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Abstract
This thesis focuses on the investigation and the implementation of different ob-
servers for the estimation of the roll angle of a motorbike. The central core of
the activity is applying a Model-Based design in order to outline, simulate and
implement the filters with the aim of a final comparison of the performances.
This approach is crucially underlined among the chapters that articulate this
document: first the design and tuning of an Extended Kalman Filter and a
Complementary Filter in a pure simulation environment emphasize the most
accurate choice for the particular problem. After this, several steps were per-
formed in order to move from the aforementioned simulation environment to a
real hardware application.
In conclusion, several sensor configurations were tested and compared in order
to highlight which sensor suite gives the best performances.
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Chapter 1

Introduction

The work reported in this thesis has been accomplished through an internship
at Aviorace, a company which deals with the conception and production of mo-
torsport electronic components.
The Research and Development department of the company has designed an
Inertial Measurement Unit intended for an advanced automotive market: mo-
torsport or even high-performance road vehicles. Although the measuring part
of the sensor was almost ready for market deployment, the company focused
on extending the sensor capabilities by implementing an attitude estimation
on-board.
Attitude estimation is a highly challenging subject for a significant amount of
applications. For this particular purpose, the interest was settled on one specific
quantity: the lean angle.
In this chapter will be first of all offered an overview of the reasons that lead to
such great interest to this particular topic and how the knowledge of this angle
is exploited. A synopsis of how this problem can be faced by implementing state
of the art technologies will precede the description of the approach pursued in
this work.

1.1 Motivational example
The investigation of the attitude of a motorbike is a non trivial topic due to the
severe dynamics to which the vehicle is exposed. Before dealing with possible
solutions and algorithms, it is worth introducing the reasons why this informa-
tion may be so meaningful.
By exploiting the Eulerian angles, it is possible to describe the attitude of a
rigid body with three angles: φ for roll, θ for pitch and ψ for yaw. As men-
tioned before, the interest of this work relies on the roll angle, an example is
shown in Figure 1.1. This can be defined as the inclination of a vehicle with
respect to the vertical direction.
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Figure 1.1: Lean angle φ of a motorbike

This information is properly combined with other data in other to implement
different control strategies on the motorbike. A very common example is the
integration of the lean angle in the Traction Control System as shown in the
table depicted in Figure 1.2 that is an actual running strategy on a MoTeC
Electronic Control Unit. The traction control is performed by the ECU in or-
der to avoid the rear wheel slipping which can turn into an unpredictable and
dangerous behaviour of the vehicle.
In the most simple configuration of this system, the ECU retrieves the speed
of each wheel from two phonic wheels and calculates the slip of the motorbike
as the difference between the tangential velocity at the touch point of the front
and rear wheel. This speed difference will at the end multiply a gain that deter-
mines the percentage of throttle reduction to restore the grip on the rear wheel.
For a stability purpose, the maximum allowed difference of speed between the
two wheels may be tuned accordingly to the lean angle. This allows a better
calibration since the power cut will be more severe as the motorbike is more
leaned and lighter when the motorbike is in a vertical position allowing always
the maximum power available while staying in a safe condition.

Figure 1.2: Maximum slip allowed for each gear and roll angle
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Traction Control is one of the most typical systems that uses this information
but all the strategies running on the ECU can be improved and completed by
it (e.g. Cornering ABS, Stability Control, Combined Breaking System).
To generalize, several algorithms implemented on the ECU base their actuation
on a power cut where the proper actuator is represented by the throttle body.
Among all the information, the roll angle enables an additional discrimination
for a more precise control.

1.1.1 State of the art of lean angle retrieval

Lean angle estimation is highly discussed in literature since the problem can
be faced with different approaches. Since the reference market is motorsport,
the main evaluation criteria of any system are the cost, the weight and the
performance.
There are two main approaches to the topic:

• Optical systems, based on time of flight sensors or video elaboration;

• MEMS sensors data fusion, algorithms that integrate information coming
from different sensors.

The optical systems are preferable where the highest precision is needed and an
increase of weight is not a problem. As mentioned before, one possible appli-
cation is extracting the desired information by elaborating images coming from
a camera mounted on-board. In Figure 1.3a instead is shown an example of
how to extract the lean angle with two laser sensors based on the time of flight
principle. Each sensor is mounted on the side of the rear wheel as shown in
Figure 1.3b.

(a) Measure principle
(b) Laser sensor on-board

By knowing the distance p between the sensors and measuring the distances d1
and d2 of each sensor from the ground, it is possible to calculate the roll angle
φ as:

φ = tan−1

(
d1 − d2
p

)
(1.1)
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The drawback of this system is the weight added by the sensors and mainly by
the bracket holding them in position. It can be very useful however in testing
other algorithms that are less precise but do not add any weight to the vehicle.

The other main approach, which will be deeply investigated in this work, con-
sists in using sensors that may be already mounted on the bike and extrapolating
the information needed by applying an appropriate algorithm.
This approach is usually performed with the aim of an Inertial Measurement
Unit able to measure accelerations and angular velocities affecting the sensor.
This data can be combined together with other sensors in order to improve
estimation performances.

1.1.2 Company requirements

Although the different approaches presented for the particular problem, the ac-
tivity didn’t start from scratch but from a predefined hardware. The company
in fact had already designed the sensor board and needed to add the estimation
of the roll angle as an additional feature.
As described in Chapter 3, there were some minor possible hardware changes
but the general approach for the problem was already defined at the beginning
of the work: using the already existing IMU for a real-time estimation, eventu-
ally adding sensors for an improved esteem.
For this reason, optical sensors have not been considered for the final product
but just for a possible track validation of the developed algorithm.
The main benefit of this approach is the reuse of components already existing
on the motorbike without adding weight or invasive solutions.

1.2 Solutions exploited
In its most basic configuration, a 6-axis IMU provides three digital readings
about the accelerations (one for each axis that constitutes a three-dimensional
space) and the angular velocities. This fundamental configuration can be ex-
tended with the implementation of other sensors.
In this work, in fact, it is studied in the first place the performance of the basic
IMU eventually combined with a GPS sensor that provides the vehicle inertial
speed components along its three axis. After this, the IMU has been redesigned
in order to extend its capabilities integrating a 3-axis magnetometer.
A backup estimation is however required to handle a failure of the GPS or mag-
netic field disturbances on the magnetometer. This redundancy is implemented
on the simplest configuration, the 6-axis IMU, and the estimation technique
here used is the complementary filter. This type of technique is quite simple to
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implement since it combines the readings of accelerations and gyroscopes. On
the other hand, the drawback is that it can lead to estimation errors when the
sensors are subjected to low-frequency accelerations.
In order to increase the robustness of the system, a more advanced procedure
is required: the Extended Kalman Filter. Indeed, it requires more quantities
to be involved: as mentioned before, during this work this technique will be
evaluated using first of all a GPS in order to implement the corrections and
then a magnetometer.

