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Introduction

Quadratic forms appear in many different areas of mathematics. The classification

of relevant objects can be reduced to the classification of quadratic forms. This is

the case, for example, of the Killing form in Lie theory and of the intersection form

in low dimensional topology. Similarly, quadratic forms are used to classify conics

and quadrics.

When facing the problem of classifying quadratic forms, it is natural to ask

whether two given quadratic forms Q and Q′ over a field K are equivalent or not,

i.e., whether one can be obtained from the other through a linear transformation or

not. If K = R or C it is easy to answer this question. However, as we move away

from these fields, the answer becomes extremely harder.

This thesis is devoted to the classification of quadratic forms over Qp and Q
through invariants. An invariant is an object associated with the quadratic form

which does not change if the form is replaced with an equivalent one. Invariants

are usually used to distinguish two quadratic forms which are not equivalent (see

Examples 5 and 6). When K = Qp or K = Q it is possible to obtain a complete

set of invariants. More precisely, two quadratic forms Q and Q′ are equivalent over

Qp if and only if they have same rank, discriminant and Hasse-Minkowski invariant

(Theorem 3.2.1). The classification of quadratic forms over Q is then obtained using

the Hasse-Minkowski theorem.

These results naturally lead to the study of quadratic forms with integer coef-

ficients which intervenes in various questions related to modular forms, differential

topology and finite groups.

The thesis is organized as follows: Chapter 1 is dedicated to the construction

of the p-adic fields, which are presented as completions of the rational field with

respect to the p-adic absolute values. Here the Legendre and the Hilbert symbols

are introduced. Chapter 2 contains preliminary results on quadratic forms. Finally,

Chapter 3 is the heart of the thesis: here the classification of quadratic forms over

Qp and Q is achieved. Several examples are given in order to clarify definitions and

concepts.

The main reference for this thesis is Serre’s book Cours d’Arithmétique, a mas-

terpiece of mathematical literature.
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Chapter 1

Construction of the p-adic field

There are two most common ways of defining p-adic numbers, one analytic and one

algebraic. The analytic definition tells us that p-adic numbers are the completion of

Q with respect to the p-adic metrics. The algebraic definition puts p-adic numbers as

sequences. We will start off with the first definition and then introduce the algebraic

one (for integers) to prove some of the properties of these sets.

1.1 Absolute values on Q

In this section we will reach a complete classification of absolute values in Q up

to equivalence. This is not strictly necessary for the objective of this thesis but

allows a better understanding of the purpose and role of the objects that we will

use. ([Gou97, Chapter III])

Definition 1.1.1. An absolute value on a field K is a function |.| : K −→ R
that satisfies the following conditions:

i) |x|=0 if and only if x=0;

ii) |xy|=|x||y|;
iii) |x+ y| ≤ |x|+ |y|.

We say that an absolute value is non-archimedean if it satisfies the condition

iv) |x+ y| ≤ max{|x|, |y|}.
Conversely an absolute value that does not satisfy (iv) is said to be archimedean.

Remark 1.1.2. Let |.| be a non-archimedean absolute value over a field K. Then

|n| ≤ 1 for all integers n and if x, y ∈ K and |x| 6= |y|, we have |x+y| = max{|x|, |y|}.

Proof. Since x 6= y we can assume that |x| > |y| so that |x+y| ≤ max{|x|, |y|} = |x|
but x = (x+ y)− y so |x| ≤ max{|x+ y|, |y|} =⇒ |x| ≤ |x+ y| =⇒ |x+ y| = |x| =

2
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max{|x|, |y|}.

Using this result we can prove the following properties for non-archimedean ab-

solute values:

Theorem 1.1.3. Let K be a field with a non-archimedean absolute value |.|, and

B̄(a, r) = {x ∈ K : |x− a| ≤ r}. Then

i) all triangles are isosceles;

ii) if b ∈ B̄(a, r) then B̄(a, r) = B̄(b, r);

iii) every ball B̄(a, r) is both open and closed;

iv) any two balls are either disjoint or contained in one another.

Proof. i) Let a, b, c be the vertices of a non degenerate triangle. Then we can

assume that |a| > |b| > |c| so the length of the sides is |a − c| = max{|a|, |c|} =

|a|, |a− b| = max{|a|, |b|} = |a|, |b− c| = max{|b|, |c|} = |b|.
ii) Let b be a point in the open ball B = B(a, r) = {x ∈ K : |x−a| < r}. If x is any

other point in B then |x− b| ≤ max{|x− a|, |b− a|} < r hence B(a, r) is contained

in B(b, r). By switching the role of b and a we have the opposite inclusion. The

identity for closed balls is obtained in the same way using ≤.

iii) Let x be a point in the boundary of B(a, r) and y in B(a, r) such that |x−y| < r

then |x − a| = max{|x − y|, |y − a|} < r. We need to show that such y exists and

for this purpose we consider a ball B(x, s) with s < r. This ball has non empty

intersection with B(a, r) since x is on the boundary. We have shown that any

boundary point of B(a, r) belongs to B(a, r) so B(a, r) is closed and B(a, r) =

B̄(a, r).

iv) Let B(a, r) and B(b, r′) be two balls with non empty intersection. Then, using

ii), any element y in the intersection is center to both the balls. The one with the

smallest radius is then contained in the other.

The following definitions lead to a fundamental example of a non-archimedean

absolute value: the p-adic absolute values. We will later prove that these are the

only non-archimedean absolute values on Q (up to equivalence).

Definition 1.1.4. Let p ∈ N be a fixed prime number. The p-adic valuation on

Z is the function

vp : Z− {0} −→ R (1.1)

with vp(n) the unique integer such that

n = pvp(n)n′ with p - n′ (1.2)
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and vp(0) =∞.

We extend this definition to Q by defining for x = a/b ∈ Q∗

vp(x) = vp(a)− vp(b). (1.3)

This is well defined and does not depend on a and b but only on x.

Definition 1.1.5. For x ∈ Q we define the p-adic absolute value of x by

|x|p = p−vp(x) if x 6= 0 and |0|p = 0. (1.4)

Then |.|p is a non-archimedean absolute value.

Definition 1.1.6. An absolute value induces a metric and hence a topology over K,

with a basis given by the set of open balls B(a, r) for all a ∈ K and r in R.

Two absolute values on a field K are said to be equivalent if they define the same

topology over K, that is, if every open set with respect to one is also open with respect

to the other.

Theorem 1.1.7. Let |.|1, |.|2 be two absolute values. The following statements are

equivalent:

i) |.|1, |.|2 are equivalent

ii) for any x in K, |x|1 < 1⇐⇒ |x|2 < 1

iii) ∃a ∈ R+ such that ∀x ∈ K we have |x|1 = |x|a2

Proof. i)⇒ ii) Let us assume that K contains an element x such that |x|1 <

1 and |x|2 ≥ 1 then the sequence (xn)n∈N converges with respect to the first absolute

value but not with respect to the second.

ii)⇒ iii) Let x0 ∈ K, |x0|1 < 1. Then by ii) |x0|2 < 1 hence there exists a real

positive number α such that |x0|1 = |x0|α2 . Now given any other x ∈ K, if |x|1 = |x0|1
the identity follows trivially because otherwise we would have |x0/x|1 = |x/x0|1 = 1

and either |x0/x|2 < 1 or |x/x0|2 < 1 contradicting ii). Similarly if |x|1 = 1 we

must have |x|2 = 1, otherwise we would have either |x|2 < 1 or |1/x|2 < 1, which is

not possible for ii). Moreover the equality for x implies the same equality for every

power of x.

For this reason we can assume that |x|i 6= 1 and |x|i 6= |x0|i for i = 1, 2. We can

also assume |x|1 < 1 otherwise we replace it with 1/x(= x−1). It is hence only left

to prove that if x ∈ K, |x|1 < 1 such that |x|1 = |x|b2 then a = b.
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Let n,m be two positive integers, then we have,

|x|n1 < |x0|m1 ⇐⇒ | x
n

xm0
|1 < 1 ⇐⇒ | xn

xm0
|2 < 1 ⇐⇒ |x|n2 < |x0|m2 . Taking logs of the

first and last equations we get nlog|x|1 < mlog|x0|1 ⇐⇒ nlog|x|2 < mlog|x0|2 or,

equivalently,
n

m
<
log|x0|1
log|x|1

⇐⇒ n

m
<
log|x0|2
log|x|2

(1.5)

This means that the set of fractions smaller than the first quotient and the second

quotient is the same. Since there are fractions as close as we like to any real number

the two fractions on the right are the same number, which means that

a =
log|x0|1
log|x0|2

=
log|x|1
log|x|2

= b. (1.6)

iii)⇒ i) Assuming iii) we get that any open ball with respect to |.|1 is an open

ball with respect to |.|2 indeed |x − b|1 < r ⇐⇒ |x − b|a2 < r ⇐⇒ |x − a|2 < r1/a

which proves i).

Definition 1.1.8. We call trivial absolute value the following absolute value

over Q:

|x| = 0 if x=0

|x| = 1 otherwise.

This is an archimedean absolute value.

Remark 1.1.9. The trivial absolute value is equivalent only to itself.

Remark 1.1.10. A non-archimedean absolute value cannot be equivalent to an

archimedean absolute value.

