
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCHOOL OF ENGINEERING AND ARCHITECTURE

DEPARTMENT

Electrical, Electronic, and Information Engineering “Guglielmo Marconi” - DEI

SECOND CYCLE DEGREE IN

Electronic Engineering

MASTER THESIS

in

Signal Acquisition And Processing M

Anomaly detection by prediction for health monitoring of satellites
using LSTM neural networks

CANDIDATE

WENLIANG XIANG
SUPERVISOR:

Prof. Dr. Riccardo Rovatti

Co-SUPERVISORS:

Prof. Dr. Mauro Mangia

Dr. Alex Marchioni
Dr. Filippo Martinini

Dr. Andriy Enttsel

Academic Year 2020/21

Session III

Abstract

Anomaly detection in satellite has not been well-documented due to the unavailability of satel-
lite data, while it becomes more and more important with the increasing popularity of satellite
applications. Our work focus on the anomaly detection by prediction on the dataset from the
satellite, where we try and compare performance among recurrent neural network (RNN), Long
Short-Term Memory (LSTM) and conventional neural network (NN). We conclude that LSTM
with input length p = 16, dimensionality n = 32, output length q = 2, 128 neurons and without
maximum overlap is the best in terms of balanced accuracy. And LSTM with p = 128, n = 32,
q = 16, 128 and without maximum overlap outperforms most with respect to AUC metric. We
also invent award function as a new performance metric trying to capture not only the correct-
ness of decisions that NN made but also the amount of confidence in making its decisions, and
we propose two candidates of award function. Regrettably, they partially meet our expecta-
tion as they possess a fatal defect which has been proved both from practical and theoretical
viewpoints.

Contents

1 Introduction 3

2 Methods for anomaly detection 6
2.1 Depth-based Method . 6
2.2 Deviation-based method . 7
2.3 Distance-based method . 9
2.4 Density-based method . 12
2.5 Machine Learning based method . 12

2.5.1 Autoencoder-based method . 12
2.5.2 Prediction-based method . 16

3 Anomaly detection based on Neural Network 17
3.1 Neural Network . 17

3.1.1 Conventional Neural Network . 17
3.1.2 Recurrent neural network . 23
3.1.3 Long Short-Term Memory . 25
3.1.4 Related work . 28

3.2 A toy case on ECG signal . 30
3.2.1 Performance versus number of neurons 32
3.2.2 Performance versus input length . 33
3.2.3 Performance versus output length . 33
3.2.4 Performance versus type of neural networks 35
3.2.5 Examination on test dataset . 36

4 Anomaly detection on satellite data 41
4.1 Workflow . 43

4.1.1 Custom callbacks . 43
4.1.2 Unbalancing issue . 46

4.2 Experiments . 47
4.2.1 Award function . 48

5 Results and discussion 55
5.1 Results of the first experiment . 55
5.2 Results of the second experiment . 60
5.3 Results of the third experiment . 61
5.4 Apply award functions and discuss the problem 63

1

6 Conclusions 69

7 Acknowledgements 70

2

Chapter 1

Introduction

In this thesis project, we are going to explore the anomaly detection by prediction on the dataset
from satellite. We define samples as anomalies if they do not conform the definition of normal
behaviors. As a matter of fact, it is really difficult to provide an accurate definition of anomaly
as it is usually application-dependent in a sense that the same event can be identified as anomaly
in some scenarios but may also be labeled as a normal event in other cases, see in the figure
1.1. Here we cite one of the most commonly used definitions of anomalies in literature [1]:

”An outlier1 is an observation which deviates so much from the other observa-
tions as to arouse suspicions that it was generated by a different mechanism.”

Figure 1.1: There is a gray region indicating the freedom of definition, and we regard this region

as noise, the existence of this region reveals the difficulty of defining anomalies or normal

behaviors that encompass all the possibilities, hence, the definition of anomalies are actually

application-dependent. Figure from [1].

Anomalies are categorized into three types [5]:

• Point Anomalies. anomalous event is just an element (or sample) in dataset, for example,
a peak that is found in time series during the peak detection is a point anomaly.

• Contextual Anomalies. the definition of anomaly depends on the context which contains
two aspects:

1We use term anomaly and the term outlier interchangeably in our report.

3

1. Contextual attribute. it describes the position of the given data instance in the con-
text, for instance, the time stamp is a contextual attribute for element in time series
data.

2. Behavioral attribute. it characterize the features independent of context for the given
data instance, e.g., the value of the data instance in time series.

and it is common to see that, a data instance can be determined as an anomaly in a context
but nominal data in other context.

• Collective Anomalies. an anomalous event is a collection of some related samples, rather
than each single sample. for example, an anomaly in ECG data is shown in figure 1.2

Figure 1.2: An anomaly in ECG data, it is actually a collection of ECG samples.

As is declared in the definition, anomalous events are created by some unusual mechanism,
they reflects ill status of systems and gives rise to the degeneration of system performance as
a consequence, or sometimes even results in a system-level crash if there is any fatal failure
in critical components of system. Since systems nowadays becomes more and more complex
and therefore fragile as well in some way, the occurrence of anomalies are somehow inevitable,
from this viewpoint, detecting anomalies instead of preventing them from happening could be
a better choice if we think of how much efforts we must make in order to completely get rid of
them.

Anomaly detection has been one of the state-of-arts accompanied with many other chal-
lenges in addition to the problem of accurate definition we mentioned above, such as: the lack
of sufficient anomalies because the amount of anomalies is rare in relative to nominal data,
availability of labeled datasets for further study which usually is the main issue, from this per-
spective, unsupervised learning approaches are preferable in contrast to other methods such as
supervised learning. Anomaly detection has been applied to many fields:

• Fraud Detection— In the field of economics, unusual consumption behaviors or transac-
tion activities typically happen when credit cards are stolen from users. Such fraudulent
financial activities can be easily recognized via anomaly detection given that behavioral
pattern in that case has changed, and be blocked in order to protect users as well as finan-
cial institutions from further losses.

• Intrusion Detection— It aims to identify malicious activities happened in computer sys-
tems or networks, for example, intrusion against computer security system. It is one of
the main issues that computer society concerns, and turns to be more and more relevant

4

to human’s life as we are pacing towards a digitalized world. On the other hand, many
challenges are emerging in the meantime, e.g., volume of data involved becomes larger
and larger if we think of the applications of IoT.

• Structural Health Monitoring (SHM)— As a matter of fact, anomaly detection is consis-
tently one of the concerns in the field of SHM. Basically, it detects anomalies throughout
data collected from sensors embedded in the objects like buildings or bridges, evaluates
structural condition accordingly and sends an alert when needed to eliminate any potential
threats.

• Health Care— Undoubtedly, anomaly detection is also perfectly suitable to the applica-
tions related to health care if we consider them special cases of SHM in an extended sense
where we would like to monitor human body’s condition instead. For example, a dedi-
cated hardware can be designed to perform 24-hour anomaly detection on real-time ECG
signals from patients and once there is an anomaly arising, it can immediately warn doc-
tors of any cardiac illness so that they would have more time to take appropriate actions
and to save their life as well as improve survival rate.

A variety of methods have been proposed and well-developed to cope with anomaly detec-
tion regarding different situations. Many statistical approaches are invented given that anomaly
detection was first investigated in the statistics community, meanwhile, with the rising interests
in artificial intelligence, various neural network based techniques are also proposed for anomaly
detection. for this reason, we are going to explore the possibility of utilizing a particular neural
network, LSTM, to perform anomaly detection based on data from satellites and compare its
performance with the conventional neural network. LSTM possesses some good properties at-
tracting us to adopt it in anomaly detection: first, unlike conventional NN, it is mainly designed
to learn the time dependency, this feature helps us as we are exploring time series data from
satellites, also, the number of parameters LSTM needs is less than conventional NN thanks
to the technique of parameter sharing, last but not least, the training is more stable during the
training process since LSTM does not suffers from exploding gradient or vanishing gradient
problems in contrast with recurrent neural networks (RNN).

Outline Our project focus on the data from satellite which has not been well-documented, and
we will try different neural networks with various parameters to perform anomaly detection.
This report will be organized as follows: In chapter 1, we briefly introduce the methods applied
for anomaly detection starting from statistical fields where anomaly detection stems from and
we stop at one of state-of-arts, neural network based methods. Then we formally introduce
neural network based methods at next chapter with a toy case on ECG data which helps us
obtain intuitive ideas for methods we are going to apply. We detailed describes our work on
satellite data followed by the results in chapter 3 and 4. Finally, we end up with our conclusion
in chapter 5.

5

Chapter 2

Methods for anomaly detection

Early studies on outlier detection mainly focused on the statistical characteristics of data set,
while sometimes, most of data at hand does not subject to purely statistics laws, more univer-
sial methods are needed consequently. To the best of our knowledge, many outlier detection
methods have been proposed for various applications and we will demonstrate some typical
examples starting from statistical methods and end up with machine learning based methods.

2.1 Depth-based Method
As is addressed in the definition, an outlier is the observation that deviates most from normal
data, intuitively speaking, it is the data point1 that lies far away from clusters. A depth-based
method is proposed to detect outliers by constructing a collection of contours. Suppose we want
to find out outliers given the dataset, X say, according to its definition, outliers are supposed to
be found far from normal clusters, see an example in the figure 2.1,

outlier

Figure 2.1: An outlier lies far away from the cluster.

This feature inspire us that if we regard all data points of X as vertices of mutually nested
contours, the outlier is most likely to be discovered in the outmost contour. To capture this
idea, we first confine our attention on 2-dimensional space and imagine we have an elastic
band encompassing all data points of X initially, then it starts shrinking and finally becomes
the outermost contour when it touches all the outermost data points, and if we removes those
points that support the outermost contour, the band will shrink once again until it forms a new

1we use terms point, sample, and element interchangeably

6

outermost contour based the rest of data points as is shown in figure 2.2 and 2.3. This process
will proceed consistently until all points are removed from the space.

outlier

Figure 2.2: An elastic band encom-

passes all data points at the begin-

ning and it tends to shrink without

supports.

outlier

2-depth

1-depth

0-depth

Figure 2.3: An elastic band forms

the outermost contour once it

touches outermost points.

This algorithm is represented below, where we denote C as the collection of contours and V
is the vertex set of the outermost contour.

Algorithm 1 adapted from [1]
S = X , C = { ∅ }, V = ∅
while S 6= ∅ do

Find the outermost contour
Assign all data points that support the outermost contour to V
C = C

⋃
{ V }, S = S \ V , V = ∅

end while

Ida Ruts [34] proposed ISODEPTH algorithm to construct a collection of nested contours
and assign depth number to each contour under the assumption that outliers only locate in
lowest depth contour, namely, the outermost one. Compared to naive algorithm whose total time
complexity is O(N5 logN), ISODEPTH brings the overall complexity to O(N2 logN) and this
has been confirmed on synthetic datasets generated according to standard Gaussian distribution.
Theodore Johnson extended Ida’s work and created a fast algorithm, FDC [20], for the same
purpose by restricting the computation on a small set of data points instead of the whole data
points as is did in ISODEPTH, and it leads overall complexity to O(N logN+h log2N+kh3).
It is worth mentioning that, for a large data set, k is typically not large (6 100 say) and h is
at least 2 or 3 orders of magnitude smaller than N , which makes the final complexity of FDC
approximately equal to O(N logN).

2.2 Deviation-based method
Deviation-based method focus on the variation of dissimilarity due to the occurrence of out-
liers, and an algorithm [2] is invented based on this motivation. This algorithm simulates the

7

mechanism similar to human beings: after seeing a sequence of homogeneous or similar data,
a new point will be considered an outlier if it deviates a lot from the previous observations, said
differently, it contributes the most dissimilarity to the whole data set. In order to quantitatively
measure how much a set of points contributes to dissimilarity of the whole data set, smoothing
factor (SF) is then introduced in the paper and as we can see, this notion is well-defined as
we expect: for the normal data sets, their SF is small in contrast to SF of outlier sets, which
are relatively high. Consider an example provided in the paper, where we have the whole set
X = { 1, 4, 4, 4 }. Apparently, O = { 1 } is an outlier set embedded in X and it can be proved
more evidently if we compute SF of the power set of X constituting the table 2.1.

X I SF(I)

{ 1, 4, 4, 4 } { } 0.00

{ 1, 4, 4, 4 } { 4 } -0.94

{ 1, 4, 4, 4 } { 4, 4 } -1.13

{ 1, 4, 4, 4 } { 4, 4, 4 } 1.69

{ 1, 4, 4, 4 } { 1 } 5.06

{ 1, 4, 4, 4 } { 1, 4 } 3.38

{ 1, 4, 4, 4 } { 1, 4, 4 } 1.69

Table 2.1: Table adapted from [2]

Likewise, we can also apply same concept to sequential problems by extending the defini-
tion of smoothing factor to the case of sequential data. In that case, SF indicates dissimilarity
contribution of current data to preceding data set, in other words, how much current data point
contributes to dissimilarity of preceding data set. For instance, suppose we have a sequence
data reads as follows,

t1 t2

Figure 2.4: Large deviations happen at t1 and t2, which are identified as anomalies.

By definition, the SF at t1 and t2 shall be large compared to the SF at other time instance
since data at t1 and t2 contributes most to dissimilarity of the preceding sequence. On the other
hand, it is evident to see that now SF is sensitive to abrupt variation (mathematically speaking,
discontinuous points) and therefore vulnerable to noise. Concerning the complexity issue,
this algorithm possesses a linear computation time that makes it perfectly suitable to large data
set. However, the effectiveness of algorithm depends on the dissimilarity functions we used to
define smoothing factors, and if we have priori knowledge about outliers, we can design a very
effective dissimilarity function for the application. Furthering experiments reveal the facts that

8

dissimilarity function is application-dependent and it is difficult to have a universial one that
works well for all applications.

