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A fundamental truth about deep learning is that it enables you

to see the real beauty of Nature. For instance, the more I trained transformers,

the more I got to appreciate harvesting tomatoes under the sun of Sicily.

ii
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Chapter 1

Introduction

1.1 Summary

Bioinformatics heavily relies on textual informations, like DNA and amino-

acid sequences, to perform tasks such as classification of sequences, align-

ment of noisy reads, phenotype prediction, etc., however this information has

been historically analyzed with statistical and traditional machine learning ap-

proaches, which, due to their nature, could not exploit positional information.

Although recent trends in bioinformatics are trying to align the techniques

to more modern approaches based on statistical natural language processing

and deep learning, state-of-the-art neural natural language processing tech-

niques remain relatively unexplored in this domain.

Following the trail of Google’s BigBird [54], a transformer-based archi-

tecture for long sequences, this work aims at exploring the possibility of using

transformers in order to build contextual embedding representations of DNA

sequences, to improve performance on bioinformatics tasks such as transcrip-

tion start site localization, mitochondrial metagenomics and chromatin profile

prediction.

Although state-of-the-art performances are achieved by large models, a

typical bioinformatics lab has limited hardware resources. For this reason,
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this thesis will focus on small architectures, the training of which can be per-

formed in a reasonable amount of time, while trying to limit or even negate

the performance loss compared to SOTA.

In particular, O(n) attention mechanisms (such as the one proposed by

Longformer [3]) and parameter sharing techniques (such as the one proposed

by Albert [24]) are jointly explored with respect to two genetic languages: hu-

man genome and eukaryoticmitochondrial genome of 2000+ different species.

Two tokenization approaches are explored, one based on fixed length k-

mers and the other, proposed by BigBird, based on random length sequences,

both followed by byte-pair encoding. Contextual embeddings for each to-

ken are learned via pretraining on a language understanding task, both in

RoBERTa [29] (masked language modeling) and Albert (masked language

modeling and sentence-order prediction) styles to highlight differences in per-

formance and training efficiency.

The learned contextual embeddings are finally exploited for fine tuning a

task of localization (transcription start site in human promoters) and two tasks

of sequence classification (12S metagenomics in fishes and chromatin profile

prediction, single-class and multi-class respectively). To assess multilinguis-

tic properties, the two tasks are fine-tuned from three initialized states:

• random weights (uninitialized transformer),

• correct language model (ie. TSS localization and chromatin profile us-

ing the embeddings learned on the human genome, and metagenomics

on the mitochondrial embeddings),

• wrong language model (ie. TSS and chromatin profile on mitochondrial

embeddings and vice versa).

The results of the experiments demonstrate that combining O(n) atten-

tion and Albert-style parameter sharing negatively affects performance and

that each technique should be used separately, moreover, although a BigBird-

style tokenization increases performance by means of dataset augmentation,
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it’s been proven to be very expensive in terms of memory and therefore not

viable for large datasets on limited hardware.

Network initialization status before each of the fine tuning tasks was useful

for learning (the correct language for each task achieved consistently better

than the wrong one and the uninitialized network), and the right language had

a positive effect in mitigating overfitting, but these improvements with respect

to the uninitialized are not substantial.

Using smaller architectures, near SOTA performances are achieved in all

the tasks proposed by BigBird (MLM, promoter region prediction and chro-

matin profile prediction) on the human genome, and a new SOTA has been

achieved for the other tasks (promoter region localization and 12S metage-

nomics). Moreover further experiments with larger architectures consistently

improved the previous SOTA in all cases. In spite of this, none of the chosen

fine tuning tasks can be considered complex enough to act as a benchmark for

neural network-based bioinformatics.

1.2 Thesis objectives

This thesis tries to achieve the following objectives:

• review and verify the limits of current proposals in bioinformatics for

DNA sequences analysis,

• assess the applicability of smaller language models in the context of

limited hardware availability,

• determine whether currently explored tasks can be considered viable

benchmarks for modern approaches to bioinformatics,

• propose possible directions for future research in bioinformatics, high-

lighting current limitations and opportunities.
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1.3 Thesis contributions

In this thesis applicability of small transformers (small enough to be trained

on modern laptops) in the domain of bioinformatics is explored, disproving

BigBird’s claim of a longer context being crucial for performance in tasks

involving biological sequences.

The lack of natural “word boundaries” in DNA sequences is addressed

both with traditional k-mer tokenization and BigBird-style tokenization, both

techniques are followed by byte pair encoding [43]. Results showed that, al-

though performing better thanks to multiple random alignments, BigBird’s

word tokenization is too expensive for large datasets to be practical.

Two architectures (Longformer and a Longformer-Albert hybrid) are in-

stantiated in a shallow (2 layers only) setup, and tested on four tasks, by using

very small contexts (256 tokens):

• Language understanding (both in RoBERTa and Albert flavors),

• Promoter’s transcription start site localization (a more complex ver-

sion of the promoter region prediction task against which BigBird was

tested),

• 12S metagenomics on fishes,

• Chromatin profile prediction (another benchmark used by BigBird).

Test results proved that near state of the art performance can still be achieved

on such small architectures (although the hybrid network has too many archi-

tectural constraints and performance drops significantly) with reduced input

size and that proper weight initialization is beneficial for training, but not cru-

cial on the chosen tasks.

Promoter region localization was trained on human data and high perfor-

mance in cross-species predictions proved empirically that eukaryotic promot-

ers are very similar across species.
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Eukaryotic 12S metagenomics is a tasks with practical value and the good

performances achieved can be further improved to build an accurate prediction

tool faster than current state of the art classifiers for metagenomics.



Chapter 2

Background

2.1 Bioinformatics background

2.1.1 Biological concepts

Although there is no consensus on the definition of “life”, one of the character-

istics it must encompass is the capability of transmitting informations across

generations. All known life-forms have in common the same information-

transfer mechanism, which is expressed by the Central Dogma of molecular

biology [7], a paraphrased version of which is the following:

• The biological machinery of a life-form is composed of proteins, which

operate on other types of molecules,

• Proteins cannot reproduce and the information required to build them is

stored in DNA,

• Information always flows from DNA to protein.

Abstracting from all the details (there is also a third kind of molecule,

RNA, involved in information transfer), a sequence of nucleotides (DNA) is

translated into a sequence of amino-acids (protein), using the biological equiv-

alent of a look-up table, which is known as genetic code. Each of the 64 (43)
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possible codons (sequences of three nucleotides) of DNA is unambiguously

translated to one of the 22 amino-acids (or a stop signal) and almost every

living organism uses the same correspondences, this universality property is

explained by multiple theories [20].

A single filament of DNA is called a chromosome and in nature it’s al-

ways found in a compressed form called chromatin. Life-forms are classified

in two domains, based on whether chromatin is free inside the cell (Prokarya)

or confined inside a second membrane called nucleus (Eukarya). The follow-

ing are processes referred to eukaryotes, some informations about prokaryotic

mechanisms will be given where relevant inside chapter 3.

A gene is the portion of DNA which is read during translation (although a

single gene can bemapped to different proteins) and therefore acts as the infor-

mation unit. It’s always composed by a 5’ untranslated region (which contains

the binding sites for the biological machinery), the open reading frame (the se-

quence which will be translated) and a 3’ untranslated region (which regulates

gene expression).

In eukaryotes an open reading frame is typically composed of subsequences

which can either be translated in the final protein (exons) or not (introns) in a

process called splicing, moreover gene expression is regulated by extra-genic

sequences. Promoters are proximal regulatory sequences located immediately

before a gene which enable the translation process, acting as “switches”, while

distal regulatory sequences (enhancers and silencers, which can be located ei-

ther before or after a gene) regulate the likelihood (and therefore the quantity

of proteins produced).

Mitochondria are organelles of eukaryotes involved in energy and heat

production, cell proliferation and programmed death (apoptosis). They pos-

sess their own genome (which is more similar to prokaryotes), a slightly mod-

ified genetic code and reproduce independently from the main cell body, these

characteristics suggest that they were symbionts of a common ancestor to all
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eukaryotes, which later specialized their function (while the host lost the abil-

ity of producing energy on its own) [16].

2.1.2 Bioinformatics concepts

Sequencing is the process of reading a DNA strand or protein into a sequence

of character for later bioinformatics use. Since its invention, three generations

of DNA sequencing technologies have appeared. In first and second gener-

ation devices a single filament of DNA is read by exploiting the biological

process of replication.

During replication, the double strand of DNA is denatured and a short se-

quence, called primer, binds to one of the two filaments and then the replica-

tion machinery (various proteins, including the DNA polymerase, DNAP) is

recruited. The DNAP adds one nucleotide at the time, starting from the primer

and moving from the 5’ to the 3’ end. In nature primers have fixed patterns,

however arbitrary sequences of 18–24bp (base pairs) can be used as primers

during in vitro replication and can act as “pattern matching” tools to extract a

sequence starting from their complementary and onwards.

In first generation (Sanger sequencing), DNA is replicated in four different

chambers, by using a mix of the four “normal” deoxynucleotide-triphosphates

(dNTP), along with a dideoxynucleotide-thiphosphate (ddNTP, eg. G) which

is also marked (eg. radioactively or with a fluorescent tag). The ddNTP can-

not form phosphodiesteric bonds and therefore stop replication as soon as it’s

added, this produces reads of random length, which however always start with

the primer and always terminate with the same ddNTP for each chamber. An

electrophoresis run is performed to separate each replicated strand by length

and the sequence can be therefore reconstructed.

Let’s consider, as toy example, the following reads:

• Chamber containing ddA: (primer)-??A, (primer)-????A

• Chamber containing ddT: (primer)-?T
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• Chamber containing ddC: (primer)-?????C, (primer)-??????C

• Chamber containing ddG: (primer)-G, (primer)-???G

The reconstructed sequence would be: (primer)-GTAGACC.

Second generation devices (Next Generation Sequencing, NGS) still ex-

ploit in vitro replication of DNA, however use techniques for reading multi-

ple sequences simultaneously (multiplexing), achieving a much faster reading

rate and cheaper results (the human genome required $3 billions using Sanger

sequencing, compared to $100 for NGS sequencing), for example, the Illu-

mina sequencing technique binds short fragments of DNA to a substrate and

replicates them using fluorescent dNTP (each of the four has a different color)

which “shine” as soon as they are incorporated by the DNAP. By observing

fluorescent clusters in the substrate matrix changing color over time, it’s pos-

sible to read thousands of strands at the same time, however clusters become

harder to distinguish over longer strands, imposing a practical limit of about

300bp for each fragment.