1.3 Hardware exploited
In this Section will be presented the main hardware components that were used
during the work.

Figure 1.4: Aviorace Inertial Measurement Unit

Figure 1.4 shows the central tool of the whole activity: the Inertial Measure-
ment Unit designed and developed by Aviorace. The detailed datasheet of the
board is reported in Appendix A whereas the development of the hardware is
deepen in Chapter 3.
All the information coming from the IMU and the different configurations are
read or sent through a CAN communication. The sensor board in fact is pro-
vided with a 4-pin connector (VBat, GND, CANH, CANL) and is interfaced to
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a PC with the help of the CAN sniffer depicted in Fig. 1.5.

Figure 1.5: Peak CAN sniffer

Lastly, general laboratory instrumentation was mandatory to link and debug
the several components:

• 12V DC Power Supply: to power up the IMU or the used demoboards;

• Digital Oscilloscope: to debug the waveform of desired signals;

• DSPIC33EP512MU810 Demoboard: to test hardware configurations
different from the actual prototype;

• STM32G491RE Demoboard: to test a hardware setup with a different
MCU;

• Microchip DSPIC33 Programmer: to program the on-board MCU;

• BMI160 Demoboard: to test the IMU with any demoboard;

• Magneto7 Demoboard: to test the magnetometer with any demoboard.

1.4 Software exploited
Two different major phases can be distinguished by listing the software used
during the activity: a first modeling phase and a following hardware implemen-
tation phase.
For what concerns the modeling part, the number of software used is minimal:

• MATLAB;

• Simulink;
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As pointed out in Chapter 2, the greatest part of the functions was designed as
a MATLAB function. Those functions where then linked together in a Simulink
environment.
Regarding the implementation on real hardware, several software were exploited:

• MikroC Pro: IDE for DSPIC33 programming;

• PCAN-Explorer 6: tool for reading packets received by the PCAN
device and designing database for CAN communication;

• MoTeC i2 Pro: software for elaborating logged data;

• Fusion360: tool for the production of 3D CAD used here for prototype
design;

• STM32CubeIDE: integrated environment for STM32 microcontrollers
configuration and firmware design;

• Github: hosting service that operates also as a version control system.

At last, the following software were used for documentation production:

• Overleaf : online tool for LaTeX production, used for drafting the thesis
and periodic reports;

• Microsoft Word: used for the production and revision of datasheets;

• Microsoft Power Point: used for the preparation of the final presenta-
tion.
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Chapter 2

Model setup

This chapter aims to detail better the modeling steps introduced in Chapter 1.
First the kinematic model of a rigid body is presented. Different sensor setups
are introduced and their implementation is verified through theoretical and sim-
ulation studies.
Then a theoretical overview of two filters, i.e. the complementary filter and the
Extended Kalman filter, is given.
These first simulation steps are performed in a continuous-time environment
even if to implement the algorithm on a real MCU it is mandatory to switch to
a discrete-time domain.
The main reason for which it was chosen to perform this further step is because
the observation properties are preserved also in the discrete-time model but
easier to check and retrieve in a continuous-time one.
After all the considerations, every setup has been simulated during the Model
in the loop with sinusoidal noisy inputs in order to check the consistency of the
designed filters.

2.1 Kinematic model
To study the attitude of a vehicle with six Degree-of-Freedom (DoF), we con-
sider it as a rigid body.
The relationship between the body reference frame and the inertial reference
frame is depicted in Figure 2.1.
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Figure 2.1: Quantities involved in the description of the kinematics of a rigid body

Analytically, the attitude of the rigid body with respect to the inertial space is
assumed to be described by a rotation matrix with the Euler angles as param-
eters: φ for roll, θ for pitch and ψ for yaw. The kinematics is then given by
System 2.1: {

v̇ = a

Θ̇ = Mω(Θ)ω
(2.1)

Where v is a vector that represents the velocity of the vehicle along its three axis
and a the accelerations. Θ instead is a vector that collects the three Euleran
angles that describe the rotations of the rigid body in space: φ, θ and ψ.
The two inputs of the kinematic model will be given by the readings of the IMU
a and ω whereas the matrix Mω(Θ) is defined as:

Mω(Θ) =

1 sin(φ)tan(θ) cos(φ)tan(θ)
0 cos(φ) −sin(φ)
0 sin(φ)sec(θ) cos(φ)sec(θ)

 (2.2)

The system can be also equipped with a sensor suite composed by a GPS and
a magnetometer whose readings will be performed as:{

y1 = v + ν

y2 = R(Θ)m(p) + ν
(2.3)
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Even if this sensor suite is here presented in a compact form, it will be investi-
gated during all the stages separately. First exploiting the IMU with only the
GPS and then the IMU with only the magnetometer.

Given the rotation matrix from inertial to body:

R(Θ) =

 cosψcosθ sinψcosθ −sinθ
cosψsinθsinφ− cosφsinψ cosφcosψ + sinφsinψsinθ cosθsinφ
sinφsinψ + cosφcosψsinθ cosφsinψsinθ − cosψsinφ cosφcosθ


(2.4)

it is possible to define the two inputs of the system as:{
u1 = R(Θ)(a− g) + w1

u2 = ω + w2

(2.5)

The overall non-linear plant can be written down emphasizing the states as:{
v̇ = R(Θ)T (u1 − w1) + g

Θ̇ = Mω(Θ)(u2 − w2)
(2.6)

The compact form of this general non linear system can be summarized as:{
ẋ = f(x, u− w)

y = h(x) + v
(2.7)

Where x represents the vector of states composed by the inertial speeds and
angles, f the state-transition model from Equation 2.6, u the inputs coming
from the IMU, y the outputs of the system, h the sensor model, w and v the
noises affecting the process.

2.2 Complementary filter setup
The advantage of implementing a complementary filter relies on its simplicity.
This has to be intended on different layers. First of all the set of sensors that
is needed for an attitude estimation is minimal: only the accelerations and an-
gular velocities are needed, indeed.
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The second advantage is that the algorithm is very simple. This allows to imple-
ment this type of filter even in applications that do not have powerful electronics
on-board able perform complex calculations.
The basic principle behind this type of filter is quite simpke: by integrating
an angular velocity over time, it is possible to retrieve the angular position for
every time instant. This however is possible only in an ideal application where
the sensor is not subjected to any type of error.
In practice, the readings of the sensor can be quite noisy and, since the working
principle implements an integration over time, the error is summed up through
the time interval. This summation gives rise to a divergent estimation.
In order to overcome this limitation and try to improve the estimation, accel-
eration data are used.
The advantage is that no integration has to be performed meaning that this
approach those not have a divergent behaviour. The drawback however is that
the accelerometers are sensitive to external force acting on the sensor at high
frequencies.
Given those considerations, the approach that gives the best results relies on
a combination of the two: gyroscopes are very reliable in a short time interval
but diverge in a longer one, accelerometers are stable on a long time interval
but subject to severe noise at high frequencies.
Analytically the CF has a structure characterized by two filter: a low-pass and
a high-pass. As shown in Figure 2.2, there are two signals x1 and x2 which are
low- and high-frequency noise-corrupted versions of the signal x.