2.3 Distance-based method
Conventional methods for outlier detection lie in the field of statistics and focus their attention
on statistical characteristics of data. Those methods require many discordancy tests to see if
data fit any standard distribution when we lack some priori-knowledge or when we do not know
whether data follows particular distributions. In the light of the unified notion of outliers that
coincide with aforementioned outlier definition, regardless of data distribution, Edwin M. Knorr
offers a distance-based approach and algorithms without need for many (not all) statistical dis-
cordancy tests [22] [23].

Specifically, a data point o is said to be an outlier if

{ x | d(x, o) > r , x ∈ X }
X

> p

where

d(x, o)— distance from x to o, in this case, Euclidean distance is applied.

X— cardinality of set X , equivalently, number of data in x.

r— radius.

p— fraction.

Obviously, it is equivalently to say

{ x | d(x, o) 6 r , x ∈ X } 6 X(1− p) , N(1− p)

The simple algorithm based on this definition is nothing more than a brute-force algorithm:
for every point of X , it counts the number of points in its neighborhood (technically, the ball
with radius r) and to see if the amount exceeds 6 N(1 − p). If yes, the point is an outlier,
otherwise, it is not. The pseudo-code (C++ style) is represented below

The complexity of simple algorithm is O(kN2) where k stands for dimensionality. Addi-
tionally, a block-oriented design can also be implemented to avoid the cost of building index
for entire dataset: it divides buffer into two halves, then performs distance computation as well
as outlier checking on one half and only those referred to as outlier candidates that do not pass
the outlier checking need furthering checking on the other half. This block-oriented design ease
the overload of I/O’s but have same complexity to the simple algorithm.

However, if we follow this divide-and-conquer idea and simply divide the whole space into
small cells instead of two blocks in block-oriented design as well as check outliers in the unit
of cell, finally we will reach an extreme case of block-oriented design, that is, the cell-based
algorithm whose complexity now is linearly proportional to N but exponentially with respect to
dimensionality k. Take 2-D space for example, we first divide space into cells in terms of side
length l = r

2
√
2
, whereas r is the radius of ball, and we define the first layer neighbors of cell

9

for ∀x ∈ X do
counter = 0
for ∀y ∈ X do

// count how many data points are inside the ball
if d(y, x) 6 r then

counter++;
if counter > N(1− p) then

// x is NOT an outlier
break;

end if
end if

end for
if counter 6 N(1− p) then

// x is an outlier
end if

end for

Cx,y as
N1(Cx,y) , { Cu,v | u = x± 1 , v = y ± 1 }

also the second layer neighbors of Cx,y is

N2(Cx,y) , { Cu,v | u = x± i , v = y ± j , i, j = 2, 3 }

A graphic representation is shown in figure 2.5

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N2

N1

N1

N1

N1

N1

N1

N1

N1

Cx,y

l

r

Figure 2.5: A graphic representation of the cell-based algorithm.

with propositions:

1. if there are > N(1 − p) data points in Cx,y or Cx,y
⋃
N1(Cx,y), then none of data points

in Cx,y is an outlier.

2. if there are 6 N(1− p) data points in Cx,y
⋃
N1(Cx,y)

⋃
N2(Cx,y), then every data point

in Cx,y is an outlier.

10

Proof. 1. Since we know that ∀a ∈ Cx,y or a ∈ Cx,y
⋃
N1(Cx,y),

a ∈ { t | d(t, o) 6 r , t ∈ X }

holds for ∀o ∈ Cx,y. Thus, for ∀o ∈ Cx,y, we have

Cx,y ⊂ Cx,y
⋃

N1(Cx,y) ⊂ { t | d(t, o) 6 r , t ∈ X }

Namely,

{ t | d(t, o) 6 r , t ∈ X } > Cx,y
⋃

N1(Cx,y) > Cx,y > N(1− p)

holds for ∀o ∈ Cx,y, and by definition, o is not an outlier.

2. Similarly, for ∀o ∈ Cx,y, and ∀a ∈ { t | d(t, o) 6 r , t ∈ X },

a ∈ Cx,y
⋃

N1(Cx,y)
⋃

N2(Cx,y)

holds for ∀o ∈ Cx,y. Thus, for ∀o ∈ Cx,y, we have

{ t | d(t, o) 6 r , t ∈ X } ⊂ Cx,y
⋃

N1(Cx,y)
⋃

N2(Cx,y)

Namely,

{ t | d(t, o) 6 r , t ∈ X } 6 Cx,y
⋃

N1(Cx,y)
⋃

N2(Cx,y) 6 N(1− p)

holds for ∀o ∈ Cx,y, and by definition, o is an outlier.

Then, once we have counted number of points in each cell, outliers can be detected ac-
cording to two propositions. Clearly, those two propositions are merely sufficient conditions
for declaring outliers, but if space partitioning is dense enough so that the cell volume is suffi-
ciently small, then two propositions would become almost sufficient and necessary conditions
for outlier detection. We can also extend cell-based algorithm to the case of high dimensional
space, the only difference is side length of cell which, in that case, turns out to be r

2
√
k
. It has

O(ck +N) complexity, where c is a constant depending on dimensionality k.
In conclusion, the simple algorithm and its block-oriented design have complexity O(kN2)

whilst cell-based algorithm has linear complexity exponential with respect to dimensionality k.
As a result, the cell-based is preferable when dealing with low dimensional data (e.g., k 6 4)
and simple algorithm including its block-oriented design are superior when k is large.

11

2.4 Density-based method
Distance-based method utilizes a pair of global parameter, radius and fraction, to describe the
whole dataset which may contain various cluster structure in different region, consequently, it
lacks capability to capture detailed structure information of dataset. For instance, assume we
have a dataset composed of two clustersC1 andC2 and three outliers, o1, o2, and o3 respectively,
see in figure 2.6. In this dataset, C1 is dense and C2 is sparse on the contrary, o1 and o2 lie far
away from both cluster C1 and C2, whilst o3 is relatively close to C1. The problem is, the
distance between o3 and C1 approximately equal to the average distance of any two points in
cluster C2, in that case, distance-based approach will fail to detect o3. For this reason, Markus
M. Breunig assign each point a local outlier factor (LOF) as the score of being an outlier
by introducing the concept of density to dataset, LOF is local property in a sense that for a
given point, it only depends on surrounding neighbors. Hence, it is capable of characterizing
local structure of dataset. Moreover, he also presents a density-based algorithm based on this
notion [3] and [4].

o3

C1

o1

o2

C2

Figure 2.6: Three outliers and two clusters with different density, C1 is dense in relative to C2,

adapted from [3]

Specifically, the higher the LOF, the more chance for a point to be an outlier. As for those
data points in clusters, their LOF approximately equals to 1. In addition, the upper bound and
lower bound on LOF are also given with proofs in [4], as well as the tightness of bounds. The
performance of density-based algorithm finally reaches O(N logN) complexity at best.

2.5 Machine Learning based method
Machine learning (ML) based methods are powerful complement of conventional methods es-
pecially in the situation where we do not have sufficient priori knowledge, and typically, a
ML-based model for outlier detection is trained in an unsupervised or semi-supervised manner
as it is difficult and expensive to label massive data that involve expert knowledge.

2.5.1 Autoencoder-based method
With the extensive studies and wide applications of IoTs, the dimensionality of data has been
growing consistently and eventually gives rise to the curse of dimensionality inevitably. Basi-
cally, the curse of dimensionality is a collection of phenomenon that happen when data dimen-

12

sion increases, for examples, the probability that two data are ”similar” in terms of Euclidean
metric tends to zero and data volume appears to ”explode” exponentially [37].

Autoencoder (AE) based method stems from the motivation of dimensionality reduction.
It was first introduced as a nonlinear principal component analysis (NL-PCA) in [24] in order
to reduce dimensionality by extracting main features from data. A typical AE comprises two
neural networks stacked sequentially [24] and perform identity mapping theoretically, as is
represented in figure 2.7. The first neural network called encoder is a feature extractor, which
aims to extract main features from input data and then represent them in latent space by means of
nonlinear mapping f . Then, the second NN referred to as decoder exploits those main features
to reconstruct input data while keeping reconstruction error as minimum as possible. Those
main features in latent space can be regarded as a compressed representation of input data, and
dimensionality reduction is therefore achieved.

Encoder Decoder

output spacelatent spaceinput space

Figure 2.7: A typical architecture of an autoencoder.

Or formally speaking, an AE is a pair of mappings (f, g) such that

(f, g) = arg min
f,g∈F

L [x, g ◦ f(x)] , x ∈ X

where F is the space of candidate functions, X is input space, and L stands for the pre-defined
loss function, e.g., L2-norm. On the other hand, it could also be the case that all data distribute
in a manifold 2 embedded in a higher dimensional input space X , and it is of our interest to find
out a low dimensional representation of this manifold. Some algorithms have been proposed for
this purpose [36] [33] [16]. To better illustrate this idea, we represent an toy case to show how
an AE capture the reduced-dimensional representation of input data in a manifold with very
small reconstruction error.

Procedure:

1. Firstly, we know that a half sphere is 2-dimensional manifold embedded in 3-D space and
we generate some synthetic samples that are uniformly distributed in a unitary half sphere
2.8.

X , { [x1, x2, x3]t | x21 + x22 + x23 = 1 , x3 > 0 }
2A (Hausdorff) space is said to be a manifold if it is locally homeomorphic to a Euclidean space, in other words,

any point of manifold possesses a neighborhood that is homeomorphic to a open set of Euclidean space

13

Figure 2.8: Synthetic samples are uniformly distributed in a half sphere

2. A natural low dimensional representation of this dataset is just take the first and second
coordinates, because

f : X → R2 where
[
y1
y2

]
= f(

x1x2
x3

) =

{
y1 = x1

y2 = x2

and

g : R2 → R3 where

x̂1x̂2
x̂3

 = g(

[
y1
y2

]
) =


x̂1 = y1

x̂2 = y2

x̂3 =
√

1− (y21 + y22)

in that case, the reconstruction error is zero and y1, y2 are sufficiently capable of recon-
struct x1, x2 and x3. So we model an AE with one layer NN both for encoder and decoder
parts, the latent space is 2-dimensional space as we only need two coordinates for recon-
struction. The number of neurons subjects to the constraint [24]

M1 +M2 �
m(N − f)

m+ f + 1

whereas

M1— number of neurons of the encoder, e.g., 10

M2— number of neurons of the decoder, e.g., 10

f— dimensionality of latent space, i.e., 2

m— dimensionality of X , i.e., 3

N— amount of samples in X , e.g., 4000

And the results are shown in the figures 2.9 2.10 2.11 2.12 with resulting reconstruction
error at 5e− 4 in the end.

14

Figure 2.9: Data representation in latent

space.

Figure 2.10: Left view of

reconstructed data via AE.
Figure 2.11: Front view of

reconstructed data via AE.

Figure 2.12: Top view

of reconstructd data via

AE.

3. As a comparison, we also tried PCA with reconstruction error 0.0276, see in the figures
2.13 2.14 2.15.

Figure 2.13: Left view

of reconstructed data via

PCA.

Figure 2.14: Front view of

reconstructed data via PCA.

Figure 2.15: Top view

of reconstructed data via

PCA.

The experiment results reveal a fact that: as a nonlinear PCA, AE outperforms PCA in
extracting main features from data.

15

2.5.2 Prediction-based method
Nowadays, massive unlabeled time series data is generated consistently and brings new issues
ML-based methods:

• conventional NN assumes data is time-independent regardless of their correlation and it
lacks capability of processing long-term sequence.

• unlabeled data makes it impossible to train NN in a supervised manner.

• In contrast to numerous and easy-acquired nominal data, the amount of anomalies is so
rare on the contrary, which makes NN difficult to learn any knowledge from anomalies.

Recurrent Neural Network (RNN) is thus proposed to overcome those problems. Basically, it
is trained to predict next q values of input time series, and thanks to its memory capacity, it can
take not only the current input but also historical information in memory into account while
performing prediction. Therefore, if we train RNN with only nominal time series to predict
next q values, it will learn the normal behavior and understand underlying patterns finally. In
that case, once a well-trained RNN encounters anomalies in the time series, the prediction error
will be significantly large so that we can easily identify them. On the other hand, because
of vanishing gradient problem that RNN might suffer from, Hochreiter proposed an improved
RNN called Long Short-Term Memory (LSTM) in [17]. We are going to talk about RNN and
LSTM more in details in the following chapters.

16

Chapter 3

Anomaly detection based on Neural
Network

3.1 Neural Network
Neural Network (NN) is one of the most popular scientific topics since it was first introduced
in 1943 [28]. It has been studied, well-developed for decades, and is still arousing more and
more attention from academic, engineering as well as many other communities, meanwhile,
consistently driving people to devote their enthusiasm and professional knowledge to this field.

3.1.1 Conventional Neural Network
The main idea of NN has been well explained in many literature, it was inspired by analogy
with the mechanism that our brain neurons process bioelectric signal. As is stated in neuro-
physiology, neurons activities in human brain behaves in a way of ”all-or-none” just like binary
states. This feature inspire us that probably we can describe neural events by means of propo-
sition logic and represent biological network, abbreviated as network, by logical expression.
Indeed, [28] has proved that for any logic expression satisfying certain conditions, there ex-
ists a network behaving in the same fashion as is described by the logical expression, and vice
versa. Moreover, It was also found that every logic expression can be characterized by many
equivalent networks in the sense that they yield the same result, mathematically speaking, a
logic expression corresponds to an equivalent class. For the sake of clarity, we will explain NNs
following the steps:

1. we first start with elementary building blocks of NNs, that is, perceptrons.

