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Abstract
It has been recently demonstrated that the artificial neural networks’ (ANN) learning
under gradient descent method, can be studied using neural tangent kernel (NTK).
This thesis’ goal is to show how techniques related to control theory, can be applied
to model and improve the hyperparameters training dynamics. Moreover, it will
be proven how by using methods from linear parameter varying (LPV) theory can
allow the exact representation of the learning dynamics over its whole domain. The
first part of the thesis is dedicated to the modelling and analysis of the system. The
modelling of simple ANNs is hereby suggested and a method to expand this approach
to larger networks is proposed. After the first part, the LPV system model’s different
properties are analysed using different methods. After the modelling and analysis
phase, the focus will be shifted on how to improve the neural network both in terms
of stability and performances. This improvement is achieved by using state feedback
on the LPV system. After setting up the control architecture, controllers based on
different methods, such as optimal control and robust control, are then synthesized
and their performances are compared.

Keywords: Artificial Neural Networks, Control Theory, Neural Tangent Kernel, Op-
timal Control, H∞ Control, Linear Fractional Representation.
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1
Introduction

Following the works presented in [1] and [2], it was shown how the hyperparameters
training in artificial neural networks (ANNs) could be analyzed by means of neural
tangent kernel (NTK), i.e. by using methods related to linear time invariant (LTI)
systems. Nonetheless, in order to capture the whole training dynamics it would
be necessary to perform an interpolation amongst different LTI systems. The idea
behind this thesis is to avoid performing the interpolation by using linear parameter
varying (LPV) system theory.
The application to machine learning (ML) problems, such as ANNs, of methods
from control theory can possibly allow the improvement of both stability proper-
ties and performances levels. Furthermore, if adequate stability properties were to
be reached, ML methods could start to be used in applications where safety and
guaranteed convergence are required.
The path towards the completion of this thesis was not linear. This was mainly
due to the lack of bibliography results w.r.t. the application of control theory to
ML problems. The initial idea was to model and synthesize a controller using LPV
theory. As it will be later shown this approach could not be further investigated
because of the difficult in extend and automate the approach to more complex
networks, more similar to what are used in reality. Because of this difficult and the
presence of software tools, it was chosen to use linear fractional representations to
perform the modeling phase. This approach is more promising as is suitable to be
automated. The thesis then shifts its goal to the synthesis of a controller to improve
the networks’ stability and performances. This part is only a proof of concept as
the controller is synthesized for a single neuron. Nonetheless, as it will be proven
in Chapter 3, a single neuron and a single layer made of n-many neurons are very
similar, hence similar results for the closed loop systems can be expected.
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2
Theory

2.1 Neural Network Training Dynamics
In this section, the procedure for deriving the training dynamics equation for a neural
network will be shown. For sake of simplicity, the equations for a single neuron will
be derived. In Chapter 3 the approach will be expanded to more complex networks.

2.1.1 Single Neuron Training Dynamics Equation
As shown in [1] the training dynamics in parameter space of a wide Neural Network
can be seen as a linear model with as input the data signal d and as output the
estimated label ŷ. As a first step the equations governing the dynamics of a single
neuron learning under gradient descent will be derived.

w, bd dw + b

Figure 2.1: Single Neuron Single Layer Network

As shown in [3] a system representing the network parameters dynamics can be
obtained under certain assumptions. These being the network under gradient flow
training, and a mean squared error (MSE) loss function to be used:

L(t) = (y − ŷ(t))2 (2.1)

where the estimated label is denoted as:

ŷ(t) = dw(t) + b(t) (2.2)

Then, the equations for the state vector x = [w, b]T can be obtained by expand-
ing the following equation, where ∇L is the vector with as components the single
derivatives of L take w.r.t. the different hyperparameters of the system.

ẋ = −α∇L (2.3)

By specializing it for a single neuron single layer network:ẇ = −α ∂
∂w

(y − ŷ)2

ḃ = −α ∂
∂b

(y − ŷ)2 (2.4)
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2. Theory

Using Eq.(2.2) and expanding Eq.(2.4) the following system is obtained:

ẇ(t) = −2αd2w(t)− 2αdb(t) + 2αdy
ḃ(t) = −2αdw(t)− 2αb(t) + 2αy

(2.5)

The latter system, which represents the neuron hyperparameters training dynamics,
can be re-written as:[

ẇ(t)
ḃ(t)

]
=
[
−2αd2 −2αd
−2αd −2α

] [
w(t)
b(t)

]
+
[
2αd
2α

]
y

ŷ(t) =
[
d 1

] [w(t)
b(t)

] (2.6)

Where:
• y is the label
• w is the weight of the neuron
• b is the bias
• d is the current data value
• α is the learning rate

From the previous equation it may be seen that the system model cannot be rep-
resented by a linear time invariant system (LTI) since there are dependencies on
both d, α which may vary in time, but the whole learning dynamics could be rep-
resented by sampling the system for different values of d, α. Furthermore, this
system has no manipulable variable only a target that behaves as a reference signal
or disturbance. In order to model these nonlinearities and cover with a single linear
parameter varying (LPV) system model the whole training domain, techniques from
linear parameter varying (LPV) system models theory will be used.
It can be noticed that in the output equation an activation function was not used.
Its lack is mainly due to its high nonlinearity. Moreover if an MSE loss function
is assumed, it is not possible to eliminate them. In fact, we make an implicit
assumption here. Only the unsaturated region of the ANN is used. Some saturation
function has a smooth analytical form and therefore can be incorporated. However
this is left for future work. This holds both for a single neuron training dynamics
and for more complex networks. On a final note, a solution to this would be to
use Zames-Falb multipliers[9] and integral quadratic constraints (IQC) [10], but this
goes over the aim of this thesis.

2.2 Linear Parameter Varying System Models
The reason why LPV system models are useful is that they allow to transform
nonlinear systems in linear systems by collecting nonlinearities inside specifically
defined parameters. Then, similar methods to the ones used for LTI system might
be used. The single neuron case will now be used to present some of the LPV
techniques that will be used.
The state space form for a LPV system:

ẋ(t) = A(p(t))x(t) +B(p(t))u(t)
ŷ(t) = C(p(t))x(t) +D(p(t))u(t)

(2.7)

4



2. Theory

In this thesis, and for sake of computational simplicity, it will be attempted to
obtain an affine (or linear) in the parameter p(t) model. This means that the
system described in Eq.(2.7) can be re-written as:

[
A(p(t)) B(p(t))
C(p(t)) D(p(t))

]
=
[
A0 B0
C0 D0

]
+

np∑
1 j
pj(t)

[
Aj Bj

Cj Dj

]
(2.8)

Before setting up the parameters vector a consideration on α must be made. In
general it is true that the learning rate value may vary but throughout the learning
iteration, i.e. the learning process for a certain value of d, is kept constant and it is
known. Because of this, the learning rate will be considered as a fixed value. This
hypothesis will then be loosen when the GSS Library and LFR Toolbox [4] will be
used, this because of computational issue. The parameters vector p(t) will then
become:

p(d(t)) =
[
d(t)
d2(t)

]
=
[
p1(t)
p2(t)

]
(2.9)

Where np is the number of parameters with affine parameterization and pj is the
j-th component of p(t). Although an affine LPV is the simplest LPV, especially
compared to rational or polynomial LPVs, it is still needed to identify 4× (np + 1)
matrices to be able to construct the system presented in (2.8).
A few considerations must be made on the parameters vector classification. A
parameter vector of this kind is said to be exogenous as its component do not depend
on the system’s signals, i.e. x, u, y. The system matrices can now be rewritten w.r.t.
the parameters vector:

A(α,p) =
[
−2αp2 −2αp1
−2αp1 −2α

]

B(α,p) =
[
2αp1
2α

]
C(α,p) =

[
p1 1

]
D(α,p) = 0

(2.10)

Note, the original GD flow and the LPV model in 2.10 are equivalent, in other words,
the parameterization results in an exact reformulation of the learning dynamics. For
sake of notation the time-dependency of p is omitted.
For sake of completion, if α was to be taken as a varying parameter of the system,
the parameter vector p, would then be the following:

p =


αd2

αd
α
d

 =


p1
p2
p3
p4

 (2.11)
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2. Theory

and the resulting matrices will be:

A(p) =
[
−2p1 −2p2
−2p2 −2p3

]

B(p) =
[
2p2
2p3

]
C(p) =

[
p4 1

]
D(p) = 0

(2.12)

A small comment on the parameters vector must be now made. Since, for the single
neuron case, the data and learning rate value, if not taken as a constant, are given
as input, and both their minimum and maximum values are known. This is enough
to conduct an analysis using LPV techniques. Furthermore, it is often plausible to
work with normalized data. This clearly states that p can not be arbitrary large
and belongs to a range. This property is beneficial and exploited in LPV analysis
and synthesis.