Figure 2.2: Low- and high-pass filters of complementary filter

G(s) is the transfer function of the Low-pass filter while Ḡ(s) is the transfer
function of the High pass such that Ḡ(s) +G(s) = 1.
By filtering the signals and filtering them, it is possible to retrieve the output
of a general CF as:

x̂ = x1G(s) + x2Ḡ(s) (2.8)
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For attitude estimation, this general approach can be applied as follows: gyro-
scope estimates are applied to x1 while the accelerations to x2. Applying it to
the filter it is possible to write the estimation of x̂ as:

x̂ = α

(∫
ẋg dt

)
+ (1− α)xa (2.9)

Where α represents a weighting coefficient for gyroscope and accelerometer
estimates such that α ∈ [0 1].
Equation 2.9 can be written in Laplace domain as:

x̂(s) =
1

s

(
a

1− as

)
xg(s) +

(
1

1− as

)
xa(s) (2.10)

in order to highlight the transfer functions of the HPF and the LPF shown in
Figure 2.2.
While xg and xa are the estimates of gyroscopes (φg, θg and ψg) and accelerations
(φa, θa and ψa) calculated as:

φ̇g = p + qsinφtanθ + rcosφtanθ (2.11)

θ̇g = qcosφ− rsinθ (2.12)

ψ̇g = p + qsinφsecθ + rcosφsecθ (2.13)

φa = tan−1

(
ay
az

)
(2.14)

θa = tan−1

(
−ax

aysinφ+ azcosφ

)
(2.15)

ψa = tan−1

(
azsinφ− aycosφ

axcosθ + aysinθsinφ+ azsinθcosφ

)
(2.16)

p, q and r represent the angular velocities read on x, y and z axis while ax, ay
and az the accelerations on these axys.
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2.3 Extended Kalman Filter setup
EKF is a very powerful observer suitable for the observation of non-linear sys-
tems.
In this particular work it has been deeply exploited and tested in order to out-
line its performances. Opposite to the Complementary filter in fact, the EKF
is able to estimate and use as input data the covariance of the measuring noise
that affects the sensors. This approach allows to re-adapt automatically instant
by instant the weight and "trust" that is given to each reading.
This filter however has two major limitations:

• Because its non-linear nature, its convergence is only locally guaranteed;

• it requires a significantly higher computational power with respect to the
complementary filter.

The thesis aims to identify which set of sensors provides the best reduction
of the estimation error. The base sensor is obviously the 6-axis IMU for each
setup, this has been completed with a GPS in a first instance and after with a
magnetometer; the performances are then compared in Chapter 4.
In order to gain a better confidence with this filter, every configuration is firstly
tested with a continuous time model. However, since the final goal is a hardware
implementation, it becomes mandatory to switch to a discrete time model.
First it is reported a general overview of the steps required to implement a gen-
eral EKF abstracted from any particular implementation. Then it is reported
every specific model injected in these equations to perform the estimation.

2.3.1 Continuous time Extended Kalman Filter

Given a general non linear-system as described in Equation 2.7, an EKF can be
implemented as:

{
˙̂x = f(x̂, u, 0) + L(t)(y − ŷ)

ŷ = h(x̂)
(2.17)

Where L(t) represents the Kalman Gain and is calculated as:

L(t) = PCT (t)R−1
d (2.18)
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and P is the solution of a Differential Riccati Equation determined by:

Ṗ = A(t)P + PAT (t) +B(t)Qd11B
T (t)− PCT (t)R−1

d C(t)P (2.19)

In Equations 2.18 and 2.19 three matrices appear: A(t), B(t) and C(t). Those
depend on the particular model that is under investigation but have to be ex-
plicitly calculated since the system is non-linear.
The equations to retrieve those quantities are:

A(t) :=
∂f

∂x

∣∣∣∣
x̂,u,0

B(t) :=
∂f

∂w

∣∣∣∣
x̂,u,0

C(t) :=
∂h

∂x

∣∣∣∣
x̂

(2.20)

Matrices Qd11 and Rd instead are related to the noise affecting the process and
the output, those can be calculated as:

Qd11 = δ(t− τ)E

w1(τ)wT1 (t) · · · w1(τ)wTn (t)
... . . . ...

wm(τ)wT1 (t) · · · wm(τ)wTn (t)

 (2.21)

Rd = δ(t− τ)E

ν1(τ)νT1 (t) · · · ν1(τ)νTn (t)
... . . . ...

νm(τ)νT1 (t) · · · νm(τ)νTn (t)

 (2.22)

Those quantities are retrievable through the datasheets of the particular sensors
implemented, they can then be tuned in order to improve the performances of
the filter.
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2.4 Observability study
A system is observable if its states at a certain time instant can be uniquely de-
termined given a finite sequence of its outputs. Considering the full set of states:

x =

[
v
Θ

]
=


vx
vy
vz
φ
θ
ψ

 (2.23)

These can be divided in two sets: an observable part and an unobservable part.

x =

[
xo
xno

]
(2.24)

For this particular application, since the roll angle φ is the quantity of interest,
it can be acceptable if some of the other states appear to be unobservable.
The aim of this section is verifying the observability properties of different sensor
setups. Even if the continuous-time simulations used for this check can not be
implemented on real hardware, they are very useful since these properties hold
also when the system is discretized.
The three setups considered for the test are:

• IMU and GPS, accelerometers and gyroscopes along GPS velocities
projected on the three axis;

• IMU and magnetometer, accelerometers and gyroscopes with magnetic
field readings on three axis;

• IMU, only accelerometers and gyroscopes.

The observability of a Linear Time-Invariant system can be tested by checking
the rank of matrix O defined as:

O :=


C
CA
CA2

...
CAn−1

 (2.25)

The system however is time variant, indeed matrices C and A change their
values continuously.
For this reason the tests were performed calculating at a continuous time also
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the numerical values of these two matrices and building in this way a continuous-
time observability matrix with not constant eigenvalues.
A second check was possible for the setups that were observed by means of an
Extended Kalman Filter. Exploiting matrix P from Equation 2.19, it is possible
to check its eigenvalues. If the eigenvalue with the lowest magnitude does not
tend to zero in a given time span the system is "uniformly" observable.
These two tests lead to the following conclusions:

• IMU and GPS not fully observable: the yaw angle is unobservable;

• IMU and magnetometer not fully observable: the three velocities are
unobservable;

• IMU not observable.

2.5 Simulink block diagram
The simulation of the model in each configuration has been performed in a
Simulink environment. Several block diagrams were designed and as a result of
the chosen design it was possible to conduct all the simulations just adapting
the Observer block according to the sensor suite and the chosen filter (EKF
or CF).

