ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

SCUOLA DI SCIENZE - SEDE DI BOLOGNA
DIPARTIMENTO DI INFORMATICA - SCIENZA E INGEGNERIA

TESI DI LAUREA MAGISTRALE IN
FinaNzA COMPUTAZIONALE

Deep Learning methods

for
Portfolio Optimization

CORSO DI LAUREA MAGISTRALE IN
INFORMATICA

SUPERVISOR: PRESENTED BY:

Pror.
FABRIZIO LILLO FEDERICO BERTANI

I APPELLO - II SESSIONE
ANNO AccADEMICO 2020/2021

Abstract

Portfolio optimization is one of the most studied fields that have been researched
with machine learning approaches because of its inherent demand for forecasting
future market properties. In this thesis, it is shown how one can use deep neural
networks with historical returns to do risk adjusted asset allocation. Unlike previous
studies which set as target variable asset prices, the variable to predict here is
represented by the best asset allocation strategy. Experiments performed on a
time period of seven years show that temporal convolutional networks are superior
to long short term memory networks and transformers. Compared to baseline
benchmarks, the computed allocation has an average increase in the year revenue
between 2% and 5%. Furthermore, results are compared against equally weighted,
inverse volatility and risk parity methods, showing higher cumulative returns than
the first method and equal if not higher in some cases than the latter methods.

L’ottimizzazione del portafoglio € uno dei campi piu ricercati con approcci di
Machine Learning a causa della sua domanda intrinseca di previsione delle proprieta
future del mercato. In questa tesi, si mostra come si possono usare le Deep Neural
Networks per fare asset allocation con una considerazione del rischio utilizzando i
rendimenti storici. A differenza degli studi precedenti che fissano come variabile
obiettivo i prezzi degli asset, qui la variabile da prevedere ¢ rappresentata dalla
migliore strategia di asset allocation. Gli esperimenti eseguiti su un periodo di
tempo di sette anni mostrano che le Temporal Convolutional Neural Networks sono
superiori alle Long Short Term Memory Networks e ai Trasformers. Rispetto ai
benchmark di base, I’allocazione calcolata ha un aumento medio delle rendimenti
annuali tra il 2% e il 5%. Inoltre, i risultati sono confrontati con altri vari metodi:
allocazione equipesata, volatilita inversa e parita di rischio, mostrando rendimenti
cumulativi superiori al primo metodo e uguali se non superiori in alcuni casi agli
ultimi metodi.

Contents

1 Introduction

1.1 Literature review
2 Portfolio optimization
2.1 Assetreturn
2.2 Portfolios
2.3 Asset volatility o
2.4 Portfolio covarianceo
2.5 Diversification o
2.6 Mean-Variance Diagram00
2.7 Sharperatio
2.8 Post-Modern Portfolio theory
2.9 Asset allocation methods L.
2.10 Relative strength index 0L
2.11 Volumes of trade
2.12 Trade signal
2.13 Market index
2.14 Exchange Traded Funds and Index Futures
3 Deep learning methods

3.1 Sequence modeling tasko oo
3.2 Recurrent neural network

3.2.1 Long Short Term Memory Network
3.3 Temporal Convolutional Networks

3.3.1 Temporal convolution

3.3.2 Dilated causal convolution

3.3.3 Residual connections L.
3.4 Transformers

3.4.1 Time embedding

3.4.2 Multi-head attention,

3.4.3 Residuals and Normalization

17
17
19
20
21
21
25
26
27
28
32
33
33
33
33

3.5 Adam optimizer
3.6 Errors and model capacity

4 Methodology

4.1 Problem formulation and scope
4.2 Input data
4.3 Model research method
4.4 Sharpe ratio maximizing model
4.5 Target allocation matching model
4.6 Reproducibility
4.7 Fixed allocation anomaly
4.8 Remaining hyperparameters

5 Results and discussion
5.1 Choice of loss function

5.2 Feature selection

5.3 Architecture selection
5.4 Hyperparameter selection
5.5 Selected model results
Generated allocation parametrization

2.5.1
5.5.2
5.5.3
5.5.4

2014 period

2016-2017 period
2019-2020 period

6 Conclusions

6.1 Future work

References

Appendix

CONTENTS

Please visit https://github.com/federicoB/master_thesis to find an updated
version of this document

https://github.com/federicoB/master_thesis

List of Figures

1.1
1.2

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.3
4.2

5.2
2.3

5.4
2.5

0.6
5.7

5.8

Zhang et.al (2020) results L 13
Kim (2020) resultso 14
Effects of diversification 23
Mean-Variance diagram example 25
Inverse volatility allocation method 30
Risk parity allocation method 31
Generic recurrent neural network 37
Two-layer recurrent neural network 37
Long short-term memory cell. 40
Multi-layer long short-term memory cell configuration. 40
Temporal convolutional Network diagram 43
Transformer architecture [1] 44
Regression Transformer architecture 45
Fixed allocation anomaly 47
Bias, Variance and Irreducible error 50
Diagrams of architectures in analysis 54
Excessive learning rate effectso 61
Fixed allocation anomaly 63
Model convergence: epochs and training/validation loss 68
Selected model performance: Cumulative return, July-December

2014 . . 72
Selected model performance: Sharpe ratio, December 2014 73
Selected model performance: Cumulative return, July 2016-November

2017 .. 74

Selected model performance: Sharpe ratio, January-December 2017 75
Selected model performance: Cumulative return, July 2019 - January

2020 . .o 75
Selected model performance: Cumulative return, January-July 2020 76

5

2.9
5.1

6.1
6.2

LIST OF FIGURES

Selected model performance: Sharpe ratio, January-July 2020 . . . 77
Allocations generated from TCN, LSTM e Transformers 78
PyPortfolioOpt optimization functions 86
Mean-Variance diagram: random portfolios 87

List of Tables

1.1
4.1

5.1
5.2
5.3
0.4

2.5

Kim (2020) results Lo
Architecture hyperparameters

Architecture comparison: cumulative return in 3 different time
frames
Target-Generated allocation performance
Performance correlation target-generated allocation
Correlations between target and generated allocation parameters on
a restricted set of experimentso
Performance difference between selected model and benchmarks
methods

Chapter 1

Introduction

In this thesis we research, find and describe a machine learning model for asset
allocation. Asset allocation deals with the assignment of assets weights in an
investment portfolio. This task and the finance studies field related to it is
described in chapter 2. The allocation produced by the model has to respect several
requirements: it has a minimum and maximum investment exposition for each asset
and it has to allow the user to have flexibility in maximizing the cumulative return
while still maintaining volatility under a certain limit. We compared the allocation
generated by the model against several benchmarks: a baseline algorithm based
on components past Sharpe Ratio, equally weighted, inverse volatility and risk
parity allocation methods. We achieved a higher cumulative return of the baseline
algorithm and equally weighted in every validation period, while equal or better
return of equally weighted or inverse volatility methods. The code generating these
results is available on GitHub 1.

A proper assignment of weights can decide the success or failure of an investment
plan. It is a relevant topic of research and numerous related works are published
annually. Its complexity is intrinsic in the understanding on which assets are
better to invest, therefore giving more weight. But financial markets are very
complex systems. Price time series are non-linear, non-stationary, chaotic and
noisy. In the seventies, efficient market hypothesis (EMH) was established by
initial work of Malkiel and Fama (1970) [2], according to which financial markets
follow random pathways and therefore are unpredictable. In more recent work, like
the one of Kumar, Meghwani and Thakur (2016) [3], there is evidence contrary
to the efficiency of financial markets and the search for models and profitable
systems is still attracting a lot of attention from academia. A predictive model

https://github.com/federicoB/Deep_Portfolio_Optimization

https://github.com/federicoB/Deep_Portfolio_Optimization

10 CHAPTER 1. INTRODUCTION

capable of consistently generating returns above the market indices over time would
represent strong evidence contrary to EMH. Fama himself, in a later work, revised
his statement, indicating different levels of efficiency.

The challenges that a work like this thesis face are many: the selection of the best
features to train the network, the selection of the best methods and architecture in
a very extensive literature and making the network generalize better and perform
well also out of sample.

As a machine learning model, we used neural networks, and specifically architectures
made for sequence modelling tasks. Temporal Convolutional Networks (TCNs),
Long Short Term Memory Networks (LSTMs) and Transformers were analyzed,
used and compared. All these architectures layers and parameters are described
in chapter 3 and more implementation details can be found in chapter 4. We
found out that TCNs were superior to the other two architectures both in terms
of allocation quality and computational speed. Allocation quality can be defined
both in term of high Sharpe Ratio or high cumulative return, it depends what the
investor is looking for.

Two different loss functions were analyzed, one inspired by the work of Zhang
(2020) [4] computes the Sharpe Ratio of the portflio given the network output
weights and aims to maximize it. This was very heavy computationally and did
not showed relevant results so we moved to a second method. This second loss
function is a mean squared error between the output weights and a target allocation
generated a priori. This target allocation is generated knowing future returns
and volatility in the training set. One important results of this thesis is that
we show there is a correlation between target allocation parameters, i.e. return,
Sharpe ratio and standard deviation, and the same parameters in the generated
allocation. This means the network is learning to generate an allocation with the
same characteristics of the allocation it was trained with. Furthermore and most
important, this allow the user of the model to control risk.

This work was done in collaboration with Salzenberg Al an fintech company which
provides trading signals for a managed investment fund. The fund trades four

futures based on the Nasdaql00, Sp500, EuroSTOXX50 and Nikkei225 indices.
My collaboration and internship was the search for a method based on machine

1.1. LITERATURE REVIEW 11

learning for the allocation of capital between the four different assets. The model
is not trained on returns of the Futures, but on strategy returns over them. We
create strategy returns for each of the 4 assets by multiplying the returns of a
linked future with the values of a trading signal (see section 2.12). The trading
signal is provided by Salzenberg Al, and is based on a proprietary strategy. Data
available span from 2013 to 2020.

The introduction continues doing a literature review on the subject. Chapter 2
and 3 cover the background knowledge behind this work, on finance and machine
learning respectively. Chapter 4 delineates the methodology followed in this work
and how we avoided some problems. Chapter 5 shows all the results of the features
and model selection. In the end, Chapter 6 recaps all the thesis work and describe
possible future improvements.

1.1 Literature review

We introduce and briefly describe several recent works on the field of machine
learning applied to asset allocation. This literature review by no means want to be
exhaustive but want to give to the reader an idea of the different approaches that
the research is following for solving this task.

The first work that has to be cited is the one of Snow (2020) [5] as it is not directly
an experiment but a formalization of the problem of asset allocation in many
machine learning methods including regressions, autoencoders and reinforcement
learning. Even if there are no experimental results but the formalization is clear
and useful for a mathematical introduction in the field of machine learning for
portfolio optimization.

We then found other five works than can be subdivided either for the data used or
the method applied. Three out of the five works use only historical assets prices
like this thesis, while another one combined them with macro-economics indicators
and another one with sentiments data.

Regarding the methods used, only one work tries to use Random Forest, two works
use a Multi Layer Perceptron, two use Long-Short Term Memory Networks and
other two use Reinforcement Learning.

We first have to cite the work of Zhang et al. (2020) [6] as it was influential for
this thesis and was the base from which we started.

12 CHAPTER 1. INTRODUCTION

Zhang developed a model that has the Sharpe ratio (see chapter 2) as objective
function to find the optimal portfolio weights using a LSTM Neural Network.

As said by Titinci (2006) [7] optimizing Sharpe ratio by traditional means of
quadratic programming is somewhat complicated as it is a non convex optimization
problem. The traditional way would be reducing it to an equivalent problem, but
machine learning can offer an alternative solution.

An interesting aspect of a machine learning solution to portfolio optimization is
that it bypasses the step of forecasting the returns which are needed to apply
Markowitz model.

Several works ([4,8,9]) argue that the return forecasting methods does not guarantee
that a portfolio’s return will be maximized since the network optimizes a function
targeting a more precise prediction on next day prices not next day portfolio
performance.

With this neural method, expected returns are not necessary, portfolio weights are
computed directly from historical returns. This can be considered as an easier task
for a neural network as it does not have to precisely predict the next daily price
but an ordering between the assets. Still, the quantitative difference between next
day assets returns has to be implicitly predicted to decide how much to allocate on
each.

The architecture that Zhang uses is an LSTM with 50 units, followed by a fully
connected layer and a softmax. The indices used are: US total stock index (VTI),
US aggregate bond index (AGG), US commodity index (DBC) and Volatility Index
(VIX). Results show as their model delivers the good performance in the testing
period 2011-2020 as can be seen in figure 1.1.

A sensitive analysis is included to understand how input data contributes to outputs
and the observation meet the econometric understating that most recent data is
most relevant. Still this could be consequence of LSTM having problem to underline
long term dependencies [1].

Now two works that use Reinforcement Learning (RF). In finance, RF is particularly
interesting as it tries to mimic human behaviour of searching for a reward and
it is well know that the complex phenomenons observable in a financial markets
are all the sum of many actors each trying to maximize their gains. Therefore,
Reinforcement Learning could offer an appropriate way to model these agents

1.1. LITERATURE REVIEW 13

Figure 1.1: Zhang et 30 — Alocation1 5
al. (2020) results: Allocation 2

lati —¥— Allocation 3 ”
cumulative returns. 25— Alocation 4 :

Allocation 1 is equal e MV
allocation, Allocation 4 [T mp
2 is 50-10-20-20, — DLS

Allocation 3 is 10-50- 5
20-20, Allocation 4
is 40-40-10-10, MV 19

means Mean-Variance

optimization, MD o5
means Maximum
Diversification, DWP 0.0 7
means Diversity :

weighted portoflio 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
from Stochastic

Portfolio Theory, DLS

is Zhang model

behaviour.

Wijs (2018) [10] compare its reinforcement learning approach to portfolio optimisation
with the one of Campbell (2002) [11] that use a Vector Autoregressive (VAR) model

to forecast future returns. Wijs use 3 American assets: 3-month Treasure Bill,

5-year Treasury-Note and the weighted average of NYSE, NASDAQ and AMEX.

Data spans a large period from 1954 to 2016. Results show a cumulative return

of 33% compared to Campbell method, a reduction of volatility of 33% and a 3%

lower turnover.

Kim (2020) [12] is a very interesting work as it combines Reinforcement learning
with Transformers. The reward is risk-adjusted as it includes the Sortino ratio.
The agent uses a deep neural network, including Transformers layers, as a policy
approximator. The model is trained and evaluated with assets of nine Dow Jones
companies representing each sector. Data spans 20 years, from 2000 to 2020. The
model takes sequences of 50 days. Results show a cumulative return over the years
2018 to 2020 of 43% and an annualized Sharpe ratio of 0.64. Figure 1.2 and table
1.1 summarize these results.

