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Abstract

In the last decades, the space sector has seen a constant increase in
the number of operating nanosatellites, mainly in the form of CubeSats.
Nevertheless, nanosatellites are still characterised by a high failure rate
and the importance of ground testing is often underestimated. The
Attitude Control System (ACS) is one of the most important subsys-
tems yet one of the least developed for what concerns the CubeSats.
Magnetorquers are often employed as main actuators, thanks to their
reduced dimensions. However, a spacecraft actuated by magnetor-
quers alone suffer from an instantaneous underactuation. Reaction
wheels offer better performance but are prone to failure and must be
desaturated periodically. It’s possible to overcome the limits of both
types of actuators by employing an ACS equipped with both types
of actuators. In this work, an attitude control law integrating three
orthogonally placed mangnetorquers and one reaction wheel is studied
and experimentally tested on a dynamic simulator.

The first part of the thesis regards the design of the control law.
The required control is distributed between actuators using a geometric
approach. The control approach is studied through numerical simu-
lations and tuned for a spacecraft of a nanosatellite class. Nonlinear
spacecraft dynamical model is considered, as well as worst-case exter-
nal disturbances, magnetic field and attitude estimation error. The
stability of the control law with respect to parameters variations is
studied by means of Monte-Carlo approach.

In the second part, the designed control law is validated through
Hardware-in-the-loop testing on an attitude simulator testbed devel-
oped at the University of Bologna. Before-use facility calibration is
described. In particular, to provide almost disturbance-free rotational
dynamics, the gravity torque acting on the platform have to be compen-
sated. This is done using a novel approach employing jointly shifting
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masses and magnetorquers (responsible for angular velocity damping).
Then, the proposed control law is implemented on-board of the simula-
tor and experimentally assessed. The results show high accuracy and
robustness with respect disturbances.
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ŝ Sun direction unit vector [m]
Ca Coefficient of absorption
Cs Coefficient of specular reflection
Cd Coefficient of diffusion
m Magnetic dipole [Am2]

xviii



b Magnetic field [T ]
∇ Gradient operator
∇2 Divergence operator
[λ, θ, φ] Euler angles [rad]
h Wheel angular momentum vector [Nms]

xix



xx



1

Introduction

Space exploration and exploitation has brought countless benefits

to humanity, whether it be for telecommunication, global positioning,

weather forecasting, spin-off technologies or increased knowledge of

our solar system. In the beginning, the exploration of space was

mainly driven by the governments due to the high cost, complexity and

requirement for technically advanced and expensive capabilities. The

few examples of privates launching satellites into space were mainly

represented by radio amateurs [4]. In recent years, the advent of

private companies and the spread of microelectronics resulted in both

a reduction in the launching and developing cost and a decrease in

the satellites’ size. Small satellites are indeed characterized by a short

development cycle and low cost if compared to larger satellites. This

fact is mainly attributed to the adoption of up-to-date Commercial

Off-The-Shelf (COTS) components and to smaller and more agile teams

([4], [5], [6]). Satellites are usually divided into categories according to

their dimensions, mass or the type of mission that they should fulfil. A

widely accepted classification for the satellites based on the wet mass

is reported in Table 1.1.

The number of operating nanosatellites has increased in recent

years and it is predicted to further increase, as shown in Fig. 1.1.

Undeniably, one factor that has contributed to their success is the

invention of the CubeSat. Born with the intent of being low-cost and

1



Class Sub-Class Mass (Kg)

Large satellites > 1000

Medium satellites 500 to 1000

Small satellites Minisatellites 100 to 500
Microsatellites 10 to 100
Nanosatellites 1 to 10
Picosatellites 0.1 to 1

Table 1.1: Classification of satellites according to their wet mass

fast to be developed [7], the CubeSats have become extremely popular

thanks to their standardization, their modularity and the adoption

of standard deployment mechanisms [4]. CubeSats are miniaturized

satellites with standardized sizes of one-unit (1U, 10x10x10 mm), or a

multiple of one unit (e.g. 3U) [8]. Fig 1.2 shows the Colorado Student

Space Weather Experiment (CSSWE) Cubesat prior to integration

together with the Poly-Picosatellite Orbital Deployer (P-POD).
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Figure 1.1: Nanosatellites by launch years [1]
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Figure 1.2: CSSWE CubeSat P-POD Deployer prior to integration [2]

Despite their numerous advantages, small satellites are still charac-

terized by a high failure rate. Excluding launch failures, about 20%

of Cubesats fails in the early stage of life [5]. The reason for this has

been attributed to underestimation of the importance of integrated

spacecraft-level systems testing, with teams instead focusing mainly

on design and test of the subsystems of the satellite [4]. Hardware-In-

the-Loop (HIL) tests are therefore required for proper validation and

integration of the satellite subsystems.

The Attitude Control System (ACS) is one of the most important

subsystems of a satellite since it allows its nominal orientation in space

while counteracting external disturbances. Nevertheless, it is yet one
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of the least developed subsystems for what concerns the CubeSats

[6]. In the perspective of integrated HIL testing, the ACS is one of

the most challenging subsystems to be tested since it requires free-

rotational movement in a torque-free environment. Since the beginning

of the space age, numerous on-ground spacecraft simulators have been

developed, most of them based on air-bearings [3]. The testing facilities

normally used for big satellites are inadequate for small satellites due

to the unacceptable level of residual disturbance torques [9]. Hence,

companies and universities have developed Attitude Simulator Testbeds

(AST) tailored for small satellites. In particular, the AST developed

at the University of Bologna allows the testing of CubeSats of ”1U”

and ”3U” formats under low torque conditions [10].

Figure 1.3: The attitude simulator testbed at the University of Bologna
with a 1U Cubesat mounted on it

The pointing requirements for a CubeSats may vary depending on
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the mission type, with most Earth Observation (EO) missions using

active control systems to fulfil strict pointing requirements and most

communication missions using passive control systems and relying on

omnidirectional antennas to maintain communication with the ground

[6]. Magnetorquers and reaction wheels are by far the most used actu-

ators on nanosatellites [6]. In general, the use of Momentum Exchange

Device (MED) such as reaction wheels and momentum wheels, is very

effective in achieving high pointing accuracy [6]. However, these kinds

of actuators must be desaturated periodically using other kinds of

actuators such as thrusters or magnetorquers. Failures of one or more

Reaction Wheels is a common issue during the operational life of a

satellite. Redundancy is often taken in consideration for big satellite

while is almost absent for small satellites due to the constraints on

their mass and dimensions [11]. Magnetorquers, on the other hand, are

more reliable thanks to the absence of parts in relative movement and,

thanks to electronic miniaturisation, they have reduced dimensions

that make them a valuable solution for small satellites. Fig. 1.4 shows a

commercial solution for a magnetorquer board. The main disadvantage

of the magnetorquers is their intrinsic underactuation. Indeed, they

cannot provide a torque around a direction parallel to the external

magnetic field. Depending on the orbit inclination, this underactuation

can be considered to be only instantaneous. Indeed, if the Earth’s

magnetic field varies as the spacecraft travels in its orbit, then within

a certain time span all the directions become available for actuation

and the system is controllable, as properly justified in [12][13].
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1.1. MOTIVATIONS AND CONTRIBUTIONS

Figure 1.4: ISIS magnetorquer board (Image courtesy of ISIS)

1.1 Motivations and contributions

The use of magnetorquers for attitude control offers numerous

advantages, especially for small satellites, but the pointing accuracy

achievable is limited [6]. In an effort to overcome these limitations and

still maintaining a low level of complexity and cost, it was decided

to investigate ways in which magnetorquers can be integrated with

other types of actuation. A way to compensate for the under-actuation

of the magnetorquers can be pairing them with some sort of passive

stabilisation, such as gravity gradient or aerodynamic torque or with

a mechanical actuation system such as momentum/reaction wheels

or thrusters [14]. When MEDs and magnetorquers are used together,

there are different possibilities for their joint use. For small satellites,

is interesting the case in which 3 magnetorquers are used together with

a single wheel. Indeed, these two systems can be integrated reducing

the overall size. In the case the MED is a momentum wheel, one talks

about a bias momentum satellite. The use of a momentum wheel adds

gyro stability to the satellite without requiring all its mass to spin:

it can dump disturbance torques providing stability properties [14].

One way to integrate these two systems of actuation is to use them

simultaneously for attitude control and wheel desaturation manoeuvres

as done using a nonlinear model in [15] and a linear model in [16]. In

[15], the spacecraft is equipped with 3 magnetorquers and a momentum
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1.1. MOTIVATIONS AND CONTRIBUTIONS

wheel and its attitude is parametrised using a sequence of Euler angles.

A linear control law for the magnetorquers and a proportional-derivative

like command law for the momentum-bias wheel parallel to the pitch

axis are used. The stability is proven using a Laypunov function and

simulations proved the robustness of the controller under actuator

saturation.

The approach adopted in this work instead consists of the use

of three magnetorquers and a reaction wheel. The tandem use of

magnetorquers and reaction wheels could extend the torquing capability

of the spacecraft and bring to power saving [17]. For example, in [18],

after the failure of the pitch reaction wheel, the control around the

pitch axis was restored thanks to the use of the magnetic coils. In [16],

a time-discrete model of a spacecraft equipped with 3 magnetorquers

and 3 reaction wheels is used. A cost index is defined and the time-

discrete periodic Riccati equation is solved through an algorithm.

The performances are compared with the one of a spacecraft using

only magnetorquers. As a result, better pointing accuracy is reached

and reaction wheel desaturation is achieved. In this work, a control

distribution law based on [19], is adopted. In particular, the required

control torque is geometrically distributed between the reaction wheel

and the magnetorquers. The reaction wheel provides the torque in the

direction parallel to the external magnetic field, given that the wheel

axis is not perpendicular to such direction. The magnetorquers provide

the remaining part of the torque, lying in the plane perpendicular to

the magnetic field direction. If the wheel axis and the Earth’s magnetic

field direction are not perpendicular, three-axis control is achieved. In

this work, the control torque is calculated using a Linear Quadratic

Regulator (LQR) based on a Linear Time-Invariant (LTI) model for

the spacecraft dynamics. To the best of the author’s knowledge, this

is the first time that the approach introduced in [19] is used with in

conjunction with linear control techniques.

The proposed attitude control law was validated with respect to pa-
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1.2. OUTLINE

rameters variations by means of Monte-Carlo approach using Simulink®.

It was then tuned to be tested hardware-in-the-loop on the AST at the

University of Bologna. Prior to the system testing, the disturbance

torques affecting the platform had to be compensated. The main

torque acting on it is the gravity torque, caused by the misalignment

between the Centre of Mass (CM) and the Centre of Rotation (CR)

of the platform. Its compensation requires the use of an Automatic

Balancing System (ABS), consisting of three motor-driven balancing

masses. As a further contribution of this work, the ABS was integrated

with the magnetorquers, which provided angular speed damping with

reduced vibration. The proposed approach provides better disturbance

reduction and ACS performance gain. The designed control law was

next implemented on the CubeSat simulator within the AST. Exper-

imental testing showed that the use of mixed magnetic/mechanical

actuation is effective in providing high accuracy in three-axis attitude

control.

1.2 Outline

In Chapter 2 the theoretical and mathematical description of the

control problem and of the experimental facility are provided. In the

Chapter 3 attitude control methods for spacecraft employing magnetor-

quers or MED are summarized. In Chapter 4 developed control law is

presented and validated with respect to parameters variations by means

of Monte-Carlo approach using Simulink®. In Chapter 5 the mass bal-

ancing procedure is presented together with the results of experimental

tests carried out on the attitude simulator testbed. In Chapter 6 the

results of the experimental tests of the mixed magnetic/mechanical

control are presented.
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2

Preliminaries

In this chapter, the theoretical and mathematical tools that provide

the necessary background to address the topics of this work are provided.