Third generation devices overcome the length limitations of NGS by using

different reading technologies (eg. Oxford Nanopore doesn’t require in vitro

replication, forcing instead DNA strands to pass inside a matrix of nanometer-

scale pores while reading changes in electrical fields, which are characteristic

of each of the four nNTP, achieving a theoretically “infinite” reading length),

however the technology is not yet mature and it’s characterized by higher error

rates compared to NGS.

Sequencing is a noisy process and, with the exception of third generation

techniques, produces short reads. These problems are overcome by software

at the first steps of any bioinformatics pipelines. Alignment is the process

of reconstructing a longer sequence by merging shorter ones and denoising is

the process of correcting reading errors (different algorithms tend however to

produce slightly different results, which in fields like metagenomics may af-

fect the outcome of some experiments [33]), an assembly is a sequence which
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has been both aligned and denoised. An assembly can be built either by us-

ing the reads alone (de-novo assembly) or by matching a reference genome

(reference-aligned assembly).

A reference genome is a digital sequencewhich acts as an example genome

for a given organism. It doesn’t correspond to any existing individual since it’s

a mosaic assembled from multiple individuals in order to capture the “aver-

age” sequence of the entire population. Over time a reference genome can be

subject to revision, because newer sequencing technologies allow to fill some

gaps caused by previously unknown or unalignable sequences. Other than

building assemblies from short reads, the main uses of reference genomes are

to provide a coordinate system for genetic variants (eg. to characterize muta-

tions or to provide a compact notation in which, instead of the entire sequence,

only the differences with respect to the reference are given) and for queries

(eg. with the BLAST [1] algorithm, which matches a given pattern against a

database of many references, within a given error threshold).

2.1.3 Promoter region prediction

Promoters are regions of DNA located immediately upstream of a gene, which

act as binding sites for transcription-related proteins (ie. RNA polymerases,

transcription factors, etc.). In eukaryotes, promoters can be composed of three

parts:

• Core: the minimal sequence required to start transcription:

– transcription start site (TSS),

– RNA polymerase (RNAP) binding site: there are three RNAP in

eukaryotes, each has a different function and binds different se-

quences,

– general transcription factor binding sites: sequences which recruit

the transcription factor II B (TFIIB), like the TATA-box, the B-

recognition element, etc.,
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– various other binding sites which are dependent on the downstream

gene.

• Proximal element: regulatory region directly upstream of the promoter,

it binds specific transcription factors, acting as an on/off switch for the

transcription of a specific gene.

• Distal element (ehnancers and silencers): regions located far away from

the gene which bind activator or repressor proteins, modifying the rate

of transcription.

Some of the patterns commonly found inside an eukaryotic promoter are:

• TATA-box: located approximately 30bp upstream of the TSS, it binds

the TATA-binding protein (TBP) which starts the recruitment process of

transcription machinery; although it was one of the first motifs discov-

ered, less than 20% of human promoters have a TATA-box,

• Initiator element (Inr): similar in function to a TATA-box, but more

common; if they are both present, recruitment is more efficient, leading

to higher transcription rates,

• GC-box: located approximately 110bp upstream of the TSS, it binds

various general transcription factors,

• CAT-box: located approximately 60bp upstream of the TSS, it’s fre-

quently absent for house-keeping genes (genes which are translated by

every cell); it interacts with the GC-box to regulate the quantity of tran-

scription.

The Eukaryotic Promoter Database (EPD) [11, 10] collects all the known

promoter sequences of selected organisms (ranging from Plasmodium falci-

parum toHomo sapiens) and allows to extract arbitrary length sequences with

coordinates centered at the TSS.
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Oubounyt et al. [36] and later Zaheer et al. [54] have used neural networks

(a convolutional NN and a transformer, respectively) to classify whether a

given sequence contains a promoter or not, achieving near perfect perfor-

mance, however their dataset suffered from two sources of bias:

• every sequence was aligned in the same way with respect to the TSS

(-7999 to +8000bp for BigBird),

• the negative samples were created by randomly replacing 60% of the

sequences of valid promoters and thus creating “easy” negatives by de-

stroying one or more of the previously described patterns.

2.1.4 Metagenomics

Metagenomics is the study of DNA samples collected from the environment,

instead of single individuals, for the purpose of classifying the population in

that environment. Due to the intrinsic need of having a shared primer when

amplifying sequences, metagenomics reads must be focused on genes which

are:

• Shared across all the organisms which need to be analyzed (ie. they

must contain highly preserved regions),

• Useful for classification (ie. they must contain hyper-variable regions

which can be reliably linked to a specific organism).

These characteristics are possessed by geneswhich are translated into some-

thing which is both important for survival and shared among all species under

exam. Ribosomes are macro molecules involved in translation (and therefore

shared by all living organisms) which satisfy both conditions, metagenomics

exploits genes composing ribosomal subunits for classification of samples:

• The 16S rRNA gene for prokaryotes,

• The 18S rRNA gene for eukaryotes,
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• The 12S rRNA gene for mitochondria.

Metagenomics studies are useful in ecology (eg. soil ecosystem analy-

sis [8]), health (eg. human gut microbiome analysis [15]), food designation

of origin (eg. cheese produced in a specific region have specific microbi-

ological profiles [53]), forensics (eg. determining the movements of stolen

artifacts [39]), etc.

2.1.5 Chromatin profile prediction

The various degrees of condensation of chromatin play an important role in

gene regulation. The main components determining the chromatin profile are

histones, non-histonic proteins and RNA, which can be used to predict tissue

type, transcription-factor binding sites and long term interactions [44].

Some means of identifying chromatin profiles are:

• Type of binding transcription factor (eg. the STAT3 factor, which me-

diates a pathway involved in embryonic development, immunity and

tumor formation),

• Histone profile (histones are “spools” around which the DNA coils,

chemical modifications to them, eg. H3K4me3, control the degree of

coiling),

• DNAse I hypersensitivity sites (regions not wrapped by histones form-

ing a loop long enough for the DNAse I enzyme, a molecular “scissor”

to fit).

Cell differentiation is mainly achieved by means of permanent epigenetic

modifications, therefore the same DNA sequence in two different cells (eg.

a CD4+ T-lymphocyte and an epithelial cell) will have different chromatin

profiles.
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Zhou et al. [56] have produced a dataset of DNA sequences belonging to

919 chromatin profiles based on cell type, transcription factor, histone modi-

fication, DNAse I hypersensitivity and, since chemical modifications may in-

troduce artifacts, also treatment prior to analysis, by associating each sequence

to a multi-label 919-dimensional vector.

2.2 Natural language processing background

2.2.1 Language models

A language model is a function associating a probability to sequence of words

in order to characterize a language. Such a function is useful in nearly every

natural language processing task, including, but not limited to, text generation,

word disambiguation, error correction, translation, etc.

Statistical language models approximate the likelihood of a sequence of

words appearing in the language as the conditional probability of observing

the last token, given the n−1 previous ones, under the assumption that proba-

bilities on n-grams are descriptive enough to approximate the entire language

and therefore imposing an nth order Markov property on the model.

Although statistical languagemodels can be computed quite easily by count-

ing occurrences in a reference corpus, they suffer from three main drawbacks:

• curse of dimensionality: the models are exponential in size both with

respect to the vocabulary and the value of n,

• sparsity: most of the sequences of words have a zero probability of ap-

pearing in the language,

• limited observability: the reference corpus doesn’t contain all the pos-

sible sequences allowed by the language, causing the underestimation

of probabilities.
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Neural language models exploit the latent representation learned by neural

networks tomodel a language as a continuous vector space in which each word

is represented by a point. These word representations are called embeddings

because they are a lower-dimensional projection of a larger vector space (the

“full” space learned by statistical language models).

2.2.2 Word embeddings

Although training a neural network to predict a traditional n-gram model (ie.

given n − 1 words, predict the likelihood of the next one) can still produce an

embedding for the language model, training a skip-gram model (ie. given a

central word, learn the probability of its surroundings) yields interesting alge-

braic properties of the learned embedding, such as mapping semantic relations

into linear combinations [31, 37].

One of the main drawbacks of “traditional” word embeddings is the fact

that, due to the implicit dimensionality reduction compared to statistical lan-

guage models, they loose contextual information (ie. the representation of the

same word appearing in different contexts, possibily having different mean-

ings, is collapsed to the same point). To overcome this issue, contextual word

embeddings, which represent a word in relation to the context it’s placed, have

been proposed. ELMo [38] exploited the hidden state of a bidirectional LSTM

as a contextual word embedding capable of better representing a language

model. Since its introduction, other approaches which bypass the training

limits of an LSTM (most importantly the sequential nature of training) have

been developed.

2.2.3 Attention and transformers

An encoder-decoder [45] architecture is a neural network capable of convert-

ing a sequence into another one by using an intermediate vector as shared

embedding between the two sequences (ie. the input sequence is encoded into
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the embedding and the output sequence decodes the embedding into a different

domain).

Shortly after their introduction, it became clear that these architectures

could greatly benefit, not only from positional informations, but also from

mechanisms capable of giving “more importance” to some tokens compared

to others. An attention mechanism basically implements a fuzzy look-up op-

eration which, given a key-value dictionary and a query, returns the value (or

combination of values) associated to the key which is “more similar” to the

query, this concept of similarity can be task-dependent and therefore learned.

Bahdanau et al. [2] propose to compute the similarity score between key

and query by first computing an alignment score on query and key, softmaxing

it (to obtain values in [0; 1]) and then multiplying it element-wise with the

values vector. The alignment score is computed as the hyperbolic tangent of

the weighted sum of key and query, and then multiplied with a learned matrix.

Luong et al. [30], instead, propose to use the dot-product of key and query

inside the alignment score computation. In either case, the operations can be

performed natively by fully-connected layers of a neural network.