Proof. We will show that if an absolute value is non-archimedean than any other

equivalent absolute value is non-archimedean. Let |x|a1 = |x|2. Then if |x + y|1 ≤
max{|x|1, |y|1}, since a is positive, |x + y|2 = |x + y|a1 ≤ (max{|x|1, |y|1})a =

max{|x|a1, |y|a1} = max{|x|2, |y|2}

Remark 1.1.11. If p and q are two different primes, the p-adic and the q-adic

absolute values are not equivalent.

Proof. We have: p = p1 =⇒ vp(p) = 1 =⇒ |p|p = 1/p < 1.

On the other hand p = q0 · p =⇒ vq(p) = 0 =⇒ |p|q = 1.
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Theorem 1.1.12. (Ostrowski)

Every non-trivial absolute value is equivalent to one of the asolute values |.|p, where

p is either a prime number or ∞.

Proof. We will only prove the non-archimedean part. For the archimedean part see

[Gou97, Chapter III].

Let n0 be the smallest integer such that |n0| < 1. Then the following hold:

1) n0 must be a prime.

Indeed if n0 = ab with a and b both smaller than n0, we would have |a| = |b| = 1

and |ab| = |n0| < 1.

Let p = n0. We want to show that |.| is equivalent to the the p-adic absolute value.

2) If an integer n is not divisible by p then |n| = 1.

Using the division algorithm we have n = qp+r, with 0 < r < p. By the minimality

of p we have |r| = 1 and |qp| < 1. This proves that |n| = max{|qp|, |r|} = 1.

3) |.| is equivalent to the p-adic absolute value.

Given an integer n we can write it as n = pvn′ with p - n′. Then

|n| = |pv||n′| = |pv| = c−v (1.7)

where c = |p|−1 > 0. This proves the claim.

1.2 Completion of Q with respect to |.|p
Given the possible absolute values over Q we construct a completion for each of

them by analogy with what can be done in the case of R.

Definition 1.2.1. A field K is called complete if every Cauchy sequence of ele-

ments of K has a limit.

A subset S of K is called dense if every open ball around every element of K has an

element in S.

Definition 1.2.2. The smallest field containing K and complete with respect to a

certain absolute value |.| is called completion of K with respect to |.|.

Remark 1.2.3. Given that

-|.|∞ extends to R
-R is complete with respect to this absolute value
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-Q is dense in R
it follows that R is the completion of Q with respect to |.|∞.

Remark 1.2.4. Every Cauchy sequence with respect to the trivial absolute value

is eventually constant, thus every field is complete with respect to this absolute value.

We now find a completion with respect to the other non-trivial absolute values

over Q.

Proposition 1.2.5. A sequence (xn) in Q is a Cauchy sequence with respect to a

non-archimedean absolute value if and only if

lim
n→∞

|xn+1 − xn| = 0. (1.8)

Proof. Using the definition of convergence and the following inequality we have the

result.

Let m = n+ r > n then |xm− xn| = |xm− xm−1 + xm−1− xm−2 + ...+ xn+1− xn| ≤
max{|xm − xm−1|, |xm−1 − xm−2|, ..., |xn+1 − xn|}.

Remark 1.2.6. The field Q is not complete with respect to any of its nontrivial

absolute values.([Gou97, Chapter III])

The idea behind constructing a completion of Q is to abstractly include limitless

Cauchy sequences in the field, thinking of them as their missing limits.

Proposition 1.2.7. Let |.|p be a non-archimedean absolute value on Q. We denote

by C (or Cp(Q)), the set of all Cauchy sequences of elements of Q
Defining + as (xn) + (yn) = (xn + yn) and · as (xn) · (yn) = (xn · yn) makes C a

commutative ring with unity.

The ideal N ⊂ C of the sequences that tend to zero:

N = {(xn) : xn −→ 0} (1.9)

is a maximal ideal of C.

Proof. We want to show that given a sequence (xn) that does not tend to zero, the

ideal I generated by N and (xn) is C. Hence it is sufficient to prove that 1 is in I.
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Since (xn) does not tend to zero and is a Cauchy sequence there must eventually

exist an integer N and a positive number c such that |xn| ≥ c > 0 ∀ n > N .

We define a new sequence yn := 0 if n ≤ N ; yn := 1/xn otherwise. Since when

n > N

|yn+1 − yn| = |
1

xn+1

− 1

xn
| = |xn+1 − xn|

|xnxn+1|
≤ |xn+1 − xn|

c2
−→ 0 (1.10)

from 1.2.5 this proves that yn is a Cauchy sequence. Moreover

xnyn =

0 if n < N

1 if n > N
(1.11)

If we subtract this product from the constant sequence (1) we get a sequence that

is eventually 0 so in particular it is a sequence in N .

In other words

(1)− (xn)(yn) ∈ N (1.12)

i.e. (1) can be written as the sum of a multiple of (xn) and an element of N , hence

it belongs to I.

We want to identify sequences that differ by elements of N on the ground that

they ought to have the same limit. This is done by taking the quotient of the ring

C by the ideal N . Since N is a maximal ideal the quotient will be a field.

Definition 1.2.8. We define the field of p-adic numbers to be the quotient of

the ring C by its maximal ring N :

Qp = C/N (1.13)

Since two different constant sequences never differ by an element of N , We can

have an inclusion

Q ↪→ Qp (1.14)

by sending q ∈ Q to the equivalence class of the constant sequence (q).

We are now left with proving that Qp has the properties of a completion of Q (i.e.

that we can extend the p-adic absolute value to Qp, that Q is dense in Qp and that

Qp is indeed complete with respect to |.|p).
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Proposition 1.2.9. Let (xn) ∈ C \ N then the sequence of absolute values |xn|p is

eventually stationary.

Proof. Since (xn) does not tend to zero we can find c and N1 such that

n > N1 ⇒ |xn| ≥ c > 0

Since (an) is Cauchy there also exists a number N2 such that

m,n > N2 ⇒ |xn − xm| < c (1.15)

Since both conditions are true at once we find that if N = max{N1, N2}

n,m > N ⇒ |xn − xm| < max{|xn|, |xm|} (1.16)

which gives |xn| = |xm| because since |.| is non-archimedean all triangles are isosceles.

From Proposition 1.2.9 it follows that the extension |λ|p = limn→∞ |xn|p (with

λ ∈ Qp and (xn) a sequence in the equivalence class λ) of the p-adic absolute value

to the p-adic field, is well defined.

Theorem 1.2.10. The image of Q under the inclusion Q ↪→ Qp is a dense subset

of Qp.

Proof. We need to show that any open ball around an element λ ∈ Qp contains an

element of Q (i.e. the image of Q given by the constant sequences). Given a fixed

radius ε we will show that there is a constant sequence in B(λ, ε).

Let (xn) be a Cauchy sequence representing λ and 0 < ε′ < ε. By the Cauchy

property there exists a number N such that |xn−xm| < ε′ ∀ n,m > N . Let y = xn

and consider the constant sequence (y). Now the sequence λ− (y) is represented by

(xn − y) and for the definition above |(xn − y)| = limn→∞ |xn − y|.
But for any n ≥ N we have |xn − y| = |xn − xN | < ε′, hence

lim
n→∞

|xn − y| ≤ ε′ < ε (1.17)

This proves that (y) ∈ B(λ, ε).

Theorem 1.2.11. Qp is complete with respect to the p-adic absolute value |.|p.
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Proof. Let (λn) be a Cauchy sequence of elements of Qp. Since the image of Q is

dense in Qp we can find a sequence of rational numbers (yn)n∈N, (yn ∈ Q) such

that

lim
n→∞

|λn − (y(n))| = 0 (1.18)

where by (y(n)) we denote the constant sequence (yn, ....yn, ...). This is true because

for every εn = 1/n there exists a constant sequence (y(n)) in B(λn, 1/n). Hence

|λn − (y(n))| < εn = 1/n
n→∞−−−→ 0.

Moreover (yn)n∈N is also a Cauchy sequence of elements in Q, indeed we have:

|yn − y(m)| = |(y(n))− (y(m))| ≤ |(y(n))− λn|+ |λn − λm|+ |λm − (y(m))| (1.19)

≤ 1/n+ ε+ 1/m

Let λ be the class of this sequence in Qp, then

lim
n→∞

λn = λ (1.20)

Indeed for all k, ∃N > 0 such that |λn − λ| = limi→∞ |(λn)i − yi| ≤ limi→∞(|(λn)i −
yn|+ |yn − yi|) ≤ 1/k for all n ≥ N (using (1.17)).

Remark 1.2.12. The sets {x ∈ R+ : x = |λ|p for some λ ∈ Q} and {x ∈ R+ : x =

|λ|p for some λ ∈ Qp} are both equal to {pn : n ∈ Z} ∪ {0}

1.3 The ring of p-adic integers

The following results will be needed for the characterization of quadratic forms over

the p-adic fields. In particular here we prove the results leading to the characteri-

zation of squares in the p-adic fields.([Gou97, Chapter III])

Definition 1.3.1. The ring of p-adic integers is defined as:

Zp = {x ∈ Qp : |x|p ≤ 1} (1.21)

We call p-adic units the invertible elements of Zp. This set will be denoted by Z∗p.
From the definition we see that

Z∗p = {x ∈ Qp : |x|p = 1}. (1.22)

The following result gives an intuitive representation of p-adic integers that will
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be widely used later on. ([Kob84, Chapter I, Section 4]):

Lemma 1.3.2. If x ∈ Q and |x|p ≤ 1, then for any i there exists an integer α ∈ Z
such that |α− x|p ≤ p−i. The integer α can be chosen in the set {0, 1, 2, 3, ...pi − 1}

Proof. Let x = a/b be written in lowest terms. Since |x|p ≤ 1, it follows that p does

not divide b, and hence b and pi are relatively prime. So we can find integers m and

n such that: mb + npi = 1. Let α := am. The idea is that mb differs from 1 by a

p-adically small amount, so that m is a good approximation to 1/b, and so am is a

good approximation to x = a/b. More precisely, we have:

|α− x|p = |am− (a/b)|p = |a/b|p|mb− 1|p ≤ |mb− 1|p (1.23)

= |npi|p = |n|p/pi ≤ 1/pi

Finally, we can add a multiple of pi to the integer α to get an integer between 0 and

pi for which the inequality |α− x|p ≤ 1/pi still holds.

