition to that, we can observe that using 25 MFCCs as input

features the perfomances are better than with 12 MFCCs; so, maybe, in

this case the use of a greater amount of MFCC components help the classifier to

achieve its task. Moreover, this is the best convolutional model in terms of F1

score and accuracy.

• Experiment 3.12: for this model the same considerations made for Experiment

2.12 hold.

• Experiment 4.1: the performances of this model are better than those of its

mirror convolutional model, i.e. Experiment 1.1. This let us think in this case that

the use of a greater number of MFCC components represents much more significant

information for the network than using a smaller number of components. This

trend could allow us to conclude that, for the purpose of solving our problem, the

use of a higher number of features than the standard (13 MFCCs) is

more adequate.

• Experiment 4.2: the performances of this model are quite comparable to those

of Experiment 1.1, so the same considerations hold.

• Experiment 6.8: the test set on which the analysis was carried out is rather

unbalanced, as is the training set. We decided to keep this model simply because

of the high F1 score for the positive class, but surely all convolutional models

mentioned so far can be considered more reliable than this one.

• Experiment 7.8: the same considerations of Experiment 6.8 hold.

• Experiment 7.10: this model is definitely one of the best in terms of F1 score

on the positive class. The architecture of the classifier (SVM) is certainly lighter
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and faster than a convolutional model. The performances are decidedly good and,

moreover, we can consider this model robust towards noise, gender and speaker,

given the composition of the training set of the reference experiment.

• Experiment 8.8: as for all the other models trained on the CREMA dataset, the

same considerations apply.

• Experiment 8.10: this is the best SVM model. The same considerations of

Experiment 7.10 hold in this case. Therefore, we can say that for the SVM model

we do not notice any difference as the features used vary.

In conclusion, what emerges from the results of the experiments is that:

• Features:

– for the convolutional model, using 25 MFCCs features instead of 12 leads in

any case to better performance.

– both for the convolutional model and for the SVM model, the best perfor-

mances are obtained without using the RMS feature. This means that the

use of RMS does not add significant information to the classification task and

can therefore be eliminated.

• Best Models:

– Models 3.2 and 8.10 are the best two convolutional and SVM models re-

spectively. Both are robust to noise having been trained on noise-affected

files. The 8.10 model, however, could have greater generalization capabilities,

having been trained on the union of 3 different datasets (RAVDESS, TESS,

SAVEE).

• Models Hyperparameters:

– As it emerges from the results reported in the Appendix A.3, it is not possible

to identify a valid trend for all convolutional models in terms of model and

training hyperparameters. On the other hand, it is possible to conclude that,

as regards the SVM model, in any case the use of the rbf kernel was successful.
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• Datasets:

– Among the experiments that led to better performance, there is no model that

has been trained on the union of the 4 datasets, but only at most on the union

of RAVDESS, SAVEE and TESS. This confirms that CREMA is an unreliable

dataset for experimentation, despite the meticulous data preparation work

that has been carried out.
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5.7 Ensemble of Best Models

The best models mentioned in the previous section were combined using ensemble learn-

ing. In supervised machine learning, ensemble learning is the procedure of combining

multiple machine learning algorithms to classify the same data. In particular, after gen-

erating a set of base learners, rather than trying to find the best single learner, ensemble

methods resort to combination to achieve a strong generalization ability, where the com-

bination method plays a crucial role [97].

What we intend to do in the ensemble is to pass the audio segment entering the system

as input to all classifiers; at this point, collect the predictions made by the individual

models and use a strategy to combine the predictions.

There are different strategies that can be followed when combining predictions:

• Voting: voting is the most popular and fundamental combination method for

nominal outputs [97]. Voting generally involves each model that makes a prediction

assigning a vote for the class that was predicted. There exist many types of voting,

such as:

– plurality voting: it selects the class label with the most votes [98]. In the case

of a binary classifier, this means that if more models predict class 1, then

class 1 will be associated with the input data.

– majority voting: selects the class label that has more than half the votes [98].

If no class has more than half the votes, then a “no prediction” is made.

– unanimous voting: is related to majority voting in that instead of requiring

half the votes, the method requires all models to predict the same value,

otherwise, no prediction is made.

– weighted voting: weighs the prediction made by each model in some way [98].

One example would be to weigh predictions based on the average performance

of the model, such as classification accuracy (i.e. the weight of each classifier

can be set proportional to its accuracy performance on a validation set [99]).

Assigning weights to classifiers can become a project in and of itself and could

involve using an optimization algorithm and a holdout dataset, a linear model,

or even another machine learning model entirely [98]. The idea of weighted
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voting is that some classifiers are more likely to be accurate than others and

we should reward them by giving them a larger share of the votes [98].

For the purpose of this thesis we have decided to use plurality voting.

• Combine Predicted Class Probabilities: probabilities summarize the likeli-

hood of an event as a numerical value between 0.0 and 1.0. When predicted for

class membership, it involves a probability assigned for each class. The most com-

mon approach is to use voting, where the predicted probabilities represent the vote

made by each model for each class. Votes are then summed and a voting method

from the previous section can be used, such as selecting the label with the largest

summed probabilities or the largest mean probability. As in the case of voting,

there are several ways to deal with the probabilities assigned by the models to

each class:

– Vote Using Mean Probabilities: votes are summed and the label with the

largest mean probability is selected.

– Vote Using Sum Probabilities: votes are summed and the label with the largest

summed probabilities is selected.

– Vote Using Weighted Sum Probabilities: a weighted sum of the votes is com-

puted and the label with the largest summed probabilities is selected.

For the purpose of this thesis we have decided to use four strategies to deal with

probabilities. These four strategies are variations of ”voting using mean probabili-

ties”. We will analyze them in details in the next section.

After this overview of the strategies that can be used to aggregate the predictions of the

individual classifiers, we are going to describe the customized-strategies we have built.

Next we will present the details of the ensemble validation.
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5.7.1 Proposed Aggregation Strategies

In order to combine the predictions of our models we decided to use variations of the

strategies presented in the previous paragraph.