In section 2.1 the frames of reference commonly used for the attitude

determination and control are summarized. In section 2.2 and 2.3,

the equations describing the attitude of a rigid body and its evolution

in time are addressed, while in section 2.4 the equations describing

the attitude dynamics are presented. In 2.5 a short overview of the

disturbances torques acting on a satellite is reported. In section 2.6,

the attitude simulator testbed at the University of Bologna is described.

Finally, in section 2.7 the main control design methods used in this

work are summarized. For what concerns the section going from 2.1

to 2.5, [20] was used as the main reference, while section 2.6 is mainly

based on the work of [9] and [10].

2.1 Frames of reference

Describing the attitude of a rigid body consists in representing the

relative orientation of two different frames of reference. One frame is

attached to the rigid body while the other is usually defined by some

celestial body. In the case of Earth-orbiting satellites, some frames of

reference are of particular interest.

The body-fixed reference frame is attached to the spacecraft. Its
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2.1. FRAMES OF REFERENCE

Figure 2.1: Graphical representation of a spacecraft orbiting around
Earth together with the frame of reference and the spacecraft velocity
vector

origin is placed in the spacecraft CM while the orientation of the axis

is arbitrary. Nevertheless, it is a common choice to align the axis to

the principal axis of inertia of the spacecraft.

The Earth-Centered-Inertial (ECI) is a frame of reference with

origin in the Earth centre and translating with Earth. The first axis

is aligned with the vernal equinox (whose direction is given by the

intersection between the Earth’s equatorial plane and the ecliptic

plane), the third axis is aligned with the Earth’s spin axis pointing

north while the second axis comes from the right-hand rule. This frame

of reference is pseudo-inertial since the direction of the axis is fixed in

space but the origin of them moves with the Earth’s revolution around

the sun.

The Earth-Centered/Earth-Fixed (ECEF) frame of reference

differs from the ECI for the definition of the first and second axis.

These still lie in the equatorial plane but are directed towards fixed

points on the Earth’s surface. In particular, the first axis is directed

10



2.2. ATTITUDE REPRESENTATION

toward the Greenwich meridian, while the second axis comes from the

right-hand rule. As a consequence, the ECEF frame is not inertial as

both its origin and the direction of its axis are not fixed.

The Local-Vertical/Local-Horizon (LVLH) frame has origin

in the spacecraft centre of mass and is of practical interest for many

Earth orbiting spacecrafts. The third axis is directed along the nadir,

the first axis along the direction of the spacecraft velocity and the

second axis is perpendicular to the spacecraft orbit and follows the

right-hand rule.

2.2 Attitude representation

The main task of an attitude control system is to orient the space-

craft body frame towards a fixed orientation (regulation) or to follow

a defined time-varying trajectory (tracking). In both cases, the atti-

tude of the spacecraft has to be described using some mathematical

parameters.

The most used attitude representation are the Director Cosine

Matrix (DCM), the axis plus angle, the sequence of Euler an-

gles and the quaternions. Each representation has advantages and

disadvantages in terms of the computational effort, the linearity of the

equations and the presence of singularities. Euler angles are widely

used for their ease of visualisation but they depend on the particular

rotation sequence chosen and each sequence presents a singularity for

certain angles. The use of unit quaternions, on the other side, offers a

minimum attitude representation without singularities and they are

already available from the attitude determination. In this work, both

Euler angles and quaternions have been used for parametrizing the

attitude and are reported here together with the director cosine matrix.
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2.2.1 Director cosine matrix

Given two reference frame, F and F ′, a vector x has representation

respectively xF in F and xF ′ in F ′. The Director Cosine Matrix A is

an orthogonal matrix mapping xF to xF ′ through Eq. 2.1

xF ′ = AxF (2.1)

Since A is orthogonal, it follows that also the following equation

holds:

xF = ATxF ′ (2.2)

When the vector x is a position vector in the three-dimensional

space, the DCM A is a 3x3 matrix. It is characterised by 9 parameters

satisfying 6 orthogonality constraints.

2.2.2 Euler angles

The Euler angle representation expresses a rotation between two

frames of reference as the product of three rotations around three

coordinate axes, solidary with the moving body (intrinsic rotation).

Several combinations of sequences of rotation are possible and are

distinguished in symmetric sequences, where the first and the last

rotation are performed around the same axis, and asymmetric sequences,

where the rotations are performed around three distinct axes. In

this work, the asymmetric sequence 321 was used, with the common

notation of yaw ψ indicating the rotation around the third axis, pitch

θ indicating the one around the second axis and roll φ indicating the

rotation around the first axis. The Euler angles representation depends

on the particular sequence of rotations used but, in the hypothesis of

small angles, the dependency is only on the axis around which the

rotations are performed.
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2.2.3 Quaternions

A quaternion is a four-component vector with some additional

operations defined on it. Unit quaternions q =
[
q1 q2 q3 q4

]T
are

used to parametrize rotations. It can be shown that the quaternion

can be divided into two parts: the first three components q (or the

last three depending on the convention used) form a vector, strictly

related to the instantaneous axis of rotation, while the remaining scalar

component q4 is the cosine of the angle of rotation around the aforesaid

axis. Quaternions are related to the DCM by the following equation:

A(q) = (q24 − ‖q‖2)I3 − 2q4[q
×] + 2qqT (2.3)

They are more efficient than the DCM since they consist of only 4

parameters rather than 9 and satisfying only 1 constrain (unit norm)

rather than 6 (orthogonality constraints). Also, they don’t present

singularity in the attitude kinematics, differently from the Euler angles.

Often for attitude control, the reduced quaternion representation is

used. The reduced quaternion representation considers only the vector

component of the quaternion and offers some advantages, described

in Section 2.7, with the main drawback of introducing a singularity in

the representation.

2.3 Attitude kinematics

The attitude kinematics describes the evolution in time of the

attitude of a rigid body. It links the time derivative of an attitude

representation with the body angular rate ωωω. If the Euler angles

are used, the singularity that arises cannot be overcome while no

singularity is present for the quaternion representation. The equations

of the attitude kinematics can be derived through differentiation of

the attitude representation equation. The kinematics equations for the

Euler angles representation depend on the rotation sequence chosen

13
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and are not presented here for brevity. The set of equations for the

quaternion attitude kinematics is:

q̇ =
1

2
Ωq (2.4)

where Ω is a matrix that contains the components of the body

angular rate. The kinematics equations can be rewritten consid-

ering separately the the vector component of the unit quaternion

q =
[
q1 q2 q3

]T
and the scalar one q4:{

q = −1
2ωωω × q + 1

2q4ωωω

q̇4 = −1
2ωωω

Tq
(2.5)

One can then rearrange the equations to write the time derivative

of q as a function of only q and ωωω, leading to the reduced quaternion

representation for the attitude kinematics. In this way, the time

evolution of q is only a function of ωωω and of q itself.

q = g(q1, q2, q3,ωωω) =

1

2


√

1− q21 − q22 − q23 −q3 q2
q3

√
1− q21 − q22 − q23 −q1

−q2 q1
√

1− q21 − q22 − q23

 ω1

ω2

ω3


(2.6)

2.4 Attitude dynamics

Euler’s rotational equations describe the evolution in time of the

angular momentum L of a rigid body in the body axis frame:

L̇ = Jω̇ωω = τττ −ωωω × (Jωωω) (2.7)

J is the inertia matrix, τττ is the external torque applied to the

spacecraft and ωωω × (Jωωω) is the gyroscopic coupling. All the quantities

are expressed in body frame, ωωω is calculated with respect to the inertial

14



2.5. DISTURBANCE TORQUES ACTING IN SPACE

frame. The external torque can be split in the contribution of the

disturbance torques and of the control torques.

2.5 Disturbance torques acting in space

The disturbances torques are unintended internal or external torques

acting on the spacecraft. Their relative importance depends on the

orbit (mainly altitude and inclination), on the shape of the spacecraft,

its mass distribution and on the placement of the electronic compo-

nents. The modelling of these torques is important for the design of

the spacecraft attitude determination and control systems. Internal

disturbance torques can be caused by the exchange of angular momen-

tum between components of a spacecraft, they include torque due to

flexibility and due to the sloshing phenomenon. External disturbance

torques arise from the interaction of the spacecraft with the external

environment. They include the gravity gradient torque, the aerody-

namic torque, the solar radiation pressure torque and the magnetic

torque. In this work, only external torques have been considered, since

the internal torques are usually negligible for nanosatellites because of

their reduced dimensions.

2.5.1 Gravity gradient torque

The gravity gradient torque acts on every object with nonsymmet-

rical mass distribution in a non-uniform gravitational field. It can be

explained intuitively in this way: the portion of the object that is more

distant from Earth perceive a weaker gravitational attraction compared

to the portion nearer Earth. These forces are balanced only for certain

configurations of the body, otherwise, they cause a torque around the

centre of mass. This torque is negligible for application on or near the

Earth’s surface, where other torques are much stronger and friction

is omnipresent, but it can become important in orbit applications.

Considering that the spacecraft mass is much smaller than the Earth’s
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one and that the distance between these two is much higher than the

spacecraft dimensions, an analytical expression for the gravity gradient

torque can be derived:

τττ gg =
3µ

R3
s

R̂s × (JR̂s) (2.8)

where µ is the gravitational parameter, Rs is the vector going from

the centre of the Earth to the spacecraft centre of mass and J is the

inertia matrix. It is clear from this expression that the magnitude

of the torque decreases with the distance to the cube power. It is

also evident that no gravity gradient torque is present whenever a

principal axis of inertia is aligned with the local vertical direction. If

one then considers the dynamics of a spacecraft orbiting around Earth,

he discovers that for a circular orbit where all the 3 principal axes of

inertia are aligned with the axes of an orbit frame, the gravity gradient

torque provides three-axis stabilisation. For a sub-circular orbit, that

is more probably the case of a real orbit, the system is stable if the

inertia matrix of the spacecraft satisfies some proprieties [21].

Thanks to its analytical expression, the gravity gradient is the

easiest torque to be modelled and for this reason, it is often considered

not only in the test phase of a controller but also in its design phase.

2.5.2 Aerodynamic torque

Even in space application, the Earth’s atmosphere can play an

important role on spacecraft dynamics. At this altitude, the behaviour

of the atmosphere is strongly influenced by the solar activity and the

atmospheric density can vary by several order of magnitude during the

years [22]. The interaction of the atmosphere with a surface at this

altitude can be described by plastic impacts, with particles loosing

their entire energy on collisions with the satellite [23]. The expression

for the aerodynamic torque is:
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τττ a =

∫
A

r× [−1

2
ρCDv

2(v̂· n̂)]dA (2.9)

where v is the relative velocity of the spacecraft with respect to the

atmosphere, n̂ is the unit vector normal to the surface dA and r is the

position vector of with respect to the centre of the spacecraft. CD is

the drag coefficient and for practical applications, it can be set to 2.0 if

no measured value is available [21]. Often, this expression is simplified

by considering the spacecraft as the sum of simpler surfaces such as

flat surfaces and taking into account only the surfaces for which the

angle between the relative velocity and the unit normal to the surface

is less than 90 deg. As a first approximation, one can consider the

largest surface and a distance between the centre of pressure and the

centre of mass. In that case, the norm of the torque vector becomes:

|τττ a| =
1

2
ρSCDv

2|Cp − Cm| (2.10)

One common assumption consists in considering the atmosphere as

co-rotating with the Earth, thus making v the velocity relative to the

Earth’s surface.

2.5.3 The solar radiation pressure torque

Photons carry momentum and this can be exchanged with a solid

surface. For the Solar Radiation Pressure (SRP), mainly three types of

interaction between light and a surface are considered: fully absorption,

specular reflection and diffusive reflection (transmission is usually

negligible). For each type of interaction, it is defined a coefficient c

expressing the fraction of momentum flux interesting each phenomenon.