2. we address the universal approximation theorem to answer the question ”why NNs behave
so well”.

3. discuss the architecture of Deep Neural Network and list some activation functions.

4. explain the main idea of gradient descent we well as back propagation algorithm.

17

Perceptron

As the building blocks of NNs, perceptron was first created by Rosenblatt in 1958 [32], it is
also a linear discriminant model demonstrated as follows,

neuron

Figure 3.1: A perceptron model.

y = f

(
n∑
i=1

wixi + b

)
, wi, xi, b ∈ R, y ∈ {−1,+1}

or in a more compact form

y = f(~wt~x+ b) , ~w, ~x ∈ Rn, b ∈ R, y ∈ {−1,+1}

where f is activation function defined as,

f(x) =

{
−1 , x < 0

+1 , x > 0

and wi, xi are weights and inputs respectively, likewise, ~w, ~x are weight (column) vector and
input (column) vector respectively. To show how a perceptron works, let us consider a simple
case where we want to design a perceptron performing logic OR operation. Given two inputs
x1, x2, the truth table of logic OR is

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

18

with discriminant expression:

w1x1 + w2x2 + b
1

≷
0

0 ⇐⇒ w1x1 + w2x2
1

≷
0
−b

Obviously, x1 + x2 − 1
2

= 0 is one of the solution. Therefore, the perceptron that performs
logic OR is designed as

neuron
f(x) =

−1 , x < 0

+1 , x > 0

Formally speaking, the perceptron model acting as a linear discriminant is a pair of weight
and bias such that the loss is minimum, i.e.,

(~w, b) = arg min
~w∈Rn

b∈R

L (~x, y)

and the loss function L is defined as

L (~x, y) = −
∑
j∈M

(~wt~xj + bj)yj , ~xj ∈ Rn, yj ∈ {−1,+1}

with M denoting the set of all misclassified samples.
The model is convergent guaranteed by perceptron convergence theorem and can be solved

by means of stochastic gradient descent algorithm.

universal approximation theorem

universal approximation theorem is one of the cornerstone of NN theory, it states the fact that
any NN with only one hidden layer, in general, can be considered a universal approximator
in the sense that for any continuous function in compact space like R, an NN can uniformly
approximate it to arbitrarily small error [8]. Said formally,

Theorem 3.1.1. Let A be the set of the form

A , { g | g(x) =
N∑
i=1

αjσ
(
~wtj~x+ bj

)
} , ~wtj ∈ Rn, ~x ∈ In, αj, bj ∈ R

where

In , [0, 1]× [0, 1]× · · · × [0, 1]︸ ︷︷ ︸
n times

, σ(x) =

0 , x→ −∞

+1 , x→ +∞
, e.g., σ(x) =

1

1 + e−x

19

then, A is dense in C[In]. Said differently, ∀f ∈ C(In) and ∀ε > 0, there exists a function

g ∈ A such that

|f (~x)− g (~x)| < ε

holds for any ~x ∈ In

Figure 3.2: A NN with one hidden layer, input vector ~x = [x1, x2, · · · , xn]t ∈ Rn and output

y ∈ R.

A more general form of the theorem is given in [18], further experiments [26] also reveals
the fact that the number of neurons in Deep Neural Network will grow linearly in order to
achieve higher approximation accuracy in contrast to the shallow NN which grows exponen-
tially.

Architecture and activation function

A typical NN usually is comprised of multiple hidden layers other than input and output layers to
obtain sufficient generalization capability, for example, a NN with 3 hidden layers is represented
in 3.3

input layer output layer3 hidden layers

neuron

matrix

matrix matrix

identity
matrix

bias

Figure 3.3: Deep neural network (DNN).

20

With regard to activation functions, they are a family of functions with different characteris-
tics used for the purpose of introducing nonlinearity to NN. The choice for activation functions
is application-dependent, and considering derivation operations that we are going to perform in
gradient descent algorithm or in back propagation, it is better to exploit smooth and differen-
tiable activation functions. In case if activation functions are absent in the model, the network
degenerates to a composition of linear operators, which turns out to be a linear transformation.
Here are some commonly used activation functions.

Figure 3.4: Linear function. Figure 3.5: Relu function.

f(x)

x

1

f(x) = 1
1+e−x

Figure 3.6: Sigmoid function.

f(x)

x

1

−1

f(x) = ex−e−x

ex+e−x

Figure 3.7: Tanh function.

gradient descent and back propagation algorithm

For the simplicity of exposition, we consider the gradient descent in perceptrons, this algorithm
can also be extended to general NN though. Suppose ~w ∈ Rn, and think of the optimization
problem

~w∗ = arg min
~w∈W

L(~w)

we apply Taylor expansion to L(~w) at ~w(0)

L(~w) = L(~w(0)) +∇~wL(~w(0))(~w − ~w(0)) + o
(∥∥~w − ~w(0)

∥∥) , ∇~wL(~w(0)) =


∂L
∂w1
∂L
∂w2...
∂L
∂wn


∣∣∣∣∣∣∣∣∣
~w=~w(0)

21

By Cauchy-Schwarz inequality, we know∣∣∇~wL(~w(0))(~w − ~w(0))
∣∣2 6 ∥∥∇~wL(~w(0))

∥∥2 ∥∥~w − ~w(0)
∥∥2

the equality holds i.f.f. ~w − ~w(0) = ± ∇~wL(~w
(0))

‖∇~wL(~w(0))‖ , where ”−” sign indicates steep descent

direction. Therefore, the iteration equation reads,

~w(k+1) = ~w(k) − η ∇~wL(~w(k))

‖∇~wL(~w(k))‖
η— learning rate

Usually, we refer to this equation as normalized gradient descent and since the division by∥∥∇~wL(~w(k))
∥∥ is just a scaling, we can also simply omit this factor and finally yields gradient

descent iteration

~w(k+1) = ~w(k) − η∇~wL(~w(k)) η— learning rate

Remember, our main goal is to use gradient descent to find optimal weights for the network
such that the loss is minimum, and back propagation is applied to compute gradients in the
expression. Take the NN in fig 1.18 for example, we want to find an optimal tuple W ∗ ,
{W (1),W (2),W (3)} where

W (1) =
[
~w
(1)
1 , ~w

(1)
2 , ~w

(1)
3

]
, ~w

(1)
j ∈ R4

W (2) =
[
~w
(2)
1 , ~w

(2)
2 , ~w

(2)
3 , ~w

(2)
4

]
, ~w

(2)
j ∈ R3

W (1) =
[
~w
(3)
1 , ~w

(3)
2 , ~w

(3)
3

]
, ~w

(3)
j ∈ R4

assume loss function is defined as

L =
1

2

∥∥~y − ~t∥∥2
2

=
1

2

∑
j

(yj − tj)2

according to the gradient descent algorithm, we need to solve ∂L

∂w
(l)
ij

for each layer l = 1, 2, 3.

By chain rule, we will know that the gradients for l = 2 involves gradients of l = 3, and same
reason applied to l = 1, so we compute gradients of the last hidden layer l = 3 first

∂L

∂w
(3)
ij

=
∂L

∂yj
· ∂yj
∂h(3)

· ∂h
(3)

∂w
(3)
ij

= (yj − tj)·1·f ′ ·f(h(2))

where

h(1) = W (1)t~x+ b(1)

h(2) = W (2)tf
(
h(1)
)

+ b(2)

h(3) = W (3)tf
(
h(2)
)

+ b(3)

~y = f
(
h(3)
)

22

Then, we can apply chain rule layer by layer and backwards for ∂L

∂w
(2)
ij

and ∂L

∂w
(1)
ij

.

3.1.2 Recurrent neural network
As was briefly discussed before, conventional NN has disadvantage in handling time series data
due to the lack of memory effect, for this reason, recurrent neural network (RNN) is proposed
to capture time dependency among sequential data and therefore it possesses the capability to
memorize historical information. One way to implement memory effect is to share parameter
across time by introducing a feedback loop into the network. Parameter sharing plays an role of
memory effect in a sense that historical information can be stored in shared parameters. Figure
3.8 depicts a general architecture of RNN where we suppose the input sequence length is fixed
to p.

RNN

Input

Output
RNN RNN RNN RNN RNN

Figure 3.8: A classical RNN: compact form is on the left, diagram on the right corresponds

unfolded form across time.

a classical RNN can characterized by a system of equations{
h(t) = tanh

(
V h(t−1) +Wx(t) + b

)
y(t) = h(t)

where

h(t)— hidden state vector at t

x(t)— input vector at t

y(t)— output vector at t

V,W, b— shared parameters

It is also worth noting that a RNN is essentially a nonlinear Kalman filter in the extended
sense if we compare the equations above with the equations for Kalman filter as follows{

h(t) = T (t, t− 1)h(t)−1 + x(t−1)

y(t) = C(t)h(t) + v(t)

23

whereas now,

T (t, t− 1)— state transition matrix from t− 1 to t

x(t)— process noise

C(t)— observation matrix at t

v(t)— observation noise

h(t)— state vector

y(t)— observation vector

Our main goal is to find optimal shared parameters such that the error calculated by loss
functions is minimum. We first define the loss functions L [11].

L =

p∑
t=1

L(t)

with

L(t) =
1

2

∥∥y(t) − t(t)∥∥2
2

=
1

2

q∑
j=1

(
y
(t)
j − t

(t)
j

)2
, y(t), t(t) ∈ Rq

and t(t) is the target vector at t.
In order to achieve this, we are going to proceed with the following steps:
1. compute ∂L

∂h
(t)
j

As far as gradient descent is concerned, BP algorithm is no longer applicable to solve gra-
dients of L with respect to time t, to cope with this issue, BPTT is represented in [31] and we
demonstrate it roughly with a slightly different layout of RNN architecture as is in the figure
3.9.

RNN
RNN

RNN

RNN

RNN

Figure 3.9: Graphic representation of BPTT, adapted from [31].

the derivative of L with respect to the hidden state hj at last layer is

∂L

∂h
(p)
j

=
∂L

∂L(p)
· ∂L

(p)

∂y
(p)
j

·
∂y

(p)
j

∂h
(p)
j

= 1·(y(p)j − h
(p)
j)·1

24

Similarly, by exploiting chain rule we can also acquire ∂L

∂h
(t)
j

, ∂L

∂h
(t−1)
j

, ... layer by layer and

backwards until it touches the first one h(1)j , once it is done, we are able to obtain ∂L
∂wij

, ∂L
∂vij

, and
∂L
∂bj

[12].

3.1.3 Long Short-Term Memory
Vanishing gradient is the problem that gradient tends to vanish when it is propagated backwards
through many time steps. Specifically, we know the system of equations for RNN with loss
function is 

L =
p∑
t=1

L(t) , L(t) = 1
2

∥∥y(t) − t(t)∥∥2
2

h(t) = tanh
(
V h(t−1) +Wx(t) + b

)
y(t) = h(t)

where L(t) and h(t) are functions of wij . Thus,

∂L

∂wij
=

p∑
t=1

(
∂L

∂h
(t)
i

· ∂h
(t)
i

∂wij

)

where ∂L

∂h
(t)
i

= ∂L
∂L(t) · ∂L

(t)

∂y
(t)
i

· ∂y
(t)
i

∂h
(t)
i

is the expression we solved before, by applying chain rule, we
get

∂h
(t)
i

∂wij
=
∂h

(t)
i

∂wij
+

∂h
(t)
i

∂h
(t−1)
i

· ∂h
(t−1)
i

∂wij

Similarly, if we apply chain rule recursively to equation above, we will get a set of equations

∂h
(t−1)
i

∂wij
=

∂h
(t−1)
i

∂wij
+

∂h
(t−1)
i

∂h
(t−2)
i

· ∂h
(t−2)
i

∂wij

∂h
(t−2)
i

∂wij
=

∂h
(t−2)
i

∂wij
+

∂h
(t−2)
i

∂h
(t−3)
i

· ∂h
(t−3)
i

∂wij

...
∂h

(2)
i

∂wij
=

∂h
(2)
i

∂wij
+

∂h
(2)
i

∂h
(1)
i

· ∂h
(1)
i

∂wij

∂h
(1)
i

∂wij
=

∂h
(1)
i

∂wij
+ 0

and we substitute them for equation ∂h
(t)
i

∂wij
=

∂h
(t)
i

∂wij
+

∂h
(t)
i

∂h
(t−1)
i

· ∂h
(t−1)
i

∂wij
, yield

∂h
(t)
i

∂wij
=
∂h

(t)
i

∂wij
+

∂h
(t)
i

∂h
(t−1)
i

[
∂h

(t−1)
i

∂wij
+
∂h

(t−1)
i

∂h
(t−2)
i

(
h
(t−2)
i

∂wij
+
∂h

(t−2)
i

∂h
(t−3)
i

(
· · ·

(
∂h

(1)
i

∂wij
+ 0

)
· · ·

))]

=
∑
· · ·
∑ t−1∏

k=1

∂h
(k+1)
i

∂h
(k)
i

25

Finally we get
∂L

∂wij
=

p∑
t=1

∂L

∂h
(t)
i

·

(∑
· · ·
∑ t−1∏

k=1

∂h
(k+1)
i

∂h
(k)
i

)

Intuitively, since we have exponential term
∏t−1

k=1
∂h

(k+1)
i

∂h
(k)
i

in the gradient expression where t

is up to p (the whole sequence), it is easy to deduce that:

• if ∂h
(k+1)
i

∂h
(k)
i

< 1, then ∂L
∂wij

converges to 0 when p→∞.

• if ∂h
(k+1)
i

∂h
(k)
i

> 1, ∂L
∂wij

will explode when p→∞.