As previously mentioned, we have experimented with two plurality voting strategies and

four voting strategies based on the use of probabilities.

We provide a detailed description below.

Customized Voting Strategy

In order to realize this strategy we exploited the predictions of the convolutional and

SVM models. While the SVM output corresponds directly to the predicted class (0 or

1), the convolutional model output is provided by a sigmoid neuron and it is a value

between 0 and 1, that can be interpreted in terms of probability.

Therefore, in order to obtain a class value predicted by the convolutional network, and

so to be able to use the voting scheme, we experimented with two different threshold

values: 0.5 and 0.7. If the value supplied in output by the convolutional network is above

the threshold value, the predicted label is 1, otherwise 0.

After obtaining both the predictions of the convolutional model and the SVM model,

the final prediction of the ensemble is calculated through the plurality voting strategy.

Therefore, if the number of predictions referring to the 1 class is greater than the number

of predictions referring to the 0 class, the final prediction will correspond to the 1 class,

0 otherwise.

Customized Voting Using Mean Probabilities Strategies

Unlike what was said in the previous section, in this case we find ourselves in the opposite

situation: the SVM model provides us with a numerical prediction corresponding to the

reference class, but we need a confidence measure that can be interpreted in terms of

probability. As mentioned previously, convolutional models themselves provide a value

that can be interpreted as a probability. Instead, we need to make some considerations

for SVM models.

In order to obtain values similar to probability we cannot use the decision_function

method provided by scikit-learn for the SVM classifier, because this method computes
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the distance from the boundary, but it is not the same as computing the probability that a

given datapoint belongs to a particular class. To do that, we need to use predict_proba.

This method computes the probability that a given datapoint belongs to a particular class

using Platt scaling [100]. Platt scaling computes the probabilities using the following

method:

P (class/input) =
1

1 + exp(A ∗ f(input) +B)
(5.3)

where P (class/input) is the probability that “input” belongs to “class” and f(input) is

the signed distance of the input datapoint from the boundary, which is basically the

output of decision_function.

To apply Platt scaling to SVM we need to train the SVM as usual and then optimize

the parameters A and B. To optimize A and B we need to train a probability model on

top of our SVM. Also, to avoid overfitting, Platt scaling uses n-fold cross validation.

So, this is a lot more expensive than training a non-probabilistic SVM.

What we obtain by applying the predict_proba method on the SVM classifier is a tuple

of two values, each of which representing the confidence score assigned by the classifier

to class 0 and class 1 respectively.

To enable the use of Platt scaling, we simply set the parameter probability = True in

the scikit-learn SVM classifier. Therefore, in order to obtain proability values from our

SVM classifiers we had to re-train the best models allowing the use of Platt scaling in

the training phase.

We have noticed that classifiers provide the same result through the predict method

whether trained with Platt scaling enabled or not. Therefore, all SVM model considera-

tions reported in Section 5.6 still hold.

An important thing to point out is that the value predicted by the classifier through the

calculation of probabilities may not match the value associated by the classifier through

the predict method. As reported in the scikit-learn documentation ”the probability

estimates may be inconsistent with the scores, in the sense that the argmax of the scores

may not be the argmax of the probabilities (e.g., in binary classification, a sample may

be labeled by predict as belonging to a class that has probability ≤ 0.5 according to

predict_proba). Platt’s method is also known to have theoretical issues”. Apart from

Platt scaling, there exist also other strategies for obtaining probability values from an

SVM classifier, but we will mention them in Section 7.
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After this introduction on the method used to obtain probability values from SVM clas-

sifiers, we proceed with the description of the aggregation strategies that have been

developed. To test the effect of using Platt scaling on the results we have created two

different strategies:

• Average 1: in the first case, we computed the average prediction obtained through

the convolutional models and we added it to the SVM predictions obtained through

the predict method. Then, we computed the average value of this new list of pre-

dictions and we associated a class label to the average probability using a threshold

value.

• Average 2: in the second case we computed the average prediction considering all

the outputs of the convolutional models and all the outputs of the SVM models,

obtained through the predict_proba method. Also in this case, we associated a

class label to the average probability using a threshold value.

We experimented the use of two thresholds: 0.5 and 0.7. These threshold values were

chosen arbitrarily. It would be interesting to use statistical methods to calculate the

ideal threshold value, but we will talk about it in Section 7.
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5.7.2 Validation

In this section we will describe the ensemble evaluation process starting from the datasets

chosen to carry out the validation.

Datasets

In order to carry out the evaluation of the different aggregation strategies for the ensem-

ble, two different datasets have been used: RAVDESS and CREMA.

RAVDESS and CREMA are the only two datasets in which we can find different speak-

ers of different genders.

In particular, for each dataset we took the test set created in the Data Preparation

phase. Between the two, we consider the evaluation performed on RAVDESS to be more

reliable since, as previously described, the process of building the dataset was extremely

precise and the audio files have a much higher quality than the CREMA audio files.

While the RAVDESS test set is fairly class-balanced, the CREMA test set is not. This

is not important for the purposes of the evaluation since the metric used was in any case

the F1-score on the positive class (for positive class we intend class 1).

Obviously, the validation performed on a dataset containing noise-free audio files al-

lows us to obtain very optimistic evaluation with respect to the use of the model in the

real use case. It would therefore be advisable to repeat all the tests using a dataset

constructed in the reference context or augmenting the current available audio files

through noise recorded from inside a train. We will return to these considerations in the

following chapters.

Results

In this section we show the results of the ensemble validation. In particular, we tested

the strategies described in (5.7.1) and (5.7.1) on the datasets described in 5.7.2.

As previously described, the strategies are compared on the basis of the F1-score obtained

on the positive class and the objectives of this analysis are:

1. understand if there is a strategy which showed better results, compared to the

others
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2. have proof of the fact that the ensemble’s generalization capacity is not sufficient

to manage CREMA’s data (known to be of a distinctly different quality from that

of RAVDESS)

3. understand what are the models that we could exclude from the ensemble, looking

at the models that have obtained a large amount of false negatives and few false

positives

4. understand if the candidate models for exclusion from the ensemble are the same

ones that we would eliminate by looking at both the results obtained on RAVDESS

and the results obtained on CREMA

Table 5.9 shows the results that the ensemble obtained on the test set of RAVDESS

dataset.