The solar radiation pressure torque is thus described by:

τττ srp =

∫
A

r× {−Φ

c
cos(α)[(ca + cd)ŝ + (2cos(α)cs +

2

3
cd)n̂]}dA (2.11)
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where Φ is the power flux, c is the speed of light, α is the angle between

the normal to the surface element n̂ and the sun direction ŝ. Also in this

case, the spacecraft can be decomposed into simpler shapes. As a first

approximation, one can consider the largest surface, a distance between

the centre of pressure and the centre of mass and the sun direction to

be coincident with the normal direction, i.e α = 90◦. Finally, only two

of the three coefficients c are independent since for the conservation of

energy their sum is equal to 1. Writing ca = 1− cd− cs and taking into

considerations the other simplifying assumptions, Eq. 2.11 becomes:

|τττ srp| =
Φ

c
S(1 + p)|Cp − Cm| (2.12)

where p can be seen as an equivalent coefficient of reflection and for a

first approximation it can be set equal to 0.6.

2.5.4 Magnetic torque

The Earth’s geomagnetic field can interact with the spacecraft to

produce various kind of torques. For non-rotating spacecrafts the most

important torque is the one that arises when a magnetic dipole m is

immersed in an external magnetic field b [21]:

τττmag = m× b (2.13)

For Earth’s orbiting spacecraft the external magnetic field coincides

with the Earth’s magnetic field. Since the absence of surface electric

currents, the Earth’s magnetic field can be expressed as the gradient

of a scalar potential, V:

b = −∇V (2.14)

and since the absence of magnetic monopole, the scalar potential

V satisfies the Laplace’s equation:

∇2V = 0 (2.15)
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The solution to this equation is expressed conveniently in spherical

harmonics:

V (r, θ, φ) = a
k∑

n=1

(
a

r
)n+1

n∑
m=0

(gmn cos(mφ) + hmn sin(mφ))Pm
n (θ) (2.16)

where a is the equatorial radius of the Earth; gmn and hmn are called

Gaussian coefficients ; r, θ, and φ are the geocentric distance, coeleva-

tion, and east longitude from Greenwich; and Pm
n (θ) are the associated

Legrendre functions. For practical purposes, the sum is truncated at

some degree and the error made in the truncation depends on the

distance from the Earth’s surface [21]. The Gaussian coefficients are

determined experimentally by combining Earth-based and satellite

measurements of the geomagnetic field and are grouped in the Interna-

tional Geomagnetic Reference Field (IGRF). The main contribution to

the sum is given by the term of degree 1, namely the dipole. One can

take advantage of this fact and approximate the magnetic field as the

one created by a vector dipole m (to not be confused with the dipole

created on board). Its expression is given by [21]:

b(R) =
a3H0

R3
[3(m̂ · R̂)R̂− m̂] (2.17)

where R is the position vector of the point at which the field is

desired and H0 can be evaluated as [24]:

H0 =
4π

µ0

√
(g01)

2 + (g11)
2 + (h11)

2 (2.18)

Eq. 2.17 offers the advantage that b can be evaluated in any

convenient coordinate system by expressing m̂ and R̂ in that coordinate

system. Fig. 2.2 compares the full IGRF model and the dipole

approximation for an orbit inclination of 0 deg.

A magnetic dipole can be present on the spacecraft because of

open loops created by the electric cables. A good design of the electric
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Figure 2.2: Comparison of the full IGRF model (IGRF) and its dipole
approximation (Dipole) for an orbit inclination of 0 deg.

wiring should avoid its presence but practically a residual magnetic

dipole will always be present on board. Depending on the size of the

spacecraft and on its altitude, this torque can be the predominant

one. At the same time, this physical phenomenon can be used as a

way to provide an active control torque. This is done by creating on

board a magnetic dipole in such a way that the torque arising from

the interaction with the Earth’s magnetic field can be used to control

the attitude of the spacecraft. This kind of control suffers from an

instantaneous underactuation since the torque will always be in the

plane perpendicular to b.

2.6 Attitude simulator testbed

The importance of an adequate ground verification process is often

underestimated in the development and test of a nanosatellite. This

requires the testing of the satellite in an environment that is as close

as possible to the one encountered in space. When it comes to the

testing of the ACS, it is essential to provide a free rotational motion in
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a low torque environment. To do so, one common solution consists of

an air bearing system. This can be used to enable rotational motion,

translational motion or both. In the case of rotational motion solely,

the air bearing system constrains the structure to rotate around a fixed

point, the Centre of Rotation (CR), that in general doesn’t coincide

with the Centre of Mass (CM) of the moving part. This misalignment

generates a gravity torque, that must be compensated through some

mass balancing system. Depending on the mission, it could be required

to simulate also the magnetic field, sunlight, starry sky, infrared Earth

[10]. The AST at the University of Bologna includes an air bearing

system, an Automatic Balancing System (ABS) and a Helmholtz Cage

(HC) to simulate the magnetic field. It includes also a Sun simulator

and a ground truth vision system that, however, were not used in this

work.

In section 2.6.1 the Helmholtz cage is described, while 2.6.2 regards

the air bearing platform. Finally, in 2.6.3 the hardware architecture of

the satellite is described.

2.6.1 Helmholtz cage

A Helmholtz cage is based on the use of three orthogonal Helmholtz

coils. A Helmholtz coil consists of a pair of coils, one parallel to each

other, each one including N wrapping. When a coil with radius a is

traversed by a current I it generates a magnetic field according to Eq.

2.19 [25].

b =
32πNI

5
√

5a
× 10−7 (2.19)

The generated magnetic field is uniform within a certain region,

whose extension depends on the radius of the coil. Using three orthog-

onal Helmholtz coils allows generating a magnetic field with arbitrary

direction in space. The HC used is a Ferronato® BH-1300-3-C from

Serviciencia, Toledo, Spain. It has coils of 1300mm of diameter and

21



2.6. ATTITUDE SIMULATOR TESTBED

is capable of generating an arbitrary magnetic field in the range ±10

gauss (1 gauss = 10−4 tesla) with in-homogeneity below 1% in a spher-

ical volume of 404 mm in diameter, concentric with the coil pairs.

Its accuracy in tracking a time-varying magnetic field was enhanced

via a closed-loop control system employing a fluxgate magnetometer

(AP539, from Applied Physics Systems, Mountain View, CA, USA)

[10]. The Helmholtz cage can be used to compensate for the magnetic

field present in the laboratory and to simulate a desired magnetic field.

2.6.2 Air bearing platform

Air bearing platforms consist of a grounded and a moving part whose

relative motion is characterized by very low friction. The grounded

part is provided with small holes where pressurized air passes through,

creating a thin film that is needed to support the weight of the moving

part and at the same time lubricates the kinematic coupling. The use

of spherical bearing provides in theory unconstrained rotational motion

but most of the time the motion is constrained for reasons of practical

realization of the platform (an example of unconstrained rotational

motion is provided in [8]). Spherical air bearing platforms are broadly

divided into three categories: table-top, umbrella and dumbbell, as

shown in Fig. 2.3. Tabletop- and umbrella-style platforms provide un-

constrained rotational motion in the yaw axis, but pitch and roll motion

(indistinguishable in this type of platform) are typically constrained to

angles of less than 90 deg, a dumbbell-style platform instead, provides

unconstrained motion in roll and yaw [3]. The air bearing used for this

work consisted of an articulated stand (Ferronato® ULTAS-1 from

Serviciencia, Toledo, Spain), of a spherical air bearing with a diameter

of 150mm by Physical Instrumetns and tabletop-style platform. The

simulator is capable of providing full rotational motion in yaw and up

to 45 deg in roll/pitch [9].

Ideally, the disturbance torques affecting the platform should be

maintained as low as the one found in orbit, i.e in the order of 10−5Nm.
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Figure 2.3: Type of air bearings. From left to right: tabletop-style,
umbrella-style and dumbbell-style [3]

Values reported in the literature are no lower than 5 × 10−5Nm [9].

Characterization of these torques is thus required. The disturbance

torques affecting an air bearing platform can arise from different sources.

In [26] the torques affecting an air bearing platform are divided in 4

groups: the torques arising from the platform, the torques from bearing,

the torques from environment and the torques from the test system.

The torques that arise from the platform include the gravity torque

and the anisoelasticity, a torque caused by the deformation of the

platform at different tilt angles. In our case, the first is the main

torque acting on the platform while anisoelasticity is not a concern

because of the reduced dimensions. The torques from the bearing

include the aerodynamic turbine torque, i.e. the torque caused by the

not precisely symmetrical airflow. This is mitigated thanks to the use

of high-end COTS components with very low friction. The torques

from the environment include the aerodynamic torque, residual dipole

torque and vibrations. The aerodynamic torque is neglected due to

the small angular velocity and dimensions, the residual dipole torque

is minimised using a-magnetic materials for the platform while the

vibrations are minimized through robust mounting. The torques from

the test environments, such as mass shift in bearing and loose fits, are

important in large test platforms while can be neglected in this case

[9].

While other torques can be minimised by carefully designing the
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Figure 2.4: The Helmholtz cage of the AST of the University of Bologna
with the air bearing semi-emisphere in the centre

test platform, the gravity torque is present whenever there is a mis-

alignment between the CM and the CR of the platform. The distance

between these two defines the unbalance vector. Theoretically once

this is known, the gravity torque can be compensated through mass

balancing. Actually, it can be only estimated with finite precision,

dictated by the precision of the Inertial Measurement Unit (IMU).

Manual balancing procedures can be implemented but they result to be

time-consuming and don’t guaranty a priori performance level [9],[27].

To overcome these limits, automatic balancing procedures should be

used. An automatic balancing procedure requires the determination of

the centre of mass position together with the inertia parameters. Their
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identification constitute a dynamic parameter identification problem,

for which different solutions have been proposed in the literature [8].

The air bearing platform at the University of Bologna includes an

ABS that utilizes three stepper motors driving three balancing masses,

allowing to move the CM within a region that includes the CR. This

system is used for fine balancing procedure after a coarse balancing is

obtained by components positioning.

2.6.3 Satellite hardware

The on board controller consists of a M0 Feather board by Adafruit,

programmed to run different control modes. These range from the

balancing feedback algorithm to few attitude control algorithms that

make use of the magnetorquers and of the wheel. The IMU used consists

of a Xsens MTi-3, which provides angular velocity data, orientation

information and magnetic field reading. The sensor specification are

reported in table 2.1 while in Fig. 2.5 is shown a picture of the satellite

with the main components.

Both the M0 Feather and the Xsens are powered by a 3.6 V Lithium-

Ion (LiIO) battery. A 7.2 V LiIO battery powers the three stepper

motors, the three magnetorquers and the reaction wheel. Each mo-

tor moves a mass of 0.041Kg with a minimum step of 2µm. Each

Magnetorquer (MT) could provide a maximum dipole of 1Am2. The

reaction wheel is made up of a flywheel powered by a brushless DC

motor (T-Motor Navigator MN1806 1400kv) and is mounted below

the main plate, along the satellite z-axis. The characterization of the

motor showed a highly nonlinear behaviour at low angular speed. For

this reason, the wheel is used as a momentum wheel with low bias

rather than as a reaction wheel. This choice implications are explained

in Chapter 6.
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Attitude determination fusion alghorithm performance
Roll/Pitch 0.5◦ RMS
Yaw 2◦ RMS

Gyroscope
Standard full range ±2000◦/s
In-run bias stability 10◦/h
Bandwidth (-3dB) 230Hz

Noise density 0.003◦/s/
√
Hz

g-sensitivity (calibrated) 0.001%FS
Accelerometer

Standard full range ±16g
In-run bias stability 30µg
Bandwidth (-3dB) 230Hz

Noise density 70µg/
√
Hz

Magnetometer
Standard full range ±8G
Non-linearity 0.2%
Total RMS noise 0.5mG
Resolution 0.25mG

Table 2.1: IMU specifications
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Figure 2.5: Picture of the satellites with the main components
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2.7 Control design methods

There are different methods that can be used to control dynamical

systems. These are broadly divided in linear control methods and

nonlinear control methods, depending on the model used to describe

the system, respectively a linear or nonlinear model. Most dynamical

systems are actually nonlinear, such as the one describing the attitude

evolution of a spacecraft (see Eq. 2.7 and Eq. 2.6). For nonlinear mod-

els, a widely employed method to ensures global asymptotic stability

(defined in 2.7.1) consists in the use of the Laypunov second method.

