
Alma Mater Studiorum · Università di
Bologna

SCUOLA DI INGEGNERIA E ARCHITETTURA

Corso di Laurea Magistrale in Ingegneria Informatica

DEVELOPMENT OF A
FRAMEWORK FOR THE

ANALYSIS OF
DOCUMENT-BASED PHISHING

CAMPAIGNS

Relatore:

Chiar.mo Prof.

MARCO PRANDINI

Correlatore:

Prof.

GIANCARLO PELLEGRINO

Correlatore:

Dott.

DAVIDE BERARDI

Correlatore:

Dott.

ANDREA MELIS

Candidato:

ANDREA

MENGASCINI

III Sessione

Anno Accademico 2020/2021

Nothing will come of nothing.

William Shakespeare

Introduction

Phishing is a type of social engineering where an attacker sends a fraud-

ulent message to a human victim to obtain sensitive information or deploy

harmful software on the victim’s device, such as ransomware. Phishing at-

tacks have evolved to the point that they now often transparently mirror the

victim site. As stated in the 2020 Internet Crime Report redacted by the

FBI [17] Phishing is the most common attack performed by cyber-criminals,

with over twice as many incidents by any other type of computer crime.

Also, with the Covid-19 pandemic and the widespread use of lockdowns

and work-from-home solutions, cybercriminals exploited this increasing users’

need for the Internet. Multiple studies [9, 1]found out that the phishing at-

tack skyrocketed up to 220% of its pre-COVID-19 rate. Those analysis high-

lisht the attackers use of a range of highly targeted scams to take advantage

of the victims’ confusion during the epidemic, including novel scam types for

which current defenses are insufficient, as well as standard Phishing.

In recent years new categories of Phishing emerged. One of those is

Document-based Phishing, where the attacks use PDF files containing fraud-

ulent content to lure the victims into performing an action.

We will analyse a newly emerging type of phishing attack based on docu-

ments. This study will be focused on retrieving and studying those document-

based phishing campaigns by developing a pipeline to collect data about the

infrastructure and the techniques used to avoid detection.

i

Contents

Introduction i

1 Phishing landscape 1

1.1 Anti-Phishing Ecosystem . 2

1.1.1 Blocklist . 3

1.2 Evasion Techniques . 5

1.2.1 Redirection Links . 5

1.2.2 Cloacking Technique 7

1.3 Technolgies . 13

1.3.1 Client-Side Detection 13

1.3.2 Server-Side Detection 13

1.4 Document Attack . 15

1.4.1 Phishing PDF . 16

1.5 Scam Landscape . 16

2 Research Question 19

2.1 Dataset . 19

2.1.1 Clustering . 19

2.2 Research questions . 20

3 Pipeline 23

3.1 Automated Browser . 23

3.1.1 Selenium . 23

3.1.2 Selenium-wire . 26

iii

iv CONTENTS

3.1.3 Residential Proxy . 27

4 Data Collection 31

4.1 Redirection chain . 31

4.1.1 Control Flow . 32

4.1.2 Server-Side Cloacking 33

4.1.3 Client-Side Cloacking 34

4.2 Blocklist . 35

4.2.1 REST service . 35

4.3 Documents . 35

4.3.1 Threshold . 36

4.3.2 Filesystem and naming convention 37

4.4 Sites ranking . 38

4.5 DNS Information . 39

4.6 Autonomous system information 40

4.6.1 Database . 41

5 Analysis 45

5.1 Preliminary analysis on PhishTank 45

5.1.1 Online Hosting . 46

5.2 Roblox . 47

5.2.1 Game Hack Scam . 48

5.3 ReCaptcha . 50

5.3.1 cloacking . 52

5.4 Business Model . 56

Conclusions 59

5.5 Future Works . 60

List of Figures

1.1 Components of the Phishing and anti-phishing ecosystem . . . 3

1.2 Google Safe Browsing mobile warning 4

1.3 Redirection Flow with Server-side and/or Client-side cloaking

technique . 8

3.1 Selenium-wire architecture overview 29

4.1 Flowchart of the redirection order resolution 32

4.2 Cloaking techinque leveraging Web Notification API to show

a pop-up . 34

4.3 Folder path of documents with 4 subfolder named after the

starting characters of the hash. 38

4.4 autonomous systems (AS) is a large network or group 41

4.5 Database ER Diagram . 43

5.1 Template used for the PDF targeting Roblox players 48

5.2 Roblox fake generator tool screenshot 49

5.3 Offers to complete in order to pass the human verification . . 50

5.4 Template used for the ReCaptcha campaign 51

5.5 Pipeline screenshot of web notification cloaking before allow-

ing them . 54

5.6 Fake web notification used to educate the victim to click Allow

in the next real one . 55

v

vi LIST OF FIGURES

5.7 Victim action flow and content propagation from publisher to

advertiser . 56

Listings

3.1 UpStream Proxy options in Selenium 27

5.1 Redirection with hidden form submitted after a timeout 52

5.2 Redirection via modification of location property. IP and

other obfuscated information are passed to the next page. . . . 53

5.3 Check of granted permission before redirecting to the next page. 55

vii

Chapter 1

Phishing landscape

Despite document-based phishing being a novelty in the research commu-

nity until the last period, the phishing ecosystem has been studied for more

than a decade, and multiple solutions to mitigate those attacks exist and are

currently deployed.

The Anti-Phishing Working Group (APWG) [7], PhishTank [36], and the

newly formed COVID-19 Cyber Threat Coalition [14] are just a few examples

of research and industry efforts to tackle phishing. Nevertheless, according

to the latest IBM X-force report [56] phishing is one of the most common

initial infection vector used among attackers.

The increasing variety of products present in the various black market

remove the already low technical barrier to perform successful attacks, leaving

the only remaining constraint the financial cost [4]. Moreover, we will be able

to observe how in some scenarios, this financial barrier is non-present due to

the presence of a free live phishing kit, undoubtedly increasing the popularity

of this type of attack [13].

Part of the problem is that phishing is not only a technical challenge; it

also presents a social engineering nature. Attackers have become experts

at manipulating human psychology to persuade users to click on links and

hand over their credentials. Multiple research [21] has also been done to study

the psychological part of phishing and in most companies is quite common

1

2 1. Phishing landscape

to have phishing training awareness campaigns. Frameworks for classifying

phishing emails based on a natural language scheme [52] were studied and

has existed for quite some time.

This continuously increasing awareness against phishing attacks is surely a

driving factor for the attackers to find new channels to reach the victim.

Documents are not a new threat for carrying out attacks, but only recently

we saw them used for phishing attacks on a large scale.

Moreover, with the COVID-19 Pandemic and the rise of the smart-working,

digital document become the normality and its volume increased rapidly,

making them even more appealing to Phishers.

1.1 Anti-Phishing Ecosystem

The anti-phishing ecosystem has been involved in a cat-and-mouse game

with attackers for a long time. Despite the ecosystem’s evolving defenses,

the volume of phishing websites has steadily increased over time, recently

reaching record-high levels.

Due to the support of illicit underground services, phishing is prevalent

among criminals due to its scalability and low entry barrier, even for so-

phisticated and highly evasive attacks.

The popularity and risk of phishing attacks led to the creation of an exten-

sive anti-abuse ecosystem that is relentlessly tested and enhanced by studies

and research.

Anti-phishing techniques have existed since phishing came to the surface,

and therefore multiple layers of defense are available.

Defense techniques vary from email classification filter [15] to direct report of

malicious site [41], but also includecredential leaks analytics [23], blocklisting,

URL and content classification [59, 54], malware scanning by web hosts [11],

DNS and domain Intelligence [20], and content-take-down [6].

1.1 Anti-Phishing Ecosystem 3

Figure 1.1: Components of the Phishing and anti-phishing ecosystem

1.1.1 Blocklist

Blocklist can be found in all major web browsers and prevent users from

visiting malicious web pages via local filtering.

Considering that blocklists are implemented in every major browser[33], in-

cluding mobile one’s, it is not an understatement that they become the user’s

main line of defense against malicious websites. Those blocklists are a crucial

line of defense against malicious sites that is enabled by default to protect

even unaware users. This last technical barrier between the user and the

sites is highly effective at stopping attacks like phishing, showing victims a

prominent warning like the one that can be seen in Figure 1.2. Studies have

shown that these warning messages greatly reduce user interaction with the

malicious websites [46].

Before visiting an URL, the browser makes a call to a backend used for de-

tection, like a URL blocklist or a heuristic classifier, and displays to the user

a visual catching warning if the URL is classified as harmful. Those backend

infrastructures collect suspected phishing URLs and, to avoid false-positive,

verify the maliciousness of the content before adding it to the blocklist.

Chrome, Safari, Firefox and Chromium, which retain most of the global

4 1. Phishing landscape

Figure 1.2: Deceiptive prominent warning in chrome browser from a mobile

device

browser market share, are protected by Google Safe Browsing (GSB)[10].

Used by three of the most widespread browser, this blocklist is the most im-

pactful, protecting more than 80% and 90% in the desktop and mobile ecosys-

tem respectively by 2019 [10]. Microsoft Smart Screen is used on Internet

Explorer and Edgeand accounts for approximately 13% of desktop users, and

others solution exists like Opera’s fraud and malware protection[10] While

Google and Microsoft blocklists are documented and standalone [29, 18] ,

Opera does not disclose the source for its blocklist but experimental result

[33] suggests that they use data from their third-party partners, Phisthank

and Netcraft.

But from the creation of blocklists [46], the major weakness emerged: they

1.2 Evasion Techniques 5

are a reactive solution to the problem.

Recent studies [34] found that an average phishing attack lasts less than 24

hours between the first and the last victim, and the detection of the mali-

cious website occurs on average nine hours after the visit of the first victim.

These time windows correspond to the most lucrative hours of the phishing

campaign : the longer the phishing page remains online and accessible to

victims, the more the attacker profit from it. After the detection, the page

visits drop drastically because most users are informed by the browser that

the site is deceptive. Nevertheless, up until the final takedown of the page,

the campaign still earned visits and profits.