Strategy Threshold F1-score
(positive class)

Voting 0.5 0.85
Voting 0.7 0.74

Average 1 0.5 0.57
Average 1 0.7 0.35
Average 2 0.5 0.90
Average 2 0.7 0.74

Table 5.9: Results of the validation of the ensemble on RAVDESS dataset

As we can see from Table 5.9, the strategy that achieved the best result is the one we

called Average 2. Moreover, a trend that can be observed from the table is that for

each strategy the worst results were obtained through the use of the threshold value of

0.7; this let us think that good threshold values are those which are less than 0.7.

The trend observed on the threshold values makes sense since the single models of the

ensemble overfit a little bit, and so they have little confidence when predicting. This

trend can also be useful to continue with future studies on the choice of the most appro-

priate threshold value, reducing the range of testable values.

With Average 2 strategy, the performances in terms of F1-score (positive class) are

very good and we can add that, in this experiment, the F1-score for the negative class

was also very high (0.89). Since the RAVDESS test set quite balanced (56 class 0 files

and 64 class 1 files) we also looked at the accuracy which in this case is 0.89.

We can therefore conclude that the ensemble has achieved excellent results on RAVDESS.
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The results obtained are comparable to those of the state-of-the-art.

Figure 5.9 shows the models that contributed to more than 50% of all the False Positives

and False Negatives, obtained with each of the strategies.

Histograms in Figure 5.9 and Figure 5.10 were constructed through the analysis of

graphs like the one in Figure 5.8:

Figure 5.8: Distribution of False Positives predictions per model. Ensemble Configura-
tion: Voting Strategy - Threhsold 0.5 - RAVDESS. On the y-axis there is the count of
False Positives that have been retrieved by a single model through the use of the En-
semble configuration just mentioned. On the x-axis there are the predictions of a model.
The name of the model is reported in the top-part of each histogram.

We showed only one figure (Fig. 5.8) as an example.
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Figure 5.9: Models which contributed to more than the 50% of the total amount of False
Positives and False Negatives for each of the strategies - RAVDESS. On the y-axis there
is the count of the strategies; 6 is the maximum since we used 6 different aggregation
strategies. On the x-axis there are the models.

As can be noted from Figure 5.9, the models that contributed to the generation of the

greatest amount of false negatives are: 1.6, 2.2, 6.8, 7.10. In particular, models 1.6 and

6.8, among all the misclassified files, contributed to generate only false negative results

(in 3 and 2 strategies out of 6 respectively). This let us think that these 2 models

could be excluded from the ensemble, since the quantity that we want to minimize is the

amount of false negatives. As regards models 2.2 and 7.10, we cannot exclude them since

these models have also contributed to the generation of a fair amount of false positives;

therefore if our criterion is to minimize false negatives and prefer false positives to false

negatives, we cannot proceed with the elimination of these models.

We now focus on the results obtained on CREMA dataset.
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Table 5.10 shows the results that the ensemble obtained on the test set of CREMA

dataset.

Strategy Threshold F1-score
(positive class)

Voting 0.5 0.61
Voting 0.7 0.44

Average 1 0.5 0.87
Average 1 0.7 0.80
Average 2 0.5 0.25
Average 2 0.7 0.34

Table 5.10: Results of the validation of the ensemble on CREMA dataset

As we can see in Table 5.10 the strategy which obtained best results is Average 1.

Differently from what we observed with RAVDESS, we cannot conclude a lot about the

trend of the threshold values. It would have been interesting if we had been able to

observe that the winning strategy was the same on both datasets and with the same

trend for the threshold values. Unfortunately this is not the case and, moreover, since

CREMA is an unreliable dataset, we cannot conclude much from these results.

Figure 5.10 shows the models that contributed to more than 50% of all the False Posi-

tives and False Negatives obtained with each of the strategies.

Figure 5.10: Models which contributed to more than the 50% of the total amount of False
Positives and False Negatives for each of the strategies - CREMA. On the y-axis there
is the count of the strategies; 6 is the maximum since we used 6 different aggregation
strategies. On the x-axis there are the models.
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As can be noted from the figure above, the models that contributed to the generation of

the greatest amount of false negatives are: 1.1, 1.2, 1.6, 2.1, 2.2, 3.1, 4.1.

From the observation of these results, we could think of excluding all these models from

the ensemble, for the same reasons mentioned during the analysis of the results obtained

on the RAVDESS dataset. In reality, considering the unreliability of CREMA, it would

be better to evaluate the exclusion only of the models that have also been candidates

for RAVDESS; in particular, the candidate models for the exclusion, common to both

datasets, are: 1.6 and 2.2.

We can conclude that the ensemble has achieved very satisfactory results on the

RAVDESS dataset, which is the most reliable and widely used dataset for Speech

Emotion Recognition research. Certainly, the research carried out in this thesis still pro-

vides ample room for improvement and open issues, especially regarding the application

of such architectures in real scenario. We will discuss all this more in depth in Chapter

6.



Chapter 6

Discussion

In this chapter we will discuss the challenges encountered while building the application

and the possible margins of improvement.

6.1 Integration

All the modules explained before have been realized from scratch or taken from pack-

ages available off the shelf; this has required a considerable effort of integration and

engineering. The result is a stand-alone package described in Appendix A.5.

Limitations

The integration with the microphone that will be used in the real scenario is totally miss-

ing. It has been outlined what needs to be done to process incoming audio in streaming

mode and which communication protocol need to be used, but both functionalities still

need to be developed. Therefore, the application is not yet ready to be used in the real

case scenario.

Moreover, the biggest problem of the system is the total execution time. As stated

in Appendix A.5, the SER system lasts around 10 seconds for each prediction and it

would be not possible having this execution time when processing streaming audio.

This problem is mainly related to the fact that the models are instantiated sequentially

and not in parallel.