Its disadvantage is that it does not address control performances and

it is not characterised by a general procedure. Moreover, there is

no generalized approach to address external input such as noise and

disturbances [28]. The input-output stability framework overcomes this

limit of the Lyapunov theory and investigates the relationship between

the input and the output of a system. In particular, it considers a

system to be stable if bounded input leads to bounded output, where

the concept of boundedness has to be specified.

Under certain assumption, it’s possible to rely for the control

law design on the linear model developed starting from the complete

nonlinear model of the system. In some cases a controller designed using

a linearised model can be proven, either analytically or experimentally,

to stabilise also the original nonlinear system. Developing a linear

model allows for the use of well established linear control methods

and to an easier evaluation of the controller performances in the

neighborhood of the origin. To develop a linear model, one assumes

that the system behaves about an equilibrium condition and that

it remains close to it. The equations are linearised using a Taylor

expansion around the equilibrium condition and the nonlinear terms

are neglected. In case Euler angles are used to describe the attitude,

the linearised model describing the spacecraft dynamics is controllable

but it’s not guaranteed in general that the controller designed using the
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linear model globally stabilizes the nonlinear system. In other words,

the control can become unstable for attitude far from the linearisation

point [16]. A linearised model derived using the quaternions it’s in

general not controllable. To overcome this limit, one can use a reduced

quaternion model. This representation has a singular point but for

an angle equal to ±π the most distant from the origin, that is the

point usually used for the linearisation. At the same time, it offers the

advantage that the linearised model is controllable and, under certain

conditions, the designed control system globally stabilizes the nonlinear

system.

Another important distinction is between time-invariant and time-

variant systems. Time-variant systems response to an input depends on

the time instant the input is applied, while for time-invariant systems

the response is independent of time. A spacecraft using magnetorquers

for attitude control constitute an example of time-variant system.

Indeed, the control torque is generated from the interaction between

the dipole of the magnetorquers and the Earth’s geomagnetic field

that varies as the spacecraft travels along the orbit. The time-varying

nature of the system could be taken into consideration when designing

a controller. Time-variant controllers could offer better performances

when the system has a strong time-varying nature. This is the case of

magnetic control where the Earth’s geomagnetic field can be considered

to be periodic along the spacecraft orbit. The drawbacks of time-

varying controllers are the increase in complexity for what concerns

the design and implementation of the controller and the increase in

memory occupied on the on board computer. One way to attenuate this

problem in the case of Earth orbiting spacecraft is to use the periodic

nature of the system by considering the average Earth’s magnetic field,

as done in ([29],[30],[31])

In this section, the control theory upon which this work is based

is recalled. Either if the designed control law is derived using a LTI

model of the spacecraft, concepts strictly related to nonlinear control
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theory, such as the Lyapunov second method, are often mentioned

in the text. For this reason, it was decided to recall such notion in

this chapter. Stability of nonlinear systems is addressed in Section

2.7.1. In Section 2.7.2 the Lyapunov second method is presented. In

Section 2.7.3 and 2.7.4 respectively the Proportional Integral Derivative

(PID) and Linear Quadratic Regulator (LQR) control methods are

recalled. In Section 2.7.5 LQR design in case of inertial pointing is

considered, for a fully actuated spacecraft with no reference to the

type of actuation.

2.7.1 Stability of nonlinear systems

Let’s consider the system with state-equation 2.20, which could

represent the time evolution of the angular velocity of a rigid body.

ẋ(t) = f(x(t)) x(0) = x0 (2.20)

where x ∈ Rn and assume the existence of solutions x(t) to the

state-equation in some open set D ∈ Rn. An equilibrium point is a

state of the system xT that satisfies f(xT ) = 0. The equilibrium can

be Lyapunov stable, asymptotically stable or exponentially stable. If we

consider small perturbation from the equilibrium state, the equilibrium

is said to be Lyapunov stable if the perturbed state remains close to the

equilibrium point; if in addition, the state converges to the equilibrium

in an infinite time then it is said to be asymptotically stable; if in

addition, it converges faster or as fast as a given exponential it is said

to be exponentially stable. The conditions stated above define local

stability, if they are satisfied for whatever initial point and whatever

trajectory of the system state (that is D = Rn), then they define global

stability.
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2.7.2 Lyapunov’s second method

Lyapunov’s theory covers the stability of nonlinear autonomous sys-

tems. The Lyapunov second method defines a necessary and sufficient

condition for global asymptotic stability. If one can define a scalar

potential function V , also called extendend energy function, which is

continuous and with a global minimum at the target state xT , then the

state of the system converges to xT if and only if the rate of change

of the potential, V̇ , is negative defined. If this doesn’t happen, one

can design a control action u such that the forced system satisfies

the above condition. The Lyapunov second method suggests a way to

design a stabilizing control action. Given a dynamical system:

ẋ = f(x,u) (2.21)

define a continuous Lyapunov function V that satysfies:

• V (xT ) = 0

• V (x) > 0, for x 6= xT

• V (x)→∞, for x→∞

design a control action u = u(x) such that:

V̇ (x) =
∂V

∂x

dx

dt
=
∂V

∂x
f(x,u) < 0, for x 6= xT (2.22)

The LaSalle theorem (valid only for time-invariant systems) extends

the result of the Lyapunov second method in the case in which:

V̇ (x) ≤ 0, for x 6= xT (2.23)

V̇ (x) = 0 ⇐⇒ x(t) = xT ,∀t. (2.24)

The main drawback of the Lyapunov method is that it doesn’t

exist a procedure to define a Lyapunov scalar function. At the same
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time, this allows for flexibility: different Lyapunov functions can be

defined for the same dynamical system and multiple control laws can

be designed to stabilise the same function.

2.7.3 Proportional Integral Derivative control

Let us consider the following linear system, that could represent

the dynamics of a nominally inertially fixed spacecraft around the first

axis when small angles and rates are assumed:

Jxφ̈ = uc + τd (2.25)

τxc is the control torque and τdx is the disturbance torque. Let’s

also consider a reference signal r and an output signal y(t) = φ(t) and

let’s define the error signal as:

e(t) = r − y(t) (2.26)

A Proportional Derivative (PD) control consists in providing a

control input that is the sum of a scaling of the error signal and of its

derivative:

τc = Kpe(t) +Kdė(t) (2.27)

Assuming constant r(t) and zero disturbance torque, the spacecraft

equation of motion becomes:

Jxφ̈ = Kp(r − y(t))− kdẏ (2.28)

that is a spring-mass-damper system. If the reference attitude

r(t) is constant and there is no disturbance torque, the error signal

will converge to zero and oscillation will be damped. If a constant

disturbance torque is added, there will be a steady-state error in the

attitude. With the Proportional Integral Derivative (PID) control, an

integral term is added to the control law:
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τcx = Kpe(t) +Kdė(t) +Ki

∫ t

0

e(τ)dτ (2.29)

that will drive the error to zero.

2.7.4 Linear Quadratic Regulator control

Let’s recall the linear quadratic optimal control problem with

infinite control horizon. Given a linear system in state space represen-

tation:

ẋ = Ax +Bu (2.30)

y = Cx (2.31)

and a quadratic cost index L:

L =
1

2

∫ ∞
0

(xTQx + uTRu)dt (2.32)

with Q and R positive definite matrices, find a state feedback input

u = −Gx (2.33)

such that 2.30 is satisfied and 2.32 is minimised. Minimising the

cost index means minimising the deviation of x from the target state

in compromise with the energy spent. The relative importance of

these two requirements is tuned by a proper choice of matrices Q

and R. Under the assumptions of (A,B) being constant completely

controllable, (A,C) constant and completely observable and with the

former requirements on Q and R, the solution to the problem is given

by:

u(t) = −R−1BTFx(t) = −Gx (2.34)
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with F being the solution of the ARE (Algebraic Riccati matrix

Equation):

− FA− ATF + FBR−1BTF −Q = 0 (2.35)

It can be proven that the poles of the system that uses this feedback

law have all negative real part, hence stabilizing the system.

2.7.5 LQR Design for inertial pointing spacecraft

Let’s consider the case in which the spacecraft has to be oriented

with respect an inertially fixed reference . The attitude is parametrised

in terms of a reduced quaternion representation, describing the orienta-

tion of the body frame with respect to an inertial frame. The reduced

kinematic equation is 2.6 and the dynamical equation is 2.7. To derive

a linearised model, it is assumed that the attitude of the spacecraft

is sufficiently close to the nominal attitude q1 = q2 = q3 = 0 (q4 = 1)

(body frame aligned with inertial frame) and that the body angular

rate is sufficiently close to zero. Sufficiently close means that second

and higher-order terms in a Taylor expansion around the linearisation

point can be neglected. The dynamic and kinematic equations are

linearised and are written in the state space representation. The state

of the system is defined as x =
[
ωωωT qT

]T
and u is the input to the

system. If the disturbance torques are negligible and the spacecraft has

no MEDs, then the resulting linearised spacecraft system is expressed

by Eq.2.36. The system described using this model is controllable [16].

ẋ = Ax +Bu (2.36)

where

x =

[
ωωω
q

]
A =

[
03 03
1
2I3 03

]
, B =

[
J−1

03

]
(2.37)

Considering the LQR problem, if matrices Q and R are assumed

to be diagonal, as it is often done in engineering design practice and
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the inertia tensor J is assumed to be diagonal as well, then the LQR

controller has a diagonal structure in its state matrices D and K:

u = −[D,K]x (2.38)

In [16] it is shown, by means of the Lyapunov second method,

that if matrices Q and R satisfy one of the two additional constraints,

expressed by Eq. 2.39, then the nonlinear system defined by 2.7 and

2.6 is global asymptotically stable.

R = cQ22 or R = cQ22J (2.39)

where c is a constant and Q22 is a part of the matrix Q expressed

in Eq. 2.40

Q =

[
Q11 0
0 Q22

]
(2.40)
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Spacecraft attitude
control

The scope of an attitude control system is to achieve and maintain

a nominal attitude. This is done by comparing the information on the

current attitude and angular velocity, that is retrieved by the attitude

determination system, with the required nominal attitude. Based on

this difference a torque is commanded to the actuators. The design

of the spacecraft attitude control law depends on the model used to

describe the spacecraft dynamics. Depending on the system and mission

scenario, the nonlinear model or linearised dynamics can be employed

for the control law design. In the case of inertially fixed spacecraft, the

linearised system has a simple structure and the use of linear control

method is attractive. In [16], for example, is shown that the LQR

based on the linearised reduced quaternion model of the inertially

fixed spacecraft has an analytical formula. When magnetorquers are

used as actuators, only the component of the torque perpendicular

to the magnetic field can be actuated. This fact makes the design a

challenging task for which different solution have been developed.

In the following sections, different types of control designs will be

briefly presented. In Section 3.1 the problem of magnetic attitude

control is covered. Some control laws for detumbling and attitude

control are presented. In section 3.2 the control of spacecraft equipped

36



3.1. MAGNETIC CONTROL

with reaction wheel control is presented. Finally, in section 3.3 the

problem of mixed magnetic-mechanical actuation is presented together

with the solution described in [19]. The presented approach is then at

the basis of the attitude control law described in Chapter 4, where a

LTI model is used for the spacecraft.