For this reason, sophistication in phishing sites, such as evasion techniques

to evade blocklists, continue to proliferate. Attackers want to maximize

their return-on-investment (ROI), maximizing the longevity of their cam-

paign while remaining as stealthy as possible [19].

1.2 Evasion Techniques

As said previously, the longer the malicious websites remain online and

accessible, the more the attacker gains. Blocklist detection needs to rely on

content verification to minimize false positives; therefore, they are vulnerable

to evasion techniques that try to delay or prevent the analysis of the page.

[33].

Attackers (Phishers) evolve their techniques in response to the ecosystems

standards and include new components in their attacks to circumvent existing

mitigations in a cat and mouse fashion game. For example, most phishing

and malicious pages adopted HTTPS and certificates, which helps give the

visitors a false sense of security, avoiding in-security indicators.

1.2.1 Redirection Links

Another well-established trend is redirection links, which allow the at-

tacker to distribute an URL different from the actual phishing webpage.

6 1. Phishing landscape

For the Phisher, hiding the URL is extremely important because it is the

most direct indicator of the attack. It is common for the attacker to use

a typo-squatted domain that resembles the targeted domain name via mis-

spelt letter or using Punycode characters that the browser renders similar to

regular characters. Given that the URL is one of the most crucial pieces of

information that the blocklist leverage, Phishers try to promote their attacks

using different easily replaceable indirection links.

Redirection links are used to evade detection by Phishers that distribute

looking benign links, making it impossible to utilize URL heuristic detection

methods and make it challenging to correlate URLs that are part of the same

redirection chain [21].

Redirection chains commonly consist of multiple hops, using a URL short-

ener service or an open redirection vulnerability. This technique makes the

number of unique phishing links higher than the actual number of phishing

pages, causing some of the ending pages to slip through the various detec-

tion systems. The use of a well-known redirection service like bit.ly may fool

victims to trust the links and allow intermediate to mitigate the attacks and

give researcher possible data to study the phenomenon [8].

Redirection can be implemented with different techniques other than the

simple HTTP redirect response, and attackers leverage all the types of redi-

rection techniques to make their landing page less reachable by automatic

analysis.

As Mozilla explain in their documentation [40] the main method for redirect-

ing are:

• HTTP Redirection. The server can trigger the redirection by sending

a special redirect response to a request. Those types of responses have

a status code that starts with three and a location header that holds

the URL to redirect to. The status code of redirection starts with 3

and is followed by other numbers indicating the redirection’s cause.

However, attackers misuse this technique only to provide a fast loading

redirect, so we will refer to it as 3XX redirection.

1.2 Evasion Techniques 7

• HTML Redirections. HTML Redirection are common when the

attackers don’t have control over the server. They consist of a <meta>

element with the http-equiv attribute set to Refresh in the <head> of

the page. The content attribute should start with a number indicating

how many seconds should pass before the user is redirected to the new

URL, and the new URL. This method can only be used with HTML

and cannot be used for other types of content

• JavaScript Redirections. Attackers can also leverage the browser

support to Javascript to redirect to other pages. The standard method

used to redirect is setting the new URL string in the window.location

property. Given that attackers can use this technique or similar only

on a browser that supports Javascript is extremely popular because it

eliminates automated visit from bots.

Because different ways of redirection can be used at the same time,

browsers use this order of execution:

1. HTTP redirect as they exist even before the page is transmitted.

2. HTML redirects via the <meta> tag.

3. Javascript redirects that execute last, if Javascript is enabled.

1.2.2 Cloacking Technique

To prevent the anti-phishing ecosystem from discovering and blocklisting

phishing pages and malicious content, the webpages use cloaking to display

benign content or an error page if they detect that crawlers are visiting them

[58]. Since most anti-phishing blocklists leverage crawlers to inspect the

page’s content cloaking those pages, those cloaking protection techinques are

widely spread and effective.

Before being used in phishing attacks, cloaking has been used to trick search

engines to influence rankings by showing different content to bots and hu-

mans.

8 1. Phishing landscape

Filtering can be implemented in server folders, server-side scripts, or Javascript

executed in the user’s browser as can be seen in the sempified cheme in Fig-

ure 1.3.

The techniques used on malicious web pages is only a fraction of the browser

fingerprinting technique found by researcher. Cloaking needs just to be work-

ing against the current anti-phishing tools, and without external pressure,

there is no need for cloaking developers to implement more complex ap-

proaches.

Figure 1.3: Redirection Flow with Server-side and/or Client-side cloaking

technique

Server-Side Cloacking

A category of cloaking techinques focuses on allowing or denying access

based on information the browser gives to the server, hence the name server-

side cloaking. Request filtering is supported by many phishing kits and

requires meeting some conditions before the phishing websites are displayed.

Those conditions are an interesting topic of study because they explain what

the attacker is trying to evade.

1.2 Evasion Techniques 9

Those web cloakings are already well known and can be divided into three

macro-categories based on filtered information [25].

1. Network Fingerprinting

• IP Address: Some of the crawlers in the anti-phishing ecosys-

tem re-use the same IP addresses range, allowing the attacker to

enumerate and block the IP of those bots easily. Those lists also

include multiple hosting providers, clouds, registrar and proxy and

overlay networks such as Tor that rarely rapresent organic traf-

fic. Those lists could also include entire ISPs if they are known

to crawl websites or entire IP spaces like the one of academic or

research institutions. Studies [25] highlight that those IP lists are

updated regularly more than one time a day. It also allows the

attacker to cloak the page even to a user after being visited several

times, making it harder to report.

• Reverse DNS: rDNS lookup of a visitor IP’s are done and com-

pared to a list of domain substrings of the major anti-phishing

entities. If the check gives positive results, they are added to the

IP blocklists.

• Geolocation: Geographic targeting at country level granularity

is widespread and allows to avoid blocklisting and offer specific

geo-targeted phishing.

2. Browser Fingerprinting

• User-Agent: Most search and advertisement crawlers use stan-

dard known strings, for example, Google with googlebot or Yahoo

with slurp. All of those strings are blocked, and the checks extend

to any user-agent that matches the substring spider, crawler or

bot and any translation of those. On top of this, the user-agent

string is used to present a different type of phishing campaign or

10 1. Phishing landscape

malicious page based on the Operating System (OS) and browser

used.

• Javascript: The lack of Javascript is a commonly used finger-

printing technique both in the cloaking and the redirection links,

as we have already seen. Almost all modern browsers support

Javascript, and the lack of this functionality indicates that the

visit is from an automated browser.

3. Contextual Fingerprinting

• HTTP Referer: An evergreen technique is observing the HTTP

Referer request header, which gives information about where the

traffic originated. It can detect if the victim comes from a search

engine or has followed the redirection chain. This technique blocks

the crawler from visiting the page out of the context it appeared.

• Time Window: With server-side logs, it is possible to prevent

visitors from accessing the page more than once in a specific time

window. This also prevents crawlers without a large pool of IP

from being slowed down significantly.

• Order of operation: Until now, the cloaking techniques illus-

trated rely on a single page to block crawlers, but this cloaking

method takes advantage of multiple hops. When visiting a page,

a cookie is handed to the browser and in the following redirection,

the server checks if this browser is present and not expired. This

allows the enforcement of a specific sequence of action like visiting

multiple links or clicking to the next page that the crawler cannot

easily mimic and often schedule a visit to a later time or different

machine.

Client-Side Cloaking

Evasion techniques are also implemented client-side with the help of

browser capabilities. Client-side cloaking leverage Javascript to require com-

1.2 Evasion Techniques 11

plex interaction between victims and the phishing webpage, preventing au-

tomated mitigation by crawlers.

Unlike server-side cloaking, it is possible to retrieve the code of the client-

side technique by crawling the website. Hence Phishers use extensively code

obfuscation methods to hide their strategy, posing a challenge for static code

analysis and detection. Cloaking can also target dynamic analysis by blocking

fingerprinted automated browsers used in those types of investigation.

Client-side cloaking techniques have been studied [58] and similary to the

server-side counterpart semantically categorized:

1. User Interaction

• Pop-up: The phishing website presents a button in a pop-up

window to the user, who has to click it to access the real page.

Presenting the visitor an alert window evades anti-phishing bots

visits because the page does not show any malicious content but

waits for an onclick event to load the content. Currently, alert

box can be closed by automation framework, so a new trend is to

use Web Notification API [48] that are not yet currently supported

by major automated browsers.

• Mouse Detection: With this technique, the attacker tries to

identify if the visitor is a human or a bot waiting for mouse move-

ment before displaying the content. The cloaking page waits for

events like onmousemove or onmouseleave. Attackers use long

waiting animation to induce the user frustration and make mouse

movements [22], that bots usually does not emulate.

• Click Through: Like the pop-up technique, the phishing website

requires the user to click on a specific item on the page before

displaying the content. While a simple phishing page presents a

button like the one in the pop-up, more sophisticated variants are

emerging where the user is presented with a fake Captcha similar

to the Google one. The increasing use of ReCaptcha verification

12 1. Phishing landscape

in legitimate sites makes phishing sites more difficult to identify

for potential victims.

2. Bot behaviour

• Timing: Showing phishing content only at a specific time may

keep the anti-phishing detection system from flagging the page

as malicious. Similarly, making the page load slow or artificially

rendering it slow by using APIs like setTimeout() may surpass

bot time thresholds evading those systems. On the other hand,

the actual user might wait for the complete render of the page,

especially if some indication of the page’s loading is given. [22]

• Randomization: This technique uses a non-deterministic mech-

anism for choose to show the phishing page or not. By generating

a random number, if it is greater than a threshold, it shows the

websites.

3. Fingerprinting

• Cookie: Similar to the server-side technique, client-side cloak-

ing also leverages cookies. By checking if the browser has cookie

enabled, it can reveal if it is a human, given that crawlers often

disable them not to be tied to a single session.