14 CHAPTER 1. INTRODUCTION

160000
—— DPGRGT

DDPG_GL_TF

140000 { —— DDPG_RP_TF

— DDPG_TF
DDPG

—— UCRP

120000
100000 { yppo PRPA I

80000

60000

40000

T T T T T T
2018-03-16 2018-08-08 2019-01-02 2019-05-28 2019-10-17 2020-03-12

Figure 1.2: Kim (2020) results: portfolio value after initial value of 10 thousand.
MPT is Markowitz’s Modern Portfolio Theory, UCRP is Uniform Constant
Rebalanced Portfolio, DDPG stands from Deep Deterministic Policy Gradient and
DDPG_GL_TF, DDPG_RP_TF, DDPG_TF are DDPG with Gated Transformer,
Relative Attentional Transformer and standard Transformer respectively

We now show two works where not only historical prices are used but macro-
economics indicator and sentiment analysis are added to training data. While this
makes the comparison with the previous works and the works in this thesis more
difficult, it is interesting to examine these results as they can give an insight on
what is can be reached with more type of data available.

Chakravorty et al. (2018) [13] used price-volume together with macroeconomics
data in a feed-forward shrinking architecture for asset allocation. They use lagged
returns over [260, 130, 60, 30] days partly to eliminate short term noise from
the daily return and partly to keep turnover of the resulting investment strategy
low. The macro economics data used are US bond spread, Gold, Copper and Oil
prices, US inflation, US non-farm job creation and US GDP growth. Two models
were researched, one that forecasting expected returns and one directly computing
weight by optimizing Sharpe ratio. The results performance are comparable to risk
parity method (see Chapter 2)

Malandri et. al (2018) [14] add to historical price data, financial sentiment collected
from Twitter, gaining better results than using only historical prices. It uses this
data for training a model optimizing asset allocation in the New York Stock

1.1. LITERATURE REVIEW 15

Model Cumulative | Annualized
return (%) | Sharpe Ratio
DPGRGT 43.16 0.6418
DDPG_GL_TF | 11.93 0.2813
DDPG_RP_TF | -5.45 -0.1343
DDPG_TF -41.71 -0.8191
DDPG -42.91 -1.2194
UCRP 0.53 0.0125
MPT -50.07 -1.5840

Table 1.1: Kim (2020) results: cumulative return and annualized Sharpe
Ratio. MPT is Markowitz’s Modern Portfolio Theory, UCRP is Uniform Constant
Rebalanced Portfolio, DDPG stands from Deep Deterministic Policy Gradient and
DDPG_GL_TF, DDPG_RP_TF, DDPG_TF are DDPG with Gated Transformer,
Relative Attentional Transformer and standard Transformer respectively

Exchange (NYSE). Historical prices are from 15 popular stocks. Sentiment data is
the number of positive, negative, neutral comments and their daily change. They
compare three different architectures: Multi layer perceptron, Random Forest and
Long Short Term Memory network. Allocation is directly found by the network in
an end-to-end fashion. The network is trained matching an allocation that allocates
100% on the most remunerative asset. Finding shows how LSTM is superior with
respect to the other two architectures. Unfortunately, the allocation performance
is only compared against equally weighted portfolio. Still, it scores an increase in
cumulative yearly return of 5% without sentiment data and 19% with.

Chapter 2

Portfolio optimization

This chapter deals with the financial background necessary to understand the
remaining of this thesis. It is targeted to readers that have already knowledge
of what an investment asset is. Investments assets have many typologies and
covering all would be out of scope of this work. It is sufficient to say that all
of them has a price, fundamental quantity from which return and volatility are
derived. Price is influenced by many factors, but in origin, how much investors
have trust in that asset. This chapter deals more with how to combine assets
to form portfolio to reach investment goals. After the definition of assets and
portfolio we explain diversification, a method to reduce investment risk. Then the
mean-variance diagram is introduced, a way to visualize the different strategies for
a portfolio construction. Subsequently, we cover different popular asset allocation
methods, as this thesis create a new one of them in the later chapters.

2.1 Asset return

An investment instrument that can be bough and sold is often called an asset.
Typical examples of assets are stocks, bonds, ETFs and futures. An asset sold in
a market has an opening price, the price of the asset when the market opens,
and a closing price, the price of the asset when the market closes. There are two
important definitions to give: total return of an asset and rate of return of an
asset, respectively indicated usually with R for the former and r for the latter.

closing price
total return = R = i
opening price

closing price - opening price

rate of return = r = - -
closing price

17

18 CHAPTER 2. PORTFOLIO OPTIMIZATION

The two notions are related by:
R=1+r

Frequently the shorter expression return means the rate of return. Because of
after-hours trading, close price of day t and opening price of day t + 1 can differ.
A cumulative return on an investment is the total amount gained or lost by the
investment throughout time, regardless of the length of time involved. Given a
sequence of rate of returns r; for ¢ = 1, ..., n their cumulative return is defined as

CT: (ﬁl—i"f’l) —1
i=1

Short selling or shorting is a trading or investing technique that looks for a profit
on a stock’s or other security’s price declining. To do this, an asset is borrowed
by someone who owns it, such a brokerage firm. The borrowed asset is then sold
to someone else, receiving an amount X,. At a later date, you repay the loan by
purchasing the same asset for an amount X; and return the asset to your lender. If
the amount X is lower than the original amount Xy, a profit of Xy — X; is made.
Therefore, short selling is profitable if the asset price declines.

Many investors regard short selling as extremely risky, if not dangerous. The reason
for this is because there is no limit to the amount of money that can be lost. If the
asset value increases, the loss is X; — X, since X; can increase arbitrary, so can the
loss. For this reason short selling is prohibited within certain financial institutions
and it purposely avoided as a policy by many individuals and institutions. In a long
position, the opposite of short selling, the loss is limited by the amount invested. If
we buy at price Xy and sell at price Xy, the worst that can happen is that X; =0
with a loss L = Xj, that would mean we lost (only) all the money we invested.
Short selling is not prohibited everywhere, and there is a significant amount of
short selling of stock market assets. Let us determine the return associated with
short selling. We receive X initially and pay X; later, so to expenditure is —X|
and the final reception is —X; and therefore return is:

=X X

T X, Xo

R

The minus signs cancel out, so we obtain the same expression as using long positions.
As a result, the return value R applies algebraically to both long and short positions.

2.2. PORTFOLIOS 19

Leverage is when we use borrowed capital to increase the potential return of an
investment. The result is to multiply the potential returns from an investment. At
the same time, leverage will also multiply the potential loss in case the investment
does not succeed. Leverage always have a multiplier, called leverage multiplier,
that we are going now to indicate with m. Let us suppose we buy an asset daily
leveraged at price Xy and multiplier m, what we are actually doing is borrowing
(m — 1) X, capital to buy mX, amount of that asset. At the end of the day it will
be sold for price mX; but our initial expenditure was only X, with an actual total
return of:
X1
leveraged total return = m—
Xo
The borrowed capital has then to be lend back but still as a result, our return is

multiplied by factor m increasing both the eventual profit or loss.

2.2 Portfolios

An investment portfolio is a collection of financial investments, also called assets.
In some literature portfolios are also called master assets.

Let us suppose we have n available assets. We form the portfolio by investing
a specific amount in each asset. We indicate the amount invested in asset ¢ for
1=1,2,...,n as X, such that Z?Zl Xo; = Xp. If we are allowed to sell and asset
short, then some of the Xy;’s can be negative, otherwise we restring X, to be
non negative. The amounts invested can be expressed as fractions of the total
investment. Therefore we write:

X()i = wiXo, 1= 1,2, .., n

where w; is the weight or fraction of asset ¢ in the portfolio. Clearly:

=1

and some w;’s can be negative is short selling is allowed. Let R; denote the total

return of asset 2. Then the amount of money generated at the end of the period by

the ith asset is R; Xo; = R;w; Xo. The total amount received by this portfolio at

the end of the period is therefore Z?:l R;w; Xy. As a result we find that the overall

total return of the portfolio is the weighted sum of the returns of its components:
Z?:l Ryw; Xo -

Equivalently, since > ", w; = 1, we have: r =Y w;r;

20 CHAPTER 2. PORTFOLIO OPTIMIZATION

2.3 Asset volatility

Since the money obtained when selling an asset is uncertain at the time of purchase
the return is unknown and random. Therefore it can be described in probability
theory. Many concept of probability are used in finance but here we will introduce
only variance.

We use the notation E to indicate the expected value of a random variable x. For
convenience E(x) is often denoted by Z. Also the terms mean or mean value are
often used for the expected value.

The expected value of a random variable provides a useful summary of the
probabilistic nature of the variable. However, typically one wants, in addition,
to have a measure of the degree of possible deviation from the mean. One such
measure is the variance. Given a random variable y with expected value ¥, the
quantity y — g is itself random, but has an expected value of zero. This is because
E(y —y) = E(y) — E(y) =y — § = 0. The quantity (y — 7)? is always non negative
and is large when y deviates greatly from y and small when it is near 3. The
expected value of this squared variable (y —)? is useful measure of how much y
tends to vary from its expected value. In general, for any random variable y the
variance of y is defined as:

var(y) = El(y —)*)]

In mathematical expressions, variance is represented by the symbol 0. Therefore we
write 05 = var(y) or if y can be deduced by context, we simply write o? = var(y).

We frequently use the square root of the variance, denoted by ¢ and called the
standard deviation. It has the same units as the quantity y and is another
measure of how much the variable is likely to deviate from its expected value.
Formally:

oy = VE[(y - 9)%

It is good to know, as it is useful in computations that:

var(z) = El(z — 7)?]
= E(2?) — 2E(2)Z + z° (2.1)
= E(2?) — z*

2.4. PORTFOLIO COVARIANCE 21

In finance, the term volatility is often used either to indicate asset variance or
asset standard deviation.

2.4 Portfolio covariance

When considering two or more random variables, as assets returns in a portfolio,
their mutual dependence can be summarized conveniently by their covariance.

Let x1 and x5 be two asset returns with expected returns 7 and 5. The covariance
of these assets is defined as:

cov(xy,) = El(x1 — 1) (22 — 22)]

The covariance of two assets and y is frequently denoted by o,,. Consequently,
for assets x; and zy we write cov(z1, T2) = 04, 4, Or alternatively, cov(zy, z2) = o12.
Note that, by symmetry, o195 = 091 Analogous to equation 2.1 there is an alternative
shorted formula for covariance that is easily derived:

cov(xy, x9) = E(z129) — 7122

This is useful in computations. If two assets x; and x5 have the property that o5 =
0, then they are said to be uncorrelated. Beware that if two assets are uncorrelated
it does not imply that they are independent, the situation where knowledge of the
return of one asset gives no information about the other. Correlation measure linear
association but if the two assets are related in other non-linear ways correlation
could not distinguish from independent case.

A portfolio can be composed of different assets with different return-risk ratio
characteristics. An adequate balance between this can allow the investor to fit its
preferences.

2.5 Diversification

We now determine the variance of the rate of return of a portfolio. We denote the
variance of the return of asset 7 by o2, the variance of the rate of return of the

22 CHAPTER 2. PORTFOLIO OPTIMIZATION

portfolio by o2, and the covariance of the return of asset ¢ with asset j by ij:

i=1 j=1
[n
=E Z ww;(r; — 7;)(r; TJ)]
Li,7=1
n
= Z W;W;0 44
ij=1

This important result shows how the variance of a portfolio return can be calculated
easily from the covariances of the pairs of asset returns and the asset weights used
in the portfolio.

Portfolio with only a few assets may be subject to a high degree of risk, represented
by a relatively large variance. As a general rule, the variance of the return of a
portfolio can be reduced by including additional assets in the portfolio, a process
referred to as diversification.

This can be shown by using the following formulas. Let us suppose an example
with n assets, all of which are mutually uncorrelated, that means each asset is
uncorrelated with any other asset in the group. Let us suppose also that the rate
of return of each asset has mean m and variance 0. A portfolio is built by taking
an equal portion of the n assets, that means w; = %Vi. The total rate of return of

this portfolio is then:
1 n
r=— T

But since each asset has mean rate of return m also the mean value of r is
independent of n.
The variance of r is:

The variance decrease rapidly as n increases, as shown in figure 2.1.

2.5. DIVERSIFICATION 23

0.07 A

0.06 -

0.05 A

0.03 A

portfolio variance

0.02 -

0.04 - I

0.01 A
0.00 _J"""I"""mmmnmmm | ! }
0 20 40 60 80 100

number of assets

(a) Uncorrelated assets o2 = 0.07

0.07 A

0.06 -

0.05 A

0.03 A

portfolio variance

0.02 A

0.04 A Il
I
Wl

0 20 40 60 80 100
number of assets

(b) Correlated assets o2 = 0.07
cov(ri, i) = 1502

0.01 A

0.00 -

Figure 2.1: Effects of diversification If assets are uncorrelated variance of
portfolio rapidly decrease and tends to zero by increasing number of assets. If
assets are correlated there is a lower limit to variance.

24 CHAPTER 2. PORTFOLIO OPTIMIZATION

This is possible because we assumed that the individual returns are uncorrelated.
If the asset are uncorrelated, then the variance limit to is zero:

If the assets were even partially correlated, then by adding more assets the variance
would decrease slower.

We now prove this. Let us suppose that each asset has a rate of return with mean
m and variance o2, but now each return pair is correlated by a factor ¢ and has then
covariance cov(r;, r;) = to? for i # j. The portfolio is formed by equal portions of
n of these assets. In this case:

var(r) = E

1
2

1 1
SR (Z ot Z"”) >
@, =]

i#]

oo

i=1 j=1

= Lo 4t = n)o?

n?
2 1
— 7 01—)
n n
21—t
n

This results is shown in figure 2.1(b). In this case it is impossible to reduce the
variance below to?, no matter how large is n

2(1—t
i A1)

n—o0 n

+ to? = to?

In the previous analysis we assumed that the expected retun of all assets are equal.
This is not, in general, the case. Diversification may reduce the overall expected
return while reducing the variance. Most people are averse to reducing a considerate
amount of return in exchange for a little reduction in variance, so diversification is
not a task that can be executed blindly.

2.6. MEAN-VARIANCE DIAGRAM 25

2.6 Mean-Variance Diagram

The random rates of return of assets can be expressed on a two-dimensional diagram,
as shown in figure 2.2 . As asset with mean rate of return 7 and standard deviation
o is represented as a point in this diagram. The standard deviation is plotted on
the horizontal axis, and the vertical axis is used for the mean. This diagram is
known as the mean-standard deviation diagram, or simply 7 — o diagram.