105
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Future Developments

The next step for the development of this application will concern the passage from a

sequential application to a multi-threaded one, to ensure that all the models make the

prediction simultaneously and that the loading of the single models is done only once

during the life cycle of the application.

This would require creating a thread for each model and only terminating the threads

when the application is closed.

It was not possible to implement this functionality due to the computational resources

available during the integration phase. However, based on our initial analysis, the infras-

tructure that will host the deployed system has the necessary computing power to allow

the use of a multi-thread application.

Among the possible improvements to our model, we can identify several future develop-

ments that would change the structure of the architecture, by adding new features such

as Keyword Spotting (KWS), Speech-To-Text (STT), Automatic Hate Detection and

Environmental Noise Classification.

Let’s see in what purposes it would be useful to develop these features:

• KWS and Speech-To-Text: Keyword Spotting models can be useful for emer-

gency word detection such help, aiuto, ayudame. These models usually compute

the spectogram of fragments of audio and classify them between several labels, such

as a specific keyword or unknown. Most common approaches to perform KWS rely

on Convolutional Neural Networks. There have been also promising advances in

this field by using encoder-decoder architectures such as the Transformer [101],

which has led to significant improvements in several NLP tasks including Machine

Translation and Language Modeling. Some of these works focus on adapting the

Transformer architecture to the KWS problem [102]. It would also be interesting

to use a Speech To Text model in parallel to the KWS model to transcribe the

speech fragments and analyze if, in these fragments, there are words that match

one of the emergency keywords. Moreover, it would be possible to compare the

results obtained from both approaches on the same speech fragment to evaluate

the effective presence of emergency keywords in the incoming audio. The most

prominent models for offline Speech-To-Text to date are Vosk API (Python) and

Deep Speech. Although Deep Speech is more famous than Vosk, we have had
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the opportunity to experience that the Vosk model (vosk-model-small-en-us-0.15)

works much better than Deep Speech (model 0.9.3) [103] in terms of execution

time, accuracy and integration with edge systems. The Vosk model is so light

(40M) that it can run even on a Raspberry Pi.

• Automatic Hate Speech Detection: for the identification of disruptive situ-

ations, it would be interesting to integrate an Automatic Hate Speech Detection

(AHSD) system, on the idea of those presented in [104]. All the solutions presented

in [104] refer to textual content analysis. Therefore we could think of devising a

pipeline consisting of a Speech-To-Text system followed by a model for AHSD to

analyze the transcribed sentence.

• Environmental Noise Classification: all the solutions developed within this

thesis project, and presented so far among future developments, refer to speech

analysis. Instead, it would be interesting to build a system to also classify the

noise audio segments, selected by the VAD system. In particular, we could think

of considering disruptive situations in the event that the noise is classified, for

example, as a ”traffic accident” or ”gunshot”. There are several research works in

this field, and the main datasets used for this purpose are [105] and [106]. Both of

them are public and free to use.
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The proposed improvements could be integrated in an extended architecture such as the

one shown in Figure 6.2 (Figure 6.1 shows the current architecture for comparison).

Figure 6.1: Proposed Architecture

Figure 6.2: Extension of the Proposed Architecture
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6.2 Speech Emotion Recognition

Moving now the focus from the final application to the individual components, we start

with the discussion of the Speech Emotion Recognition system. As well as for the final

application, here too it is possible to list the difficulties encountered, the critical issues

and the possible margins for improvement.

Limitations

As mentioned at the end of Chapter 5, the ensemble has achieved very satisfactory

results on the RAVDESS dataset, but certainly the research carried out in this thesis

still provides ample room for improvement and open issues, especially regarding the

application of such architectures in the real scenario.

The main challenges encountered during the construction of the SER system are:

• Lack of reliable and reproducible baselines: as previously mentioned in Sec-

tion 2.3.2, most of the research works present nowadays do not contain a complete

description of the work done, in order to be completely reproducible. In most cases

there is a lack of information on how the data was handled or detailed informa-

tion on the characteristics of the classifier or training details. Even the lack of

just one of the information just mentioned makes it impossible to faithfully repro-

duce the model described in the research work, thus preventing it from possible

improvements. Therefore, in order to build baselines for this thesis project we took

inspiration from different works.

• Lack of real data: in order to be able to conduct a non-optimistic assessment of

the architectures it would be ideal to have a dataset of sounds recorded within the

reference context (i.e. trains on which the architecture will be installed). Having

those data we might either repeat the training of models or review the data aug-

mentation process; as for the last thing, it would be interesting to use the ambient

noise present in real recordings instead of the audio files used for this thesis project.

This could help us in setting the correct SNR level while augmenting the clean

datasets with the noisy sounds.



6.2. SPEECH EMOTION RECOGNITION 110

• Choice of features: many works use completely different features, therefore to

date it is not clear if there is a favorite feature among those used by the various

authors. It would seem that the most used features are MFCC and RMS, but

both have different criticalities [17]. Therefore it would be certainly interesting

repeating the experiments with features different from MFCCs and RMS, to see if

using or combining other features the performance of the models improve.

• Construction of a binary classifier for SER: as stated in Section 5.3, in

order to encode labels on a binary basis we need to make a strong assumption

and this assumption may introduce noise in the classification task. Almost all the

works in the literature, as mentioned in Section 2.3.2, use classifiers to solve multi-

class classification problems; all those works are based on a categorical division of

emotions that resides on the study of an expert team of scholars. To binary codify

emotions we did not have a team of experts at our disposal, therefore it would be

better to ask for an external opinion to validate the choices made while encoding

the emotion labels.

Future Developments

The possible margins for improvement of the SER architecture are:

• Change of data splitting for CREMA dataset: as mentioned in Section 5.3

we made a small mistake when splitting CREMA dataset. Since we have decided

to only keep files characterized by a high level of emotional intensity, we have

automatically excluded the ”neutral” class, since, by its nature, it does not exist at

different levels of intensity. It would therefore be advisable to repeat the division

of the dataset by including the neutral class. In this way we would obtain a more

class-balanced dataset.