Long Short-Term Memory (LSTM) is thereby proposed to overcome vanishing gradient that

might happen on RNN. The intuition is simple: keep ∂h
(k+1)
i

∂h
(k)
i

constantly equal to 1, which results

in the constant error flow, and we refer to this idea as constant error carrousel (CEC) [17].
Specifically, we insert an internal feedback loop into the cell in addition to some auxiliary
gates: input gate, block input, and output gate. See in figure 3.10

CEC

input gate

block input

output gateLSTM cell

time delay

Figure 3.10: Architecture of LSTM cell: long-term memory is stored in CEC, input gate pre-

vents CEC from perturbation by irrelevant input and output prevents other units from perturba-

tion by contents in CEC, adapted from [15].

In that case, we isolate CEC from perturbation, as a result, the existence of CEC in the cell
enables LSTM possessing temporal (short-term) memory while maintaining long-term memory
meanwhile so that LSTM is more capable of handling sequence tasks compared to RNN. Nev-
ertheless, it brings another issue when processing continual input stream. On one hand, LSTM
does not know when the stream ends, so it will process stream all the time and fails to reset
itself when necessary. Besides, due to the self-connected loop in CEC, continual processing
can lead to internal states growing unboundedly and finally result in output saturated. On the
other hand, the errors may also be trapped in the self-connected loop permanently and can not
be backpropagated through time for updating weights. All these consequences finally results
the network breaking down.

26

A novel functional component referred to as forget gate is then employed for the purpose
of resetting itself as well as releasing memory resource at appropriate time. Basically, forget
gate is added to the self-connected loop in CEC allowing network remove irrelevant historical
information from the memory while keeping crucial long-term time dependency in the mean-
time [9] [10]. See in figure 3.11.

Replace
forget gate

Figure 3.11: Unitary gain in CEC is replaced with the forget gate.

which finally yields the commonly used LSTM cell illustrated in Figure 3.12 below

Figure 3.12: A LSTM cell, adapted from [15].

where the system of equations is,

z(t) = g
(
Vbh

(t−1) +Wbx
(t) + bb

)
i(t) = σ

(
Vih

(t−1) +Wix
(t) + bi

)
f (t) = σ

(
Vfh

(t−1) +Wfx
(t) + bf

)
c(t) = c(t−1) ·f (t) + i(t) ·z(t)

o(t) = σ
(
Voh

(t−1) +Wox
(t) + bo

)
h(t) = h

(
c(t)
)
·o(t)

y(t) = h(t)

A more compact graphic representation of this LSTM cell is cited from google.

27

σ
σ

σ tanh

ht

ct

ht

xt

ct-1

tanh

x +

x

x

Legend:
Layer Componentwise Copy

ht-1

Concatenate

Figure 3.13: A commonly used figure from [7].

while every component can be interpreted in such an natural way:

• forget gate decides what information needs to be removed from memory.

• input gate and block input choose the information to be stored.

• output gate choose information to be output.

3.1.4 Related work
Memory effect and forget gate allow LSTM to remove irrelevant contents from memory and
maintain both long-term data correlation in sequential data at the same time without need to
specify the sequence end. Considering most real-world datasets comprising abundant nominal
but only very few anomalies instances, Pankaj Malhotra [27] utilizes a predictor with multiple
LSTM layers to perform anomaly detection regardless of sequence length and preprocessing.
The network has two LTSM layers stacked sequentially and all units at two LTSM layers are
fully connected, that is, each unit at lower layer is connected to all units at upper layer as is
depicted in figure 3.14. Globally, the network is trained on nominal dataset in order to learn
normal behaviors of data, and specifically, it will be used to predict future values for a given
input while prediction error is difference between predictions and actual stream values. When
move to real scenario, the prediction error is used as a score indicating anomalies, this network
has been proved efficacious on four datasets.

Figure 3.14: The LSTM network adopted in [27].

28

To better explain how it works, suppose a nominal time series X = {x(1), x(2), · · · , x(N)}
and x(i) ∈ Rn, 1 6 i 6 N . At each time instance t, the network will take a certain input,
{· · · , x(t)} say, and predict next q values {x̂(t+1), x̂(t+2), · · · , x̂(t+q)} with x̂(i) ∈ Rd, t + 1 6
i 6 t+q. For example, at time instance t = 1, the input is {~0,~0, · · · ,~0︸ ︷︷ ︸

(N−1)×~0

, x(1)}, and our model will

predict next q values after x(1), namely, {x̂(2), x̂(3), · · · , x̂(q+1)}, where x̂(i) ∈ Rd, 2 6 i 6 q+1.
And at next time instance t = 2, the input becomes {~0,~0, · · · ,~0︸ ︷︷ ︸

(N−2)×~0

, x(1), x(2)}, while the output

now is {x̂(3), x̂(4), · · · , x̂(q+2)}. Similarly, at any time t, we have input {~0,~0, · · · ,~0︸ ︷︷ ︸
(N−t)×~0

, x(1), x(2), · · · , x(t)}

and output {x̂(t+1), x̂(t+2), · · · , x̂(t+q)}. This process will proceed until the end where we have
input {x(1), x(2), · · · , x(N) = X}. It is illustrated as follows

i.e.

current input

Legend

Figure 3.15: A graphic interpretation of how LSTM works across time steps. Note that, non-

existing elements are replaced with ~0’s.

Clearly, for any q 6 t 6 N , x(t) will be predict q times (q = 4 in the figure), thus, error
vector for x(t) is given by

~e =
[
e
(t)
11 , e

(t)
12 , · · · , e

(t)
1q , · · · , e

(t)
d1 , e

(t)
d2 , · · · , e

(t)
dq

]t
where e(t)ij is the difference between x(t)i and its prediction at time (t − j). Once the training is
completed and we set an appropriate anomaly threshold, the anomalies can be detected then.

Moreover, Kyle deploys an LSTM network using nonparametric dynamic thresholding to
detect anomalies in high volume telemetry data without need of expert labels [19]. This net-
work is also trained on nominal data in order to capture normal behavior of the system, after
that, an unsupervised, nonparametric dynamic thresholding approach is applied to automati-
cally identify whether a prediction error represents an anomaly. In order to provide an granular
view of system as well as locating anomalies effectively once they are uncovered, each chan-
nel has a model used to predict a next value given an input vector. Since abrupt changes in

29

time series values often gives rise to unperfect predictions and results in sharp spikes in error
values even if the behavior is normal, prediction error vector has to be smoothed before it is
compared with the threshold identifying anomalies, besides, another method called anomaly
scoring [25] can also be utilized to address the aforementioned issue related to unperfect pre-
diction. And thanks to dynamic thresholds, extreme values that can be considered anomalies
will be detected regardless of assumptions about error distribution. Furthermore, to mitigate
false positives while easing memory and computation cost, a pruning procedure is carried out
to exclude false anomalies caused by noise and priori knowledge, such as anomaly history or
labeled data, also helps us set another threshold to balance precision and recall.

Similarly, a deep LSTM predictor is also applied to anomaly detection in [29] as well as
ECG data [6], and does not require priori knowledge, expert-labelling, and preprocessing.
The network is deep in a sense that it consists of three fully connected LSTM layers with
dropout=0.2 for each LSTM layer to avoid overfitting, it is trained on nominal data as usual
so as to learn higher level features. An anomaly is confirmed if both the anomaly score and
window score are above their corresponding thresholds, whereas anomaly score is defined as
likelihood of error vector which is assumed to comply with Gaussian distribution that can be es-
timated on validation data using Maximum Likelihood Estimation, and window score is amount
of anomaly candidates while anomaly candidate is the data point whose anomaly score exceeds
the threshold that is selected by maximizing Fβ-score.

3.2 A toy case on ECG signal
In this chapter, we will explore how various parameters impact the performance of different type
of neural networks. For the sake of simplicity, we only consider shallow networks, meaning that
all networks in this chapter are composed of only one hidden layer, and we leverage those neural
networks to detect anomalies in dataset by prediction. To do that, we will train them on nominal
ECG data so that they will learn normal behaviors as well as underlying patterns from nominal
data, each neural network will take past p ECG samples into consideration and predict next
q values of them. All the experiments are carried out on dataset ’sel102’ in database ’qtdb’
comprising 225000 ECG samples, an example of it is given,

Figure 3.16: Raw ECG data, whereas each time step in x-axis is 1
fs

with fs = 250 [Hz], and

y-axis indicates voltage in mV.

Once raw data is acquired, we firstly standardize the whole dataset in terms of the mean µ
and standard deviation σ estimated on nominal data by applying StandardScaler(), in that case,
we explicitly exclude anomalies in computation for two reasons:

1. anomalies only represent abnormal behaviors and since they are minority in dataset, they
do not represent major characteristics of dataset and therefore do not possess much sta-
tistical meaning as a consequence.

30

2. anomalies are so rare that their contribution to overall µ and σ is negligible even if we
explicitly include them in computation.

After standardization, the dataset is then divided into 3 subsets: training set, test set, and
anomaly set while the first two subsets consist of only nominal data and the anomaly set con-
tains the only abnormal ECG signal.

Figure 3.17: Nominal data after standardization shown on the left, while abnormal data after

standardization represented on the right.

And we reshape those datasets in terms of input length p and output length q by sub-
dataset generator() so that they are compatible with the input shape and output shape of neural
networks. Once it is done, training and test datasets will be applied for network training and
validation with the loss defined as mean square error, parameter dropout and patience are also
needed for the purpose of avoiding overfitting and early stopping. After that, test dataset is used
once again for test (Note that, test dataset will be used twice, one for validation and the other in
test stage.).

At each time step t, the network will take last p samples from time series, ECG signal in
that case, as input

Input ,
{
x(t−p+1), x(t−p+2), · · · , x(t−1), x(t)

}
, x(t) ∈ Rn

and predicts the next q values as the output accordingly,

Output ,
{
x̂(t+1), x̂(t+2), · · · , x̂(t+q−1), x̂(t+q)

}
, x̂(t) ∈ Rn

where n = 1 for the ECG experiments. The following graphics 3.18 3.19 demonstrate this idea
with a detailed representation of RNN or LSTM,

at time step

RNN
or

LSTM
or

conventional NN

RNN
or

LSTM
or

conventional NN

+

-

Mean Square Error

Mean Square Error+
-

at time step

Input sequence

Output sequence (i.e., predictions)

Figure 3.18: General idea of how network works, similar to [27].

31

RNN
or

LSTM

RNN
or

LSTM

RNN
or

LSTM

RNN
or

LSTM

Input sequence =

Output sequence =

Figure 3.19: Unrolling RNN or LSTM network.

The mean square error at t, denoted as e(t), accordingly is:

e(t) =
1

q

q∑
i=1

(
e
(t)
i

)2
, e

(t)
i =

(
x̂(t+i) − x(t+i)

)
Keras will minimize the loss and ends up with an well-trained neural network, we will inves-
tigate how different parameters impact the performance of neural networks in the following
sections.

3.2.1 Performance versus number of neurons
Network performance depends on generalization capability which is partially relevant to the
number of neurons in networks, and we will explore its impacts as follows. In this experiment,
we fix input length p = 8 and output length q = 4, and train three types of neural networks:
RNN, LSTM, and conventional NN, for each type of neural network, the number of neurons is
given by 2n where n varies from 0 to 7. The experiment result is depicted in the figure 3.20,

Figure 3.20: Loss versus number of neurons, and input length p = 8, output length q = 4 for

each NN.

It is evident to say that the performance of conventional NN are superior than LSTM, both
conventional NN and LSTM outperform RNN, apart from that, their performance also increase
monotonically with the number of neurons increasing, this is because the generalization capa-
bility will increases if we have more neurons in the network. It is also worth notice that the

32

improvement of performance for LSTM and conventional NN are not so significant after 22

even if we continue to enlarge the number of neurons.
On the other hand, the performance of RNN increase with respect to the augmenting of

number of neurons, but decreases after 25 even if the number of neurons is still augmenting.
This is reasonable since RNN may have some troubles with training when the input length p is
large, because the error will be backpropagated through many time step during this process.

3.2.2 Performance versus input length
In this experiment, we study how input length p impacts network performance, to do that, we
firstly fix output length q = 4, number of neurons equals to 64 and we examine three types of
networks: RNN, LSTM, and conventional NN. For each type of network, the input length p
varies from 1 to 16. The result is shown as follows,

Figure 3.21: On the left, loss versus input length p with output length q = 4 and number of

neurons fixed to 64. On the right, we have loss versus input length p with output length q = 4,

but we fix the number of neurons per neurons constantly equals to 8 so that there is no worry

about the lack of generalization capability.

In general, the performance of LSTM and conventional NN are better than RNN as is shown
in the left graph, and they all increase while p is growing at the beginning mainly because longer
input sequence can provide more information to networks so that they can make predictions
better. However, the improvement of performance for LSTM and conventional NN is so tiny
after p = 4. On the contrary, performance of RNN starts fluctuating dramatically after p = 4
and even worse when input length p consistently increasing. On the other hand, one may worry
about whether generalization capability of networks will be limited by the number of neurons in
the network when p is too large. To verify this idea, we additionally carried out an experiment
with same setups, but the number of neurons per input length is fixed to 8. As a result, there is
no remarkable difference observed compared to the outcomes from previous experiment, which
means that generalization capability will not be limited by the number of neurons in the network
even if p is large.

3.2.3 Performance versus output length
Moreover, we investigate how output length q impacts network performance by fixing input
length p = 8 and number of neurons to 64, then we will evaluate the performance of three types
of networks as usual, the output length q for each type of neural network shall vary from 1 to
16. The results are as represented in figure 3.22,

33

Figure 3.22: Loss versus output length q with input length p fixed to 8 and 64 neurons in the

network.