Figure 2.3: Continuous time plant
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Here is a brief explanation of each block that shows up:

• Clock: injects a continuous time to the model;

• Real Inputs: generates sinusoidal signals for accelerations and gyro-
scopes;

• Plant: implements Equation 2.1 for calculating the real state;

• Sensor suite: implements Equation 2.3 in order to build up GPS or
magnetometer readings and to add noise to all the sensors;

• Observer: receives noisy sensor readings in order to estimate the states.

For what concerns the implementation of the complementary filter, for sim-
plicity reasons it was directly implemented the "complementaryFilter" object
provided by Matlab. This tool has all the properties described in Section 2.2
and allowed a very quick and simple implementation.

2.5.1 Design of the Extended Kalman Filter

The Extended Kalman Filter, enlarged in Figure 2.4, has been designed by
expoliting Matlab functions with the proper equations inside and then linked
together.

Figure 2.4: Continuous time Extended Kalman Filter with GPS

Since this filter has been used both with IMU+GPS and IMU+magnetometer
setups, the Sensor model and C(x) matrices have been properly adapted
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based on the current simulation configuration.
Starting from the center of the Figure, it is possible to find three blocks that
are calculating matrices A, B and C. The calculation of these matrices was
described in an abstracted way by Equation 2.20. For this particular configu-
ration, the linearization of the plant leads to the following quantities:

A(t) =

[
0 ∂R

∂φ
u1

∂R
∂θ
u1

∂R
∂ψ
u1

0 ∂Mω

∂φ
u2

∂Mω

∂θ
u2 0

]
(2.26)

B(t) = −
[
RT 0
0 Mω

]
(2.27)

C(t) =

[
I 0 0 0
0 ∂R

∂φ
m ∂R

∂θ
m ∂R

∂ψ
m

]
(2.28)

Where R is the rotational matrix described in Equation 2.4 and M in Equation
2.2. Matrix A moreover uses the inputs coming from the IMU. For these reasons
the three blocks receive constantly the updated state and input.
Matrices A, B and C, along the current state, feed the covariance update block.
This block simply implements Equations 2.18 and 2.19 in order to calculate and
output the optimal Kalman Gain L(t).
As indicated by Equation 2.17, this Kalman gain has to be multiplicated by
the difference between the real noisy sensor readings and the expected readings.
The expected readings are calculated in the "Sensor model" block which simply
implements Equation 2.3: knowing the current state of the system and injecting
it in the equation it is possible to find out the expected reading of the sensor.
L(t) and [y−h(x)] are multiplied together and sent back to a summation block.
The other input of this block is the state transition. This calculation is per-
formed by taking the previous state of the system and the current noisy inputs
sent by the IMU. These data are elaborated by means of Equation 2.6 which
outputs the first derivative of the state.
The summation block has in this way as inputs the two terms of Equation 2.18:
f(x̂, u, 0) and L(t)(y− h(x)). By integrating the result it is possible to retrieve
the current states of the overall system.
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2.6 Continuous-time simulations
In order to check the consistency of the designed filters, some simulations were
performed. The aim of this simulation was not to have a quantitative value of
the error performed but just a qualitative one.
The simulations were performed with the aforementioned sinusoidal inputs and
the results are shown in the Figures below.

Figure 2.5: IMU and GPS fused in continuous time with EKF

Figure 2.6: IMU and magnetometer fused in continuous time with EKF
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Figure 2.7: IMU in continuous time with Complementary Filter

The verification of the filters design is confirmed for every setup, the roll angle
in fact is well estimated. The IMU and magnetometer setup is here showing
the best performances in terms of error, this parameter however will be verified
in Chapter 4 in a discrete-time domain.
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Chapter 3

Discrete-time design and hardware
implementation

In this chapter are reported the main topics handled in order to move from a
continuous-time simulation environment to a hardware implementation. While,
in fact, Simulink helps identifying which setup gives the best performances, only
a real implementation points out the best choice in a real-world environment.
Discretization is mandatory for hardware application since obviously all MCUs
operate in a discrete time domain. First of all are listed the steps that are
required in order to move from a continuous-time model to a discrete-time
one. Besides the model, also the filters need a readaptation to this simulation
environment.
Once the simulation setups are presented, it is possible to move to an overview of
the main hardware components that articulate the Inertial Measurement Unit;
the detailed datasheet of this product is available in Appendix A.
The second phase is showing the steps that allow to translate Simulink model
to C-code once the architecture of the Micro-controller is sufficiently known.
At the end are presented some encountered issues and the solution adopted
along some necessary operations carried out to ensure the correct behaviour of
the system.

3.1 Discretization of the model
There are many algorithms to solve ordinary difference equations (ODEs) that
do not admit an analytical solution. The one implemented in this work is the
so-called "forward Euler" and has been chosen for its simplicity with respect to
other more advanced techniques like the "Runge-Kutta" methods. This algo-
rithm, in particular, has been exploited in order to discretize the state transition
model.

Given a general ODE:

ẏ = f(t, y(t)) (3.1)
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Its time derivative can be approximated as:

ẏ ≈ y(t+ h)− y(t)

∆t
(3.2)

After expliciting y(t+ h) and substituting ẏ it is possible to get:

y(t+ h) = y(t) + f(t, y(t)) ·∆t (3.3)

By fixing a constant time step h, it is possible to change Equation 3.3 to a
sequence:

yn+1 = yn + f(tn, yn) ·∆t (3.4)

The constant time step has been fixed according to the requirements of the
company. The desired refresh rate of the lean angle is in fact at 10Hz meaning
a ∆t of 100ms.
Beside its simplicity, the drawback of this method is a higher discretization er-
ror with respect to other techniques. For this particular application however
this error is negligible, indeed it is severely lower than the estimation error per-
formed by the filters.

3.2 Filters in discrete-time

3.2.1 Complementary filter

The discrete time complementary filter is quite straightforward to get: con-
sidering the continuous time equation 2.9, the discretized version will simply
be:

x̂(n) = α[x̂(n− 1) + T · xg(n)] + (1− α)xa(n) (3.5)

As for the previous case, xa and xg represent the Eulerian angles estimated re-
spectively with the aim of accelerometers and gyroscopes while α is a weighting
coefficient. The most important difference is that the integration is not per-
formed anymore in a continuous time but as a discrete integral.
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3.2.2 Extended Kalman Filter

In continuous time the operations of Prediction and Update are fused together
in equations 2.18 and 2.19 since it is not necessary to distinguish two separate
time instants.
This however is not possible in a discrete domain where the process needs to be
predicted and updated at specific intervals given by the sampling period of the
sensors.
The first thing to be discretized is obviously the model of the non-linear system:{

x̂k = fk−1(xk−1, uk−1, 0)

yk = hk(x)
(3.6)

First step of a discrete EKF is the "Prediction". This step provides the predic-
tion of both the state vector and covariance matrix. The time instant k refers
to the current sample while k− 1 to the previous one. The quantities that have
been predicted but not yet updated are marked with a − sign as apex.

x̂−k = fk−1(x̂k−1, uk−1, 0)

x̂k = x̂−k +Kk · ỹk
P−
k = AkPk−1A

T
k +Qk

(3.7)

