
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze

Corso di Laurea in Matematica

ADO’S THEOREM

Relatore:

Chiar.ma Prof.ssa

Nicoletta Cantarini

Presentata da:

Francesca Paganelli

Anno Accademico 2020/2021



To my grandparents



Introduction

This thesis is dedicated to the proof of Ado’s Theorem for finite-dimensional Lie al-

gebras over an algebraically closed field K of characteristic 0. In order to achieve this

result we will describe some basic, fundamental properties of Lie algebras (see [1]). A

Lie algebra is a K-vector space endowed with a bilinear, antisymmetric product called

bracket, which satisfies the Jacobi identity and is indicated by [·, ·].

In the first chapter we will give all the fundamental definitions necessary to study

Lie algebras and we will present some classic examples. The notion of representation is

probably one of the most important. A representation of a Lie algebra L is a Lie algebras

homomorphism (that is a linear map preserving the bracket) of the form Φ : L −→ gl(V ),

where V is a K-vector space and gl(V ) is the Lie algebra of endomorphisms of V . In

addition, a representation is said to be faithful when it is injective. The definitions of

Lie algebra and representation suffice to state Ado’s Theorem:

Theorem 0.0.1 (Ado’s Theorem). Let L be a finite-dimensional Lie algebra. Then there

exists a finite-dimensional faithful representation of L.

Observe that the theorem claims the existence of a finite-dimensional representation,

namely the vector space V is finite-dimensional and so the same goes for gl(V ); fur-

thermore the map is faithful and by the first Theorem of homomorphism (which, as one

may expect, holds also for Lie algebras) this means that L is isomorphic to its image via

the representation. In other words, Ado’s theorem states that we can view any finite-

dimensional Lie algebra L as a subalgebra (a subspace closed with respect to the bracket)

of a Lie algebra consisting of endomorphisms. Of course, if V is an n-dimensional K-

vector space, then gl(V ) is isomorphic, as a Lie algebra, to gl(n,K), so roughly speaking
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L can be identified with a Lie algebra of matrices.

We will provide a proof of Ado’s theorem following Terence Tao [2]. The proof develops

gradually, from the easy case of semisimple algebras to the general case, going through

the nilpotent and solvable cases. Instead of first listing all the preliminary stuff and

next show the entire proof, we will divide the proof in different chapters, adding step

by step the necessary ingredients to obtain the theorem in a little more complex con-

text. So, in the second chapter we will analyze the universal enveloping algebra U(L)

of a Lie algebra L. We will use this algebraic structure heavily. Furthermore we will

present a weak version of Ado’s Theorem (namely we will claim that for any Lie algebra

there exists a faithful representation on a space of endomorphisms) and we will prove

the theorem in the case L is a semisimple or abelian algebra. The third and fourth

chapters are dedicated to the proof of the theorem for nilpotent and solvable algebras.

Treating these type of algebras will lead us to prove some other fundamental results in

Lie algebra theory, like Engel’s Theorem. Lastly, in the fifth chapter we will be able

to prove Ado’s theorem for any Lie algebra, but in order to do so we will need Levi

decomposition. Thus, this thesis has been an opportunity to study the foundations of

the important mathematical branch of Lie algebras, which is wide and sophisticated by

itself, but is also fundamental in order to study other mathematical and physical theories.

We provide some information [3] about the history of Ado’s Theorem. Igor Dmitrievich

Ado (1910-1983) was born in Kazan (Russia) and he worked in that city during all his

life. He studied at Kazan State University, at the faculty of mathematics and physics.

He attended the PhD study in the same university, under the supervision of N.G. Cheb-

otarev. In 1935, in his PhD thesis, he presented the proof of what we now call Ado’s

Theorem. Later, Ado himself and other mathematicians found different proofs and more

complete statements. For example in 1948 K. Iwasawa proved the theorem for Lie al-

gebras over a field of positive characteristic p. Ado worked as professor in Kazan State

University and later in Kazan State Chemical Technological Institute. He is described

as a wonderful teacher, loved and respected by colleagues and students.
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Introduzione

Questa tesi è dedicata allo studio della dimostrazione del Teorema di Ado per algebre

di Lie di dimensione finita su un campo K algebricamente chiuso e di caratteristica 0.

Per ottenere questo risultato descriveremo alcune proprietà di base fondamentali delle

algebre di Lie (si veda [1]). Un’algebra di Lie è un K-spazio vettoriale dotato di un

prodotto bilineare e antisimmetrico detto bracket che soddisfa l’identità di Jacobi e si

denota con [·, ·].

Nel primo capitolo daremo tutte le definizioni fondamentali necessarie per lo studio

delle algebre di Lie e presenteremo alcuni classici esempi. La nozione di rappresentazione

è probabilmente una delle più importanti. Una rappresentazione di un’algebra di Lie è

un omomorfismo di algebre di Lie (cioè una mappa lineare che preserva il bracket) della

forma Φ : L −→ gl(V ), dove V è un K-spazio vettoriale e gl(V ) è l’algebra di Lie degli

endomorfismi di V . Inoltre, una rappresentazione è detta fedele quando è iniettiva. Le

definizioni di algebra di Lie e rappresentazione sono sufficienti per enunciare il Teorema

di Ado:

Teorema 0.0.1 (Teorema di Ado). Sia L un’algebra di Lie di dimensione finita. Allora

esiste una rappresentazione fedele e di dimensione finita di L.

Osserviamo che il teorema afferma l’esistenza di una rappresentazione finito dimen-

sionale, cioè lo spazio vettoriale V è di dimensione finita e quindi lo stesso vale per gl(V );

inoltre la mappa è fedele e per il primo Teorema di omomorfismo (che come ci si aspetta

vale anche per algebre di Lie) questo significa che L è isomorfa alla sua immagine tramite

la rappresentazione. In altre parole, il Teorema di Ado afferma che possiamo vedere ogni

algebra di Lie di dimensione finita come una sottoalgebra (un sottospazio chiuso rispetto
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al bracket) di un’algebra di Lie fatta di endomorfismi. Naturalmente, se V è un K-spazio

vettoriale V di dimensione n, gl(V ) è isomorfo, come algebra di Lie, a gl(n,K) quindi

sostanzialmente L può essere identificata con l’algebra di Lie delle matrici.

Forniremo una dimostrazione del Teorema di Ado seguendo Terence Tao [2]. La di-

mostrazione si sviluppa gradualmente, dal facile caso delle algebra semisemplici a quello

generale, passando per il caso nilpotente e quello risolubile. Invece di elencare prima tutti

i concetti preliminari e successivamente mostrare la dimostrazione tutta intera, divide-

remo la dimostrazione in diversi capitoli, aggiungendo passo dopo passo gli ingredienti

necessari a dimostrare il teorema in casi via via più difficili. Cos̀ı, nel secondo capitolo

analizzeremo l’algebra universale inviluppante U(L) di un’algebra di Lie L. Useremo pe-

santemente questa struttura. In aggiunta, presenteremo una versione debole del Teorema

di Ado (cioè mostreremo che per ogni algebra di Lie esiste una rappresentazione fedele)

e dimostreremo il teorema nei casi semisemplice e abeliano. Il terzo e il quarto capitolo

sono dedicati alla dimostrazione del teorema per algebre nilpotenti e risolubili. Trattare

questi tipi di algebre ci permetterà di mostrare altri risultati fondamentali della teoria

delle algebre di Lie, come il Teorema di Engel. Infine, nel quinto capitolo saremo in

grado di dimostrare il teorema per ogni algebra di Lie, ma per fare ciò avremo bisogno

della decomposizione di Levi. Perciò, questa tesi offre la possibilità di studiare le basi

della branca matematica delle algebre di Lie che è vasta, sofisticata e fondamentale per

altre teorie matematiche e fisiche.

Diamo ora qualche informazione sulla storia del Teorema di Ado. Igor Dmitrievich

Ado (1910-1983) nacque a Kazan (Russia) e lavorò in quella città per tutta la sua vita.

Studiò all’Università Statale di Kazan, presso la facoltà di matematica e fisica. Svolse

il dottorato nella medesima università, sotto la supervisione di N.G. Chebotarev. Nel

1935 presentò come tesi di dottorato quello che noi oggi chiamiamo Teorema di Ado.

Successivamente, Ado e altri matematici trovarono altre dimostrazioni ed enunciati più

completi per tale risultato. Per esempio, nel 1948 K. Iwasawa dimostrò il teorema per

algebre di Lie su un campo di caratteristica p positiva. Ado fu professore all’Università

Statale di Kazan e in seguito presso l’Istituto di Tecnologia Chimica di Kazan. Viene

descritto come un professore fantastico, amato e rispettato da colleghi e alunni.
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Chapter 1

Basic notions

In this chapter we introduce Lie algebras and some of their fundamental properties.

1.1 Lie algebras

Definition 1.1.1. A Lie algebra L is a vector space over a field K equipped with a

bilinear antisymmetric form [·, ·] : L×L −→ L called bracket which satisfies the Jacobi

identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z ∈ L

Remark 1.1.1. Because of antisymmetry, if charK 6= 2, then ∀x ∈ L [x, x] = 0.

From now on, we assume that K has characteristic zero, all vector spaces will be

K-vector spaces.

In order to make the definition of Lie algebra clearer, we present some standard examples.

Example 1.1.1. The vector space R3 with the operation of cross product is a Lie algebra.

Example 1.1.2. Let A be an associative algebra, i.e. a K-vector space equipped with a

bilinear, associative product A × A −→ A sending (x, y) 7→ xy. Then A has a natural

structure of Lie algebra given by [x, y] := xy−yx (the bracket defined in this way is called

commutator). Indeed, a simple computation shows that:

• bilinearity holds since the product in A is bilinear;
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• [x, y] = xy − yx = −(yx− xy) = −[y, x] ∀x, y ∈ A;

• [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = [x, yz − zy] + [z, xy − yx] + [y, zx− xz]

= [x, yz]− [x, zy] + [z, xy]− [z, yx] + [y, zx]− [y, xz]

= x(yz)− (yz)x− x(zy) + (zy)x+ z(xy)− (xy)z

− z(yx) + (yx)z + y(zx)− (zx)y − y(xz) + (xz)y

= 0
due to associativity.

Example 1.1.3. Given a finite dimensional vector space V over a field K, we denote

by End(V) the set of endomorphisms of V. End(V) is a finite-dimensional vector space

and also an associative algebra, with the product given by composition. Therefore, by

Example 1.1.2 we can consider the associated Lie algebra structure. End(V) regarded as

a Lie algebra with bracket [x, y] = xy − yx, (xy = x ◦ y), is denoted by gl(V ) and it is

called general linear algebra.

Definition 1.1.2. Given a Lie algebra L, a subalgebra K of L is a vector subspace

which is closed under the Lie bracket.

Definition 1.1.3. A subspace I of a Lie algebra L is called an ideal of L if [x, y] ∈
I,∀x ∈ I,∀y ∈ L. The centre of L is the ideal Z(L) = {z ∈ L | [x, z] = 0 ∀x ∈ L}.
Given a subset S ⊂ L, the normalizer of S in L is the set NL(S) = {x ∈ L | [x, y] ∈
S, ∀y ∈ S}. A Lie algebra is abelian if [x, y] = [y, x] ∀x, y ∈ L. The derived algebra

of L is the span of all brackets of elements in L and it is denoted by [L,L].