As is expected, for LSTM and conventional NN, their loss tend to increase if output length q
is increasing, and We provide an intuitive proof to explain this phenomenon. The mean square
error at time t is a function of q (we omit mention of time t)

e = f(q) =
1

q

q∑
i=1

Ei , Ei = e2i

and since it is more difficult to forecast far distant future values, it is therefore reasonable
to assume that Ei is monotonically increasing with respect to time index i, said differently,
Ei+1 > Ei, and in general, it is correct as is depicted in the figure 3.23.

Figure 3.23: Ei versus time index i.

Our main goal is to prove that loss tends to increase when output length q is growing, in other
words, f(q) is monotonically increasing with respect to output length q, or said equivalently,

f(q + 1) > f(q) , ∀q ∈ N

34

Proof.

f(q + 1)− f(q) =
q

q + 1
· 1
q

(
q∑
i=1

Ei + Eq+1

)
− 1

q

q∑
i=1

Ei

=

∑q
i=1Ei
q

(
q

q + 1
− 1

)
+
Eq+1

q + 1

= −
∑q

i=1Ei
q(q + 1)

+
Eq+1

q + 1

=
qEq+1 − (

∑q
i=1Ei)

q(q + 1)

since we know Ei+1 > Ei, for ∀1 6 i 6 q, thus

qEq+1 >
q∑
i=1

Ei

in other words,

f(q + 1)− f(q) > 0

On the other hand, the profile of RNN is still terrible and no need to put any comments on
it.

3.2.4 Performance versus type of neural networks
In this experiment, we will see how the type of neural networks impacts their performance.
Since both RNN and LSTM have memory effect in contrast to conventional NN, and LSTM
even has long-term memory, theoretically speaking, if we enlarge input length p, RNN and
LSTM are capable of fully utilizing historical information when they are performing predic-
tions, and we shall expect that the performance: LSTM > RNN > conventional NN in that
case. Whilst if p is small, performance improvement of RNN and LSTM may not so distin-
guishable in contrast to conventional NN. To verify this idea, we fix output length q = 4 and
128 neurons for each network guaranteeing sufficient generalization capability, then we train
RNN, LSTM, and conventional NN respectively with the input length p varying from 1 to 16
for each type of neural network. The results are represented below

35

Figure 3.24: Loss versus NN type, fix output length to 4 and number of neurons to 128.

It is obvious that LSTM and conventional NN are superior than RNN, and performance of
RNN is shitty as usual. Specifically, conventional NN is better than LSTM in a sense that it
outperforms LSTM a lot when p is small, but this advantage vanishes as p increasing.

We conclude that conventional NN always wins because ECG possesses an obvious pat-
tern that can be easily learnt using conventional NN without need of RNN or LSTM, another
possible reason is: for RNN and LSTM, prediction takes historical information as well as pre-
vious outputs into account, but the fact is prediction on ECG data does not involves historical
information and irrelevant to previous outputs (as RNN and LSTM also take previous outputs
into consideration), thus, it suffices to precisely predict future values just based on present input
sequence via conventional NN.

3.2.5 Examination on test dataset
In this experiment, we will try our models on test dataset containing an anomalous event with
input length p = 8, output length q fixed to 4 and 1 separately. According to the outcome
from the first experiment, the number of neurons we choose for RNN is 32, and 64 for LSTM
and conventional NN, so that we can obtain a relatively good performance while maintaining
smaller number of parameters in the meantime. Considering the case where p = 8 and q = 4
(same applied to the case where p = 8 and q = 1), once the models are well-trained and
validated on training and test datasets respectively, we then feed them again with test dataset.
Suppose the test dataset is a sequence of time series of length l

X =
{
x(1), x(2), · · · , x(l−1), x(l)

}
Since we know that our model will take p consecutive samples from X at each time instance t,
and predict next q values after them. An example of predictions are shown in the figure 3.25.

36

Figure 3.25: Prediction on test dataset, output length q = 4 on the left and q = 1 on the right.

As a result, for each x(t) ∈ X , p+ q 6 t 6 l, it will be predicted q times at t− q, t− q + 1,
· · · , and t− 1 respectively. see in the figure 3.26.

prediction

time step

Figure 3.26: Graphic explanation about how NN perform prediction on test dataset X .

and we define error vector of x(t)1 as

ε(t) =
[
ε
(t)
1 , ε

(t)
2 , · · · , ε(t)q

]t
where each component ε(t)i is the prediction error of x(t) at time t − q + i − 1, hence, mean
square error (MSE) of x(t) reads

MSE =
1

q

q∑
i=1

(
ε
(t)
i

)2
1NOT aforementioned e(t)! Watch out the different notations: e(t) is mean square error at t and ε(t) stands for

the error vector of x(t)

37

With the help of appropriate data layout and visualization, all those error vectors constitute a
matrix of size (l − p)× q, denoted as A, while each column is the error vector ε(t).

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

time step

9 9 9 9

10 10 10

11 11

12

prediction at time t

Figure 3.27: Prediction error matrix A.

Regarding the data layout, each e(t), p 6 t 6 l is allocated to t (mod q)-th row with column
index starting from t. elements in e(t) will be filled into At (mod q),t, At (mod q),t+1, · · ·
, At (mod q),t+q consecutively. Then we compute MSE of x(t) for p + q 6 t 6 l and plot the
distribution of MSE after that in order to obtain the threshold for anomaly detection [35].

Figure 3.28: Top: MSE distribution of RNN, LSTM, and conventional NN with q = 4. Bottom:

MSE distribution of RNN, LSTM, and conventional NN with q = 1

For the sake of simplicity, we take maximum MSE value as the threshold for anomaly
detection. Then, we examine models then on the anomaly dataset, see in the figure 3.29.

38

Figure 3.29: anomaly detection on anomaly dataset, q = 4 on the left and q = 1 on the right.

In the case of q = 4, it is obvious to see that RNN, LSTM and conventional NN all detect
the only anomaly in ECG data, but the MSE of RNN while encountering the anomaly is not
as distinguishable as LSTM’s and conventional NN’s. What’s more, compared to conventional
NN, LSTM possesses less MSE glitch on nominal data potentially reduce fault alarms as a
consequence. Apart from that, LSTM is able to detect all abnormal waveform in contrast with
conventional NN since MSE value in abnormal interval after the peak is still relatively high.

On the contrary, the performance of predictors with q = 1 is not as good as those with q = 4:
MSE in the normal region also has some fluctuation, and MSE value is not as remarkable as it is
in q = 4. This is reasonable because with the more future values that network wants to predict,
the larger uncertainty we have to face which results in larger MSE in the end. That means,
although a network with q = 4 will have larger MSE than that with q = 1 when dealing with
nominal data as is observed in figure 3.22, however, when it confronts anomalous data, it also
raise bigger MSE compared to that with q = 1, and this MSE now is much larger since MSE
is quadratic to error, uncertainty, said differently, and as a result, MSE of anomaly for q = 4 is
much larger than that for q = 1.

Another interesting observation is that all those networks are sensitive to spikes or abrupt
changes of the waveform in a sense that their MSE is large every time when a spike appears in
the waveform, examples are represented in the figure 3.30.

Figure 3.30: model is sensitive to spikes, q = 4 for left and q = 1 for right

In conclusion,

39

1. the performance of LSTM and conventional NN are better than RNN.

2. prediction on nominal data with conventional NN is a little bit superior than the one with
LSTM in general as its prediction error is smaller.

3. with regard to anomaly detection on this ECG signal, LSTM is a better choice since it
produces less glitches in nominal region compared with conventional NN.

Moreover, since we will investigate those networks with large input length in large-scale
dataset, we want to evaluate performance to see if our models still works well when input
length is large by scaling up parameters, and it yields the following results, which seem good
as well.

Figure 3.31: Anomaly detection via LSTM

and conventional NN with input length p =

32, output length q = 8, and 256 neurons.

Figure 3.32: To show that networks on the

left are sensitive to spikes in waveform.

Figure 3.33: Prediction on test dataset us-

ing LSTM and conventional NN with input

length p = 32, output length q = 8, and 256

neurons.

Figure 3.34: MSE distribution of those two

networks on test dataset.

40

Chapter 4

Anomaly detection on satellite data

With the increasing popularity of satellite applications, a variety of satellites have been launched
to orbit in aerospace for different purposes such as navigation, telemetry, even military usages.
A typical satellite usually carries out many tasks using limited hardware resources embedded
in it, including but not restrict to, attitude control, communication and power management, as a
consequence, most advanced post processing that requires high computational resources have to
done in the ground control station based on the massive data transmitted from in-orbit satellites.
Nevertheless, we would also like to endow satellites with the ability of online anomaly detection
in order to prevent system from catastrophic failure or crash, and we focus on the feasibility of
this idea in this thesis first. Regrettably, satellite data is usually unavailable since they involves
some legal privacy albeit they are indispensable for the study on anomaly detection. Fortunately,
we get the telemetry data that can support us to explore anomaly detection which allows us to
carry out this thesis project.

The telemetry data we are working on is a collection ns signals for one year with Ts [s]
sampling period. Said differently, each sample at any time step is composed of ns quantities
including: n1 analogy quantities plus n2 digital quantities. Once the dataset is at hand, we first
standardize it by removing mean value µ and dividing by standard deviation σ,

x =
(z − µ)

σ

where µ and σ are estimated according

µ =
1

N

N∑
i=1

zi , N— amount of samples

σ2 =
1

N − 1

N∑
i=1

(zi − µ)2

Temporally, we take 3 quantities into consideration forming a DataFrame, signal 1, signal 2,
and signal 3. Whereas signal 1 and signal 2 are used as indicators of anomalies existing in
signal 3: we define some signal 3 samples as anomalies if signal 1 equals to α or signal 2 is β
at the same time instance. It is also worth notice that some anomalies in signal 3 do not meet
the definition, but they only appear as adjacent neighbors of the anomalies we defined above.
Once anomalies are determined, we then divide the DataFrame into two parts: first ten months

41

data is used in training stage among 80% of it aiming for training and 20% for validation, whilst
last two months data is applied for performance evaluation in test stage. During training stage,
we explicitly exclude anomalies by removing them from signal 3 and feed NNs only with the
purely nominal signal 3 after they have been reshaped to fit to input and output shapes of NNs,
by doing so, NNs can therefore learn the normal behaviors and perform prediction on nominal
data very precisely, while on the contrary, we will keep anomalies in signal 3 and fill a few
’Nan’ by linear interpolation at test stage before reshaping in order to avoid discontinuity on
time series.

From now on, we confine ourselves on shallow neural networks, meaning that each NN
has only one hidden layer either conventional NN or LSTM other than input layer and output
layer, see the figures 4.1 4.2. NNs are trained on nominal signal 3 to predict future values
given the input sequence, once the training stage is completed, they should have learnt only the
normal behaviors underlying signal 3 and whenever they encounter anomalies in real scenario,
a significant prediction error exceeding the threshold will be raised consequently.

input layer

output layer

conventional
neurons

Figure 4.1: Architecture

of shallow conventional

NN.

input layer

output layer

LSTM cells

Figure 4.2: Architecture

of shallow LSTM.

Without loss of generality, we consider each sample in the input sequence an n-dimensional
vector, where n equals to 1 as we are using only one quantity, signal 3, to train NNs currently.
Thus, the input sequence fed to NNs at each time instance t is a sequence of p samples:

Input ,
{
x(t−p+1), x(t−p+2), · · · , x(t−1), x(t)

}
, x(t) ∈ R

and the prediction of next q values after the input sequence constitutes the output sequence

Output ,
{
x̂(t+1), x̂(t+2), · · · , x̂(t+q−1), x̂(t+q)

}
, x̂(t) ∈ R

A graphic representation of the network workflow is depicted

42

NN

NN

+

-

+
-

signal_3:

Figure 4.3: Workflow of NNs.

4.1 Workflow

4.1.1 Custom callbacks
It has been observed that when input length p and number of neurons for LSTM are too large,
p = 32 with q = 4 (n = 1) and 512 neurons say, it is difficult and infeasible to train LSTM in
a sense that there is always an abrupt jump in loss at some point, see the figure 4.4, because
the amount of parameters Npara for LSTM is quadratic proportional to the number of neurons
(i.e., LSTM states) M [21]. As a result, the training process of LSTM will be overwhelmed
by numerous parameters, so we have to tradeoff between the number of neurons M indicating
generalization capability and input length p.

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-5 0 5 10 15 20 25 30 35 40 45 50

Figure 4.4: Training process of LSTM with

p = 32 (n = 1), q = 4, 512 neurons and

learning rate 1e − 3, as we can see, there is

an abrupt jmup happens without custom call-

backs.

Npara = 4× (M(n+M) +M)

≈M2

We try to fix this issue by reducing learning rate, and the results are represented: the reduc-
tion of learning rate does not helps us out, it only postpone the occurrence of jump instead of
eliminate it, which we can see in the figures 4.5 4.6. In order to cope with it permanently, we
propose a custom callbacks, which will be discussed after we make some clarification because
one may easily think of the abrupt jump happens in loss as the exploding gradients, but it is not
true indeed. To well explain it, let us first dive into the exploding gradient.

43

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-10 0 10 20 30 40 50 60 70 80 90 100 11

Figure 4.5: Training process of LSTM

with p = 32 (n = 1), q = 4, 512 neu-

rons, and learning rate 5e − 4 with-

out custom callbacks. reduction of

learning rate puts off the occurrence

of jump, but not prevent it from ap-

pearing.