Theorem 1.3.3. Any p-adic integer a has exactly one representative Cauchy se-

quence of the form {ai} for which:

i) 0 ≤ ai < pi for i = 1,2,3,...

ii) ai ≡ ai+1 (mod pi) for i = 1,2,3,...

Proof. We first prove uniqueness:

If {a′i} is a different sequence satisfying i) and ii), and if ai0 6= a′io , then ai0 6≡ a′io ,

(mod pi0), because both are between 0 and pi0 . But then, for all i ≥ i0 we would

have ai ≡ aio 6≡ a′io ≡ a′i (mod pi0), i.e. ai 6≡ a′i (mod pi0). Thus

|ai − a′i|p > 1/pi0 (1.24)

This proves the uniqueness.

Now given a sequence {bi} we want to find an equivalent sequence {ai} satisfying i)

and ii).

For every j = 1, 2, 3, ... let N(j) be a natural number such that |bi − bi′|p ≤ p−j

whenever i, i′ ≥ N(j) (we are using the fact that {bi} is a Cauchy sequence). Notice

that |bi|p ≤ 1 if i ≥ N(1), because for all i′ ≥ N(1)

|bi|p ≤ max{|bi′|p, |bi′ − bi|p} ≤ max{|bi′|p, 1/p} (1.25)

and |bi′|p
i′→∞−−−→ |a|p ≤ 1.

We now use Lemma 1.3.2 to find a sequence of integers aj with 0 ≤ aj < pj such
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that

|aj − bN(j)|p ≤ 1/pi. (1.26)

We claim that {aj} is the required sequence. We need to show that aj+1 ≡ ai (mod

pi) and that {bj} ∼ {aj}.
Given any j, for i ≥ N(j), the first assertion follows because

|aj+1 − aj|p = |ai+1 − bN(j+1) + bN(j+1) − bN(j) − (aj − bN(j))|p (1.27)

≤ max{|ai+1 − bN(j+1)|p, |bN(j+1) − bN(j)|p, |aj − bN(j)|p}
≤ max{1/pj+1, 1/pj, 1/pj} = 1/pj

The second follows from the following relations:

|ai − bi|p = |ai − aj + aj − bN(j) − (bi − bN(j))|p (1.28)

≤ max{|ai − aj|p, |aj − bN(j)|p, |bi − bN(j)|p}
≤ max{1/pj, 1/pj, 1/pj} = 1/pj.

Hence |ai − bi|p
i→∞−−−→ 0.

Theorem 1.3.4. We have Qp = Zp[1/p], i.e., for every x ∈ Qp there exists n ≥ 0

such that pnx ∈ Zp.

Proof. If x ∈ Qp we can compute its valuation vp(x). If vp(x) ≥ 0 then x is already

an element of Zp. Otherwise vp(x) is negative and we have

vp(p
−vp(x)x) = −vp(x) + vp(x) = 0 (1.29)

which means that p−vp(x)x ∈ Zp.

Theorem 1.3.5. For every n ≥ 1 the sequence

0 −→ Zp
g−−→ Zp

h−−→ Z/pnZ −→ 0 (1.30)

is exact. In particular

Zp/pnZp ∼= Z/pnZ. (1.31)

Proof. We define the maps in the sequence as follows:

g : x 7→ pnx and h : x 7→ [x]pn . (1.32)
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Notice that the map h is well defined since it can be seen as choosing the nth element

in the unique sequence describing x with the properties of Theorem 1.3.3.

Now Ker(g) = {x : pnx = 0} = 0, Im(g) = {y : y = pnx for some x in Zp} = pnZp,
Ker(h) = {x : [x]pn ≡ [0]pn} ∼= pnZ and Im(h) = Z/pnZ. This proves the exactness

of the sequence.

We use the homomorphism theorems to conclude.

Theorem 1.3.6. (Hensel’s Lemma)

Let F (X) = a0 + a1X + ...+ anX
n be a polynomial with coefficients in Zp.

Suppose that there exists an integer α1 ∈ Zp such thatF (α1) ≡ 0 (mod pZp)

F ′(α1) 6≡ 0 (mod pZp)
(1.33)

where F ′ is the formal derivative of F .

Then there exists a unique p-adic integer α ∈ Zp such that α ≡ α1 (mod pZp) and

F (α)=0.

Proof. We will show that the root α exists by constructing a Cauchy sequence of

integers converging to it.

We will construct a sequence of integers α1, α2, ..., αn, ... such that for all n > 0 we

have

i)F (αn) ≡ 0 (mod pn)

ii)F (αn) ≡ αn+1 (mod pn)

Such a sequence will be Cauchy since (αn − αn+1) = pnm with m ∈ Z, hence

|αn − αn+1| ≤ p−n.

Moreover its limit will satisfy F (α) = 0 and α ≡ α1 (mod p) by construction.

Conversely we will show that a root α will determine such a sequence αn. Thus once

we have αnthe theorem is proved. From the hypothesis of the theorem we know

that α1 exists. To find α2 we use condition ii) which requires that α2 = α1 + b1p for

some b1 ∈ Zp. Now plugging this expression into F (X) we get:

F (α2) = F (α1 + b1p) =

Taylorexpansion︷ ︸︸ ︷
F (α1) + F ′(α1)b1p+ terms in pn n ≥ 2 (1.34)

≡ F (α1) + F ′(α1)b1p (mod p2)

We are left with proving that we can find α2 such that

F (α1) + F ′(α1)b1p ≡ 0 (mod p2)



CHAPTER 1. CONSTRUCTION OF THE P -ADIC FIELD 14

We know that F (α1) = px for some x. The equation then becomes

px+ F ′(α1)b1p ≡ 0 (mod p2) (1.35)

We are looking for an element b1 that solves this equation. We notice that F ′(α1)

is not divisible by p and hence is invertible in Zp.
We can take

b1 ≡ −x(F ′(α1))
−1 (mod p) (1.36)

(b1 is in fact in Z and we can choose the unique element that verifies 0 ≤ b1 ≤ p−1).

The same calculation works to get an + 1 from an. Hence we can obtain a sequence

uniquely determined at each step.

Example 1. Let F (X) = X3 −X − 2. We have F (0) ≡ 0 (mod 2) and F (1) ≡ 0

(mod 2), while F ′(0) ≡ 1 (mod 2) and F ′(1) ≡ 0 (mod 2). Therefore Hensel’s

Lemma implies that there is a unique α ∈ Z2 such that F (α) = 0 and α ≡ 0 (mod

2).

Although 1 is a root of F (X) (mod 2), it does not lift to a root in Z2 since it does

not even lift to a root (mod 4): F (1) ≡ 2 (mod 4) and F (3) ≡ 2 (mod 4), so if

β ∈ Z2 and β ≡ 1 (mod 2), then β ≡ 1 or 3 (mod 4) and therefore F (β) ≡ 2 6≡ 0

(mod 4).

From Hensel’s Lemma we can finally prove the following results.

Theorem 1.3.7. Let p 6= 2 be a prime, and b ∈ Z∗p a p-adic unit. If there exits α1

such that α2
1 ≡ b (mod pZp), then b is the square of an element of Z∗p.

Proof. We apply Hensel’s Lemma to the polynomial F (X) = X2 − b. Indeed from

the statement of the theorem F (α1) ≡ 0 (mod p) and since p 6= 2 and b ∈ Z∗p (so in

particular p - b) we have that 2α1 6≡ 0 (mod p). By Hensel’s Lemma there exists a

root of F (X), i.e. b is the square of an element of Z∗p.

This property can be extended to all elements of Qp by noticing that any x ∈ Qp

can be written as x = pvp(x)x′ with x′ ∈ Z∗p (indeed by definition of vp(x), p - x′ so

|x′|p = 1).

Theorem 1.3.8. Let p be a prime. An element x ∈ Qp is a square in Qp if and

only if x = p2ny2 for some n ∈ Z and y ∈ Z∗p.
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If p 6= 2 then the quotient Q∗p/(Q∗p)2 has order 4, and the set {1, p, c, cp}, with c ∈ Z∗p
an element whose reduction modulo p is not a quadratic residue, is a complete set

of representatives.

Proof. The first statement follows from the fact that the powers of p and the p-adic

units do not ”mix”. For the second statement we recall the fact that Zp/pZp ∼=
Z/pZ (Theorem 1.3.5), hence (Zp/pZp)∗ is cyclic and every non-residue y, verifies

[y]R = [n]R where n is an arbitrary non-residue and R is the set of residues.

Remark 1.3.9. In particular if x ∈ Z then x = papa22 ...p
an
n . By Theorem 1.3.8, x is

a square in Qp if and only if a is even, indeed if {p, p2, ..., pn} are n different primes

then pa22 ...p
an
n ∈ Z∗p.