Remark 1.1.2. One can check that [L,L] is an ideal of L and that NL(S) is a subalgebra.

Also, L is abelian if and only if Z(L) = L.

Definition 1.1.4. Let L, H be Lie algebras. A linear map Φ : L −→ H is a homomor-

phism of Lie algebras if Φ([x, y]) = [Φ(x),Φ(y)] ∀x, y ∈ L. An isomorphism of Lie

algebras is an homomorphism such that it is invertible and the inverse function is still

an homomorphism.
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Remark 1.1.3. As we would expect, if Φ : L −→ H is a Lie algebra homomorphism, then

Ker(Φ) is an ideal of L and Im(Φ) is a subalgebra of H. Furthermore, the first theorem

of homomorphism holds, i.e. L/Ker(Φ) ∼= Im(Φ). As in other algebraic structures,

given an ideal I ⊂ L we can indeed define the quotient algebra L/I, where the bracket

is well defined since I is an ideal.

Example 1.1.4. In Example 1.1.3, suppose dim(V ) = n, fix a basis of V , then we can

identify End(V) with the set M(n,K) of n × n matrices with entries in K, associating

each linear transformation with its matrix. Again, defining [x, y] = xy − yx, where now

xy is the standard matrix product, we give M(n,K) the structure of a Lie algebra, which

is denoted by gl(n,K). Of course, gl(V ) and gl(n,K) are isomorphic Lie algebras.

Example 1.1.5. Consider the following subset of gl(n,K)

sl(n,K) = {a ∈ gl(n,K) | tr(a) = 0}.

Since tr(a+ b) = tr(a) + tr(b) and tr(a · b) = tr(b · a), sl(n,K) is subalgebra of gl(n,K).

Example 1.1.6. A derivation of a Lie algebra L is linear map δ : L −→ L which

satisfies the Leibniz rule: δ([a, b]) = [δ(a), b] + [a, δ(b)]. The set of derivations of L is

denoted Der(L) and it is a subalgebra of gl(V ). Indeed, ∀ δ, δ̃ ∈ Der(L) and a, b ∈ L,

we have:

δδ̃([a, b])− δ̃δ([a, b]) = δ([δ̃(a), b] + [a, δ̃(b)])− δ̃([δ(a), b] + [a, δ(b)])

= δ([δ̃(a), b]) + δ([a, δ̃(b)])− δ̃([δ(a), b])− δ̃([a, δ(b)])

= [δδ̃(a), b] + [δ̃(a), δ(b)] + [δ(a), δ̃(b)] + [a, δδ̃(b)]− [δ̃δ(a), b]

− [δ(a), δ̃(b)]− [δ̃(a), δ(b)]− [a, δ̃δ(b)]

= [δδ̃(a), b] + [a, δδ̃(b)]− ([δ̃δ(a), b] + [a, δ̃δ(b)])

= [[δ, δ̃](a), b] + [a, [δ, δ̃](b)].

Definition 1.1.5. A Lie algebra is simple if it is not abelian and has no proper ideal.
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Definition 1.1.6. Let L be Lie algebra and H, K two ideals of L. Assume L = H ⊕K
as a direct sum of vector spaces. We call it a direct sum of Lie algebras if [H,K] = 0.

Example 1.1.7. We claim that gl(n,K) = sl(n,K) ⊕ KId. Indeed, we may con-

sider the trace operator tr : gl(n,K) −→ K between vector spaces and observe that

Ker(tr) = sl(n,K). So, by rank-nullity theorem, dim(sl(n,K)) = n2 − 1. Therefore, we

can search for a direct complement, which has to be one dimensional and with zero trace.

Then of course we choose KId. Moreover, [sl(n,K),KId] = 0, so L = sl(n,K)⊕KId as

Lie algebras.

We have just proved that dim(sl(n,K)) is n2−1. We can also present a basis of sl(n,K),

i.e. the set consisting of the elementary matrices eij for i 6= j together with the matrices

of the form eii − ei+1,i+1 for i ≤ 1 ≤ n− 1. Now we are showing that the derived algebra

of gl(n,K) is sl(n,K) and so in particular sl(n,K) is an ideal. Indeed, ∀x, y ∈ gl(n,K),

tr([x, y]) = tr(xy)− tr(yx) = tr(xy)− tr(xy) = 0, so [gl(n,K), gl(n,K)] ⊂ sl(n,K). On

the other hand, any element of sl(n,K) can be obtained as bracket of two elements of

gl(n,K). As a matter of fact, if i 6= j, [eit, etj] = eij and [ei,i+1, ei+1,i] = eii − ei+1,i+1.

Example 1.1.8. sl(2,K) is a simple subalgebra of gl(2,K). Fix the following basis of

sl(2,K):

x =

(
0 1

0 0

)
h =

(
1 0

0 −1

)
y =

(
0 0

1 0

)
,

called the standard basis, and observe that

[x, y] = h [h, x] = 2x [h, y] = −2y. (1.1)

Let L = sl(2,K). Suppose 0 6= I ⊆ L is an ideal and let v = ax + by + ch be a nonzero

element of I. If b 6= 0, [x, v] ∈ I and [x, v] = b[x, y] + c[x, h] = bh − 2cx ∈ I. Applying

again the bracket with x we get [x, bh − 2cx] = b[x, h] = −2bx ∈ I, so x ∈ I. By (1.1)

it follows that also y and h belong to I, that is I ≡ L. If a 6= 0 we can repeat the same

argument showing that y ∈ I. Finally, if both a and b are zero, then h ∈ I and by

(1.1) we get I ≡ L. We have shown that L has only trivial ideals and since it is not

commutative, we can conclude that L is simple.
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1.2 Representations of Lie algebras

Definition 1.2.1. Given a vector space V and a Lie algebra L, a representation of

L on V is a Lie algebras homomorphism Φ : L −→ gl(V ). Sometimes, for convenience,

∀x ∈ L we will write Φx, in order to emphasize the fact that it is an endomorphism of

V.

Definition 1.2.2. An injective representation is called faithful.

Example 1.2.1. An example of representation of gl(n,K) is the so-called ”standard

representation” on Kn given by the identity map.

Example 1.2.2. Let us now introduce the adjoint representation, which will be

strongly needed in the sequel. If L is a Lie algebra, the adjoint representation of L

is the following representation of L on itself:

ad : L −→ gl(L)

x 7−→ adx adx(y) = [x, y], y ∈ L.

Let us check that this map is indeed a representation of L:

• Let x be an element of L and consider adx : L −→ L. adx is a linear transforma-

tion of L due to linearity of the bracket on second entry. Hence, ad(L) ⊆ gl(L).

• Now we show that ad is a homomorphism of Lie algebras. Linearity is again a

consequence of the bilinearity of the bracket, so it remains to prove that [adx, ady] =

ad[x,y].

[adx, ady](z) = adx(ady(z))− ady(adx(z))

= adx([y, z])− ady([x, z])

= [x, [y, z]]− [y, [x, z]]

= [x, [y, z]] + [[x, z], y] =︸︷︷︸
using Jacobi id.

[[x, y], z] = ad[x,y]
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Furthermore, notice that ∀x ∈ L adx is a derivation of L. Indeed, it satisfies the Leibniz

rule:

adx([y, z]) = [x, [y, z]]

= −[y, [z, x]]− [z, [x, y]]

= [y, [x, z]] + [[x, y], z]

= [adx(y), z] + [y, adx(z)]

(we used the Jacobi identity for the second step).

Remark 1.2.1. The kernel of adjoint representation is the centre of the algebra:

Ker(ad) = {x ∈ L | adx = 0}

= {x ∈ L | adx(y) = 0 ∀y ∈ L}

= {x ∈ L | [x, y] = 0 ∀y ∈ L} = Z(L).

Definition 1.2.3. Let L be a Lie algebra. An L-module V is a vector space endowed

with an operation

. : L× V −→ V

(x, v) 7−→ x.v

such that ∀x, y ∈ L, ∀ v, w ∈ V, ∀ a, b ∈ K the following properties are satisfied:

(m.1) x.(av + bw) = a(x.v) + b(x.w)

(m.2) (ax+ by).v = a(x.v) + b(y.v)

(m.3) [x, y].v = x.y.v − y.x.v.

We will say in this case that L ”acts” on V.
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Remark 1.2.2. Having an L-module V is equivalent to having a representation of L on

V. Indeed, if we define ∀x ∈ L, Φ(x) as the action x., thanks to (m.1) Φ(x) ∈ gl(V ) and

the map Φ : L −→ gl(V ), x 7→ Φ(x) is an homomorphism thanks to (m.2) and (m.3).

On the other hand, if Φ : L −→ gl(V ) is a representation, we can give V the structure

of L-module by setting x.v := Φ(x)(v).

Definition 1.2.4. Let V be an L-module, then W ⊆ V is an L-submodule of V if it is

a vector subspace such that x.w ∈ W, ∀w ∈ W .

Definition 1.2.5. Let V and W be L-modules. A homomorphism of L-modules is a

linear map f : V −→ W such that f(x.v) = x.f(v), ∀x ∈ L, ∀v ∈ W . Then the kernel

of f is a submodule of V and Im(f) is a submodule of W.

Definition 1.2.6. An L-module V is called irreducible if it has no proper submodules.

Equivalently, a representation of L on V is called irreducible if V is irreducible as an

L-module with the action given by the representation map.

Example 1.2.3. The standard representations of gl(n,K) and sl(n,K) are irreducible.

Indeed, suppose W is a nonzero gl(n,K)-submodule of Kn and let w ∈ W, w 6= 0. Then,

∀v ∈ Kn \W there exists a linear map x which sends w to v, contradicting the hypothesis

that W is a submodule. By Example 1.1.7 we know that gl(n,K) = sl(n,K)⊕KId. Let W

be a sl(n,K)-submodule of Kn, then W is also a KId-submodule, since KId stabilizes any

subspace. Now, any element x ∈ gl(n,K) can be decomposed as x = y+λId, y ∈ sl(n,K).

Both y and λId preserve W, so x preserves W too, but this contradicts the fact that the

standard representation of gl(n,K) is irreducible. Thus, Kn does not admit any sl(n,K)-

submodules.

Example 1.2.4. The adjoint representation of L is irreducible if and only if L is simple.

Indeed, by definition, the submodules of L are its ideals.

1.3 Solvable and nilpotent algebras

In this section we present some preliminary notions about solvable and nilpotent

algebras. More substantial results will be given in the following chapters.
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Definition 1.3.1. Let L be a Lie algebra. We define the derived series of L as the

following sequence of ideals:

L(0) = L

L(1) = [L,L]

L(2) = [L(1), L(1)]

...

L(i) = [L(i−1), L(i−1)]

and we say that L is solvable if L(n) = 0 for some n.

Example 1.3.1. If L is abelian, then [L,L] = 0, so L is solvable.

Example 1.3.2. If L is simple, then it is not solvable. Indeed, [L,L] is an ideal of L,

so due to simplicity L = [L,L] (recall that L simple implies L not abelian). Therefore,

L(1) = L, L(2) = [L(1), L(1)] = L, · · ·L(i) = [L(i−1), L(i−1)] = L.