• Referrer. In the same way as the server-side cloaking tech-

nique, Javascript can be instrumented to check the HTTP Re-

ferrer header to see if the page is reached via its redirection chain

or just opened without context.

• User-agent: With the use of navigator.userAgent it is possible

to check the user agent and deny access if it contains a known

crawler substring, as done in the server-side cloaking method.

Phishers can use multiple client-side techniques together to further in-

crease the evasiveness against the anti-phishing ecosystem.

1.3 Technolgies 13

1.3 Technolgies

To better understand evasion techniques, it is crucial to explain the pos-

sible approach for phishing detection.

In either the approach used for phishing detection, the phishing page needs

to be opened, and the main categories of detection differ from who open the

page.

Phishing detection system involves either client-side or server-side approaches.

1.3.1 Client-Side Detection

The client-side approach leverages detection systems as browser add-ons

or extensions to directly access the page content during the end-user visit.

With this approach, cloaking is less problematic due to the organic visit

the user made, and it is possible to collect features and decide on the ma-

liciousness of the page either client-side or later if data is sent to a system

server-side.

The client-site method can access the same content as users because it is

installed on top of the browsers.

However, lack of support of add-ons for different browsers, the absence of

solutions in the mobile ecosystem and the privacy concern of a third-party

extension capable of observing every content affect the popularity of client-

side solutions.

1.3.2 Server-Side Detection

The server-side detection systems, e.g. Google Safe Browsing, receives

possible suspect URLs by human report or automated crawling and collect

data to detect the maliciousness.

This approach can be used by every browser interacting via an API to the

detection system. Privacy is better preserved for the user as the URL is

hashed before is sent to the server.

14 1. Phishing landscape

However, there is no guarantee that the URL will present the same content

to the user and the server, especially if it uses cloaking techniques.

Automated Browser

While most anti-phishing detection systems are black-box to not let the

attacker understand and exploit their weakness, it is fair to assume they use

a sort of instrumented browser.

While most search engines announce their crawling by inserting a well-known

string in the user-agent, in the anti-phishing ecosystem, the crawlers try to

hide the automated nature and stay as close as possible to an organic visit.

For this reason, most anti-phishing studies and research use automated browsers

to mimic the visit from a user.

Puppeteer [39] for example is a nodejs library that provides a high-level API

to control Chrome, either in its full version or in headless mode.

Other automated solutions like Selenium exists and are not limited to the

use of a single browser. Selenium is, in fact, a project that includes a vari-

ety of tools and libraries that enable web browser automation: it provides

an infrastructure for the W3C WebDriver specification [49], a platform com-

patible with all major web browsers. Available to use with Selenium are

all major browser webdrivers, and also custom made one’s, like phantomjs

[35] or undetected chromedriver [50] focused on not triggering anti-bot

services.

Forceful Execution

While automated browsers cope with some of the cloaking techniques,

others are hard to avoid or change too rapidly and make the automation

process hard to keep updated.

With techniques that leverage order of operation or user interaction, it be-

comes hard for traditional automation tools to reach the phishing page.

For this reason, new techniques like J-force [27] which rely on a forceful ex-

ecution of the Javascript to reach the final landing page, are being used to

1.4 Document Attack 15

study cloaking techniques on phishing pages.

As we have seen, once we escape the server-side techniques, the server will

give us the page with the Javascript code that can contain the client-side

cloaking technique, maybe even obfuscated.

In the web page given by the server, even if some cloaking techniques is

present, a branch of the execution of the Javascript will lead us to the ac-

tual phishing page. With this assumption, this technique relies on forcefully

executing all branches of the Javascript code and comparing the result to

choose one outcome of the Javascript code as the final phishing page. We

can later infer the cloaking techniques used based on the difference between

the results we obtained.

While it seems the most accurate solution on paper, it presents some draw-

backs. The biggest is computational power limits: executing all execution

paths of the Javascript present in the malicious page take a long time, mak-

ing it impossible to run in real-time scenarios. Even if used in server-side

detection, it needs to be limited in the number of paths it explores, and time

thresholds must be set to avoid infinite loops or resource wasting as observed

by Invernizzi et al. [58]. In the process of making their page undetectable,

attackers often put artificial time constraints in their Javascript code, in

the form of timeout and also use functions to decrypt at runtime piece of

code evaluated by the eval function. Those cloaking techniques threaten

the Javascript forceful execution method, wasting the limited resource anti-

phishing systems have.

1.4 Document Attack

The use of malicious document files for attacks is known and can be traced

back to more than a decade. Those attacks consist of leveraging famous docu-

ment extensions and related software to deliver malware or execute arbitrary

code.

During the years, the Adobe file format, PDF, got multiple security updates,

16 1. Phishing landscape

so their readers, which have been found vulnerable to different attacks.

Multiple malicious Javascript and malware have been found in PDF files,

and frameworks have been created to analyse those types of documents.

The same occurred with other widespread document extensions, like the Mi-

crosoft renowned docx extension. Malware has targeted the Microsoft Word

editor to install malware, so solutions to analyse malicious documents with

static and dynamic analysis emerged [16].

1.4.1 Phishing PDF

Recently, new use of those documents appeared, a category of attack

where the Phisher sends fraudulent content via PDF files, luring the victim

into performing some actions. While document attacks still exist, this new

category of social engineering attacks does not rely on bugs and exploits

in the software but uses social engineering techniques to trick the victims.

Document-based phishing is a new topic in the research community [47], but

quickly become a global and persistent threat at the moment neglected and

unopposed by the anti-phishing ecosystem that haven’t implemented any

form of content filtering or detection yet.

Phisher lures the victim with visual bait in the document, often impersonat-

ing known companies or using a well-known template to make actions, like

clicking on a hidden link that redirects them to the phishing page.

1.5 Scam Landscape

Attackers do not always try to steal user’s login credentials but use de-

ceptive products and services to obtain money, personal data, or even install

unwanted software. Those services swing from health and beauty products to

financial services. They are commonly referred as scam and has been studied

for a long time [30, 12].

1.5 Scam Landscape 17

Search Engine Optimization

Those scams are not always sent via email, but attackers use social me-

dia platforms or search engines to arrive at the end-users. Popular sites

like YouTube, Pinterest and Facebook are used to host many URLs of those

pages. However, attackers also leverage advertisements for tricking users or

even ranking their service through a reputable search engine. Many tech-

niques are used to rank in the Search Engines, from SEO poisoning [24], to

buy PBN backlinks [51] and even use highly ranked defaced websites [57].

Affiliate Advertisement Network

An increasing amount of Social Engineering scam campaigns are deliv-

ered via malicious advertisement. Those ads are served via an AD network

which does not always verify the ad content they serve. Those AD networks

use an affiliate market business model by collecting services or products the

publisher wants to show to the users and pays the affiliates who deliver them

to the victims. With this strategy, the AD network relieves the campaign’s

responsibility to attract users to the affiliates, who use deceptive methods to

promote the goods.

Chapter 2

Research Question

We decided to develop a pipeline to collect document-based phishing cam-

paigns data and information starting from the document.

2.1 Dataset

The dataset is the one presented in [47], still in review, provided by two

industrial partners. Those sources constantly gave us daily feeds of new

documents. The first partner collects data from VirusTotal [53] filtering by

file type and engines that flag the document as malicious. The second partner

uses multiple feeds of malicious documents from various sources, one of which

is VirtusTotal, and send the data only when confirmed by a second source.

PDFs are then processed by an already built pipeline that extracts features

from them. The data from which our analysis starts are the URLs extracted

from the document, which is our entry point for our analysis.

2.1.1 Clustering

The features extracted from the already existing framework was used by

Stivala et al. to identify different clusters of malicious campaigns. They

identified 37 malicious campaigns with more than 80 clusters. When looking

at the duration and volume of the campaign, it is clear that two extensive

19

20 2. Research Question

campaigns capitalize the dataset, accounting for almost 80% of the total

dataset and lasting for the entire study.

The dataset created from those feeds of Documents contains files written

in 56 different languages. They are not evenly distributed, but English is the

most popular, followed by Russian and Spanish. This indicates that some

campaigns target a specific country and may not be accessible from different

geo-localized IP range.

Visual Deceipt

As studied in the research of Stivala et al., who presented this dataset,

there are two main aspects in the visual deceits used in the documents. The

first is the content of the message, and the two categories that emerged are

the promotion of goods, services or illegal content and the impersonification

of a legit service. While most of the promotion is done with non-elaborate

layout documents, those who try to pass as legit, reproducing parts of com-

munications like emails from colleagues or present a step in a well-known

online process, like a Captcha procedure. The second aspect of visual deceit

is the visual elements and structure of the document. Unlike email-based

phishing, only small campaigns presented a business document or a cloud

or email notification layout. Most of the documents in the dataset contain

some UI elements typical of web pages or are just filled with plain text with

sometimes the use of images.

2.2 Research questions

As we have seen, extensive work has been done to fight phishing, and

different studies have focused on classifying it. Any of those works focus on

the attacks behind Document-based phishing. This work wants to create a

Pipeline starting for those documents, capable of collecting data to analyse

those attacks.

2.2 Research questions 21

We wanted to be able to collect data to later respond to different ques-

tions:

• Which types of attacks are delivered with phishing documents?

Phishing is recently used to indicate a wider variety of attacks. Tradi-

tional credential phishing makes up only a portion of phishing attacks.

New types of Social Engineering attacks have emerged and are capitaliz-

ing on the Phishing landscapes. With our pipeline, we want to gather

enough data to classify the range of attacks delivered with phishing

documents.

• Does they target the same companies and use the same deceptive tech-

nique as a standard phishing landing page?

Phishing has always used deceptive methods and techniques to induce

the victim to complete an action. We want to know if those techniques

are the same with document-based phishing or more or less elaborate.

• Which types of infrastructure are behind those types of attacks?