Transformers are an encoder-decoder architecture proposed by Vaswani et

al. [48], which completely rely on (Luong-style) attentionmechanism, without

the limitations of recurrent or convolutional neural networks, achieving higher

performance. A typical transformer’s encoder is a stack of blocks, each com-

posed of a multi-head self-attention (ie. multiple attention modules in which

key and query are the same vector) fed by the previous layer and followed

by a fully-connected layer. Likewise, a typical decoder has two multi-head

self-attentions, one fed by the previous layer and the other fed by the encoder

output, and a fully-connected layer.

Bidirectional Encoder Representations from Transformers (BERT) [9] is

an approach, similar to ELMo’s use of LSTM’s hidden state, to produce highly

informative contextual word embeddings which were the key to improving

state-of-the-art performance in multiple natural language tasks.
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BERT approach is based on a transformer encoder pretrained on a task-

agnostic problem to produce word embeddings, which are then fed to a task-

specific head (usually a single fully-connected layer with a properly chosen ac-

tivation function) which is fine-tuned on the desired task. This approach yields

better results, compared to training directly the entire architecture, namely:

• Convergence in the final task is achieved faster (in case of limited data,

training directly on the task could even be impossible),

• Embeddings can be reused for different tasks in the same language,

• During fine-tuning, the “base” language model is further “specialized”

for the specific task because the weights of the lower layers are not

frozen.

The encoder is pretrained simultaneously on two language understand-

ing tasks which allow to build a language model, later exploited during fine-

tuning:

• masked language modeling (MLM): a random subset of the input is

masked and the network is trained to recover the missing tokens based

on the context,

• next sentence prediction (NSP): the concatenation of two sentences is

given and the network is trained to determine whether they are consecu-

tive or whether they are unrelated (possibly coming even from different

documents).

The MLM task is typically performed by masking 15% of tokens and, to

mitigate discrepancies of performance between training and prediction, only

80% of those are actually replaced by the <mask> token. The rest is either

kept as is, or replaced with a random token. In order to reduce overfitting, dy-

namic MLM was proposed by Liu et al. [29], in which the random masking is

recomputed at the beginning of each epoch. Another alternative which greatly
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reduces overfitting risks of MLM, achieving a faster convergence, is the use

of an adversarial network to replace tokens with plausible alternatives instead

of <mask> or a completely random token, as proposed by Clark et al. [6].

The NSP task has sparked some controversies on its practical utility, with

Liu et al. deeming it unnecessary (as long as dynamic MLM is performed on a

larger dataset) and Lan et al. [24] proposing a different task, called sequence-

order prediction (SOP). In SOP the network is trained to choose whether the

first sentence follows the second one, or whether they have been swapped.

A dataset for this task is clearly easier to produce and the authors advocate

that it leads to a more robust language modeling, because in NSP there is an

asymmetry between positive and negative samples:

• a positive sample is constituted by two consecutive sentences, which are

therefore spatially and semantically close,

• a negative sample is constituted by two far away sentences, which may

present semantical differences.

A network trained on NSP would therefore learn a “shortcut” by discriminat-

ing on semantic similarities alone, while in SOP also the negative samples are

spatially and semantically close, forcing the network to learn based only on

harder clues.

Self-attention mechanisms in transformers have a memory footprint which

grows as O(n2) with respect to the input length, and, in BERT, each block

has an independent attention mechanism. In order to overcome training time

and memory limitations, many alternatives have been proposed [13], the ones

explored in this thesis will be described in detail on section 4.1.

2.2.4 Word encoding

Any style of word embedding can be ultimately assimilated to a lookup table

which maps a word to a point in a vector space. In practice this often leads to

two problems:
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• Out of vocabulary words: a word not observed in the training corpus

must be handled specifically when encountered at runtime (either by

replacing it with a special <unknown> token or by taking an arbitrary

embedding choice, eg. random or based on similarity with other words),

• Large vocabulary size, leading to an increase of memory requirements.

To solve these problems, instead of computing embeddings on entire words,

it’s common to compute them for sub-word entities (tokens), trading off vo-

cabulary size with input size (with a character-level embedding at the extreme

end, solving both problems at the expenses of a huge increase in input size).

Tokenization of subwords can be performed either by splitting words into

k-mers (sequences of k characters) or by using an algorithm which exploits

the statistical distribution of symbols inside the training corpus to build an

“optimal” vocabulary of tokens, according to some criterion. One of such

algorithms is byte-pair encoding (BPE) [43], which, given a target vocabulary

size, builds the vocabulary in a bottom-up fashion, by starting from the set

of alphabet symbol and iteratively inserting a new symbol constituted by the

most frequent sequence of two tokens. This process continues until either the

target size is reached or all the words are constituted by a single symbol.
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Related work

Traditional machine learning approaches are characterized by the use of hand-

crafted features and (usually) the inability of exploiting positional informa-

tions.

For example, Lin et al. [28] used a support vector machine (SVM) on hand-

crafted positional features to classify whether an input region is a promoter or

not.

Bharanikumar et al. [4] proposed a linear regressor classifier to predict the

interaction strength of E. coli σ70 factor (one of the many different promoter-

interacting proteins in prokaryotes) to promoter on hand-crafted features (fre-

quency matrices were extracted from a sequence of 13bp centered around the

−35 and −10 regions).

Xiao et al. [50] combine ideas from the previous two and used a cascade

of two SVMs to predict σ70 promoter sites and their strength.

Yang et al. [51] applied gradient boosting in order to classify enhancer-

promoter interactions, on a mix of hand crafted features and word embeddings

of two input sequences as putative promoter-enhancer pair.

Yousef et al. [52] used a naive Bayes classifier fed with micro RNA (very

short RNA sequences acting as silencers for gene expression) sequences pre-

processed with a simple (non-neural) convolution to reduce the input size from

110bp to 21bp.
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Murakami et al. [32] used a naive Bayes classifier to predict sites for

protein-protein interactions (ie. the localization of physical contact between

two proteins), using predicted accessibility and a score matrix extracted as

conditional probabilities on the sequences via kernel density estimation as in-

put features.

Artificial neural networks are universal approximatorswhich can be trained

directly on input features, delegating the network to learn the best processing

by itself, without the need of crafting features manually, but at the expenses

of higher computational costs. Although achieving consistently better results

than traditional machine learning techniques, surprisingly, so far the use of

deep learning in bioinformatics has been relegated to novelty methods and

proof of concepts. To further complicate the relationship between deep learn-

ing and bioinformatics, there is a huge technical gap with respect to other do-

mains (eg. residual connections, applied in computer vision since 2015 have

been proposed in the bioinformatics domain only in 2019 [55]).

Wei et al. [49] classified protein subcellular localization (cells possess a

very complex mechanism for transport which determines the final location

of a given protein by signals which can be, among other possibilities, patterns

inside the protein sequence itself, therefore predicting where a protein will end

up is a biologically relevant task) by using a stacked autoencoder followed by

a fully connected layer, however the input features are still hand-crafted.

Umarov et al. [47] exploited convolutional neural networks, applied to raw

input sequences (each base is a one-hot encoding of the four nucleotides), to

classify promoter sequences in a wide range of organisms. Their approachwas

proven to be robust both with respect to the organism and the type of promoter.

They also propose to detect which positions are “functionally relevant” for the

promoter, by adversarially introducing noise in the input and checkingwhether

the classifier confidence decreases.

Levy et al. [25] trained a variational autoencoder model to extract features

from the latent space, using β matrices for DNA methylation sites as inputs,



Related work 22

these latent features are embedding-like inputs for downstream tasks (eg. hi-

erarchical clustering of cancer subtypes).

Tampuu et al. used a convolutional neural network with two paths to

classify raw (one-hot encoded into 5 classes, ATCG and N for unknown nu-

cleotides) metagenomics contigs (300bp) into human or viral DNA [46].

Busia et al. [5] performed 16S classification of environmental samples

using depthwise separable convolutions on raw metagenomics contigs, im-

proving the state-of-the-art (which was previously achieved by long denoising

pipelines followed by naive Bayes classification [22]) for noisy reads.

Many of the tasks related to bioinformatics revolve around the analysis

of sequences. The main ones are DNA and amino acids, which express their

functions based on intra and inter-sequence interactions comparable to natural

languages’ linguistic representation levels. For example, the gene expression

mechanism, involves patterns of DNA at various levels:

• Local patterns, eg. the TATA box, which can be considered lexemes,

• Short distance interactions, eg. between promoter and gene, which form

syntagms,

• Long distance interactions, eg. between enhancers and promoters, which

can be assimilated to semantic units,

• Extra-sequence interactions, eg. histone methylation, which are akin to

pragmatic interactions.

This claim of being able to process biological sequences as languages

is backed up by Osmanbeyoglu et al. [35] who performed n-gram analysis

(a technique used for author ownership classification, language recognition

and plagiarism detection in natural languages) on whole proteome sequences

of 970 bacteria species and discovered organism-specific signatures. At the

genus level (the second lowest taxonomy) even a unigram model is enough

to highlight some signatures. Another important result is that perplexity of
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prediction of an organism B, using the language model of organism A, is pro-

portional to their phylogenetic distance, a phenomenon observed also in evo-

lutionary linguistics.

Liang [27] performed n-gram analysis on DNA sequences split on k-mers

(while the work of Osmanbeyoglu et al. considered a single amino-acid as

word), measuring the entropy on the language model of 12 eukaryotic organ-

isms (very far away in the phylogenetic tree, like Schizosaccharomyces spp.

and H. sapiens) and observing that the minimum entropy is reliably achieved

in every organism with words large 12–15 k-mers.

Ghandi et al. [14] enhanced the k-mer based approach by proposing new

language models based on gapped k-mers (words are large k symbols, l of

which are irrelevant for the language model, eg. ATNAGCNN is a word with

k = 8, l = 3), reducing the overfitting risks on SVM classification.

Recent trends in natural language processing have shifted the approaches

from a statistical one (eg. n-gram analysis) to a deep learning based one. Im-

portant contributions in this direction are the exploitation of sequential infor-

mations, by means of recurrent neural networks, and the learning of embed-

dings, vector representations which can encode semantic relations as distances

between points.

Quang et al. [40] trained an end-to-end neural network to quantify prop-

erties of (relatively) long DNA (1000bp) sequences. Their approach is based

on a convolutional feature extractor which is then classified by a bidirectional

long short-term memory layer. Zhang et al. [55] improve this design by using

a deeper architecture with residual connections.