• Build Noisy Test Sets: in order to test the generalization capabilities of the

model in a noisy environment, it would be interesting to apply the data augmen-

tation process described in the Section 5.3 also on the test sets of the individual

datasets.
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• Find reliable datasets in languages other than North American English:

to study the generalization capabilities of the model and/or build a cross-linguistic

model, as in [51], it would be useful to obtain / build reliable datasets also in other

languages. Having a cross-linguistic model in the context of public transports

could be really important. We have seen that EMO-DB can be used as far as the

German language is concerned, but it is a dataset made up of very few samples.

CREMA could be useful because the actors, although they all are english speakers,

are of different ethnicities and consequently have different accents, but we have

found that it is a completely unreliable dataset and of not high quality.

• Try the use of delta and delta-delta MFCCs: although not widely used in

the literature, it would be interesting to see if the addition of information about

the first and second derivative of the MFCC coefficients brings improvements in

terms of performance.

• Change of the Convolutional Model: as mentioned in the previous chapters,

we focused on the study of different models as the dataset and the features used

changed, but we never changed the parameters of the convolutional model lay-

ers after an initial assessment. It would be interesting to conduct an in-depth

analysis of the architecture by trying for example to change the kernel size of the

convolutional layers or the number of neurons of the fully connected layers.

• Try other Neural Architectures: try other prominent SER architectures such

as LSTM and RNN.

• Cross-Validation: in order to conduct a detailed analysis of both the individual

models and the ensemble, and study their generalization capabilities, it would be

advisable to conduct a cross-validation.

• Threshold selection for the Ensemble: it would be advisable to repeat the

experiments performed on the aggregation strategies of the ensemble by selecting

the threshold values more accurately.

• Build new aggregation strategies: we have tried only some of the possible

aggregation strategies, while it would be interesting to broaden the analysis by
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also trying, for example, some weighted strategies such as weighted voting or voting

using weighted sum probabilities.

• Change the strategy to obtain confidence scores from SVM: as we have

seen in Section 5.7 one of the main problems in using SVM within the ensemble

is that it does not allow us, by its nature, to directly obtain values that can be

interpreted in terms of probability. As explained in that section, we have solved the

problem through the use of Platt Scaling. However, we have discovered that there

exist several alternative ways to deal with this problem (and so obtain confidence

scores), such as:

– Normalisation: to do that we can take the maximum value retrieved by the

decision_function on the training set and use that value to normalise the

values retrieved with the use of the decision_function on test data.

– RVM: RVM is a machine learning technique whose main principles are the

same of SVM, but with the difference that RVM provides probabilistic classi-

fication, since it is based on a Bayesian Probabilistc framework [107]. There

exist many Python implementations of this algorithm, such as [108–110]. It

would therefore be interesting to conduct a study of this algorithm and try

to perform all the experiments previously conducted with SVM, with RVM.

In this way it would be possible to judge which of the two algorithms is more

suitable for our task and if there are differences between the different imple-

mentations of the algorithm. Furthermore, it would be possible to draw up

a comparison between the different methods for obtaining confidence scores

from SVM (and its variations) classifiers.
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6.3 Voice Activity Detection

Limitations

As said several times, the construction of the VAD system was not the main object of

this thesis project.

Future Developments

Although the results obtained with our system are satisfactory, it would be interesting

to explore other approaches and build an ad-hoc model for our use case. Moreover, if

real data would be obtained, it would undoubtedly be ideal to test the functioning of

the VAD module on such data.

Furthermore, it would be advisable to extensively evaluate the effectiveness of the de-

noising module inserted in the architecture (i.e. Wiener filter) and look for alternative,

and possibly more reliable, approaches.



Chapter 7

Conclusion

In this thesis we proposed an architecture to perform disruptive situations detection

in public transports through Speech Emotion Recognition. The result is a stand-alone

application consisting of three modules: denoising, Voice Activity Detection and Speech

Emotion Recognition. Although we took care of the design of the whole system, the core

part of this research is the construction of the Speech Emotion Recognition architecture.

The work described in this dissertation is original and unique in the sense that, at the

time of writing, to the best of our knowledge there is no other working architecture that

supports all these modules with comparable performance.

Even though the system is not yet ready to be introduced in the real scenario (i.e. public

transports), we achieved satisfying results. In particular, through the Speech Emotion

Recognition ensemble model we achieved 89% both in accuracy and in F1 score on the

positive class (disruptive emotions) on RAVDESS dataset. Unlike most of the systems

in literature, our model is distinguished by the independence from the speaker and the

independence from the gender of the speaker. This contributes to the generality of the

model, which is superior to that of state-of-the-art baselines.

As stated in Chapter 6, the system still has many limitations and much room for im-

provement. Among the main limitations, there are the execution time of the application

and the challenges faced while building the classifiers for SER, such as lack of real data

and lack of reliable and sufficiently large dataset. Further to what has just been said,

the lack of reliable datasets in languages other than English, prevents from having a

system with high generalization capacity in real environments.

Rooms for improvements can be can be identified at different levels.
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At integration level, it could be advisable developing a multi-thread model, instead of

a sequential one, for the ensemble of the Speech Emotion Recognition system. Also

as regards system integration, several possible features to extend the architecture have

been identified, such as a KWS model to detect emergency keywords or a AHSD system

to detect hateful contents in the speech.

At level of SER, although the research has led to satisfactory results, there are many

aspects to be explored in depth such as the construction of realistic and reliable datasets

and the identification of features capable of taking into account personalized differences,

such as language or age.

The challenges that have been addressed in this thesis are not only referable to this

application context, but can be found in several application and technological areas.

Examples of other contexts of application of SER are systems to assist in the early di-

agnosis and treatment of patients or SER-integrated surveillance systems for identifying

risky situations in calls for help to law enforcement. Among systems for early diagnosis,

we find depression speech recognition. Because the abnormal speech features of patients

with depression are related to their mental state to some extent, it is valuable to use

speech acoustic features as objective indicators for the diagnosis of depression [111].

Another interesting application context is that of systems that adapt their operation

or interface based on the emotional state of the user; think for example of integrated

driving systems that can activate autonomous driving in case of detection of abnormal

moods of the driver. And, last but not least, is the contribution that SER systems could

make in preventing cases of violence in public facilities (such as hospitals, nursing homes

for the elderly) and domestic violence.