2.2.1 Stability
For a LTI system, the stability analysis can be performed by determining if there
exists a symmetric positive definite matrix P � 0 and a positive definite matrix
Q � 0 such that the following relation holds:

ATP + PA = −Q (2.13)

Verifying this relation is equivalent to checking that the eigenvalues of A belongs
to the left half plane. thus guaranteeing the system’s asymptotic stability if c > 0.
The property Re(λi) < 0, namely all the eigenvalues’ real parts belong are strictly
less than zero, can be revisited by solving the following inequality for a real scalar
c ≥ 0:

ATP + PA+ cP ≺ 0 (2.14)
While P = P T � 0. If this inequality is verified, then it is guaranteed that Re(λi) <
c.
In order to asses a LPV system model Eq.(2.14) will be used. Moeover, the sym-
metric positive definite matrix P will be used to construct a parameter independent
Lyapunov function V :

V (x) = xTPx
with V (x) > 0 and V (0) = 0

The scalar c is still real and non-negative. Then, the LPV system’s quadratic sta-
bility is guaranteed iff:

M(p) = P (A(p) + AT (p)P + cP ≺ 0 (2.15)

The latter inequality must be verified over the whole range of p. The inequality can
then be said to be satisfied if:

λ(P ) ∈ RHP
λ(M) ∈ LHP

(2.16)

6



2. Theory

The inequality presented in Eq.(2.15) can be assessed by assuming that the param-
eter polytope P ⊂ Rn

p in which p belongs is convex. This assumption is of funda-
mental importance, because if the inequality is satisfied at the polytope’s vertices
then it is always satisfied.

2.2.2 Structural Reachability
The reachability, also called (input-output) controllability, is the property of a sys-
tem to achieve acceptable control performances as stated in [7].
Following what is said in [8], the Kálmán full rank condition can be used for a LPV
system model with a slight modification.
The LPV system model is said to be reachable iff the matrix R is full rank, i.e.
rank(R) = n = dim(x), R1 = B(p) and Ri+1 = Ṙi − A(p)Ri.

R =
[
R1 R2 . . . Rn

]
(2.17)

In the following chapter, two different analyses will be run, the first one neglecting
the dependence w.r.t. time of the parameter vector, i.e. ṗ = 0. While the second
one will consider a possible time-dependency of p. Although the second simulation
is far more general, it will be shown how the two different simulations converge to
the same result. The reachability matrix for the system defined in Eq.(2.10) will be:

R =
[
R1 R2

]
=
[
R1 Ṙ1 − A(p)R1

]
=
[
B(p) Ḃ(p)− A(p)B(p)

] (2.18)

As it will be shown in the following chapter, depending on the trajectory of p we
can have a p(t) related actual reachability problem as the Kálmán condition may
not be fulfilled.

2.2.3 Structural Observability
In the same fashion as it has been done for the structural reachability, an analysis
of the structural observability will be carried on.
Following the definition given in [5], a LPV system is said to be structurally observ-
able iff:

rank(O) = rank(
[
OT1 OT2 . . . OTn

]T
)

= n = dim(x)
(2.19)

Namely meaning that the Kálmán full-rank condition must be fulfilled for the matrix
O which is the observability matrix which is built in the following way:

O1 = C(p(t))
Oi+1 = Ȯi +OiA(p(t)), i > 1

(2.20)

As done for the structural reachability two different analyses will be made, these
being the time-independent and the time-dependent to see how the structural ob-
servability property is impacted by the time dependency.

7



2. Theory

2.3 Linear Fractional Representation
One possible way to represent LPV systems is to use a transformation that separates
the scheduling parameters from the system model parameters. As such, we use linear
fractional transformations (LFT) to do so.
The LFR is a method of dealing with uncertain system by extracting the uncertainty
in a sub-system. The overall system will then be characterized by the following two
sub-systems:

• M , which is the nominal plant.
• P , the sub-system capturing all the uncertain part.

The two sub-systems blocks are then interconnected in the following way:

M

P

u ŷ

uP yP

Figure 2.2: Blocks interconnection of the systems obtained with the results of the
LFR

In order to go back from the nominal and uncertain sub-systems to the original
uncertain plant, an upper linear fractional transformation (LFT) is applied.

2.4 Control Theory
The control of the neural network under analysis will be achieved by following two
different approaches. The first one involves the use optimal control while the second
one involves the use of robust control.

2.4.1 Optimal Control

Linear Quadratic Regulator

Optimal control theory envisages the control of a LTI system expressed in its state-
space form, i.e.:

ẋ(t) = Ax(t) +Bu(t)
ŷ(t) = Cx(t)

(2.21)

By using a control input defined in the following way:

u(t) = −Kx(t) (2.22)

The closed loop system will then become:
ẋ(t) = (A−BK)x(t)
ŷ(t) = Cx(t)

(2.23)

8



2. Theory

The matrix K is a constant matrix such that the cost function J(t) is minimized.
The cost function is defined by introducing the weighting matrices Q, R. These
two matrices are used to penalize respectively the state vector or the control input
action.

J = 1
2

∫ ∞
0

(
x(t)TQx(t) + uT (t)Ru(t)

)
dt (2.24)

The optimal cost function will then be given by:

J∗ = 1
2xT0 Px0 (2.25)

Where x0 is the initial state vector, and P is the solution to the Control Algebraic
Riccati Equation (CARE):

PA+ ATP +Q = PBR−1BTP (2.26)

The control matrix can then be defined by using the Riccati solution P :

K = R−1BTP (2.27)

The solution to the CARE will be found by using built-in functions in Matlab®.
The use of a linear quadratic regulator (LQR) causes two main issues:

• the controller is able to stabilize the system only for a certain combination of
α, d

• a label different than zero causes an effect equivalent to a disturbance or to a
reference signal

The first issue can be overcome by gain-scheduling, i.e. properly discretizing the
surface on which the parameters α, d vary, synthesizing a controller for each point
on the grid and then performing an interpolation between the controllers.
The second issue cannot be addressed in a generic way. In order to overcome this
difficulty, a different kind of controller, described in the following section, will be
used.

Linear Quadratic Integral Regulator

The synthesis process is the same, i.e. a quadratic cost function analogous to the
one described in Eq.(2.24) is defined and by solving the optimization process the
control matrixK is found. Although the optimization problem is similar, the control
architecture is substantially different.

[
A B
C D

]∫
−Ky

−
y − ŷ

xi u
ŷ

x

Figure 2.3: Control architecture of the linear quadratic integral controller. The
matrices A, B, C, D are augmented in dimensions because of the control architec-
ture.