Recently Zaheer et al. classified promoter regions and the chromatin pro-

file (919 classes), achieving new state-of-the-art results with their BigBird [54].

Following the modern transformer pipeline to compute contextual embed-

dings, they performed a two-phase training, first pre-training it on human
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genome (version GRCh37 [17]) for language understanding and then fine-

tuning it on specific datasets for the final prediction. Another important con-

tribution towards the application of “modern” NLP techniques to bioinformat-

ics is their use of SentencePiece [23] tokenization, instead of the traditional

k-mer split.
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Methodology

4.1 Architectures

Everyday bioinformatics tasks based on sequences rely on algorithms such

as BLAST or Burrow-Wheeler transform [26], because of this, the typical

laboratory is equipped with machines with high memory availability and fast

CPUs, and very few algorithms actually exploit GPUs. Although clusters can

be rented from providers for training and inference, a cheaper alternative, in

the long run, could be to equip the laboratory with a medium-end GPU, such

as those used for gaming, and perform both training and inference in-house.

In order to conform with this scenario, two transformer architectures are

explored and their parameters are set so that training can be performed on

modern, but accessible, GPUs. The training process was tested on three gam-

ing laptops of different generations, equipped with nVidia GeForce RTX3070

(8Gb GDDR6, 2021), RTX2080Max-Q (6Gb GDDR6, 2018) and GTX960M

(2GbGDDR6, 2016), achieving satisfying results in terms of trainability (with

the exception of the last one which could train only on very small batches) and

inference times (also for the last one).
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4.1.1 Longformer

As already mentioned, attention mechanisms are basically (learned) look-up

tables, and the cost of letting any token to attend every other one has a mem-

ory requirement of O(n2), from a linguistic perspective, however, the context

required to give meaning to a token (and therefore required to compute its

embedding) is rarely composed by the entire sentence [21].

Beltagy et al. [3] propose, with their Longformer architecture, to build a

O(n) attention mechanism which is built around two linguistic assumptions:

context for a token can be dependent on its neighbors, or depend on some

“important” tokens, regardless of their position inside the sequence. In order

to satisfy these two, seemingly incompatible, assumptions, they propose to

use the combination of two self-attention mechanisms:

• Windowed self-attention: each value token can be attended only if lies

inside a fixed size window (possibly dilated) centered in the key, akin

to convolutions, stacking multiple attention heads can yield larger re-

ceptive fields,

• Global self-attention: a subset of key tokens is selected (ie. trained)

based on the task and only these are capable to attend to any other token.

Since the inputs and outputs of Longformer’s self-attention are the same

as a traditionalO(n2) self-attention, the authors propose to plug their attention

into any existing transformer architecture, which can be, not only pretrained

on any language understanding task (eg. MLM + NSP, MLM + SOP, etc.), but

also “bootstrapped” from the weights learned with the original attention and

pretrained for fewer epochs.

Zaheer et al. [54] propose a similar architecture, called BigBird, which

adds a random self-attentionmechanism towindowed and global self-attentions,

however this approach is not backed up by linguistic motivations and the per-

formance gain may not be significant [13].
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One of the theoretical results achieved by BigBird, however, is that trans-

formers with sparse self-attention are both universal approximators for func-

tions on sequences (like transformers with dense self-attention) and Turing

complete.

4.1.2 Albert

After the rise of BERT’s popularity, it soon became evident that the architec-

ture is heavy and pretraining is expensive (or even impossible without enough

computing power), causing concerns over environmental impact [42] and eq-

uity among researchers [13].

Lan et al.[24] propose to modify BERT’s architecture and pretraining tasks

in order to greatly reducememory and time requirements, while preserving the

same level of performance.

Albert achieves a reduced number of parameter by exploiting two tech-

niques:

• embeddingmatrix factorization: the input tokensmust be converted into

their (non-contextual) embeddings before feeding the transformer, how-

ever, the embedding matrix is typically sparse (even when using tok-

enization algorithms like BPE). This leads to inefficient memory usage

which can be overcome by splitting the embedding computation in two

steps: the one-hot encoding of tokens is embedded into an intermediate

vector space and then mapped to the final target space,

• cross layer parameter sharing: blocks in a transformer are divided into

groups and each block inside a given group is forced to use the same

weights (both for the self-attention and the fully connected layers). This

allows to achieve deeper architectures with a fraction of parameters to

train and also applies a regularization effect during training.

Compared to BERT, an Albert network with the same layers has about 5%

the number of the original parameters and can be trained almost twice as fast,
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however, to further increase performance, Lan et al. propose to modify the

pretraining task by using sentence-order prediction (SOP, already described

in section 2.2.3).

In spite of all these optimizations, Albert’s attention still grows quadrat-

ically with respect to input length, to overcome this limitation, its attention

mechanism can be replaced with Longformer’s to achieve a further reduction

in model size. For clarity’s sake, in the rest of the thesis this hybrid architec-

ture will be called “Longalbert”.

4.1.3 Models and hyperparameters

In order to allow training on limited hardware, two candidate models are pro-

posed:

• Longformer:

– 2 blocks,

– 8 self-attention heads,

– 256 maximum input tokens,

– 16 token attention window size,

– 256-dimensional output embedding.

• Longalbert:

– 2 blocks (1 group),

– 8 self-attention heads,

– 256 maximum input tokens,

– 16 token attention window size,

– 256-dimensional output embedding,

– 16384-dimensional intermediate input embedding.
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The losses and metrics which will used for each of the experiments are

briefly defined in appendix A.

In appendix B, additional experiments with larger networks are carried as

well.

4.2 Experiments

4.2.1 Language model pretraining

In order to better train the networks in downstream fine-tuning tasks, the pro-

posed models are trained on two different “languages”:

• Mitochondrial genome: characterized by a single circular chromosome

of limited size (about 15kbp) and with simple regulatory sequences,

• Human nuclear genome: characterized by 22 autosomes and 2 sex-

ual chromosomes, all linear and with a large size (for a total of about

3.1Gbp) and complex regulatory structures.

The mitochondrial language is trained on reference genomes of various

species extracted from NCBI’s Organelle database [34], while the nuclear lan-

guage is trained on the latest human reference genome (GRCh38 using the

NCBI nomenclature, or hg38 according to the UCSC nomenclature) [18], note

that BigBird was pretrained on the previous version (GRCh37/hg19).

There is no natural word-boundary in either of these languages, to solve

this problem a traditional k-mer split can be performed. Since the choice of k

determines the size of the tokenized documents (which reflects to larger ten-

sors to fit on GPU), but also the perplexity of the learned language model [35],

a good compromise must be chosen.

An alternative approach to word-splitting is the one proposed by Zaheer

et al. for BigBird [54], which is summarized by algorithm 1.

It’s important to notice that either approach has its own drawbacks:
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words = [];
foreach chromosome do

for repeats in 0..10 do
offset = 0;
start = random(0, 500);
while start ≤ chromosome.length do

end = min(chromosome.length - start + i, random(0,
10000));
sentence = chromosome[start: end];
i += end;
j = 0;
while j < sentence.length do

old_j = j;
j += random(50, 500);
words.append(sentence[old_j: j]);

end
end

end
end
return words;

Algorithm 1: Big Bird word splitting algorithm.

• k-mer: every input is aligned in the same way, so there may be tokens

(or sequences) not represented in the training set simply because they

were misaligned during inference, and the dataset is traversed only once

per epoch,

• Big Bird: the entire dataset is traversed multiple times, increasing the

memory requirements, and it’s not applicable in fine-tuning, causing an

asymmetry of conditions observed by the network.

Due to time and memory requirements, a limited number of mitochon-

drial chromosomes were extracted from the database (which contains a total

of about 12 thousands genomes) and processed with various combinations of

methods. Finally, train-validation-test splits are performed by extracting a

random 10% of the sequences as test set and a further 10% of the remainder

as validation set.

• 6-mer: 2000 genomes (1620 train, 180 validation, 200 test),
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• 9-mer: 3000 genomes (2430 train, 270 validation, 300 test),

• 12-mer: 4000 genomes (3240 train, 360 validation, 400 test),

• Big Bird-style: 2000 genomes, resampled 10 times (16200 train, 1800

validation, 2000 test).

After either of these word-splitting procedures, BPE is applied to produce

tokens which can then be further processed to build the dataset for language

understanding tasks. The 6-mer dataset was tokenizedwith a target vocabulary

size of 5000 tokens, which is larger than all the possible combinations (46 =

4096) and therefore leads to a single token for each 6-mer. 9-mer, 12-mer

and Big Bird-style words were tokenized with a target size of 30000 tokens

(similar to typical vocabularies used in English and other natural languages).

After tokenization, datasets for two pretraining goals are created:

• Masked language modeling only: the default BERT parameters are used

(ie. 15% words masked, 80% of which replaced by the <mask> to-

ken, 10% of which replaced with a random token and the remainder

unchanged),

• MLM and sentence order prediction: a full length MLM sample is pre-

pared, then it’s eroded by a random number of tokens on both sides

and cut in a random position in the middle, finally the two pieces are

swapped with probability 50% as it can be seen in algorithm 2.

Combinations of tokenization approaches and pretraining taskswere tested

both on the proposed Longformer and Longalbert models, using the Adam

optimizer with parameters: lr = 10−4, β1 = 0.9, β2 = 0.999.

Due to time limitations, only the best performing approach identified on

mitochondrial genome was applied to nuclear genome. As it will be shown in

section 5.1, this setup corresponds to 9-mer tokenization, MLM only training

task and Longformer.
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a = random(1, sample.length / 10);
c = random(sample.length * 9 / 10, sample.length - 1);
b = random(a + sample.length / 10, c - sample.length / 10);
first = sample[a: b];
second = sample[b: c];
swap = random(0, 1);
if swap then

return (“<cls>” + second + “<sep>” + first + “<sep>”, 1);
else

return (“<cls>” + first + “<sep>” + second + “<sep>”, 0);
end

Algorithm 2: SOP sample preparation algorithm.

4.2.2 Transcription start site localization

As mentioned in section 2.1.3, a promoter always has in its core region a spe-

cific position called transcription start site (TSS), which also corresponds to

the beginning of the gene regulated by the promoter.