We want to gather information about the attacker’s infrastructure to

comprehend what measures could be used to block those types of at-

tacks. The data gathered will be used to compare those infrastructure

complexities to the regular phishing ones. We are also interested in

the techniques used to defend those infrastructures: we want to collect

information about their client and server-side cloaking.

• How fast is the burn rate of the infrastructure? Where can those PDF

be found? Are the domain in which they are hosted higher enough to

be ranked?

Since we have a daily feed of new documents, we want to study those

campaigns’ longevity and the anti-phishing ecosystem’s latency to this

new type of attack. We also want to know if some of the document

increases in popularity and shows up on the top-visited websites.

Chapter 3

Pipeline

We decided to develop a pipeline to collect document-based phishing cam-

paigns data and information starting from the documents.

We developed the pipeline to automatically start every day in a Ubuntu-

based LXC container hosted in our local server. This decision gives us a wide

range of options for the tool we could choose and the configuration we could

apply. We choose Python3 as the programming language for its wide range

of libraries and online documentation for the crawler and scraping.

3.1 Automated Browser

Some of the more straightforward requests in the pipeline are imple-

mented via the pyrequest HTTP library [42] that allowed us to send HTTP

requests easily.

3.1.1 Selenium

However, to support Javascript, we choose Selenium [45]: an open-source

framework used for testing and scraping web applications that enables user

impersonification with the most famous web browsers. A critical aspect that

let us choose Selenium over other solutions was the ability to use most modern

browsers in the form of web drivers.

23

24 3. Pipeline

For this reason, we created the class SeleniumDriverManager, responsible

for creating the webDriver object with the specified parameter selected.

When launching the pipeline is indeed possible to specify between different

browser and version and add optional arguments.

The currently supported browsers are:

• Chrome. Using chromedriver is possible to run an instrumented

version of chrome with the same feature as normal. Furthermore is

possible to specify Capabilities, options to customize and configure a

ChromeDriver session.

• Firefox. Using geckodriver [32] is possible to choose Firefox as web-

driver. Mozilla released this Proxy for using W3C WebDriver compat-

ible clients to interact with gecko-based browsers.

• Undetected chrome. Optimized and patched version of chromedriver,

which does not trigger anti-bot services. It download automatically the

driver binary and patches it [50].

Furthermore, it is possible to specifically pick a version of the various browsers

or use the latest version by default. After specifying the parameter, the class

will download the chosen version and instrument the pipeline to use the se-

lected webdriver.

The pipeline is currently set to run using chrome webdriver, and we finetuned

specific additional options to customize our browsing experience.

Given the absence of a display in our configuration, we use the headless browser

command to instruct the webdriver to not display anything. We forcefully

set the virtual resolution to 1920x1080, the full HD standard to not be fin-

gerprinted in case of cloaking. In the same way, we disable the GPU when

launching the pipeline with the argument disable-gpu when creating the

webdriver.

Another helpful option that Selenium gave us is the page load timeout, a

threshold to not waste our resources on an unresponsive page that we con-

veniently set to 15 seconds after our first experiments.

3.1 Automated Browser 25

Screenshots

To later study the visual catch of the final landing page, we decided to

take a screenshot using the method provided by the webdriver. All the final

landing pages we collect need to have the screenshot, and in case of error, a

job is scheduled to re-take the screenshot. Multiple runs of the pipeline for

the same URL are possible and may have different final screenshots, so we

added a field with the hash in the database for the ease of comparing them.

Page Download

To study the final landing page, we decided to save a static copy of the

page in our filesystem. This decision exposed different problems, starting

from the method we need to use to the fidelity and completeness of the

downloaded pages.

We tried different techniques to download the page:

• pywebcopy: A web scraping and archiving tool to save a complete

webpage in Python. Unfortunately, cloaking technique or simple exter-

nal imports let the tool hang on indefinitely.

• chromedriver page download: This technique mimics a user down-

loading the page with the tool the chrome browser offer. By using the

macro CTRL + S a popup opens to save a static version of the page.

While this technique worked reliably, in the headless mode, we had to

rely on a virtual screen, and the python library for the mouse move-

ment was not quite accurate, causing the download button not to be

clicked and the pipeline to be stuck.

• wget: We tried and used for the first days the popular network util-

ity wget. We used high customization and recursive function, instru-

mented it to wait a random time between the page visit and shared

custom headers with the webdriver used at that moment. However,

even if the GNU tool worked, we replaced it with a more straightfor-

ward solution.

26 3. Pipeline

3.1.2 Selenium-wire

Initial experiments showed how saving only the last page did not permit

us to measure and analyse the complete redirection chain and the intermedi-

ate page used. Using the methods mentioned above for downloading the page

caused too much overhead, so we decided to use a man in the middle proxy

to access all traffic easily. We decided to use Selenium wire [55] as a proxy

since it extends Selenium python binding giving access to the request made

by the browser. Those extra APIs for inspecting requests and responses were

used for logging all traffic.

Accessing Requests

Selenium Wire captures all HTTP and HTTPS1 traffic made by the

browser and gives API to access it. These APIs were crucial in develop-

ing the flow of the redirection chain and dynamically resolve some cloaking

techniques.

The driver objects capture all the requests in chronological order in the

driver.requests attribute and it is able to wait for a request matching a

specific pattern with the driver.wait_for_request(pat, timeout=10) method,

where pat is a sub-string or a regex.

Those API enabled us to cycle through the requests and wait for a response

to asynchronous action.

Request and Response Objects

The easy access to the request object and the ability to modify it on the

fly allows us to highly customize our headers during the pipeline execution. It

is possible, indeed, to access different attributes of the request object starting

from the body. A crucial attribute in our development was the headers :

a dictionary-like object of request headers that can be cycled through and

1via the OpenSSL package

3.1 Automated Browser 27

edited on the fly.

We also heavily relied on the response object and its attributes, stuctured

in the same ways og the request object, that allowed us to easily access the

body of the message.

Upstream Proxy

An essential function of selenium wire was the ability to use an upstream

proxy. As we will see in the following pages, our analysis and method of

escaping server-side cloaking heavily rely on the use of a proxy. In the men-

tioned above class SeleniumDriverManager, if an upstream proxy is passed

as parameter, it will be added to the Selenium options as can be seen in

listing 3.1.

1 if proxy:

2 options = {

3 ’proxy’: {

4 ’http’: ’http ://’ + proxy[’http’],

5 ’https ’: ’http ://’ + proxy[’https’],

6 ’no_proxy ’: ’google .*’

7 },

8 ’exclude_hosts ’: [’google .*’]

9 }

Listing 3.1: UpStream Proxy options in Selenium

3.1.3 Residential Proxy

As we started launching the pipeline, it was clear that while most phish-

ing pages in the various phishing datasets reached the final page, the URLs

in the PDFs of our study were redirected to a benign page or a different page

as was promised on the document.

Comparing this to the initial manual analysis we made of those document-

based campaigns, it was evident that we were victims of some cloaking tech-

nique.

28 3. Pipeline

We could not arrive for example at the promised software or the promised

streaming service, but we were redirected to fake news articles or offline

pages.

The problem revealed to be the server IP from where we were launching the

pipeline. The machine indeed appears to be on a network of known IP for

the phishing community, and it has been commonly added to the blocklists

of not allowed IP in the phishing kits [25].

Launching the pipeline from different residential IP changed the pipeline’s

outcome, which reached most of the final landing page or some client-side

cloaking technique based on human action.

The preliminary study showed us that the burn rate of those residential IP

is very high, especially for one of the most prominent document-based cam-

paigns, limiting our ability to crawl their various landing pages.

Moreover, using different IP from various countries in our analsyis, we found

that the landing page gratly changed based on the geolocalization of our IP.

While for some campaigns, the content is only translated and for others, the

site is unavailable, some landing pages present a geo-localized tailored attack

to the end-user.

For this reason, we decided to use a residential proxy service. This service

let us use a pool of real residential IP provided by Internet Service Provider

(ISP) instead of directly connecting to the server. In this way, the phishing

pages identify us as organic internet users, not revealing the nature of our

analysis. As can be seen in figure 3.1 all the traffic to the internet, no matter

which browser is chsoen, will be routed to the residential proxy.

The large pool of IP those services offer lets us select the country of the IP

we are using as a proxy to gather information about the various different

landing pages.

3.1 Automated Browser 29

Figure 3.1: Selenium-wire architecture overview

Chapter 4

Data Collection

To study the document-based phishing and social engineering phenomenon,

we decided to collect different types of data. On the following pages, we listed

the data our pipeline collects and the implementation challenges and solu-

tions we adopted.

4.1 Redirection chain

As we explained, redirection links are among the most well-established

trends in phishing and social engineering campaigns. This technique is not

only used as a cloaking mechanism, but the attackers also gain a link that

seems not malicious that can be posted on social media platforms. Those

types of redirection can also be used for collecting metrics about one cam-

paign leveraging analytics services.

To collect information of a single link of the redirection chain, we designed a

Phish object that can be instantiated given the URL and contain the data

we want to collect. Chaining multiple Phish objects in an ordered list gives

us a redirection chain that we can quickly cycle.

31

32 4. Data Collection

4.1.1 Control Flow

As we can see in Figure 4.1 that represent the control flow of our pipeline,

the initial request is made by the python library to assess the status of the

page quickly. The request is indistinguishable from the one made by Selenium

because they share the same headers. If a 5xx error code status is found, the

pipeline stops and declares the URL offline, saving the result in the database.

Figure 4.1: Flowchart of the redirection order resolution

We choose to not start using Selenium at this initial stage to not overload

our server. If the pipeline is launched with the upstream proxy, the same

4.1 Redirection chain 33

proxy is used by the python requests library as well by Selenium for the sake

of consistency.

By checking if the page presents a 5XX or a 3XX HTTP response status

code, we are sure we do not miss any Javascript redirection because it is

the last one executed given the order of priority of execution of the browser.