Example 1.3.3. Consider the subalgebra of gl(n,K) consisting of upper triangular ma-

trices (aij) (aij = 0 if i > j). We denote it by t(n,K) and we are going to show that this

is a solvable algebra. We also introduce the subalgebra n(n,K) of strictly upper triangular

matrices (aij) (aij = 0 if i ≥ j) and the subalgebra of diagonal matrices d(n,K). A basis

for t(n,K) is {eij}i≤j, so its dimension is n(n+ 1)/2. We have [eij, ekl] = δjk eil− δil ekj.
Let L = t(n,K). For i < l, [eii, eil] = eil ∈ n(n,K), so L(1) = [L,L] ⊃ n(n,K).

In addition, t(n,K) = n(n,K)⊕ d(n,K), so [L,L] ≡ n(n,K), since d(n,K) is abelian (so

its derived algebra is 0) and [n(n,K), d(n,K)] = 0. This means L(1) = n(n,K).

Now we analyze L(2). We are dealing with strictly upper triangular matrices, so we

come to the notion of ”level” for eij, that is j-i. Suppose i 6= l, i < j, k < l, then

[eij, ekl] = δjkeil. The levels of eij and ekl are both ≥ 1 and the level of their bracket (if it

is not zero) is the sum of these levels, then it is ≥ 2. This means that any matrix in L(2)

is spanned by matrices eij with i < j and level ≥ 2. Going on like this we obtain that

L(i) is spanned by elements eij with level ≥ 2i−1. Therefore, when 2i−1 > n− 1, L(i) = 0.

Proposition 1.3.1. Let L be a Lie algebra.
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1. If L is solvable, then its subalgebras and its homomorphic images are solvable.

2. If I is an ideal of L and both I and L/I are solvable, then L is solvable.

3. If I and J are solvable ideals, then I + J is a solvable ideal.

Proof. [1]

1. If K is a subalgebra of L, then K(i) ⊂ L(i). Let φ : L −→M a Lie algebras homo-

morphism, then by definition φ(L)(1) = φ(L(1)) and by induction, φ(L)(i) = φ(L(i)).

Thus if L(n) = 0, then φ(L)(n) = 0 too.

2. Consider the canonical projection π : L −→ L/I. By hypothesis, there exist two

natural numbers m and n such that I(m) = 0 and π(L(n)) = π(L)(n) = 0. Observe

that L(n) ⊂ I and (L(n))(m) = L(n+m). Hence, L(n+m) ⊂ I(m) = 0.

3. One of homomorphism theorems state that given I, J ideals of L, then (I + J)/J

is isomorphic to I/(I ∩ J). I/(I ∩ J) is solvable by (1), since it is an homomorphic

image, then (I + J)/J is solvable too and part (2) concludes.

Remark 1.3.1. By Proposition 1.3.1 a Lie algebra L contains at least one maximal

solvable ideal. In addition this ideal is unique. Indeed, let S be a maximal solvable ideal

of L and let I be another solvable ideal. Then I + S is still solvable and I + S ⊇ S, but

S is maximal, so S = I + S, i.e. I ⊂ S. This means that any solvable ideal is contained

in S.

Definition 1.3.2. The unique maximal solvable ideal is called the radical of L and is

denoted by Rad(L).

Definition 1.3.3. A Lie algebra L such that Rad(L)= 0 is called semisimple.
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Example 1.3.4. If L is simple, then it is semisimple.

Example 1.3.5. sl(n,K) is simple (hence it is semisimple).

Proof. We know that gl(n,K) = sl(n,K) ⊕ KId. Let I be an ideal of sl(n,K) such

that I 6= 0,Kid. Observe that any ideal of sl(n,K) is an ideal of gl(n,K) too. Indeed,

[I, gl(n,K)] = [I, sl(n,K)] + [I,KId] ⊂ I, as [I, sl(n,K)] ⊂ I by definition and [I,K] = 0

due to commutativity of elements in KId. We will show that sl(n,K) ⊂ I and so we will

conclude sl(n,K) = I. To prove this, we need some premises.

Fact 1 ) Let V be a finite dimensional vector space over K and A1, . . . , Ak diagonalizable

endomorphisms of V . Then A1, . . . , Ak are simultaneously diagonalizable if and only if

they pairwise commute.

Fact 2 ) Under the same hypothesis as in Fact 1, assume that A1, . . . , Ak pairwise com-

mute. Let W be an Ai-invariant subaspace of V for any i = 1, . . . , k.

Then, W =
⊕

(W ∩ Vλ), where Vλ are the common eigenspaces (which are well defined

by Fact 1 ).

We do not present the proofs of these facts as they are basic results of linear algebra.

Let us now consider the subalgebra h of gl(n,K) spanned by elements eii, ∀i = 1, . . . , n.

The elements of h are all ad-diagonalizable, i.e. the endomorphisms adeii of gl(n,K)

are diagonalizable. Indeed, for all i we have [eii, ekl] = δikeil − δileki, so for i 6= j

[eii, eij] = eij, [eii, eji] = −eji and [eii, ejj] = 0. Therefore, if we set Φi = ad(eii),

we can affirm that h together with {Span(eij)}i 6=j are the eigenspaces of all Φi. Note

that Φ1, . . . ,Φn commute since e11, . . . , enn commute, then Φ1, . . . ,Φn are simultane-

ously diagonalizable. I is an ideal, so it is Φi-invariant for all i. Therefore, by Fact

2, I = (I ∩ h) ⊕
(⊕

i 6=j(I ∩ Span(eij))
)

. So, either I contains eij for some i 6= j or

I ∩ h 6= 0, Kid. Take x ∈ I ∩ h, x =
∑
aieii where ai 6= aj for some i 6= j (otherwise we

may have x ∈ Kid). Now, I 3 [x, eij] =
∑

(ai[eii, eij]) = (ai − aj)eij, thus in both cases

eij ∈ I.

Moreover, for k 6= i, [eij, ejk] = eik, so eik ∈ I and I 3 [eik, eki] = eii − ekk. In the end,

for r 6= s we obtain I 3 [err − ess, ers] = 2ers. We have just shown that all the basis

elements of sl(n,K) are in I, so sl(n,K) ⊂ I. Thus, sl(n,K) has no proper ideal.

Example 1.3.6. L/Rad(L) is semisimple.
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Definition 1.3.4. Let L be a Lie algebra. We define the lower central series of L as

the following sequence of ideals:

L0 = L

L1 = [L,L]

L2 = [L,L1]

...

Li = [L,Li−1]

and we say that L is nilpotent if Ln = 0 for some n.

Example 1.3.7. If L is abelian then L is nilpotent.

Remark 1.3.2. L(i) ⊂ Li ∀i, so nilpotent algebras are solvable, but the converse is false.

A counterexample is t(n,K). In Example 1.3.3 we have shown that L(1) = L1 = n(n,K),

so L2 = [t(n,K), n(n,K)] = n(n,K). Therefore, ∀i ≥ 1, Li = L1 6= 0.

Proposition 1.3.2. Let L be a Lie algebra.

1. If L is nilpotent, then its subalgebras and homomorphic images are nilpotent.

2. If L/Z(L) is nilpotent, then L is nilpotent.

3. If L is nonzero and nilpotent, then Z(L) 6= 0.

Proof. [1]

1. Same proof as in Proposition 1.3.1.

2. By hypothesis, there exists a natural number n such that Ln ⊂ Z(L). Then,

Ln+1 = [L,Ln] ⊂ [L,Z(L)] = 0.

17



3. By definition, the last term of the central series is Ln = [L,Ln−1] = 0, thus

Ln−1 ∈ Z(L).

18



Chapter 2

A weak version of Ado’s Theorem

As we explained in the introduction, the purpose of this thesis is to provide a step

by step proof of Ado’s Theorem. In this chapter, instead of setting all the preliminary

notions that we need to prove the general theorem, we try to use what we already know

about Lie algebras to give a proof of the theorem in the semisimple and abelian cases.

Before doing this, we introduce the universal enveloping algebra U(L) of a Lie algebra

L, using which we can prove a ”weak” version of Ado’s theorem and that is going to be

crucial in the following chapters.

In this chapter, we assume K = C, so all the vector spaces and algebras are C-vector

spaces and C-algebras. Everything works in the same way on every algebraically closed

field of characteristic zero. In addition, L will indicate always a Lie algebra.

2.1 Universal enveloping algebra

The aim of this section is to present the useful algebraic notion of universal enveloping

algebra U(L) of a Lie algebra L. We will explain the construction of U(L), describe some

of its properties and its first application in the proof of Ado’s Theorem.

The idea behind the construction of U(L) is to construct the ”smallest” associative

algebra containing L, i.e. to find a unital associative algebra together with a linear

map i : L −→ U(L) such that the bracket in L becomes a commutator in U(L), namely

i([x, y]) = i(x)i(y)− i(y)i(x).
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Definition 2.1.1. Let V be a finite-dimensional vector space. We denote by V n the

cartesian product of V with itself n-times V × · · · × V . The n-th tensor power of V is

the only vector space V ⊗n (up to isomorphisms) together with a n-linear map

j : V n −→ V ⊗n, (v1, . . . , vn) 7→ v1 ⊗ . . . ⊗ vn which satisfies the following universal

property:

if W is another vector space and f : V n −→ W is a n-linear map, then ∃!f̃ : V ⊗n −→ W

such that the following diagram is commutative

V ⊗n

V n

W

f̃

j

f

We set T n(V ) = V ⊗n and, by convention, T 0(V ) = C.

Now we try to embed V in an associative algebra by ”putting together” all these

nth-tensor powers.

Definition 2.1.2. The tensor algebra of a vector space V is T(V ) =
⊕

n≥0 V
⊗n.

We endow T(V ) with the structure of unital associative algebra defining a product in the

natural way on the homogeneous vectors: if v1⊗ . . .⊗vn ∈ V ⊗n and w1⊗ . . .⊗wm ∈ V ⊗m,

then (v1 ⊗ . . .⊗ vn) · (w1 ⊗ . . .⊗ wm) = v1 ⊗ . . .⊗ vn ⊗ w1 ⊗ . . .⊗ wm. Observe that the

product defined in such a way is a map · : V ⊗n × V ⊗m −→ V ⊗n+m, namely T(V ) is a

graded algebra. The unity is 1 ∈ C.

Definition 2.1.3. A universal enveloping algebra of a Lie algebra L is a pair

(U(L), i), where U(L) is a unital, associative algebra and i : L −→ U(L) is a Lie algebra

homomorphism. In addition (U(L), i) has to satisfy the following universal property:

for any associative algebra A (where A is given the Lie algebra structure induced by the

associative product), if ϕ : L −→ A is a Lie algebras homomorphism, then ∃! an associa-

tive algebra homomorphism ϕ̃ : U(L) −→ A such that the following diagram commutes

U(L)

L

A

ϕ̃

i

ϕ
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Theorem 2.1.1. Let L be a Lie algebra. Then the universal enveloping algebra of L

exists and it is unique.