From the Eukaryotic Promoter Database[10], promoter sequences ranging

from -4999 to +5000 (with position 0 being the TSS) were downloaded for the

following model organisms:

• Homo sapiens,

• Mus musculus,

• Gallus gallus,

• Danio rerio,

• Drosophila melanogaster,

• Caenorhabditis elegans,

• Zea mays,

• Saccharomyces cerevisiae,

• Plasmodium falciparum.
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These organisms are some of themost studied in biology and their genomes

can be considered relatively well described, moreover they were selected in

order to have an increasing evolutionary distance from H. sapiens, so that

potential correlations between neural network performance and evolutionary

distance may be detected.

Each of the 10 thousands bp sequences is split in two at the TSS and each

is tokenized separately (using the BPE tokenizer trained on 9-mers), this pro-

cedure guarantees that the TSS will always be placed at the beginning of a

token and makes dataset preparation easier, but can be a source of discrepan-

cies between training and inference.

The input sequence is built by choosing a random number between 0 and

200 tokens from the sequence before the TSS and the rest from the one after, up

to 254 tokens (the first and last are reserved for <cls> and <sep> respectively,

for a total of 256 tokens). The output prediction is the location of the TSS, ie.

the chosen random number.

The H. sapiens dataset is split according to the following proportions:

• Training set: 81%,

• Validation set: 9%,

• Test set: 10%.

Every other organism is kept unsplit (along with a full version of the H.

sapiens dataset) for the “evolutionary” experiments.

The learning task is approached as a token-level classification and the goal

is to predict the probability for each token to be the TSS. This means that the

transformer is equipped with a classification head of 256 neurons, the output

of which is normalized using a softmax, and trained with a crossentropy loss.

To mitigate overfitting, between Longformer and the classification head, a

dropout layer is added.

This architecture is trained only on the human dataset, varying the dropout

rate (0%, 10% and 20%) and the type of pretraining Longformer was subject
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to (human reference genome hg38, 3000 mitochondrial genomes, or no pre-

training), to assess whether these parameters affected performance (measured

simply as exact accuracy on the prediction).

Training is performed for 10 epochs, monitoring performance on the vali-

dation set to check for possible overfitting, and finally accuracy is determined

on the human test set.

A further experiment is performed by evaluating accuracy on every model

organism to see if evolutionary distance from the organism the network was

trained on, plays a role in performance or whether promoter sequences can be

considered universal among eukaryotes. This latter hypothesis is backed up

by biological facts and, as it will be shown in section 5.2, seems to be the case.

4.2.3 Metagenomics classification

12S metagenomics exploits the 12S rRNA gene (about 1000 bp) of mitochon-

dria to classify the eukaryotic organism theywere extracted from. MitoFish [19]

is a curated database hosting the mitochondrial sequences of more than 3000

fish species, along with highly standardized annotations for each of them.

For each sample, the 12S rRNA gene is extracted from the full mitochon-

drial genome, and the dataset is augmented inserting 31 corrupted versions of

the same sample (for a total of 32 samples for each species). The mutations are

inserted at the character level by choosing a random substitution rate between

0.5% and 5% and randomly flipping base pairs accordingly. This process sim-

ulates the sequencing error and therefore each substitution is assumed equally

likely (unlike natural mutations for which some substitutions are more likely

than others).

After augmentation, each sample is processed by theBPE tokenizer (trained

on 9-mers), 254 tokens are extracted from the beginning of the sentence and

padded with <cls> and <sep>. Since with 9-mer tokenization there are be-

tween 250 and 260 tokens for the entire gene, discarding the last tokens, in
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case the entire sequence can’t fit the input, shouldn’t cause a significant drop

in classification performance.

The dataset is finally shuffled and split according to the following propor-

tions:

• Training set: 81%,

• Validation set: 9%,

• Test set: 10%.

As a result, there might be the chance of having classes not appearing in

the training set, if all the 32 samples of a given class happen to be split in

validation and test sets only. This phenomenon should be unlikely and so it

shouldn’t introduce biases in performance evaluation.

The learning task is a sequence-level single-label classification, and there-

fore the transformer is equipped with a classification head possessing one neu-

ron for each of the species in the original MitoFish database (ie. all classes still

have a specific neuron in the architecture, regardless of the split they end up

being into) and connected to the embeddings of the <cls> token alone. The

output of the final layer is normalized with a softmax activation and training

is performed by optimizing a crossentropy loss.

It’s important to note that a proper metagenomics classifier should be fur-

ther assessed on some additional problematics:

• handling confidence of predictions and unseen classes during training,

• comparing performance against state-of-the-art classifiers onmock com-

munities (ie. artificial samples with known composition),

• assessing performance on real samples (especially in terms of robust-

ness against sequencing errors).

Since these problematics are not directly related to the classification archi-

tecture, they are not treated in this thesis.
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4.2.4 Chromatin profile prediction

The dataset of Zhou et al. introduced in section 2.1.5 contains more than four

million sequences associated with one or more of the 919 chromatin profiles

identified in previous experiments. Due to memory limits, only the first 200

thousands samples are extracted from the dataset.

Since the original work exploited convolutional neural networks [56], in-

put sequences in the dataset are one-hot encoded into a 4-dimensional vector

for each nucleotide. This encoding is reverted to a string which is then fed

to the BPE tokenizer (trained on 9-mers) to produce a sequence of tokens. Of

these tokens, the first 254 are extracted and padded by <cls> and <sep>. Fur-

ther tests are performed with 512 and 1024 input tokens to verify BigBird’s

claim of longer sequences being beneficial for performance.

The learning task is approached as a sequence-level multi-label classifica-

tion. The transformer is therefore equipped with a classification head of 919

neurons using sigmoid activation and trained on binary crossentropy loss. In

order to handle class imbalance, the loss for positive samples is upweighted

by a factor of 8, as proposed by Zaheer et al. [54].

Previous experiments on promoter localization demonstrated that dropout

has minimal effect on performance (see section 5.2), so it was not introduced

in this experiment.

Training is performed for 10 epochs, using the following splits:

• Training set: 81%,

• Validation set: 9%,

• Test set: 10%.
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Results

5.1 Pretraining on reference genomes
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Figure 5.1: Effect of different tokenizations and language modeling tasks on
losses (mitochondrial dataset pretraining).

Figures 5.1 and 5.2 compare the training performance of every transformer

trained on the mitochondrial dataset. From these, the following considerations

can be made:
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Mitochondrial language
Model Tokenizer Tasks Accuracy Perplexity

Longalbert 6-mer MLM 0.8721 2.8765
Longalbert 9-mer MLM 0.8652 3.1472
Longalbert 12-mer MLM 0.8649 5.6703
Longformer 6-mer MLM 0.8892 1.8346
Longformer 9-mer MLM 0.8875 1.7257
Longformer 12-mer MLM 0.8856 1.7797
Longformer BB MLM 0.9054 1.6191
Longformer 6-mer MLM 0.8966 1.8151

SOP 0.5164
Longformer 9-mer MLM 0.8948 1.7398

SOP 0.5081
Longformer 12-mer MLM 0.8844 2.0981

SOP 0.5090
Longformer BB MLM 0.9025 1.7543

SOP 0.5400
Hg38 language

Model Tokenizer Tasks Accuracy Perplexity
Longalbert 12-mer MLM 0.8846 2.46
(20 epochs) SOP 0.4972
Longformer 9-mer MLM 0.8785 2.2363

Reference values
Model Tokenizer Tasks Accuracy Perplexity

BigBird (SOTA) BB MLM NA 2.17
Random (baseline) Any MLM 0.85 NA

SOP 0.5

Table 5.1: Pretraining performance on validation sets (best 3 in bold).

• BigBird-style tokenization converges in fewer epochs and plateaus at a

higher accuracy compared to k-mer tokenization, but requires a much

longer training time,

• Longalbert networks apparently perform better on the training set, how-

ever perplexities on the validation set (figure 5.3) show that this is a

consequence of heavy overfitting,

• SOP task improves MLM accuracy quickly in the first few epochs, but

then limits it to a plateau which is lower than the one obtained from

MLM training alone, hinting to an interaction between the embeddings
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Figure 5.2: Effect of different tokenizations and language modeling tasks on
MLM accuracies (mitochondrial dataset pretraining).

learned for the two goals,

• The value of k in k-mer tokenization before BPE affects performance,

with 9-mer tokenization being the best of the three tested values (6, 9

and 12).

With 6-mer tokenization of a 4-character alphabet there are only 46 = 4096

tokens, and therefore byte pair encoding with a typical target vocabulary size

is basically the identity function, while both 9 and 12 k-mers produce a number

of possible tokens which is larger than the target vocabulary size and BPE will

split them in order to have better statistical representativeness. As a result, 6-

mer tokenization has, not only a reduced input size (256 tokens of 6 bp hold

a sequence shorter than 256 tokens of 9 or 12 bp, even after BPE), but also a

reduced vocabulary, where each token is potentially reused in a higher number

of contexts, increasing ambiguity.

The fact that 9-mer tokenization performs better than 12-mer tokenization,

contrary to what could be hypothesized by the work of Liang et al. [27], can



5.1 Pretraining on reference genomes 40

0 10 20 30 40

1.6

1.8

2

2.2

2.4

Epochs

Pe
rp
le
xi
ty
(v
al
)

6-mer MLM + SOP
9-mer MLM + SOP
12-mer MLM + SOP

6-mer MLM
9-mer MLM
12-mer MLM

6-mer MLM (longalbert)
9-mer MLM (longalbert)
12-mer MLM (longalbert)

BB MLM + SOP

Figure 5.3: Effect of different tokenizations and language modeling tasks on
perplexities (mitochondrial dataset pretraining).
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Figure 5.4: Overfitting on SOP accuracy on mitochondrial dataset pretraining
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be justified by the fact that BPE alters the probability distribution of each

token compared to simple k-mer tokenization, and therefore it’s not possible

to predict the entropy/perplexity trend after BPE tokenization.

Longalbert’s tendency of overfitting can be ascribed to the excessive re-

duction of parameters in the transformer, caused by the interplay of Albert’s

shared weights (also for the attention modules) and the use of Longformer’s

windowed attention. An alternative explanation could be the interaction be-

tween Albert’s embedding matrix factorization and Longformer’s global self-

attention training.