3.1 Magnetic control

Magnetic control has been used since the beginning of the space

era. The first proposal for attitude control using magnetic torques

was in the early 1960s [32]. Mainly passive systems were used in the

beginning, while the use of active systems become popular later thanks

to electronic miniaturisation. In particular, magnetorquers are widely

used in small satellites in LEO. They consist of electromagnetic coils

with a specified number of turns and area that produce a magnetic

dipole interacting with the Earth’s magnetic field. For a coil of surface

S with normal to the surface â, with n turns and with current i the

magnetic dipole generated is:

m = niSâ (3.1)

The generated magnetic dipole interacts with the Earth’s geomag-

netic field to generate a torque expressed by 2.13, here reported.

τττ = m× b (3.2)

Magnetic control can be used directly for attitude control or to

unload momentum accumulated by reaction wheels. In the latter,

the magnetorquers have to counteract only the secular components

of the disturbance torques [33]. Other uses are detumbling, initial

acquisition, precession control and nutation damping. The use of

magnetorquers offers several advantages with the main drawback of the

under-actuation around an axis parallel to the external magnetic field

and a propensity to control saturation. Indeed, the torque can be only
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applied in the plane perpendicular to the external magnetic field, as it is

clear from Eq. 3.2. The underactuation is instantaneous because as the

spacecraft travels along its orbit, the forbidden direction of actuation

becomes available again and, on average, 3 axes control is achieved.

This fact has been used to design control laws that contemplate the

use of only magnetic actuation.

3.1.1 Detumbling by means of the magnetic actu-

ation

A possible nonlinear control action consists in a magnetic dipole

proportional to the cross product between the external magnetic field

vector and the angular velocity [34]:

m =
k

‖b‖
ωωω × b̂ (3.3)

the resultant torque is:

τττ = −k(I3 − b̂b̂T )ωωω (3.4)

This control torque will send to zero the component of ωωω perpen-

dicular to b but obviously, it won’t affect the component parallel to it.

If one considers the following Lyapunov candidate function:

V =
1

2
ωωωTJωωω (3.5)

and computes V̇ using 2.7 and 3.4, than it will find that V̇ is only

negative defined. Indeed, it is equal to zero not only when ωωω = 0 but

also when ωωω is parallel to b̂. This eventuality is avoided if the orbit of

the spacecraft is such that the direction of the magnetic field is not

inertially fixed [34].

In the case that no angular velocity information is available, [34]

proposes a modified version of the well-known B-dot law [35]:
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m = − k

‖b‖
˙̂
b (3.6)

Using this control law, the angular velocity can be reduced to a

value of the same order of magnitude of the orbit rate (about 10−3

rad/s).

3.1.2 Magnetic actuation for three-axis attitude

control

Magnetic control has been also used to perform a three axis attitude

control. In [36] and [37] a feedback control law is proposed for iner-

tial pointing and implemented by the magnetorquers in a projection

manner:

m = −kωb×ωωω − kqb× q (3.7)

where q is vector part of the quaternion. Asymptotic stability is

proven provided that certain scaling properties between kω and kq are

satisfied.

3.2 MED control

A real spacecraft is not properly a rigid body, either because of the

finite stiffness of its components or because it is often equipped with

moving parts, for example with Momentum Exchange Devices (MEDs).

As the name suggests, these actuators exchange angular momentum

with the rest of the spacecraft without changing the overall angular

momentum. They do so by spinning a flywheel using an electric motor.

Based on their nominal speed they are divided into:

• momentum wheels

• reaction wheels
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The momentum wheels have a nominal speed different from zero

that provide a gyroscopic stiffness to the spacecraft but make the

spacecraft less manoeuvrable. The reaction wheels, on the other hand,

have a nominal speed equal to zero. In both cases, the wheels change

their speed in response to external torques. The external disturbance

torques usually have a periodic component and a secular component.

After a certain time, the secular component will bring the wheel to

possess an angular momentum beyond which its structural integrity is

compromised. For this reason, the wheel needs to be desaturated using

other actuators, such as thrusters or magnetorquers. Usually, three

reaction wheels are used, with their axis aligned with the spacecraft

principal axis or, if redundancy is taken into consideration, more than

three reaction wheels are used with different possible configurations.

Since these devices don’t change the total angular momentum, the

torque that they provide is said to be internal (differently from thrusters,

for example, that change the total angular momentum by expelling

propellant). This fact is reflected in the minus sign in Eq. 3.8. The

momentum/reaction wheels can be taken into account with a slight

modification of Euler’s equations. The total angular momentum can

be split into 2 contributions: Jωωω is the angular momentum of the

spacecraft with the wheels considered at rest with it, h is the angular

momentum of the wheels relative to the spacecraft. If one considers

axisymmetric wheels rotating about their axis of symmetry and with

the centre of mass lying on it, then the hypothesis of constant tensor

of inertia in the body axis holds and the Euler’s equations of dynamics

are rewritten as:

Jω̇ωω = τττ − ḣ−ωωω × (Jωωω + h) (3.8)

The term −ḣ is very important and it can be interpreted as an

internal torque. In absence of external torques, the total angular

momentum remains constant and this fact is in accordance with the

minus sign of the internal torque. If one considers the simple case of
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only one wheel, its rotation in one sense causes the rotation of the

remaining mass of the spacecraft in the opposite sense. This fact offers

a possibility for attitude control of the spacecraft using momentum

exchange devices.

Eq. 3.8 describes the dynamics of the spacecraft equipped with one

or more MEDs (Momentum Exchange Devices). In the design of the

control law, the dynamical model of the motor is also considered. The

simplest model is the one of an ideal DC motor in which the torque is

linear with the applied voltage; a more realistic model considers also

the armature reaction.

3.3 Hybrid magnetic-mechanical attitude
control

The performance of a system using magnetorquers as main actuators

can be improved by providing it with some sort of mechanical actuation.

Thrusters [38] or reaction wheels can be used. For small spacecrafts,

MEDs provide longer lifetime and better performance. In [17], the

tandem use of reaction wheels and magnetorquers is considered but

the two systems are controlled independently. This means that their

control torque can overlap and possibly cancel out. In [19] instead,

this possibility is avoided by geometrically distributing the required

control torque. The required torque is split into two components:

τττ = τττ⊥ + τττ ‖ (3.9)

where τττ⊥ ∈ Im{[b×]} and τττ ‖ ∈ Ker{[b×]}. The torque to be

provided by the actuation system is calculated as follows:

τττw = τττ ‖ τττm = τττ⊥ (3.10)
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where τττw is the torque to be actuated by the reaction wheels and

τττm is the one to be actuated by the magnetorquers. The physical

interpretation of this control law is straightforward: the magnetorquers

are able to provide only torques that lie in the plane perpendicular to

the external magnetic field b and the matrix [b×] maps any vector in the

space to its projection in this plane. In other words, the magnetorquers

provide the part of the required torque that had a component in the

plane perpendicular to the magnetic field. Similarly, the part of the

torque parallel to the direction of the magnetic field is provided by the

reaction wheels. This law only distributes the required torque that can

be calculated using any method. In the case in which less than three

reaction wheels are available, the redistribution law is slightly modified.

The reaction wheels are able to provide torque in a direction lying in the

plane containing their axis (coinciding with the wheel axis if only one

wheel is available). This means that only a component of their torque,

τττw‖, belongs to Ker{[b×]} while the other component, τττw⊥, needs to

be compensated by the magnetorquers. In this case, control overlap

cannot be always avoided and there is an underactuation whenever

the external magnetic field is perpendicular to the plane generated

by the wheel axis direction. When only one reaction wheel is used,

the torques to be actuated by the wheel and the magnetorquers are

evaluated as follows:

τττw =
bTτττ

b3
I3 τττm = [b̂×]T [b̂×](−τττw + τττ) (3.11)

In this case, the wheel axis is chosen to coincide with the third

axis but it could have been the first as well as the second. The control

torque commanded to the wheel can be directly actuated, while the

control that can be actuated by the magnetorquers has to satisfy Eq.

τττm = m× b = [b×]Tm (3.12)

This equation cannot be solved directly for m, since [b×]T is not
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invertible. In [19] the magnetic dipole is chosen in such a way to

minimize the cost function 3.13 with respect of m3, yielding to 3.14.

Jm (m3) =
1

2
mTm =

1

2

(
m2

1 +m2
2 +m2

3

)
(3.13)

m =

 1
b3

(−τm2 +m3b1)
1
b3

(τm1 +m3b2)
1

bTb (τm2b1 − τm,1b2)

 , ∀b3 6= 0⇔m =
[b×]τm

bTb
(3.14)

From Eq. 3.12 is clear that the underactuation happens when the

wheel axis is perpendicular to the magnetic field direction. In [19] is

argued that this kind of underactuation is only instantaneous, since all

directions become available as the spacecraft travels along its orbit, not

that dissimilar from what happens when using only magnetorquers.
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Attitude control design
and simulations

The geometric decomposition of the control torque, described in

3.3, can be used in conjunction with any control scheme. In [19] an

adaptive control scheme is used, while in [28] a Linear Time Variant

(LTV) input strictly passive controller is used as wheel as in [39]. To

the best of this author’s knowledge, there were no examples of this

strategy being applied in conjunction with a LTI controller. This

simple yet effective approach for control law design is used here by

implementing a slightly modified version of the geometric approach.

In Section 4.1, the design attitude control scheme used in this

work is described. In Section 4.2, the performances of the control

law is tested for different orbit inclinations and wheel designs through

numerical simulations. Finally, in Section 4.3, the stability of the

non-linear system with respect to parameters variations is studied by

means of Monte-Carlo approach.

4.1 Control formulation

The distribution law described in [19] is modified to allow for an

additional degree of freedom on the control torque commanded to the

wheel. The new control distribution law is shown in Eq, 4.1, where it
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is assumed that the wheel is mounted on the third axis. The desired

dipole is then calculated using Eq. 3.14.

τττw = kwh
bTτττ

b3
I3 τττm = [b̂×]T [b̂×](−τττw + τττ) (4.1)

The required torque is calculated as a state feedback (see Eq. 2.7.5)

using a LQR based on the LTI model of an inertial pointing spacecraft

(2.37). The cost index weight Q is constructed in the following way:

Q =

[
Q11 0
0 Q22

]
=

[
Qw 0
0 Qq

]
(4.2)

4.2 Orbit inclination and wheel design se-
lection

The designed attitude control law was tested in Simulink® in the

case of three magnetorquers and one reaction wheel. As stated above,

the system is underactuated whenever the axis of the reaction wheel is

perpendicular to Earth’s magnetic field vector. This means that the

performance of the system depends on the inclination of the orbit and

on the axis on which the wheel is mounted. The design of such system

is thus constrained by this condition to a certain set of orbit inclination

and wheel positioning. In order to characterise the system’s behaviour

to changes in these conditions, 12 simulations were performed. The

orbit inclination was varied in the set (0◦, 30◦, 60◦, 90◦) while the wheel

axis was aligned with one of the three axes of the spacecraft at the time.

The spacecraft characteristics are resumed in Table 4.1. They have

been chosen considering a 3U CubeSat mission in Low Earth Orbit.

The disturbance torques described in Section 2.5 has been also included

in the model while measurement errors were not considered at this stage

of the design. The modelled environmental torques are the gravity

gradient torque, the aerodynamic torque, the solar radiation pressure

torque and the residual dipole torque. The maximum values for the

45



4.2. ORBIT INCLINATION AND WHEEL DESIGN SELECTION

disturbance torques and the actuators characteristics are resumed in

Table 4.2.

Parameter Symbol Value Units
Spacecraft data

Principal moments of inertia J11,J22,J33 0.0283, 0.0323,
0.0127

Kgm2

Orbit data
Semi-major axis a 6771 Km
Eccentricity e 0
Period T 5545 s

Initial conditions
Angular velocity ωωω0 -0.0063, -

0.0026, 0.0025
rad/s

Euler angles ψ0,θ0,φ0 9, 5, 8 deg
Magnetic field maximum norm ‖b‖max 3.7× 10−5 T

Table 4.1: Spacecraft and orbit data, with initial condition

The weight matrices for the LQR formulation were Qw = I3 and

Qq = 0.1I3, where I3 is the 3x3 identity matrix. The weight matrix

R and the wheel kw were the result of a tuning and were set equal to

10I3 and 0.1 respectively. The resulting gain matrix D and K (see Eq.