Example 2. Since 2 = 32 is a square in Z/7Z, Theorem 1.3.7 shows that 2 is a

square in Z7. Moreover, by Theorem 1.3.8, for every n ∈ Z, 72n · 2 is a square in

Q7. On the other hand, since 2 is not a quadratic residue modulo 5, then 2 is not a

square in Q5.

Theorem 1.3.10. The subgroup (Q∗p)2 is open in Q∗p.

Proof. Let x ∈ Q∗p be a square, from Theorem 1.3.8 x = p2ny2 with n ∈ Z and y ∈ Z∗p.
Let z ∈ Qp be such that |z − x| < p−2n, since |z| = |z − x + x| = max{|z − x|, |x|}
we have |z|p = |x|p = p−2n and hence z = p2nw for some w ∈ Z∗p. Then we have

|z − x| = p−2n|w − y2| < 2−2n (1.37)

from which |w− y2| < 1. This means that w− y2 ≡ 0 (mod p). Using 1.3.7 we have

that w is also a square of an element in Z∗p.

Remark 1.3.11. Theorem 1.3.10 does not require p 6= 2, indeed it uses only the

first statement of Theorem 1.3.8.

Since in Theorem 1.3.7 we use that p - 2α1, we need to treat separately the case

in which p = 2. For this reason we state a stronger version of Hensel’s Lemma

followed by the classification of 2-adic squares. ([Cas86, Chapter IV, Section 3])

Theorem 1.3.12. (General Hensel’s Lemma)

Let K be a field complete with respect to a non archimedean absolute |.| value, and

A the ring of elements with absolute value lower than or equal to 1 (in particular we



CHAPTER 1. CONSTRUCTION OF THE P -ADIC FIELD 16

are interested in Qp and Zp).

Let f(x) be a polynomial in A[x], and let a0 ∈ A satisfy

|f(a0)| < |f ′(a0)|2. (1.38)

Then there exists an element a ∈ A such that f(a)=0.

Proof. The proof works in a similar way to the one we have seen.

Again we are aiming to find a Cauchy sequence converging to our solution. We do

so by choosing a1 = a0 + b0 with b0 the element satisfying f(a0) + b0f
′(a0) = 0. b0

exists because K is a field and it is in A because f(a0) and f ′(a0) are in A and using

(1.38).

We iterate this procedure to reach the result.

Theorem 1.3.13. Let b ∈ Z∗2. Then b is a square if and only if b ≡ 1 (mod 8).

The quotient group Q∗2/(Q∗2)2 has order 8 and a complete set of representatives is

{1,−1, 5,−5, 2,−2, 10,−10}.

Proof. ⇒ If b is a square then b = a2 for some unit a. Since a is a unit, 2 - a hence

if we use the representation b0 + b1p + ... + bnp
n... of p-adic integers that we can

find from Theorem 1.3.3 taking bi = (ai− ai−1)/pi−1 and b0 = a0 we can rewrite the

statement in the following form:

given a = 1 + 2a1...2
nan..., b = a2 = 1 + 0 + 0 + 23b3 + ...+ 2nbn.... This is true

because b1 = a0a1 + a1a0 = 2a1 and b2 = a1a0 + a21 + a2a0 + a0a2 = 2a2 + a1 + a21 =

2(a2 + a1) since ai ∈ {0, 1} for all i.

⇐ If b ≡ 1 (mod 8), b is a unit so |b|2=1. Consider the polynomial f(x) = x2 − b.
Then f(1) = 1 − b and f ′(x) = 2x ⇒ |f ′(1)|22 = |2|22 = (1/2)2. if |f(1)|2 ≤
max{1, |b|2} ≥ 1/4 we can apply General Hensel’s Lemma, from which we have the

proof. This happens whenever 8 | (1− b) hence whenever b ≡ 1 (mod 8).

For the second statement we recall the fact that for all x in Q2, x = 2iu for some

i in Z and u in Z∗2. Then x is a square if and only if i is even and u is a square.

There are four equivalence classes of units up to addition of a square. Indeed any

unit can be congruent to 1,-5,5,-1 (mod 8). In addition we can choose an even or

odd power for 2, hence 2 is also a generator.

1.4 Hilbert symbol

In this section K will designate either the field R or Qp.

We call V the set of all prime numbers and infinity.
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The purpose behind introducing the Hilbert symbol will be clear in Chapter 3 when

we talk about invariants for quadratic forms over the p-adic fields.

In order to prove some essential properties of the Hilbert symbol we will first intro-

duce the Legendre symbol and the reciprocity law. ([Ser95, Chapter 1, Section 3.3])

Definition 1.4.1. For any prime number p and an integer a coprime to p, we define

the Legendre symbol
(
a
p

)
in the following way

(a
p

)
=

1 if a is a square in Z/pZ

−1 otherwise
(1.39)

Remark 1.4.2. The product a · b, with a, b ∈ (Z/pZ)∗, is a quadratic residue if and

only if a and b are both squares or both non squares. This is due to the fact that

(Z/pZ)∗ is a cyclic group. Hence we have the following property:(ab
p

)
=
(a
p

)( b
p

)
(1.40)

Example 3. Let us consider the group (Z/7Z)∗. This is cyclic generated by 3 (it is

easy to see that 3 has indeed order 6). It follows from Example 2 that the Legendre

symbol
(
2
7

)
= 1, indeed 2 ≡7 32. Besides, any other integer z ∈ Z is congruent to

3α modulo 7, for some α = {1, .., 6}. Hence z · 2 = 3α · 32 = 3α+2 is a square if and

only if α + 2 ≡ 0 modulo 2, i.e. if and only if α is even.

Theorem 1.4.3. (Quadratic Reciprocity Law)

Let p be an odd prime number. If q is an odd prime number other than p, we have(q
p

)
= (−1)

p−1
2

q−1
2

(p
q

)
. (1.41)

Proof. We will omit this proof that can be found in [Ser95, Chapter 1, Section 3.3].

Definition 1.4.4. For a, b ∈ K∗ we define:(a, b) = 1 if z2 − ax2 − by2 = 0 has a non zero solution in K3

(a, b) = −1 otherwise.
(1.42)

The number (a, b) = ±1 is called the Hilbert symbol of a and b and defines a map

(. , .) : K∗/K∗2 ×K∗/K∗2 −→ {−1, 1}. (1.43)
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Definition 1.4.5. Let E/K be a field extension in which E is finite-dimensional. If

u is in E, then the multiplication Γu : E → E, given by Γu : y 7→ uy, is a K-linear

map. If {e1, ..., en} is a basis of E, then Γu is represented by a matrix A = [ai.j] with

entries in K. We define the field norm of u to be: N(u) = det(Γu).

This definition does not depend on the choice of the basis.([Rot02, Chapter XI,

Section 2])

Example 4. If E=K(
√
d) is a quadratic field, then a basis for E/K is B = {1,

√
d}.

If u = a + b
√
d, then the matrix of Γu, with respect to B, is:

[
a bd

b a

]
hence

N(u) = a2 − db2.

Theorem 1.4.6. Let a,b ∈ K∗ and Kb = K(
√
b) the field obtained by extending K

with a square root of b.

In order to have (a, b) = 1 it is necessary and sufficient that a belongs to the group

of the (field) norms of the elements in K∗b . We will indicate this group by NK∗b .

Proof. If b is a square of an element c in K∗, the equation Z2 − aX2 − bY 2 has

(c, 0, 1) as a solution hence (a, b) = 1. The theorem follows because Kb = K and

NK∗b = K∗.
If b is not a square then Kb is a quadratic field over K. If a ∈ NK∗b then there exist

z, y such that a = z2 − by2 so that the quadratic form Z2 − aX2 − bY 2 has a non

zero root (z, 1, y), hence (a, b) = 1.

Conversely if (a, b) = 1, the polynomial Z2−aX2−bY 2 has a zero (z, x, y) 6= (0, 0, 0);

since b is not a square x 6= 0. We conclude that a is the norm of the element z
x

+β y
x
.

Theorem 1.4.7. (Properties of the Hilbert symbol)

The following properties hold:

i) (a, b) = (b, a) and (a, c2) = 1;

ii) (a,−a) = 1 and (a, 1− a) = 1;

iii) (a, b) = 1⇒ (aa′, b) = (a′, b);

iv) (a, b) = (a,−ab) = (a, (1− a)b).

Proof. i) If Z2−aX2−bY 2 has a non zero solution (h, i, j) then (h, j, i) is a solution

of Z2 − bX2 − aY 2. Given Z2 − aX2 − c2Y 2, (h, 0, h/c) is a solution for every h in

the field.

ii) Similarly given Z2− aX2 + aY 2, (0, j, j) is solution for every j in the field. The

second equality is proved by observing that for Z2 − aX2 − (1− a)Y 2, (h, h, h) is a

solution for every h in the field.
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iii) If Z2 − aX2 − bY 2 has a non zero solution then, by Theorem 1.4.6, a is an

element of the group NK∗b , we then have

a′ ∈ NK∗b ⇐⇒ aa′ ∈ NK∗b (1.44)

iv) is a consequence of ii), iii). Indeed, from ii) (a,−a) = 1,

from iii)︷︸︸︷
=⇒ (a,−ab) =

(a, b). One can use the same argument for the second equality.

Theorem 1.4.8. (Hilbert Symbol in terms of Legendre Symbol)

In Qp for a given prime p, if we write a = pαu and b = pβv, where u and v are

p-adic units and α, β are integers, then

(a, b)p =

(−1)αβε(p)
(
u
p

)β(v
p

)α
if p 6= 2

(−1)ε(u)ε(v)+αω(v)+βω(u) if p = 2
(1.45)

where ε(u) = u−1
2

and ω(u) = u2−1
8

.