Human genome (hg38) training achieved performances similar to Big-

Bird’s, in spite of using only 256 input tokens, instead of 4096. Due to the lim-

ited amount of time and resources, only two representative cases were tested

(table 5.1):

• Longalbert with 12-mer tokenization trained onMLMand SOP achieves

a slightly higher accuracy, but also higher perplexity,

• Longformer with 9-mer tokenization trained on MLM only achieves

better perplexity, but still higher than its counterpart trained on mito-

chondrial genomes.

In spite of the low perplexities achieved, qualitative assessment of masked

language modeling and sentence order prediction demonstrated that no archi-

tecture managed to effectively learn the tasks (since perplexity on mitochon-

drial genomes is sensibly lower than BigBird’s and still can’t reliably predict

masked tokens, it can be postulated that neither Zaheer et al. achieved good

MLM performance). This apparently counterintuitive result can be explained

by considering that MLMmasks only 15% of the tokens and therefore the per-

plexity is an overestimate of real performance (since for 85% of the tokens the

task is simply to copy them from input to output).

MoreoverDNA sequences are not simply languages, but rathermeta-languages,

in which context can quickly switch from one sub-language to another (eg.
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from regulatory DNA to coding DNA as soon as the transcription start site is

encountered and from coding DNA to non-coding DNA after a stop codon).

These contexts can potentially span hundreds of thousands of base pairs and

cannot be fully captured by a transformer (not even a 4096-tokens BigBird)

and intra-sequence clues may not be enough for the transformers to “identify”

them and learn embeddings optimized for each of them.

Additionally, each of these sub-languages has a heavily imbalanced repre-

sentativeness inside genomes, for example a gene has one or few representa-

tives inside the entire genome, while a promoter has thousands of them. This

observation is coherent with the fact that language modeling on mitochon-

drial genomes is way more robust (lower perplexity, but still unable to quali-

tatively predict the correct token) than modeling on human genome, since in

the first case there is a small language (15 kbp) instantiated for few thousands

organisms, increasing the representativeness of each “sentence” in all the sub-

languages contained, while in the second case there is a large language (3.1

Gbp) instantiated for a single organism.

In either case, though, subsequent experiments proved that masked lan-

guagemodeling pretraining is beneficial (although not crucial) for downstream

tasks.

The genomic meta-language is also responsible for the total failure of sen-

tence order prediction, with heavy overfitting (as can be seen from figure 5.4)

and performances identical to random guessing (table 5.1).

The additional experiments carried in appendix B improved both perplex-

ity and qualitative performance, showing that more complexmodels can better

capture the underlying language, at least for simple genomes such as the mi-

tochondrial one.
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5.2 Fine tuning on transcription start site local-

ization

Species Description Accuracy
H. sapiens Humans (baseline) 0.9632
M. musculus Field mouse 0.9649
G. gallus Chicken 0.9611
D. rerio Zebrafish 0.9644

D. melanogaster Fruit fly 0.9671
C. elegans Worm 0.9656
Z. mays Mais plant 0.9629

S. cerevisiae Yeast 0.9630
P. falciparum Unicellular eukaryote 0.9658

Table 5.2: Promoter localization performance on different model organisms
after training on the H. sapiens promoters only (Longformer, 9-mer, 0.1
dropout, Hg38 pretraining, sorted by evolutionary distance from H. sapiens).

As previously mentioned, the task of promoter region prediction as per-

formed by Oubounyt et al. [36] and Zaheer et al. [54] is extremely simple

and with a single experiment (not described in this thesis) their results has

been consistently reproduced, even when using 256 tokens instead of 4096.

The increase of performance achieved by BigBird was not achieved, as they

claimed, thanks to a longer context, but instead by an increase of expressiv-

ity of the overall architecture (a transformer is way more expressive than a

convolutional neural network, especially if the latter has very few layers).

The slightly more interesting task of promoter localization was meant to

increase complexity and overcome the bias introduced when building the neg-

ative samples, however, from figures 5.5, 5.6 and 5.7 it can be noted how near-

perfect memorization of the training set is possible, no matter which weights

are used to initialize the transformer or which dropout rate is chosen, while a

slight drop in performance is seen on the validation set when using the unini-

tialized network, hinting to a lower generalization capability.

The networks pretrainedwithMLMon human andmitochondrial genomes

don’t present substantial differences, this phenomenon apparently surprising
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Figure 5.5: Losses on promoter localization.

(mitochondria have a different kind of promoter regions, so sequences of to-

kens resembling a nuclear promoter were not seen during MLM), is actually

explainable by considering that token embeddings learned during pretraining

have some metric properties, and so are better fit to capture “similarity” com-

pared to an uninitialized network. This gain however is too small to justify

pretraining efforts (especially since MLM pretraining requires days of com-

putations, while promoter localization fine tuning can be performed in few

hours).

Final performance was assessed on all the promoters available for each of

the chosen model organisms (as such, for H. sapiens, training and validation

sequences were also considered, giving an overestimate of accuracy) and it’s

summarized on table 5.2.

It can be noted that, in spite of evolutionary distance from the organ-

ism used for training (H. sapiens), prediction of promoters in every species

achieves the same score. This is coherent with prior biological, linguistical

and dataset knowledge about the task:
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Figure 5.6: Training accuracies on promoter localization.

• biologically, every eukaryote evolved from a shared ancestor, as such

the biological mechanisms are shared as well. Even though evolution

plays a role in introducing modifications, mechanisms crucial for sur-

vival such as promoters tend to remain pretty much unchanged. Further-

more, since training was performed on an evolutionarily recent organ-

ism (H. sapiens) and then prediction on more ancestral organisms (up

to P. falciparum), it can be postulated that the transformer is “aware”,

not only of the ancestral patterns, but also every other one which may

have evolved later.

• Linguistically, a promoter is a simple pattern which can be identified by

extremely simple tools (eg. regular expressions), therefore a complex

architecture like a transformer has little to no difficulty in identifying

one, even when matching is not exact (eg. because it’s coming from a

different species than the one seen during training).

• Regarding data, it’s important to note that the Eukaryote Promoter Database
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Figure 5.7: Validation accuracies on promoter localization.

focusesmostly on humans, providingway fewer samples for other species.

In spite of this imbalance, consistency in performance and a lack of bias

hint that all samples have a similar composition, no matter which organ-

ism they were taken from.

The experiments in appendix B achieve a slightly lower result, hinting

a slight degree of overfitting and further confirming how simple the task of

promoter localization is.

5.3 Fine tuning on metagenomics

Pretraining Loss Top-1 Accuracy Top-5 Accuracy
Mitochondria 0.4082 0.8576 0.9851
Untrained 1.1384 0.7008 0.9053
Hg38 1.2261 0.6415 0.9194

Table 5.3: 12S mitochondrial metagenomics performance on test sets (Long-
former, 9-mer).
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Figure 5.8: Losses on fish metagenomics.

Figures 5.8, 5.9 and 5.10 summarize the training performances in the 12S

metagenomics task and table 5.3 presents the final results on the test set.

It can be clearly seen that pretraining on the mitochondrial language pro-

vides a sharp improvement, compared to the other two initialization methods.

Surprisingly the uninitialized transformer tends to perform slightly better than

the one pretrained on the human genome. This peculiar trend (opposite of the

one seen with promoter localization) can be explained by the fact that MLM

pretraining on the human genome is more difficult and therefore the learned

embeddings are, not only less “robust”, but possibly also specialized towards

features specific of the human genome which need to be “unlearned” before

learning those relevant for metagenomics classification. This hypothesis is

even more plausible when considering the connectivity chosen for the trans-

former: since the classification head is connected only to the embeddings of

the <cls> token, positional information is lost unless captured by the embed-

ding of <cls>. Having achieved a stronger language model, the mitochon-

drial MLM pretraining is more likely to have captured these informations,
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Figure 5.9: Top 1 accuracies on fish metagenomics.

compared to the other two cases.

Top-5 accuracy reaches very good results in all cases, showing that, even if

a sample is misclassified, the correct class has almost always a high predicted

score.

Taxonomic classification of organisms is hierarchical (the taxa are, from

most general to most specific: domain, kingdom, phylum, class, order, family,

genus and species) and, even when making mistakes, a good predictor should

preserve high accuracy on higher taxonomical levels (ie. it should misclassify

something with a “related” entity).

Figures 5.11, 5.12 and 5.13 present three cases (one for each experiment)

in which the transformer made an incorrect prediction. Although inconclusive

(not all wrong predictions were analyzed), the mitochondrial pretraining tends

to misclassify at a lower taxonomical level (mistakes are made below the order

level) than the other methods (mistakes are made below the class level), and

is therefore better.

It’s important, however, to note that, although there isn’t a general rule
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Figure 5.10: Top 5 accuracies on fish metagenomics.

Query: <cls> AAAG G CTT GG TCC [Omissis]
True: 2228, Pred: 316
Species: True: Rhynchocypris percnurus, Pred: Bhavania australis

Figure 5.11: Wrong metagenomics prediction (mitochondria pretraining).
Both fishes belong to the order (Cypriniformes).

Query: <cls> ACC AGCC TGGTCC [Omissis]
True: 1617, Pred: 2279
Species: True: Nematobrycon palmeri, Pred: Sarda sarda

Figure 5.12: Wrong metagenomics prediction (Hg38 pretraining). Both fishes
belong to the class (Actinopterygii).

Query: <cls> AAAGGC ATGG TCCC [Omissis]
True: 2512, Pred: 1193
Species: True: Sinocyclocheilus rhinocerous, Pred: Hyporthodus septemfasciatus

Figure 5.13: Wrong metagenomics prediction (untrained). Both fishes belong
to the class (Actinopterygii).
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of thumb for 12S metagenomics, for 16S metagenomics (its analogous for

bacterial classification) a good predictor should achieve 100% top-1 accuracy

at least at the family level.

The experiments of appendix B greatly improve performance and therefore

a larger model, oretrained on the correct genome, can be considered beneficial

for metagenomics.