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

-10 0 10 20 30 40 50 60 70 80 90 100 11

Figure 4.6: Training process of LSTM with p =

32 (n = 1), q = 4, 512 neurons, and learning

rate 1e−4 without custom callbacks, we do not

see the jump at this learning rate as the training

process converges at very low speed and it has

been stopped before the jump arises.

exploding gradient

From geometrical viewpoint, exploding gradient is the phenomenon that the gradient becomes
too large at some point such that the updated weights at next step is far away from the current
one as if we are casting it, this prevents network from converging to optimal [13] [14]. Think
of the iterative equation of gradient descent we provide before,

~w(k+1) = ~w(k) − η∇(k)
~w L , ∇(k)

~w L , ∇~wL
(
~w(k),~b

)
— loss function

and consider the case where weights is around the cliff of loss function, see the figure 4.7.

Figure 4.7: Bias~b is neglected in the figure for the sake of simplicity, adapted from [13]

We apply the equation of gradient descent at some steps:

1. at step k − 1, the weights lies at the foot of a steep cliff and its gradient is small.

2. at step k, the weights ~w jump to the top of cliff which is exactly what happened to our
case, and the gradient at this step,∇(k)

~w L turns to be very large.

3. at step k + 1, gradient exploding comes to play, the new updated weights ~w(k+1) shall be
far away from the previous weights ~w(k) as if it is catapulted far from ~w(k), but we do not
have this problem.

44

Gradient clipping is an alternative way proposed to deal with exploding gradient [30], which
simply clips the gradient when it exceeds pre-determined threshold gth ∈ R as is illustrated in
the figure 4.8.

Algorithm 2 gradient clipping

if
∥∥∥∇(k)

~w L
∥∥∥ > gth then

set gradient =
∇(k)

~w
L∥∥∥∇(k)

~w
L
∥∥∥ ·gth

end if

Figure 4.8: On the left, exploding gradient happens in the absence gradient clipping, and can

be prevented with clipping shown on the right, adapted from [14].

This algorithm is well-defined since now the norm of new updated gradient reads∥∥∥∥∥∥ ∇
(k)
~w L∥∥∥∇(k)
~w L
∥∥∥ ·gth

∥∥∥∥∥∥ =

∥∥∥∇(k)
~w L
∥∥∥∥∥∥∇(k)

~w L
∥∥∥ ·gth = gth <

∥∥∥∇(k)
~w L
∥∥∥

On the other hand, considering that gradient at each step only gives us the steep descent
direction of loss functions whilst its value is not what we concern, thus, gradient exploding can
also be avoided (well, theoretically) if we apply normalized gradient descent algorithm shown
in Chapter 2

~w(k+1) = ~w(k) − η
∇(k)

~w L∥∥∥∇(k)
~w L
∥∥∥

Apart from it, Adam optimizer is also robust to this issue as it is updated by taking both 1st and
2nd moment into account:

~w(k+1) = ~w(k) − η r√
m+ δ

r— 1st moment
m— 2nd moment

which can be considered ”normalization” in an extended sense. Nevertheless, we should keep in
mind that none of three approaches, neither gradient clipping nor normalized gradient descent

45

algorithm or Adam optimizer can eliminate the abrupt jump of loss. As long as we are around
steep cliff region, it is still very likely to happen and seems inevitable. To permanently ease this
issue, we define our custom callbacks by adding two lines to the source code of ReduceLROn-
Plateau() allowing it to load the latest optimal weights if there is no remarkable improvement
after a certain patience number of epochs in addition to reducing learning rate by the factor, its
effectiveness is represented in the figure 4.9.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

-20 0 20 40 60 80 100 120 140 160 18

Figure 4.9: Training of LSTM with p = 32, q = 4 (n = 1) and 512 neurons where we

adopt custom callbacks. Once there is no improved weights discovered after a patience number

of epochs, the custom callbacks loads the latest optimal weights automatically and continues

training.

4.1.2 Unbalancing issue
On the other hand, since we are feeding NNs with 1-dimensional signal 3 data, which implies
the fact that if we unroll LSTM across time, only one value in the input sequence is available for
LSTM to update the weights at each time step, and LSTM concatenates it with M (e.g., M =
512) states to form a real input vector [21]. In that case, our LSTM is extremely unbalancing as it
uses very few values to update massive states during training process (say, the ratio of M

n
= 512

is too large). Apart from that, the number of parameters is indeed quadratic proportion to M
as is mentioned before, it means M dominates difficulty of training an LSTM compared to
influence from dimensionality n. For this reason, we enhance the dimensionality of sample fed
to LSTM by reshaping input sequence while lessening number of neurons M at the same time,

Input ,
{

x(t−p−n+2)

x(t−p−n+3)

...
x(t−p)

x(t−p+1)

 ,

x(t−p−n+3)

x(t−p−n+4)

...
x(t−p+1)

x(t−p+2)

 , · · · ,

x(t−n)

x(t−n+1)

...
x(t−2)

x(t−1)

 ,

x(t−n+1)

x(t−n+2)

...
x(t−1)

x(t)


︸ ︷︷ ︸

p vectors

}

then we feed each n-dimensional vector to LSTM at corresponding time step as is depicted
beneath:

46

LSTM LSTM LSTM LSTM

Input sequence
at t

Output

sequence =

4-dimensional vector

transpose
 transpose

signal_3:

Figure 4.10: Enlarge dimensionality n by reshaping input sequence from signal 3.

4.2 Experiments
In the first experiment, we set input length p = 16, output length q = 2, and 128 neurons for
all NNs, and we adjust n for LSTMs from 1 up to 32 in order to see if there is any help for
improving performance of LSTM when we loosen the unbalancing effect, what’s more, we also
compare them with conventional NN to explore the performance among different type of NNs,
the results are provided in section 5.1.

Furthermore, we reshape input sequence without maximum overlap as follows,

Input ,
{ 

x(t−np+1)

...
x(t−n(p−1)−1)

x(t−n(p−1))

 ,

x(t−n(p−1)+1)

...
x(t−n(p−2)−1)

x(t−n(p−2))

 , · · · ,

x(t−2n+1)

...
x(t−n−1)

x(t−n)

 ,

x(t−n+1)

...
x(t−1)

x(t)


︸ ︷︷ ︸

p vectors

}

and explore the difference between non-overlap and overlapped strategies for LSTMs in the
second experiment, with input length p = 16, output length q = 2 fixed for all LSTM under
test. The results are given in section 5.2.

Since one typical period of signal 3 contains approximately 4096 samples, we therefore en-
large input length p up to 128 with maximum overlap and n only differing from 1 to 4 for the
sake of simplicity to see if there is any improvement after we enlarge input size. But unfortu-
nately, we are not able to carry out further assessment on test dataset because we lack sufficient
memory space to generate test datasets for those NNs.

In the third experiment, we reshape input sequence fitting to p = 128 and n = 32 but without
maximum overlap, the real input length therefore turns out to be p × n = 4096 which implies
that at least one period of signal 3 will be taken into consideration, besides, the difficulty of
training LSTM is overcame as well owing to the fact that the input length p is 128 rather than
4096, unbalancing can also be avoided since n is comparable to the number of neurons, 128,

47

now. The results are in section 5.3.

4.2.1 Award function
Balanced accuracy, BA for short, identifies each MSE as binary category, either positive or neg-
ative labels, despite of their value, hence, it looks more like a qualitative performance metric
from this viewpoint. For this reason, we attempt to invent a quantitative-like metric for perfor-
mance assessment, that is, award function, which takes not only the binary category of MSE
but also MSE values into account. Without loss of generality, we define award function a class
of functions f : XN × Y N → R, satisfying:

1. It gives positive score when NN predicts correctly, in other words, it awards the NN.
Additionally, the higher difference between MSE and threshold, the higher award will be
(i.e., in the case of correct prediction, f is monotone increasing w.r.t. difference between
MSE and threshold.).

2. On the contrary, it gives negative score when NN predicts incorrectly, namely, it penalizes
NN. And the higher difference between MSE and threshold⇒ award ↓ (i.e., in the case
of incorrect prediction, f is monotone decreasing w.r.t. difference between MSE and
threshold.).

3. Bonus: it may also possess the following desired properties which describes separability
of MSE distribution:

(a) σ ↓⇒ award ↑, a graphic interpretation is represented below.

pdf

xµ1, σ1

nominal

µ2, σ2

anomalies

better

than

pdf

xµ1, σ1

nominal

µ2, σ2

anomalies

(b) ∆µ = µ2 − µ1 ↑⇒ award ↑.

pdf

xµ1, σ1

nominal

µ2, σ2

anomalies

better

than

pdf

xµ1, σ1

nominal

µ2, σ2

anomalies

The first award function we came up with is

award =
1

N

N∑
i=1

yi (xi − γ)

48

N— number of samples, N = N+ +N−

N+— amount of positive samples

N−— amount of negative samples

yi— label at i, yi =

{
+a, if anomaly at time step i
−1, if nominal at time step i

xi— MSE at i

γ— threshold

Properties:

• if xi < γ and yi = −1⇒ prediction is correct, positive award and monotonously increase
with the difference.

• if xi > γ and yi = +a⇒ prediction is correct, positive award and monotonously increase
with the difference.

• if xi < γ and yi = +a ⇒ prediction is incorrect, negative award and monotonously
decrease with the difference.

• if xi > γ and yi = −1 ⇒ prediction is incorrect, negative award and monotonously
decrease with the difference.

• if a = N−
N+

, ∆µ is preserved:

award =
1

N

N∑
i=1

yi (xi − γ)

=
N+

N+ +N−
· 1

N+

·
N+∑
i=1

a (xi − γ)− N−
N+ +N−

· 1

N−
·
N−∑
i=1

(xi − γ)

=
aN+

N+ +N−

(
1

N+

N+∑
i=1

xi︸ ︷︷ ︸
µ2

−γ
)
− N−
N+ +N−

(
1

N−

N−∑
i=1

xi︸ ︷︷ ︸
µ1

−γ
)

=
aN+

N+ +N−
(µ2 − γ)− N−

N+ +N−
(µ1 − γ)

=
a

a+ 1
∆µ

but regardless of choice of γ.

49

• if a = +1, it reads,

award =
1

N

N∑
i=1

yi (xi − γ)

=
1

N

[N+∑
i=1

(xi − γ)−
N−∑
i=1

(xi − γ)

]
↓ N− � N+

≈ 1

N−

N−∑
i=1

(γ − xi)

that means, nominal data will dominate the overall award in a sense that it will contribute
to the most part of the award, and shall cancel the contribution from anomalies, which is
unwanted behavior.

Unfortunately, we can not read any information about σ1 or σ2 from this award function. An-
other defect of this award function is that it only focus on the difference between MSE and
threshold, i.e., (xi−γ), but sometimes, the ratio of MSE to threshold sometimes is more convin-
cible as performance metric rather than the difference and it inspires us to propose an alternative
award function

award =
1

N

N∑
i=1

yi ln
xi
γ

N— number of samples, N = N+ +N−

N+— amount of positive samples

N−— amount of negative samples

yi— label at i, yi =

{
+a, if anomaly at time step i
−1, if nominal at time step i

xi— MSE at i

γ— threshold

Properties:

• if xi < γ and yi = −1⇒ prediction is correct, positive award and monotonously increase
with the ratio.

• if xi > γ and yi = +a⇒ prediction is correct, positive award and monotonously increase
with the ratio.

• if xi < γ and yi = +a ⇒ prediction is incorrect, negative award and monotonously
decrease with the ratio.

• if xi > γ and yi = −1 ⇒ prediction is incorrect, negative award and monotonously
decrease with the ratio.

50

• if a = 1,

award =
1

N

N∑
i=1

yi ln
xi
γ

=
1

N

(N+∑
ln
xi
γ

+

N−∑
ln
γ

xi

)
=

1

N

(N+∑
lnxi −

N−∑
lnxi

)
+

1

N

(
N− −N+

)
ln γ

↓ N− � N+

≈ − 1

N−

N−∑
lnxi + ln γ

Again, nominal data will dominate the overall award by cancelling the contribution from
anomalies, which is unexpected. Moreover,

– σ2 is also preserved in a sense that: σ2 ↓⇒ award ↑.

Proof. Since

1

N+

N+∑
lnxi = ln N+

√
x1x2 · · · xN+

= ln

(N+∏
xi

) 1
N+

6 ln

(
1

N+

N+∑
xi

)
, lnµ2

As a consequence,

award =
1

N

(N+∑
lnxi −

N−∑
lnxi

)
+

1

N

(
N− −N+

)
ln γ

↓ if N− = 0

=
1

N+

N+∑
lnxi − ln γ

6 lnµ2 − ln γ

Thus, σ2 ↓ ⇒ all xi tend to µ2 ⇒ 1
N+

N+∑
lnxi → lnµ2 ⇒ award ↑ and tends

to the upper bound.

– However, σ1 is not preserved because

51

Proof.

award =
1

N

(N+∑
lnxi −

N−∑
lnxi

)
+

1

N

(
N− −N+

)
ln γ

↓ if N+ = 0

= − 1

N−

N−∑
i=1

lnxi︸ ︷︷ ︸
6lnµ1

+ ln γ

> ln γ − lnµ1

therefore, σ1 ↓ ⇒ − 1
N−

N−∑
lnxi → − lnµ1 ⇒ award ↓ and goes to lower

bound.

• if a = N−
N+

and all predictions are correct, we also have

award =
1

N

N∑
i=1

yi ln
xi
γ

=
1

N+ +N−

(N+∑
i=1

a ln
xi
γ
−

N−∑
i=1

ln
xi
γ

)

=
aN+

N+ +N−

(
1

N+

N+∑
i=1

lnxi − ln γ

)
− N−
N+ +N−

(
1

N−

N−∑
i=1

lnxi − ln γ

)

=
a

a+ 1
· 1

N+

(N+∑
i=1

lnxi −
1

a

N−∑
i=1

lnxi

)

regardless of choice of γ.