9



2. Theory

This time the controller is a [1× 3] matrix. The third state xi is the integrated
difference between the input label and the system’s estimated label.
The closed loop system matrices must then be reformulated as, w.r.t. the standard
LQR case, there is an additional state. The third equation of the system is defined
in the following way:

ẋi(t) = y − ŷ(t) = y − Cx(t) (2.28)

Now, the complete system dynamics can be reconstructed in its state-space formu-
lation: [

ẋ(t)
ẋi(t)

]
=
[
A 0
−C 0

] [
x(t)
xi(t)

]
+
[
B
0

]
u(t) +

[
B
0

]
y

ŷ(t) =
[
C 0

] [x(t)
xi(t)

] (2.29)

Once again, the LQI controller will be synthesized only for a specific combination of
α, d. In order to cover the whole domain on which α, d may vary, a gain-scheduled
LQI controller will be synthesized following the same procedure described for the
case of a LQR.
As previously said, going from the use of a LQR to a LQI regulator, has caused
a change in the system’s dimensions. Moreover, the new state vector has been
augmented with the new state xi. Because of this, the optimal cost function’s state
weighting matrix, i.e. Q, must be augmented as well. The new state penalizing
matrix will be called Qi and it is defined in the following way:

Qi =
[
Q 0
0 qi

]
(2.30)

In our case, qi is a scalar constant and is the weight on the new state. While the new
state weighting matrix needed to be augmented in dimensions, the control weighting
matrix remains the same since the dimensions of u do not change. Having defined
Qi R, the new optimal cost function is defined as follows:

J = 1
2

∫ ∞
0

(
[x(t) xi(t)]Qi [x(t) xi(t)]T + uT (t)Ru(t)

)
dt (2.31)

2.4.2 Robust Control
In the previous sections, the controller was found by performing an interpolation
amongst different controllers. Although, as it will be proven in Chapter 3, this
methods provides good performances, it causes a great computational burden as a
LQR (or a LQI controller) must be synthesized for n×m different conditions, where
n is the amount of points required to properly discretize the range of d and m is
the number of different values of α which discretize its range. This process may
be affordable if both ranges are small, on the other hand if the ranges get larger,
creating a dense-enough grid might lead to a significant computational burden. In
order to avoid the high computational cost, another branch of control theory must
be used: robust control.
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2. Theory

Robust control deals with the synthesis of controllers for uncertain systems. The
synthesis process is based on the minimization of the H∞ norm of an interconnected
system. The optimization process is performed on an interconnected system where
the input and output signals of the original plant systems are combined in order
to reach certain performances levels. In addition to the combination of different
signals, they can be weighted in order to give more importance to certain signals’
behaviours. The optimization process gives as a result a controller which will then
be set in feedback with the augmented system. The H∞ norm of the closed loop
system transfer function T (s) is defined as follows and it is named γ.

γ = ||T (s)||∞ = ||T (jω)||∞ = max
ω

σ̄(G(jω)) (2.32)

The objective of the controller is to minimize the value of γ. The H∞ norm mini-
mization problem could then be set in the following way:

min
K,γ

max
w 6=0

(||z(t)|| − γ||w(t)||) (2.33)

In the latter equation z(t) are the output performance signals of the augmented
plant while w(t) are the non-zero disturbances vector.

11
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3
Method and Results

3.1 Single Neuron LPV Analysis

3.1.1 Parameterization
The LPV formulation of an affine model can be given as:

A(p) = A0 +
np∑
j=1

pjAj (3.1)

Where with p(t) is a parameter vector. For the single neuron training case:

p(t) =
[
p1
p2

]
=
[
d
d2

]
(3.2)

Resulting in:

A0 =
[
0 0
0 −2α

]
, A1 =

[
0 −2α
−2α 0

]
, A2 =

[
−2α 0

0 0

]
(3.3)

By applying the same approach to the matrix B, still considering the first two states
only:

B(p(t)) = B0 +B1p1 +B2p2 =
[

0
2α

]
+
[
−2
0

]
d+

[
0
0

]
d2 (3.4)

A very important property of this LPV system model is that so far no approxima-
tions were made. This means that an exact LPV model is obtained, which matches
the original nonlinear behaviour.

3.1.2 Stability Analysis
The stability analysis both asymptotic st. and quadratic st. will be conducted with
the help of [6] following the procedures explained in [5], i.e. the quadratic stability
of the LPV system is defined by:

M(Ai) = PA(pi) + AT (pi)P + cP ≺ 0 (3.5)

The previous equation needs to be solved numerically. But, it would require a
definite programming tool which does not exist. In order to overcome this issue, the
latter equation will be set in a semi-definite form:

M(Ai) = PA(pi) + AT (pi)P + cP � 0 (3.6)

13



3. Method and Results

In this case: i = 1, 2, 3, 4. Where pi is denoting the vertices of the assumed convex
parameter polytope P .

i pi p1 p2
1 p1 p1min p2min
2 p2 p1min p2max
3 p3 p1max p2min
4 p4 p1max p2max

1−1

1

−1

2−2

2

−2

3−3

3

−3

4−4

4

−4

5−5

5

−5

p1

p2

(p1,min, p2,min)

(p1,min, p2,max)

(p1,max, p2,min)

(p1,max, p2,max)

Figure 3.1: Vertices of the convex parameter polytope P . The two components
of the parameters are assumed independent from each other. In this way a more
robust stability analysis is obtained.

Where P = P T � 0, V (x) = xTPx, and real scalar c ≥ 0. For this first analysis:
α = 2.2e − 1. The choice of α, at least for the initial simulations, is related to the
SGD optimized learning rate presented in [3]. The analysis of Eq.(3.6) for different
values of c in terms of eigenvalues will be later presented. As parameters ranges a
normalized data batch results into:

0 ≤ p1 < 1
0 ≤ p2 < 1

(3.7)

In the first range the strict inequality on the upper bound is set to prevent A from
becoming rank deficient, i.e. having one zero eigenvalue. Moreover the value is set
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3. Method and Results

to 0.99. The second range is derived from the relation p2 = p2
1.

Changing the value of c the following eigenvalues are obtained:

λ(P ) λ(M(A(p1)) λ(M(A(p2))) λ(M(A(p3))) λ(M(A(p4)))
1.097e-11 -1.963e-10 -2.359e-10 -3.983e-10 -4.662e-10
3.040e-10 1.558e-11 -8.403e-12 8.016e-12 1.226e-11

Table 3.1: Eigenvalues analysis while using LMILAB, c = 0.1, α = 2.2e− 1.

λ(P ) λ(M(A(p1)) λ(M(A(p2))) λ(M(A(p3))) λ(M(A(p4)))
0.002e-9 -0.443e-9 -0.535e-9 -0.954e-9 -0.112e-8
0.791-12 0.044e-9 -0.002e-9 0.007e-9 0.004e-8

Table 3.2: Eigenvalues analysis while using LMILAB, c = 0.2, α = 2.2e− 1.

λ(P ) λ(M(A(p1)) λ(M(A(p2))) λ(M(A(p3))) λ(M(A(p4)))
-2.168e-12 -5.103e-11 -5.062e-11 -5.103e-11 -5.062e-11
6.326e-11 1.369e-11 1.519e-11 1.369e-11 1.519e-11

Table 3.3: Eigenvalues analysis while using LMILAB, c = 0.3, α = 2.2e− 1.

A LPV system model is said to be quadratically stable (QS) if all the eigenvalues
of P lay in the right half plane (RHP), i.e. λ(P ) ∈ RHP and all the eigenvalues of
the A matrices evaluated at the domain vertices lay in the left hand plane (LHP),
i.e. λ(M(Ai)) ∈ LHP . As it may be seen by looking at the previous tables, the
QS stability condition is never satisfied although the eigenvalues magnitude is close
to zero, although the eigenvalues may reflect numerical errors and hence further
refinements have to be done. Thus, it is not possible to conclude anything about
quadratic stability.
Finally, what can be noticed that from this analysis is that the pairs of points p1, p3
and p2, p4 lead to the same eigenvalues λ1,2.

3.1.3 Structural Reachability Analysis
Following what is said in Chapter 2, the Kálmán full rank condition can be used for
a LPV system model with a slight modification.

R =
[
R1 R2 . . . Rn]

]
(3.8)

The first analysis will be run neglecting the time dependency of the parameter
vecctor, i.e. the time derivative will not be taken into account.
For the single neuron training dynamics:

R =
[
R1 R2

]
=
[
R1 Ṙ1 − A(p)R1

]
=
[
B(p) Ḃ(p)− A(p)B(p)

] (3.9)
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Combining the equations stated in Section 3.1.1, the needed expressions of A(p)
and B(p) can be found:

A =
[
−2αp2 −2αp1
−2αp1 −2α

]
(3.10)

B =
[
2αp1
2α

]
(3.11)

Because of what has been previously stated and since α = const., it can be concluded
that Ḃ(p) = 0.