2.7.5) are:

D =

0.3176 0 0
0 0.3178 0
0 0 0.3169

 K =

0.0316 0 0
0 0.0316 0
0 0 0.0316


(4.3)

The results of the simulations showed that the ACS is able to

stabilise the system in most combinations of orbit inclination and wheel

design. The unique exception was found to be an orbit inclination of 90◦

and the wheel aligned with the second axis. In that case, indeed, the

direction of the Earth’s magnetic field vector is almost perpendicular

to the wheel axis (see Fig. 4.1 (b)). This means that the wheel is

not effective in providing the torque in the direction parallel to the
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Parameter Symbol Value Units
Disturbance torques

Gravity gradient torque τgg,max 3.5× 10−8 Nm
Aerodynamic torque τa,max 4.5× 10−7 Nm
Solar radiation pressure torque τsrp,max 7.3× 10−9 Nm
Residual dipole value mres 0.5 Am2

Residual dipole torque τm,res 1.9× 10−5 Nm
Actuators

Wheel moment of inertia Jw 2.11 ×10−6 Kg m2

Maximum wheel torque τττwmax
2.3× 10−4 Nm

Maximum magnetic dipole mmax 1 Am2

Maximum magnetorquers torque τm,max 3.7× 10−5 Nm

Table 4.2: Maximum disturbance torques and actuators characteristics

magnetic field, which is also the direction of underactuation for the

magnetorquers. The results in terms of steady error of Yaw, Pitch and

Roll, are shown in Table 4.3

Wheel axis
1 2 3

0◦ [0.012 0.048 0.041] [0.012 0.060 0.041] [0.012 0.048 0.041]
i 30◦ [ 0.007 0.045 0.041] [0.007 0.046 0.040] [ 0.007 0.045 0.040]

60◦ [0.008 0.038 0.034] [0.008 0.038 0.034] [0.008 0.038 0.034]
90◦ [0.015 0.035 0.028] [0.938 1.943 75.741] [0.015 0.035 0.028]

Table 4.3: Steady-state error of [Yaw Pitch Roll] for different orbit
inclination and wheel axis alignment

Looking at the effort required by the actuators, the best config-

uration found is an orbit inclination of 0◦ (equatorial orbit) and the

wheel aligned with the third axis. Indeed, in that case, the direction

of the Earth’s magnetic field is almost parallel to the wheel’s axis (see

Fig. 4.1 (a)) and the control torque required by the wheel, expressed

by Eq. 4.1, is minimum. The results for this case in terms of Euler

angles are shown in Fig. 4.2. For all the other orbit inclinations and

wheel alignment, the control torque required by the wheel increases to
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high values whenever the wheel axis is perpendicular to the Earth’s

magnetic field, as shown in Fig. 4.3, in which the wheel is aligned

with the third spacecraft body axis. Since the torque required by the

magnetorquers depends also on the wheel torque via Eq. 4.1, the peaks

on the wheel torque result also in peaks in the commanded dipoles.

Motivated by these results, it has been chosen to use an equatorial

orbit and to have the wheel’s axis aligned with the spacecraft third

axis. It is worth noting that an equatorial orbit is the worst case for a

spacecraft equipped with only magnetorquers since the magnetic field

has an almost constant direction.
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Figure 4.1: Magnetic field components in ECI coordinates system
using the dipole approximation, 0◦ orbit inclination (a) and 90◦ orbit
inclination (b).
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4.3 Monte Carlo tests

Effects of environmental torques parameters variation on the ACS

performance were studied by means of Monte Carlo approach. For a

specified span of possible parameters, initial conditions and the off-

diagonal term of the inertia matrix 300 Monte Carlo simulations were

set. The attitude sensors and the gyroscopes were modelled accordingly

to the expected performances of a typical attitude determination system

on a 3U CubeSat. State of the art systems can reach an attitude

determination accuracy in the order of 0.1◦ [40] in case no star tracker

is employed, which is not expected to be available for the considered

Attitude Determination and Control System class. Fig. 4.4 shows

the effect of the measurements error on the pointing accuracy of a

spacecraft. The LQR weight matrices are Qw = I3 and Qq = 0.01I3,

R = 1 × 103I3 and the wheel gain is kw = 0.05. The resulting gain

matrix D and K are reported in Eq. 4.4 while the other Monte Carlo

simulations settings are resumed in Table 4.4.

D =

0.0330 0 0
0 0.0332 0
0 0 0.0322

 K =

0.0032 0 0
0 0.0032 0
0 0 0.0032


(4.4)

Parameter Set of values Units
Off-diagonal terms inertia matrix [0.1, 1]× 10−3 Kg m2

Atmospheric density [0.05, 5]× 10−12 Kg/m3

Residual dipole Intensity 0.5 and ran-
dom direction

A m2

Initial angular velocity [0.057, 0.57] deg/s
Initial Euler angles [0, 180] deg

Table 4.4: Monte Carlo simulations setting

The magnetic torque due to the residual dipole was the main

torque acting on the spacecraft, with an order of magnitude of 10−5

51



4.3. MONTE CARLO TESTS

5450 5460 5470 5480 5490 5500 5510 5520 5530 5540

Time (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

E
u

le
r 

a
n

g
le

s
 (

d
e

g
)

Yaw (Ideal)

Pitch (Ideal)

Roll (Ideal)

Yaw (IMU)

Pitch (IMU)

Roll (IMU)

Figure 4.4: Attitude error in the case measurement errors are absent
(Ideal) and in the case they are present (IMU)

Nm, followed by the aerodynamic torque, whose magnitude depends

on the atmospheric density, and then by the others environmental

torques. The results of the simulations, in terms of steady-state error,

are reported in Fig. 4.5 while Fig. 4.6 shows the evolution with respect

of time of the Euler angles for the first 500 seconds of the simulations.

Yaw Pitch Roll
Mean value 0, 14◦ 0, 41◦ 0, 41◦

Standard deviation 0, 10◦ 0, 29◦ 0, 26◦

Table 4.5: Mean value and standard deviation of Euler angles’ steady
state values

For the 97% of the simulations, the settling time is under 280

sec while 3% of the simulations reported anomalous results in which

the settling time is comparable with the orbital period. As expected,

the best pointing accuracy is reached on the third axis thanks to the

presence of the reaction wheel. Table 4.5 reports the mean value and

the standard deviation of the steady-state value of the Euler angles.

The results show that the designed control system is capable of ensuring

good pointing accuracy also in presence of disturbances and parameters
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Figure 4.5: Results of Monte Carlo simulations in terms of steady-state
error, Euler angles

variations. It’s important to remark that the pointing accuracy and the

stability of the control system are dependent on the orbit inclination

and the wheel design. Indeed, the system is underactuated whenever

the reaction wheel is parallel to the external magnetic field.
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Figure 4.6: Time evolution of the Euler angles for the first 500 seconds
of simulation
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5

Mass balancing
overview and
experimental testing

To make possible attitude control experiments, the control torque

have to be larger than the disturbance one. As pointed out in Chapter

2, the disturbance torque due to the unbalance is the biggest one

affecting the simulator. The gravity torque depends on the distance

between CM of the structure and CR. The former can be moved in

space and brought to coincide with the latter through some balancing

procedure. Even when this is done, any change in the layout of the

components in the structure, also a movement of a cable, could shift

the CM to a new position that in general will differ from the one of

the CR. This fact requires the balancing procedure to be fast, accurate

and repeatable. This is obtained for the Attitude Simulator Testbed

using the ABS. The ABS relies on three stepper motors driving three

0.041Kg masses. The Automatic Balancing System is able to move the

CM in a limited region of the three-dimensional space that of course

included the CR location. For points outside of this region, manual

balancing has to be performed. This is the case, for instance, when

the structure is first assembled.
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5.1 Manual balancing

The manual balancing procedure is performed by properly placing

the components on the plate and through the adjustment of 4 bolts

(visible in Fig. 2.5) linking the plate to the rotating hemisphere of

the air bearing. The bolts can be adjusted both in height, through

their screwing, and in the plane, thanks to the presence of 2 slots. The

manual balancing procedure is concluded when the CM is moved inside

the reachable workspace of the ABS. This is effective only in balancing

the offset in the direction perpendicular to the gravity field, while the

parallel component is more difficult to be compensated. The torque

that can be generated by the balancing masses is indeed physically

confined in the direction perpendicular to the gravity field [27], [9].

For this reason, it is convenient to split the balancing procedure into

two or more consequent operations, separating the in-plane balancing

from the balancing in the vertical direction.

5.2 Automatic balancing

In [9], a two-step iterative balancing procedure is proposed. Inertia

estimation is followed by balancing on the x-y plane and by estimation

of the unbalance vector in the z direction through sampling of free

oscillation, and finally by the balancing in the z direction. The two last

steps are repeated until no further reduction of the unbalance vector

component in the z direction is observed. In here, the inertia tensor

is indeed assumed to be known and constant through the balancing

procedure. Even if this is not strictly true, the procedure still allows

to reach a satisfactory level of residual torque. In particular, the used

procedure consists of four steps, three of which are iterative:

1. inertia estimation

2. in-plane balancing
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3. residual torque estimation

4. balancing in the vertical direction

The first step, described in 5.2.1, consists in the inertia estimation

and it is performed only once. This is done through sampling of free

oscillation, as described later. The full matrix of inertia estimation is

in turn preceded by the estimation of the inertia properties around the

z axis. This information is gathered using the precise knowledge of the

wheel inertia and the processing of angular velocity data. Following

the inertia estimation, three iterative steps are performed. The first

of these, described in 5.2.2, consists in a PID control algorithm that

is used to control the two shifting masses on the x-y plane. Once

the in-plane component of the unbalance vector is compensated, the

next step consists of the estimation of the residual torque. This

information, together with the one on the type of pendulum, is then

used to compensate for the vertical component of the unbalance vector.

The residual torque estimation and the compensation of the unbal-

ance vector in the z direction, are described in 5.2.3. The last three

steps are iterated until no further improvement in the residual torque

is observed.

5.2.1 Inertia characterization

The estimation of the residual torque requires the knowledge of the

inertia parameters of the moving part of the platform, expressed by

J =

Jxx Jxy Jxz
Jxy Jyy Jyz
Jxz Jyz Jzz

 (5.1)

The information on the inertia properties of the wheel together with

the one on the angular velocity data gathered by the IMU, are used to

estimate the Jzz component of the inertia matrix. This information

is then used to increase the accuracy of the inertia matrix estimation
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process. In this process, the balancing mass in the z direction is brought

at its lower limit value. This allows having a strong gravity torque

that maintains the platform in the horizontal plane while minimising

the angular velocity components in the x and y directions. Using the

assumption of angular velocity parallel to the z axis, assuming the axis

of the wheel is perfectly aligned with this axis and that the external

torques acting on the system are much smaller than the one provided

by the torque, Eq. 3.8 simplifies in:

Jzωz = −ḣ (5.2)

The equations describing the dynamics of the wheel is:

g = Jw(Ω̇w + ω̇z) = ḣ+ Jwω̇z (5.3)

where g is the torque applied to the wheel, Jw is the wheel moment

of inertia component on the rotation axis and Ω̇z is the angular accel-

eration around the same axis. Eq. 5.2 and 5.3 can be combined to give

Eq. 5.4 that can be solved for Jz once the other variables are known.

(Jz − Jw)ω̇z = −g (5.4)

The remaining components of the platform tensor of inertia are

estimated through sampling of free oscillations and numerical differ-

entiation of filtered angular velocity data. The estimation process is

based on [9] and relies on the partial knowledge of the unbalance vector

and of the inertia parameter, namely Jzz. Indeed, a known unbalance

is imposed in the x-y plane after the in-plane balancing process is

performed. These values are then used to estimate the residual torque

during the automatic balancing process.