All the applications just listed share a lot of problems, such as the fact that the state-

of-art has to deal with datasets that are small, acted (i.e. not realistic), of low audio

quality, incorrectly divided, clean (i.e. recorded in the absence of noise and therefore

not indicative of the audio signal that is in the real world), biased with respect to a very

specific population type or language.

This confirms that research in this sector is still in its infancy, and it is important to

invest time and resources in order to introduce services with a strong social impact, such

as those mentioned above.
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However, this work also demonstrated that an ensemble architecture of CNN and SVM

classifiers, combined with datasets built under certain robustness constraints, is able

to yield very promising results. This gives us ground to believe that, following a more

extensive experimentation and re-engineering, the adoption in real-world settings of

SER-based solutions, possibly based on the technologies we developed and described,

may soon become a reality.
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Appendix A

A.1 Volume Normalisation Experiments

To evaluate the effect of audio normalization, several experiments were performed on the

convolutional model. In particular, the convolutional model used in these experiments

is the same as shown in Table 5.7 in section 5.4. A RandomizedSearchCV with k-folds

= 3 was performed to find the best hyperparameters for each experiment.

The hyperparameters analyzed are the following: learning rate for Adam optimizer, Ker-

nel Initializer, batch size. The number of epochs has been set at 50. The results of the

experiments are shown in Table A.1.

Dataset Number of MFCCs Kernel Initializer Learning Rate
(Adam Optimizer) Batch Size Accuracy F1 score

(positive class - 1)
F1 score

(negative class - 0)
RAVDESS 12 He Normal 0.001 8 0.83 0.84 0.83

RAVDESS normalized 12 He Normal 0.001 8 0.81 0.81 0.81
CREMA 12 Lecun Uniform 0.001 8 0.83 0.90 0.58

CREMA normalized 12 Uniform 0.001 16 0.78 0.87 0.43
TESS 12 Lecun Uniform 0.001 8 1.00 1.00 1.00

TESS normalized 12 Uniform 5e-05 4 0.53 0.69 0.08

Table A.1: Volume Normalisation Experiments

The trend that can be observed is that, in any case, by applying the normalization of

the volume there is a deterioration in the performance of the model. This deterioration

is especially noticeable when using the TESS dataset.
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A.2 Initial Experiments on the Dataset

Our baseline model is inspired by [112] and [113].

At the beginning we were using an audio length, in samples, equal to 120378. This

values correspond to the mean length of RAVDESS audio files. Moreover, we were using

40 MFCCs component.

By cutting and padding all audio files to that length, we obtained input feature vectors

of shape (batch_size, 236,40).

Our baseline architecture is shown in Figure A.1:

Figure A.1: Baseline Architecture

Moreover, at the beginning we were using only RAVDESS, SAVEE and TESS datasets

and we performed random splitting.

We performed few experiments to study the effect of scaling data through standard

scaling. We obtained the results showed in Table A.2:

F1 score
Positive Class (0)

F1 score
Negative Class (1) Accuracy

Baseline - No Data Scaling 0.93 0.94 0.93
Baseline - Data Scaling 0.96 0.97 0.97

Table A.2: Results obtained by the baseline model with and without performing Data
Standardization on Input Data. In this case Input Data is constituted by 410 samples
of class 0 and 486 samples of class 1.
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From the high performances of these experiments we understood that the division of the

datasets into training, validation and test set was not correct and we proceeded, from

here, to the division that we used in this thesis.
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A.3 Experimental Results for the Ensemble Model

For each experiment we highlighted in green the models that have been selected for the

ensemble.

For the experiments on SVM models we report the F1 score of only the best models.

A.3.1 Results of Experiment 1

Table A.3 shows the results obtained by the CNNs models of Experiment 1.

Experiment ID Classifier Accuracy F1 score
(positive class - 1)

F1 score
(negative class - 0)

1.1 CNN 0.88 0.88 0.87
1.2 CNN 0.85 0.85 0.85
1.3 CNN 0.48 0.65 0.03
1.4 CNN 0.57 0.73 0.00
1.5 CNN 0.57 0.41 0.67
1.6 CNN 0.85 0.85 0.85
1.7 CNN 0.82 0.88 0.56
1.8 CNN 0.87 0.92 0.67
1.9 CNN 0.60 0.70 0.40
1.10 CNN 0.55 0.52 0.57
1.11 CNN 0.57 0.63 0.48
1.12 CNN 0.68 0.70 0.66

Table A.3: Results obtained by the CNNs models of Experiment 1. Performances have
been evaluated in terms of Accuracy and F1 score. In green, the models that we selected
to build the ensemble.
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A.3.2 Results of Experiment 2

Table A.4 shows the results obtained by the CNNs models of Experiment 2.

Experiment ID Classifier Accuracy F1 score
(positive class - 1)

F1 score
(negative class - 0)

2.1 CNN 0.82 0.81 0.82
2.2 CNN 0.80 0.79 0.81
2.3 CNN 0.56 0.72 0.01
2.4 CNN 0.57 0.73 0.00
2.5 CNN 0.53 0.20 0.66
2.6 CNN 0.53 0.15 0.67
2.7 CNN 0.83 0.90 0.58
2.8 CNN 0.87 0.92 0.64
2.9 CNN 0.57 0.60 0.54
2.10 CNN 0.85 0.85 0.86
2.11 CNN 0.57 0.63 0.48
2.12 CNN 0.73 0.75 0.70

Table A.4: Results obtained by the CNNs models of Experiment 2. Performances have
been evaluated in terms of Accuracy and F1 score. In green, the models that we selected
to build the ensemble.

A.3.3 Results of Experiment 3

Table A.5 shows the Results obtained by the CNNs models of Experiment 3.