A(p)B(p) = −2α
[
p2 p1
p1 1

] [
2αp1
2α

]

= −4α2
[
p2 p1
p1 1

] [
p1
1

]

= −4α2
[
p1p2 + p1
p2

1 + 1

] (3.12)

With the previous results, the reachability matrix can be written:

R = 2α
[
p1 −2αp1(1 + p2)
1 −2α(1 + p2

1)

]
(3.13)

By expanding the matrix determinant:

|R| = −2αp1(1 + p2
1) + 2αp1(1 + p2)

= 2α(−p1 − p3
1 + p1 + p1p2)

= 2α(−p3
1 + p1p2)

(3.14)

By plugging in the relationship between the parameters, i.e. p2 = p2
1, it can be proved

that, no matter the values of α, p1, p2 the system is not structurally reachable.
Looking back at Eq. (3.13) it can be seen how the first row is actually the second
row multiplied by p1, i.e. the two rows are not linearly independent, hence the
matrix cannot be expected to be full rank. By computing the controllability matrix
for some values of d and a fixed α, it can be proved that the rank of the reachability
matrix is 1, thus it the Kálmán condition is not fulfilled.

3.1.4 Time-Dependent Structural Reachability Analysis
It might be significant to better understand the reachability property when the time-
dependency of the parameter vector is considered, hence the assumption ṗ = 0 is
loosen while still keeping α = const. The time derivative of the parameter vector
will be: [

ṗ1
ṗ2

]
=
[
ḋ

2dḋ

]
,

=
[
ṗ1

2p1ṗ1

]
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Now, the structural reachability matrix R can be recomputed following Eq.(3.9).

R =
[
R1 Ṙ1 − AR1

]
,

=
[
B Ḃ − AB

]
,

=
[
2αp1 2αṗ1 + 4α2(p1p2 + p1)
2α 4α2p2

1 + 4α2

]
,

= 2α
[
p1 ṗ1 + 2αp1(p2 + 1)
1 2α(p2

1 + 1)

]
(3.15)

By computing the determinant of the new reachability matrix:

|R| = −ṗ1 = −ḋ (3.16)

This result is consistent to what obtained for the time independent case. This also
means that the system is always reachable if the data provided to the system is
monotonic. Alternatively the system is reachable for monotonic piece-wise data
values.
A geometrical explanation of what is happening in the time-dependent case will be
now offered. The determinant of the R matrix can be seen as the area spanned by
the vectors (2αp1, 2α), (2αṗ1 + 4α2p1(p2

1 + 1), 4α2(p2
1 + 1)) which are the columns

of R. As previously stated if ṗ1 = 0, the two columns are linearly dependent, i.e.
they are aligned if seen in the Cartesian plane. In this case the determinant would
be zero, while for ṗ1 = ḋ 6= 0, the area does not shrink to zero. Finally, it can be
concluded that for ṗ1 = ḋ → 0, the area of the spanned parallelogram shrinks to
zero.

3.1.5 LPV Structural Observability Analysis
An analysis of the structural observability will be now carried on in the same fashion
as done for the study of the structural reachability.
A LPV system is said to be structurally observable iff the Kálmán full-rank condition
is fulfilled for the matrix O, this being:

O1 = C(p(t))
Oi+1 = Ȯi +OiA(p(t)), i > 1

(3.17)

For the current network, using the parameterization presented in Section 2.2, and
keeping the assumption that ṗ = 0, and recalling that the two parameters are related
such that p2

1 = p2, the structural observability matrix becomes:

O =
[
O1
O2

]

=
[

C(p(t))
C(p(t))A(p(t))

]

=
[

p1 1
−2αp1(p2 + 1) −2α(p2

1 + 1)

]

=
[

p1 1
−2αp1(p2 + 1) −2α(p2 + 1)

]
(3.18)
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In the last line of the latter equation, it can be seen that the two rows are linearly
dependent, hence O is rank deficient no matter the value of α. It can be concluded
that the system, while using p =

[
d d2

]T
as parameter vector is not structurally

observable.
Another important observation can be made while looking at the last step in Eq.(3.18).
What can be concluded is that the assumption p2

1 = p2 is what makes the system
structurally non-observable. If the latter property were not true, the O matrix
would fulfill the Kálmán rank condition resulting in a structurally observable sys-
tem. Furthermore what is being observed is that there might be a parameterization
that makes the system structurally observable. On the other hand, it must also be
pointed out that it is possible that such a parameterization is not able to describe
the training dynamics.

3.1.6 Time-Dependent Structural Observability Analysis
In the same way as Section 3.1.4, the structural observability of the system will now
be investigated while having time-dependent parameters. The structural observabil-
ity matrix O will now be:

O =
[

O1
Ȯ1 +O1A

]
,

=
[

C
Ċ + CA

]
,

=
[

p1 1
ṗ1 − 2α(p1 + p1p2) −2α(1 + p2

1)

]
,

=
[

p1 1
ṗ1 − 2αp1(1 + p2

1) −2α(1 + p2
1)

]

Computing the determinant of O:

|O| = −ṗ1 = −ḋ

This is the same result found in the structural reachability analysis with time-
dependent parameter. In the same way, this means that, with the following param-
eter choice, the system is structurally observable if the data signal is monotonic or it
can be piece-wise observable if only some portions of the data signal are monotonic.
The exact same geometric comment written for the time-dependent structural reach-
ability analysis can now be made for the time-dependent structural observability.

3.2 Single Neuron Linear Fractional Representa-
tion

Using the MATLAB® library GSS from the SMAC toolbox [4], it is possible to
model the neuron with LFT.
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By using the GSS library setting as input the nonlinear system, the matrices M, P
can be obtained automatically. This second approach is used to check if a differ-
ent parameterization, w.r.t. what has been manually computed and presented in
Section 3.1.1, is proposed. Then the system stability is studied. Moreover this ap-
proach will be more suitable when larger ANNs are considered. After obtaining the
matrices M, P by using the GSS library, the two systems are combined by using
the MATLAB® built-in function lft.m, which performs the LFT of the two systems.
Notice that an upper LFT must be performed, hence the order in which the systems
are given as input must be switched, first P , then M .
Now the different parameterizations and their stability results will be presented.

3.2.1 α− d parameterized learning dynamics
This parameterization is the most general as both α, d are taken as uncertain pa-
rameters. According to the script, the M matrix, this being the matrix representing
the system stripped of all the terms containing α, d, is:

M =
[
M3,3 M3,12
M12,3 M12,12

]
(3.19)

The matrices having the following dimensions:

Matrix Rows Number Columns Number
M3,3 6 6
M3,12 6 3
M12,3 3 6
M12,12 3 3

Table 3.4: Mi,i matrices dimensions with d, α as parameters.

Analyzing the matrices’ contents, in particular M12,12, it turns out that the input
vector of the matrix M is:

ζ =
[
uP,1 uP,2 uP,3 uP,4 uP,5 uP,6 w b y

]T
(3.20)

While the output vector is:

z =
[
yP,1 yP,2 yP,3 yP,4 yP,5 yP,6 ẇ ḃ ŷ

]T
(3.21)

The relation between uP,i and yP,i is:

uP = PyP

The reason why, it was possible to identify the last state of the input vector is the
position of the 1 in the matrix M12,12. Furthermore, the structure of M12,12 is the
following:

M12,12 =
 A2×2 B2×1

C1×2 D1×1

 =


0 0 0
0 0 0
0 1 0
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Thus, while using α, d as parameters, the nominal system A matrix is:

M.A|α,d =
[
0 0
0 0

]
(3.22)

It can be concluded that the nominal plant has two identically zero eigenvalues. The
other matrices are hereby reported for completion.

M3,3 =



0 0 0 0 0 1
0 0 0 −0.3961 0 0
0 0 0 −0.0990 0 0
0 0 0 0 0 0
0 0.1715 −0.6860 0 0 0
0 0 0 −0.4082 0 0


(3.23)

M3,12 =



0 0 0
0 0.6860 −0.6860
0 0.1715 2.7440

−1.7321 0 0
0 0 0
0 0.7071 0


(3.24)

M12,3 =

−2.8284 0 0 0 −1 0
0 −2.9155 −4.4409e− 16 0 0 0
0 0 0 −0.5774 0 0

 (3.25)

The matricesM3,12 represents the state influence on the uncertainty and equivalently,
M12,3 represents how the uncertainty affect the state behaviour.

3.2.2 d parameterized learning dynamics
Setting d as parameter and a fixed value of α, i.e. α = 1e − 3, while keeping the
notation of Eq.(3.19), the dimensions of the system are:

Matrix Rows Number Columns Number
M3,3 2 2
M3,12 2 3
M12,3 3 2
M12,12 3 3

Table 3.5: Mi,i matrices dimensions with d as parameter.