5.2.2 In plane balancing using shifting masses

The control law used for the in-plane-balancing is based on the PID

controller described in [9], here reported for completeness. As a first
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step, the equations of dynamics are rewritten assuming a rigid body

equipped with linearly moving masses. The CR, rather than the CM,

is used as the origin of the body reference system F , since the former

is inertially fixed. The axis of this reference system is coincident with

the one of the IMU. The inertial reference frame has its origin in the

CR and has the z axis aligned with the local vertical. The equation

expressing the gravity vector g in the body frame is:

gb = Ai
bgi (5.5)

where Ai
b is the DCM expressing the rotation between the body

fixed frame and the inertial frame. Called rCM the position vector of

the CM in the body frame, the torque produced by the offset between

the CR and CM is:

τττCM = mtotgb × rCM (5.6)

where mtot is the mass of the free-to-rotate body. The torque

created by the balancing system is equal to:

τττ b = mtot,bgb × rb (5.7)

where mtot,sm is the sum of the mass of the shifting masses and rb is

set to provide τCM = τb. It can be shown that the effect of three sliding

masses is the same as having a single mass displaced of a quantity

equal to the sum of the displacement of the masses [27]. Defining

the inertia matrix J as the sum of the inertia matrix of the platform

without the shifting masses plus the contribution of the shifting masses

and neglecting their contribution to the angular momentum variation

(it can be done since the low speed of the stepper motors), the Euler

equation of dynamics 2.7 becomes [9]:

Jω̇ωω = τττCM + τττ b −ωωω × (Jωωω) (5.8)

that in case of diagonal inertia matrix J = diag(Jx, Jy, Jz) become
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Jxω̇x + (Jz − Jy)ωyωz = mtot(rCM,zgy − rCM,ygz) + τb,x

Jyω̇y + (Jx − Jz)ωxωz = mtot(rCM,xgz − rCM,zgx) + τb,y (5.9)

Jzω̇z + (Jy − Jx)ωxωy = mtot(rCM,ygx − rCM,xgy) + τb,z

Only the first two equations can be considered since τb,z is null in

the target position. Introducing the Euler angles roll φ, pitch θ and

yaw γ and assuming small angles and rate, Eq. 5.9 can be linearised,

resulting in:

Jxφ̈ = mtot(rCM,zgy − rCM,ygz) + τb,x (5.10)

Jyθ̈ = mtot(rCM,xgz − rCM,zgx) + τb,y

τb,x and τb,y are calculated as Proportional Integral feedback of φ

and θ respectively plus a term proportional to the in-plane component

of the angular velocity.

τb,x = −kpφ− ki
∫ t

0

φdt+ kωωx (5.11)

τb,y = −kpθ − ki
∫ t

0

θdt− kωωy (5.12)

The position for the balancing masses are then calculated assuming

that at the equilibrium gx = 0 and gy = 0 [9]:

rx =
τb,y
mtotgz

(5.13)

ry =
τb,x
mtotgz

(5.14)

In the practical implementation, the tilt angles are calculated using

the gravitational acceleration:
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φ =
gy
‖g‖

θ =
gx
‖g‖

(5.15)

as it provides better accuracy under almost-static conditions [9].

5.2.3 Residual torque estimation and compensa-

tion in z direction

Once the in-plane balancing process is completed, the residual

torque caused by the vertical unbalance can be estimated. For small

angular speed, the torque caused by the offset between CR and CM

can be considered the main disturbance torque acting on the platform

[9]. Its value can be estimated by inspecting the time variation of the

angular momentum, described by Eq.5.16:

L̇ = Jω̇ωω = τττMC −ωωω × (Jωωω) (5.16)

Eq. 5.16 requires the knowledge of the angular acceleration ω̇ωω. This

information, not directly provided by the IMU, is retrieved through

differentiation of the angular velocity, performed using Savitzky-Golay

filtering. The angular velocity data are collected via sampling of free-

oscillation, with sampling frequency equal to 20Hz. A free-oscillation

motion is obtained either by manually tilting the platform at its

maximum tilt angle and then realising it or by manually placing it in

a horizontal position and then releasing it. The reason for having two

procedures is that the air-bearing platform, with an unbalance in the

z direction, behaves like a rigid 3D pendulum. The 3D pendulum has

two equilibrium points: hanging equilibrium when the CM is below the

CR and inverted equilibrium when the CM is above the CR [41]. Only

the hanging equilibrium is a stable equilibrium point while the inverted

equilibrium is unstable. When the platform exhibited a pendulum-like

behaviour the first procedure is used while the second procedure is used

in the case of an inverted pendulum. In both cases, the angular velocity

measurements can be used for the residual torque estimation. Based on
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the type of pendulum-like behaviour, the vertical mass is then moved

either in the upward direction (in case the CM is below the CR) or in

the downward direction (CM above CR). After some iterations of the

procedure, the offset in the z direction becomes comparable with the

residual unbalance in the x-y plane, and the type of pendulum cannot

be easily identified. In that case, only the residual torque information

is used to determine the direction towards which moving the vertical

balancing mass, in a try-and-error process. The in-plane balancing and

the residual torque estimation together with the vertical balancing are

repeated until the residual torque does not further reduce.

5.2.4 Experimental results

Inertia estimation

The wheel moment of inertia has been obtained using its CAD model

and is equal to 8171.43× 10−9Kgm2. The tests aiming to estimate Jzz
are performed by commanding a known torque to the wheel and by

collecting the platform angular velocity data provided by the IMU. A

Savitzky-Golay filter is used to process the angular velocity data that

is then numerically differentiated to obtain the angular acceleration

information. Finally, Eq. 5.4 is used to calculate Jzz. The process

is repeated with different values of wheel torque in order to obtain

statistical significance. The result of one of these experiments is shown

in Fig. 5.1, where a torque of 0.0003Nm was commanded to the wheel.

The Jzz value is estimated to be 6.45 × 10−3Kgm2. The remaining

components of the platform tensor of inertia are then estimated. Fig.

5.2 shows the estimated value for Jxx and Jyy in the case an imposed

unbalance in the x direction caused by a distance between CR and

CM of 6mm. Several tests were performed and the estimated matrix

of inertia is:
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J =

0.0092 0 0.0010
0 0.0099 0

0.0010 0 0.0064

 (5.17)
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Figure 5.1: Jz inertia estimation in the case the wheel provides
0.0003Nm torque

Mass balancing

In Fig. 5.3 the position of the two balancing masses for one proce-

dure is shown. The gains used in this case are reported in Table 5.1.

The position commanded to the masses is characterized by random

noise, caused mainly by the gyroscope data and by the vibrations

induced by the dynamics of the moving masses themselves. To reduce

vibrations, in 5.3 the angular velocity damping is performed by the

magnetorquers.

kp ki kω
0.0005 0.000005 0.0025

Table 5.1: Gain used for in-plane balancing
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Figure 5.2: Inertia estimation in the case of a distance between CM
and CR of 6mm in the x direction (only Jxx and Jyy are shown).

As a result of the balancing process, the gravity torque acting on

the platform is reduced to values in the order of 10−4Nm. Fig. 5.4

shows an example of the estimation of the residual torque. These

values are greater than the one reported in [10], probably because

of the simplified balancing procedure used here. For this reason, it

was decided to enhance the control authority of the magnetorquers by

increasing the magnitude of the magnetic field generated by the HC,

as described in 6.1.
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Figure 5.3: Shifting masses position
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Figure 5.4: Estimation of the residual torque after the balancing
procedure
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5.3 Automatic mass balancing using mov-
ing masses and magnetorquers

The performance of the automatic balancing system are limited by

the performance of the IMU. As noted earlier, the noise present on

the gyroscope data reflects in a commanded position for the stepper

motors that is noisy as well (see Fig. 5.3) and that can produce

unwanted mechanical vibrations. The magnetorquers, on the other

hand, are characterised by the absence of mechanical parts in relative

movement and offer smoothness of actuation. For this reason, the

use of the automatic in-plane mass balancing system together with

magnetorquers has been investigated. The control for the ABS is still

formulated using Eq. 5.11 but with kω = 0. The angular velocity

damping is provided by the magnetorquers, where the control torque

is calculated using Eq. 6.5 and the dipole using Eq. 6.6. Fig. 5.5

compares the angular velocity data from the gyroscopes in the case of

the mass balancing procedure described in 5.2.2 (a) is used and the

approach described here is used instead (b). The gain used are reported

in Tab 5.2. The stepper motor positions in the case of hybrid balancing

are shown in Fig. 5.6. Both gyroscope and stepper motor position data

show that the new method is effective in reducing mechanical vibrations.

Finally, in Fig. 5.7 the estimation of the residual torque, after that the

modified balancing process has been performed, is reported.

Actuators kp ki kω
Only motors 0.0005 5× 10−6 0.0025

Motors and magnetorquers 0.001 5× 10−6 20

Table 5.2: Gain used for in-plane balancing in the case only stepper
motors are used and in the case they are used with magnetorquers
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Figure 5.5: Gyroscope data in the case the angular velocity damping
is provided by the stepper motors (a) and in the case it is provided by
the magnetorquers (b)
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Figure 5.6: Stepper motor position in the case of hybrid balancing
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Figure 5.7: Estimation of the residual torque after the modified bal-
ancing procedure
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6

Mixed
magnetic/mechanical
control experimental
testing

The last part of the thesis work has been dedicated to the exper-

imental test of the mixed magnetic/mechanical ACS on the AST of

the University of Bologna. This included both the test of the mag-

netorquers and of the wheel acting one at the time and the test of

their joint use. The level of residual disturbance torque acting on the

platform after the balancing procedure requires the use of a stronger

magnetic field with respect to the one present in a LEO. Augmenting

the intensity of the magnetic field allows the magnetorquers to com-

pensate for the gravity torque. For what concerns the wheel, this is

used as a momentum wheel with a low bias rather than as a reaction

wheel. Indeed, the motor used for the wheel is characterised by a

highly nonlinear behaviour near the origin. After having tested the

two types of actuators alone, the mixed magnetic/mechanical control

has been tested. The control system shows good performance and low

pointing error. However, the mechanical vibrations induced by the

wheel cause a noisy signal for the magnetorquers dipole.
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In section 6.1 the test of the magnetorquers for attitude control are

reported. In section 6.2 the attitude control over one axis using the

wheel is described. Finally, in Section 6.3 the results of the experimental

test of the mixed magnetic/mechanical control are presented.

6.1 Magnetic attitude control

The magnetorquers play a pivotal role in the designed ACS. For this

reason, pior to operations they have to be functionally tested. As a first

approach, the Helmholtz Cage is set to generate a constant magnetic

field in the vertical direction. As a consequence, the torque that can be

generated by the interaction of the magnetorquers with the magnetic

field lies in the horizontal plane. Hence, the magnetorquers are used

to align the z axis of the body frame with the z axis of the inertial

frame. The magnitude of the generated torque can be calculated as:

‖τττmag‖ = ‖m‖‖b‖ (6.1)

As reported in Chapter 4, the intensity of the magnetic field present

in orbit is 4 × 10−5T , while the magnetorquers can provide a dipole

up to 1Am2. Table resumes the difference between the condition

present in a LEO and in the laboratory in terms of residual torques

and magnetorquers performance in case they can provide a maximum

dipole of 1Am2 under a magnetic field with intensity 3.7× 10−5T .

Environment: Orbit Laboratory
Main disturbance torque acting: Magnetic torque Gravity torque
Disturbance torque value: 1.9× 10−5Nm 1× 10−4Nm
Max magnetorquer torque: 3.7× 10−5Nm 3.7× 10−5Nm

Table 6.1: Comparision of disturbance torques and magnetorquers
torque between the LEO and laboratory

Using the same magnetic field present in orbit, the magnitude of

the control torque would not be sufficient to counteract the residual
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unbalance torque. For this reason, in the experimental test of the

magnetorquers, the intensity of the gravitational field generated by

the HC is set equal to 6G = 6× 10−4T , leading to a maximum control

torque of 6× 10−4Nm. Furthermore, it has been decided to generate a

constant magnetic field. This was done for simplicity and removes the

time-varying nature of the dynamics of a magnetic actuated spacecraft.