• But we do not have any information about µ2 or µ1 from this award function.

Nevertheless, this award function could also be suitable to our cases if the nominal MSE distri-
bution are almost same to every NN, which means the contribution from nominal data to overall
award are approximately equal.

The last award function we propose is equivalent to the balanced accuracy

award =
1

N

N∑
i=1

|yi|χ
[
yi(xi − γ)

]

52

yi— label at i, yi =

{
+a, if anomaly at time step i
−1, if nominal at time step i

χ— step function, χ(z) =

{
+1, if z > 0

0, if z 6 0

xi— MSE at i

γ— threshold

TP— true positive

TPR— true positive rate

TN— true negative

TNR— true negative rate

Since we invent award function as a metric to describe the goodness of performance, of
course we would expect an NN reaches as much award as possible under this circumstance, in
that case, the problem is transformed to be an optimization issue, and we prove that

max
γ∈R

award⇔ max
γ∈R

BA

Proof.

award =
1

N

N∑
i=1

|yi|χ
[
yi(xi − γ)

]
=

1

N

[N+∑
aχ(xi − γ) +

N−∑
χ(γ − xi)

]
=

1

N+ +N−

(
a·# of TP + # of TN

)
↓ if a =

N−
N+

=
aN+

N+ +N−
· # of TP
N+︸ ︷︷ ︸
,TPR

+
N−

N+ +N−
· # of TN

N−︸ ︷︷ ︸
,TNR

=
a

a+ 1

(
TPR + TNR

)
↓ a� 1

≈ TPR + TNR

∴ maxγ∈R award ⇔ maxγ∈R TPR+TNR.

53

In addition, if a = 1,

award =
of TP + # of TN

N+ +N−
, accuracy

we will use award function 1 and 2 to evaluate performance of NNs in the first experiment
in order to examine their effectiveness as a new performance metric, the results are provided in
section 5.4.

54

Chapter 5

Results and discussion

We represent results of all experiments launched in the last chapter.

5.1 Results of the first experiment
In the first experiment, input length p, output length q as well as number of neurons M are fixed
to 16, 2 and 128 respectively for all NNs, while dimensionality n changes from 1 up to 32 to see
if any improvement can be obtained by alleviating unbalancing issue, moreover, conventional
NNs are added as counter parts of LSTMs for fair comparisons. Once training is done, we test
them on test dataset and plot MSE at each time step in figure 5.1 to acquire some intuitive
understanding.

Figure 5.1: MSE at each step are assembled in this figure whereas all NNs are equipped with

p = 16, q = 2, M = 128 and maximum overlap strategy. X-axis indicates time step and y-

axis stands for corresponding MSE value, plots on the left column are conventional NNs with

different dimensionality n while LSTMs are on the right.

55

Roughly speaking, both conventional NN and LSTM are able to detect anomalies aligned
with the definition in test datasets, furthermore, MSE of anomalies provided by LSTM usually
is higher in contrast to that of conventional NN, which is desired as it can easily exceeds the
threshold and raise a sign for anomalous events. A detailed comparison is provided in 5.2.

Figure 5.2: A glimpse of detailed comparison for conventional NN and LSTM, and it is clear to

see MSE produced by LSTM is higher than by conventional NN.

Apart from that, they are also able to detect undefined anomalies whose value fluctuates
fiercely but the corresponding signal 1 and signal 2 are normal, as is shown in 5.3.

Figure 5.3: Both LSTM and conventional NN yield significant MSE for undefined anomalies,

meaning that undefined anomalies can be detected as well, x-axis is time axis.

56

To quantitatively evaluate their performance, we then plot the histograms of MSE distribu-
tion on test dataset for each NN in figure 5.5, and we hope that MSE distribution of nominal
data and that of anomalies are visually separable so that we can easily set a threshold to classify
them into two categories: nominal data or anomaly. More mathematically, we would like to see
∆µ1 as much large as possible while keeping both σ1 and σ2 2 small at the same time, see an
intuitive example figure 5.4.

pdf

xµ1, σ1

nominal

µ2, σ2

anomalies
pdf

xµ1, σ1

nominal

µ2, σ2

anomalies

Figure 5.4: Apparently the classifier that produces probability density function (pdf) on the right

is preferable compared to the left because we can easily find a proper threshold that partition

anomalies and nominal.

Figure 5.5: Histograms of MSE distribution on test dataset, whereas ’blue’ indicates MSE

distribution of nominal data given by conventional NNs, ’red’ stands for LSTM nominal, and

’yellow’ for anomalies.

Non-overlap area in MSE distribution for anomalies given by LSTM is bigger than that
by conventional NN, The extensive overlap between nominal MSE distribution and anomaly
MSE distribution also addresses the difficulty to find an appropriate threshold that can partition
nominal data from anomalies. Nevertheless, we can still read some evidence that LSTM may
outperforms conventional NN in a sense that the non-overlapped area of anomalies for LSTM
in MSE distribution plots is slightly larger than that for conventional NN, which implies higher
accuracy as it can recognize more anomalies in dataset. we can see it in the case of n = 1,
n = 2 and n = 4 in the figure 5.5. µ and σ are also provided in the table 5.1 for the sake of
completeness.

1∆µ = µ2 − µ1, where µ1 is mean of nominal MSE and µ2 is mean of anomaly MSE.
2σ1 is standard deviation of nominal MSE and σ2 is standard deviation of anomaly MSE.

57

n = 1 n = 2 n = 4 n = 16 n = 32

nominal anomaly nominal anomaly nominal anomaly nominal anomaly nominal anomaly

conventional

NN

µ 0.01341 9.84148 0.01498 8.32260 0.01418 9.59606 0.01183 10.92414 0.01405 12.43549

σ2 0.000481 6790.186552 0.000514 5124.205154 0.000505 5959.668316 0.000381 7595.826844 0.000480 9963.150728

LSTM
µ 0.01856 12.38848 0.01963 13.21072 0.01942 12.23991 0.01601 13.87833 0.01454 14.10955

σ2 0.000763 8721.850122 0.000796 11049.528767 0.000788 9939.897480 0.000532 12171.552201 0.000496 11527.194517

Table 5.1: The statistics aggregate of µ and σ for each NN.

Actually, the overlapped region reflects a fact that anomalies is not well-defined in our
case as there are some anomaly existing in test dataset but their waveform are very similar to
nominal signal, and we show MSE for undefined anomalies in figure 5.6. We pick out 3 peaks
of anomalies standing for large anomalies, medium and nominal-like anomalies respectively,
they can also be observed according to MSE distribution in figure 5.7, with the peak positions
in table 5.2. As a matter of fact, we do not have much prior knowledge about anomalies in
real scenario before it arises, neither do we know the exact waveform of it, nor can we give an
accurate definition for it. Of course, it can be expected to obtain considerable improvement for
anomaly detection once we can define anomalies in a more accurate sense, for instance, just
classify those anomalies that are similar to nominal data as nominal.

Figure 5.6: A glimpse of MSE on anomalies whereas x-axis is time axis, some MSE for anoma-

lies are small and nominal-like, in fact, they are related to the definition of anomalies which is

one of the main challenges for anomaly detection.

58

Figure 5.7: A detailed view of 3 peaks in the histograms of MSE distribution.

Network
type

MSE peak
position

n = 1 n = 2 n = 4 n = 16 n = 32

conventional

NN

1st 0.0155667 0.0226003 0.0159584 0.00975566 0.00919072

2nd 1.35853 1.27986 3.30763 2.02201 2.20032

3rd 668.728 630.003 685.558 746.012 937.684

LSTM

1st 0.0155667 0.0195662 0.0328121 0.0231691 0.0291219

2nd 2.79328 4.68427 4.41301 4.15746 3.39088

3rd 772.429 970.888 1220.34 1149.67 1251.05

Table 5.2: Positions of peaks for each NN.

Ultimately, we adopt ROC curves in figure 5.8 as a figure of merit for performance as-
sessment, and as we can see from AUC values, the performance of LSTM usually is better
than conventional NN except for the LSTM with n = 2. What’s more, LSTM with n = 32
outperforms the most among all the NNs in this experiment.

59

Figure 5.8: ROC curves: conventional NN versus LSTM with p = 16, q = 2, 128 neurons and

maximum overlapped strategy applied to all, but n varying from 1, 2, 4, 16, 32.

5.2 Results of the second experiment
We investigate the difference of LSTM with or without maximum overlap, while dimensionality
varies from 1 to 32, and fix input length p = 16, output length q = 2, number of neurons
M = 128 for all NNs in this experiment. Likewise, we obtain the ROC curves in figure 5.9,

60

Figure 5.9: ROC curves: LSTMs with p = 16, q = 2, 128 neurons for all, but both maximum

overlapped and non-overlapped strategies are adopted while n also varies from 1, 2, 4, 16, 32.

we can see that LSTMs without maximum overlap are all superior than those with maximum
overlap with regard to their AUC scores. It may because LSTM takes longer input into account
in relative to the one with maximum overlap, which actually provides more information to
LSTM.

5.3 Results of the third experiment
The last ROC curves for LSTM and conventional NN without maximum overlap are also pro-
vided in figure 5.10,

61

Figure 5.10: ROC curves: conventional NN versus LSTM, with p = 128, n = 32, q = 16,

M = 128, and non-maximum overlapped strategy. it is also worth mentioning that the real

sequence length in this experiment is 128× 32 = 4096.

The best NN among all experiments in terms of AUC scores is discovered, which is the
LSTM with p = 128, n = 32, q = 16, 128 neurons and without maximum overlap. Other than
the AUC, the maximum balanced accuracy (BA) can also be applied as a metric of performance
assessment, and they are listed in the table 5.3,

62

Network
type

Maximum
overlap
(T/F)

input
length
p

dimensionality
n

output
length
q

max
γ

BA

conventional

NN

True

16 1 2 0.6713859924178619

17 1 2 0.667096038292062

19 1 2 0.6717606348306576

31 1 2 0.6908369503487524

47 1 2 0.6866307016866247

False 4096 1 16 0.7273249441182179

LSTM

True

16 1 2 0.664638530775286

16 2 2 0.6546995054771664

16 4 2 0.6583135609609423

16 16 2 0.6830465352597754

16 32 2 0.7003792551460092

False

16 2 2 0.6872680630704903

16 4 2 0.6787624996723588

16 16 2 0.7200527344411967

16 32 2 0.7461558636887556

False 128 32 16 0.7362720949373311

Table 5.3: Balanced accuracy, M = 128 for all NNs in the table.

From BA viewpoint, LSTM with p = 16, n = 32, q = 2, 128 neurons and without maximum
overlap is the best, followed by LSTM with p = 128, n = 32, q = 16, 128 neurons and without
maximum overlap.

5.4 Apply award functions and discuss the problem
We examine award function 1 and 2 on conventional NN and LSTM while dimensionality n
varying from 1 to 32 (same to parameters in 5.1) to capture effectiveness of award functions.
We list awards for each NN in the table 5.4.

Network
type

Maximum
overlap
(T/F)

input
length
p

dimensionality
n

output
length
q

award1= 1
N

N∑
yi (xi − γ) award2= 1

N

N∑
yi ln xi

γ

conventional

NN
True

16 1 2 0.09723124771961351 2.9493555748672993

17 1 2 0.09999176934023832 2.8829075880569435

19 1 2 0.09884591903288836 2.90818726231427

31 1 2 0.08855055105398048 2.9318232961190938

47 1 2 0.09378775437591744 2.787778138015646

LSTM True

16 1 2 0.10461559978725694 2.7274586928001465

16 2 2 0.10709689946505914 2.6282662262330843

16 4 2 0.10760096671489174 2.67529253994409

16 16 2 0.10084003017936187 2.7205822057824043

16 32 2 0.09732405004654987 2.7536033213430766

Table 5.4: 128 neurons for all NNs in this experiment, threshold is taken from validation dataset

such that MSE distribution residual is 0.01, a = 1.

63

First, we can observe that the performance in terms of award1 for LSTM is better than
conventional NN except for the case of n = 2, this is almost coherent with conclusions given
by AUC scores in 5.1 As for award2, the conclusion is totally opposite to AUC scores in 5.1
because if we look into the term yi ln

xi
γ

in award2 at each time step, see in figure 5.11 as well
as details in figure 5.12

Figure 5.11: An global view of yi (xi − γ) and yi ln xi
γ

in award functions at each time step,

where a = 1 and x-axis is time step.

Figure 5.12: Detailed vision of yi (xi − γ) and yi ln xi
γ

at each time step with a = 1 and x-axis

indicates time step.

we can observe that yi ln xi
γ

in nominal region is comparable to the yi ln xi
γ

in anomalous
region, referring to red circles in award2 in figure 5.11 and figure 5.12. Moreover, since amount
of nominal data is far more than anomalies, we will never see the contribution from anomalies
to overall award as a consequence. In summary, award2 only reflects the contribution from
nominal data, anomaly contribution is negligible. To cope with this issue, we then set a = N−

N+

and get the following results constituting table 5.5,

64

Network
type

Maximum
overlap
(T/F)

input
length
p

dimensionality
n

output
length
q

award1= 1
N

N∑
yi (xi − γ) award2= 1

N

N∑
yi ln xi

γ

conventional

NN
True

16 1 2 9.813369179567468 2.0649584555681124

17 1 2 8.2952031006636 1.9493533044764237

19 1 2 9.567558729161982 2.0325395374335367

31 1 2 10.896034018138574 2.3252996396447227

47 1 2 12.40295429252144 2.3262278914286183

LSTM True

16 1 2 12.35141987194856 2.1643876871966503

16 2 2 13.171364312777479 1.956064231855534

16 4 2 12.202218852403357 1.9955995717581614

16 16 2 13.841631010573288 2.330033161439289

16 32 2 14.074036803636176 2.582786706602275

Table 5.5: 128 neurons for all NNs in this experiment, a = N−
N+

.