Ant the nominal A matrix is:

M.A|d =
[
0 0
0 −0.0020

]
=
[
0 0
0 −2α

]
(3.26)

The open loop dynamics will be now characterized by the eigenvalues:

λ1 = 0,
λ2 = −2α

(3.27)
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Since α represents the learning rate, it is strictly positive. Hence the system has a
stable eigenvalue and a marginally stable eigenvalue. Although for decreasing values
of α, which typically guarantee convergence although at a slower rate, the system
tends to have two zero eigenvalues. The other Mi,i are reported for this different
parameterization.

M3,3 =
[
0 −0.0012
0 0

]
(3.28)

M3,12 =
[

0 0.0020 −0.0020
−1.7321 0 0

]
(3.29)

M12,3 =

−1 0
0 0.0012
0 −0.5774

 (3.30)

In the previous sections, an investigation of how a single neuron could be modeled
and analysed using tools from control theory was performed. This was done in order
to both obtain results easier to interpret and to understand which tool would be the
most appropriate. In industrial applications much more complex networks are used.
In the next sections it will be shown how to model and then study the stability of
such networks. In order to identify the individual issues caused by the increasing
complexity, the following steps will be made:

• Study a two neurons - single layer network
• Study a single neuron - two layers network
• Study a two neurons - two layers network

It is worth to remind that saturation functions are omitted throughout this thesis.

3.3 Two Neurons Single Layer Network
The network can be depicted as follows:

w1, b1

w2, b2

d ŷ = (dw1 + b1) + (dw2 + b2)

Figure 3.2: Two neurons one layer network.

The equation governing the previous networks can be obtained using Eq.(2.3), which
results into:

ẇ1 = −2α(d2w1 + d2w2 + db1 + db2 − dy)
ẇ2 = −2α(d2w1 + d2w2 + db1 + db2 − dy)
ḃ1 = −2α(dw1 + dw2 + b1 + b2 − y)
ḃ2 = −2α(dw1 + dw2 + b1 + b2 − y)

(3.31)
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Setting the state vector as:

x =
[
w1 w2 b1 b2

]T
(3.32)

The training dynamics system can be transformed in state-space form:

A = −2α


d2 d2 d d
d2 d2 d d
d d 1 1
d d 1 1

 , B = 2α


d
d
1
1

 ,
C =

[
d d 1 1

]
(3.33)

What can be concluded is that adding a neuron to a one layer network does not
introduce new nonlinearities.

3.3.1 α− d parameterized learning dynamics
The results obtained while using d, α as parameters are the same with obtained in
Subsection 3.2.1.The LFR dimensions are:

Matrix Row Number Column Number
M3,3 4 4
M3,12 4 5
M12,3 5 5
M12,12 5 5
P 4 4

Table 3.6: Mi,i matrices dimensions with d, α as parameters.

Where the uncertainty matrix is:

P =


α 0 0 0
0 α 0 0
0 0 d 0
0 0 0 d

 (3.34)

It can be seen that the although the nonlinearities are the same, the P block syn-
thesized for this network is different from the previous one. This should not raise
any concerns as infinitely-many linear fractional representations may exist.
Finally, the A matrix of the LTI system, i.e. M.A, is identically zero, hence its
eigenvalues are all zero. Although M.A has a higher dimensions w.r.t. the single
neuron case, the results found show consistency. The matrices Mi,i will now be
reported.

M12,12 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 1 0

 (3.35)
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M3,3 =


0 0 0.6325 −1.5543e− 16
0 0 −3.0355e− 16 −1.5811
0 0 1.0757e− 16 −1.9178e− 32
0 0 0.4000 −7.1312e− 17

 (3.36)

M3,12 =


0 0 1.5811 2.2551e− 16
1 −1.7234e− 16 1.7009e− 16 0.6325
0 0 1.5811 −2.2551e− 16
1 −1.7234e− 16 1.7009e− 16 0.6325
−1 −3.4468e− 16 2.9123e− 16 −0.6325



T

(3.37)

M12,3 =


2.6999e− 16 2 0 0

−2 −3.2935e− 16 0 0
2.6999e− 16 2 0 0

−2 −1.5329e− 17 0 0
0 0 0.6325 0

 (3.38)

3.3.2 d parameterized learning dynamics
Analogously to what is done for the parameterization which uses both α and d, a
similarity with Subsection 3.2.2 is found. The system has the following dimensions:

Matrix Rows Number Columns Number
M3,3 2 2
M3,12 2 5
M12,3 5 2
M12,12 5 5
P 2 2

Table 3.7: Mi,i matrices dimensions with d as parameter.

The P block being:

P =
[
d 0
0 d

]
(3.39)

Thanks to how the state vector was ordered an interesting property can be observed
from looking at the M.A matrix;

M.A =


0 0 0 0
0 0 0 0
0 0 −0.0020 −0.0020
0 0 −0.0020 −0.0020

 =


0 0 0 0
0 0 0 0
0 0 −2α −2α
0 0 −2α −2α

 (3.40)

For this formulation the LTI system’s A matrix is block diagonal. Moreover, it is
constituted of a 02×2 matrix and of a [2× 2] matrix having all entries equal to −2α,
which is rank deficient. The eigenvalues are then, the following:

λ1 = −0.0040 = −4α
λ2 = 0
λ3 = 0
λ4 = 0

(3.41)
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Finally, the trend shown in this section can be extended to the case of a single layer
with n-many neurons. Since adding neurons to a single line does not introduce
new nonlinearities the results obtained are the same with the only exception of the
increased dimensions. Hence, eigenvalues shows Lyapunov stable learning dynamics.

M12,12 =


0 0 0 0 0
0 −0.0020 0 −0.0020 0.0020
0 0 0 0 0
0 −0.0020 0 −0.0020 0.0020
0 1 0 1 0

 (3.42)

M3,3 =
[
0 −0.4000
0 0

]
(3.43)

M3,12 =
[

0 0.6325 0 0.6325 −0.63258
−1.5811 0 −1.5811 0 0

]
(3.44)

M12,3 =


−0.0032 0

0 0.0013
−0.0032 0

0 0.0013
0 −0.6325

 (3.45)

3.4 Single Neuron Two Layers Network.
Adding layers to a network causes one main issue. The output signal from the
first perceptor is carries informations about the weight and the bias, which are the
system states in the NTK formulation. This causes an interaction between different
states, which is something not desirable. We want to avoid this as much as possible
because we would want to have a non endogenous, i.e. not depending on the system
variables, parameter vector.

w1, b1 w2, b2d w1d+ b1
ŷ = (dw1 + b1)w2 + b2

Figure 3.3: Single neuron two layers network.

One possible solution would come from the fact that the exact value of the weights
and biases of the entire network for a certain training iteration are known. The idea
is to see the output from the first perceptor, or layer as it will be later explained,
ŷ1 = dw1 + b1 as a real uncertain parameter. This is possible because, as previously
said, the values of network hyperparameters are known. The parameter ŷ1 would
then have the following properties:

Parameter Type Nominal Value Minimum Value Maximum Value
ŷ1 Real dnomw1 + b1 dminw1 + b1 dmaxw1 + b1

Table 3.8: Second layer uncertain input.
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For the current network, the LFR would then be similar to the analysis presented in
Subsection 3.2.1, as the only difference would be the nominal value and the range of
the uncertainty. It must be pointed out that the results obtained in Subsection 3.2.1
held for different ranges of d and different values of α. In order to further clarify
this point, the next figure, representing the second layer, which is constituted only
from a neuron in this case, is presented:

w2, b2ŷ1 ŷ

Figure 3.4: Reformulation of the second layer.

This approach is promising as if we were to add more neurons to each layer, each
neurons’ output would not add any nonlinearity to the next layer while being linearly
combined to the other outputs coming from the precedent layer. The issue rising in
this approach is that the output signal of the i-th layer, ŷi, must be updated with
the current weight and bias of the i-th layer following the equations presented in
Tab. 3.8. The presented algorithm is able to solve this problem for a generic single
neuron multi layer network.