074 — Efficient frontier
® assets

@ STOXX50E

©GSPC

0.0 1 o NDX

0.004 0.006 0.008 0.010 0.012 0.014
Volatility

Figure 2.2: Mean-Variance diagram: Points are the four different assets obtained
from strategy signals and index futures used in this work, the curve is the efficient
frontier of portfolios created with these assets.

Given n assets on a mean-standard deviation 2D plot, where they are points,
these assets can be combined to form a portfolio that will have a mean return
and standard deviation itself, thus represented itself as a point in the diagram.
The new portfolio mean return and standard deviation can be calculated from the
assets means, variances and covariances of returns of the original assets. However,
since covariances are not shown on the diagram, the exact location of the point
representing the new asset cannot be determined from the location on the diagram
of the original assets. There are many possibilities, depending on the covariance of
the asset returns. All these possibilities of the location of the compound portfolio
in the diagram form a region, called feasible region or feasible set of points.
With only two assets the region will be a curve, with at least three assets the region
will be a two-dimensional solid region.

26 CHAPTER 2. PORTFOLIO OPTIMIZATION

The feasible region is convex to the left, that means that given two random points
in the feasible region, the line connecting them does not cross the left boundary of
the feasible region. This is because all portfolios with positive weight made from
two assets lie on the left of the line connecting them. This is because the new
portfolio will have always a mean return higher than the lowest mean return of the
assets and a variance always lower than the highest of the assets. If short selling is
allowed, so the weights can be negative, the region will always contain the region
where short selling is not allowed, as see in figure 6.2 in the appendix.

The left boundary of a feasible region is called the minimum variance region,
since for any value of the mean rate of return, defining a horizontal line, the point
will be the one with the smallest variance staying in the leftmost point of the line.
The minimum variance region has a characteristic bullet shape. There is a specific
point in the minimum variance region that has a global minimum variance and
is called the minimum variance point. An investor that given a fixed return
would always prefer the leftmost point of minimum variance is called risk adverse
investor, and an investor that would select a point other than the one of minimum
standard deviation is labelled risk preferring investor. We can turn the previous
analysis by 90 degree and consider portfolio on a vertical line, that means portfolio
with a fixed standard volatility. Investors in this case would always prefer the
highest point, in others words the one with the highest return. This property
of investor is called nonsatiation. This implies that only the upper part of the
minimum variance region will be the interest of investors who are risk adverse and
non satiated. The upper part of the minimum variance region is called efficient
frontier.

2.7 Sharpe ratio

Sharpe ratio was created by Nobel Laureate William F. Sharpe and is used to
help investors understand an investment’s return against its risk. The ratio is the
average return earned in excess of the risk-free rate per unit of volatility or total
risk.

In general, the higher the Sharpe ratio, the more attractive the risk-adjusted return
of the investment.

An investor will better isolate the profits associated with risk-taking operations by
subtracting the risk-free rate from the mean return. The risk-free rate of return is
the return on a risk-free investment, i.e., the return investors would expect if they

2.8. POST-MODERN PORTFOLIO THEORY 27

take no risk. The risk-free rate, for example, may be the yield on a US Treasury
bond.

rTr—r
S, = f

UT
r rate of return
r¢ Risk free return
o, Standard deviation of returns
But the Sharpe ratio also have several limitations:

e [t uses standard deviation as a measure of risk. This would imply that
returns are normally distributed, but financial markets shows large number
of surprising drops or spikes in prices.

e It focuses on volatility but not its direction. It cannot distinguish between
upside and downside trends. Rare events of large positive returns should be
considered beneficial, while rare large losses should be considered the opposite.
The Sharpe ratio considers the two tail of the distribution the same.

e As with most metrics and parameters, Sharpe ratios use historical returns
and volatility. The decisions based on the ratio assume future performance
will be similar to the past, that is often not true.

The conversion of a short-term estimate or rate into an annual rate is known
as annualization. An investment with a short-term rate of return is typically
annualized to get an annual rate of return, which may involve compounding or
reinvestment of interest and dividends. It is useful to annualize a rate of return in
order to compare one security’s performance to that of another. To annualize the
Sharpe ratio computed on daily returns over a period of ¢ days:

R—R;)- %2 /252
STAzﬁzgr.i

oy - V252 t

The reason behind this is because the returns of the portfolio are diffusive, as in a
Wiener process, in which volatility scales with the square-root of time. Also, in
average, there are 252 trading days in a year.

2.8 Post-Modern Portfolio theory

As explained above, variance is not always a the best measure of risk and Modern
Portfolio theory has many critics. Post-Modern Portfolio theory (PMP) has been

28 CHAPTER 2. PORTFOLIO OPTIMIZATION

created [15]. Markowitz itself suggested that a model based on semi-variance would
be preferable, but it becomes a harder computational problem. PMP theory only
use semivariance, we now give a definition of it.

The first step of calculating the semivariance is to choose a minimum acceptable
return (MAR). Popular choices include zero and the risk-free rate for the year. We
will use zero here. Secondly, we select only the returns that are lower or equal than
the MAR. Finally the variance of this selected returns is computed. Formally:

n

semivariance = SV (r) = Z(E[(m —7)?1,.<0)

i=1

where 1, is and indicator function, i.e.

{1 if r<0
L<o =

0 else

The Sortino ratio was created to address the Sharpe ratio’s inability to differentiate
between types of risk. It only uses downside risk, nominally the square root of
semivariance.

r — Tf
SV (r)

In a bull market we should seek for as much volatility as possible, only in a bear
market volatility should be avoided. Individuals are more concerned with avoiding
loss that seeking gains. From a practical standpoint, risk is not symmetrical. Still,
in this work it is going to be used mainly Markowitz initial theory that we consider
sufficient for our objectives.

Sortino ratio =

2.9 Asset allocation methods

Asset allocation is that part of investment science related to find an optimal
balance between risk and return of a portfolio by determining or changing portfolio
components weights. Rebalance of portfolio follows consideration of investor risk
tolerance and investment horizon.

Markowitz model is an asset allocation technique that aims to select the best
asset distribution within a portfolio in order to maximize returns at a given
risk level. Markowitz’s work is widely known as modern portfolio theory [16].
Markowitz problem is practically the problem of finding points on the efficient
frontier. Assuming n assets each with mean (or expected) rates of return 7y, 7o, ..., 7,
and covariances o0;; for ¢, 7 = 1,2, ..n. A portfolio is defined by a set of n weights

2.9. ASSET ALLOCATION METHODS 29

w; for 2 = 1,2,...,n that sum up 1. Negative weights corresponds to short selling.
To find a minimum variance portfolio, we set the mean value at some arbitrary
value 7. Then we find the portfolio of minimum variance that has this mean. We
formulate the problem as:

1 n
minimize§ g WiW; 045
Jj=1

n
subject toz wT; =T
i=1

i=1

Once the Markowitz problem is formulated, it can be solved both analytically and
numerically to obtain a specific solution. Usually the analytical process is the most
used.

Markowitz solution makes the mean and variance trade off explicit. This is useful
for investors because, as seen in section 2.5 increasing the number of assets can
reduce variance, and therefore risk, but could also reduce return. Not all investors
would been keen to that. Markowitz solution allows to create portfolio suitable to
different demands.

Predicting returns are required for mean-variance optimization and this is its
primary difficulty even if the theory itself gives strong mathematical guarantees. In
practice, determining returns with a sufficient degree of accuracy is challenging and
as a result, the best we can do is often extrapolating them from historical data.

There are many common algorithms for portfolio optimization and asset allocation
to consider as benchmark when developing a new method, as in this case. One of
the most basic ones is to give to each asset an equal weight, while this can be seen
as very rudimental it has been observed that still can result in good performance
in validation datasets [17] [18] [19].

A second allocation method is the inverse volatility method also called inverse-
variance weighting. In this method every asset receive a weight proportional to the
inverse of its volatility. Formally:

30 CHAPTER 2. PORTFOLIO OPTIMIZATION

1

g4

W; =
1

n
— 97

7=0

Annualized volatility

m S&P 500
1 M5CI Emerging
Markets

H MSCI Japan

17-10 Years Treasury
Bond

Equally weighted Volatility inverse strategy
Portfolio risk: 6.04% Portfolio risk: 4.99%

Volatility
p contribution
Figure 2.3: Graphical explanation of inverse volatility allocation method [20].

Volatility
contribution

Another allocation method is the risk parity method. The objective of this
method is to create a portfolio where each asset contributes equally to the portfolio
overall volatility. According to the risk parity method, when asset allocations are
modified (leveraged or deleveraged) to the same risk level, the risk parity portfolio
can produce a higher Sharpe ratio and be more robust to market downturns than
a standard portfolio [21]. Consider a portfolio of n assets with rate of returns
r1,..., ", Where the weights of the assets with rate of return r; is w;. The w; form
the allocation vector w. Let us further denote the covariance matrix of the assets
by . The volatility of the portfolio is then defined as the standard deviation of

2.9. ASSET ALLOCATION METHODS 31

the random variable w, X which is:

A risk parity portfolio can be obtained by solving the following minimization
problem:

Where ¢(w) is the vector of marginal contribution to volatility of each asset (9,0 (w))
and is computed as follows:

w
c(w) =
w'ow
Variance
o S&P 500 q
[l MSCI Emerging
Markets
[MSCI Japan
(11 7-10 Years Treasury
Bond
Equally weighted Risk parity strategy
Portfolio risk: 6.04% Portfolio risk: 4.51%

Volatility
contribution

Figure 2.4: Graphical explanation of risk parity allocation method [20].

32 CHAPTER 2. PORTFOLIO OPTIMIZATION

2.10 Relative strength index

Technical indicators are functions of financial quantities, generally prices or returns.
They are helpful for technical analyst to forecast movements of future prices.

One of the most used technical indicators is the Relative Strength Index (RSI).
The RSI is a momentum oscillator that measures price movement velocity and
magnitude. The momentum is the rate at which a price rises or falls [22]. The RSI
is most commonly utilized over a 14 day period and it can have a value from 0 to
100, with 70 and 30 being the most common high and low points. For alternative
shorter and longer outlooks, different size of time frames are used.

Each trading period is classified as up or down period. Up periods are characterized
by the close being higher that the previous close. A down period is characterized
by the close being lower than the previous period’s close. We calculate U (Upward
change) and D (Downward change) as the follows for an up period:

U = closeyow — closeprevious

D=0

Instead, for a down period the following formula is applied:
U=0

D = closeprevious — closenow

The average U and D over multiple are calculated using a n-period smoothed
(SMMA), modified (MMA) or exponential (EMA) moving average.
The relative strength factors is the ratio of these averages:

~ SMMA(U,n)
 SMMA(D,n)

RS

The relative strength factors is then normalized between 0 and 100 to obtain the

relative strength index:
100

1+ RS
Many other technical indicators exists, like Moving Average Convergence/Divergence
(MACD) [23], Bollinger bands [24], Fibonacci retracement [25], Ichimoku cloud [26],
and Average directional movement index [22]. However, due to time constraints, we
were unable to test the effectiveness of using these indicators applied to the input
data. The RSI was chosen as it is one of the most popular technical indicators.

RST =100 —

2.11. VOLUMES OF TRADE 33

2.11 Volumes of trade

Another financial quantities sometimes used for forecasting financial quantities are
trade volumes, the total number of shares that was traded during a given period of
time. While volumes have low correlation with stock returns, they have a higher
correlation with volatility and can be used to forecast it. One of the earlier studies
on this correlation was the work of Schwert(1989) [27] e Gallant et al. (1992) [28].

2.12 Trade signal

A trade signal is a time series indicator of suggested selling or buying of a specific
security, typical with a value of —1 or 1. Negative value means selling, while
positive values means buying. Values outside that couple can means leverage,
partial buying/selling or holding. Trade signal can be created by humans after a
market analysis or by statistical algorithms.

2.13 Market index

A market index is a simulated investment portfolio that reflects a section of the
financial market. Different typologies of market indexes exists: some indexes have a
price that is the weighted average of its constituents price, others have a return that
is the weighted average of its constituents return. Different market indices are used
by investors to track market changes. The prices of the underlying holdings are
used to calculate the index value. There are different weighting methods for indices,
here we are going only to name some: market-cap weighting, revenue-weighting,
float-weighting, and fundamental-weighting. Famous indexes are the Dow Jones
Industrial Average (DJIA), S&P 500, Nasdaq Composite Index, Eurostoxx 50,
Nikkei 225. Investors cannot invest directly in an index, so these portfolios are
used mainly as benchmarks.

2.14 Exchange Traded Funds and Index Futures

An exchange traded fund is a type of asset that have a price correlated with the
value of an index, sector, commodity, or other asset, but which can be purchased
or sold on a stock exchange the same way a regular stock can.

A futures contract is a legally binding agreement to buy or sell a certain asset at
a defined price at a future date. Futures contract are traded on futures exchanges.

34 CHAPTER 2. PORTFOLIO OPTIMIZATION

When a futures contract is purchased, the buyer assumes the responsibility to
purchase and receive the underlying asset when the contract expires. The seller of a
futures contract assumes responsibility for providing and delivering the underlying
asset at the contract’s expiration date. Index futures are contracts that allow a
trader to purchase or sell an asset with the same price of an index today and have
it resolved at a later date. Index futures are used by traders to speculate on an
index’s price direction.

Chapter 3

Deep learning methods

This chapter introduces machine learning architectures or layers that are used
in this work, specifically Long Short Term Memory Networks (LSTM) Temporal
Convolutional Networks (TCN) and Transformers. These are all architectures
usually used for sequential data. Finally, we define types of errors in researching a
machine learning model.

Machine learning has become key to important applications in science, technology
and commerce. The focus of machine learning is on the problem of prediction: given
a sample of training examples (21,%1), ..., (Tn, yn) € RY X RP we learn a predictor
h, : R® — RP that is used to predict the label y of a new point z, unseen in
training.

The prediction h,, is commonly chosen from some function class H, such as neural
networks with a certain architecture, using empirical risk minimization (ERM) and
its variants. We can see neural network as function class because neural networks
model functions and by changing their weight we parametrize over a function space.
In ERM, the predictor is taken to be a function h € H that minimizes the empirical
(or training) risk:

=S Uhwn))

where [is a loss function, such as the squared loss (v, y) = (3 — y)? for regression
or 0-1 loss I(y/,y) = 1y, for classification.