Note that by definition of the Hilbert symbol, (a, b)∞ = 1 if a > 0 or b > 0; (a, b)∞ =

−1 if a < 0 and b < 0.

Proof. We will omit the proof of this result because it would require to state many

other results that are not useful to our purpose. The complete proof can be found

in [Ser95, Chapter III, Section 1.2].

Remark 1.4.9. By bilinearity of the Hilbert symbol we mean the following prop-

erties:

(a2, b) = (a, b)2 and (aa′, b) = (a, b)(a′, b) (1.46)

.

Theorem 1.4.10. Hilbert symbol is bilinear and non-degenerate over the F2-vector

space K∗/K∗2.

Proof. Let a = pαu, a′ = pα
′
u′, b = pβv, with α, α′ and β in Z and u, u′ and v are

p-adic units. Due to Theorem 1.4.8 we have two cases:

a) p 6= 2 .

(aa′, b) = (−1)(α+α
′)βε(p)

(
uu′

p

)β(v
p

)(α+α′)
(1.47)

= (−1)αβε(p)
(
u
p

)β(v
p

)α
(−1)α

′βε(p)
(
u′

p

)β(v
p

)α′
= (a, b)(a′, b)
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In order to prove that the Hilbert symbol is non-degenerate it is sufficient to find,

for all a ∈ K∗/K∗2 \ {1}, an element b such that (a, b) = −1. From Theorem 1.3.8 a

can be p, c or cp, with c not a square modulo p. In each of these cases we can choose

b = c, p and c respectively. For example, from (1.45), (c, p) = (−1)αβε(p)
(
u
p

)β(v
p

)α
with α = 0, β = 1, u = c and v = 1; moreover, since c is not a square modulo p,(
c
p

)
= −1.

b) p = 2 Notice that, uu′−1
2

(
= u(u′−1)+u−1

2

)
and u−1

2
+ u′−1

2
have the same parity

(remember that u and u’ are odd for hypothesis). For this reason they are inter-

changeable in the exponent of (-1).

Similarly for (uu′)2−1
8

(
= u2(u′2−1)+u2−1

8

)
and u2−1

8
+ u′2−1

8
. Hence we can write

(aa′, b) = (−1)ε(uu
′)ε(v)+(α+α′)ω(v)+βω(uu′) (1.48)

= (−1)(ε(u)+ε(u
′))ε(v)+(α+α′)ω(v)+β(ω(u)+ω(u′))

= (a, b)(a′, b).

In order to prove that the Hilbert symbol is non-degenerate we recall that, from The-

orem 1.3.13, a complete set of representatives for Q∗2/Q∗22 is {1,−1, 5,−5, 2,−2, 10,−10}.
Using this and (1.45) for every element a in this set different from 1 we can find an

element b such that (a, b) = −1.

Theorem 1.4.11. (Hilbert))

If a, b ∈ Q∗ we have that (a, b)v = 1 for almost every v in V, and∏
v∈V

(a, b)v = 1. (1.49)

Proof. Since Hilbert Symbol is bilinear it is sufficient to show the result for a and b

primes or equal to -1. In each case Theorem 1.4.8 allows us to compute (a, b).

1 a = −1, b = −1. We have

(−1,−1)∞ = (−1,−1)2 = −1 and (−1,−1)p = 1 p 6= 2,∞

2 a = −1, b = l with l a prime number.

If l = 2 we have

(−1, 2)v = 1 for all v ∈ V ;

if l 6= 2 we find

(−1, l)v = 1 if v 6= 2, l

and (−1, l)2 = (−1, l)l = (−1)ε(l).
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3 a = l, b = l′ for some primes l and l′.

If l = l′

(l, l)v = (−1, l)v

so we go back to case 2.

If l 6= l′ and l′ = 2 we have

(l, 2)v = 1 for v 6= 2, l

and (l, 2)2 = (−1)ω(l), (l, 2)l =
(
2
l

)
= (−1)ω(l).

If 2 6= l 6= l′ 6= 2 we have

(l, l′)v = 1 for v 6= 2, l, l′

and (l, l′)2 = (−1)ε(l)ε(l
′), (l, 2)l =

(
l′

l

)
, (l, l′)l′ =

(
l′

l

)
By Theorem 1.4.3 we have

( l
l′
)( l′
l

)
= (−1)ε(l)ε(l

′)

The product is again 1.

Lemma 1.4.12. (Chinese remainder theorem)

Let a1, ..., an and m1, ...,mn be integers such that mi is coprime with mj for all i, j.

There exists an integer a such that a ≡ ai (mod mi) for all i.

Proof. Let m be the product of the mi. The Bezout theorem shows that the canon-

ical homomorphism

Z/mZ→
i=n∏
i=1

Z/miZ (1.50)

is an isomorphism.

Lemma 1.4.13. (Approximation theorem)

Let S be a finite part of V . The image of Q in
∏

v∈S Qv is dense in the product,

where the topology is the product topology.

Proof. Even if it means enlarging we can suppose that

S = {∞, p1, ..., pn} (1.51)

where the pi are distinct primes. We want to prove that Q is dense in R × Qp1 ×
...×Qpn . Let (x∞, x1, ..., xn) be a point in this product; we want to show that it is

adherent to Q. Up to homothety of integer ratio, we can suppose xi ∈ Zpi for all
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1 ≤ i ≤ n. We need to prove that for all ε > 0, and all integers N ≥ 0, there exists

x ∈ Q such that:

|x− x∞| < ε and vpi(x− xi) ≥ N for i = 1, ..., n. (1.52)

Using Lemma 1.4.12 with mi = pNi , there exists x0 ∈ Z such that x0 ≡ xi (mod pNi )

for all i and hence vpi(x0 − xi) ≥ N for all i. We then choose a prime q different

form pi for all i. The rational numbers a/qm with a ∈ Z and m ≥ 0 are dense in R.

We can now choose an element u = a/qm such that:

|x0 − x∞ + upN1 ...p
N
n | ≤ ε (1.53)

The number x = x0 + upN1 ...p
N
n proves the lemma.

Lemma 1.4.14. (Dirichlet theorem)

If a,m ≥ 1 are two coprime integers, there exist infinitely many primes p such that

p ≡ a (mod m).

Proof. We will omit the proof and it can be found in [Ser95, Chapter VI, Section

4].

Theorem 1.4.15. Let (ai)i∈I be a finite family of elements in Q∗, and (εi,v)i∈I,v∈V a

family of numbers equal to ±1. There exists an element x ∈ Q∗ such that (ai, x)v =

εi,v for all i in I and v in V, if and only if, are verified the following:

i) Almost all εi,v are equal to 1.

ii) For all i ∈ I,
∏

v∈V εi,v = 1.

iii) For all v ∈ V , there exists xv ∈ Q∗v such that (ai, xv)v = εi,v

Proof. The necessity of i) and ii) results from Theorem 1.4.11, that of iii) is trivial

(we can choose xv = x).

Let (ei,v) be a family of numbers equal to ±1 that satisfy conditions i), ii) and iii).

Up to multiplication by a square of an integer, we can suppose that all the ai are

integers. Let S be the subset of V consisting of ∞, 2, and of all the prime factors of

the integers ai. Let T be the set of v ∈ V such that exists i ∈ I for which εi,v = −1.

These two sets are finite.

We distinguish two cases:

a) S ∩ T = ∅ . We set

a =
∏

l∈T\{∞}

l and m = 8
∏

l∈S\{2,∞}

l (1.54)

Since S ∩ T = ∅ a and m are coprime. From Lemma 1.4.14 there exists a prime

number p ≡ a (mod m) such that p 6∈ S ∪ T . We want to show that the number
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x = ap satisfies the request, i.e (ai, x)v = εi,v for all i, v.

If v ∈ S we have εi,v = 1 since S ∩ T = ∅, hence we need to verify that (ai, x)v = 1.

If v =∞ it is trivial since x > 0. If v is a prime, x ≡ a2 (mod m), from which (using

Lemma 1.4.12) x ≡ a2 (mod 8) and x ≡ a2 (mod v) if v 6= 2. Since x and a are two

v-adic units x is a square in Q∗v (Theorem 1.3.7), hence we have (ai, x)v = 1.

If v 6∈ S then a− i is a v-adic unit . If v 6= 2 from Theorem 1.4.8 we have

(ai, b)v =
(ai
v

)vv(b)
for all b ∈ Q∗v. (1.55)

If l 6∈ T ∪{p}, x is a v-adic unit where vv(x) = 0, hence 1.55 shows that (ai, x)v = 1.

Since v 6∈ T we also have εv,i = 1.