If a redirection response code or a refresh meta attribute with refresh time

equivalent to 0 is found, we append a new Phish object to the chain object

and start analysing from that link.

Only when the HTTP response status code is 2XX or 4xx the pipeline start

using Selenium. We also chose to collect data and continue analysing the

landing page even if it presents us with the 4xx error status code. We found

in our initial investigation that some phishing land pages show malicious

content with a 4XX code. This technique allows the attacker to evade some

crawling technique while remaining unnoticed by the user: not an error page

is shown but the actual phishing page.

With Selenium, we continue to analyse the page, try to evade the cloaking

techniques, and wait for a threshold before capturing a screenshot of the final

phishing page.

4.1.2 Server-Side Cloacking

To escape server-side cloaking, we apply various techniques. We resolved

our IP range problem relying on the residential proxy, letting us avoid IP

cloaking, Geolocalization and look upon our DNS entry.

Pyrequest and Selenium share most of the information used by server-side

cloaking techniques to detect a bot during the pipeline execution. The User-

agent string and the cookie, set in the Session, are shared and added to

Selenium when the use of python-requests end and the Selenium Session

starts. To avoid being fingerprinted at the start of an URL analysis session

the user-agent is modified with a perturbation obtained by changing the

OS version and adding fake information about the plugins installed on the

browser. This perturbation is obtained by the permutation of OS verion and

34 4. Data Collection

plugin information we stored in local saved list.

4.1.3 Client-Side Cloacking

Given the nature of the pipeline, all the client-side cloaking techniques

will appear during the Selenium session, being the only tool capable of using

a webdriver that supports Javascript.

We developed some techniques to avoid the most common cloaking technique:

• Mouse Movements. We added a bezier curve mouse movement with

the pyautogui library done during the waiting time of the loading of

the page to simulate a real-human behaviour.

• Pop-up. We instrumented chromedriver to close any alert box auto-

matically. For the new technique of cloaking that uses Web Notification

that can be seen in Figure 4.2, we accept by default any, simulating an

unsuspicious victim.

• Referrer. The referrer, as the user-agent and the session, is carried

during the transition between Selenium and python-request not to fail

any check in the redirection chain.

Figure 4.2: Cloaking techinque leveraging Web Notification API to show a

pop-up

4.2 Blocklist 35

4.2 Blocklist

To study the response of the existing anti-phishing ecosystem, we decided

to monitor if the URLs we visited appeared to be flagged in blocklists.

We decided to analyse the most widespread Blocklist, Google Safe Browsing

(GSB), because, as we have seen, it has the most significant market share.

After the redirection chain has been visited and saved to the database, the

online URLs are checked with the GSB Database every hour. If they appear

to be blocklisted, we log the timestamp and the cause for which the URL

has been flagged. From the moment we found them flagged, a script runs

daily to check if the URL has been unblocked and is no longer present in the

Blocklist.

4.2.1 REST service

To have always an updated version of Google Safe Browsing, we used a

dockerized REST Service to look up URLs in Google Safe Browsing v4 API

based on gglsbl [3] and Flask [31].

This solution let us overcome the problem of updating the local SQLite

database, which made the pipeline stuck for different minutes. The SQLite

database used by default is locked during writes, so the downtime caused was

noticeable, and a race condition could happen.

The REST version, however, set the database to write-ahead logging mode

so readers and writers can work concurrently, We modified the scheduled

task that updates the database and perform a full checkpoint to run every

15 minutes.

4.3 Documents

Most of the PDFs in our dataset present a similar distribution of URLs

they contain. Almost the totality of the PDFs presents only one link that

redirects us to the final landing page, and all the other URLs point to other

36 4. Data Collection

online hosted PDFs.

We wanted to study the other PDFs as well as the domain used for hosting.

We surprisingly found that even for not so newly collected URLs, many PDFs

are still online, and for the new ones, almost every cross-linked PDF is online.

In order to not add overhead to the pipeline, URLs which path ends with

.pdf extensions (fragment excluded) are first analysed to see if their content

type match the one of a PDF file, application/pdf. If they match, the

PDF is downloaded with python-requests, and if the file hash of the PDF

is not present in the dataset, they are sent back to the first pipeline as new

data.

Using this simplified method, we found out that some websites used to host

those PDFs, mostly free web hosting providers, applied cloaking techniques

to disable crawler and scraper if they detected the lack of Javascript.

In case of failure downloading the PDF with the python-request library, we

automatically launch the pipeline and handle the URL as a standard phishing

one, but using selenium-wire as proxy, we can immediately capture a PDF

in the traffic and stop the pipeline to save them and conclude the current

analysis.

Those types of cross-related URLs are used on the web and are known as

private blog networks (PBN) [51]. These ecosystems of web pages are a

type of black-hat method to boost ranking across various search engines

through artificially created backlinks. Although little is known about ranking

algorithms in major search engines, it is strongly suspected that incoming

links significantly influence the position.

4.3.1 Threshold

Using our daily feeds of documents, we analysed the provided phishing

URLs, but downloading other PDFs and adding them to the pipeline caused

us to deplete our resources quickly. On the first days of testing the pipeline,

we collected as many documents as the initial dataset, most pointing at the

same URL or domain but with a different path or query.

4.3 Documents 37

Analysing the PDFs, we found that most campaign templates are identical

and text slightly changes but always presents the same keywords.

For this reason, we decided to limit the downloading capability of our pipeline.

We set a total daily threshold of 10,000 documents and set a scoring system

to assign priority. The more URLs with unseen domains a PDF contains, the

higher score gets. Then out of these ranks, we select the first 200 PDF and

launch the pipeline for the URLs contained. Then we collect those PDFs,

and if their hash is not present in our database, we extract the URLs and

add them to the ranking. Given the average documents cross-linked to one

PDF, in the first iteration of this algorithm, we obtain on average 4000 new

documents.

In order to see and possibly study the number of those cross-linked PDFs and

their ephemerality, we deplete our remaining available documents download

before reaching the thresholds by visiting the URLs in the rank order.

4.3.2 Filesystem and naming convention

To save and access those PDF easily in our filesystem, we heavily relied

on the SHA256 file hash. To overcome the limitation and slowness of our

filesystem that became unresponsive when we surpassed the order of 100.000

documents in one folder, we decided to use a structured naming convention.

After some tests, we decided to divide our files with a 4 level directory struc-

ture, giving the directories the name of the consecutive two characters of the

hash.

While the original filename was kept in the database, the path of those PDF

could be found, adding the base path and the hash of the file as it can be

seen in the filesystem structure in figure 4.3.

38 4. Data Collection

document folder

0a

0c

28

5a

0a0c285a6eaa620fae3a77ab6b3bd55a2089df8be6f9...

Figure 4.3: Folder path of documents with 4 subfolder named after the start-

ing characters of the hash.

4.4 Sites ranking

To understand and measure the popularity of the domain used in this

attack, we decided to check for each domain we have the position in top

sites ranking. To get a better and more unbiased metric we selected two

popularity ranking :

• Tranco [28], a Research-Oriented Top Sites Ranking Hardened Against

Manipulation.

• Alexa [5], a global ranking system that ranks millions of websites in

order of popularity, estimated average daily unique visitors.

With those two data, we can study if the ranking of some domains was ma-

nipulated to be better ranked to gather traffic from different search engines.

This inexpensive analysis is done on every redirection chain: the computa-

tional cost is minimal because we kept a daily updated local version of these

lists. This analysis will also help check if some open redirection or URL

laundering is done using a popular domain, inducing the user to trust the

URL more.

4.5 DNS Information 39

4.5 DNS Information

In order to later study the taxonomy of the phishing infrastructure and

its various chain, we decided to query DNS for the various domain we found

in our analysis.

We decided to look up those entries specifically:

• A. The record that points a domain to an IPv4 address.

• AAAA. In the same way the A records point to the IPV4, the AAAA

records point to an IPV6 Address.

• CNAME. This record is used to link a subdomain to a domain’s A

or AAAA record instead of making 2 A records. For example, it is

possible to link test.phishing.com with a CNAME record to an A

record set on phishing.com, and they would both point to the same

server.

• CERT. CERT resource records are used for storing certificates in DNS.

• NS. DNS Name Server (NS) record specifies the domain name of the

name server servicing a particular domain.

• TXT. A TXT record (short for text record) is an informational DNS

record used to associate arbitrary text with a host or other name.

• SOA. The DNS start of authority (SOA) record stores important in-

formation about a domain or zone, such as the email address of the

administrator, when the domain was last updated, and how long the

server should wait between refreshes.

• DNAME. DNAME-record is used to map or rename an entire sub-

tree of the DNS namespace to another domain. It differs from the

CNAME-record, which maps only a single node of the namespace.

40 4. Data Collection

• CAA. CAA stands for Certification Authority Authorization and its

record is used to specify which certificate authorities (CAs) are allowed

to issue certificates for a domain.

• MX. The MX record identifies the mail server that receives email mes-

sages on behalf of a domain name.

In order to analyse those DNS entries, we used the dns.resolver package

offered by python.

4.6 Autonomous system information

In order to have a complete view of the infrastructure of these attacks, we

also instrumented the pipeline to collect information about the entity behind

it.

We regularly check the domains we found with Whois, a widely used Internet

record listing that identifies who owns a domain and how to get in contact

with them.

We also used the Whois daemon to ask bulk information to the Cymru

database [26], which maps IP to Autonomous System Number (ASN). An

autonomous system (AS) is a large network or group of networks with a uni-

fied routing policy, and each of them is assigned an official number as it can

be seen in figure 4.4. By collecting these pieces of information, we will be

able to map the IP to the network operator.

4.6 Autonomous system information 41

Figure 4.4: autonomous systems (AS) is a large network or group

4.6.1 Database

All the data we collect is stored in different tables shown in figure 4.5 on

a PostgreSQL database, an open-source object-relational database system

known for reliability and performance [37].