The goal of machine learning is to find h,, that performs well on new data, unseen in

35

36 CHAPTER 3. DEEP LEARNING METHODS

training. To study performance on new data, knows as generalization, we typically
assure the training example are sampled randomly from a probability distribution
P over R x R and evaluate h,, on a new test example (x,y) drawn independently
from P. The challenge arises from the mismatch between the goals of minimizing
the empirical risk, the explicit goal of ERM algorithms i.e. optimization, and
minimizing the true (or test) risk:

Ey~pll(h(z),y)]

the goal of machine learning.

3.1 Sequence modeling task

Before defining network architectures, we define the nature of the sequence modeling
task. Suppose that we are given an input sequence 1, ..., xy and wish to predict
some corresponding output v, ..., yn at each time. The key constraint is that to
predict the output g, for some time ¢, we are constrained to only use those inputs
that have previously observed: zy, ..., x;. Formally, a sequence modeling network is
any function f: X* — Y that produces the mapping:

?317 "'73~7N = f(xla "'7$N)

if it satisfies the causal constraint that y; depends only on x4, ...,2; and not on
any future inputs z;,1,...,xxy. The goal of learning, in the sequence modelling
setting, is to find a network f that minimizes some expected loss between the
actual outputs and the predictions L(y1, ..., yn, f(Z1, ..., 2x)), where the sequences
and outputs are drawn according to some distribution. This formalism covers many
contexts such as auto-regressive prediction, where we try to predict some signal
given its past, by setting the target output to be simply the input shifted by one
time step. This formalism does not, however, directly capture domains such as
machine translation, on sequence-to-sequence prediction in general, since in these
cases the entire input sequence including future states can be needed to predict
the output.

3.2 Recurrent neural network

The recurrent neural network (RNN) architecture was introduce by Rumelhart
et al. [29] in 1986. RNNs operate on sequence of data by applying an identical
function f to every element of the sequence to produce a sequence of state vectors
H = [hy, ..., h,]. The function f takes as input both the output of the function at
the previous point in the sequence, and the current element of the input sequence

3.2. RECURRENT NEURAL NETWORK 37

X = [z1,...,2,]. An RNN can be unfolded to represent it as a traditional feedforward
neural network with no recurrence. A generic RNN is shown in figure 3.1.

he i1
Unit T_ A
Delay [
hy 2
N N
by 1 i
} |‘): :
Unfold ‘_‘ _t

X1 X141

Figure 3.1: Generic recurrent neural network

At each point t in the sequence h; is taken as the output. h; can be projected to
the required output dimension for example with a dense layer.

Unit
Delay
2
hr—L
Unit » .-
Delay Unfold .
1
hr—L

Xt

p
! Xr—1 Xt Xr41 ! !

Figure 3.2: Two-layer recurrent neural network

RNNs can be extended to multiple layers, with a two-layer RNN illustrated in
figure 3.2. Each layer implements its own function, with layer n implementing
function f" and producing output h"™. For layers after the first layer, instead of
taking a x vector as input they take the state vector from the previous layer. There
can be an arbitrary number of layers. A multi-layer RNN can in fact be thought as

38 CHAPTER 3. DEEP LEARNING METHODS

a generalization of a single-layer, where multiple sub-function are included in the
function f.

3.2.1 Long Short Term Memory Network

Recurrent networks are often used in sequence processing tasks because of their
ability to capture temporal relationships. Long Short Term Memory (LSTM)
is a modified version of recurrent neural networks proposed by Hochreiter and
Schmidhuber [30]. Moreover, Recurrent Neural Networks are prone to vanishing
and exploding gradients problems [31], which can be addressed through the use of
long short term memory cell. An LSTM cell is able to selectively add and remove
elements from the state vector as it passes through the cell. LSTM cells have been
demonstrated to outperform simpler functions in a variety of tasks when employed
as RNN function [32] [33] [34]. The LSTM cell extends the standard RNN model
by separating the cell output ¢; from the cell state h;, shown in figure 3.3 and its
multi-layer configuration shown in figure 3.4. The LSTM cell is described by the
following equations:

fi=0Wxy + Ushi—q1 + by) (3.1)
iy = o(Wizy + Uihy—1 + b;) (3.2)
op = o(Wozy + Ushy—1 + b,) (3.3)
¢ = tanh(Weay + Uohy—1 + b,) (3.4)
= froc1+ip+ G (3.5)
hy = o4 o tanh(¢y) (3.6)

where:
e o denotes the element-wise multiplication:
e the input vector is z; € R”
e the cell output vector is h; € R? (d is the hidden dimension of the model);
e the cell state vector is ¢; € R%;
e the forget gate vector is f; € R%
e the input gate vector is i, € R?
e the output gate vector is o, € R?

e the cell candidate vector is ¢ € R;

3.2. RECURRENT NEURAL NETWORK 39

dx N .
RS

the learned cell state weight matrices are U €

the learned input weight matrices are W € R4*4

the learned bias vectors b € R; and

o o(y) =7 +i_y represents the sigmoid function

At first glance equations 3.1 to 3.6 may come across difficult, but they are in
fact highly intuitive when studied alongside figure 3.3. There are three primary
sub-sections within the LSTM cell, discussed in the three following paragraphs.
Note that the use of two weight matrices (W and U) in the LSTM equations is
equivalent to concatenating x and h and using a single weight matrix - keeping
consistency with figure 3.3.

First, data is removed from the cell state (c) as it flows through the LSTM cell.
The sigmoid function that produces f; outputs values between 0 and 1. When these
are multiplied with ¢;_; (the previous cell state) some elements will be removed or
reduced. The sigmoid layer that produces f; is referred to as the forget gate, as it
causes some data to be removed from the cell state depending on the previous cell
output (h;—1) and the current input ().

Next, information is added to the cell state. The tanh layer produces a new
candidate cell state (¢;), and the input gate layer produces ; in a similar fashion
to f;. The vector i; decides which elements of the new candidate cell state vector
are added to the actual cell state vector by reducing the magnitude of elements
in ¢ based on the previous cell output (h;_;) and the current input (z;). After ¢
has been multiplied by ; to selectively reduce elements it is added to the cell state.
The sigmoid layer that produces i, is referred to as the input gate, as it decides
what data is added to the cell state as it passes through the cell.

Finally, a candidate output vector is produced by applying tanh element-wise to
the cell state. The output gate layer produces o; and this is multiplied with the
candidate output vector to selectively remove elements, producing the final cell
output h;. The sigmoid layer that produces o; is referred to as the output gate, as
it decides which elements of the candidate output are passed as the final output.

40 CHAPTER 3. DEEP LEARNING METHODS

Together, these gating mechanism allow the LSTM cell to selectively add and
remove elements from the state as it passes through the cell, and allow the cell to
selectively produce an output based on the current cell state. This generally allows
the LSTM cell to retain data from many timestep in the past, making it a superior
choice to simpler functions when working with long sequences of data, though in
some cases the LSTM cell can discard data from early in the sequence.

Element-wise
operation
Layer

Vector

Contatenation

Copy

he—y

Figure 3.3: Long short-term memory cell.

A A A
L 2 L 2 :
----- e O e N
1 y ht2—1 11_" hzz /) >
hz—l Cl ht Cl
.....) -1 NG t N >
..... » —————> ——> >

Xr—1 Xt Xi41

Figure 3.4: Multi-layer long short-term memory cell configuration.

3.3. TEMPORAL CONVOLUTIONAL NETWORKS 41

3.3 Temporal Convolutional Networks

Temporal Convolutional Networks were introduced in 2016 by Lea et al. [35]. TCNs
are one-dimensional causal dilated Convolutional Neural Network. In this section
we define TCNs that will satisfy the following properties: (1) computations are
performed layer-wise, meaning every time step is updated simultaneously, instead
of updating sequentially per-sample (2) convolutions are computed across time,
(3) prediction at each step are a function of a fixed-length period of time, which
is referred to as the receptive field (4) the convolutions in the architecture are
causal, meaning that there in no information leakage from future to past (5) the
architecture can take a sequence of any length and map it to an output sequence
of any length, just as with an RNN. We will show how TCNs can build very long
effective history sizes (i.e. the ability for the network to look very far into the
past to make a prediction) using a combination of very deep networks, augmented
with residual layers, and dilated convolutions. Figure 3.5 illustrates an example

of Temporal Convolutional Network. TCN tends to be superior in many task to
LSTM and also Bidirectional LSTM [36].

3.3.1 Temporal convolution

Let X, € R0 be the input feature vector of length Fy for time step ¢ for 1 <t < T.
A TCN consist of L layers denoted by E® e RF*Ti for 1 < [< L where F
is the number of convolutional filters in the [—th layer and 7; is the number
of corresponding time steps. We define the collection of filters in each layer as
W = {WO}L for W& e R x Fj_; with a corresponding bias vector b € R
Given the signal from the previous layer, E¢~Y, we compute activations E®) with

EW = f(W « BV 4 p)

where f is the activation function and % is the convolution operator.

3.3.2 Dilated causal convolution

When dealing with Convolutional Neural Networks (CNNs), causal means that
each output y; of the network is exclusively a function of previous input timestep
X, .-, Ty, while dilated means that each hidden layer is given a dilatation factor d
which controls which timestep from the previous layer the convolution is actually
applied over. A simple causal convolution is only able to look back at history with
size linear in the depth of the network. This makes it challenging to apply the
before mentioned causal convolution on sequence tasks, especially those requiring
longer history. The solution here is to employ dilated convolutions that enable an
exponentially large receptive field. Given a sequence x = xy, ..., x,, € R and a filter

42 CHAPTER 3. DEEP LEARNING METHODS

f:0,..,k—1— R, the dilated causal convolution operation x x4 f on the t-th
element of z is defined as follows:

T
L

(z x4 f)(t) = f(i) - w_qq

t

Il
o

where d is the dilation factor, k is the filter size, and s — d - i accounts for the
direction of the past. Note how ¢ — d - 7 enforces the causal part of the convolution,
as it can only point to sequence elements which are in the past. Dilation is equalent
to introducing a fixed step between every two adjacent filter step. When d =1, a
dilated convolution reduces to a regular convolution. The dilatation factor d usually
increases the further we get into the network, often taking the values of increasing
powers of two (i.e. d = 2 on the i-th hidden layer of the network). This ensures two
things. First, that the receptive field of the network grows exponentially with the
number of layers (whereas in a undilated CNN this would grow linearly) granting
a longer history. Second, that the output y, at time t is effectively a function of a
contiguous number of steps in the input. A network with m layers has a receptive
field of size 2™~ 'k. Therefore there are two ways to increase the receptive filed of
the TCN, choosing a larger filter size k and increasing the dilation factor d.

3.3.3 Residual connections

A residual block (He et al. 2016) [37] contains a connection leading out to a series
of transformations F', whose outputs are added to the input = of the block.

o = Activation(z + F(x))

This effectively allows layers to learn modifications to the identity mapping rather
than the entire transformation, which has repeatedly been shown to benefit very
deep networks.

Since a TCN'’s receptive filed depends on the network depth n as well as filters size
k and dilation factor d, stabilization of deeper and larger TCNs becomes important.
For example, in a case where the prediction could depend on a history of size
212 and a high-dimensional input sequenced, a network of up to 12 layers could
be needed. Each layer, more specifically, consists of multiple filters for feature
extraction.

However, whereas in a standard Residual Network (ResNet) the input is added
directly to the output of the residual function, in TCN (and other Convolutional

3.4. TRANSFORMERS 43

TCN Qutputs

A
.
L
s
-
-
-
-
-
-
-

TCN Inputs

Figure 3.5: Temporal Convolutional Network with output size 3 and two hidden
layers each of dilatation factor 2

Networks in general) the input and output could have different widths. To account
for discrepant input-output widths, we use an additional 1 x 1 convolution to ensure
that element-wise addition @ receives tensors of the same shape.

3.4 Transformers

The Transformer neural model architecture, shown in figure 3.6, was introduced by
Vaswani et al. [1] in 2017 and at the time was the state of art in neural machine
translation. Neural machine translation is the task where a machine translate from
a language to another.

Compared to another typical architecture to deal with time series data, like the
Long Short Term Memory network (LSTM) [30], Transformers do not compresses
information as time goes by. Such compression can weak long-distance relation
patterns to some extent and may fail to highlight important information from
historical data. Using attention layers (see section 3.4.2) it’s possible to overcome
this problem. Unlike previous sequence to sequence models, attention models do
not process data sequentially but process all the sequence together. Attention layers

44 CHAPTER 3. DEEP LEARNING METHODS

Y oo .
e
Layer Norm. ;
g :
z :
4 !
Position-wise
Feedforward !
z Layer Norm. :
=t o |
Layer Norm. s !
>
g Multi-Head 5
E X Attention 5
-
E‘ Position-wise EI 8 !
= Feedforward 8
: 3
g Layer Norm. Layer Norm. A
b 4 4 g
o 2] I
@ ¥ Z -
-
Q 4 A ;
a Multi-Head Masked Multi- :
a Attention Head Attention ;
VvV K Q V K Q
\ —
‘ Positional ‘ Positional
Encoding Encoding
I I
[Dense] [Dense]
£) !
X % SRR .
(right shifted)

Figure 3.6: Transformer architecture [1]

learn temporal and spatial dependencies from the sequence. By processing all the
sequence elements simultaneously, models that use attention are highly parallelizable
and can take advantage of the computational power of GPU outclassing on
performance LSTM.

The transformer architecture follows a similar sequence-to-sequence/encoder decoder
architecture. The encoder transformers an input sequence X = [z1, ..., z,] into a
latent representation Z = [z1, ..., 2], and the decoder transforms Z into an output
sequence Y = [y1, ..., Y.

The original Transformer was meant for language translation, a task where input
data and output data have the same structure/typology, they are essentially
phrases of a natural language. Our case is different, as in input we have different
features derived from returns in the form of time series but output is a weight

3.4. TRANSFORMERS 45

vector. This is the reason why in the original transformer shown in figure 3.6 the
latent representation of X is inserted in the middle of the decoder. The original
transformer find matching between words of phrase X and phrase Y, the essence
of machine translation task, in their respective latent space. But as we are not
doing machine translation, but regression, we remove the decoder part and we use
the latent representation of X namely Z directly to compute the final network
output through a Dense layer. We call this reduced architecture Regression
Transformer. A representation of the regression Transformer can be see in figure
3.7.

t
[N

Layer Norm.

[

Position-wise
Feedforward

i

Layer Norm.