The effects of neglecting the time-varying nature of the system are

expected to be less severe for an equatorial orbit, for which the direction

of the magnetic field is almost constant.

The magnetorquers have been tested using a control law aiming only

to compensate for the component of the angular velocity perpendicular

to the z axis and the attitude error in roll and pitch. The control

torque is calculated as follows [9]:

τττ = τττ p + τττ i + τττω (6.2)

where,

τττ p = −kp

φθ
0

 (6.3)

τττ i = − ki
Kp

∫ t

0

τττ pdt (6.4)

τττω = −kω(I − ĝĝT )ωωω (6.5)

The desired dipole is then calculated as follows:

m = b̂× τττ (6.6)

The gain chosen are reported in table 6.2. The results are shown

in Fig. 6.1. Initial condition, steady-state value and settling time for

the Euler angles are reported in table 6.3.

The magnetorquers have been also tested using the control law

described by Eq. 4.1 by setting kwh = 0. In this case, the weight matrix

used are Qw = Qq = 0.01I3 (where I3 is the 3x4 identity matrix) and

R = 10I3. The resulting gain matrices are:

71



6.1. MAGNETIC ATTITUDE CONTROL

0 20 40 60 80 100 120 140 160 180 200 220

Time(s)

-10

0

10

20

30

40

50

E
u

le
r 

a
n

g
le

s
 (

d
e

g
)

Roll 

Pitch 

190 200 210 220
-1

-0.5

Figure 6.1: Time evolution of Euler angles during magnetic attitude
PID control

kp ki/kp kω
1.5 0.15 15

Table 6.2: Gain used for magnetic attitude PID control

D =

0.0359 0 0
0 0.0362 0
0 0 0.0347

 K =

0.0316 0 0
0 0.0316 0
0 0 0.0316


(6.7)

The gain matrices are practically approximated by D = K = 0.03I3.

Fig. 6.2 shows the result in terms of Euler angles while Tab 6.4 shows

initial condition, steady-state value and settling time. Both cases show

that the torque provided by the interaction between the magnetorquers

and the external magnetic field is sufficient to compensate for the

disturbance torques.
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Euler angle Initial value Steady value Settling time
Roll φ 19.39◦ 0.40◦ 53s
Pitch θ 30.63◦ 0.82◦ 36s

Table 6.3: Initial condition, steady value and settling time for the
Euler angle during magnetic attitude PID control
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Figure 6.2: Time evolution of Euler angles during magnetic attitude
LQR control

Euler angle Initial value Steady value Settling time
Roll φ −36◦ 0.63◦ 44s
Pitch θ −47◦ 1.58◦ 44s

Table 6.4: Initial condition, steady value and settling time for the
Euler angle during magnetic attitude LQR control
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6.2 Attitude control using the wheel

The wheel is tested in its capacity to provide control over one axis.

In order to minimise the angular velocity components in the horizontal

plane, the vertical moving mass position is brought to its lowest value.

A simple PID law is used for calculating the desired torque around

the z axis. Then the torque to be actuated by the wheel is calculated

assuming that the angular velocity is parallel to the z axis. In that

case, Eq. 3.8 reduces to Eq. 5.2, here reported.

Jzωz = −ḣ (6.8)

Since the wheel is controlled in velocity (by providing the reference

signal by Pulse Width Modulation), the desired torque cannot be

commanded directly. Hence, the reference speed is calculated by

numerically integrate the desired torque:

Ωw(k + 1) = Ωw(k) +
δt

Jw
ḣ (6.9)

where δt was the sampling time equal to 0.05s. Because of the

nonlinear behaviour of the motor near the origin, this is not used as a

proper reaction wheel but rather as a momentum wheel with a low bias.

In particular, in this test, the initial velocity of the wheel is set equal

to 1000rpm. Fig. 6.3 shows the result of the attitude control over one

axis, while Tab. 6.5 reports initial condition, with steady-state error

and settling time.

Euler angle Initial value Steady value Settling time
Yaw γ −123.47◦ 0.29◦ 82s

Table 6.5: Initial condition, steady value and settling time for the Yaw
angle during wheel control
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Figure 6.3: Yaw angle (a) and wheel speed (b) during attitude control
using the wheel
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6.3 Mixed magnetic/mechanical attitude
control

The mixed magnetic/mechanical actuation, already introduced in

the Chapter 4, is tested on the real hardware for an inertial pointing.

The Helmholtz cage is set to generate a constant magnetic field parallel

to the local vertical. This scenario is similar to the one of a satellite

in LEO since in that case the magnetic field is almost constant and

perpendicular to the orbital plane. In Section 6.1 it has been shown

how using a magnetic field exactly equal to the one present in orbit

would not allow the magnetorquers to compensate for the gravity

torque. For this reason, the magnetic field intensity is set to 6× 10−4T .

The wheel is used as a momentum wheel with a low bias due to the

nonlinear behaviour of the motor at low speed. Using a momentum

wheel adds gyro properties to the satellite and helps compensating

for the disturbance torques. At the same time, it requires a greater

control action of the magnetorquers in controlling the orientation of

the spacecraft axis parallel to the wheel axis. The value of the bias is

chosen as a compromise between avoiding exceedingly low speed for

the motor during the control and limiting the momentum bias. The

residual disturbance torque acting on the platform during the tests

and the actuators characteristics are resumed in Table 6.6.

Parameter Symbol Value Units
Gravity torque τg 1.4× 10−4 Nm
Magnetic field norm ‖b‖ 6× 10−4 T
Wheel moment of inertia Jw 8171.43× 10−9 Kgm2

Wheel momentum bias h0 4.2786× 10−4 Nms
Maximum magnetic dipole mmax 1 Am2

Maximum magnetorquers torque τm,max 3.7× 10−5 Nm

Table 6.6: Disturbance torques and actuators characteristics, mixed
magnetic/mechanical control

The required control torque is calculated according to Section 4.1.
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The weight matrices for the LQR are set equal to Qw = Qq = 0.01I3
(where I3 is the 3x4 identity matrix) and R = 0.25I3. The resulting

D and K matrices are approximated to 0.2I3. The control torque is

then distributed between the wheel and the magnetorquers by using

Eq. 4.1. The gain kwh scaling the torque commanded to the wheel is

set equal to 0.1 and 1 in order to show its effect on the wheel speed.

In Table 6.7 initial conditions, steady-state value and settling time are

reported for the two cases. The Euler angles and the wheel speed are

shown in Fig 6.5 for kwh = 0.1 and in Fig. 6.7 for kwh = 1 while the

commanded dipoles are shown respectively in Fig. 6.4 and 6.6. The

wheel speed present more abrupt changes in the case kwh = 1 but the

steady state attitude error is lower than what achieved with kwh = 0.1.

This suggests that further investigations may be undertaken on the

controller gain tuning for enhancing the performance

Euler angle Initial value Steady value Settling time
kwh = 0.1

Roll φ 45.23◦ 0.35◦ 26s
Pitch θ 1.86◦ 0.87◦ 29s
Yaw γ −149.57◦ 1.9◦ 15s

kwh = 1
Roll φ 23.81◦ 0.05◦ 12s
Pitch θ 35.33◦ 0.8◦ 3s
Yaw γ −43.04◦ 0.45◦ 12s

Table 6.7: Initial condition, steady value and settling time for mixed
magnetic/mechanical attitude control in the case kwh = 0.1 and kwh = 1

The magnetorquers dipoles show very noisy behaviour. This was

found to be caused by the mechanical vibration of the wheel that

introduced additional noise on the gyroscopes reading. This fact can

be noted in Fig. 6.8 where the angular velocity data from the gyroscopes

is shown at different wheel speeds. The mechanical vibration become

important already after 1000 rpm. Future work should consider a

better mounting of the wheel, maybe through conical coupling or the

77



6.3. MIXED MAGNETIC/MECHANICAL ATTITUDE CONTROL

0 10 20 30 40 50 60 70

Time(s)

-1

-0.5

0

0.5

1

D
ip

o
le

s
 (

A
m

2
)

Dip(x)

Dip(y)

Dip(z)

Figure 6.4: Magnetorquers dipoles during mixed magnetic/mechanical
control with kwh = 0.1

implementation of a on board low-pass filter for the gyroscope data.
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Figure 6.5: Euler angles (a) and wheel speed (b) during mixed mag-
netic/mechanical control with kwh = 0.1
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Figure 6.6: Magnetorquers dipoles during mixed magnetic/mechanical
control using kwh = 1
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Figure 6.7: Euler angles (a) and wheel speed (b) during mixed mag-
netic/mechanical control with kwh = 1
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Figure 6.8: Gyroscope data at different wheel speed: (a) 0 rpm (b)
1000 rpm (c) 3000 rpm (d) 8000 rpm
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Conclusions

The work done in this thesis tackled the problem of attitude con-

trol for nanosatellites employing magnetic and mechanical actuators.

Magnetorquers are often employed thanks to their reduced dimensions

and the smoothness of application. However, their performance are

limited from their intrinsic underactuation in the direction parallel to

the external magnetic field. Reaction wheels, on the other hand, offer

better performance but are prone to failure and must be periodically

desaturated. In order to overcome the limits of the magnetorquers

and still maintaining a compact system, a control system employing

three magnetorquers and a reaction wheel has been studied. These two

systems had to be integrated together to provide three-axis control.

In the first part of the thesis, bibliographic research on how these

two systems could be used together was conducted. The most promising

approach consisted of a geometric distribution of the torque between

the magnetorquers and the reaction wheel. Parametric studies were

conducted in order to understand which orbit and wheel design configu-

rations offered the best performance. It was then decided to mount the

wheel on the third axis and consider an equatorial orbit. The control re-

distribution law was used in conjunction with a LQR controller. To the

best of the author’s knowledge, despite their simplicity, there were no

examples of this approach being applied with linear control techniques.

Realistic simulations, tuned for a spacecraft of a nanosatellite class

were conducted. The stability of the control approach with respect to

parameters variations was shown by means of Monte-Carlo approach.

In the second part of the thesis, the designed attitude control system
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was tested on an attitude simulator testbed at the University of Bologna.

Testing required the compensation of the main disturbance torques

acting on the platform. The gravity torque was compensated using

an automatic mass balancing system together with magnetorquers for

angular velocity damping. The residual torque was reduced to value on

the order of 10−4Nm. This value of torque required the use of a stronger

magnetic field compared to the one encountered by a spacecraft in a

low Earth orbit. After magnetic and mechanical subsystem separate

testing, the designed control approach was applied to a nanosatellite of

1U class. The simulations and the tests showed that the use of mixed

magnetic/mechanical control is effective in providing high accuracy in

three-axis attitude control.

Future work should enhancing the performance of the control system

and validate it with even more realistic scenarios. The commanded

dipoles showed a noisy behaviour and this has been attributed to the

mechanical vibrations caused by the wheel. It should be considered to

reduce the effect of wheel mechanical vibrations. This could be done

with with an improved wheel assembly or in the form of an onboard

low-pass filter for the gyroscopes data. Furthermore, the wheel motor

showed a highly nonlinear behaviour near the origin and this fact forced

its use as a momentum wheel with very low bias rather than a reaction

wheel. Future work should consider replacing the motor with a more

performing one. Also, in this work, the magnetic field was constant

and parallel to the local vertical. It could be interesting to use a more

realistic time-varying magnetic field, like the one encountered in orbit.

Finally, the joint use of shifting masses and magnetorquers showed a

potential for enhanced performance of the automatic balancing system.

This approach could be further investigated in future work.
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