Algorithm 1 LFR.
1: procedure Linear Fractional Representation
2: x0 = Current values of the network weights and biases
3: N = Number of layers
4: ŷ1 = d, d is the data given to the network
5: for i = 1 : N − 1 do
6: compute LFR for a single layer with input data yi
7: ŷi+1 = wiŷi + bi, update output signal
8: save different signals

Now that all the different input signals are available, the entire network can be
re-built using a LFR by building i-many A matrices and then by using the func-
tion append.m which has been rebuilt in the SMAC Toolbox [4]. The reason why
the previous algorithm was developed was to avoid having endogenous parameters.
What was done, is exploiting the fact that, for the current learning iteration, the
entire network’s weights and biases are known. And since the training dynamics
of the i-th layer neuron is not influenced by the (i+1)-th layer neuron, when going
from i-th layer to the (i+1)-th layer it is possible to "update" the signal using the
following relation:

ŷi+1 = ŷiwi + bi, for i = 1 : N - 1
ŷ1 = d

ŷN = ŷN−1wN−1 + bN−1 = ŷ

(3.46)

If specialized for the two layers case:

ŷ = (dw1 + b1)w2 + b2 (3.47)
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After this, the stability analysis can be brought back to the results presented in
Section 3.3.

3.5 Two Neurons Two Layers Network
In order to achieve a full LFR of the neural network some slight modifications w.r.t.
what was presented in Section 3.3 must be performed. These are namely a change
of the state vector. For the i-th layer it will now be:

xi =



wi,1
bi,1
wi,2
bi,2
...

wi,M
bi,M


(3.48)

Then, the estimated label equation will be computed using a different solution.
Taking into account the i-th layer, what only matters is the sum of each neurons’
output. Hence, instead of computing M -many outputs, where M is the number of
neurons in each layer which is known, only the sum of them will be computed. This
also imply a significant reduction in the dimension of the Ci matrix that becomes
[1× 2M ] while the original matrix dimensions were [M × 2M ]. The equation which
enables the computing the new signal coming out of each layer is:

ŷi =
M∑
1 j

(dwi,j + bi,j)

= (dwi,1 + bi,1) + (dwi,2 + bi,2) + . . .+ (dwi,M + bi,M)
=
[
d 1 d 1 . . . d 1

]
xi

(3.49)

The latter equation computes the sum of the signals going out of all the neurons
belonging to the j-th layer and going into each neuron of the following neuron.
The approach used to model more complex networks will be to obtain each layer’s
linear fractional representation and then combining them by using the GSS library.
This way of modeling the problem has two main advantages. The first one is that,
given the number of neurons per layer and assuming it is kept constant throughout
the layers, the equations only have to be defined one time. Secondly, only one
LFR needs to be explicitly computed. This is because, as seen in Section 3.3, the
LFR structure is always the same and the only changing quantities are the signals
ŷi, defined as in Eq.(3.49). Because of these two reasons, the modelling problem
becomes suitable and trivial for automation. This, given the dimensions of a real
ANN, is an extremely important property. One last comment must be made on
the parameterization choice. The previously described approach can be exploited
even while changing the parameterization choice layer by layer. Moreover, the code
developed is able to take as input a certain parameterization choice vector and
then construct the appropriate LFR. Given the new parameterization, some of the
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stability results presented in Section 3.3 need to be reformulated because of the new
state vector.

3.5.1 Stability Analyses
The equations for the i-th layer with the new specified vector becomes:

ẇi,1 = −2α(ŷ2
i−1wi,1 + ŷi−1bi,1 + ŷ2

i−1wi,2 + ŷi−1bi,2 − ŷi−1yi)
ḃi,1 = −2α(ŷi−1wi,1 + bi,1 + ŷi−1wi,2 + bi,2 − yi)
ẇi,2 = −2α(ŷi−1wi,1 + ŷi−1bi,1 + ŷi−1wi,2 + ŷi−1bi,2 − ŷi−1yi)
ḃi,2 = −2α(ŷi−1wi,1 + bi,1 + ŷi−1wi,2 + bi,2 − yi)
ŷi = (diwi,1 + bi,1 + diwi,2 + bi,2)
for i = 1 : N with ŷ0 = d

(3.50)

A slight notation modification has been performed in order to be able to consider
any layer inside a network, not only the first one. This is possible because, since for
the current learning iteration all weight and biases are known, all signals between
different layers can be constructed.
The linear fractional representation of the layer dynamics can now be built. The
GSS-object representing the layer can be turned into an USS-object which can be
used to perform stability analyses accordingly to different approaches. Using the
Robust Control ToolboxTM the USS-object can be split into its M − P components
as specified in Fig. 2.2. The system can be represented as:

yP

ẋ
ŷ

 =
 M1,1 M1,2

M2,1 M2,2



uP

x
y


Where:

uP = PyP (3.51)
By using this representation, it is possible to see how the uncertainties affect both
the state and the estimation of the label through the layers. The matrix M2,2
is constant for all layers as the training dynamics through the network’s layers is
always the same. What changes from layer to layer is the data going into each layer.
This signal will change both in terms of nominal value and range accordingly to
Eq.(3.46).

3.6 Controlled Learning Dynamics

3.6.1 Control Structure
The control of the network will be achieved by injecting fake label as inspired by
[3]. The fake label will be called yf . The injection must happen on the estimation
signal as, if it was done before a neuron, the same results obtained for an open loop
single neuron single layer network would be obtained. This would be totally useless
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since it was proven that there is not a stable region. Hence, the controlled network
would have a structure like this:

[
A B
C D

]

K

ŷ− u
y

yf

Figure 3.5: Block diagram of the control scheme for a single neuron.

The training equations must now be derived while using the updated loss function:

Lc(t) = (y − yc(t))2

= (y − ŷ(t)− yf (t))2

= (y − (dw(t) + b(t))− yf (t))2
(3.52)

Computing the gradient of the new loss function, i.e. ∇Lc:

∂Lc
∂w

(t) = ∂

∂w
(y − yf (t)− dw(t)− b(t))2

= −2d(y − yf (t)− dw(t)− b(t)),
∂Lc
∂b

= ∂

∂b
(y − yf (t)− dw(t)− b(t))2

= −2(y − yf (t)− dw(t)− b(t))

(3.53)

The controlled training equations can thus be written as ẋ = −α∇Lcx.

ẇ(t) = 2αd(−dw(t)− b(t) + y − yf (t))
ḃ(t) = 2α(−dw(t)− b(t) + y − yf (t))

(3.54)

The system can be re-formulated in the state-space as:

ẋ(t) = Ax(t) +
[
B Bc

] [ y
yf (t)

]
(3.55)

From Eq.(3.53) and Eq.(3.54) it can be seen that B = −Bc. Because the label y is
constant and cannot be manipulated to enhance the system performances, it shall
not be used as a control signal. Then, the system will only be controlled by the fake
label signal, i.e.:

ẋ(t) = Ax(t) +Bcyf (t) (3.56)
The control input matrix will be taken as Bc = B, by assuming the loss function to
be Lc = (y − ŷ(t) + yf (t))2.

3.6.2 Gain Scheduling Linear Quadratic Regulator
The first attempt at controlling a single neuron training dynamics will be made by
using optimal control to synthesize a gain scheduling LQR. For what was previously
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said, the assumption α = const. will be made. In order to account for the differ-
ent values of the parameter d in the training dynamics equations, the system in
Eq.(3.55) is sampled at different values within the range of d and then an attempt
at synthesizing a linear quadratic regulator for each value of d is made. Because
of the dimensions of the problem, each controller K has dimensions [1× 2]. Then,
an interpolation amongst each K component is made to obtain a gain scheduling
controller, i.e. a controller which has as components polynomial functions with d as
variable. In this thesis the interpolating polynomial will have order 4.