Dropout

I

Multi-Head
Attention

Embedding

Figure 3.7: Regression Transformer architecture

46 CHAPTER 3. DEEP LEARNING METHODS

3.4.1 Time embedding

For Attention to work, an encoding of time need to be attached to the input features.
In the original NLP model, a collection of superimposed sinusoidal functions were
added to each input embedding. We need a different representation as our inputs are
scalar values and not distinct words/tokens. Deep Neural Networks can learn linear
and periodic components on their own, during training using a Time2Vec layer [38].
Time2Vec is a learnable and complementary, model-agnostic representation of time.
It decompose each input feature to a linear component and as many periodic
(sinusoidal) components it’s necessary. By defining the decomposition as a function,
we can make the weights learnable through back propagation. For a given scalar
notion of time 7, Time2Vec of 7, denoted as t2v(7), is a vector of size k + 1 defined
as follows:

120(7)[i] =

where t2v(7)[i] is the i-th element of t2v(7). F is a periodic activation function, and
w;s and ¢;s are learnable parameters. Given the prevalence of vector representation
for different tasks, a vector representation for time makes it easily consumable by
different architectures. We choose F' to be the sine function in our experiment.
The period of sin(w;7 + ¢) is Z—’:, i.e. it has the same value for 7 and 7 + i—”
Therefore, a since function helps capture period behavious without the need for
feature engineering. For istance, a since function sin(wt + ¢) with w = # repeats
every 7 days (assuming 7 indicates days) and can be potentially used to model
weekly patterns. The linear term represent the progression of time and can be used
for capturing non-periodic patterns in the input that depend on time.

3.4.2 Multi-head attention

The primary innovation of the Transformer architecture is multi-head attention.
Generic attention and dot-product attention will now be described as there are
prerequisite to describing multi-head attention.

An attention function can be described as mapping a query and a set of key-value
pairs to an output where the query, keys, values and output are all vectors. The
output is computed as a weighted sum of the values, where the weight assigned
to each value is computed by a compatibility function of the query with the
corresponding key.

3.4. TRANSFORMERS 47

In the scaled dot-product attention the input consists of queries and keys of dimension
di, and values of dimension d,. The dot products of the query with all keys is
computed. This dot product is divided by 1/dj to prevent the dot product from
becoming large when dj, is large as this may cause the softmax gradient to become
very small and affect gradient descent training, and then a softmax function is
applied to obtain the weight on the values. In practice, the attention function is
computed on a set of queries simultaneously, packed together into a matrix Q. The
keys and values are also packed together into matrices K and V. The matrix of
output is computed as:

Attention(Q, K, V') = softmax (QKT) Vv
o vy,

MatMul
Causal
Mask
:
Muiltiply [Scaled Dot-Product ﬂ\h
— Atteption]
MatMul - I

(o] (on) (o]

£ L))
[Dense] [Dense] [Dense]
% * *
Q K

4 Q K

(a) Scaled dot product (b) Multi-head attention
attention

Figure 3.8: Attention mechanism used in transformer architectures.

Vasvani [1] also proposed multiheading shown in figure 3.8 (b). It applies a separate
dense layer to each of the values, queries and keys. The dense layer is applied with
learned weight W € R%? and a learned bias vector b € RY, where d is the hidden
dimension of the model, a hyperparameter. The outputs of the dense layers are
then split along the last axis into A sets, or heads. As a result the key, query and
value dimension is reduced by a factor of A to %. Scaled dot-product attention in
then run independently on each set. The results are concatenated and put through

48 CHAPTER 3. DEEP LEARNING METHODS

a final dense layer to produce the output of the attention function. The dense

layer function on the output has learned weights W € R4 and learned bias vector
b € R4,

The dense layer combined with the split allows the multi-head attention to pick
out information from different subspaces in the input and direct these to different
attention heads. This is in contrast to a single head which must average all
subspaces.

3.4.3 Residuals and Normalization

Residual connections [37] are applied around each sub-layer. That is, the output
of each sub-layer is given by X’ = X + subLayer(X) where subLayer(X) is the
original output of the sub-layer. The outputs are then normalized by applying
layer normalization [39).

3.5 Adam optimizer

Adam is an algorithm for first-order gradient-based optimization of stochastic
objective functions, based on adaptive estimates of lower-order moments. It was
introduced by P. Kingma in 2014 [40]. The method computes individual adaptive
learning rates for different parameters from estimates of first and second moments
of the gradients. The name Adam is derived from adaptive moment estimation.
Adam is designed to combine the advantages of two other methods: AdaGrad,
which works well with sparse gradients, and RMSProp, which works well in online
and non-stationary settings. For additional details and the presudocode of the
method see the original paper [40].

3.6 Errors and model capacity

In supervised machine learning we can divide the prediction error in 3 components
[41]: bias, variance and irreducible error:

En=Ey+E, + E

Irreducible error is the error caused by the fact we do not have available all possible
instances of the type of training data we use. For example if we want to build
a classificator for bird species it would become a perfect classifier if we had all
the possible pictures of birds to train with, but unfortunately is impossible. An

3.6. ERRORS AND MODEL CAPACITY 49

example in finance would be that we do not have all possible market outcomes that
can ever be possible in a stock exchange in the past and in the future. Generating
them would be impossible because we do not know which future company would be
in the market and how investors would react to it. This result in the fact that there
is always a situation where the network is unprepared to deal with. Irreducible
error can be very small, but it always exists.

Model capacity is a measure of the ability of the model to learn complex functions
from the data. Model capacity is the dimension of the class H to which the
predictor h,, described in the introduction of this chapter, belongs. Alternatively,
but similarly, it can be defined as the number of parameters needed to define a
function in the class H. Capacity is a trade-off, a medium point is preferable. Too
high capacity leads to fitting the training data optimally, to have a small empirical
risk but poor generalization on other datasets. This is the case of overfitting. Too
low capacity and our model could not be able to learn the target function, to have
a large empirical risk. This is the case of underfitting. The control of the function
class capacity may be explicit, via the choice of H, for example by picking the
neural network architecture, or it may be implicit, for example using regularization,
for example internal parameters constraints. When a suitable balance is achieved,
the performance of h,, on the training data is said to generalize to the population
P.

For example in k-nearest neighbors algorithm, the higher we set £ in the model, the
lower is the capacity, the boundaries between classes are smoother and generalize
better, until it reaches a point where boundaries are too simple and too many inputs
are misclassified. Alternatively, with k = 1 every point in the input is correctly
classified in its class, but these boundaries fits very well the training dataset and
only a slight variation of input characteristics in the validation datasets could lead
to a high classification error. The model memorized the training dataset. Capacity
is a characteristic of the architecture, not of the instanced model. The instanced
model is characterized by its weight values and it can be overfitted or underfitted
depending on how much it has been trained. Figure 3.9 show the relation between
error rate, model capacity, bias, variance and irreducible error.

Given n training/validation datasets, n different models can be trained. Bias is
the performance difference between model ¢ and the best model between the n.
Variance is the difference between i and the performance value average of all the n
models.

50 CHAPTER 3. DEEP LEARNING METHODS

The generalization error depends on
this three terms

g Optimal

g model Validation / test
2 complexity dataset

Lil

Variance

Irr. error
Model capacity

Figure 3.9: Bias-Variance-Irreducible error during training [42]

Another way to reduce variance, other than choosing a better model architecture
or using more data, is regularization. Regularization is any modification we make
to a training algorithm that is intended to reduce its generalization (test) error
but not its training error. Examples of regularization are weight constraints, early
stopping, dropout, etc...

Chapter 4

Methodology

This chapter is structured as follows. Section 4.1 introduced our research objective
and what we want to attain. Section 4.2 described the input data our model is
trained and where is coming from. Section 4.3 introduced our method of research
for a suitable model. Sections 4.4 and 4.5 describe two different models that differ
by the loss functions used. Section 4.6 deals with reproducibility of results and
how we achieved it. In section 4.7 we described a problem with the model output
and how we solved it. Finally, section 4.8 explains how we find the best value for
some general hyperparameters.

4.1 Problem formulation and scope

We search for a neural network that takes as input an array z € R**/ with
dimensions b - s - f where b is the batch size, s is the sequence length and f
the number of features. The model has to give as output an array y € R" with
dimension n equal to the number of assets in the portfolio. In our specific case
n = 4 (see below for the considered assets).

We compare the allocation method with 4 benchmarks: a baseline algorithm
described next, equally weighted allocation, inverse volatility and risk parity. The
last 3 methods are defined in Chapter 2.

The baseline allocation algorithm is based on Sharpe ratio (see section 2.7).
Each asset weight is first ordered by decreasing Sharpe ratio, then to each assets a
weight is assigned in the order 40%, 30%, 20%, 10%. This is the current algorithm
used by Salzenberg Al the company we are collaborating with, and the percentages
values have been chosen from their empirical experience with financial markets.

o1

52 CHAPTER 4. METHODOLOGY

Our objective allocation method has to have a minimum single asset allocation
of 5%. An upper bound of 60% for a single asset was decided based on empirical
experience on financial markets. These bounds will be implemented subsequently
in the model.

4.2 Input data

Our input data are different features obtained from daily returns of an investing
strategy. The investing strategy is provided by a company with we are collaborating
and is based on four market indices as it trades futures linked to them. First we
explain this four market indices, then some more details about the strategy and
finally how which features we obtained from daily returns. In this work we mainly
focus on four market indices The market indices are:

e Nasdaq 100 made up of stocks issued by 100 of the most capitalized companies
of the Nasdaq American stock market. It is capitalization weighted.

e Standard and Poor’s 500 made up of 500 largest American companies traded
on stock exchanges in the United States. It is capitalization weighted.

e EURO STOXX 50 made up of fifty of the largest stocks traded in the Eurozone.
It is capitalization weighted.

e Nikkei 225 is a price-weighted index of 225 large companies in Japan, traded
on the Tokyo Stock Exchange.

Indices are not directly tradable but commons proxy of them are ETFs and Futures
(see section 2.14), even if differences are presents. The model is not trained on
returns of the indices, ETFs or Futures, but on strategy returns over them. We
create strategy returns for each of the 4 assets by multiplying the returns of a
linked future with the values of a trading signal. The trading signal is provided by
Salzenberg Al, a fintech company which provides trading signals for a managed
investment fund. Their strategy is both long and short (see section 2.1), it trades
intraday without overnight exposure. This means all investments are sold before
market close at day ¢ and reinvested at day ¢ + 1, so the actual return is only
computed between opening and closing price of the same day. We are not authorized
to disclose additional details of the strategy more than this. But this is not relevant
for this thesis since our objective is to find an optimal allocation given some trading
signals. For our research intentions and objectives, training on the original index
returns or on the proprietary strategy is the same. The baseline algorithm taken
into account in this thesis is the current allocation algorithm used at Salzenberg

4.3. MODEL RESEARCH METHOD 53

and is the goal of our collaboration with them to find an allocation method that
would perform better that it.

From returns different operators can be applied to obtain different features which
in turn can be combined to form different feature sets. The features used in this
work are:

e returns

15 days moving average of returns

15 days moving standard deviation of returns

Cumulative returns, see section 2.1

Relative Strength Index (RSI), see section 2.10

Trading volumes were tested as feature, as they are useful for predicting future
volatility as said in section 2.11, but were constantly excluded from the feature
selection algorithm. One of the reasons may be that the trade volume used were
from an ETF linked to the indexes, that not always is correlated to index volumes.

A feature sets generator, a Python function, has been created and generates all
possible combination of features of different length. n features can generate 2" — 1
not-empty features sets. In our case n = 5 so the feature list of sets has length
31. The feature selection algorithm is run to select which feature sets results in
the best performance depending on the metric chosen: Sharpe ratio or cumulative
return.

Since features have a different magnitude, they have been scaled all in the interval
0-1. Feature scaling is also important to regularize training. If features are not
scaled gradient descent is harder as different steps size have to be computed for
each feature.

4.3 Model research method

Figure 4.1 describes how the three architectures in analysis, namely LSTM, TCN,

o4

CHAPTER 4. METHODOLOGY

(batch size, sequence Iength@

LSTM Layer

Dense

Softmax

TCN Layer Transformer Layer
Dense Dense
Softmax Softmax
Y’ Y

Figure 4.1: Diagrams of architectures in analysis

and Transformers, were used. We can think of the three architectures as a building
block of a more common architecture for generating allocations. Indeed one can
notice in the figure before mentioned a certain degree of similarity. We can abstract
and see the three architectures nothing more than another layer of an architecture.
Now, we define an architecture were:

e The input is a vector x € R?® with dimension (b x s x f) where b is the batch
size, s is the sequence length and f the number of features

e the first layer is a parameter, than can be either an LSTM, TCN or Transformer

layer.

e Since each architecture have a different internal dimension their output
dimension is different so we add now a Dense layer with output dimension
four. This add another level of expressivity to our architecture.

e [t is not guaranteed that the output values of the Dense layer are a weight

4.3. MODEL RESEARCH METHOD 95

vector that sum up to one. Therefore, as Zhang [6] does, in all the tested
models the last layer is always a softmax layer. A softmax layer is a layer
that implements the softmax function:

x

e
=0
PN

softmax(T)

This is often used to to normalize the output of a network to a probability
distribution or as in our case to normalize values as allocation weights, to
force them sum up to one.

Entering more in details into the architectures, LSTM is as described in section
3.2.1 with specific parameters the number of units and the number of LSTM
layers. TCNs is as described in section 3.3 with temporal dilated convolution and
residual connection. The Transformer architecture used is the regression transformer
described in section 3.4 with residual connections, layer normalization and dropout.
Table 4.1 list all hyperparameters of the architectures in consideration.

Model / method Parameter Description
b Training bath size
Common to all methods Traml.ng epochs
Ir Learning rate
S sequence lenght
LSTM d internal /hidden dimension, units
1 numer of layers
d internal /hidden dimension, units
TCN 1 numer O.f layers
k kernel size
sk residual connections (Yes/No)
h number of attention heads
hd internal /hidden dimension, units
Transformer . .
) output dimension
1 number of layers

Table 4.1: Architecture hyperparameters

When searching for a model in machine learning, the problem is essentially about
finding the proper input data, architecture and hyperparameters. Each of these has

56 CHAPTER 4. METHODOLOGY

an impact on the others. This means that changing one parameter or component
may result in another parameter or component no longer being the best option.
The safest choice would be doing a grid search, trying all the possibilities to find the
best combination that maximize performance. However, this is often not possible
for time and performance reasons. In this work we followed an order of operation
that first select the most critical parameters and then fine tuning less impactful
one, in an iterating manner, as follows:

1. We started only with daily returns as input features, because is a small feature
set that allows us to experiment quickly and is the base feature from which all
others features are generated. Technically every network could generate all
the other features from returns, so this input feature is an adequate starting
point.