If v ∈ T , we have vv(x) = 1; from condition iii) there exist xv ∈ Q∗v such that

(ai, xv)v = εi,v for all i ∈ I. One of the εi,v = −1 (v ∈ T ) hence from 1.55 we must

have vv(xv) ≡ 1 (mod 2). From this we have:

(ai, x)v =
(ai
v

)
= (ai, xv)v = εi,v for all i ∈ I. (1.56)

The only case left is v=p. From Theorem 1.4.11 we have∏
l 6=p

(ai, x)l = 1 · (ai, x)−1p = (ai, x)p. (1.57)

This leads to

(ai, x)p =
∏
l 6=p

(ai, x)l =
∏
l 6=p

εi,l =︸︷︷︸
from ii)

εi,p (1.58)

b) S ∩ T 6= ∅ From Theorem 1.3.10 we have that (Q∗v)2 forms an open subgroup

of Q∗v. From Lemma 1.4.13 there exists x′ ∈ Q∗, such that x′/xv is a square in Q∗v
for all v is S.1 This x verifies [x] = [xv] in Q∗v/Q∗2v ). In particular we have

(ai, x
′)v = (ai, xv)v = εi,v for all v ∈ S. (1.59)

We set µi,v = εi,v(ai, x
′)v ∈ {−1, 1}; this family verifies i), ii) and iii), and µi,v = 1

for all v ∈ S. Defining T ′ as the set of v for which there exists an i ∈ I that gives

µi,v = −1, we have that S ∩ T ′ = ∅. From case a) we have that there exists an

element y ∈ Q∗ such that (ai, y)v = µi,v for all i ∈ I and all v ∈ V . If we set

x = yx′, x satisfies the request.

1To make explicit the way in which we use Lemma 1.4.13 we recall the fact that
∏

v∈S Q∗2v
is open in in

∏
v∈S Qv, hence

∏
v∈S xvQ∗2v is also open in the same product; since Q is dense in∏

v∈S Qv there exists an element x ∈ Q such that x ∈
∏

v∈S xvQ∗2v .



Chapter 2

Quadratic forms

This chapter contains general definitions and results that will be useful to reach the

classification of quadratic forms over Qp and Q.

2.1 Definitions

Definition 2.1.1. Given a module V over a commutative ring A, we call quadratic

form a map Q : V −→ A that satisfies the following properties:

1. Q(ax) = a2Q(x) for a ∈ A and x ∈ V ;

2. the map (x, y) 7→ Q(x+ y)−Q(x)−Q(y) is a bilinear form.

The pair (Q,V) is called a quadratic module.

Since we are interested in the case in which V is a finite dimensional vector space

over a field K we will always assume that K is a field of characteristic 6= 2.

Remark 2.1.2. The product:

x · y = 1/2[Q(x+ y)−Q(x)−Q(y)] (2.1)

defines a symmetric bilinear form associated with Q. (Here we see why the char-

acteristic of the field is asked to be 6= 2.) This definition establishes a one-to-one

correspondence between quadratic forms and bilinear symmetric forms. Indeed if

Q(x) is quadratic, (2.1) defines a symmetric bilinear form. On the other hand, if ·
defines a symmetric bilinear product then, Q(x) = x ·x uniquely defines a quadratic

form.

24
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Definition 2.1.3. Given two quadratic modules (Q, V ) and (Q′, V ′) we call mor-

phism of (Q, V ) in (Q′, V ′) every linear map f : V −→ V ′ such that Q′ ◦ f = Q

Definition 2.1.4. Let (V,Q) be a quadratic module over a field K. Two elements

x,y of V are called orthogonal if x · y=0. We denote by H⊥ the set of orthogonal

elements to a subset H of V. V ⊥ is called the radical of V. Its codimension in V is

called the rank of Q. If V ⊥=0 then we say that Q is non-degenerate.

Definition 2.1.5. Given a basis {ei} of V, the matrix M = (aij) where aij = ei · ej
is symmetric. Moreover for x =

∑
xiei, Q(x) =

∑
aijxixj.

This gives a way of representing Q as a homogeneous second degree polynomial

f =
∑

i,j ai,jXiXj. The polynomial f depends on the choice of the basis.

Remark 2.1.6. Through a change of bases X, the matrix A′ of Q with respect to

the new basis is A′ = XTAX. In particular using Binet theorem we find that

det(A′) = det(A)det(X)2. (2.2)

This shows that the ”determinant of Q” is defined up to multiplication by an element

of K∗2.

Definition 2.1.7. We call the determinant of Q up to multiplication by elements

of K∗2, the discriminant of Q and we denote it by d(Q).

From the definition of d(Q) and by Remark 2.1.6 we immediately have that d(Q) is

invariant under change of basis in V.

Remark 2.1.8. If Q is non-degenerate then d(Q) ∈ K∗/K∗2 otherwise d(Q) = 0.

Since in C all elements are squares C∗/C∗2 = {[1]}. Using the same argument, when

K = R, since all positive numbers are squares, the quotient has two equivalence

classes [1] and [-1].

Example 5. Let us consider the quadratic forms f = X2 + 2Y 2 and g = X2 + Y 2.

By Definition 2.1.5, the symmetric matrices associated to f and g are

Mf =

[
1 0

0 2

]
and Mg =

[
1 0

0 1

]
(2.3)

respectively. The determinants of these matrices are det(Mf ) = 2 and det(Mg) = 1.

By Remark 2.1.6 and Definition 2.1.7, if det(Mf ) is not congruent to det(Mg) modulo
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K2∗ (i.e. if d(f) 6= f(g) in K), the quadratic modules (K2, f) and (K2, g) are not

isomorphic. In particular, by Example 2, (Q2
5, f) and (Q2

5, g) are not isomorphic.

Definition 2.1.9. A basis (e1, ..., en) of a quadratic module (V,Q) is called an or-

thogonal basis if its elements are two by two orthogonal.

In this case V=Span{e1}⊕̂...⊕̂Span{en}, where ⊕̂ denotes the direct orthogonal

sum, and hence the matrix associated Q with respect to this basis is diagonal:
a1 0 · · · 0

0 a2 · · · 0
...

...
. . .

0 0 · · · an

 . (2.4)

If x=x1e1 + ...+ xnen, then Q(x)=a1x
2
1 + ...+ anx

2
n and the polynomial f associated

with Q with respect to this basis is f = a1X
2
1 + ...+ anX

2
n.

Theorem 2.1.10. All quadratic modules (V,Q) have an orthogonal basis.

Proof. We prove this by recurrence on dim(V ) = n, the case n = 1 is trivial.

If Q(x) = 0 for all x in Q, then all bases are orthogonal.

If there exists in V an element e1 such that Q(e1) 6= 0 then the orthogonal H of

Span{e1} is an hyperplane of V and since the restriction of Q to Span{e1}is non-

degenerate, we have V = Span{e1}⊕̂H. By the recursive hypothesis, H has an

orthogonal basis (e2, ..., en) and so (e1, .., en) proves the theorem.

Definition 2.1.11. An element x of a quadratic module (V,Q) is called isotropic

if x 6= 0 and Q(x) = 0.

Lemma 2.1.12. Let (V,Q), be a quadratic non-degenerate module over K and e =

{e1...en} and e’ = {e′1...e′n} two orthogonal bases of V . Then there exists x ∈ K such

that ex = e′1 +xe′2 is not isotropic and the plan P = Span{e1, ex} is non-degenerate.

Proof. We have ex ·ex = e′1 ·e′1+x2(e′2 ·e′2), hence we must choose x2 6= −(e′1 ·e′1)/(e′2 ·
e′2). Moreover in order to have Q|P non degenerate it is necessary and sufficient to

have

(e1 · e1)(ex · ex)− (e1 · ex)2 6= 0 (2.5)

If we write this product explicitly and use hypothesis iii) the first member becomes

−2x(e1 · e′1)(e1 · e′2). From iii) also follows that (e1 · e′1) 6= 0 and (e1 · e′2) 6= 0 hence ex

verifies the conditions of the lemma if and only if x 6= 0 and x2 6= −(e′1 · e′1)/(e′2 · e′2).
We have at most three unacceptable values for x. Since K has at least four elements
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the lemma holds. If K = F3 all non null squares are equal to 1, we can choose

x = 1.

Theorem 2.1.13. Let (V,Q) be a quadratic non-degenerate module over K with

dimV = n ≥ 3. If e={e1...en} and e′ = {e′1...e′n} are two orthogonal bases of V,

then there exists a finite sequence e(0), e(1), ..., e(m) of orthogonal bases of V such

that e(0) = e, e(m) = e′, and e(i) has one element in common with e(i+1) for all

0 ≤ i < m (this property is called contiguity).

Proof. We distinguish three cases:

i)

(e1 · e1)(e′1 · e′1)− (e1 · e′1)2 6= 0. (2.6)

In particular e1 and e′1 are not proportional. Hence P = Span{e1, e′1} is a plane.

For this reason we can find two vectors ε2 ⊥ e1 and ε′2 ⊥ e′1 such that

P = Span{e1, ε2} and P = Span{e′1, ε′2}. (2.7)

Moreover from (2.6) we have that Q|P is non-degenerate, hence we can decompose

V as the direct sum of P and its orthogonal H. Let {e′′3, ..., e′′n} be an orthogonal

basis of H = P⊥. Then the following sequence satisfies the request:

e→ {e1, ε2, e′′3, ..., e′′n} → {e′1, ε′2, e′′3, ..., e′′n} → e′ (2.8)

ii)

(e1 · e1)(e′2 · e′2)− (e1 · e′2)2 6= 0. (2.9)

We proceed as in case i) by replacing e′1 with e′2.

iii)

(e1 · e1)(e′i · e′i)− (e1 · e′i)2 = 0 for i = 1, 2. (2.10)

Using Lemma 2.1.12 we have an ex for which we can find e′′2 such that (ex, e
′′
2) is an

orthogonal basis of Span{e′1, e′2}. If we consider

e′′ = {ex, e′′2, e′3, ..., e′n} (2.11)

e′ and e′′ are contiguous and using i), since Span{ex, e1} is non-degenerate, we can

link e and e′′ with a chain of contiguous bases.