Proof. [4, pp. 1-2] (Uniqueness) Assume (U(L), i) and (Ū(L), h) are both universal en-

veloping algebras of L, then we can combine their universal properties to obtain the

result. Indeed, we have

U(L)

L Ū(L)

U(L)

i

h

i

∃!h̃

∃!̃i

that is

h = h̃ ◦ i and i = ĩ ◦ h (2.1)

Putting together the equations in (2.1) we find that i = ĩ ◦ h̃ ◦ i and ĩ ◦ h̃ is a map from

U(L) to U(L). We can regard i as a map from L to an associative unital algebra, so due

to the universal property there exists a unique map f : U(L) −→ U(L) such that i = f ◦i.
Both ĩ ◦ h̃ and idU(L) verify the condition, therefore ĩ ◦ h̃ = idU(L) by uniqueness.

Now, on the other hand, h = h̃ ◦ ĩ ◦ h and h̃ ◦ ĩ is a map from Ū(L) to itself, so repeating

the preceding argument, we get h̃ ◦ ĩ = idŪ(L).

To summarize,

ĩ : Ū(L) −→ U(L) and h̃ : U(L) −→ Ū(L)

ĩ ◦ h̃ = idU(L) and h̃ ◦ ĩ = idŪ(L)

=⇒ Ū(L) and U(L) are isomorphic.

(Existence) The notion of tensor algebra can be applied to a Lie algebra, as it is just

a particular type of vector space. Let I be the two-sided ideal of T(L) generated by

elements of the form [x, y]− x⊗ y − y ⊗ x, ∀x, y ∈ L. These generators are elements of

L⊕ (L⊗ L) and a general element of I is x1 ⊗ x2 ⊗ · · · ⊗ xn ⊗ ([y1, y2]− y1 ⊗ y2 − y2 ⊗
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y1) ⊗ z1 ⊗ · · · ⊗ zm for some x1, · · · , xn, y1, y2, z1, · · · , zm ∈ L. Define U(L) := T(L)/I,

let π : T(L) −→ T(L)/I be the natural projection and let i := π|L. Now we show that

the pair (U(L), i) is the universal enveloping algebra of L.

Let A be an associative unital algebra and ϕ : L −→ A an homomorphism. We define

ϕ̃ : T(L) −→ A on the homogeneous elements by taking ϕ̃(x1 ⊗ . . . ⊗ xn) = ϕ(x1) ·
. . . · ϕ(xn) and extending linearly (· is the product in A). ϕ̃ just defined is a Lie algebra

homomorphism. Now observe that for any x, y ∈ L, ϕ̃([x, y] − x ⊗ y − y ⊗ x) =

ϕ([x, y])− ϕ(x) · ϕ(y)− ϕ(y) · ϕ(x) = 0 since ϕ is a Lie algebra homomorphism. Thus,

ϕ̃ descends to the quotient, namely ϕ̃ : T(L)/I −→ A. Moreover, ∀x ∈ L, (ϕ̃ ◦ i)(x) =

ϕ̃([x]) = ϕ(x), so by linearity ϕ = ϕ̃ ◦ i. It only remains to check if ϕ̃ is unique.

Assume ψ : U(L) −→ A is another Lie algebra homomorphism such that ϕ = ψ ◦ i, then

∀x ∈ L, ϕ̃(i(x)) = ϕ(x) = ψ(i(x)) and this is true also on 1. A set of generators of T(L)

is 1 and L, so 1 and i(L) is a set of generators for Im(i) = U(L) because the projection is

surjective. Thus, ϕ̃ and ψ are homomorphisms that coincide on the generators of U(L),

therefore ψ = ϕ̃.

Remark 2.1.1. From now on, when dealing with U(L) the symbol ⊗ will be omitted, i.e.

we shall indicate by x1 · · ·xn the image in U(L) of x1 ⊗ . . . ⊗ xn. In (U(L), i) defined

in Theorem 2.1.1 the bracket between elements in L is a commutator as we have forced

[x, y] = xy − yx by cutting out the ideal I.

Now we state the Poincaré-Birkhoff-Witt theorem, which describes the structure of

U(L).

Theorem 2.1.2 (Poincaré-Birkhoff-Witt (PBW)). Let {xi}i∈I be an ordered basis of a

Lie algebra L. Then a basis of U(L) is given by monomials of the form

xm1
i1
· · ·xmn

in
(2.2)

with i1 < i2 < . . . < in, mj ∈ Z+ ∀j ∈ {1, . . . , n}.

Example 2.1.1. Consider L = sl(2,C) and its standard basis {x, h, y} introduced in

Example 1.1.8. By PBW theorem, U(L) = Span{xahbyc | a, b, c ∈ Z+}. Moreover, taken

for example the element yxh ∈ U(L), we can rewrite it as a sum of monomials of the
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form (2.2). Indeed

yxh = xyh+ [y, x]h = xhy + x[y, h]− h2 = xhy − 2xy − h2.

Now we state Ado’s Theorem and then we use the universal enveloping algebra to

prove a weak version of it.

Theorem 2.1.3 (Ado’s Theorem). Let L be a finite-dimensional Lie algebra. Then there

exists a finite-dimensional, faithful representation Φ : L −→ gl(V ) of L.

Theorem 2.1.4 (weak version of Ado’s Theorem). Let L be a Lie algebra. Then L is

isomorphic to Lie algebra consisting of endomorphisms.

Proof. L acts on its universal enveloping algebra U(L) by left multiplication, namely we

consider the map

ρ : L −→ gl(U(L)) ρx(y) = xy ∀x ∈ L, ∀y ∈ U(L).

• ρ is a Lie algebra homomorphism because ∀x, y ∈ L and ∀z ∈ U(L), ρ[x,y](z) =

[x, y]z = xyz − yxz and similarly [ρx, ρy](z) = ρxρy(z)− ρyρx(z) = xyz − yxz.

• ∀x ∈ L, ρx is an endomorphism of U(L). In fact, ρx(v+w) = x(v+w) = xv+xw =

ρx(v) + ρx(w).

Thus, ρ is a representation of L on its universal enveloping algebra.

Moreover, ρ is faithful since ∀x ∈ L ρx(1) = x, so there are not two different elements of L

which give the same endomorphism of U(L). Then, using the theorem of homomorphism

we conclude that L ∼= Im(ρ) ⊆ gl(U(L)).

Remark 2.1.2. In Theorem 2.1.4 we have used the map of left multiplication and we

could not use the right multiplication. Indeed, by a brief computation one sees that the

map of right multiplication is not a Lie algebra homomorphism. In fact, using the same

notation as in the proof of the theorem we get ρ[x,y](z) = zxy − zyx 6= zyx − zxy =

[ρx, ρy](z).
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Remark 2.1.3. Even if L is a finite-dimensional Lie algebra, its universal enveloping

algebra is always infinite dimensional, so Theorem 2.1.4 only tells us we can represent

L on an infinite dimensional vector space. This is why we named this theorem a ”weak”

version of Ado’s Theorem: to emphasize the difference between it and the real Ado’s

Theorem, which guarantees L is represented on a finite-dimensional space.

We conclude this section showing the relation between the representations of a Lie

algebra L and those of U(L).

Remark 2.1.4. Suppose ϕ : L −→ gl(V ) is a representation of L on V, then by the

universal property ∃! a homomorphism ϕ̂ : U(L) −→ U(L) which extends ϕ. Conversely,

given a homomorphism ψ : U(L) −→ gl(V ), we obtain a represenatation of L just by

ψ ◦ i.

2.2 Semisimple and abelian cases

In this section we face the semisimple and abelian cases of the theorem. The proofs

are elementary, but they are fundamental in order to understand what to do next.

Theorem 2.2.1 (Ado’s Theorem for semisimple algebras). Let L be a finite-dimensional

semisimple Lie algebra. Then there exists a faithful representation of L over a finite-

dimensional vector space V . Equivalently, L is isomorphic to a subalgebra of gl(V ).

Proof. The representation we are looking for is the adjoint representation

ad : L −→ gl(L)

and by Remark 1.2.1 we know that Ker(ad) = Z(L). Z(L) is a solvable ideal since

[Z(L), Z(L)] = 0, but L is semisimple, so the centre is null. Thus, ad : L −→ gl(L) is a

homomorphism with trivial kernel, and L ∼= Im(ad), i.e. L is isomorphic to a subalgebra

of gl(L).

Remark 2.2.1. The adjoint representation does not suffice to prove Ado’s Theorem for

a non-semisimple algebra, as it is not faithful on the centre. However, we can search for
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a complement of ad, in the following sense:

suppose ρ : L −→ gl(V ) is a representation of L on a finite-dimensional vector space V

which is faithful on Z(L). Then we can define

Φ : L −→ gl(L⊕ V )

x 7−→ Φ(x)

where Φ(x) : L⊕ V −→ L⊕ V sends (l, v) 7→ (adx(l), ρx(v)). Φ is still a representation

of L on the finite-dimensional space L⊕ V .

Moreover, Φ is faithful on L. Indeed, Φ(x) = 0 if and only if ∀ l ∈ L,∀ v ∈ V, (adx(l), ρx(v)) =

(0, 0). Now, adx(l) = 0 ∀l ∈ L ⇐⇒ x ∈ Z(L) and ρx(v) = 0 ∀v ∈ V ⇐⇒ x ∈ Ker(ρ).

But ρ is faithful on Z(L), so Z(L) ∩Ker(ρ) = 0, which means Φ(x) = 0 ⇐⇒ x = 0.

Due to Remark 2.2.1 we need to find a finite-dimensional representation of L which

is faithful on Z(L) and this is easy when L is abelian because L = Z(L).

Theorem 2.2.2 (Ado’s Theorem for abelian algebras). Let L be a finite-dimensional,

abelian Lie algebra. Then there exists a faithful representation of L over a finite-dimensional

vector space.

Proof. We claim that ρ : L −→ gl(L × C) defined as ρx(y, t) = (tx, 0) is a faithful

representation of L.

• ρ is clearly linear and it also satisfies ρ([x, y]) = [ρ(x), ρ(y)] ∀x, y ∈ L. Indeed:

ρ([x, y]) = ρ(0) = 0 because L is abelian (2.3)

while

∀(z, t) ∈ L× C, [ρ(x), ρ(y)](z, t) = ρx(ρy(z, t))− ρy(ρx(z, t))

= ρx(ty, 0)− ρy(tx, 0)

= (0, 0)− (0, 0)

= (0, 0)
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thus ρ is a representation of L.

• ρ is faithful because for x ∈ L

ρx = 0 ⇐⇒ ρx(y, t) = 0 ∀(y, t) ∈ L× C

⇐⇒ (tx, 0) = (0, 0) ∀ t ∈ C

⇐⇒ x = 0

Remark 2.2.2. If we consider only Z(L) instead of the whole Lie algebra L, the map ρ in

Theorem 2.2.2 is obviously a finite-dimensional representation of the centre. However,

the direct sum ad + ρ does not provide a faithful representation of L. In fact, ρ is a

homomorphism only if L is abelian, as we noticed in 2.3.
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Chapter 3

The nilpotent case

In this chapter we present the proof of Ado’s Theorem in the case of a nilpotent Lie

algebra and then we show some important results about nilpotent Lie algebras.

3.1 Ado’s Theorem in the nilpotent case

Theorem 3.1.1 (Ado’s Theorem for nilpotent Lie algebras). Let n be a finite-dimensional,

nilpotent Lie algebra. Then there exists a finite-dimensional faithful representation of

n, Φ : n −→ gl(V ). Moreover, there exists k ∈ N such that Φ(n)k = 0, namely

∀xi1 , . . . , xik ∈ n we have Φ(xi1) · · ·Φ(xik) = 0.