Experiment ID Classifier Accuracy F1 score
(positive class - 1)

F1 score
(negative class - 0)

3.1 CNN 0.89 0.90 0.89
3.2 CNN 0.90 0.91 0.89
3.3 CNN 0.68 0.77 0.49
3.4 CNN 0.67 0.76 0.47
3.5 CNN 0.73 0.77 0.69
3.6 CNN 0.49 0.66 0.00
3.7 CNN 0.85 0.91 0.53
3.8 CNN 0.82 0.89 0.42
3.9 CNN 0.65 0.66 0.65
3.10 CNN 0.71 0.74 0.69
3.11 CNN 0.70 0.74 0.64
3.12 CNN 0.70 0.74 0.64

Table A.5: Results obtained by the CNNs models of Experiment 3. Performances have
been evaluated in terms of Accuracy and F1 score. In green, the models that we selected
to build the ensemble.
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A.3.4 Results of Experiment 4

Table A.6 shows the Results obtained by the CNNs models of Experiment 3. The models

highlighted in orange are models that have performed significantly better on the test set

than on the validation set, by an amount of 20% in terms of accuracy. This led us to

think that these results are attributable to chance and therefore not reliable.

Experiment ID Classifier Accuracy F1 score
(positive class - 1)

F1 score
(negative class - 0)

4.1 CNN 0.89 0.90 0.89
4.2 CNN 0.85 0.85 0.85
4.3 CNN 0.66 0.73 0.51
4.4 CNN 0.66 0.55 0.48
4.5 CNN 0.58 0.49 0.65
4.6 CNN 0.53 0.68 0.10
4.7 CNN 0.90 0.94 0.73
4.8 CNN 0.82 0.90 0.15
4.9 CNN 0.95 0.95 0.94
4.10 CNN 0.85 0.87 0.84
4.11 CNN 0.88 0.88 0.89
4.12 CNN 0.67 0.72 0.59

Table A.6: Results obtained by the CNNs models of Experiment 4. Performances have
been evaluated in terms of Accuracy and F1 score. In green, the models that we selected
to build the ensemble.
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A.3.5 Results of Experiment 5

Table A.5 shows the Results obtained by the CNNs models of Experiment 5.

Experiment ID Classifier Accuracy F1 score
(positive class - 1)

F1 score
(negative class - 0)

5.1 SVM 0.63 - -
5.2 SVM 0.63 - -
5.3 SVM 0.58 - -
5.4 SVM 0.57 - -
5.5 SVM 0.52 - -
5.6 SVM 0.55 - -
5.7 SVM 0.60 - -
5.8 SVM 0.68 - -
5.9 SVM 0.56 - -
5.10 SVM 0.57 - -
5.11 SVM 0.54 - -
5.12 SVM 0.54 - -

Table A.7: Results obtained by the SVMs models of Experiment 5. Performances have
been evaluated in terms of Accuracy and F1 score. In green, the models that we selected
to build the ensemble.

A.3.6 Results of Experiment 6

Table A.8 shows the Results obtained by the SVMs models of Experiment 3.

Experiment ID Classifier Accuracy F1 score
(positive class - 1)

F1 score
(negative class - 0)

6.1 SVM 0.63 - -
6.2 SVM 0.61 - -
6.3 SVM 0.53 - -
6.4 SVM 0.57 - -
6.5 SVM 0.52 - -
6.6 SVM 0.55 - -
6.7 SVM 0.70 - -
6.8 SVM 0.83 0.90 0.58
6.9 SVM 0.55 - -
6.10 SVM 0.55 - -
6.11 SVM 0.52 - -
6.12 SVM 0.58 - -

Table A.8: Results obtained by the SVMs models of Experiment 6. Performances have
been evaluated in terms of Accuracy and F1 score. In green, the models that we selected
to build the ensemble.
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A.3.7 Results of Experiment 7

Table A.9 shows the Results obtained by the CNNs models of Experiment 3.

Experiment ID Classifier Accuracy F1 score
(positive class - 1)

F1 score
(negative class - 0)

7.1 SVM 0.73 - -
7.2 SVM 0.68 - -
7.3 SVM 0.57 - -
7.4 SVM 0.57 - -
7.5 SVM 0.51 - -
7.6 SVM 0.50 - -
7.7 SVM 0.47 - -
7.8 SVM 0.82 0.89 0.42
7.9 SVM 0.67 - -
7.10 SVM 0.85 0.91 0.53
7.11 SVM 0.72 - -
7.12 SVM 0.58 - -

Table A.9: Results obtained by the SVMs models of Experiment 7. Performances have
been evaluated in terms of Accuracy and F1 score. In green, the models that we selected
to build the ensemble.

A.3.8 Results of Experiment 8

Table A.10 shows the Results obtained by the SVMs models of Experiment 3.

Experiment ID Classifier Accuracy F1 score
(positive class - 1)

F1 score
(negative class - 0)

8.1 SVM 0.65 - -
8.2 SVM 0.70 - -
8.3 SVM 0.57 - -
8.4 SVM 0.57 - -
8.5 SVM 0.52 - -
8.6 SVM 0.50 - -
8.7 SVM 0.46 - -
8.8 SVM 0.85 0.91 0.53
8.9 SVM 0.65 - -
8.10 SVM 0.88 0.88 0.87
8.11 SVM 0.66 - -
8.12 SVM 0.56 - -

Table A.10: Results obtained by the SVMs models of Experiment 8. Performances have
been evaluated in terms of Accuracy and F1 score. In green, the models that we selected
to build the ensemble.
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A.3.9 Hyperparameters of Best Models

The performance of machine learning and deep learning models is greatly influenced by

the setting of initial values, such as neural network weights. To ensure reproducibility,

we set random_seed = 7. Tables A.11 and A.12 show the hyperparameters selected

through Randomized Search . In particular, the models reported in Tables A.11 and

A.12 are those that showed the best perfomance among all the CNNs and SVMs models

respectively.