Definition 2.1.14. We call hyperbolic plane every quadratic module that has a

bases consisting of two elements {x, y} such that x, y are isotropic and x · y 6= 0.

We can suppose x · y = 1 hence the matrix of the quadratic form with respect to
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{x, y} is

[
0 1

1 0

]
and its discriminant is -1.

Theorem 2.1.15. Let x 6= 0 be an isotropic element of a quadratic non-degenerate

module (V,Q). Then there exists a subspace U of V that contains x and is hyperbolic.

Proof. Since V is non-degenerate, there exists an element z ∈ V such that x · z = 1.

The element y = 2z−(z ·z)x is isotropic and x·y = 2. The subspace U = Span{x, y}
satisfies the request.

Lemma 2.1.16. Let (V,Q) and (V ′, Q′) be two isomorphic non-degenerate quadratic

modules. If U is degenerate subspace of V , and s is an injective morphism from U

to V ′, then we can extend s to an injective morphism s1 : U1 → V ′ where U is an

hyperplane of U1.

Proof. Let x be a non-zero element of the radical of the form restricted to U , and

l : U → K a linear map where l(x) = 1. Since V is non-degenerate there exists

y ∈ V such that l(u) = u · y for all u ∈ U . Moreover we can suppose y · y = 0 by

possibly replacing y with y − (1
2
y · y)x. The subspace U1 = U ⊕ Span{y} contains

U as an hyperplane. With the same construction for U ′ = s(U), with x′ = s(x) and

l′ = l ◦ s−1, we have U ′1 = U ′ ⊕ Span{y′}. Let s1 : U1 → U ′1 be the linear map such

that s1|U = s|U and that maps y 7→ y′. Then s1 satisfies the request.

Theorem 2.1.17. (Witt Theorem)

If (V,Q) and (V ′, Q′) are isomorphic and non-degenerate, every injective morphism

s : U → V ′ (2.12)

of a subspace U of V to V ′, can be extended to an isomorphism betwwen V and V ′.

Proof. Since V and V ′ are isomorphic we can suppose V = V ′. Using Lemma 2.1.16,

we can suppose U non-degenerate. We argue by induction on dimU .

If dimU = 1, U is generated by a non-isotropic element x; if y = s(x) , we have

y · y = x · x. We can choose ε = ±1 such that x + εy is not isotropic (if this is not

possible we would have 2x · x+ 2x · y = 0 = 2x · x− 2x · y from which x · x = 0). We

choose such an ε and let H be the hyperplane orthogonal to z = x + εy. we have

V = Span{z}⊕̂H. Let σ be the reflection with respect to H. Since x− εy ∈ H, we

have

σ(x− εy) = x− εy and σ(x+ εy) = −x− εy (2.13)

hence σ(x) = −εy; therfore, the automorphism −εσ extends s.

If dim U > 1, we decompose U = U1⊕̂U2 with U1, U2 6= 0. By the recursive
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hypothesis, the restriction s1 of s to U1 can be extended to an automorphism σ1 :

V → V with σ1|U1 = s|U1 . Up to replacing s with σ−11 ◦s, we can suppose that s is the

identity over U1. The morphism s hence sends U2 to the orthogonal V1 of U1; by the

recursive hypothesis, the restriction of s to U2 can be extended to an automorphism

σ2 of V1. The automorphism σ of V such that σ|U1 = IdU1 and σ|V1 = σ2 proves the

theorem.

Corollary 2.1.18. Two isomorphic subspaces of a non-degenerate quadratic module

have isomorphic orthogonals.

Proof. We extend the isomorphism over the two subspaces to an automorphism and

consider the restriction of this map to the orthogonals.

Definition 2.1.19. Let

f(X) =
n∑
i=1

aiiX
2
i + 2

∑
i<j

aijXiXj (2.14)

be a quadratic form in n variables over K. We set ai,j = aj,i if i > j, so that the

matrix A = ai,j is symmetric. The couple (Kn, f) is a quadratic module, called the

quadratic module associated to f .

Definition 2.1.20. Two quadratic forms f and f ′ are said to be equivalent if the

associated quadratic modules are isomorphic. In this case we write f ∼ f ′. If A and

A′ are the matrices associated to f and f ′, then there exists an invertible matrix X

such that A′ = XT · A ·X.

Definition 2.1.21. A quadratic form in two variables is called hyperbolic if

f ∼ X1X2 ∼ X2
1 −X2

2 . (2.15)

Definition 2.1.22. We say that a quadratic form f represents the element a ∈ K
if there exists x ∈ Kn, x 6= 0, such that f(x) = a.

Given two quadratic forms f in n variables and g in m variables, we denote by

f+̇g the quadratic form in n+m variables defined by

f(X1, ..., Xn) + g(Xn+1, ..., Xn+m). (2.16)

Similarly we denote by f−̇g the subtraction of f and g.

Theorem 2.1.23. Let f be a quadratic form in n variables that represents 0 and is

not degenerate. Then f ∼ f2+̇g, where f2 is hyperbolic and g is a quadratic form in

n− 2 variables. Moreover, f represents all elements of K.
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Proof. The result follows from Theorem 2.1.15. Indeed f represents 0 if and only

if the quadratic module associated has a non zero isotropic element x. Hence there

exists an hyperbolic subspace that contains x. The restriction of f to this subspace

gives f2. Moreover an hyperbolic form represents all elements of K. In fact since its

matrix is of the form

[
0 1

1 0

]
up to a change of basis, for all a ∈ K

[
a
2
, 1
][0 1

1 0

][
a
2

1

]
=

a

Corollary 2.1.24. Let g = g(X1, ..., Xn−1) a quadratic non-degenerate form and

a ∈ K∗. The following properties are equivalent:

i) g represents a;

ii) g = h+̇aZ2 where h is a form in n-2 variables;

iii) The form f = g−̇aZ2 represents 0.

Proof. i)⇒ ii) If g represents a there exists an element x 6= 0 such that x · x = a.

If H = Span(x)⊥, h = g|H gives ii).

ii)⇒ i) It is trivial with x = (0, ..., 0, 1).

i)⇒ iii) It is trivial with vector (x1, ..., xn−1, 1) where g((x1, ..., xn−1)) = a.

iii)⇒ i) If f has a non trivial zero (x1, ..., xn−1, z) then, if z = 0, g((x1, ..., xn−1)) =

0. In this case from Theorem 2.1.23 we have that g represents all elements of K. If

z 6= 0, g(1
z
(x1, ..., xn−1)) = a.

Corollary 2.1.25. Let g and h be two non-degenerate quadratic forms of rank ≥ 1,

and f = g−̇h. The following properties are equivalent:

i) f represents 0;

ii) there exists a ∈ K∗ represented by g and h;

iii) there exists a ∈ K∗ such that g−̇aZ2 and h−̇aZ2 represent 0.

Proof. i)⇒ ii) A non trivial zero of f can be written in the form (x, y), with

g(x) = h(y). If g(x) = h(y) = a 6= 0 ii) is verified. If a = 0, at least one between

g and h represents 0. Hence it represents all elements of K and in particular the

elements represented by the other quadratic form.

ii)⇒ i) It is trivial.

ii)⇔ iii) Follows from Corollary 2.1.24.

Theorem 2.1.26. Let f = g+̇h and f ′ = g′+̇h′ be two non-degenerate quadratic

forms. If f ∼ f ′ and g ∼ g′ then h ∼ h′.

Proof. By Corollary 2.1.18, given two isomorphic modules and two isomorphic sub-

spaces of these modules their orthogonals are still isomorphic.
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2.2 Quadratic forms over C and R

I recall the main results giving a complete classification of quadratic forms over C
and R.

Remark 2.2.1. By Theorem 2.1.10 we can always find an orthogonal basis for a

quadratic form. In particular, given a non-degenerate quadratic form f and an

orthogonal basis e = {e1, ..., en}, if ai = ei · ei is a square in the field K on which

we are working, then the vector êi = 1√
ai
ei is still orthogonal to all ej, j 6= i and

êi · êi = 1.

Theorem 2.2.2. Two quadratic forms over C are equivalent if and only if they have

the same rank.

Proof. Since in C all elements are squares, by Remark 2.2.1, every non-degenerate

quadratic form f in C, is equivalent to X2
1 + X2

2 + ... + X2
n where n is the rank of

f .

Remark 2.2.3. Since in R all positive elements are squares, by Remark 2.2.1, every

non-degenerate quadratic form f in R, is equivalent to

X2
1 +X2

2 + ...+X2
r − Y 2

1 − Y 2
2 ...− Y 2

s (2.17)

where r + s = n and n is the rank of f .

Definition 2.2.4. Given a quadratic module (V,Q) with V = R or C, a basis

e = {e1, ..., en} is called orthonormal when Q(ei) = ±1 for all i = 1, ..., n (i.e.

ei · ei = ±1).

Theorem 2.2.5. (Sylvester)

Let f be a quadratic form of rank n on R. Then f is equivalent to the form

X2
1 + ...+X2

r − Y 2
1 − ...− Y 2

s (2.18)

with r + s = n. The pair (r, s) is called the signature of the quadratic form and is

an invariant of the form.