42 4. Data Collection

ip as num bgp prefix cc registry allocated as name

34.102.176.152 15169 34.100.0.0/14 US arin 2018-09-28 GOOGLE, US

52.217.96.102 16509 52.217.96.0/20 US arin 2015-09-02 AMAZON-02,

US

52.216.233.85 16509 52.216.233.0/24 US arin 2015-09-02 AMAZON-02,

US

143.204.98.21 16509 143.204.96.0/21 US arin 2018-01-05 AMAZON-02,

US

162.13.135.168 15395 162.13.0.0/16 GB ripencc 1992-06-30 RACKSPACE-

LON, GB

95.217.28.189 24940 95.217.0.0/16 DE ripencc 2009-02-24 HETZNER-

AS, DE

185.215.113.14 51381 185.215.113.0/24 SC ripencc 2020-11-13 ELITETEAM-

PEERING-

AZ1, SC

167.114.126.65 16276 167.114.0.0/17 CA arin 2014-08-29 OVH, FR

Table 4.1: AS Network analysis data

4.6 Autonomous system information 43

Figure 4.5: Database ER Diagram

In order to make query faster we created indexes with the most used data,

like filehash, IP and domain. Indexes are special lookup tables that can be

44 4. Data Collection

used by the database search engine to speed up data retrieval. It helped

speeding up SELECT and WHERE clauses and not slowed down too much the

data input.

We easily accesses the database with the pipeline via the psycopg2 package

[38], a database adapter for Python.

Chapter 5

Analysis

We used the pipeline and its initial results to study the most prominent

campaign, correcting our pipeline to collect the most meaningful data.

We found results that validate previous research but we have to point out

that our analysis is just preliminary, and the outcome could change when we

have completed our data collection.

Indeed, studied phishing and social engineering attacks in various research

have been volatile and rapidly changing [34].

5.1 Preliminary analysis on PhishTank

In order to test the pipeline and its ability to overcome the various cloak-

ing techniques, we decided not to use the URLs extracted from the PDF.

As we said, document-based phishing is an emergent threat, and we did not

want to alarm the Phisher by visiting their infrastructure with an incomplete

crawler, letting them notice we are investigating the phenomenon.

In our analysis, we used the publicly available dataset Phishtank [36] which

is continuously updated with new and online phishing examples. Only when

the success rate of the pipeline was high enough, we launched our pipeline

to a small number of URLs retrieved from the PDFs.

As we explained before, our initial analysis on the URLs from the documents

45

46 5. Analysis

failed because we did not expect such fierce server-side redirection and IP

blocklisting technique. Once we overcame this difficulty, it was clear that the

results were different from the ones we found on Phishtank.

Most of the PDFs landing pages we visited did not contain phishing attacks

but more Social Engineering campaigns.

While this was clear from the visual bait for some PDFs, we did not expect

this high percentage of non-phishing attacks.

5.1.1 Online Hosting

Analysing the domain where those documents are hosted, we found out

two categories of hosting solutions used by the attackers.

Free Web Hosting

Attackers used free web hosting services to park their malicious files on-

line. Most of them are hosted in a free tier plan and span across different web

pages and probably accounts. This solution is often chosen for its simplicity

to set up and distribute. Indeed, phishers don’t have to buy a domain, set

up a server or buy a separate web hosting because those solutions offer free

subdomains.

Unrestricted File Upload

Analysing the URLs present in the documents, it was clear that attackers

relied on normal-looking websites. Indeed PDFs were hosted on benign pages

non-related to the attacks, vulnerable to unrestricted file uploads. Most

websites use older versions of web servers or non-updated plugins, which the

attackers leverage to upload malicious documents.

5.2 Roblox 47

5.2 Roblox

One of the two most extensive PDF campaigns in the dataset we anal-

ysed targets online games with the false promise of in-game currency or some

hack.

We found that the most targeted game is Roblox [43], an online game plat-

form and game creation system that has currently more than 100 Million

daily active users worldwide [44]. Other games and mobile applications are

targeted, and modest clusters of PDFs can be found, but the Roblox one

significantly outcomes those.

The PDFs present all the same template shown in figure5.7 with different

keywords and sentences related to the argument. Almost all the URLs in

the document point to the landing page presented the same domain but with

different paths. The different paths did not change the page’s visual appear-

ance, which presented us with a waiting animation for a random amount of

time. After the animation ended we were presented with a fake online tool

to generate in-game currency as we can see in the pipeline screenshot in Fig-

ure 5.2. The website only asked for our in-game username and, after a fake

random waiting time, asked to verify ourselves with human verification.

It is fascinating to analyse the structure of the page and the cognitive meth-

ods used to legitimate the service. One example is the random time the fake

generator take to process our request and generate the fake currency [2] that

is a benevolent deception often used in human-computer interaction. Other

techniques are the fake comments that appear live under the generator or

the fake logs of people who used the generator in real-time.

The verification offer, analysing the page’s source code, was presented by

another server associated with an ad network.

Inspired by the work of Starov et al. [30] we analysed this campaign

landing page over multiple URLs with different paths, and we discovered that

the affiliation ids of those Roblox campaigns are a small number, possibly

indicating that a restricted number of Phishers, if not one, have launched

this social engineering attack.

48 5. Analysis

Figure 5.1: Template used for the PDF targeting Roblox players

5.2.1 Game Hack Scam

This type of cyberattack can be ascribed to the broad category of scam,

in specific a game hack scam [8], where the attacker attempts to convince

the victim, often of young age, with an advance in a game. To obtain those

in-game resources, the victims are asked to complete an “offer”. Specific to

our campaign, the offer was unrelated to the game and presented tasks in-

cluding installing unwanted and malicious software, activating subscriptions

to services. Modifying our user-agent to a mobile one, the offers changed

to installing mobile apps on the specific device’s official store. This person-

alization based on the device we visit happen because those so-called offers

5.2 Roblox 49

Figure 5.2: Roblox fake generator tool screenshot

are not chosen by the attackers but are dynamically given by the ad network

based on the data it retrieves from our browser.

50 5. Analysis

Figure 5.3: Offers to complete in order to pass the human verification

5.3 ReCaptcha

The other most prominent campaign featured a massive size of PDF doc-

uments with the same template. Visual deceit is proposed to the end-user in

the form of the UI of the Google ReCaptcha.

5.3 ReCaptcha 51

Figure 5.4: Template used for the ReCaptcha campaign

As we can see in the template of the first page, it is difficult to explain

the type of phishing: in the first page only a small Captcha box is present in

top of the page and nothing else. All the starting URLs redirects to various

indirection link before arriving in the landing pages.

However, analysing the redirection chain is clear that the initial query is

passed from the first element to the last. This query can be found in PDFs

metadata, especially on the title and in most cases in some of the text in

52 5. Analysis

the last pages. Our hypothesis is that victims, searching for the keywords,

arrive on the PDF that, similarly to the cloaking techniques, requires the

user interaction to proceed to the desired service.

The pattern of the first URL of the redirection chain is the following:

https://host.ru/path?keyword=some+related+query

5.3.1 cloacking

Navigating through the redirection chain, we found a more complex in-

frastructure than other social engineering or phishing campaigns. The vic-

tims are redirected through multiple indirection URLs, and each step presents

one or multiple cloaking techniques before redirect to the next link. We col-

lected and analysed some of the most used cloaking techniques in our initial

analysis and the most used are:

• 3XX Redirection: The server-side redirection techinque prevents us

from accessing the page and immediatly redirects to a benign or unre-

lated page.

• Javascript redirect: Form actions redirect us to the next link to

assure our browser supports Javascript. In listing 5.1 is possible to see

the piece of code responsable:

1 <form action="https :// nexturl.com/path" method="GET" name

="redirected">

2 <input type="hidden" id="q" name="q" value="query">

3 </form >

4

5 <script >

6 setTimeout(function () {

7 document.forms.redirected.submit ();

8 }, 100);

9 </script >

Listing 5.1: Redirection with hidden form submitted after a timeout

5.3 ReCaptcha 53

The form is also responsible for passing information other than the

query to the next link, as our browser model or operating system.

• Timeout: The user has prompted a waiting animation and then they

are redirected to a download page or other redirection links.

Our IP, and other obfuscated strings, to indicate our browser and os

version, are passed to the following page as can be seen in listing 5.2.

1 <script type="text/javascript">

2 window.setTimeout(function () {

3 // The waiting animation

4 }, 5000);

5 window.location.href = "https :// nexturl.com?ip=our_ip

&utm_content =12422& utm_term =& utm_source=

base64encoded_keyword";

6 </script >

Listing 5.2: Redirection via modification of location property. IP and other

obfuscated information are passed to the next page.

• Push Notification: One of the most used forms of cloaking in this

campaign was the use of web notification. Found in the early redirec-

tion chain, the cloaking page presents a web Notification that must be

accepted to continue. This is clear in the screenshot in figure 5.5, where

in the centre of the page, we are presented with an almost full progress

bar and the instructions to continue to the next URL.

54 5. Analysis

Figure 5.5: Pipeline screenshot of web notification cloaking before allowing

them

If not accepted, the website tries to educate us using a fake web notifi-

cation that has no real purpose if not presenting us the next real web

notification, as shown in figure 5.6.

5.3 ReCaptcha 55

Figure 5.6: Fake web notification used to educate the victim to click Allow

in the next real one

A while loop is present in the code that prompts us new Notification

until we reach a certain threshold or allow one of them. When we

allow a web notification, a service worker is created, as we can see in

the listing 5.3, and we are redirected to the next page.

1 if (Notification.permission === ’granted ’) {

2 window.location.href = ’https :// next.url/path?keyword

=query ’

3 } else if (Notification.permission !== ’denied ’) {

4 canStart = true;

5 if (! isChrome) {

6 CheckS () // ask permission again

7 }

8 } else {

9 denied ()

10 }

Listing 5.3: Check of granted permission before redirecting to the next page.