2. As hyperparameters we started with batch size 100, learning rate 1072 and
sequence length 256 and 5 epochs.

3. We started using the TCN to find out which features were the most useful
and had greater impact.

4. Then hyperparameters like learning rate, batch size and epochs were corrected
without changing inputs features and architecture.

5. Then with the new hyperparameters, we try different architectures.

6. Lastly, fine tuning hyperparameters is again performed, especially the one of
the architecture.

We applied several techniques of holdout validation. Initially the training period
was 2013-2018 with 2019-2020 as validation set. But in 2020 the market was in a
very special phase, caused by the COVID-19 pandemic and the March 2020 stock
markets crash. This caused that networks outperforms in the validation set because
they are not trained for a very bear market and the rapid recovery that happened
afterward. The model was suffering from high variance (see Chapter 3). 3-fold
validation is then used and specifically:

e Training on 2013-2018 and validation on 2019-2020
e Training on 2015-2020 and validation on 2013-2014

e Training on external periods 2013-2015, 2018-2020 and validation on the
middle period 2016-2017

4.4. SHARPE RATIO MAXIMIZING MODEL o7

In this way we select models that are overall satisfactory in the most preponderant
market phases. In each period the model is re-initialized twice and trained twice.
The results are averaged. The same is done for the results of all periods for having
an indicative, general across-dataset metric. This is done for avoiding considering
wrong models where the model learn the wrong general function, but that is instead
good for a specific case. For example the allocation 1/n is extremely easy to learn,
good in many situations (see [17] [18] [19]) but not in all.

All the models have been implemented in open-source machine learning framework
TensorFlow [43]. Development has been carried out using Jupyter Notebooks [44],
as they allow a faster visualization of results.

4.4 Sharpe ratio maximizing model

As in Zhang et al. (2020) [6], an inverted Sharpe ratio maximizing function
has been initially used. The function calculates the Sharpe ratio of the portfolio
with the weights produced by the network. The code of the loss function can be
found on the listing 4.1 .

The Sharpe ratio sign is then inverted to minimize it. Weights produced by the
network are saved in a temporary array in a FIFO data buffer manner to be used for
next Sharpe ratio computations. The Sharpe computation is made inside a context
of automatic differentiation thought GradientTape API. After this, gradients are
explicitly computed and applied.

A normalization layer had to be implemented, to force the model to output weights
that are between the 5% and 60% chosen bound, as specified in the section 4.1.
This is because maximizing Sharpe ratio does not guarantee the allocation weights
will be contained in that range. This normalization layer has been implemented
directly as a Keras layer, instead of normalizing the weights after they have been
generated from the network. This is to enforce the loss to be computed on correct
and operational weights, to constrain the model to learn to produce an allocation
we can use in our scenario. The code of the normalization layer can be seen in the
listings 4.2 and is inspired by the following formula:

m — Tmi
(tmaz - tmin) - + tmzn

Tmaz — Tmin

58 CHAPTER 4. METHODOLOGY

@tf. function

def sharpe(output, past_data, past_weights, today_data):
expected return / std dev of porfolio
get returns from today_data
multiply with network choosed weight
weighted_returns = tf.multiply (output ,today_data)
get comulated return of last period

past_returns = past_data
weighted_past_returns = past_returnsxpast_weights
cumulative = tf.math.reduce_prod (
(1+weighted_past_returns)
,axis=0)
mutiply today data with cumulative from past
total = (cumulative x (weighted_returns+1))—1

std_dev of last period
weighted _past_returns =
tf.squeeze(weighted_past_returns)
std_dev = tf.concat (
[weighted _past_returns , weighted_returns|

,axis=0)
std_dev = tf.math.reduce_std (std_dev ,axis=0)
ratio

sharpe = total/std_dev
return tf.math.reduce_mean (sharpe)

Listing 4.1: Python function to compute the portfolio sharpe given new assets
weights from neural network

Where:
e m is the value to be scaled
® 7., Mminimum in the range of values
® "4 Maximum in the range of values
® ., minimum in the desired target scaling

® {,,., maximum in the desired target scaling

4.5. TARGET ALLOCATION MATCHING MODEL 59

Listing 4.2: Keras layer to force the weights to be between 5% and 60%

min_bound = 0.05
max_bound = 0.6
def normalization_layer (x):
minV = tf.repeat (tf.expand_dims(
keras.layers.Minimum () (tf.unstack(x,4,axis=—1))
,axis=1),4, axis=—1)
maxV = tf.repeat(tf.expand_dims(
keras.layers . Maximum () (
tf.unstack(x,4,axis=-1))
,axis=1),4, axis=—1)
return (max_bound—min_bound)
((x—minV) / (maxV-—minV))+min_bound

4.5 Target allocation matching model

Next, a different type of model was tested. Instead of maximising the Sharpe ratio
we use a network which still generates weights but the loss function is the mean
squared error (MSE) between these generated weights and some optimal weights.
Formally, given the vector w = [wy, wy, w3, wy] generated by the network and the
vector y = [y1,Ye, Y3, y3] of the target allocation, we define the MSE loss in this

context as:
4

Z(yz - wi)2

=1

MSE(w,y) =

o |

In this example we used four as number of assets but this definition can be easily
extended to any number of assets.

The optimal weights are generated for the training set through an algorithm
with knowledge of future returns. This algorithm can make use of Markowitz
optimization (see chapter 2 and PyPortfolioOpt in the Appendix) or other basic
algorithms like the following one:

Algorithm 1 Caption
Order assets comulated returns in a window in decreasing order.
Assign respectively 40%, 30%, 20%, 10% to the first, second, third and forth
asset.

60 CHAPTER 4. METHODOLOGY

4.6 Reproducibility

An experiment is reproducible when it can be executed multiple times and obtain
the same result. In the context of machine learning this is not easy to achieve.
Framework like Keras have several random initialization, especially of network layer
kernels. The reason is to increase the likelihood of starting exploring the parameter
space in a gradient slope and increase the possibility of convergence. But to obtain
reproducibility, it is then suggested to initialize the weights to the same value and
if not possible to initialize their random generator to the same initial seed.

Reproducibility is an important aspect of this work especially when in the phase
where different features sets were tested. Once a feature set was discovered to be
upstanding with respect to the others, it was run on a fresh copy of the model
to verify the results. But by default TensorFlow resets the kernels and other
parameters every time to random values. It was then necessary to fix the random
seed to a fixed value in each notebook. Moreover, the kernel of each layer has
been initialized to a unit value for the first layers of each model, and to a normal
distribution but with unit seed for the fully connected last layer. Initializing the last
layer to a unit value was not guaranteeing convergence. This effectively improved
the reproducibility of the results.

4.7 Fixed allocation anomaly

The weights generated by the network, with both loss function methods, initially
had the problem of being fixed even as the inputs changed. This can be seen in
the right part of plot a in figure 4.2. Allocation weights change during training
but they remain the last computed by the backpropagation algorithm in the last
iteration of the training algorithm. During training they change only because the
internal weights of the network change, but in validation when the internal weights
are not allowed to change, also the output remain fixed.

The reason of this phenomenon is that the network only found the best bias value
to increase the overall performance, both in terms of Sharpe ratio or of return. The
input weights are null, that means the network does not use the input features to
compute the output.

Although the performance on the validation dataset was indeed good on the first
days, because it fitted the market phase of the last period of training set, it degraded

4.7. FIXED ALLOCATION ANOMALY 61

over time. This was the case the validation set was temporally right after the
training set, in the different cases the fixed allocation resulted in a bad performance
from the very beginning. In general, this was a case when the training algorithm
was stopped in a local minimum, the network found out how to minimize the target
loss but did not find a relationship between input and optimal outputs.

Loss

If the learning rate is too large, training loss
will decrease in the first iterations and then
get stuck

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 4.3: Excessive learning rate effects [42]

Most of the time, this situation was solved by reducing the learning rate. Learning
rate is a fundamental hyperparameter. A too large learning rate, while it can
make convergence faster, increases the likelihood of the training getting trapped
in an oscillation like shown in figure 4.3. Instead, a too small learning rate makes
training too slow and the algorithm could convergence very late or never converge
if not enough training time is provided.

The initial learning rate of 10~2 was changed to 10~3 with radical changes in the
output quality. In this case the gradient was persisting in an oscillatory state in a
in the parameters space, finding a sub-optimal solution changing bias value and
ignoring input values. By lowering the learning rate and increasing the number of
epochs, the gradient would slowly direct the training to a state where inputs were
effectively used and a more optimal portfolio allocation was found.

In cases were lowering the learning rate was not sufficient, we resorted to force
constraints on the biases of each layer by using the constraint max norm(0)
provided by TensorFlow. This forces the network to use the inputs for providing
the output and effectively finding a relation between them. In the figure 4.2 we see

62 CHAPTER 4. METHODOLOGY

the difference in computed allocation weight by a fixed situation and a dynamic
one.

4.8 Remaining hyperparameters

Batch size was initially set to a value of 100. With time we noticed that a smaller
batch size, for example of value 5, was better. The reason is the following. The
value of the loss function is averaged always across the batch size. A too large
batch size makes the loss value too general and uniform across the training. The
result is that some micro-variations in the market of the duration of few days are
lost and the network is not learning how to react and take advantage of them. On
the opposite situation, having a batch size too small, for example only one sample,
is disadvantageous. This is because the network would pay too attention in the
inherent noise that is inside a market and would be unable to highlight weekly
trend. The gradient would change direction contentiously from sample to sample,
unable to find a common minimum in the parameter space. It must be considered
that even if the time frame is not negligible this is not a high trading frequency
application as many others in this field and only daily data is available. This makes
the dataset considerably small with respect to other machine learning applications.
It is therefore essential to have have a reduced batch size.

Experiments with different windows size have been carried out. A smaller window
size allows the model to react faster to sudden market phase change while a longer
window allows the model to understand long-term factors and implication in the
market and invest in more stable assets.

4.8. REMAINING HYPERPARAMETERS

0350 4

0.325 |

0.300 |

0275

0250 4

0225 4

0200

0175

0.34

032

030

028

0.26

0.24

0.22

020

0.18

Training period Testing period
A A

N O A

G5PC
NDX

STOXXS0E
N225

L »° L »° 1 1

(a) Not optimal allocation, is fixed in testing period

Training period Testing period

A A
N N
—— GSPC
—— NDX
—— STOXXS0E

— N225

» »° B o o P

(b) optimal allocation, is dynamic in both train and test dataset

Figure 4.2: Fixed and not-fixed allocations

63

Chapter 5

Results and discussion

This chapter presents our research results. The results are obtained following
methodology described in Chapter 4, especially Section 4.3. A comparison between
the two loss functions, the one maximizing Sharpe ratio and the one that match
a optimal allocation is presented. After this, we show the results of the feature
selection algorithm. With the loss function and the feature set fixed we compared
the three different architectures in analysis: LSTM, TCN, and Transformer and we
show here the results. It is also explained which parameters of the architectures are
chosen. Once we define architecture and parameters, we show an important result,
that the return, Sharpe ratio e standard deviation of the generated allocation is
influence by the target allocation respective parameters. This allows a control
on the Mean-Variance trade-off for the network user. Finally, chosen a target
allocation, the performance of the selected model compared to the aforementioned
benchmarks in the three validation periods described in Chapter 4 is extensively
described.

5.1 Choice of loss function

We ran the same network architecture with the same parameters on the same input
dataset with the two different loss function, the one maximizing the Sharpe ratio
described in Section 4.4 and the one trying to match a target allocation described
in Section 4.5. On average, the Sharpe ratio maximizing method has a training
from 3 to 15 times slower than the allocation matching one.

We were not able to reproduce Zhang [6] results. We used the same hyperparameters,
i.e. 50 LSTM units, with a small learning rate of 10> and even by forcing the bias
to zero, the result is always a fixed not optimal allocation anomaly as described in
Section 4.7. In the validation period July-December 2014, it results in a cumulative
return of 13.7%, the same as the baseline algorithm, while the method using

65

66 CHAPTER 5. RESULTS AND DISCUSSION

allocation matching scores a 15% cumulative return. The latter is matching an
allocation generated by the algorithm 1 at page 59 using a window of 256 days.

Moreover, using this second type of loss function, it is not necessary to insert a
normalization layer, since the weights constraints are implicitly already present in
the target allocation. This also improves the computational speed of the network.

However, it must be taken in account that the Sharpe ratio maximizing method
takes risk into consideration, while the other method tries to match an allocation
that it has been computed only considering the maximal return. It comes natural
to think that the network is learning to perform two different tasks, so the previous
comparison is not so applicable. Indeed, the Sharpe ratio maximizing method has,
on the validation period aforementioned, a mean Sharpe ratio value of 3.53 while
the second, that instead indirectly maximizes returns, has a Sharpe Ratio of only
3.29.

We repeated the comparison a second time by targeting, with the second loss
function, an allocation generated in such a way that it would maximize the Sharpe
ratio. Our hypothesis is that the model is learning to produce an allocation with
the same characteristics as the one it was trained with. The situation is similar
for what is happening for the weights constraints. If the model is trained on an
allocation always between 5% and 60%, it will also remain in this boundary when
validation data is given. The network will do this because in training it has been
penalized for going outside of this boundary. The same holds for the risk control,
if a Sharpe ratio maximal allocation is produced, e.g. though PyportfolioOpt, and
then a model is trained targeting it, the resulting generated allocation will have be
the one of a Sharpe maximizing portfolio.

By repeating the experiment this time targeting a different allocation as described
in the previous paragraph, the Sharpe ratio of the allocation generated is 3.50.
More on these results can be seen in Section 5.5.1. This is an important result
because it proves our hypothesis and the flexibility of the second method, that
other than being faster, allows the investors to have some sort of risk control by
choosing the risk level of the target allocation with which the model is trained.
From now on the only loss function that will be used will be the second one, the
allocation targeting method. We will target an allocation generated for maximizing
the return.

5.2. FEATURE SELECTION 67

5.2 Feature selection

The following table summarizes the results of feature selection. A green cell
indicates when the corresponding feature is used, while a red cell when a feature
is not used. In the table we show only the top 6 results from the 31 possible
feature combinations. Results are ordered by decreasing mean cumulative return,
of the portfolio following computed allocation, in the 3 different evaluation periods
described in Chapter 4.