K(d) =
[
a0 + a1d+ a2d

2 + a3d
3 + a4d

4

b0 + b1d+ b2d
2 + b3d

3 + b4d
4

]T
(3.57)

In order to be able to use the MATLAB® built-in function lqr.m, which uses optimal
control theory to synthesize a LQR for the given system, it is necessary to remove
the identically zero pole of the A matrix. This pole will always be in zero since
the A matrix is non full rank. The pole is then moved in pnew = −10 × ε, where
ε ≈ 2.204e − 16 is the MATLAB® machine precision. Although this small change
does not impact the system dynamics, it overcome the numerical issue within the
software. It must be noticed that the ε multiplying factor might change if a different
MATLAB® version is used. In this thesis the MATLAB® version used was R2020b
Update 5. By using the approach previously described, the following gain scheduling
optimal controller is synthesized:

K(d)|N=4 =


d4

d3

d2

d
1



T 
8.0728e− 06 0.1248
−0.1711 −3.1915e− 06

−5.6174e− 06 −0.3073
0.3837 1.3731e− 06

4.8062e− 07 0.4123

 (3.58)

Now the plot of the exact values of the synthesized controllers’ components against
the interpolated values will be presented in order to prove the applicability of the
method.
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Figure 3.6: Comparison between the interpolated polynomials for the first com-
ponent of the gain scheduled LQR and the actual synthesized values.

To obtain the gain scheduling controller presented in Eq.(3.58), the state and control
input were assumed to be:

Q = I2

R = 1
(3.59)

In the next sections both the effect of changing the weights value is analyzed. The
study is first carried out for K(1) and then for K(2).
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Effects on K(1)
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Figure 3.7: Behaviour of the first component of gain scheduling controllers syn-
thesized for different values of both Q and R.

Increasing the penalisation on the states while keepingR constant has the same effect
of decreasing R, which means that an inexpensive controller is being synthesized,
hence a high gain behaviour is mimicked. Increasing values of q accentuates the
effects of the nonlinear terms in Eq.(3.58). What can be observed is that, no matter
the penalisation, for negative values d the first term of the controller will be negative.
A conclusion that can be drawn from this study is that, controller synthesized for
different conditions of Q and R are not interchangeable. This is because for the first
term of the controller there is a significant change in the value of K(1) for different
weights.
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Effects on K(2)
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Figure 3.8: Behaviour of the second component of gain scheduling controllers
synthesized for different values of both Q and R.

Increasing the penalization on the states, i.e. designing an inexpensive controller,
causes a change in the curve shape. As it can be seen in the figure, the bell of
K2(d) gets more accentuated as q increases. Finally, the distance between different
curves decreases as q increases. A similar conclusion can be drawn while varying
R. Less expensive controllers, e.g. the controller synthesized for R = 0.05, shows
an accentuated bell shape w.r.t. other controllers. However, the curves get flatter
quite fast, as an increase of the control input weight to R = 0.55, makes the curve
significantly flatter.

3.6.3 Closed Loop Simulation

It shall now be showed how the system performances are affected by the gain schedul-
ing controller.
First the plots of system controlled by a gain scheduling LQR synthesized for Q =
I2, R = 1 will be shown. Then the effect of Q, R will be investigated.
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Figure 3.9: States and estimated label behaviour w.r.t. time.

As it may be seen the system converges faster but there are no significant differences,
this holds for different values and combinations of d, α, x0. The main issue of this
controller is that the control input, i.e. u(t), is being restricted by the weight R.
If the penalization on the input is lowered, an equivalent effect can be achieved by
increasing the penalization on the state vector although it is less intuitive, much
better performances can be achieved.
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Figure 3.10: States and estimated label behaviour w.r.t. time.

It can be easily noticed that performances are much improved by lowering the value
of R, i.e. synthesizing less expensive controllers.

A few words must be spent on how the weights have been chosen so far, and how they
might be chosen in future applications. Usually, the weightsQ, R are used to prevent
the system states vector and control inputs from reaching values for which the system
presents an undesirable behaviour, i.e. they might be used for constraining the
states trajectory and control input magnitude. This especially applies for mechanical
systems where large control inputs may be undesirable because of the actuator’s
dynamics. The problem studied in this thesis does not present physical limitations,
neither in terms of states nor as control inputs. Because of this, the controller can
be given a higher authority by setting a lower value of R. Finally, although lowering
the values of R provide better performances, it might be helpful to find an optimum
operation point for which the system’s performances are enhanced by the controller
but the computational burden does not get too large.

Finally, it will be attempted to use an inexpensive controller to show the impossi-
bility of tracking the label.
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Figure 3.11: States and estimated label behaviour w.r.t. time using an inexpensive
controller, y = 6.

The non-robustness of the LQR can be overcome in two different ways.
The first one is to account for the offset by modifying the fake label in the following
way:

yf,new(t) = −K(x(t)− xss) (3.60)

Where xss is the states’ steady-state value, xss can be calculated as:

xss = C+y (3.61)

The symbol C+ representes the pseudo-inverse of the matrix C. This is required
since C is not square, hence the pseudo inverse must be used. This operation is
performed in MATLAB® by using the command \. The closed loop with y 6= 0
then becomes:

ẋ(t) = Ax(t) +B(−K(x(t)− xss)) +By,

= (A−BK)x(t) +B(y +Kxss)
(3.62)

As it will now be shown by the plots, this slight modifications solve the offset issue.
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Figure 3.12: States and estimated label behaviour w.r.t. time using an inexpensive
controller and accounting for non-zero label, y = 6.
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Figure 3.13: Loss behaviour w.r.t. time of the LQR-controlled learning dynamics
compared to the behaviour of the non-controlled learning dynamics, y = 6.

A brief discussion is needed in order to fully explain what price has been paid to
solve the offset problem for the LQR. Eq.(3.61) was used to obtain the asymptotic
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values of the states. Because of the dimensions of C, the matrices could not be
simply inverted, instead a pseudo-inversion was performed. Moreover, the problem
set was undetermined, this meaning the problem was having one equation and two
variables. Because this is a non well-posed problem it might be desirable to avoid
it. In the next section an alternative control structure, the LQI regulator which is
a robust controller obtained from the optimal control theory, will be presented in
order to avoid this issue.

3.6.4 Gain Scheduling Linear Quadratic Integral Regulator

The gain scheduling LQI controller is synthesized in an analogous way to the LQR
version. The following matrix Ki(d) is found:

Ki(d) =


d4

d3

d2

d
1



T 
−3.8303e− 05 9.0797 4.3789e− 06
−15.1933 −6.2800e− 06 4.6710e− 07

3.7191e− 05 −25.1009 −3.2519e− 06
53.1207 1.0235e− 05 −7.2872e− 07

−2.6472e− 06 55.2057 −3.1623

 (3.63)

Two comments can be made on the latter results. The first one is that, similarly to
what has been seen before, the element Ki(1) is mostly influenced by the polynomial
terms with even exponent, while Ki(2) is mostly influenced by the odd-exponent
terms. The second observation is that the controller term related to the integrative
variable does not depend on the d value as the terms related to the polynomial terms
with non-zero exponent are in the order of ≈ 10−6. The following plots describe the
closed loop simulations. The case where y = 6 is immediately studied. Similarly to
the LQR case, a less expensive controller guarantees better performances. In this
thesis the LQI gain scheduling controller for R = 0.01 is shown.
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Figure 3.14: States and estimated label behaviour w.r.t. time using an inexpensive
LQI controller, y = 6.
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Figure 3.15: Loss behaviour w.r.t. time of the LQI-controlled learning dynamics
compared to the behaviour of the non-controlled learning dynamics, y = 6.

From the plots it can be concluded that the LQI gain scheduling controller guaran-
tees even better performances while accounting for the disturbance-like effect caused
by a non-zero label. Finally, from the loss plot, it can be seen how the loss value
also exhibits a peak due to the initial oscillations.

3.6.5 On the influence of initial conditions
Before concluding the analysis of the system controlled by an optimal regulator,
the influence of the initial conditions must be considered. This final investigation
will be run only for the LQI regulator. The reason for this is because, in order to
perform this analysis, the original LPV system will be reduced to a LTI sytem for
an arbitrary combination of α, d. During the development of this analysis different
combinations of values were tested and similar results were found. This was done in
order to check the consistency of the analysis over the whole domain of the learning
dynamics.
During the testing of the synthesis script different combinations of x0 and y have
been tested in order to avoid any malfunctioning. In addition to a greater speed of
convergence, for certain values of x0 and y an initial unexpected oscillation for the
system controlled by the LQI regulator was observed. .
The unexpected oscillation is similar to those exhibited by non-minimum phase
systems, i.e. systems with at least one zero in the RHP. In order to verify this
property, it is necessary to find the transfer function of the system. For the closed
loop system presented in Eq. (2.29) the transfer function is:

ŷ

y
(s) =

[
C 0

] (
sI3 −

[
A 0
−C 0

])−1 [
B
1

]
(3.64)

For the controller synthesized for Q = I3, R = 0.1, dnom = 0.5, the transfer function
has the following zeros:
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Zero ID Zero values
1 -3.1623
2 -0.0631 + j0.0630
3 -0.0631 - j0.0630
4 -0.0634 + j0.0628
5 -0.0634 - j0.0628
6 -0.0628 + j0.0628
7 -0.0628 - j0.0628
8 -0.0633 + j0.0624
9 -0.0633 - j0.0624
10 -0.0628 + j0.0624
11 -0.0629 - j0.0624
12 3.3171e-15
13 3.3176e-15
14 -1.7246e-16
15 -1.6834e-16
16 3.7922e-17
17 3.4937e-17

Table 3.9: Transmission zeros.