CNN

Experiment ID Initializer Learning Rate
(Adam Optimizer) Batch Size

1.1 glorot uniform 0.001 8
1.2 glorot normal 0.0001 4
1.6 uniform 0.001 8
1.8 glorot normal 0.001 8
2.1 glorot normal 0.001 8
2.2 uniform 0.0001 4
2.8 uniform 0.001 8
2.10 uniform 0.0001 4
2.12 uniform 0.0001 4
3.1 glorot normal 0.001 8
3.2 uniform 0.001 8
3.12 uniform 0.0001 4
4.1 glorot normal 0.001 8
4.2 uniform 0.001 8

Table A.11: Hyperparameters selected through RandomizedSearchCV. The models re-
ported in this table are those that showed the best perfomance among all the CNNs
models of our experiments

SVM

Experiment ID Kernel C
6.8 rbf 10
7.8 rbf 10
7.10 rbf 10
8.8 rbf 10
8.10 rbf 10

Table A.12: Hyperparameters selected through RandomizedSearchCV. The models re-
ported in this table are those that showed the best perfomance among all the SVMs
models of our experiments
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A.3.10 Learning Curves for Best CNN models

Figures A.2 and A.3 show the learning curves of the CNN models that led to best

perfomances among all our experiments.

Figure A.2: Learning Curves of CNN models that led to best performances among all
our experiments - 1
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Figure A.3: Learning Curves of CNN models that led to best performances among all
our experiments - 2
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A.4 Experimental Setup - Hardware

All the experiments (i.e. training and validation of the single models) have been carried

out on a laptop DELL-Latitude 5420. The device specifications are listed in Table A.13.

Processor 11th Gen Intel(R) Core(TM) i7 3.00 GHz
RAM 16.0 GB

System Type 64-bit operating system, x64-based processor
OS Linux Ubuntu

Table A.13: Hardware specifications - 1

The construction of the ensemble, its validation and the integration of the different

systems was performed on a MacBook Air laptop (Retina, 13-inch, 2019). The device

specifications are listed in Table A.14.

Processor 1,6 GHz Intel Core i5 dual-core
RAM 8.0 GB

System Type 64-bit operating system, x64-based processor
OS macOS Monterey

Table A.14: Hardware specifications - 2

The final architecture, containing all the AI modules that have been developed to perform

the ”Disruptive Situations Detection” function, must be hosted on hardware with the

following technical specifications:

• Intel CPU with ≥ 8 cores.

• Memory ≥ 32 GB RAM

• Storage ≥ 256 GB SSD

• OS: Linux distribution, Ubuntu is preferred

• Recent NVIDIA GPU with ≥ 11GB, such as GeForce RTX 2080 Ti or Titan V.

As for the cameras and microphones that will provide real-time audio from the train to

the AI module, a closed-circuit television (CCTV) camera with a microphone will be

used to detect disruptive or tense situations inside the train. The model selected is the

Hikvision DS- 2DE2A404IW-DE3, which is a compact 4 Megapixel camera with pan, tilt

and zoom (PTZ) capabilities that will allow the operator in the Cloud Control Centre

(CCTV Management Module) to manipulate it remotely.
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A.5 Integration: a stand-alone Python application

After conducting the construction and validation of the individual components (denois-

ing module, VAD system, SER system), it was necessary to integrate them in order to

build an application that can be run on the Ground AI module of the Edge Server in

Figure 1.1 (please refer to Chapter 1 for further details).

The whole application is self-contained within a folder called ambient-intelligence.

The application can be run from inside this folder through a UNIX terminal using the

following command: python3 main.py.

The arguments that need to be specified when running the script are:

• -m: to specify the method of execution. Possible options are:

– mic: for local real-time execution. The audio is captured from the audio

interfaces of the laptop through the SpeechRecognition library for Python.

– file: for offline execution. The audio is provided through a .wav audio file.

– real-mic: for streaming execution in the real environment. The audio is

provided by the microphone hosted on the CCTV camera described in Section

A.4. While the first two modes have been implemented, the last one has yet

to be developed.

• -f: to specify the audio file when - m file execution is enabled. After typing the

-f option, the full path to an audio file should be provided.

• -p: to specify the aggregation strategy to be used when using the ensemble. Pos-

sible options are:

– voting

– avg_1

– avg_2

After starting the application through the just described command, the Segmenter object

of Ina Speech Segmenter API is instantiated. The instatiation of the Segmenter lasts
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around 1 second.

At this point, three different possible scenarios may arise:

• The modality of execution is set to mic: the audio is captured from local audio

interfaces and converted to a temporary .wav file at 16 KHz sample-rate. The

audio file is then ready to be processed.

• The modality of execution is set to file: the file path of the audio file is directly

processed.

• The modality of execution is set to real-mic: the audio is received from the CCTV

camera through a Real Time Streaming Protocol (RTSP) and divided into parts

lasting 5 seconds each using a windowing mechanism. Each subsequent part of the

input audio is written on a temporary .wav file and then is ready to be analyzed

by the VAD system. The process just described has been devised but not yet

developed.

After receiving the audio from the input interface, it needs to be prepared to be used as

input for the VAD system. The steps of data preparation are the following:

• Sampling and quantization

• The samples are resampled to 16 KHz sample rate

• To be sure that the audio length respect the length chosen in 5.3 (5 seconds) it

needs to cut or padded

• A Wiener filter is then applied to the input samples

• After denoising the input audio, it is analyzed through the VAD system

If VAD system recognizes the presence of speech in the input, the SER process is started;

otherwise the system stops. In the real scenario the system should not stop, but it has

to start processing the next fragment of input audio.

Once and if the SER process is started, what happens is the following:

• Each model is instantiated one after the other, i.e. sequentially

• For each model, the corresponding scaler is loaded in order to perform data stan-

dardization
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• After loading the scaler, feature extraction phase is started. A specific feature

extraction is performed for each of models, depending on the features used to train

it. Feature extraction includes the following steps:

– MFCCs computation

– Elimination of first MFCC component

– Energy computation (if required by the model)

– Data standardization

– Reshaping of the feature vector in order to have a feature vector of shape (1,

157, n_mfccs) for the convolutional models or a feature vector of shape (1,

n_mfccs) for the SVM models

• Once the feature extraction ends, each of the model classifies the input feature

vector

• The predictions of the classifiers are aggregated through one of the aggregation

strategies and the final prediction (disruptive or non-disruptive) is given as output

The whole SER process lasts around 10 seconds.
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