Daily returns

Portfolio 15 days

cumulative | Daily Returns

mean return .. mean
standard deviation

Daily returns Cumulative

15 days returns RSI

20.2%
19.9%
19.8%
19.7%
19.6%
19.6%
19.3%

Analysing the table, we can note a predominance of the cumulative returns in all
the features sets. On the top seven feature set, cumulative return is always included.
This can be interpreted as for the network is easier to compute if a component in
the time frame is increasing in value overall of decreasing. It is sufficient to look
at the last value of the cumulative return series that will contain the cumulative
return of the time frame in analysis. Also as said in the work of [13] cumulative
returns do not have the short term noise from the daily return. The second most
important feature are raw daily returns. All the other features are optional, they
could improve or worsen the results, depending on the analysed period.

5.3 Architecture selection

Using daily returns and cumulative returns in a window of 125 trading days, we train
and evaluate the 3 architectures in analysis with the methods described in Chapter
4. In table 5.1 we explicit the performance in each period. The hyperparameters of
the architectures have been chosen to have a similar number of internal weights,
namely of the order of 36 thousand. The temporal convolutional network performs
better than the other two architectures with a cumulative return higher up to an
increase of 4.7%.

68 CHAPTER 5. RESULTS AND DISCUSSION

June 2014- June 2016- June 2019-

December 2014 | December 2017 | June 2020
LSTM 12.1% 13.0% 26.9%
Transformer | 12.8% 14.2% 24.3%
TCN 15.5% 14.2% 29.0%

Table 5.1: Architecture comparison: cumulative return in 3 different time frames

Here the training lasted 5 epochs. If trained for longer periods, for example 10
epochs, the Transformer performs better than the TCN but only in the 2014 period.
It is out of the scope of this work to find a reason of the performance differences
between the architecture, still we show in figure 5.1 the target allocation, computed
with algorithm 1 at page 59, and the output allocation of each model in the 2014
period. This shows the different approaches that every architecture has.

LSTM and Transformer perform poorly in the period shown because they do not
invest enough in the EUROSTOXX 50, that is the 1st or 2nd best asset in the period.

Regularization techniques have been tried, by both inserting dropout in the TCN
layer or a batch regularization layer after it. The results showed how these techniques
bring little improvements if not worsen the results, therefore it have been decided
to not use them in the final model.

5.4 Hyperparameter selection

0.006
0.030

0.005 0.029

0.004 0028

M>E
M>E

0.003 0.027

0.002 0.026

0.001 0.025

123456768 %1011121314151617 1819 20 123456758 %1011121314151617 15819 20
Epochs Epochs

(a) Training loss (b) Validation loss

Figure 5.2: Model convergence: epochs and training/validation loss

5.5. SELECTED MODEL RESULTS 69

The TCN model converge as shown in the fig 5.2 (a), the training loss decrease
constantly during training. This is the minimization of the Empirical Risk discussed
in chapter 3. Instead, TCN has problems of overfitting over six epochs, as shown
in fig 5.2 (b). Therefore we limited the number of epochs to five. This figure is
the result of validating the model in the 2017 period. The reason why we have to
limit ourselves to a so little epochs number can be explained by the fact we also
have a little batch size (we use batches of dimension five). These two quantities
are often related, as a small batch size make the network more sensible to small
scale training data variations so less epochs are required to model these.

Models with a small window size, like 10 trading days, perform better in 2020 in a
very volatile market phase, while models with a window size of 225 trading days
perform better in the previous period 2013-2019 when the market was more stable.
The window size of 125 trading days, around 6-7 full months, have shown to deliver
the best results so far as it is a compromise between fast market change reaction
and long term investment in reliable assets.

Regarding the other hyperparameters, a grid search using the TCN architecture
have been carried out, with these ranges: number of epochs = [5, 10], TCN filters
= [8, 16, 32|, convolution kernel size = [1, 2, 3], residual connection = enabled /
disabled.

The results do not underline a trend, and it is impossible to say that a specific
choice will for sure improve results. Still we kept the hyperparameters of the best
results, namely 5 epochs, 32 filters, kernel size 3 and no residual connection.

5.5 Selected model results

A model has been selected following decisions described in the sections before.

5.5.1 Generated allocation parametrization

We show that there is a certain degree of correlation between parameters of target
allocation, i.e. Cumulative return, Sharpe ratio, and Volatility and the same
parameters in the generated allocation, allowing risk control management. Table
5.2 shows the results of thirteen runs in the 2014 period of the selected model on
different target allocation, the left part of the table, and the resulting performance
parameters of the generated allocation (see the right part of the table).

The correlation between these quantities is shown in Table 5.3. Unfortunately the
outcome is that only target and generated standard deviation are correlated (0.7)

70 CHAPTER 5. RESULTS AND DISCUSSION

Target | Target | Target Generated | Generated | Generated
return | Sharpe | std return sharpe std
30.1% | 4.35 0.40 31.2% 4.44 0.41
44.9% | 4.45 0.59 25.5% 3.02 0.49
39.2% | 4.56 0.50 26.7% 3.37 0.46
43.1% | 4.59 0.55 29.8% 3.88 0.45
35.4% | 4.66 0.44 31.8% 4.36 0.42
43.6% | 4.69 0.54 38.9% 4.28 0.53
40.8% | 4.69 0.51 31.1% 3.78 0.48
37.6% | 4.71 0.46 27.3% 3.72 0.43
41.6% | 4.74 0.51 33.0% 3.82 0.50
42.8% | 4.79 0.52 39.5% 4.38 0.52
42.8% | 5.77 0.43 28.3% 3.99 0.41
63.3% | 6.93 0.53 32.0% 4.14 0.45
62.2% | 7.00 0.52 29.0% 3.92 0.44

Table 5.2: Resulting performance parameters of generated allocation given
parameters of target allocation in the 2014 period

while return and Sharpe ratio are not.

This fact can be explained that often the target allocation are too hard for the
network to match, either a too high return, where the network is unable to find out
which components will perform better in the future, or a too low volatility, where
the network is unable to predicting which components will have a lower volatility
in the future. It exist a certain threshold over with the network stop performing
better and instead perform worse than before, this explain some of the negative
correlations.

Instead, by relaxing the constraints and considering only a subset of the previous
thirteen experiments we obtain far better results. We restrains the runs that have
a cumulative return lower than 43% and a standard deviation higher than 0.44.
We are left with six out of the original thirteen, that are still a significant sample
and we again compute a correlation table shown in table 5.4.

We can observe as the correlation between target and generated standard deviation
is very high, it is easier for the network to predict future volatility than future
returns. Still also the the target cumulative return and the generated cumulative

5.5. SELECTED MODEL RESULTS 71
Target | Target | Target | Generated | Generated | Generated
return | Sharpe std return Sharpe std

Target return 1.00 0.89 0.52 -0.00 -0.08 0.11
Target Sharpe 0.89 1.00 0.08 -0.06 0.15 -0.24
Target std 0.52 0.08 1.00 0.08 -0.49 0.70
Generated return | -0.00 -0.06 0.08 1.00 0.72 0.60
Generated Sharpe | -0.08 0.15 -0.49 0.72 1.00 -0.12
Generated std 0.11 -0.24 0.70 0.60 -0.12 1.00

Table 5.3: Correlations between target and generated allocation parameters in the

2014 period

Target | Target | Target | Generated | Generated | Generated
return | Sharpe std return Sharpe std

Target return 1.00 0.52 0.97 0.59 -0.02 0.98
Target Sharpe 0.52 1.00 0.29 0.78 0.62 0.55
Target std 0.97 0.29 1.00 0.44 -0.20 0.93
Generated return | 0.59 0.78 0.44 1.00 0.79 0.71
Generated Sharpe | -0.02 0.62 -0.20 0.79 1.00 0.13
Generated std 0.98 0.55 0.93 0.71 0.13 1.00

Table 5.4: Correlations between target and generated allocation parameters on a
restricted set of experiments

return have a correlation coefficient of 0.59 that is still significant. Ultimately,
also the Sharpe ratio is correlated, as it is the ratio between the two previously
mentioned quantities.

This indicates again that is possible to control the result allocation parameters and
have risk control with the method researched and selected in this work.

Table 5.5 summarizes the selected model performance in comparison to the
benchmarks: baseline algorithm, equally weighted, inverse volatility and risk
parity benchmarks.

72

CHAPTER 5. RESULTS AND DISCUSSION

June 2014 June 2016 June 2019
December 2014 | December 2017 | June 2020
Baseline algorithm | 1.4% 0.9% 8.0%
Equally allocation | 1.5% 1.6% 3.5%
Inverse volatility | 2.3% 4.5% 1.6%
Risk Parity 4.3% 3.3% 0.6%

Table 5.5: Performance difference (cumulative return) between selected model and
benchmarks methods

What follows are sections describing the performance both in terms of cumulative
return and of Sharpe ratio in the validation periods described in Chapter 4.

5.5.

0.14

0.12

0.08

0.06

0.04

0.02

0.00 1%

2 2014 period

Cumulated return

—— new allocation
—— baseline algorithm
risk parity
inverse volatility
target allocation
1/N allocation

Jul Adg
2014

Sép

Oct Nov

Dec

Figure 5.3: Selected model performance: Cumulative return, July-December 2014

2014 is the year were the network performs better among the analysed periods,
because it matches perfectly the target allocation in the second half of the time frame.
Figure 5.3 shows the cumulative return between July 2014 and December 2014.
Our allocation method performs better than all the benchmarks in consideration.

5.5. SELECTED MODEL RESULTS 73

Sharpe ratios with window 125

4.0

—— new allocation
—— baseline algorithm
risk parity
inverse volatility
target allocation
1/N allocation

12 15 16 17 18 19 22 23 24 25 26 29 30 31
Dec
2014

Figure 5.4: Selected model performance: Sharpe ratio, December 2014

In December 2014 period the Sharpe ratio is also considerably satisfactory, as
seen in Figure 5.4, as it is the highest between the benchmarks until December
the 23rd and then it decreases only surpassed by inverse volatility and equally
weighted methods. The 2014 period is only 6 month long and 125 days are need to
compute the Sharpe ratio, so as result we only have 31 days were the Sharpe ratio
is computed, in December 2014.

74 CHAPTER 5. RESULTS AND DISCUSSION

5.5.3 2016-2017 period

Cumulated return

—— new allocation
—— baseline algorithm

0.15 risk parity
inverse volatility
target allocation

0.10 1/N allocation

0.05

0.00

Jul Oct Jan Apr Jul Oct
2017

Figure 5.5: Selected model performance: Cumulative return, July 2016-November
2017

In the validation period July 2016 - November 2017 our method does not result in
a higher cumulative return than the target allocation, like in the validation period
July-December 2014, but it still outperforms all other benchmarks, as one can see
in Figure 5.5.

Sharpe ratio is shown between January and December 2017 in Figure 5.6. Our
method results in a Sharpe ratio in average with other benchmarks for most of
the periods. It is under performing in the first months of January to March 2017
while it is superior between June and September 2017. However, it should be noted
that also the target allocation does not perform better in term of Sharpe ratio
with respect to the other benchmarks. This is because this allocation was created
maximizing return and not Sharpe ratio.

5.5. SELECTED MODEL RESULTS 75

Sharpe ratios with window 125

5

4

3

2
new allocation

1 —— baseline algorithm

—— risk parity

01 —— inverse volatility
target allocation

1 —— 1/N allocation

Jan Feb Mar Apr May Jun jJul Aug Sep Oct Nov Dec

Figure 5.6: Selected model performance: Sharpe ratio, January-December 2017

5.5.4 2019-2020 period

Cumulated return

0.08
0.06
0.04
new allocation
0.02 —— baseline algorithm
—— risk parity
—— inverse volatility
0.00 Lt target allocation
TN —— 1/N allocation
Jul Aug Sep Oct Nov Dec
2019

Figure 5.7: Selected model performance: Cumulative return, July 2019 - January
2020

76 CHAPTER 5. RESULTS AND DISCUSSION

In the validation period 2019-2020 our method has two different phases so the
cumulative return plot has been spitted in two parts for an easier comprehension.
Figure 5.7 shows the time frame July 2019 to January 2020 where the market
was still growing and the benchmarks have all similar cumulative returns values.
Still our model generates an allocation that in the end is superior to the baseline
algorithm, the inverse volatility, and equally weighted allocations.

Cumulated return

—— new allocation
—— baseline algorithm
risk parity
inverse volatility
0.20 target allocation
1/N allocation

0.25

0.15

0.05

0.00

Feb Mar Apr May Jun
2020

Figure 5.8: Selected model performance: Cumulative return, January-July 2020

Within the time frame from January to July 2020, the 2020 stock market crash
is included , but the strategy we used went short in that period so a surge in the
cumulative return can be seen in March 2020 in Figure 5.8. Before March 2020 all
the figures perform similarly but after they diverge significantly with our allocation
method being superior to both baseline algorithm and equally weighted allocation
and consistent with inverse volatility and risk parity.

5.5. SELECTED MODEL RESULTS 7

Sharpe ratios with window 125

4.0

3.5

3.0

2.5

2.0 —— new allocation

—— baseline algorithm

1.5 —— risk parity
inverse volatility

1.0 :
target allocation

05 1/N allocation

o> ot o> ok o° Qo o)
NG O Q- Q- g Q- Ng
2oF 2oF 2oF 2oF 2o 2oF ¥

Figure 5.9: Selected model performance: Sharpe ratio, January-July 2020

Sharpe ratio of the allocations in analysis for the period January to July 2020 can
be seen in Figure 5.9. Here our allocation method performs poorly compared to
the others and is inferior to most of them. Still it must be reminded that this
allocation is not meant to have a high Sharpe ratio and it has a higher volatility
compared to the other. We believe this explain this result.

78

CHAPTER 5. RESULTS AND DISCUSSION

—— GSPC
—— NDX
—— STOXXS50E
— N225

030

sl e

- GSPC
= NDX

—— STOXX30E
—— N225

LA WAAAA A~ AN WA v~

Aug Sep oct Now Dec

(a) Target optimal allocation

— GSPC
— NDX
-~ STOXXS0E
— N225

(¢) Long Short Term Memory Network
allocation

(b)

. I"ﬂl\'u'”“"n

o g Sep ot Nov Dec
014

Temporal Convolutional Network allocation

— GSPC
— NDX
—— STOXX50E
— N225

T

Jul Sep oct Nov Dec
014

Aug

(d) Transformer allocation

Figure 5.1: Allocations generated from TCN, LSTM e Transformers

Chapter 6

Conclusions

This thesis researched a Machine Learning model that generates an optimal portfolio
asset allocation starting from daily returns of these assets. The model was found
to generate an allocation with a cumulative return always superior than the
baseline algorithm and the equally weighted allocation. Compared to the other two
benchmarks, inverse volatility and risk parity, the model performs similarly or better.
Increase of cumulative return range from 1.6% — 3.5% annually in comparison with
equally weighted to 1.6% — 4.5% with inverse volatility and 0.6% — 3.3% with risk
parity. Different input features, all generated from daily returns, were tested and it is
suggested to combine daily returns with cumulative returns. Different architectures
were examined, namely Long Short Term Memory Network, Temporal Convolutions
Networks and Transformers. TCNs was the architecture that guaranteed the
best performance. Different techniques of hyperparameters optimization and
regularization were applied to guarantee model convergence. Finally, the models
work by training on matching a target allocation in a training dataset. This
allocation can be generated with classic methods of portfolio optimization like
Markowitz, targeting a maximum Sharpe ratio or maximum return. The model
will then learn to generate an allocation with the same characteristics. This gives
our model also a control of risk.