Proof. We prove the theorem by induction on the dimension of n.

The result is trivially true for dimension zero, so suppose that dim(n) > 0 and that the

theorem is valid for all nilpotent algebras with dimension lower than dim(n). We also

assume n is not abelian, otherwise we can use Theorem 2.2.2. Then dim(Z(n)) < dim(n),

so the quotient n′ := n/Z(n) has positive dimension and is still a nilpotent algebra. n′

is not abelian and by nilpotency, [n′, n′] ( n′, so n̂ := n′/[n′, n′] has positive dimension

and is nilpotent. Therefore, n̂ has a one dimensional subspace, let’s say Cz. We call

V a complement of Cz, hence dim(V ) = dim(n̂) − 1 = dim(n′) − dim([n′, n′]) − 1. Let

π : n′ −→ n̂ be the natural projection. We claim that π−1(V ) is an ideal of n′. Indeed,

consider π−1(v) for some v ∈ V a general element of π−1(V ) and let x be a general

element of n′: we wonder whether [π−1(v), x] ∈ π−1(V ). This is true if and only if
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π ([π−1(v), x]) ∈ V . Note that [π−1(v), x] ∈ [n′, n′], so it is zero when passing to the

quotient and then it is in V . With regard to the dimensions of these spaces,

dim(V ) = dim(n′)− dim([n′, n′])− 1 ⇐⇒ dim(V ) + dim([n′, n′]) = dim(n′)− 1

and dim(V ) + dim([n′, n′]) is exactly the dimension of π−1(V ). Thus π−1(V ) is a codi-

mension 1 ideal of n′ and so it corresponds to a an ideal of n containing Z(n). More

precisely, π−1(V ) = a/Z(n) for some ideal a of n. Finally,

dim(n′) = dim(a/Z(n)) + 1 ⇐⇒ dim(n)− dim(Z(n)) = dim(a)− dim(Z(n)) + 1

that is dim(a) = dim(n) − 1, Therefore, a is an ideal of codimension 1 in n (then a

is nilpotent ) and a ⊃ Z(n). Let h be a complementary subspace of a (note that h is

1-dimensional, hence it is abelian), then we have the decomposition

n = a⊕ h. (3.1)

By Remark 2.2.1, we have to find a finite-dimensional representation ρ of n which is

faithful on Z(n) and then combine this with the adjoint action, so that Φ = ρ+ ad, (by

the nilpotency of n, ad is nilpotent). First of all, by the inductive hypothesis, we know

that there exists a finite-dimensional faithful representation of a, say

ρ0 : a −→ gl(V0)

with ρ0(a)k0 = 0 for some k0 ∈ N. However, we will need ρ0 only for inductive purpose;

now we try to represent both a and h on U(a). As it is shown in Theorem 2.1.4, a has

a natural representation on its universal enveloping algebra, i.e. the left multiplication

map. Recall a is an ideal of n, hence [h, a] ⊂ a, then there is an adjoint action ad : h −→
gl(a). Now we extend this action to an action on U(a). Actually, for any H ∈ h and for

a general monomial in U(a) we define

[H,A1 · · ·Am] =
m∑
i=1

A1 · · ·Ai−1 [H,Ai] · · ·Am. (3.2)
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and we extend it on U(a) by linearity. We have to prove that ad : h −→ gl(U(a)) with the

bracket defined as is (3.2) is a representation. Assume H, K ∈ h and A1 · · ·Am ∈ U(a),

then:

• ad[H,K](A1 · · ·Am) =
m∑
i=1

A1 · · ·Ai−1 [[H,K] , Ai] · · ·Am =

=
m∑
i=1

A1 · · ·Ai−1 [H, [K,Ai]] · · ·Am+

+
m∑
i=1

A1 · · ·Ai−1 [K, [Ai, H]] · · ·Am

• [adH , adK ](A1 · · ·Am) =adH(adK(A1 · · ·Am))− adK(adH(A1 · · ·Am)) =

=adH(
m∑
i=1

A1 · · ·Ai−1 [K,Ai] · · ·Am)

− adK(
m∑
i=1

A1 · · ·Ai−1 [H,Ai] · · ·Am) =

=
m∑
i=1

A1 · · ·Ai−1 [H, [K,Ai]] · · ·Am

−
m∑
i=1

A1 · · ·Ai−1 [K, [H,Ai]] · · ·Am =

=
m∑
i=1

A1 · · ·Ai−1 [H, [K,Ai]] · · ·Am+

+
m∑
i=1

A1 · · ·Ai−1 [K, [Ai, H]] · · ·Am

so ad : h −→ gl(U(a)) is a Lie algebra homomorphism, i.e. a representation of h on U(a).

Now we combine the adjoint action of h with the left multiplication action of a to get an

action of the entire n = a⊕ h; namely we define

ρ̂ : a⊕ h −→ gl(U(a)) (3.3)

and set ρ̂A+H(M) = AM + [H,M ] , ∀A + H ∈ a ⊕ h and ∀M ∈ U(a). Let us check

that ρ̂ is a genuine action, equivalently, that ρ̂[A+H,B+K](M) = [ρ̂A+H , ρ̂B+K ] (M) for all
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A, B ∈ a and H, K ∈ h. On one hand,

ρ̂[A+H,B+K](M) =ρ̂([A,B] + [A,K] + [H,B] + [H,K])(M) = (only [H,K] is in h)

=[A,B]M + [A,K]M + [H,B]M + [[H,K],M ].

On the other hand

[ρ̂A+H , ρ̂B+K ] (M) =ρ̂A+H(ρ̂B+K(M))− ρ̂B+K(ρ̂A+H(M)) =

=ρ̂A+H(BM + [K,M ])− ρ̂B+K(AM + [H,M ]) =

=ABM + A[K,M ] + [H,BM ] + [H, [K,M ]]

−BAM −B[H,M ]− [K,AM ]− [K, [H,M ]] =

(we are dealing with U(a), so ABM −BAM = [A,B]M and

[A,K]M = A[K,M ]− [K,AM ])

=[A,B]M + [A,K]M + [H,B]M + [H, [K,M ]]− [K, [H,M ]] =

=[A,B]M + [A,K]M + [H,B]M + [H, [K,M ]] + [K, [M,H]] =

=[A,B]M + [A,K]M + [H,B]M + [[H,K]M ].

Therefore, ρ̂ : a⊕h −→ gl(U(a)) is a representation. We notice that ρ̂ is faithful on a since

the left multiplication action of a on U(a) was faithful. We want to modify ρ̂ in order to

obtain a finite-dimensional representation hence we look for an ideal I of U(a) such that

dim(U(a)/I) < +∞. We consider the two-sided ideal I = 〈(a)k0〉, generated by k0-fold

product of elements of a. Then we can consider the quotient U(a)/I and observe that

it is finite-dimensional. In fact, a is finite-dimensional and we can assume a1, . . . , am

is an ordered basis; then by PBW theorem we know that a basis of U(a) consists of

monomials of the form am1
i1
· · · amn

in
. Passing to the quotient U(a)/I is generated only by

those monomials whose degree m1 + . . .+mn < k0 and there are only finitely many such

monomials.

Now we want to project ρ̂ to a representation on U(a)/I and to do so we have to check if
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∀A+H ∈ a⊕h, ρ̂A+H descends to quotient. Consider U(a) as an a-module (action given

by left multiplication), then I is an a-submodule and so it is stable under the action

of a, i.e. a.I ⊆ I; similarly [H, I] ⊆ I since I is an ideal, so I is also stable under the

adjoint action of h. Therefore, ρ̂A+H preserves the equivalence classes and this allows us

to define

ρ : a⊕ h −→ gl

(
U(a)

I

)
. (3.4)

It only remains to show that ρ is faithful on a and that ρ(n)k = 0 for some k.

We have to prove the following implication:

∀[z] ∈ U(a)

I
, [x][z] = [xz] = [0] =⇒ x = 0 (in a).

Suppose [z] = [1], then [x1] = 0 ⇐⇒ [x] = [0], so it suffices to show [x] = [0] ⇐⇒ x =

0. Equivalently, we shall prove that

φ : a −→ U(a)

I

x 7−→ [x]

is injective. We at last need ρ0 : a −→ gl(V0) and we extend it to ρ′0 : U(a) −→ gl(V0)

by defining the endomorphism ρ′0(ai1 · · · aim) as the composition ρ0(ai1) ◦ . . . ◦ ρ0(aim)

(we define ρ′0 on a basis and then extend it by linearity). Since ρ0(a)k0 = 0, we get that

ρ′0(I) = 0 and so ρ′0 descends to a representation of the quotient:

[ρ′0] :
U(a)

I
−→ gl(V0)

Notice that the composition [ρ′0] ◦ φ gives exactly the representation ρ0. More precisely,

the following diagram is commutative:

a U(a)
I

gl(V0)
φ [ρ′0]

ρ0

Recall that by hypothesis ρ0 is faithful on a, then necessarily φ is injective, thus ρ is
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faithful on a.

Eventually we show that for some k ∈ N we get ρ(n)k = 0.

Precisely we need to check that for sufficient high k and ∀A1 · · ·Am general monomial

in U(a) it is true that ρx1 · · · ρxk(A1 · · ·Am) = 0, where by linearity we assume that xi

lies either in a or in h. Now, if xi ∈ a, ρxi(A1 · · ·Am) = x1(A1 · · ·Am). That is, the

degree of the monomial has increased, so in finitely many steps we get a monomial of

degree k0 which is 0 in U(a)/I. On the other hand, if xi ∈ h, its action gives a sum of

monomials in which a term Ai has been replaced with [H,Ai]. Iterating this process and

using the nilpotency of n (which assures that sufficiently long iterated brackets vanish),

we see that a repeated adjoint action of h gives the null endomorphism.

3.2 More about nilpotent Lie algebras

Now we present some results about nilpotent Lie algebras which will be useful in

the following chapter. When dealing with endomorphisms or matrices, we will call an

element f (concretely) nilpotent if ∃m ∈ N such that fm = 0.

Definition 3.2.1. Let L be a Lie algebra and x ∈ L. We call x ad-nilpotent if adx is

a nilpotent endomorphism.

Lemma 3.2.1. Let V be a finite-dimensional vector space and x ∈ gl(V ). If x is a

nilpotent endomorphism, then it is ad-nilpotent.

Proof. [1, p. 12] We associate to x two endomorphisms, λx and ρx, which are the left

and the right composition respectively, namely ∀y ∈ gl(V )

λx(y) = xy ρx(y) = yx.

Clearly these applications are both nilpotent and if k ∈ N is such that xk = 0, then also

λkx = 0 and ρkx = 0. Now, ρx and λx are elements of the ring of endomorphisms and

moreover they commute, thus we can observe that

(λx − ρx)2k =
2k∑
t=0

(
2k

t

)
λtx (−ρx)2k−t = 0.
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Therefore, adx = λx − ρx is nilpotent, i.e. x is ad-nilpotent.

Theorem 3.2.1. Let V be a finite-dimensional vector space and L ⊂ gl(V ) be a subal-

gebra consisting of nilpotent endomorphisms. Then

∃v ∈ V, v 6= 0 such that L(v) = 0,

where by L(v) = 0 we mean that ∀x ∈ L, x(v) = 0.