After the predictions of the state and covariance matrix are performed, it is
possible to move to the update step. First of all is computed the measurement
residual as:

ỹk = yk − h(x̂−k ) (3.8)

The same step has to be done for the covariance:

Sk = CkP
−
k C

T
k +Rk (3.9)

Now is possible to calculate a near-optimal Kalman gain as:

Kk = P−
k C

T
k S

−1
k (3.10)

And finally the real update step is performed, firstly for the state estimate:
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x̂k = x̂−k +Kk · ỹk (3.11)

and for the covariance estimate:

Pk = (I −KkCk)P
−
k (3.12)

Similarly to what was done for the continuous time case, also in this filter it is
needed to have a linearization of the discrete time model, this is performed as:

Ak :=
∂f

∂x

∣∣∣∣
x̂k−1,uk

Ck :=
∂h

∂x

∣∣∣∣
x̂k−1

(3.13)

3.3 Simulink model
The complementaryFilter object provided by Matlab was again exploited for
the CF simulation. This block implements directly equation 3.5 and offers a set
of tools for tuning properly the weighting coefficient.
The Extended Kalman Filter was instead designed from the beginning. This
filter was again tested with two different setups: IMU with GPS and IMU with
magnetometer.
Contrary to the continuous-time case, it is mandatory to consider some con-
straints on the sampling rate of the sensors. While the IMU and the magne-
tometer are able to offer a frequency of 100Hz, this is not possible for the GPS:
a typical GPS used in motorsport environment is in fact limited to 10Hz. Be-
cause of this, the EKF applied to the IMU and GPS is a Multi-rate filter. This
involves several considerations that will be made in the following sections.
The general setup of the EKF simulations in Simulink environment is the one
showed in Figure 3.1.
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Figure 3.1: Discrete time plant

The blocks in this case produce a discrete time signal by exploiting the sam-
plingTime property offered by Simulink. Although the structure remains the
same among all the setups, the Observer block has been properly adapted for
each configuration. This block is deepen both for the IMU+GPS and for the
IMU+magnetometer cases.

3.3.1 EKF with IMU and GPS

As mentioned before, the complication of the IMU +GPS configuration is that
the GPS sensor here considered provides its readings at a 10 Hz frequency
against the 100 Hz frequency of the IMU. This is a critical matter since the
correction may be performed only when GPS readings are available.
A focus on the Observer designed for this particular setup is shown in Figure
3.2.
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Figure 3.2: Discrete time Extended Kalman Filter with GPS

This model exploits only two Matlab functions: the prediction step and the
update step. Besides these two blocks, the other part of the model is used to
raise a flag whenever GPS data are available in order to enable the correction.
Prediction step is used to implement system 3.7. It uses as input the previous
state updated, the previous P solution updated and the current IMU measures.
The update step instead is used only when GPS data are available and in
particular it implements all the stages described by Equations from 3.8 to 3.12.

3.3.2 Discrete time model

The plant for the discrete time model of the magnetometer configuration is sim-
pler with respect to the GPS one. In this case in fact, the magnetometer will
be directly implemented on the board and read through an I2C communication
instead of having it as an external sensor like a GPS.
This allows to push the magnetometer to the same fetching frequencies of the
IMU. The chosen frequency is of 100Hz, in Section 3.6 will be deeply explained
the choice of the frequency and some problems faced with it.
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Figure 3.3: Discrete time Extended Kalman Filter with magnetometer

As mentioned before, the Simulink setup is simpler as can be noted in Figure
3.3. All the part related to the updating sensor is missing here since IMU and
magnetometer are fetched at the same time instant.

3.4 Sensor board overview
The Inertial Measurement Unit designed and produced by Aviorace is a complete
board that is composed by the following elements:

• DSPIC33EP512MU810 Micro-controller: 16-bit MCU produced by
Microchip;

• BMI160: 6-axis Inertial Measurement unit produced by Bosch;

• CAN Transceiver: converter of data in order to enable CAN communi-
cation.

After these three elements, during the work has been added directly over the
board a Magneto 7 click that is a demonstration board equipped with a magne-
tometer with the pins soldered directly on the I2C communication pins of the
MCU.
The sensor moreover is equipped with a 4-pin DTM04 motorsport connector
with a IP68 certification as the one shown in Figure 3.4.
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Figure 3.4: DTM04

These 4 pins simply carry a 12V battery power supply, ground, CAN High and
Can Low. All the needed information are in this way given by the IMU on the
CAN bus. A detailed CAN database has been designed during the activity and
for any algorithm provides the following readings:

• Acceleration on each axis with a resolution of 1 mG;

• Angular velocity on each axis with a resolution of 0.1 °/s;

• Roll, pitch and yaw angles with a resolution of 0.1°.

The detailed DBC is supplied to the customer among a software. This software,
deeply exploited during the activity, has been developed by Aviorace and allows
to read all the incoming data through a CAN sniffer and to send configuration
parameters to the IMU as anticipated in Section 1.3.

3.5 Transition from Model to Code
The transition from model to code has been a very challenging activity. Since
the model is quiet complex and the time available not so massive, it was ex-
ploited the Embedded Coder supplied by Simulink.
This is a very powerful tool that allows to generate code starting from a model
or just a function inside of it. It was fundamental since writing by hand a code
that can perform operations regarding previous and current states can be very
tough.
The main feature is the generation of a reusable C function that can be imported
in the code, linked to IMU readings and executed at a certain rate. For example,
in the simplest case of IMU and magnetometer configuration, an interrupt was
generated by the MCU every 10 ms. This interrupt called a routine were first of
all the readings of the IMU and of the magnetometer were fetched. These were
then saved and passed to the generated function that implemented the EKF.
Once the function-call is completed it returns the attitude values estimated and
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all these quantities are then sent via CAN to all the nodes connected to the
bus.
The generation of this code, despite is well guided, is not trivial. Through the
embedded coder is possible to set many parameters in order to generate code
that is suitable for the particular MCU chosen. Once this code is able to run
on the MCU, many parameters can be tuned in order to improve the efficiency
of the execution.
The choice of these parameters was in part sustained by some tools offered by
the embedded coder. Those tools relate to different layers of the Advisor on
Simulink. The Advisor is a huge set of testing setups already predefined, by
setting some of the targets that the code has to accomplish, this Advisor auto-
matically suggests some tuning of the available parameters. In particular, these
are the exploited features:

• Model Advisor: to verify if model complies with modeling guidelines;

• Upgrade Advisor: to tune modeling parameters;

• Code Generation Advisor: to verify the compliance of the code;

• Performance Advisor: to tune generation parameters in order to im-
prove the efficiency of the code.

The overall system is created with a Model-based design. This approach is
properly underlined in Chapter 4 where the steps are accurately reported.