Those web notification are used to further send scams and offer of illecit

goods, illicit services or maladvertisement.

56 5. Analysis

5.4 Business Model

Analysing those two campaigns, it was clear that all the redirection chains

did not belong to only one attacker. While it is evident in the Roblox cam-

paign that a third party ad network serves the offers, it is more subtle in the

ReCaptcha campaign. Nevertheless, these two campaigns share the same

business model. The attackers use Social Engineering attacks to deliver ma-

licious attacks, not for themself but for an AD network.

However, those AD network are not the creator of those malious services,

but their networks serve as a point of meeting demand and offers.

The publisher of those offers pays the AD network to spread their malicious

service. The AD networks act as a middleman financing some Advertiser

to promote the service and gain a commission for each sale. This business

model adopted by those low-tier AD networks allows for shifting the liability

to the advertiser.

Figure 5.7: Victim action flow and content propagation from publisher to

advertiser

Advertisers are not responsible for the final attack and are only moved

by monetary gain and ROI of their social engineering campaign.

In our preliminary study, we found out in the ReCaptcha campaign that the

cloaking techniques based on human interaction are in most of the case al-

ready used for making a profit. The push notifications are structured to gain

from each service worker started from victims, and it also serves to block

5.4 Business Model 57

some crawlers.

We also found out that the advertiser often uses different AD networks in

one campaign to maximize profit by delivering the most profitable offer.

This business model poses a new challenge for our pipeline and future anal-

ysis: discovering on which page the control of the redirection chain switch

from the advertiser to the Ad Network or the Publisher of the service.

Conclusions

With this work, we created a pipeline to analyse phishing URLs and

tested its efficiency against a dataset of malicious URLs extracted from ma-

licious documents and various online phishing datasets. While we succeeded

in avoiding some cloaking techniques present in the wild, we are sure the

success rate of this pipeline will not remain the same as time goes on. New

cloaking techniques emerge constantly, and if the pipeline is not accordingly

instrumented, it will fail to reach the landing page. Even if most of the

phishing pages do not present any particular cloaking technique, they will,

once the anti-phishing ecosystem is more efficient to discover and detect those

pages. We already knew of those limitations, not present in a forced execu-

tion environment. Still, the possibility of analysing the pages of a campaign

in a short time let us settle on this technique.

We discovered from the dataset of malicious documents that the online hosted

document are not yet qualified as an attack vector from the anti-phishing

community and are not blacklisted. The only active entity removing those

documents is the web owner of compromised sites used to upload them illic-

itly.

However, only a tiny fraction of those documents deliver phishing campaigns

targeted at stealing user credentials. We saw how the most extensive cam-

paigns leverage the shady ad network business model to make money and

leave the part of delivering the actual attack to a publisher. These scams

use the pdf only to gather attention and redirect the user to the next page.

For this reason, we suppose that when those malicious documents start to

59

60 CONCLUSIONS

be detected or a new method to attract the user attention will rise, most of

those attackers will stop crafting those documents.

Even if those scam campaigns and the ad network behind them are known

and studied, the anti-phishing community is sluggish to take action. The

extensive use of cloaking techniques makes the current crawlers deployed un-

usable. Moreover, many redirections make the blocklist tackle only the firsts

redirections, not affecting the campaign but just indirection links. While at-

tackers had enough time to research various ecosystems and deliver multiple

attacks based on the browser and geolocalization, most of the links in the

redirect chain are not the target of block listing or takedowns. Most of the

targeted URLs of blocklists are the ones used by the Advertiser that he can

easily change, while the ones from the ad network remain online. But if the

focus pivot to taking down the affiliate network domains related to a scam,

it will cause an arrest to the campaign, making the Advertiser wait until a

page with his affiliation id is restored.

5.5 Future Works

The pipeline presented is only a starting point of a broader analysis of

the phishing ecosystem. The analysis we have done displays similar research

findings, even starting from a different attack vector and reflecting the new

emerging trends of the phishing landscape. More questions emerged during

the creation of the pipeline and in the analysis. Even if our analysis starts

from the URLs in the documents, those files are unlikely to be sent via mail

and are mostly reported in big chunks, as the id of the uploader on VirusTotal

indicates. This indicates that the victim ends up in the PDF in some way.

Studying how the users end up opening those pdf is undoubtedly fascinating.

Are those attackers using black hat SEO techniques to boost these documents

on the first pages of the search engines?

An evenly exciting topic is the demographic of the various attacks. We have

seen how one of the most extensive campaigns targets an online game played

5.5 Future Works 61

mainly by children and young adults. Are the attackers deliberating targeting

those age groups, or the attacks are only based on the most relevant keywords

of the moment?

62 CONCLUSIONS

Bibliography

[1] Hossein Abroshan et al. “COVID-19 and Phishing: Effects of Human

Emotions, Behavior, and Demographics on the Success of Phishing At-

tempts During the Pandemic”. In: IEEE Access 9 (2021), pp. 121916–

121929. issn: 2169-3536. doi: 10.1109/ACCESS.2021.3109091.

[2] Eytan Adar, Desney S. Tan, and Jaime Teevan. “Benevolent decep-

tion in human computer interaction”. In: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. ACM, Apr.

2013, pp. 1863–1872. isbn: 978-1-4503-1899-0. doi: 10.1145/2470654.

2466246. url: https : / / dl . acm . org / doi / 10 . 1145 / 2470654 .

2466246.

[3] afilipovich/gglsbl: Python client library for Google Safe Browsing API.

https://github.com/afilipovich/gglsbl. (Accessed on 09/20/2021).

[4] Rana Alabdan. “Phishing Attacks Survey: Types, Vectors, and Tech-

nical Approaches”. In: Future Internet 12.10 (2020). issn: 1999-5903.

doi: 10.3390/fi12100168. url: https://www.mdpi.com/1999-

5903/12/10/168.

[5] Alexa - Top sites. https://www.alexa.com/topsites. (Accessed on

09/26/2021).

[6] Eihal Alowaisheq et al. “Cracking the Wall of Confinement: Under-

standing and Analyzing Malicious Domain Take-downs.” In: (2019).

url: https://www.acemap.info/paper/157551643.

63

64 CONCLUSIONS

[7] APWG — Unifying The Global Response To Cybercrime. https://

apwg.org/. (Accessed on 09/11/2021).

[8] Emad Badawi et al. “The “Game Hack” Scam”. In: Web Engineering.

Ed. by Maxim Bakaev, Flavius Frasincar, and In-Young Ko. Lecture

Notes in Computer Science. Springer International Publishing, 2019,

pp. 280–295. isbn: 978-3-030-19274-7. doi: 10.1007/978- 3- 030-

19274-7_21.

[9] Marzieh Bitaab et al. “Scam Pandemic: How Attackers Exploit Pub-

lic Fear through Phishing”. en. In: 2020 APWG Symposium on Elec-

tronic Crime Research (eCrime). Boston, MA, USA: IEEE, Nov. 2020,

pp. 1–10. isbn: 978-1-66542-539-1. doi: 10.1109/eCrime51433.2020.

9493260. url: https://ieeexplore.ieee.org/document/9493260/.

[10] Browser market share. https : / / netmarketshare . com / browser -

market-share.aspx. (Accessed on 09/12/2021).

[11] Davide Canali, Davide Balzarotti, and Aurelien Francillon. “The role

of web hosting providers in detecting compromised websites”. In: Pro-

ceedings of the 22nd international conference on World Wide Web.

WWW 13. Association for Computing Machinery, May 2013, pp. 177–

188. isbn: 978-1-4503-2035-1. doi: 10.1145/2488388.2488405. url:

https://doi.org/10.1145/2488388.2488405.

[12] Jason W. Clark and Damon McCoy. “There Are No Free iPads: An

Analysis of Survey Scams as a Business”. In: 2013. url: https://www.

usenix.org/conference/leet13/workshop-program/presentation/

clark.

[13] Marco Cova, Christopher Kruegel, and Giovanni Vigna. “There is no

free phish: an analysis of “free” and live phishing kits”. In: Proceedings

of the 2nd conference on USENIX Workshop on offensive technologies.

WOOT’08. USENIX Association, July 2008, pp. 1–8.

[14] COVID-19 Cyber Threat Coalition. https://www.cyberthreatcoalition.

org/. (Accessed on 09/11/2021).

BIBLIOGRAPHY 65

[15] Sevtap Duman et al. “EmailProfiler: Spearphishing Filtering with Header

and Stylometric Features of Emails”. In: 2016 IEEE 40th Annual Com-

puter Software and Applications Conference (COMPSAC). Vol. 1. June

2016, pp. 408–416. doi: 10.1109/COMPSAC.2016.105.

[16] Markus Engleberth, Carsten Willems, and Thorsten Holz. “Detecting

malicious documents with combined static and dynamic analysis”. In:

Virus Bulletin (2009).

[17] FBI Internet Crime Complaint Centre. U.S. Federal Bureau of Inves-

tigation. https://www.ic3.gov/Media/PDF/AnnualReport/2020_

IC3Report.pdf. (Accessed on 09/11/2021).

[18] Google Safe Browsing — Google Developers. https://developers.

google.com/safe-browsing. (Accessed on 09/28/2021).

[19] Xiao Han, Nizar Kheir, and Davide Balzarotti. “PhishEye: Live Moni-

toring of Sandboxed Phishing Kits”. In: Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security. ACM,

Oct. 2016, pp. 1402–1413. isbn: 978-1-4503-4139-4. doi: 10.1145/

2976749 . 2978330. url: https : / / dl . acm . org / doi / 10 . 1145 /

2976749.2978330.

[20] Shuang Hao et al. “Understanding the domain registration behavior of

spammers”. In: Proceedings of the 2013 conference on Internet mea-

surement conference. IMC ’13. Association for Computing Machinery,

Oct. 2013, pp. 63–76. isbn: 978-1-4503-1953-9. doi: 10.1145/2504730.