Proof. [1, p. 12] We proceed by induction on the dimension of L. The base case

(dim(L) = 0 or 1) is obvious.

Suppose K ⊂ L is a proper subalgebra, then the elements of K are nilpotent and so by

Lemma 3.2.1 they are also ad-nilpotent as endomorphisms of L. Moreover, ad(K) is also

a subalgebra of gl(L/K) since ∀x, z ∈ K, adx(z) = xz − zx ∈ K, as K is a subalgebra.

Thus, ad(K) descends to the quotient. Observe that 0 < dim(L/K) < dim(L), so the

dimension of ad(K) as subalgebra of gl(L/K) is lower than dimension of L. In addi-

tion, the elements of ad(K) are nilpotent and so by inductive hypothesis there exists an

element x+K ∈ L/K, x /∈ K, such that ad(K)(x+K) = 0. Equivalently,

∀y ∈ K, [y, x] ≡ 0 mod K,

therefore x ∈ NL(K). This shows that NL(K) does not contain only K.

Now suppose K is a maximal proper subalgebra of L. Then, necessarily NL(K) = L and

this means that K is an ideal of L. We claim that dim(L/K) = 1.

Indeed, let π : L −→ L/K be the canonical projection and suppose dim(L/K) > 1.

Then L/K contains a one-dimensional proper subalgebra, say C[z] for some z ∈ L \K.

π−1(C[z]) = C(z + K). Thus, π−1(C[z]) is a proper subalgebra of L which contains K

and this is a contradiction by the maximality of K. Then K has codimension one in L

and we can write L = K + Cy for any y ∈ L \K.

By the inductive hypothesis, W := {v ∈ V |x(v) = 0 ∀x ∈ K} 6= 0. Note that W is stable

under L. More precisely, if t ∈ L, x ∈ K, v ∈ W , then x(t(v)) = t(x(v))− [t, x](v) = 0,

because t(x(v)) = 0 by definition of W and [t, x] ∈ K as K is an ideal. So, t(v) ∈ W . Cy
is nilpotent, then there exists a natural number k such that yk(v) 6= 0, but yk+1(v) = 0,
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for any v ∈ V . Besides, given v ∈ W , w := yk(v), is an element of W since W is stable

under L and y ∈ L. So we have:

L(w) = K(w) + Cy(w)

= 0 + y(yk(v))

= 0 + 0 = 0.

Then w is the common eigenvector which satisfies the statement.

Corollary 3.2.1.1. Let V be a finite-dimensional vector space (suppose dim(V ) = n)

and L ⊂ gl(V ) be a subalgebra consisting of nilpotent endomorphisms. Then there exists

a basis of V relative to which the matrices of the endomorphisms of L are all in n(n,C).

In addition, Ln = 0, i.e. x1 · · ·xn = 0, ∀xi ∈ L.

Proof. [1, p. 13] We proceed by induction on the dimension of V . The cases dim(V ) = 0

or 1 are trivial, so we assume dim(V ) ≥ 2 and that the theorem has been proved for lower

dimensions. By Theorem 3.2.1, there exists a nonzero vector v ∈ V such that L(v) = 0.

Let V1 be the subspace spanned by v and W = V/V1. Observe that the elements in L

descend to the quotient W as L(v) = 0 and they are still nilpotent as endomorphisms

of W . We apply the inductive hypothesis on W (whose dimension is n − 1), finding a

basis {v1, . . . , vn−1} of W relative to which the matrices of L ”passed” to the quotient

are strictly upper triangular. Then {v, v1, . . . , vn−1} is a basis of V relative to which the

matrices of L are strictly upper triangular (in other words they are elements of n(n,C)).

Then, since the matrices of L are n×n and nilpotent, the product of n matrices x1 · · ·xn
yields 0.

Remark 3.2.1. If L is nilpotent, then all its elements are ad-nilpotent. Indeed L is

nilpotent if for some n ∈ N and ∀xi, y ∈ L one has adx1 · · · adxn(y) = 0 and in particular

for any x, (adx)
n = 0.

Engel’s Theorem states that the converse is also true.

Theorem 3.2.2 (Engel’s Theorem). Let L be a Lie algebra consisting of ad-nilpotent

elements. Then L is nilpotent.
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Proof. [1, p. 13] By hypothesis, all the elements in L are ad-nilpotent, thus ad(L) ⊂ gl(L)

consists of nilpotent endomorphisms and so we can apply Theorem 3.2.1. Therefore

there exists a nonzero element x ∈ L such that ad(L)(x) = 0, i.e., ∀y ∈ L, [y, x] = 0.

Equivalently, there exists x 6= 0, x ∈ Z(L), so Z(L) 6= 0. Thus, dim(L/Z(L)) < dim(L)

and L/Z(L) still consists of ad-nilpotent elements, then we can use an induction on the

dimension of L (if it is 0 then it is obvious) and find that L/Z(L) is nilpotent. Now, by

Proposition 1.3.2 we get that L is nilpotent too.

Example 3.2.1. By Lemma 3.2.1 and Engel’s Theorem n(n,C) is a nilpotent Lie algebra.

Remark 3.2.2. By Lemma 3.2.1 and Engel’s Theorem, a Lie algebra consisting of con-

cretely nilpotent endomorphisms is nilpotent in the sense of Lie algebras too. The con-

verse is not true. Actually the Lie algebra d(n,C) of diagonal matrices is abelian, hence

it is nilpotent; however diagonal matrices are not nilpotent, since the powers of a nonzero

diagonal matrix are still nonzero (and diagonal).

Definition 3.2.2. The nilradical of a Lie algebra L is the maximal nilpotent ideal of

L and we indicate it by Nil(L).

Proposition 3.2.1. Let V be a finite-dimensional vector space and L ⊂ gl(V ). Let a be

a nilpotent ideal of L. Then ∀x1, . . . , xm ∈ L with at least one xi ∈ a, one has

tr(x1 · · ·xm) = 0.

Proof. [2] Let Vi = aiV be the vector space spanned by vectors of the form a1 · · · aiv, for

any a1, . . . , ai ∈ a and v ∈ V . Assume dim(V ) = n, then a1 · · · an = 0 as these elements

are nilpotent (recall Corollary 3.2.1.1). We then obtain the flag of vector subspaces

V = V0 ⊃ V1 ⊃ . . . ⊃ Vn = {0}.
Now, note that ∀i, Vi is invariant under multiplication by an element of L, i.e. x(Vi) =

x aiV ⊆ Vi, ∀x ∈ L. Indeed, xaiV = aixV − [ai, x]V and aixV is contained in Vi by

definition, whereas [ai, x] ∈ ai because a is an ideal. More explicitly, we can iterate this

formula for endomorphisms: [x, a1a2] = a1[x, a2] + [x, a1]a2, where the right-hand side

lies in a2. Lastly note that aVi ⊂ Vi+1 and so the endomorphism x1 · · ·xm with at least

one xj ∈ a sends each Vi in Vi+1. It follows that (x1 · · ·xm)n(V ) = 0, i.e. x1 · · ·xm is

nilpotent and so it has zero trace.
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Proposition 3.2.2. Let V be a finite-dimensional vector space and L ⊂ gl(V ). Let a

and b be two ideals of L such that b ⊂ [a, L]. If [a, b] is (concretely) nilpotent, then b is

(concretely) nilpotent.

Proof. [2] Let B be an element of b. We have to show that B is nilpotent. We use the

following sufficient condition:

if tr(Bk) = 0 ∀k ≥ 1, then B is a nilpotent endomorphism.

We will give the proof of this fact after proving the Proposition.

B is an element of b, then by hypothesis, B is a linear combination of elements of the

form [A,X] where A ∈ a and X ∈ L. So, proving tr(Bk) = 0 is equivalent to show

that tr([A,X]Bk−1) = 0. Using the properties of the trace, we have tr([A,X]Bk−1) =

−tr(X[A,Bk−1]). Notice that [X, Y Z] = Y [X,Z]+[X, Y ]Z, hence we can write [A,Bk−1] =

[A,BBk−2] = B[A,Bk−2] + [A,B]Bk−2 and going on like this we obtain

[A,Bk−1] =
k−1∑
i=1

Bi−1[A,B]Bk−i−1.

Now we calculate

tr(X[A,Bk−1]) = tr(X
k−1∑
i=1

Bi−1[A,B]Bk−i−1)

= tr(
k−1∑
i=1

XBi−1[A,B]Bk−i−1)

=
k−1∑
i=1

tr(XBi−1[A,B]Bk−i−1).

Observe that the term [A,B] appears in each summand, and [A,B] ∈ [a, b] which is a

(concretely) nilpotent ideal by hypothesis.

Then, by Proposition 3.2.1, ∀i ∈ {1, . . . , k − 1} we have tr(XBi−1[A,B]Bk−i−1) = 0,

therefore tr(Bk) = tr([A,X]Bk−1) = −tr(X[A,Bk−1]) = 0 for any k ≥ 1, thus B ∈ b is

nilpotent.

Now we prove the sufficient condition for nilpotency. Recall that an endomorphism

(equivalently a matrix) B is nilpotent if and only if all its eigenvalues are zero. Thus, we
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want to show that if ∀k ≥ 1, tr(Bk) = 0, then all the eigenvalues of B are zero. Suppose

B is not nilpotent, let λ1, . . . , λt be its dinstict non-zero eigenvalues and m1, . . . ,mt their

algebraic multiplicities. Observe that ∀i, λki is an eigenvalue of Bk, whereas the algebraic

multiplicity of λki relative to Bk is still mi.

We are working on C, so every matrix is triangularizable and so for any k we have

0 = tr(Bk) =
∑t

i=1 miλ
k
i . Therefore, we obtain the following linear system:

λ1 λ2 . . . λt

λ2
1 λ2

2 . . . λ2
t

...
...

. . .
...

λk1 λk2 . . . λkt




m1

m2

...

mt

 =


0

0
...

0

 (3.5)

and denote by A the matrix of coefficients. Note that det(A) = λ1 · · ·λt det(Ã), where

Ã =


1 1 . . . 1

λ1 λ2 . . . λt
...

...
. . .

...

λk−1
1 λk−1

2 . . . λk−1
t


is a Vandermonde matrix, thus det(A) = λ1 · · ·λt

∏
1≤i<j≤t(λi− λj) 6= 0, since λ1, . . . , λt

are all distinct and non-zero. Therefore, system in (3.5) has only the trivial solution, i.e.

∀1 ≤ i ≤ t, mi = 0 and this means that all the eigenvalues λi are null and so we have

found a contradiction.
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Chapter 4

The solvable case

This chapter is dedicated to the proof of Ado’s Theorem for solvable Lie algebras.

We will use an argument similar to the one used for nilpotent algebras.

Theorem 4.0.1. Let L be a finite-dimensional Lie algebra and let t be a solvable ideal

of L. Then [L,L] ∩ t is a nilpotent ideal.

Proof. [2] We may take t to be the radical of L, as it is the maximal solvable ideal. We

divide the proof in two cases.