3.6 Issues and optimization
The IMU has the possibility to be programmed directly via CAN-bus, this is a
great advantage considering that once it is assembled it is hermetically sealed.
The re-programming of the IMU is possible by linking the CAN pins to the PC
by means of a CAN sniffer. By exploiting the same instrument, it is then pos-
sible to visualize all incoming data like accelerations, gyroscopes, temperature.
An important information provided is the cycle time of the information, that is
how frequently a packet on a given CAN address is received.
Thanks to this last feature it was possible to spot some issues. The heaviest
problem was the implementation of the generated code on the sensor. Once
minor bugs were solved and the IMU was actually estimating the angles, the
cycle time of every packet was considerably higher than the desired refreshing
frequency. This is because of the architecture of the MCU equipped: the 16-bit
and the lack of the floating point unit gives rise to significant effort for difficult
calculations.
The IMU has a sequence of three tasks with no operative system managing
them:
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• Reading acceleration and gyroscopes;

• Calling the EKF function with the read quantities;

• Sending all the information on the CAN bus.

Since those operations are performed sequentially, the delay of just one of those
implies an expansion of the overall cycle time.
The issue here encountered regards the execution time of the EKF function.
This problem regarded both the IMU and GPS configuration and the IMU and
magnetometer one. However, the two problems were solved in a completely
different way.
For what concerns the IMU and GPS model, the initial desired refreshing fre-
quency was 100 Hz. The execution time faced with this setup was of 35 ms
reducing the frequency to almost 28 Hz. This is not only a matter of how
frequently the angles have to be updated but also a matter of how good the
filter is performing: the fastest refreshing rate in fact allows to get closer to a
"continuous time" simulation.
The trade-off chosen was lowering the refreshing rate to 50 Hz and doing a huge
optimization in order to reduce the execution time of the tasks listed above to
less than 20 ms. This optimization has been performed on two different layers:

• Exploiting the tools listed in Section 3.5 setting as target the execution
time in order to improve code efficiency;

• Redesigning the code already existing on the IMU that dealt with the
management of tasks.

For what concerns instead the IMU and magnetometer configuration, the same
problem was faced but in a significantly higher way. The execution time with
this setup, in fact, was up to 100ms reducing the frequency to 10Hz. This fre-
quency is unacceptable since the filter was behaving really bad.
The optimizations applied to the IMU and GPS configuration were not sufficient
to solve this problem because of the considerably higher order of magnitude of
the delay.
The solution adopted was completely different. It was considered an MCU
produced by STM32 equipped with a 32-bit architecture and a built-in CAN
interface.
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Figure 3.5: STM32G491RE Demoboard

The code for the EKF was generated and optimized for this new MCU depicted
in Figure 3.5. In order to perform the testing activities, this demoboard was
connected to the same CAN network of the IMU and the PC. The procedure
is:

• The IMU sensor performs every 10 ms (100 Hz) a read of accelerations,
gyroscopes, and magnetic fields and sends them to the CAN-bus;

• The STM32G4 receives these readings and calculates at 100 Hz the angles;

• The STM32G4 sends on the bus the angles which are read also from the
PC.

3.7 Temperature compensation
During hardware test of the board, a severe drift was encountered in IMU read-
ings. These tests were performed in a controlled environment: the IMU was
cooled until it reached a temperature of 0°C and was then heated up to 80°C.
During the whole test the IMU was never moved or stressed outside the thermal
domain.
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Figure 3.6: Drift on acceleration on Y axis

In Figure 3.6 is possible to notice the phenomena described before. While the
IMU is in a rest position, it is heated from 0°C to 80°C. The condition of 0
acceleration is achieved only at 80°C and as the temperature lowers it gets
more severe.
In order to overcome this problem a compensation has to be applied. The plot
shown above representing Acceleration vs Temperature is calculated for each
reading. For every set of point it is calculated a third order polynomial where
y represents the acceleration and x the particular temperature at which the
acceleration value was recorded.
Above this curve it is reported the residual remaining after calculating the curve
fitting these points. This curve is then applied as:

CompensatedV alue(T ) = SensorV alue− CompensationCurve(T ) (3.14)

These corrections are implemented directly in the code running on the MCU,
the IMU in fact has a temperature sensor on-board that is able to inform the
MCU about the temperature at each reading.
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These errors depend on production defects, so each IMU needs different compen-
sation curves. Since the company needs to produce and calibrate a considerable
amount of boards a fast way is needed. The chosen approach provides a general
equation that is:

Comp(T ) = A ∗ Temperature3 +B ∗ Temperature2 + C ∗ Temperature+D
(3.15)

The coefficients A, B, C and D are saved on the IMU during the calibration
phase with an automatic CAN message that sets each of the coefficients for
every axis, quantity and range of reading.

3.8 Magnetometer Calibration
Among all MEMS sensors, magnetometers are definitely the ones that need
more a calibration. The readings of a magnetometer can be subject to two
types of distortions:

• Soft iron;

• Hard iron.

Considering a practical approach, a perfectly compensated magnetometer pro-
vides readings concentrated on the surface of a sphere when moved in all the
possible directions. This sphere in ideal conditions has to be centered in the
origin of the three axis.
Soft iron distortions cause a more oval shape on this sphere while hard iron are
responsible for a decentralization of the centre of the sphere from the origin.
Soft iron are tougher to correct since they are not regular on all the parts of
the sphere while hard iron are easier since a simple offset solves them. For this
reason it was chosen a magnetometer that is quite resilient to soft iron while it
severely suffers of hard iron that need to be corrected.
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Figure 3.7: Magnetometer readings not compensated

In figure 3.7 are shown magnetometer readings not yet compensated. Because of
the resistance to soft iron distortions, those readings already look like a sphere
making a soft-iron calibration not necessary.
Those readings however are strongly decentralized as the center of the sphere
appears to be almost in [−60,−40,−60].
By applying the precise compensation value, it is possible to retrieve the results
shown in Figure 3.8. These offsets are applied directly on the MCU in order to
provide to the EKF compensated value at each time instant.
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Figure 3.8: Magnetometer readings compensated
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Chapter 4

Verification and Validation

In this section will be presented all the simulation results, the comparison be-
tween them and some considerations that will lead to a final setup choice for
the proposed problem.
All the demonstrated models have been first of all simulated with similar inputs
for a better comparison. These inputs have been created by exploiting the rigid
body equations introduced in Chapter 2. Basically some sinusoidal accelera-
tions and angular velocities are given as input to this model. This block is able
to calculate the exact attitude that derives from this quantities in order to know
the true states of the system at each time instant.
Those accelerations and angular velocities are also processed by adding noise
and producing noisy sensor readings (GPS or magnetometer). All those noisy
quantities are then given as input to the actual filter for the true attitude esti-
mation and the results are finally compared to the true state calculated.
A second simulation was possible thanks to different real telemetries made avail-
able by the host company. These telemetries are a set of data comprehending
among other things accelerations, gyroscopes and GPS. Since magnetometer
readings unfortunately were not included, it was possible to use this set of data
only for the complementary filter and the IMU and GPS. In this case, the final
result was compared with the estimation performed on-board by the E-Lean
IMU, an inertial sensor that is considered well performing for this purpose in
motorsport applications.
A general picture of the telemetry used is shown in Figure 4.1. The software
used, I2 Pro, allows to export the whole set of data in a format that is com-
patible with MATLAB. The first two streams of data refer to accelerations and
gyroscopes while the other are related to GPS data and velocities for compari-
son purposes.
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Figure 4.1: Used telemetry