5.4 Fine tuning on chromatin profile prediction

Pretraining Loss Precision Recall AUC AUC AUC AUC
all DNase TF Histone

Hg38 0.4678 0.1756 0.3776 0.7161 0.8570 0.9218 0.8489
Mitochondria 0.6474 0.1883 0.2719 0.6495 0.8604 0.9199 0.8431
Untrained 0.7042 0.1785 0.2730 0.6251 0.8759 0.9211 0.8563
256 token
Untrained 0.7336 0.1999 0.2270 0.6172 0.8833 0.9230 0.8649
512 token
Untrained 0.7722 0.1994 0.2257 0.6130 0.8918 0.9264 0.8728
1024 token
DeepSea 0.923 0.958 0.856
Baseline
BigBird 0.921 0.961 0.887

4096 token

Table 5.4: Chromatin profile prediction performance on test sets (Longformer,
9-mer).

The results of chromatin profile prediction are shown on figures 5.14 and

5.15, and table 5.4.

It can be noted that weight initialization is irrelevant for global area under

curve (AUC), with the exception of pretraining in the human language model

which provides a slightly higher performance on validation. However, when

AUC evaluation is split in three categories (as proposed by Zhou et al. [56]),

chromatin profiles sensitive to DNAse I, chromatin profiles binding specific

transcription factors and chromatin profiles silenced by histone methylation,

different trends arise:
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Figure 5.14: Losses on chromatin profile prediction.

• For DNAse I sensitivity and histone methylation sites, the uninitialized

transformers perform better than the pretrained ones. Moreover longer

input sequences prove to be beneficial for AUC.

• For the transcription factor profiles, sequence length doesn’t affect per-

formance significantly and every initialization achieves roughly the same

performances.

The fact that input length affects performance only for DNAse I sensis-

tivity and histone methylation has a biological justification. DNAse I is an

enzyme capable of cutting DNA only in a region which is fully uncoiled and

forming a portion long enough to allow the enzyme to fit. On the other hand,

histones compress long portions of DNA into compact structures (each nucle-

osome, ie. a histone wrapped with DNA, coils 147 bp and multiple of them

interact to further compress the sequence during some types of methylation or

uncoil for others).

This correlation between input length and performance, however, is greatly
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Figure 5.15: Area under curve on chromatin profile prediction.

outweighed by other learnable features, as demonstrated by the experiments

carried in appendix B, where a larger model can easily improve state-of-the-

art, even when using the “wrong” pretraining (on the mitochondrial language).

As in the case of promoter localization, pretraining efforts are not justified

as they do not provide substantial gains (unless AUC is considered for all

classes).

The low precision and recall (not reported by the baselines) hint the fact

that upscaling the loss for positive samples as proposed by Zaheer et al. did

not adequately solve the class imbalance problem.

It’s important to note also that the size of the training set was sensibly

lower than the one used to train BigBird (about 20 times smaller), and so the

decrease in performance with respect to the baselines may also partially be

ascribed to this.

Although complex enough to give room for improvements and with a large

dataset to leverage for training, the task of chromatin profile prediction mixes

classes coming from three extremely different categories (asking in practice
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to learn three unrelated tasks at once) and has limited practical use (chromatin

profile depends on epigenetics, not only sequence informations, so different

cell types will have different profiles for the same sequence. A more useful

task, exploiting the same datasets, would be to predict a single profile given the

sequence and the cell type). For these reason, it can’t be considered a good

benchmark for bioinformatics architectures, just like promoter prediction or

localization.



Chapter 6

Conclusions

6.1 Final remarks

This thesis explored the applicability of small transformers to bioinformatics,

achieving good results with a fraction of the size of state-of-the-art architec-

tures. Moreover, by relaxing network size constraints, the same transformers

could improve state-of-the-art, while keeping a reduced input size (appendix

B).

Both traditional k-mer tokenization, combined with byte-pair encoding,

and BigBird-style randomized tokenization, also followed by BPE, are effec-

tive representations for the input. Although achieving slightly better results,

BigBird-style tokenization is computationally expensive and therefore its use

is not justified in practice.

This work explored four tasks under multiple facets, achieving good per-

formance (in spite of having a fraction of the parameters of state-of-the-art ar-

chitectures such as BigBird) and highlighting problems intrinsic in each task.

More in detail, a language understanding task is trained both using masked

languagemodeling (RoBERTa-style pretraining) andmasked languagemodel-

ing combinedwith sequence-order prediction (Albert-style pretraining) on two

languages: the full human reference genome (build hg38) and the full mito-

chondrial reference genomes of thousands of eukaryotes. Multiple values for
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k-mer tokenization were explored and Longformer with 9-mer tokenization,

256 input tokens and MLM-only training achieved best performance (reach-

ing near state-of-the-art perplexity for hg38, obtained by BigBird with an in-

put size of 4096 tokens, and a new baseline for mitochondrial genomes). In

spite of good numerical results, qualitative analysis showed unsatisfying re-

sults (justified by the intrinsic complexity of the genomic languages).

Promoter region prediction, in the formulation used as a benchmark by

BigBird, is ill defined and a more complex task is proposed in the form of

transcription start site (the boundary between a promoter and a gene) local-

ization. Extremely good performances are achieved even without pretraining,

hinting the fact that promoter localization is not a good benchmark either. Fur-

thermore cross-organism analysis showed that TSS can be reliably localized

even on organisms not seen during training.

12S metagenomics is explored by expoiting a database of fish mitochon-

drial genomes, achieving very good top-5 accuracy and acceptable top-1 accu-

racy scores (baselines are available for the similar task of 16S metagenomics,

but are uncomparable due to the use of different datasets). Using themitochon-

drial language model learned during pretraining boosted performance signifi-

cantly with respect to the untrained Longformer or the one initialized with the

hg38 language model (also showing a tendency to make mistakes at a lower

taxonomical level, suggesting the achievement of a more solid predictor when

the network is initialized with the mitochondrial language model).

The final task of chromatin profile prediction is explored achieving per-

formances slightly lower than the baselines. The use of hg38 language model

improves performance when all classes are considered jointly, however when

split into three categories, it tends to perform worse than the uninitialized net-

work. Additional tests with an increased input size are performed, revealing a

positive correlation between input size and performance relative to DNAse I

sensitivity and histone methylation sites (while performance relative to tran-

scription factor binding sites remains roughly constant). Although associated
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with a high quality dataset with millions of samples, the task of chromatin

profile prediction mixes three independent subtasks together and has limited

practical value, so it shouldn’t be considered a good benchmark for bioinfor-

matics.

6.2 Future work

In spite of data availability, the proposed tasks in which fine tuning was per-

formed are by no means considerable benchmark tasks useful in bioinformat-

ics, due to simplicity (promoter localization), lack of a solid baseline and “real-

world” data (12S metagenomics) or the joint learning of very different tasks

(chromatin profile prediction). For this reason, an important dimension to

explore is the preparation of solid and meaningful benchmark tasks for bioin-

formatics.

The training data used on this thesis came from reference genomes and

databases which provide “exact” sequences, however real data output by a

sequencer is associated with uncertainty which can be quantified by a metric

known as phred quality score [12] and associated at the single nucleotide level.

To the author’s knowledge, how to embed this information about uncertainty

of reads has not been addressed yet, with the exception of Busia et al. [5] who,

simply and arguably, propose to make quality scores a new input channel for

their convolutional network (which however wouldn’t allow the network to

learn to treat these values as confidences, unless some other modifications are

done, eg. by modifying the loss function or the network connectivity). One

possible solution with a transformer is to modify the attention mechanism in

order to weight the query based on the quality of each token, but this raises

further questions which need to be answered:

• How to define a “token-level” quality: the phred score is associated with



6.2 Future work 57

single nucleotides, but each token is composed by many of them. De-

vising a way to combine single-nucleotide qualities may not be straight-

forward (especially due to byte-pair encoding), or different approaches

may yield different results (eg. taking the average, the maximum, etc.)

• How to apply the weight: phred scores express the probability of error

in logarithmic scale and this may or may not require some conversion or

derived metric, moreover a “learned” weighting could prove to be more

general.

• How to deal with positional properties: a single sequenced read has a

distinct quality pattern (eg. in Illumina sequencing, the error is high

at the beginning due to calibration, then becomes low and finally rises

again as reads become longer and pollute the flow cell) and an assembly

(especially a de novo one) may still have some degrees of uncertainty

(eg. because for a given position there are very few, disagreeing, over-

laps), on the other hand some tasks may be very sensitive to errors in

certain positions, but not in other (eg. in molecular clock analysis [41],

different regions mutate at different rates, a low quality in a region rel-

evant to the time scale under exam may cause higher uncertainty on the

output, while on other regions it may be irrelevant).

• How to deal with training and inference differences, since current databases

contain only high quality assemblies, while runtime inputs may have a

varying degree of noise.

• Whether or not the approach is generalizable to multiple tasks (and if

so, whether an effective pretraining can be devised to address quality at

the embedding level instead of the final task).

• And finally whether this approach may propagate bad laboratory prac-

tices (when reads have a quality so low to hinder analysis, the entire

sequencing is remade, hopefully by a more expert technician or using
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better protocols, increasing robustness with respect to quality may lower

the care put into making a good sequencing run), or could be actually

useful (eg. in fields like archeology or forensics, in which samples start

with a low degree of conservation, reflected by a lower quality of reads,

and there is usually the impossibility of repeating an analysis).

Another direction yet to be explored is whether a better language model

can be achieved in pretraining without increasing the context size, some pos-

sible solutions could be:

• Splitting the training corpus into coherent “contexts” (as mentioned in

section 5.1, especially for the human reference genome, there are at least

two underlying contexts with a very different number of samples for

each case) and balancing them, this should produce a “multilingual”

contextual embedding, but potentially require a huge corpus for training,

• Using an Electra-style adversarial masking [6] to increase learning per-

formance.



Appendix A

Losses and metrics used

This appendix contains all the mathematical definitions of the functions used

for training and evaluation purposes.

In all cases, ytrue is the true output value, while ypred is the prediction given

by the transformers. In order to reducememory requirements, ytrue is provided

during training as integer, while the value produced by the transformers is a

one-hot encoded vector (a vector of all zeros, except a single one at the index

corresponding to the integer it represents). The following formulas assume

ypred to be the conversion of the output vector back to integer (ie. the index

with maximum value).