As it can be seen in the previous table, the transmission zeros 12,13,16,17 belongs
to the RHP. Thisnmeans that the closed loop system is either non minimum phase
or the transmission zeroes are illposed. But, the last two, i.e. z16, z17 cannot be
considered as they are smaller than MATLAB® machine precision, i.e. ε ' 2.2e−16.
As seen in the previous table there are RHP zeros which may cause the oscillations,
nevertheless this may not be the reason behind the undesirable behaviour since the
magnitude of the RHP zeros is very close to the MATLAB® machine precision.

Using a gain-scheduled LQI controller for the previously stated parameters, some
time simulations for different initial conditions will now be run. Since the initial
oscillations is present both in the w(t), b(t) and ŷ(t) only the estimated label will
be reported for clarity reasons. Different labels will also be tested.
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Figure 3.16: ŷ(t) behaviour for the different labels.

What can be learnt from this plots is that the system will experience a larger initial
oscillation, that may be due to the system being non-minimum phase, if the initial
guess of the weight and bias are closer to the asymptotic value. The same applies
to the estimated label.

3.6.6 Conclusions

As it was proven in this section, a gain scheduling LQI controller guarantees a good
level of performances both in label tracking and in states training. Nonetheless,
the computational cost of this method is high, and it still returns an approximated
result because of the interpolation.
The computational cost of this method is high since, at each sampled value of d the
following operations must be done:

• Change the position of the identically zero pole
• Solve an optimization problem

The controllers presented in this thesis were synthesized by discretizing the range of
d in 1000 points. Then, after this n iterations are finished an interpolation problem
must be solved. To reduce the computational cost it will now be used robust control,
which allows to synthesize a controller for an uncertain plant while solving a single
optimization problem.
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3.7 Robust Control

In order to synthesize aH∞ based controller it is necessary to create appropriate per-
formance signals and weights to guarantee suitable performances by the controlled
system.

Neuron Dynamics

Ky Wn
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Figure 3.17: Structure used for the H∞ controller synthesis.

The weights used for the H∞ synthesis are Wp, Wu and Wn. In the robust control
framework, weights are used to augment the system and set specifications for the
synthesis.

The most complex weight is Wp.

Wp(s) = A
s+ zp
s+ pp

(3.65)

Where A is the magnitude, zp is the zero and pp is the pole of the transfer function.
Its goal is to shape the difference between the label and the estimated label. Its
behaviour in the frequency domain can be seen in the following plot.
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Figure 3.18: Bode magnitude plot of the weight Wp(s).

By choosing the weight in this way, the error is going to decrease as the frequency
increases.
The two other weights, i.e. Wu and Wn, are more simple. Wu is a static gain defined
in such a way to act as an upper bound on the control input. On the other hand,
Wn is used to simulate a noise on the estimated label. Although this weight is not
strictly necessary, it can add some generality to the synthesis problem as numerical
issues might happen. This can be represented by a static gain having magnitude 1%
of y but it will be later shown how the systems can sustain higher levels of noise.
A helpful property of the system can now be exploited. It can be assumed that the
controller has access to both the state vector and to the disturbances. Since the
disturbances, i.e.y, n are both caused by the label, this assumption can be made.
In this way, it is possible to use the MATLAB® built-in function hinffi.m which
takes advantages of this assumption to synthesize a H∞ based feedback controller.
The control input u is then computed in the following way:

u = K

[
x
w

]
(3.66)

Where w is the disturbances vector, i.e. w = [r n]. It must be pointed out that x
is now the state vector of the augmented plant shown in Fig. 3.17. Its dimensions
are now [3× 1]. The controller for the plant shown in Fig.3.17 is:

K = 1e04 ∗
[
−2.4276 −4.8551 0.6043 0 0

]
(3.67)

Now, some closed loop simulations can be run. The loop is closed by performing
a lower LFT between the augmented plant and the controller. The simulations are
run for a sequence of different labels, the noise on the feedback branch is set to the
10% of the largest label injected in the system and by the use of randn.m is then
made random while keeping a normal distribution. This increase is made to make
the oscillations in the system clearer.

43



3. Method and Results

0 5 10 15 20 25 30 35 40 45 50

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50

-15

-10

-5

0

5

10

15

Figure 3.19: Closed loop simulation for a sequence of labels with a H∞ based
controller.

As shown in the previous plots, the estimated labels performance level, both the
regular and the noisy one, is much higher than what was achieved with a gain
scheduling optimal controller. Moreover to synthesize this robust controller, no
assumptions or sampling on the range of d were made. This means that the controller
presented in Eq.(3.67) holds for the entire range of d.
Although the convergence of the label is guaranteed, with the plant presented in Fig.
3.17 it is impossible to know the value of the trained hyperparameters. This issue
can be easily overcome by augmenting the output equation of the neuron training
dynamics in the following way:

Cnew =
[
C
I2

]
(3.68)

In this way, the states current value is also part of the system output vector. The
augmented plant will remain the same, with the only difference that Cnew, and a
new D matrix in order to be coherent w.r.t. systems’ dimensions, is now used. The
synthesis gives as result the following controller:

Kaug = 1e04 ∗
[
−2.4367 −4.8734 0.6066

]
(3.69)

As it may had been expected since the weights are kept the same, Kaug and K are
very similar. A simulation similar to the one previously run showing the hyperpa-
rameters’ training is now presented:
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Figure 3.20: Training behaviour of the hyperparameters while controlled by a H∞
based controller.

If compared to the gain scheduling LQI controller it can be proven that the hyper-
parameters converge to the same values. However, the convergence speed is much
faster. The robust controller allows a convergence in approximately 5 time iterations
while the system controlled by the optimal controller takes approximately 20 time
iterations. The performances of the controller can be further improved. This can be
done by tuning the bandwidth of Wp(s), by properly tuning the weight, it will also
be possible to achieve better γ values for the feedback system. For performances
similar to the ones presented in Fig. 3.19 and Fig. 3.20, the γ value reached is about
3e04. Nonetheless, better values may be reached by both choosing different weights
or by better tuning the current controller.
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4
Conclusions

Finally, the aim of this thesis was to show of the extensive implementation of meth-
ods related to control theory to ANNs can result in a much faster convergence.
What was proven is that it is possible to model the hyperparameters training dy-
namics and as shown in Chapter 3, the most effective way is to synthesize a robust
controller. This could allow to enhance the stability margins of neural networks.
Moreover, the application of robust control to networks training seems promising.
This work was limited to a single neuron training dynamics, but we believe that
it can be easily extended to more complex networks. Furthermore, as shown in
Chapter 3, each neuron can be easily modeled as an uncertain system with the help
of the SMAC Toolbox [4].
In order to make this approach fully general two issues must be overcome. The
first one regards the modeling of a full network. This issue is strictly related to
MATLAB® as it is not possible to automatize the creation of function handles,
which was a key part in obtaining the LFR of the network training dynamics. A
way to overcome this problem could be use a different programming language to
create the function handle and then import it inside the MATLAB® environment.
Finally, as suggested in Section 3.5, the networks modeling should be done layer
by layer, and then the LFR of each layer should be properly interconnected. The
second one is more critical as it regards the inclusion of the activation function inside
the training dynamics. As said in Chapter 2, a solution to this problem would be
the use of Zames-Falb multipliers and then the use of integral quadratic constraints
(IQC) to synthesize a controller.
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