4.1 Complementary filter setup
Some hypotheses were made before implementing the complementary filter. The
sensor suite here considered is minimal with respect to the other setups meaning
a higher reliability of the input quantities needed for the estimation. This is
due to different factors: the GPS is external and has to communicate with the
IMU throughout a CAN protocol that can be subject to failure or, more likely,
its readings could be noisy when the motorbike is leaned because of a tighter
portion of visible satellites. The magnetometer, on the other hand, could be
subject to strong magnetic interference because of the presence of near metallic
objects. If for any reason a sensor failure happens, meaning a misleading or
totally absence read, a backup solution is needed.
Since less sensors implies less possibilities of electronic failure, the complemen-
tary filter is a proper candidate for the backup plan. Because of this, its discrete
time performances were not directly compared to the EKF simulations of every
setup but it was enough checking its consistency on a large time span.
As a consequence, this filter was directly simulated with data coming from the
real telemetry and making a comparison between the roll angle estimated by
the filter and the roll angle estimated by the E-Lean mounted on-board.
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Figure 4.2: Complementary filter performances with real telemetry

Figure 4.2 shows the comparison between the lean angle calculated on-board
by the E-Lean (blue signal) and the one calculated by the complementary filter
given the same accelerations and gyroscopes (red signal). From a qualitative
point of view, the red signal is following quite well the reference one. For a more
complete view it is shown in Figure 4.3 the error committed calculated as:

ε = x̃− x (4.1)
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Figure 4.3: Complementary filter error with real telemetry

As expected, the magnitude of the error committed by the complementary filter
is too high for commercial purposes but acceptable in case of GPS or magne-
tometer failure. For safety purposes in fact, is better reading the lean angle
with an error of 10° than not knowing it at all.

4.2 IMU and GPS setup
Since before the hardware re-design the IMU was not equipped with a magne-
tometer, the first setup to be designed and tested was the IMU with a GPS
sensor.
The design of the discrete time model was critical because of the multi-rate
nature of the used sensors. After this, the steps of Software in the loop and
Processor in the loop were performed for the smoothest transition possible to a
real hardware application.

4.2.1 Model in the loop

As anticipated, the model has been firstly simulated with sinusoidal inputs and
then with the real telemetry. The results are here presented in order.
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Figure 4.4: IMU and GPS fused in discrete time

The error committed is obviously higher then the continuous time simulation
shown in Section 2.6. This is because the continuous time has to be interpreted
as a discrete time model with an infinite sample time. This "slow" sample time
and the multi-rate nature are the responsible of this high increase of the mag-
nitude of the error.

Figure 4.5: IMU and GPS performances with real telemetry

In Figure 4.5 is instead proposed the simulation with real data. The magnitude
of the error is higher than the simulation with sinusoidal inputs and compara-
ble with the ones of the complementary filter. The reasons behind this where
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deeply investigated and the explanation found regards the GPS sensor.
When the motorbike is severely leaned, the constellation seen by the GPS de-
creases critically making its readings not only useless but also misleading.

4.2.2 Software in the loop

As described in Chapter 3, the code was generated through the Embedded
Coder designed by Simulink. This code, however, was not implemented directly
on the sensors but some steps were performed. These steps were necessary to
check the good behaviour of the code in a different simulation environment.
In order to achieve this consistency, first of all a Software in the loop was
performed. This test allows to check if the code is applying the same exact
algorithm in C and in Simulink. It basically performs a run with the sinusoidal
inputs and then performs the same run with the same inputs but this time
simulating the C code on the host PC processor. After this, the identity of
the results is checked by applying some safety criteria on the acceptance of the
results.

Figure 4.6: SIL of IMU with GPS

The test can be considered fully passed since the only deviation has a magnitude
of 3 · 10−8°.

4.2.3 Processor in the loop

A test similar to the SIL is necessary to move from the PC processor to the
real sensor micro-controller. This test in fact checks if the micro-controller is
executing the C code with acceptable execution time and results.
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Unfortunately the DSPIC33 was not directly supported by the PIL tool pro-
vided by Simulink. This limitation was overcome by sending in real time the
simulation accelerations, gyroscopes and GPS data from Simulink to the IMU
via CAN communication. The IMU at this stage did not use readings coming
from its sensor but only the received ones. The outputs were finally given by
the IMU producing the comparison shown in Figure 4.7.

Figure 4.7: PIL of IMU with GPS

4.2.4 Hardware in the loop

The Hardware in the loop test was conducted in laboratory through the use of
a stepper motor and a 3D printed support connecting the IMU to the shaft of
the motor.
A simulation path was setup with the help of an Arduino. The idea is quite
simple: knowing the number of steps, the direction of rotation and the angle
covered by a single step, it is possible to retrieve at each time instant the angle
of the shaft.
Connecting the IMU to the support, it will start estimating the angular posi-
tion. By getting the estimation from the IMU and the actual angle from the
Arduino it is then possible to compare them in order to test the overall perfor-
mances.
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Figure 4.8: Testing platform for HIL

Since these tests are performed in a laboratory environment, the GPS readings
could not be retrieved with a real sensor reading. The only possible way to
conduct this test was by calculating the three velocity components of the IMU
and adding an appropriate noise to them.
In Figure 4.9 is possible to see the results of the Hardware in the loop test.

Figure 4.9: HIL of IMU with GPS

These results confirm an error that is not compatible with the desired applica-
tion. At some time instants, as seen also before, this reaches a magnitude of 20°.
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4.3 IMU and Magnetometer setup
Because of the error confirmed over the various steps of the IMU and GPS setup,
it was decided to move to a corrective sensor that had to be concordant with
the IMU for what concerns the mounting and the sampling frequency. This is
why it was chosen to implement a magnetometer. The advantage with respect
to the previous configuration is represented by the same sampling frequency
of the different sensors: both the IMU and the magnetometer will run in the
simulations at 100 Hz simplifying a lot the model.

4.3.1 Model in the loop

The performances of this EKF filter with sinusoidal inputs is shown in Figure
4.10.

Figure 4.10: Discrete time MIL of IMU with Magnetometer

This discretization does not affect too much the magnitude of the error con-
firming that a frequency of 100 Hz is not severely worst from a continuous time
ideal situation and that the same sampling frequency makes the EKF correc-
tions work at their best.

4.3.2 Software in the loop

The same steps for moving from the simulation to the real implementation were
exploited also for the magnetometer application. The first of them was the SIL
in order to check the consistency of the generated code:
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Figure 4.11: SIL of IMU with magnetometer

These results are far acceptable considering a maximum difference of 6 · 10−8°.