6.1 Future work

A first improvement would be having more data available, simply extending the
period before 2013 could make the network better in predicting market phases.

The target allocation used had, on purpose, a low variability because it has been
noticed models had difficulty matching an allocation that would change nearly
every day. Still, better allocations have this characteristic, so to improve the results,
the capability to target a more variable allocation would be needed. It has been

79

80 CHAPTER 6. CONCLUSIONS

noticed, like in the plots in figure 5.1, that Transformers generate more variable
allocations, so a research using these could be conducted.

Finally, as in the works of References [10] and [12] Reinforcement learning should
be experimented as it models better human behaviour as desire for a reward.

Bibliography

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” 2017.

2] E. F. Fama, “Efficient capital markets: A review of theory and empirical
work,” The Journal of Finance, vol. 25, no. 2, pp. 383-417, 1970. [Online].
Available: http://www.jstor.org/stable/2325486

[3] D. Kumar, S. Meghwani, and M. Thakur, “Proximal support vector machine
based hybrid prediction models for trend forecasting in financial markets,”
Journal of Computational Science, vol. 17, 07 2016.

[4] Z.Zhang, S. Zohren, and S. Roberts, “Deep reinforcement learning for trading,”
2019.

[5] D. Snow, “Machine learning in asset management—part 2: Portfolio
construction—weight optimization,” The Journal of Financial Data Science,
vol. 2, no. 2, pp. 17-24, 2020.

6] Z. Zhang, S. Zohren, and S. Roberts, “Deep learning for portfolio
optimization,” The Journal of Financial Data Science, vol. 2, no. 4, p. 820,
Aug 2020. [Online]. Available: http://dx.doi.org/10.3905/jfds.2020.1.042

[7] G. Cornuejols and R. Tiitiincii, Optimization methods in finance. Cambridge
University Press, 2006, vol. 5.

[8] J. Moody and M. Saffell, “Learning to trade via direct reinforcement,” IEEE
transactions on neural Networks, vol. 12, no. 4, pp. 875-889, 2001.

9] J. Moody, L. Wu, Y. Liao, and M. Saffell, “Performance functions and
reinforcement learning for trading systems and portfolios,” Journal of
Forecasting, vol. 17, no. 5-6, pp. 441-470, 1998.

[10] L. Weijs, “Reinforcement learning in portfolio management and its
interpretation,” Erasmus Universiteit Rotterdam, 2018.

81

http://www.jstor.org/stable/2325486
http://dx.doi.org/10.3905/jfds.2020.1.042

82

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[20]

[21]

[22]

23]

BIBLIOGRAPHY

J. Y. Campbell, L. M. Viceira, L. M. Viceira et al., Strategic asset allocation:
portfolio choice for long-term investors. Clarendon Lectures in Economic,
2002.

T. W. Kim and M. Khushi, “Portfolio optimization with 2d relative-attentional
gated transformer,” in 2020 IEEE Asia-Pacific Conference on Computer
Science and Data Engineering (CSDE). 1EEE, 2020, pp. 1-6.

G. Chakravorty, A. Awasthi, and B. Da Silva, “Deep learning for global tactical
asset allocation,” Awvailable at SSRN 3242432, 2018.

L. Malandri, F. Z. Xing, C. Orsenigo, C. Vercellis, and E. Cambria, “Public
mood—driven asset allocation: The importance of financial sentiment in
portfolio management,” Cognitive Computation, vol. 10, no. 6, pp. 1167-1176,
2018.

B. M. Rom and K. W. Ferguson, “Post-modern portfolio theory comes of age,”
Journal of Investing, vol. 3, no. 3, pp. 11-17, 1994.

D. G. Luenberger et al., Investment science. Oxford university press, 1997.

G. C. Pflug, A. Pichler, and D. Wozabal, “The 1/n investment strategy is
optimal under high model ambiguity,” Journal of Banking and Finance, vol. 36,
no. 2, pp. 410-417, 2012.

V. Demiguel, L. Garlappi, and R. Uppal, “Optimal versus naive diversification:
How inefficient is the 1/n portfolio strategy?” Review of Financial Studies,
vol. 22, 05 2009.

R. Duchin and H. Levy, “Markowitz versus the talmudic portfolio diversification
strategies,” The Journal of Portfolio Management, vol. 35, no. 2, pp. 71-74,
2009.

T. Fuertes. (2017) Portfolio risk control: risk parity = vs.
inverse volatility. [Online]. Available: https://quantdare.com/
risk-parity-versus-inverse-volatility /

J. Teiletche, T. Roncalli, and S. Maillard, “On the properties of equally-
weighted risk contributions portfolios,” SSRN FElectronic Journal, 09 2008.

J. W. Wilder, New concepts in technical trading systems. Trend Research,
1978.

G. Appel, Technical analysis: power tools for active investors. FT Press,
2005, p. 166.

https://quantdare.com/risk-parity-versus-inverse-volatility/
https://quantdare.com/risk-parity-versus-inverse-volatility/

BIBLIOGRAPHY 83

[24] B. John, “Bollinger on bollinger bands,” 2002.
[25] R. Kempen, “Fibonaccis are human (made),” IFTA J, pp. 4-9, 2016.

[26] M. Patel, Trading with Ichimoku clouds: the essential guide to Ichimoku Kinko
Hyo technical analysis. John Wiley & Sons, 2010, vol. 473.

[27] G. W. Schwert, “Why does stock market volatility change over time?” The
journal of finance, vol. 44, no. 5, pp. 1115-1153, 1989.

[28] A. R. Gallant, P. E. Rossi, and G. Tauchen, “Stock prices and volume,” The
Review of Financial Studies, vol. 5, no. 2, pp. 199-242, 1992.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533-536, 1986.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[31] 1. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[32] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiw:1412.3555, 2014.

[33] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration

of recurrent network architectures,” in International conference on machine
learning. PMLR, 2015, pp. 2342-2350.

[34] Q. V. Le, N. Jaitly, and G. E. Hinton, “A simple way to initialize recurrent
networks of rectified linear units,” arXiv preprint arXiv:1504.00941, 2015.

[35] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal
convolutional networks for action segmentation and detection,” 2016.

[36] A. Graves and J. Schmidhuber, “Framewise phoneme classification with

bidirectional Istm and other neural network architectures,” Neural networks,
vol. 18, no. 5-6, pp. 602-610, 2005.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770-778.

[38] S. M. Kazemi, R. Goel, S. Eghbali, J. Ramanan, J. Sahota, S. Thakur, S. Wu,
C. Smyth, P. Poupart, and M. Brubaker, “Time2vec: Learning a vector
representation of time,” arXiv preprint arXiv:1907.05321, 2019.

84

[39]

[40]

[41]

[42]

[43]

[44]

[45]

BIBLIOGRAPHY

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiw:1607.06450, 2016.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXw preprint arXiw:1412.6980, 2014.

S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemma,” Neural Computation, vol. 4, pp. 1-58, 01 1992.

S. Salti, “Machine learning for computer vision,” Course at University of
Bologna, 2020.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, 1. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,
K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla,
and C. Willing, “Jupyter notebooks — a publishing format for reproducible
computational workflows,” in Positioning and Power in Academic Publishing:
Players, Agents and Agendas, F. Loizides and B. Schmidt, Eds. I10S Press,
2016, pp. 87-90.

R. Flanagan and L. Lacasa, “Irreversibility of financial time series: A
graph-theoretical approach,” Physics Letters A, vol. 380, no. 20, pp.
1689-1697, 2016. [Online|. Available: https://www.sciencedirect.com/science/
article/pii/S0375960116002401

J. B. Ramsey and P. Rothman, “Time irreversibility and business cycle
asymmetry,” Journal of Money, Credit and Banking, vol. 28, no. 1, pp. 1-21,
1996.

R. A. Martin, “Pyportfolioopt: portfolio optimization in python,” Journal
of Open Source Software, vol. 6, no. 61, p. 3066, 2021. [Online]. Available:
https://doi.org/10.21105/j0ss.03066

https://www.tensorflow.org/
https://www.sciencedirect.com/science/article/pii/S0375960116002401
https://www.sciencedirect.com/science/article/pii/S0375960116002401
https://doi.org/10.21105/joss.03066

Appendix

Finance implications in training machine learning
models

Another validation technique we considered is to invert the direction of the time
dimensions, therefore doing backward forecasting. This can be seen as a form of
data augmentation, to have more data to train with. This works for some kind
of time series data, for example river levels, but it has been proved not suitable
for financial returns data [45] [46]. Deterministic tests exist able to distinguish
financial times series between originals and the one inverted temporally. This can be
explained by analysing volatility, that is usually constant, aside from rare moments
of volatility spikes. After those spikes, volatility descends, but more slowly than it
had risen. By inverting returns, this would produce a slow increase and a sudden
fall. Another test is based on the leverage effect. There is negative correlation
between current returns and future volatility. Future volatility will increase much
more from a current negative returns than from a current positive return. Because
a negative returns is seen from investors as an increase of risk, while a positive
return not. But this correlation is not existent between past volatility and future
returns, this is a factor exploited by a test for distinguishing original and flipped
financial returns time series.

PyPortfolioOpt

PyPortfolioOpt is a Python library that implements several portfolio optimization
method and visualizations. It currently supports efficient frontier techniques and
Black-Litterman allocation, as well as more recent advances in the area such as
shrinkage and Hierarchical Risk Parity, as well as some innovative experimental
features such as exponentially-weighted covariance matrices [47]. The library
emphasize modularity: users are able to come up with their alternative models and
data and feed them into the optimizer.

85

86 Appendix

/" min_volatility()

Covariance max_sharpe()
matrix

EfficientFrontier . S . .
< /max_quadratlc_utlllty(rlsk aversion coefficient)

Expected efficient_risk(target_volatility)
returns
efficient_return(target_return)
N~
. EfficientSemivariance
Historical min_semivariance() minimises the portfolio
R semivariance (downside deviation)

Figure 6.1: Optimization function offered by EfficientFrontier and EfficientFrontier,
PyPortfolioOpt Python classes

Optimization is made starting from expected returns and assets covariance matrix.
The library itself implements several methods for forecasting expected returns from
simple historical mean, to exponentially weighted mean and capital asset model [16].
The covariance matrix can be obtained also from historical prices by a directed
method or exponentially weighted. In this review we will show only 2 methods of
optimization offered by PyPortfolioOpt, EfficientFrontier and EfficientSemivariance.
Figure 6.1 is a graphic summary of the functions offered by the two classes. Some
methods are common in both classes, others only of one of them.
EfficientFrontier only required the assets Covariance matrix and the Expected
returns, while EfficientSemivariance computes internally the Semivariance matrix
so requires the historical return and the expected returns.

The min volatility(), max_sharpe() are straighforward and does not require
any parameter. efficient risk and efficient return takes respectively a
target volatility and target return. min semivariance() minimize the portfolio
semivariance as explained in chapter 2. max_quadratic_utility maximize the
function:

wp — §wT§]w
It takes as argument a risk aversion coefficient ¢ that must be a positive float.
PyPortfolioOpt also offers several plotting methods that help the understanding of
mean-variance theory. The following figures are created from the strategy assets
returns that have been used throughout this work.
Figure 2.2 is a mean-variance diagram showing the 4 assets strategy on SP500,

Appendix 87

NASDAQ, EUROSTOXX50, NIKKEI225 and the efficient frontier position for a
portfolio built with those assets.

—— Efficient frontier
% Max Sharpe

0.7 A

0.6 -

0.5 A

0.4 4

Return

0.3 A

0.2 A

0.1

0.0 A

0.004 0.006 0.008 0.010 0.012 0.014
Volatility

(a) without shorting

1.0 1
—— Efficient frontier

% Max Sharpe

0.8 1

0.6 1

0.4 1

0.2 1

Return

0.0 1

_0.2 4

_0'4 .

0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018
Volatility

(b) with shorting

Figure 6.2: Mean-Variance diagram: random portfolios

The coloured dots in figure 6.2 represents different, not necessary optimal, portfolios
built starting from those 4 assets, respectively if short selling is allowed or not.
These coloured dots are contained in the feasible region. The star dot is the position
of the portfolio that maximize the Sharpe ratio.

Acknowledgements

I would like to thank first my supervisor, the Professor Fabrizio Lillo, for the great
help given in writing this work. I am sure that the fact we come from different
backgrounds has helped to generate qualitatively superior work. I'm a supporter of
interdisciplinary collaboration, and this experience has done nothing but reinforce
my opinion.

Secondly I would like to thank the dott. Nicola Donelli from Salzenberg Al for its
help in introducing me in the task and practical hints during the developing.
Then, I would like to thank my friends Irene, Antonio, Rio and Maja for their
motivational support in these last eight months.

Lastly but not least, i would like to thank my family for their support, that without
it, I would not be here.

89

	Introduction
	Literature review

	Portfolio optimization
	Asset return
	Portfolios
	Asset volatility
	Portfolio covariance
	Diversification
	Mean-Variance Diagram
	Sharpe ratio
	Post-Modern Portfolio theory
	Asset allocation methods
	Relative strength index
	Volumes of trade
	Trade signal
	Market index
	Exchange Traded Funds and Index Futures

	Deep learning methods
	Sequence modeling task
	Recurrent neural network
	Long Short Term Memory Network

	Temporal Convolutional Networks
	Temporal convolution
	Dilated causal convolution
	Residual connections

	Transformers
	Time embedding
	Multi-head attention
	Residuals and Normalization

	Adam optimizer
	Errors and model capacity

	Methodology
	Problem formulation and scope
	Input data
	Model research method
	Sharpe ratio maximizing model
	Target allocation matching model
	Reproducibility
	Fixed allocation anomaly
	Remaining hyperparameters

	Results and discussion
	Choice of loss function
	Feature selection
	Architecture selection
	Hyperparameter selection
	Selected model results
	Generated allocation parametrization
	2014 period
	2016-2017 period
	2019-2020 period

	Conclusions
	Future work

	References
	Appendix