A.1 Crossentropy loss, softmax activation and per-

plexity

Entropy is a measure of the information content of a given source, based on

the probability of producing each symbol P(X), and can be interpreted as the

average number of bits required to encode each symbol:

H(X) = −
n∑

i=1
P(xi)log(P(xi)). (A.1)
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When a second probability distribution Q(X) is used to estimate P , a dif-

ferent number of bits are required to encode each symbol and the crossentropy

of P when approximated by Q is:

H(P , Q) = −
n∑

i=1
P(xi)log(Q(xi)). (A.2)

Since the crossentropy is differentiable and has a minimum when P =

Q, it can be used as loss function for gradient descent, provided that both

the of the predictor and the true labels are normalized to produce probability

distributions.

If labels are one-hot encoded, they are automatically also a probability

distribution (the Kronecker delta function), predictor outputs however need to

be explicitly normalized through the softmax activation function, which can

be considered a smoothed one-hot encoding:

softmax(x)i = exi∑K
j=1 exi

. (A.3)

Since each of the K neurons in the layer are exponentiated and then nor-

malized with respect to the entire layer, the output will take non-negative val-

ues which sum up to 1 (which are the two properties of a probability distribu-

tion).

In natural language processing it’s typical to exponentiate the crossentropy

in order to get a metrics, called perplexity, with a more intuitive interpretation:

PP (P , Q) = 2H(P,Q). (A.4)

In language modeling perplexity can be interpreted as the average number

of tokens the predictor is “perplexed about” in a given context (ie. how many

options it considers a possible correct answer), with a value of 1 implying

perfect modeling of the language and a value approaching the vocabulary size

implying random guessing.
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A.2 Accuracies, precision and recall

Accuracy is the simplest and most direct performance metric, measuring the

ratio between the correct predictions and total predictions:

ACC =
N∑

i=1


1
N

if ytrue[i] = argmax{ypred[i]}

0 otherwise.
(A.5)

In tasks where the prediction can be on many different classes, pure ac-

curacy may be relatively uninformative, because it provides no information

about how “close” the prediction is to becoming accurate. Top-k accuracy re-

laxes the definition in order to consider correct also predictions in which the

right class is not necessarily the class with the highest score, but it’s among

the top-k (usually k = 5) scores:

K-ACC =
N∑

i=1


1
N

if ytrue[i] ∈ argsort{ypred[i]}[0 : k]

0 otherwise.
(A.6)

Precision is a metric measuring howmany of the true samples are detected

by the predictor:

PRE = true positives
true positives + false positive

. (A.7)

Recall, instead, measures howmany of the predicted positives were in fact

true positives:

REC = true positives
true positives + false negatives

. (A.8)

A.3 Area under the curve (AUC)

In a binary classification task, the output of a predictor will be a real number

in a given range (eg. [0; 1] in the case of sigmoid activation functions). To
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recover the actual true, false prediction, it’s required to fix a threshold (eg.

everything above 0.5 will be considered true and the remainder will be con-

sidered false) and its choice affects both false positives and false negatives

(ie. an high threshold will reduce false positives at the expenses of an increase

of false negatives, and vice versa).

The receiver operating characteristic (ROC) curve is a plot of the true pos-

itive rate and false positive rate with respect to all the possible thresholds. The

area of the ROC curve (which can be approximated by any numerical method)

is:

AUC =
∫ 1

x=0
TPR(FPR−1(x))dx. (A.9)

The AUC can be interpreted as the probability of returning a predicted

value higher for a random positive sample compared to a random negative

sample. As such, a value of 0.5 indicates random guessing and a value of 1.0

perfect classification. In case of multi-label classification tasks, averaging the

AUC for each of the variables preserves this interpretation (contrary to other

metrics which must consider all the labels at once).
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Increasing performance

This appendix contains further experiments aimed at training better perform-

ing architectures, which are however too large and therefore not themain focus

of this thesis.

B.1 Architectures

• Large Longformer:

– 4 blocks (instead of 2),

– 32 self-attention heads (instead of 8),

– 256 maximum input tokens,

– 64 token attention window size (instead of 16),

– 256-dimensional output embedding.

• ELMo [38]:

– 2 bidirectional LSTM layers,

– 256 neurons for each layer,

– all the hidden states of the last layer returned as embeddings.



B.2 Mitochondrial MLM 64

Query: [omissis] AATCATATC CAC ACAA <mask> ATAT TAAAA
<mask> TAT TG TTGAG GCC T CG <mask> <mask> <mask> ACG
CTGC CTG CTT [omissis]

True: [omissis] TTCCT CAC ACAA TA ATAT TAAAA ATAT TAT
TG TTGAG GCC T CG CGAT TGC TT ACG CTGC CTG CTT [omissis]

Pred: [omissis] TTTGA CAC ACAA AG ATAT TAAAA AAAA TAT
TG TTGAG GCC T CG CGG TTT TT ACG CTGC CTG CTT [omissis]

Figure B.1: A wrong MLM prediction of the large Longformer. It can still be
noticed that almost all of the replaced tokens have the same length as the true
tokens.

B.2 Mitochondrial MLM

Model Accuracy Perplexity
Longformer 0.8875 1.7257
(baseline)

Large Longformer 0.9062 1.5149

Table B.1: Pretraining performance on validation sets.

MLM is performed on the mitochondrial dataset using the already trained

9-mer tokenizer with the default parameters (15% masked tokens, with 8:1:1

ratio between <mask>, random token and unchanged), however the dataset is

dynamically rebuilt before each epoch as suggested by Liu et al. [29] and the

large Longformer is trained (lr = 10−4, β1 = 0.9, β2 = 0.999) for 200 epochs

instead of 50.

ELMo is not pretrained for MLM and will be used for downstream tasks

uninitialized.

On the test set, performance is slightly better (accuracy: 0.9163, perplex-

ity: 1.4282), but, more importantly, qualitative evaluation produces some re-

sults (figures B.1 and B.2).
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Query: [omissis] TT TGT <mask> TAAAA ACAAAA AG <mask>
CGATAG ACA CAGTT GAAA AGAACAAAG CTT TCT TGG TT TTAT
GTTAA CCTTC <mask> CAC [omissis]

True: [omissis] TT TGT TTTT TAAAA ACAAAA AG T CGATAG
ACA CAGTT GAAA CAC CTT TCT TGG TT TTAT GTTAA TG TT CAC
[omissis]

Pred: [omissis] TT TGT TTTT TAAAA ACAAAA AG T CGATAG
ACA CAGTT GAAA AAG CTT TCT TGG TT TTAT GTTAA CCTTC G
CAC [omissis]

Figure B.2: An average MLM prediction of the large Longformer.

B.3 Promoter localization

Model Accuracy
Longformer 0.9575
(baseline)
ELMo 0.9543

Large Longformer 0.9544

Table B.2: Promoter localization performance on H. sapiens test sets.

ELMo is equipped with the classification head connected to all the (flat-

tened) hidden states of the last layer, while the large Longformer connectivity

is identical (dimensions aside) to the one described in section 4.2.2.

ELMo and the large Longformer (initialized with the newly trained mito-

chondrial language model) are trained for 10 epochs on the promoter localiza-

tion task, achieving identical performances compared to the small longformer.

This result further demonstrates the simplicity of the task.

The optimizer hyperparameters for ELMowere lr = 10−3, β1 = 0.9, β2 =

0.999, while for large Longformer were lr = 10−5, β1 = 0.9, β2 = 0.999.
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Model Loss Top-1 Accuracy Top-5 Accuracy
Longformer 0.4082 0.8576 0.9851
(baseline)
ELMo 0.4394 0.9164 0.9783

Large Longformer 0.3111 0.9172 0.9932
(deep head)

Table B.3: 12S mitochondrial metagenomics performance on test sets.

B.4 12S Metagenomics

Unlike the small transformer (section 4.2.3), the classification head for the

large longformer is no longer connected to the <cls> embedding only, instead

each token contributes to the final classification to provide “lower level” em-

beddings as classification features. In order to better exploit these features,

the classification head is made deeper, with two dense layers (one with 2048

neurons and the hyperbolic tangent activation function and the other with one

neuron for each class and the softmax activation function). Before reaching

the first classification layer, the embeddings are subject to a 10% dropout rate

to reduce overfitting.

For ELMo all the hidden states of the last layer are flattened and fed to the

classification head (which is however constituted simply by a dense layer, just

like the one used in section 4.2.3, to limit the already long training time).

ELMo is trained for 5 epochs only (lr = 10−3, β1 = 0.9, β2 = 0.999),

since it started degrading performance on the validation set.

The large Longformer is trained for 30 epochs (lr = 10−5, β1 = 0.9, β2 =

0.999, mitochondrial language model pretraining), in order to compensate for

the significantly lower learning rate. These additional epochs can still be

trained in less than the time required to train ELMo.

Without a deep classification head, large Longformer pretrained with the

mitochondrial language model performs still better than its small counterpart,

but worse than ELMo (with no pretraining). It can be theorized however
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that the embeddings can still be further improved (eg. by training on a 12S-

only language model, or by further reducing perplexity on the mitochondrial

genome) to get the same performances achieved with the deep head, while

using a shallow classification head.

B.5 Chromatin profile prediction

Model Loss Precision Recall AUC AUC AUC AUC
all DNase TF Histone

Longformer 0.6474 0.1883 0.2719 0.6495 0.8604 0.9199 0.8431
(baseline)
DeepSea 0.923 0.958 0.856
(baseline)
BigBird 0.921 0.961 0.887
(SOTA)
ELMo 1.3831 0.2793 0.2497 0.6100 0.9284 0.9431 0.9188

Large Longformer 1.3027 0.2277 0.3002 0.6249 0.9517 0.9600 0.9287

Table B.4: Chromatin profile prediction performance on test sets.

Just like the previous two experiments, ELMo’s hidden states of the last

layer are flattened and fed to the classification head, while the large Long-

former preserves the connectivity described in section 4.2.4.

ELMo is trained for 10 epochs (lr = 10−3, β1 = 0.9, β2 = 0.999) on the

chromatin profile prediction task, while large Longformer for 20 epochs (lr =

10−4, β1 = 0.9, β2 = 0.999, mitochondrial language model pretraining). The

results achieved, although slightly, improve the state of the art for the task.

This result, achieved with 256 input tokens, shows that the positive corre-

lation between input size and performance claimed by BigBird and also shown

by experiments on the small Longformer, may be an artifact of “incomplete”

learning (ie. the suboptimal transformers may need longer contexts to disam-

biguate difficult cases, but the optimal one may exploit higher level features

to achieve the same results).
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