2504753. url: https://doi.org/10.1145/2504730.2504753.

[21] Amber van der Heijden and Luca Allodi. “Cognitive Triaging of Phish-

ing Attacks”. In: arXiv:1905.02162 [cs] (May 2019). arXiv: 1905.02162.

url: http://arxiv.org/abs/1905.02162.

[22] Martin Hibbeln et al. “How Is Your User Feeling? Inferring Emotion

Through Human-Computer Interaction Devices”. In: MIS Quarterly 41

(Jan. 2017). doi: 10.25300/MISQ/2017/41.1.01.

66 CONCLUSIONS

[23] Thorsten Holz, Markus Engelberth, and Felix Freiling. “Learning More

about the Underground Economy: A Case-Study of Keyloggers and

Dropzones”. In: Computer Security – ESORICS 2009. Ed. by Michael

Backes and Peng Ning. Lecture Notes in Computer Science. Springer,

2009, pp. 1–18. isbn: 978-3-642-04444-1. doi: 10.1007/978-3-642-

04444-1_1.

[24] Fraser Howard and Onur Komili. “Poisoned search results: How hack-

ers have automated search engine poisoning attacks to distribute mal-

ware”. In: Sophos Technical Papers (2010), pp. 1–15.

[25] Luca Invernizzi et al. “Cloak of Visibility: Detecting When Machines

Browse a Different Web”. In: 2016 IEEE Symposium on Security and

Privacy (SP). May 2016, pp. 743–758. doi: 10.1109/SP.2016.50.

[26] IP to ASN mapping - Team Cymru. https://team- cymru.com/

community-services/ip-asn-mapping/. (Accessed on 09/20/2021).

[27] Kyungtae Kim et al. “J-Force: Forced Execution on JavaScript”. In:

Proceedings of the 26th International Conference on World Wide Web.

International World Wide Web Conferences Steering Committee, Apr.

2017, pp. 897–906. isbn: 978-1-4503-4913-0. doi: 10.1145/3038912.

3052674. url: https : / / dl . acm . org / doi / 10 . 1145 / 3038912 .

3052674.

[28] Victor Le Pochat et al. “Tranco: A Research-Oriented Top Sites Rank-

ing Hardened Against Manipulation”. In: Proceedings 2019 Network

and Distributed System Security Symposium. Internet Society, 2019.

isbn: 978-1-891562-55-6. doi: 10 . 14722 / ndss . 2019 . 23386. url:

https://www.ndss-symposium.org/wp-content/uploads/2019/

02/ndss2019_01B-3_LePochat_paper.pdf.

[29] Microsoft Defender Browser Protection. https://browserprotection.

microsoft.com/learn.html. (Accessed on 09/28/2021).

BIBLIOGRAPHY 67

[30] Najmeh Miramirkhani, Oleksii Starov, and Nick Nikiforakis. “Dial One

for Scam: A Large-Scale Analysis of Technical Support Scams”. In:

Proceedings 2017 Network and Distributed System Security Symposium

(2017). arXiv: 1607.06891. doi: 10.14722/ndss.2017.23163. url:

http://arxiv.org/abs/1607.06891.

[31] mlsecproject/gglsbl-rest: Dockerized REST service to look up URLs in

Google Safe Browsing v4 API. https://github.com/mlsecproject/

gglsbl-rest. (Accessed on 09/20/2021).

[32] mozilla/geckodriver: WebDriver for Firefox. https://github.com/

mozilla/geckodriver. (Accessed on 09/19/2021).

[33] Adam Oest et al. “PhishFarm: A Scalable Framework for Measuring the

Effectiveness of Evasion Techniques against Browser Phishing Black-

lists”. In: 2019 IEEE Symposium on Security and Privacy (SP). May

2019, pp. 1344–1361. doi: 10.1109/SP.2019.00049.

[34] Adam Oest et al. “Sunrise to Sunset: Analyzing the End-to-end Life Cy-

cle and Effectiveness of Phishing Attacks at Scale”. In: 2020, pp. 361–

377. isbn: 978-1-939133-17-5. url: https://www.usenix.org/conference/

usenixsecurity20/presentation/oest-sunrise.

[35] PhantomJS - Scriptable Headless Browser. https://phantomjs.org/.

(Accessed on 09/13/2021).

[36] PhishTank — Join the fight against phishing. https://phishtank.

org/. (Accessed on 09/11/2021).

[37] PostgreSQL: The world’s most advanced open source database. https:

//www.postgresql.org/. (Accessed on 09/28/2021).

[38] Psycopg – PostgreSQL database adapter for Python — Psycopg 2.9.1

documentation. https : / / www . psycopg . org / docs/. (Accessed on

09/25/2021).

[39] puppeteer: Headless Chrome Node.js API. https : / / github . com /

puppeteer/puppeteer. (Accessed on 09/13/2021).

68 CONCLUSIONS

[40] Redirections in HTTP - HTTP — MDN. https://developer.mozilla.

org/en-US/docs/Web/HTTP/Redirections. (Accessed on 09/18/2021).

[41] Report phishing page. https://safebrowsing.google.com/safebrowsing/

report_phish/. (Accessed on 09/11/2021).

[42] Requests: HTTP for Humans™ — Requests 2.26.0 documentation. https:

//docs.python-requests.org/en/latest/. (Accessed on 09/19/2021).

[43] Roblox. https://www.roblox.com/. (Accessed on 09/21/2021).

[44] Roblox Reaches 100 Million Monthly Active User Milestone - Roblox.

https : / / corp . roblox . com / 2019 / 08 / roblox - reaches - 100 -

million-monthly-active-user-milestone/. (Accessed on 09/21/2021).

[45] Selenium. https://www.selenium.dev/. (Accessed on 09/28/2021).

[46] Steve Sheng, Brad Wardman, and Gary Warner. “An Empirical Anal-

ysis of Phishing Blacklists”. In: (2009), p. 10.

[47] Giada Stivala et al. “Document-based Phishing is Rising: Click Here

to Learn More!” In: (Aug. 2021), p. 17.

[48] Karthika Subramani et al. “When Push Comes to Ads: Measuring the

Rise of (Malicious) Push Advertising”. In: Proceedings of the ACM

Internet Measurement Conference. ACM, Oct. 2020, pp. 724–737. isbn:

978-1-4503-8138-3. doi: 10 . 1145 / 3419394 . 3423631. url: https :

//dl.acm.org/doi/10.1145/3419394.3423631.

[49] The WebDriver standard. https : / / w3c . github . io / webdriver/.

(Accessed on 09/13/2021).

[50] undetected-chromedriver: Custom Selenium Chromedriver. https://

github.com/ultrafunkamsterdam/undetected-chromedriver. (Ac-

cessed on 09/13/2021).

BIBLIOGRAPHY 69

[51] Tom Van Goethem et al. “Purchased Fame: Exploring the Ecosys-

tem of Private Blog Networks”. In: Proceedings of the 2019 ACM Asia

Conference on Computer and Communications Security. Asia CCS ’19.

Association for Computing Machinery, July 2019, pp. 366–378. isbn:

978-1-4503-6752-3. doi: 10 . 1145 / 3321705 . 3329830. url: https :

//doi.org/10.1145/3321705.3329830.

[52] Rakesh Verma, Narasimha Shashidhar, and Nabil Hossain. “Detecting

Phishing Emails the Natural Language Way”. In: Computer Security –

ESORICS 2012. Ed. by Sara Foresti, Moti Yung, and Fabio Martinelli.

Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012,

pp. 824–841. isbn: 978-3-642-33167-1. doi: 10.1007/978- 3- 642-

33167-1_47.

[53] VirusTotal - Home. https : / / www . virustotal . com / gui / home /

upload. (Accessed on 09/21/2021).

[54] Colin Whittaker, Brian Ryner, and M. Nazif. “Large-Scale Automatic

Classification of Phishing Pages”. In: NDSS. 2010.

[55] wkeeling/selenium-wire: Extends Selenium’s Python bindings to give

you the ability to inspect requests made by the browser. https : / /

github.com/wkeeling/selenium-wire. (Accessed on 09/20/2021).

[56] X-Force Threat Intelligence Index 2021. https : / / www . ibm . com /

downloads/cas/M1X3B7QG. (Accessed on 09/11/2021).

[57] Ronghai Yang et al. “Scalable Detection of Promotional Website De-

facements in Black Hat SEO Campaigns”. In: 2021, pp. 3703–3720.

isbn: 978-1-939133-24-3. url: https://www.usenix.org/conference/

usenixsecurity21/presentation/yang-ronghai.

[58] Penghui Zhang et al. “CrawlPhish: Large-scale Analysis of Client-side

Cloaking Techniques in Phishing”. In: (2021), p. 16.

70 CONCLUSIONS

[59] Yue Zhang, Jason I. Hong, and Lorrie F. Cranor. “Cantina: a content-

based approach to detecting phishing web sites”. In: Proceedings of

the 16th international conference on World Wide Web - WWW ’07.

ACM Press, 2007, p. 639. isbn: 978-1-59593-654-7. doi: 10.1145/

1242572.1242659. url: http://portal.acm.org/citation.cfm?

doid=1242572.1242659.

Acknowledgements

First of all, I would like to sincerely thank Professor Marco Prandini, who

made me fall in love with security, starting with his course in my bachelor’s

degree and supporting our cyber security group during all those years.

In the same way, I would like to thanks Andrea and Davide, two cardinal

points during my journey at the university, always ready to lend a hand.

I want to express my gratitude to Professor Giancarlo Pellegrino, who has

been a guide during my master’s degree thesis, helping me and promptly

clarifying all my doubts.

I would like to express my gratitude to my girlfriend, Alessia, for her whole-

hearted support.

Finally, I would like to thank the friends I have made these years for the love

and support they have always given me. Every time I needed them, they

were ready to help me.

Thank all of you, friends, colleagues and professors from the bottom of my

heart. Without you reaching this goal would not have been possible.