Case 1

We assume L ⊂ gl(V ) for a certain finite-dimensional vector space V . Recall the defini-

tion of the derived series of t (Definition 1.3.1); now we claim that ∀i, t(i) is an ideal of

L. We prove this claim by induction on i observing that the base case t(0) = t follows

from the definition of the radical. So we suppose that t(k−1) is an ideal and we check

that t(k) = [t(k−1), t(k−1)] is an ideal too. Indeed, for any x ∈ L we have

[x, t(k)] = [x, [t(k−1), t(k−1)]]

⊆ [t(k−1), [t(k−1), x]] + [t(k−1), [x, t(k−1)]] ∈ t(k)

as [t(k−1), x] ⊆ t(k−1) by inductive hypothesis.

Now we prove the statement of the theorem by downward induction. Indeed, t is solvable,

therefore, for sufficiently big, k we have t(k) = 0 and so [L,L] ∩ t(k) = 0 is trivially

nilpotent. Thus, we suppose that [L,L]∩t(j) is nilpotent ∀j > i and we are going to show
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that [L,L]∩ t(i) is nilpotent too. Take [t(i), [t(i), L]] and observe that it is contained both

in [L,L] and in [t(i), t(i)] = t(i+1). So, [t(i), [t(i), L]] ⊂ [L,L] ∩ t(i+1) which is nilpotent by

inductive hypothesis and so [t(i), [t(i), L]] is nilpotent. Therefore, we can apply Proposition

3.2.2 with b = [t(i), L] and a = t(i) and conclude that [t(i), L] is nilpotent and moreover it is

an ideal. Note that [L, [L,L]∩t(i)] is nilpotent since it is in [t(i), L] and [L,L]∩t(i) ⊂ [L,L].

Consequently, we are able to apply again Proposition 3.2.2 with a = L and b = [L,L]∩t(i)

and conclude [L,L] ∩ t(i) is nilpotent.

Case 2

Now let L be any Lie algebra. Using the adjoint representation we can identify L/Z(L)

with a subalgebra of gl(L) and so we can apply the previous case to it. Therefore,

([L,L] ∩ t)/Z(L) is nilpotent and by Proposition 1.3.2 the same goes for [L,L] ∩ t.

Corollary 4.0.1.1. Let L be a finite-dimensional Lie algebra and let t be a solvable ideal

of L. Then for any derivation δ : L −→ L of L, δ(t) is nilpotent.

Proof. [2] We divide the proof in two cases. We first consider the inner derivations, i.e.

the derivations of the form adx for x ∈ L.

Then δ(t) = adx(t) = [x, t] ⊂ [L,L] ∩ t and we conclude using Theorem 4.0.1.

Now let δ be any derivation of L. The idea is to embed L in a larger algebra L′ in

such a way that δ can be regarded as an inner derivation of L′, see [5, p. 6]. More

precisely, we define the structure of semidirect product of L and C with respect to

δ, which is indicated by Loδ C. Here is how we construct this new space. We consider

L′ := L ⊕ C as a direct sum of vector spaces and we define a bracket on L′ as follows;

for x, y ∈ L and a, b ∈ C:

[(x, a), (y, b)] = ([x, y] + aδ(y)− bδ(x), 0). (4.1)

A standard check shows that L′ = Loδ C with bracket (4.1) is a Lie algebra. Consider

now the injection ν : L −→ LoδC, ν(x) = (x, 0), for x ∈ L. We note that [ν(x), ν(y)] =

[(x, 0), (y, 0)] = ([x, y] + 0δ(y) − 0δ(x), 0) = ([x, y], 0) = ν([x, y]), so ν is a Lie algebra

homomorphism (linearity is obvious). Therefore we have an embedding of Lie algebras

L ↪→ L′ and we can identify L ∼= {(x, 0)|x ∈ L}. In particular, L is a subalgebra of LoδC.

Now take w = (0, 1) ∈ LoδC and consider the inner derivation adw : L′ −→ L′. For any

39



x′ = (x, 0) ∈ L, we have adw(x′) = [(0, 1), (x, 0)] = ([0, x] + 1δ(x)− 0δ(0), 0) = (δ(x), 0),

i.e. δ is the restriction of the inner derivation adw to the subalgebra L. We make a

few remarks before concluding. Firstly, (t, 0) is a solvable ideal of L oδ C. Indeed, by

definition, there exists a natural number i such that t(i) = 0. The derived series of

(t, 0) consists of terms (t, 0)(k) = (t(k), 0) = [(t(k−1), 0), (tk−1, 0)]. We note that (t, 0)(i) =

[(t(i−1), 0), (t(i−1), 0)] = (0, 0), so (t, 0) is solvable. Similarly, if n is a nilpotent ideal of L,

then ñ = (n, 0) is a nilpotent ideal of Loδ C. Indeed, it is easy to see by induction that

ñk = (nk, 0). Then, the lower central series of n converges to 0 if and only if the lower

central series of ñ does the same. So, (δ(t), 0) = adw((t, 0)) is nilpotent because (t, 0)

is solvable and adw is an inner derivation. Using what we have just observed about the

relation between nilpotent ideals of L and those of L′, we conclude that δ(t) is nilpotent

too.

Theorem 4.0.2 (Ado’s Theorem for solvable Lie algebras). Let t be a finite-dimensional,

solvable Lie algebra.

Then there exists a finite-dimensional, faithful representation Φ of t. Moreover, if n is

the nilradical of t, then Φ(n) is nilpotent.

Proof. As in Theorem 3.1.1, we construct the map Φ combining the adjoint action of t

with a map ρ which is faithful on the centre. In addition we want both ad(n) and ρ(n) to

be nilpotent. the map ad satisfies this property, since if x ∈ n and y ∈ t then [x, y] ∈ n,

so applying adx sufficiently many times will yield 0.

We proceed by induction on the dimension of t/n. When dim(t/n) = 0, then t is nilpotent

and therefore Theorem 3.1.1 holds. So, we may suppose dim(t/n) > 0 and that the

theorem has been proved for all solvable algebras t̃ such that dim(̃t/ñ) < dim(t/n). We

are looking for a representation of t which is faithful on the centre, but actually it suffices

to construct a finite-dimensional representation of t that is faithful on n, since Z(t) ⊂ n.

Just as in Theorem 3.1.1, we decompose t as

t = a⊕ h

where a is a codimension 1 (hence solvable) ideal, a ⊃ n and h is a complementary

subspace (which has dimension 1, so it is abelian). Notice that Nil(a) = Nil(t) = n.
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By inductive hypothesis, there exists a finite-dimensional, faithful representation

ρ0 : a −→ gl(V0)

such that ρ0(n) is nilpotent. In particular, by Corollary 3.2.1.1,

∃k ∈ N such that ρ0(n)k = 0. (4.2)

We can extend ρ0 to a representation of U(a) just as we did in the proof of Theorem

3.1.1, i.e. defining ρ′0 : U(a) −→ gl(V0), ρ′0(x1 · · ·xn) = ρ0(x1) · · · ρ0(xn) for a general

monomial x1 · · · xn ∈ U(a).

Repeating the same argument used in the nilpotent case, we define a representation

ρ̂ : a ⊕ h −→ gl(U(a)) which is faithful on a (recall that a acts by left multiplication

and h by adjoint representation extended on U(a) by the Leibniz rule). Now we consider

the two-sided ideal I of U(a) generated by n together with Ker(ρ′0). However, we are

interested in Ik and we claim that U(a)/Ik is finite-dimensional. Indeed, for any element

A ∈ a, ρ0(A) ∈ gl(V0) and by Cayley-Hamilton Theorem there exists a monic polynomial

p such that ρ0(p(A)) = p(ρ0(A)) = 0. Thus, p(A) ∈ Ker(ρ0) ⊂ I, then p(A)k ∈ Ik and

so p(A)k ≡ 0 mod Ik. This means that we can rewrite any sufficiently high power of A as

a polynomial in A with lower degree, hence we can express each monomial of sufficiently

high degree in U(a) in terms of monomials of lower degree modulo Ik. Therefore U(a)/Ik

is generated by these monomials of bounded degree, since a is finite-dimensional, there

are only finitely many such monomials.

Now we want to project ρ̂ to a finite-dimensional representation. In order to do so, first

observe that Ik is stable under left multiplication by elements of a. Moreover, h has an

adjoint action on a because [h, a] ⊂ a, and ∀H ∈ h, adH is a derivation of a, then by

Corollary 4.0.1.1 adH(a) ⊂ n ⊂ I. Just as in (3.2) we extend the adjoint action of h

on the entire U(a) and we have h.I ⊂ I; in addition, h.Ik ⊂ Ik thanks to Leibniz rule.

Then, ρ̂ descends to a map

ρ : a⊕ h −→ gl

(
U(a)

Ik

)
and we have to verify that it is faithful on a. Repeating the same argument as in
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Theorem 3.1.1 we have to show that the map φ : a −→ U(a)/Ik is injective. Observe

that ρ′0(Ik) = 0, since Ik is generated by Ker(ρ′0) and n and by (4.2) ρ′0(n) = 0. Thus,

ρ′0 passes to the quotient:

[ρ′0] :
U(a)

Ik
−→ gl(V0).

We get the following commutative diagram:

a U(a)
Ik

gl(V0)
φ [ρ′0]

ρ0

and by inductive hypothesis, ρ0 is injective, hence the same goes for φ.

Finally, observe that for any x ∈ n, the action of x on U(a)/Ik is the left multiplication

and due to the fact that n ⊂ I, ρx(y) ∈ n, ∀y ∈ U(a)/Ik. So, ρkx(y) ∈ Ik and therefore

is 0 in U(a)/Ik. To summarize,

ρ(n)k
(
U(a)

Ik

)
= 0,

i.e. ρ(n) is nilpotent.
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Chapter 5

Levi decomposition and the general

case

In this chapter we conclude the proof of Ado’s Theorem, showing that the statement

holds for any finite-dimensional Lie algebra. In order to obtain the result we will use the

Levi decomposition, namely the decomposition of a Lie algebra L as L = Rad(L) ⊕ h,

where h is a semisimple Lie algebra (necessarily). Levi decomposition enables us to

reduce the proof to the solvable case.

Lemma 5.0.1. Let L be a Lie algebra and a ⊂ L be a solvable ideal. Then

Rad

(
L

a

)
=
Rad(L)

a
.

Proof. ⊆) Rad(L/a) is the maximal solvable ideal of L/a, then it has the form t/a, where

t is an ideal of L containing a. Both t/a and a are solvable, then by Proposition 1.3.1 t

is solvable too. Thus, t ⊆ Rad(L) and so Rad(L/a) = t/a ⊆ Rad(L)/a.

⊇) Rad(L)/a is a solvable ideal of L/a and so it is contained in its maximal solvable

ideal, i.e., Rad(L)/a ⊆ Rad(L/a).

Theorem 5.0.1 (Levi decomposition). Let L be a finite-dimensional Lie algebra. Then

there exists a subalgebra h ⊂ L called Levi subalgebra, which gives the vector space
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decomposition

L = Rad(L)⊕ h

Proof. [6, pp. 499-500] Firstly, we make some useful reductions.