Figure 5.13: yi (xi − γ) and yi ln xi
γ

at each time step with x-axis standing for time step. yi ln xi
γ

in nominal region is incomparable to yi ln xi
γ

in anomalous region anymore when a = N−
N+

, and

we can also see considerable penalty when incorrect prediction happens at award2.

Based on table 5.5, we see that LSTM is superior than conventional NN in most of cases
according to overall awards except the case of n = 3 in award2, we should also keep in mind
that when a = N−

N+
, both award1 and award2 are independent of the choice of threshold γ.

Given that award functions are created as an alternative metric for performance assessment,
we would love to see that NNs hit the overall award as much high as possible, besides, once
{yi}Ni=1 and {xi}Ni=1 are provided by NN, award function becomes a function of γ. In that
case, the problem of maximizing award turns into finding an optimal threshold such that its
corresponding award are maximum. We then examine the latter optimization problem for each
NN above with a = 1 and observe that optimal threshold always coincides with the maximum
threshold, which is reasonable because the optimization problem we are solving is:

γ∗ = arg max
γ∈R

award

65

If we take the first award function for example, it yields

max
γ

1

N

N∑
i=1

yi(xi − γ)

and we know

N∑
i=1

yi(xi − γ)

=

N+∑
(xi − γ) +

N−∑
(γ − xi)

=

(N+∑
xi −

N−∑
xi

)
+ (N− −N+)︸ ︷︷ ︸

>0

·γ

∴
γ∗ = +∞ or max

i
xi

Analogously, for the optimization problem,

max
γ

1

N

N∑
i=1

yi ln
xi
γ

we get
γ∗ = +∞ or max

i
xi

In addition, if we consider contribution to the award from anomalies and nominal data sep-
arately, e.g.,

award =
1

N+

N+∑
(xi − γ) +

1

N−

N+∑
(γ − xi)

=
1

N+

N+∑
xi − γ + γ − 1

N−

N−∑
xi

= µ2 − µ1

= ∆µ

Which is independent of the choice of γ. To ensure the existence of well-defined optimal
threshold in the award function, we propose 4 candidates of award functions attempting to
possess the desired properties, but they all fail in the end, and we will put them down in the

66

report for the sake of completeness. We denote

σ— sigmoid function, σ(x) =

{
x, if x > 0

0, if x 6 0

yi— label at i, yi =

{
+a, if anomaly at time step i
−1, if nominal at time step i

•

award =
1

N

N∑
i=1

σ
[
yi(xi − γ)

]
=

1

N

[N+∑
σ(xi − γ) +

N−∑
σ(γ − xi)

]

where
N+∑
σ(xi − γ) is minority of award which is negligible, and population of term

N−∑
σ(γ − xi) is majority which dominates the award, if we maximize the award, normal

term tends to select γ∗ = maxi xi at the cost of cancelling the effect from anomalies. and
similar to this award function

award =
1

N+∑(
xi −mini xi

)
+

N−∑(
maxi xi − xi

)
N∑
i=1

σ
[
yi(xi − γ)

]

=
1

N+∑(
xi −mini xi

)
+

N−∑(
maxi xi − xi

)
[N+∑

σ(xi − γ) +

N−∑
σ(γ − xi)

]

it also leads us to γ∗ = maxi xi in the end.

• if we take both contribution from anomalies and from nominal into account separately:

award =
1

N+

N+∑
σ(xi − γ) +

1

N−

N−∑
σ(γ − xi)

↓ in the absence of false positives and negatives, it yields

=
1

N+

N+∑
(xi − γ) +

1

N−

N−∑
(γ − xi)

= µ2 − µ1

67

regardless of the choice of γ as well. Also, we may come up with

award =
1

N+∑(
xi −mini xi

)
N+∑

σ(xi − γ) +
1

N−∑(
maxi xi − xi

)
N−∑

σ(γ − xi)

↓ in the absence of false positives and negatives, it yields

=
1

N+∑(
xi −mini xi

)
N+∑

(xi − γ) +
1

N−∑(
maxi xi − xi

)
N−∑

(γ − xi)

= constant +

[
N−

N+∑(
xi −mini xi

) − N+

N+∑(
xi −mini xi

)
]

︸ ︷︷ ︸
constant

·γ

and it ends up with either γ∗ = max
i
xi or γ∗ = mini xi.

On the other hand, I think finding an optimal threshold according to probability density
functions of anomalies and nominal data is analogous to finding an optimal hyperplane by SVM
in a sense that it can be regarded as 1-dimensional case of SVM problem, hence, I would like
to stick to this issue in near future.

68

Chapter 6

Conclusions

This thesis project focus on the anomaly detection by prediction on the dataset from the satellite.
We adopted recurrent neural network (RNN) as well as Long Short-Term Memory (LSTM) to
anomaly detection as they are capable to learn time dependency from time series compared to
conventional NN. We first try a toy case on ECG data which helps us exclude the adoption of
RNN in the following chapters since it brings us the worst performance. Then we move to the
dataset from satellite where we tried conventional NNs and LSTM with different parameters and
compare their performance in order to find an appropriate NN to perform anomaly detection on
satellite data. We have confronted some challenges most of which are solved quite well except
for the last one, more specifically:

• The difficulty of training LSTMs when the number of parameters and input sequence
length are too large, and we propose our custom callbacks which will load the latest
optimal weights whenever we have problems with training process.

• At each time step, the dimensionality of samples we feed to LSTM seems too small
compared to the number of parameters it needs to tune, we lessen this unbalancing issue
by different reshaping strategies, which also help to relieve the difficulty of training a
LSTM with very large input length, and we conclude that

– LSTM with input length p = 16, dimensionality n = 32, output length q = 2, 128
neurons and without maximum overlap is the best among all the NNs in terms of
balanced accuracy.

– However, LSTM with p = 128, n = 32, q = 16, 128 and without maximum overlap
outperforms most with respect to AUC metric.

• Apart from that, we invent a new performance metric, award function, which takes not
only the binary labels but also its values into account, and we compare it with conclusions
drawn from AUC metric to see its effectiveness. Unfortunately, it is not perfectly-aligned
with our expectation as it possesses a fatal defect which has been proved both from prac-
tical and theoretical viewpoints. And we attempted to fix the issue, but failed again, then
we come up with another idea that will be examined in the near future.

69

Chapter 7

Acknowledgements

I am so grateful to my dear supervisor, friend, and our captain, Riccardo Rovatti! for his wis-
dom, encouragement as well as kindness. Indeed, I can not tell you how I miss the time I was
in his class, he can always answer my questions with magic words that evoke my enthusiasm to
dive in deeply and consistently. Without exaggeration, it is one of the happiest times I had ever
been and I shall cherish it forever.

And also, I would like to introduce you my dear friends whom I really appreciate the time
we have shared with together:

• Mauro Mangia, from whom I learned how to carry out scientific research, I would thank
for his guidance, feedback, patience, as well as accompany all the time.

• Alex Marchioni, to whom I thank for his timely inspirations which always help me out as
well as delicious Italian food he recommended.

• Filippo Martinini, Other than the professional advice, ideas, as well as guidance, many
thanks for wonderful cooperation and music sharing.

• Andriy Enttsel, warmhearted help both from code level and mathematics explanation.

Last but not the least, my parents, my regards to their unconditional support and contribution to
the family.

Finally, I would like to put forward a proposal: Probably we should put more attention to
colors we used in scientific paper works if we think of the population of the color weakness
in the world, for example, we can avoid using red and green in the same figure. Of course, it
would never be possible to remove all the obstacles among people, but at least, we attempt to
do so.

70

Bibliography

[1] Charu C Aggarwal. Outlier analysis second edition. Springer Switzerland, 2016.

[2] Andreas Arning, Rakesh Agrawal, and Prabhakar Raghavan. A linear method for deviation
detection in large databases. In KDD, volume 1141, pages 972–981, 1996.

[3] Markus Breunig, Hans-Peter Kriegel, Raymond Ng, and Joerg Sander. Optics-of: Identi-
fying local outliers. pages 262–270, 09 1999.

[4] Markus Breunig, Hans-Peter Kriegel, Raymond Ng, and Joerg Sander. Lof: Identifying
density-based local outliers. volume 29, pages 93–104, 06 2000.

[5] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):1–58, 2009.

[6] Sucheta Chauhan and Lovekesh Vig. Anomaly detection in ecg time signals via deep long
short-term memory networks. In 2015 IEEE International Conference on Data Science
and Advanced Analytics (DSAA), pages 1–7, 2015.

[7] Guillaume Chevalier. Lstm cell. Schematic of the Long-Short Term Memory cell, a
component of recurrent neural networks, May 2018.

[8] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989.

[9] F.A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction with
lstm. In 1999 Ninth International Conference on Artificial Neural Networks ICANN 99.
(Conf. Publ. No. 470), volume 2, pages 850–855 vol.2, 1999.

[10] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to Forget: Continual
Prediction with LSTM. Neural Computation, 12(10):2451–2471, 10 2000.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, page 374. MIT
Press, 2016. http://www.deeplearningbook.org.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, page 378. MIT
Press, 2016. http://www.deeplearningbook.org.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, page 288. MIT
Press, 2016. http://www.deeplearningbook.org.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, page 409. MIT
Press, 2016. http://www.deeplearningbook.org.

71

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org

[15] Klaus Greff, Rupesh K. Srivastava, Jan Koutnı́k, Bas R. Steunebrink, and Jürgen Schmid-
huber. Lstm: A search space odyssey. IEEE Transactions on Neural Networks and Learn-
ing Systems, 28(10):2222–2232, 2017.

[16] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with
neural networks. science, 313(5786):504–507, 2006.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9:1735–80, 12 1997.

[18] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989.

[19] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom
Soderstrom. Detecting spacecraft anomalies using lstms and nonparametric dynamic
thresholding. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 387–395, 2018.

[20] Theodore Johnson, Ivy Kwok, and Raymond Ng. Fast computation of 2dimensional depth
contours. pages 224–228, 01 1998.

[21] Murat Karakaya. Lstm: Understanding the number of parameters, Nov 2020.

[22] Edwin M. Knorr and Raymond T. Ng. A unified approach for mining outliers. In Pro-
ceedings of the 1997 Conference of the Centre for Advanced Studies on Collaborative
Research, CASCON ’97, page 11. IBM Press, 1997.

[23] Edwin M Knorr and Raymond T Ng. Algorithms for mining distance-based outliers in
large datasets. In VLDB, volume 98, pages 392–403. Citeseer, 1998.

[24] Mark A Kramer. Nonlinear principal component analysis using autoassociative neural
networks. AIChE journal, 37(2):233–243, 1991.

[25] Tianyu Li, Mary L. Comer, Edward J. Delp, Sundip R. Desai, James L. Mathieson,
Richard H. Foster, and Moses W. Chan. Anomaly scoring for prediction-based anomaly
detection in time series. In 2020 IEEE Aerospace Conference, pages 1–7, 2020.

[26] Andrea Lörke, Fabian Schneider, Johannes Heck, and Patrick Nitter. Cybenko’s theorem
and the capability of a neural network as function approximator. Sep 2019.

[27] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long short term
memory networks for anomaly detection in time series. In Proceedings, volume 89, pages
89–94, 2015.

[28] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in ner-
vous activity. The bulletin of mathematical biophysics, 5(4):115–133, Dec 1943.

[29] Van Quan Nguyen, Linh Van Ma, Jin-young Kim, Kwangki Kim, and Jinsul Kim. Appli-
cations of anomaly detection using deep learning on time series data. In 2018 IEEE 16th
Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive
Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and
Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), pages
393–396, 2018.

72

[30] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recur-
rent neural networks. In International conference on machine learning, pages 1310–1318.
PMLR, 2013.

[31] Tony Robinson and F. Fallside. The utility driven dynamic error propagation network, 01
1987.

[32] F ROSENBLATT. The perceptron: A probabilistic model for information storage and
organization in the brain1. Psychological Review, 65(6):19S8.

[33] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear
embedding. science, 290(5500):2323–2326, 2000.

[34] Ida Ruts and Peter J. Rousseeuw. Computing depth contours of bivariate point clouds.
Computational Statistics & Data Analysis, 23(1):153–168, 1996. Classification.

[35] Dhruvil Shah, Soham Khade, and Sudesh Pawar. Anomaly detection in time series data
of sensex and nifty50 with keras. In 2021 International Conference on Emerging Smart
Computing and Informatics (ESCI), pages 433–438, 2021.

[36] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework
for nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

[37] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in
Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, 2018.

73

	Introduction
	Methods for anomaly detection
	Depth-based Method
	Deviation-based method
	Distance-based method
	Density-based method
	Machine Learning based method
	Autoencoder-based method
	Prediction-based method

	Anomaly detection based on Neural Network
	Neural Network
	Conventional Neural Network
	Recurrent neural network
	Long Short-Term Memory
	Related work

	A toy case on ECG signal
	Performance versus number of neurons
	Performance versus input length
	Performance versus output length
	Performance versus type of neural networks
	Examination on test dataset

	Anomaly detection on satellite data
	Workflow
	Custom callbacks
	Unbalancing issue

	Experiments
	Award function

	Results and discussion
	Results of the first experiment
	Results of the second experiment
	Results of the third experiment
	Apply award functions and discuss the problem

	Conclusions
	Acknowledgements