4.3.3 Processor in the loop

For the reasons explained in Section 3.6, the MCU used for the implementation
of the magnetometer model is different. The approach for the Processor in the
loop test however is quite similar.
The STM32G4 demoboard receives via CAN the accelerations, gyroscopes and
magnetometers input from the Simulink environment. It sends then back via
the same communication interface the states of the system at each time instant.
These states are compared with the ones calculated directly in the Simulink
model and the results are shown in Figure 4.12.
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Figure 4.12: PIL of IMU with magnetometer

These results again are plenty acceptable since the two simulations are over-
lapped and identical.

4.3.4 Hardware in the loop

For the hardware in the loop test, it was exploited the same simulating platform
used for the same test performed with the GPS setup. For the reasons explained
in Section 4.4, the simulation path is identical to the previous one and produces
the following results:
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Figure 4.13: HIL of IMU with magnetometer

The estimation is far better if compared with the GPS test. As expected from
the previous stages, the error remains bounded in just few degrees and is plenty
compatible with the desired precision for a motorsport application.

4.4 Results comparison
As anticipated in the previous section, some of the tests have been performed
with an identical simulation path in order to compare the performances by
layering the different tests.
The first comparison is the one performed over the continuous time models with
sinusoidal inputs, this is shown in Figure 4.14.
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Figure 4.14: Comparison of GPS and magnetometer in continuous time

In this simulation can already be seen two interesting points:

• The magnetometer setup is more resilient to stretched initial conditions
as it converges quicker to the real state;

• The GPS setup has an higher error magnitude.

The comparison then was focused on the discrete time simulations:

Figure 4.15: Comparison of GPS and magnetometer in discrete time

Figure 4.15 confirms the severe suffering of the GPS model when switching to a
multi-rate setup. The magnetometer setup instead is correctly keeping its error
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constant and bounded in an acceptable interval.

The last results compared relate on the HIL simulation performed with the
stepper simulation platform. The comparison is shown in Figure 4.16.

Figure 4.16: Comparison of GPS and magnetometer in hardware in the loop test

Once again it is confirmed the better performance of the magnetometer model
that remains close to the real state with a magnitude of error lower than the
GPS model.
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Chapter 5

Conclusions and future
developments

5.1 Conclusions
The whole work not only has the intent of identifying the best algorithm for the
proposed problem but it also can be considered as a guide for implementing a
model based design on a real hardware application.
All the chapters have in fact a double purpose: while they list the peculiarities
of each setup, all the steps that make a real possible implementation are sorted.
The conclusions of the work have to take into consideration a variety of factors,
some of which are not directly involved with the activity but affect the final
balance.
The very first outcome is that the sensor board with the current configuration
is not sufficient for gaining the desired performances. Neither the Complemen-
tary filter or the Extended Kalman Filter with GPS can guarantee an error
sufficiently constant over time and bounded in less than ±2°. The hardware
design of this board was completed before the activity began, meaning that
an implementation of an additional sensor, like a magnetometer, may be quite
resource consuming for the company.
To summarize, the simulation and comparison at each layer shows how the im-
plementation of a magnetometer improves the estimation. A trade-off, however,
has to be found between performances and resources for an hardware review.
The second considerable conclusion regards the model-based design combined
with Simulink for its developing. By organising the full schedule of this ap-
proach, it is possible with a minimum initial investment in terms of time to
reduce significantly the period dedicated to design and development and to
minimize issues and errors. Simulink on its side encourages quite well this
type of approach by supporting a great number of MCUs where to perform the
tests and offers alternative paths when implementing different microcontrollers.
Thanks to this and to all the supportive tools offered for optimizing the entire
flow of work, it is possible to implement a complex model on real hardware with
a lower effort.
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5.2 Future developments
Future developments should be concentrated on two fields:

• Improvement of the model;

• Hardware enhancement.

For what concerns the model, the filter can be evolved by extending the equa-
tions that describe its dynamics or by adding more information to the filter.
These data may come from other sensors already mounted on-board on the mo-
torcycle and connected to the same bus of the IMU. Some competing companies
for example, have products that require the speed of the motorbike as input. In
this way, a crucial improvement would be implementing a model that links the
wheel speed measured by an Hall effect sensor to the real speed of the body.
Once this is done, also the three states related to the vehicle velocity can be
observed with a direct measure.
The hardware enhancement instead has a more clear path to follow. First of all,
in order to implement the magnetometer in an all-in-one solution, an hardware
review is needed.
This hardware review allows moreover to introduce several changes:

• For the reasons explained in Section 3.6, the MCU implemented would be
changed implementing an STM32G4 microcontroller that can sustain the
high load required by the filter;

• The temperature compensations explained in Section 3.7 are quite time-
consuming to implement. An inertial sensor with a lower temperature-
dependency would be ideal. If the temperature drift in fact is not huge,
these compensations should not be needed anymore.
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Appendix A

Inertial Measurement Unit
Datasheet



 

 

IMU rev1.1_e.docx 

 
 
 

IMU – Inertial Measurement Unit 
 
 
Inertial measurement unit able to output acceleration and 
angular acceleration on all 3 axis. 
Output is over can bus and it is possible to select multiple 
configurations for can bus parameters and measurement 
ranges with specific can messages/tool software working with 
PCAN-USB. 
 
Technical Specification: 
 

 Power Supply: 8÷16 Vdc 

 Current Absorption: 90mA @ 12V 

 Working Temperature Range: 0÷80 °C  

 Thermal Effects: ±0.25% FS 

 Material: Anodized aluminum 

 Protection: IP64 

 Weight with wires: ≈ 58 g 

 Wires: Raychem 55A 26 AWG, length 1000mm 

 Connection: RED  Power Supply 
 BLACK Gnd 
 WHITE Can-H 
 BLUE  Can-L 
 Connector on request 
 

Setting Configuration (default in bold): 
 

 CAN ID: specification 2.0A 

 BAUDRATE: 1 Mbps, 500 Kbits, 250 Kbits 

 ACCELEROMETER RANGE: ±16G, ±8G, ±4G, ±2G 

 GYROSCOPE RANGE:  ±2000 °/s, ±1000 °/s, ±500 °/s, ±250 °/s, ±125 °/s 

 GYROSCOPE CUTT-OFF FREQ 3dB: 10.7 ; 20.8 ; 39.9 Hz 

 ACCELEROMETER CUT-OFF FREQ 3dB: 10.12 ; 20.25 ; 40.50 Hz 

 ZERO OFFSET: through can message or input signal to ground 
 
 
!!! Reserved CAN address used for internal and can 
settings: 0x0E5 !!! 

    
Default Can Output: 

 
Acceleration Resolution [0.001 G] 
 
Gyroscope Resolution [0.1 °/s] 
 
Internal Temperature Resolution [0.1 °C] 

 
All quotes in mm 
 
User Manual and DBC file on request 

CAN ID Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x100

0x101

Acceleration X Acceleration Y Acceleration Z --

Gyroscope X Gyroscope Y Gyroscope Z Internal Temp
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