1. We may assume that Rad(L) does not contain any proper nonzero ideal of L. Oth-

erwise, let a 6= 0 be a solvable ideal of L (in particular a ⊂ Rad(L)) and consider

the quotient algebra L/a. Then, by induction on the dimension of L, L/a admits a

Levi subalgebra, namely we can write L/a = Rad(L/a)⊕ s/a. By Lemma 5.0.1 we

have L/a = Rad(L)/a⊕ s/a. s/a is necessarily semisimple, so a = Rad(s). Using

again the induction, s = a⊕s′, with s′ semisimple. Consequently, L = Rad(L)⊕s′,

so s′ is the Levi subalgebra for L and the theorem is proved.

2. We may take Rad(L) to be abelian. Otherwise, Rad(L)1 = [Rad(L), Rad(L)] would

be a proper nonzero ideal of Rad(L) and then we would conclude by reduction 1.

3. Note that [L,Rad(L)] is an ideal of L contained in Rad(L). Thus, by reduction

1 [L,Rad(L)] is either 0 or L. Suppose [L,Rad(L)] = 0, then Rad(L) = Z(L)

hence Rad(L) = Ker(ad), where ad is the adjoint representation of L. We get a

representation of L/Rad(L) on L and since L/Rad(L) is semisimple, we can use

the Weyl Theorem [1], stating that:

every finite-dimensional representation of a semisimple Lie algebra is completely

reducible.

Thus, we can regard L as a completely reducible L/Rad(L)-module. This means

that for any submodule of L there exists a direct summand. Therefore we have L =

Rad(L)⊕h, and h is the Levi subalgebra. So, we may finally assume [L,Rad(L)] =

Rad(L). Notice that this reduction implies Rad(L) ∩ Z(L) = 0. Otherwise, Z(L)

would be a nonzero ideal of Rad(L) and by reduction 1 we would get Z(L) =

Rad(L) and this is a contradiction since [L,Rad(L)] = Rad(L) 6= 0.

Now we construct a representation of L on gl(L) defining µ : L −→ gl(gl(L)) as

µ(x)(ξ) = [adx, ξ] = adx ◦ ξ − ξ ◦ adx (5.1)
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for x ∈ L and ξ ∈ gl(L). Equivalently, for any y ∈ L, (x. ξ)(y) = [x, ξ(y)] − ξ([x, y]).

Consider the following subspaces of gl(L):

A = {adx |x ∈ Rad(L)}

B = {ξ ∈ gl(L) | ξ(L) ⊂ Rad(L), ξ(Rad(L)) = 0}

C = {ξ ∈ gl(L) | ξ(L) ⊂ Rad(L), ξ|Rad(L) is multiplication by a scalar}.

Observe that B ⊂ C by construction and A ⊂ B because Rad(L) is an ideal (so adx(L) ⊂
Rad(L)) and it is abelian by reduction 2 (so adx(Rad(L)) = 0 for any x ∈ Rad(L)).

Thus A ⊂ B ⊂ C. In addition, A, B, C are all L-submodules of gl(L). Indeed, for any

adx ∈ A, y ∈ L, and z ∈ gl(L) we have y. adx(z) = [ady, adx](z) = ad[y,x](z) = ad−[x,y](z).

As [x, y] ∈ Rad(L) we have proved that L.A ⊂ A. By similar easy checks one can prove

that also C and B are L-submodules.

We can set ν : C −→ C as ν(ξ) = λ if ξ acts on Rad(L) as the multiplication by λ.

Notice that ν is a linear map between vector spaces, Ker(ν) = B, so C/B ∼= C as vector

spaces. Moreover, [ν(ξ), ν(ξ′)] = [λ, λ′] = 0, ∀ξ, ξ′ ∈ C and also ν[ξ,ξ′] = 0, therefore

C/B ∼= C also as Lie algebras.

We also claim that L.C ⊂ B and Rad(L).C ⊂ A. Indeed, take ξ ∈ C and assume

ξ(y) = λy,∀y ∈ Rad(L). If x ∈ L, y ∈ Rad(L), then

x.ξ(y) = [x, λy]− ξ([x, y]) = λ[x, y]− λ[x, y] = 0 (5.2)

so x.ξ ∈ B. If x, y ∈ Rad(L), then

x.ξ(y) = [x, ξ(y)]− λ[x, y] = 0 + ad−λx(y), (5.3)

so x.ξ ∈ A. Therefore, C/A and C/B are both L/Rad(L)-modules. Let us explain

why C/A is an L/Rad(L)-module; almost the same argument can be used for C/B. We

already know that C is an L-submodule, so we can consider the map µ : L −→ gl(C).

We wonder whether for any x ∈ L, µ(x) can descend to an endomorphism of C/A. The

answer is yes, as A is a L-submodule and so L.A ⊂ A. It only remains to verify that

this map passes also to the quotient L/Rad(L), but this is true as Rad(L).C ⊂ A and
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so any element of Rad(L) corresponds to the null endomorphism of C/A (indeed, such

an element ”sends” all C in A which is zero in the quotient).

Now, C/A is an L/Rad(L)-module, L/Rad(L) is semisimple, hence by Weyl Theorem

C/A splits as C/A = D/A⊕C/B, where D/A is codimension-1 complement. C/B is 1-

dimensional; let [ϕ] be a generator of C/B in C/A. Up to normalization, we may assume

ϕ|Rad(L) = id|Rad(L). Moreover, L/Rad(L) acts trivially on C/B since it is 1-dimensional,

hence L.ϕ ∈ A.

We define h = {x ∈ L |x.ϕ = 0} and observe that h is a subalgebra of L. We are going

to show that h is the Levi subalgebra of L.

Firstly, h ∩ Rad(L) = 0. Otherwise, let x 6= 0 be an element of the intersection. By

construction, ϕ acts on Rad(L) as the multiplication by 1, thus combining this with

(5.3), we get x.ϕ = ad−x. On the other hand, x ∈ h, so x.ϕ = 0, then ad−x = x.ϕ = 0,

that is adx = 0. This means [L, x] = 0, i.e. x ∈ Z(L)∩Rad(L) and this is a contradiction

by reduction 3. Now we only have to show that L = Rad(L) + h. Take x in L. L.ϕ ∈ A,

thus there exists y ∈ Rad(L) such that x.ϕ = ady. Combining the actions of x and y

and recalling ϕ|Rad(L) = id|Rad(L), we get

(x+ y).ϕ = x.ϕ+ y.ϕ

= ady + (ady ◦ ϕ− ϕ ◦ ady)

= ady + (0− ady)

= 0,

thus x + y ∈ h. More precisely, there exists z ∈ h such that x + y = z. To summarize,

∀x ∈ L there exist y′ ∈ Rad(L), y′ = −y and z ∈ h such that x = y′ + z; in addition

Rad(L) ∩ h = 0. This means L = Rad(L)⊕ h.

Theorem 5.0.2 (Ado’s Theorem). Let L be a finite-dimensional Lie algebra. Then there

exists a finite-dimensional, faithful representation Φ : L −→ gl(V ) of L. Furthermore,

let n be the nilradical of L. Then Φ(n) is nilpotent.

Proof. By Levi decomposition, we can split L in L = Rad(L) ⊕ h, where h is neces-

sarily semisimple. Observe that n is nilpotent and then solvable, so n ⊂ Rad(L) and

Nil(Rad(L)) = n. As we did in the nilpotent and solvable cases, we have to find a
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finite-dimensional representation ρ of L which is faithful on the centre (notice that the

Z(L) ⊂ n) and sum it with the adjoint representation. We can repeat essentialy verba-

tim the proof of Ado’s Theorem for solvable Lie algebras (Theorem 4.0.2). Indeed, in

the solvable case there exists a finite-dimensional, faithful representation

ρ0 : Rad(L) −→ gl(V0)

such that ρ0(n)k = 0 for some k. Furthermore, we can extend it on the universal

enveloping algebra by

ρ′0 : U(Rad(L)) −→ gl(V0).

We construct a representation of L on U(Rad(L)) in the usual way

ρ̂ : Rad(L)⊕ h −→ gl(U(Rad(L)))

where Rad(L) acts on its universal enveloping algebra by left multiplication and h by the

”extended” adjoint representation. Then we consider the two sided ideal I of U(Rad(L))

generated by Ker(ρ′0) together with n. Just as in Theorem 4.0.2 we can prove that

U(Rad(L))/Ik is finite-dimensional and that Ik is stable under the action of Rad(L)⊕h.

Therefore, we obtain

ρ : Rad(L)⊕ h −→ gl(U(Rad(L)))

Ik
.

The proof of faithfulness and nilpotency of ρ is exactly the same as in the solvable case,

so we do not repeat it now.
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Appendix

We may compare the proof of Ado’s Theorem presented in this thesis with an alter-

native proof, for example the one on [6]. This second proof is more direct, but needs a

preliminary result which is quite complicated to prove. We only present the statement

of this preliminary proposition and a useful definition; then we try to focus on the main

steps of this different proof.

Definition 5.0.1. Let ρ be a finite-dimensional representation of a Lie algebra L. If for

every x ∈ Nil(L) ρ(x) is a nilpotent endomorphism, then ρ is called a nilrepresenta-

tion.

Proposition 5.0.1. Let L be a Lie algebra which is a sum L = a⊕ h of a solvable ideal

a and a subalgebra h. Let σ be a finite-dimensional nilrepresentation of a. Then there

exists a finite-dimensional representation ρ of L such that a ∩ Ker(ρ) ⊂ Ker(σ). If

Nil(L) = Nil(a) or Nil(L) = L, then ρ may be taken to be a nilrepresentation.

Here is a sketch of the proof Ado’s Theorem following [6].

1. We construct a finite-dimensional, faithful representation of Z(L). We may call

this representation ρ0.

2. We consider the following sequence of subalgebras of L:

Z(L) ⊂ L1 ⊂ . . . ⊂ Lk = Nil(L) ⊂ . . . ⊂ Lm = Rad(L) ⊂ Lm+1 = L,

where each algebra is a solvable ideal of the next and dim(Li+1) = dim(Li) + 1 for

i ≤ m. Therefore for i ≤ m − 1 we have Li+1 = Li ⊕ Cvi for some vi ∈ Li+1 \ Li
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and for i = m we have L = Rad(L)⊕ h by Levi decomposition.

3. We would like to use Proposition 5.0.1 inductively, as each subalgebra is a di-

rect sum of a solvable ideal and a complement. We may verify that ∀i the map

ρi : Li −→ gl(Vi) is a nilrepresentation. ρ0 satisfies the hypothesis; in addition,

∀i ∈ {1, . . . , k}, Nil(Li) = Li and ∀i ≥ k Nil(Li) = Nil(L), thus by Proposition

5.0.1, each ρi is a nilrepresentation.

4. We observe that ∀i ∈ {1, . . . ,m+ 1}, Ker(ρi) ∩ Z(L) = 0.

5. We define Φ := ρm+1 ⊕ ad, where ρm+1 : L −→ gl(V ) is a nilrepresentation and

dim(V ) < +∞. Φ is a finite-dimensional representation of L and it is faithful since

Ker(Φ) = Ker(ρm+1) ∩Ker(ad) = Ker(ρm+1) ∩ Z(L) = 0 by (4).

Notice that this proof does not require directly the universal enveloping algebra; however,

in order to prove Proposition 5.0.1 one needs it. We may also observe that both the proofs

use the adjoint representation and the final representation is a sum of ad with another

map. Finally, we notice that Levi decomposition is essential to prove Ado’s Theorem.
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