Proof. Proving the statement is equivalent to proving that, given two orthogonal

bases e = {e1, ..., en} and e′ = {e′1, ..., e′n} of a non-degenerate quadratic module
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(V,Q) with V vector space of dimension n over R, it occurs that

#{ei ∈ e, s.t. Q(ei) > 0} = #{e′i ∈ e′, s.t. Q(e′i) > 0}
and

#{ei ∈ e, s.t. Q(ei) < 0} = #{e′i ∈ e′, s.t. Q(e′i) < 0}.

Let Ve,+ := Span{ei ∈ e, s.t. Q(ei) > 0}, Ve′,+ := Span{e′i ∈ e′, s.t. Q(e′i) > 0},
Ve,− := Span{ei ∈ e, s.t. Q(ei) < 0} and Ve′,− := Span{e′i ∈ e′, s.t. Q(e′i) < 0},
since e and e′ are two bases we have V = Ve,+ ⊕ Ve,− and V = Ve′,+ ⊕ Ve′,−. Hence

it is sufficient to show that dimVe,+ = dimVe′,+.

Let us assume that dimVe,+ > dimVe′,+ and hence dimVe,− < dimVe′,−. Using the

Grassmann formula we find that

Ve,+ ∩ Ve′,− 6= {0}. (2.19)

This gives an absurd since if there is a vector v such that v ∈ Ve,+ ∩ Ve′,−, then

v =
∑

ei∈Ve,+ xiei and v =
∑

e′j∈Ve′,−
yje
′
j. Hence

Q(v) =
∑

ei∈Ve,+ x
2
i (ei · ei) > 0

and

Q(v) =
∑

e′j∈Ve′,−
y2j (e

′
j · e′j) < 0.

This proves that dimVe,+ = dimVe′,+.

Corollary 2.2.6. Two quadratic forms f and g over R are equivalent if and only if

they have the same rank and signature.



Chapter 3

Quadratic forms over Q

For the content of this chapter we mainly refer to [Ser95, Chapter 4].

3.1 Quadratic forms over Qp

We consider non degenerate quadratic modules over Qp, with Qp designing the p-

adic field for some prime p. We will denote by (x, y) the Hilbert symbol for x and

y in Qp.

Since we assume the quadratic form Q non degenerate, d(Q) is an element in Q∗p/Q∗2p .

In Chapter 2 we observed that given a quadratic form Q, its discriminant does

not depend on the choice of the basis. Moreover, given an orthogonal basis e =

{e1, ..., en} and defining ai = ei · ei, we have

d(Q) = a1...an (in Q∗p/Q∗2p ). (3.1)

This is an invariant of the quadratic form Q.

Definition 3.1.1. Given ai and e as above and denoting by (ai, aj) the Hilbert

symbol of ai and aj, we define

ε(e) =
∏
i<j

(ai, aj) (3.2)

where the empty product is meant to be equal to 1.

From the definition of the Hilbert symbol it follows that ε(e) ∈ {−1, 1}. More-

over ε is an invariant of the quadratic form Q. This is proved in the following

theorem.

33
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Theorem 3.1.2. The number ε(e) does not depend on the choice of e.

Proof. We argue by induction on the dimension of the vector space.

If n=1 ε(e)=1. If n=2 ε(e)=1 if and only if the quadratic form Z2 − a1X2 − a2Y 2

represents 0. By Corollary 2.1.24, this is equivalent to asking that a1X
2 + a2Y

2

represents 1. This condition does not depend on the choice of e. For n > 2 we recall

that by Theorem 2.1.13 it is sufficient to prove ε(e) = ε(e′) for e, e′ contiguous

bases. We will also use the properties of the Hilbert symbol proved in Theorem

1.4.7 and Theorem 1.4.10.

Since the Hilbert symbol is symmetric we can assume e1 = e′1 and consequently

a1 = a′1.

We can write

ε(e) = (a1, a2...an)
∏

2≤i<j

(ai, aj) = (a1, d(Q)a1)
∏

2≤i<j

(ai, aj) (3.3)

Similarly, since (.,.) is invariant under multiplication by elements in Q∗2p

ε(e′) = (a1, d(Q)a1)
∏

2≤i<j

(a′i, a
′
j) (3.4)

We can now use the recursive hypothesis on Span{e1}⊥.

We can now write ε(Q) instead of ε(e) without ambiguity. We will call ε(Q) the

Hasse-Minkowski invariant.

Example 6. The quadratic forms f = 2X2 + 3Y 2 and g = 6X2 +Y 2 have the same

discriminant d = 6. We want to see whether they have the same Hasse-Minkowski

invariant in Q2. We have ε2(f) = (2, 3)2 and, since 2 = 21 · 1 and 3 = 20 · 3, using

the same notation as in Theorem 1.4.8, we have α = 1, β = 0, u = 1 and v = 3

hence ε(u) = 0 = ω(u) and ε(v) = 1 = ω(v). By Theorem 1.4.8 we find out that

(2, 3)2 = (−1)0+1+0 = −1.

Now, ε2(g) = (6, 1)2 and arguing as above we obtain α = 1, β = 0, u = 3 and

v = 1 from which ε(u) = 1 = ω(u) and ε(v) = 0 = ω(v). Hence, by Theorem 1.4.8,

(6, 1) = (−1)0+0+0 = 1.

Since ε2(f) = −1 6= 1 = ε2(g) f and g are not equivalent in Q2.

Theorem 3.1.3. The following statements hold:
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a) The number of elements of Q∗p/Q∗2p is 2r with r = 2 for p 6= 2 and r = 3 for

p = 2.

b) If a ∈ Q∗p/Q∗2p and ε = ±1, let Hε
a be the set of elements x such that (x,a)= ε.

If a = 1, H1
a has 2r elements and H−1a = ∅. If a 6= 1, Hε

a has 2r−1 elements.

c) Let a, a′ ∈ Q∗p/Q∗2p and ε, ε′ = ±1. We suppose that Hε
a, H

ε′

a′ are non empty.

Then Hε
a ∩Hε′

a′ = ∅ if and only if a = a′ and ε = −ε′.

Proof. a) Is proved in Chapter 1, Theorem 1.3.8 and Theorem 1.3.13.

b) If a = 1 (x, 1) = 1 for all x. If a 6= 1 by Theorem 1.4.10 the map b 7→ (a, b)

is linear (Q∗p/Q∗2p is a F2-vector space) and maps Q∗p/Q∗2p to {−1, 1}. Its kernel is

H1
a which must then be an hyperplane of Q∗p/Q∗2p and hence has 2r−1 elements. Its

complement is H−1a and has 2r − 2r−1 = 2r−1(2− 1) elements.

c) From b) Hε
a has either 0, 2r−1 or 2r elements. If Hε

a and Hε′

a′ are non empty and

disjoint the only possibility is that they are complementary and have 2r−1 elements

each. In statement b) we saw that H1
a is an hyperplane and H−1a its complementary.

Since H1
a and H1

a′ are both subspaces their intersection is not empty. Hence ε and

ε′ are not both equal to 1. Moreover if they were both equal to −1 we would have

H−1a′ = (H−1a )C = H1
a which can not happen since the null vector is in H1

a and

not in H−1a′ . For this reason it must be ε = −ε′. We can assume ε = −1. Since

(Hε′

a′)
C = Hε

a = (H−εa )C it must be Hε′

a′ = H−εa . This means that H1
a = H1

a′ ; In other

words

(x, a) = (x, a′) for all x ∈ Q∗p/Q∗2p . (3.5)

By Theorem 1.4.10 the Hilbert symbol is non-degenerate hence (3.5) implies a =

a′.

Theorem 3.1.4. Let f be a quadratic form of rank n, and d and ε its two invariants

defined above. Then f represents 0 if and only if:

i) n=2 and d=-1 (in Q∗p/Q∗2p );

ii) n=3 and (-1,-d)=ε;

iii) n=4 and d 6= 1 or if d=1 ε = (−1,−1);

iv) n≥5.

It is useful to state the following consequences of Theorem 3.1.4.

Corollary 3.1.5. Let x ∈ Q∗p/Q∗2p . x is represented by f if and only if:

i) n=1 and d=x;

ii) n=2 and (x,-d)=ε;

iii) n=3 and d 6= −x or if d=-x ε = (−1,−d);

iv) n≥4.
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Proof. of Theorem 3.1.4.

We write f in the form f ∼ a1X
2
1 + ...+ anX

2
n

i) The form represents 0 if and only if −a1/a2 is a square. But −a1/a2 = −a1a2 =

−d in Q∗p/Q∗2p , so −d = 1 in Q∗p/Q∗2p .

ii) f represents 0 if and only if −a3f ∼ −a3a1X2
1 − a3a2X2

2 −X2
3 represents 0. By

definition of the Hilbert symbol, this condition is equivalent to (−a3a1,−a3a2) = 1.

Using the bilinearity of the symbol we can write

(−1,−1)(−1, a3)(−1, a2)(a3,−1)(a3, a3)(a3, a2)(a1,−1)(a1, a3)(a1, a2) = 1 (3.6)

Since (a3,−1) appears twice we can delete it, moreover since (a, b) = (a,−ab)
(a3, a3) = (−1, a3)

(−1,−1)

(−1,d)︷ ︸︸ ︷
(−1, a2)(−1, a3)(−1, a1)︸ ︷︷ ︸

(−1,−d)

ε︷ ︸︸ ︷
(a1, a2)(a1, a3)(a2, a3) = 1 (3.7)

From which (−1,−d) = ε.

iii) By Corollary 2.1.25 f represents 0 if and only if there exists x ∈ Q∗p/Q∗2p
represented both by

a1X
2
1 + a2X

2
2 and − a3X2

3 − a4X2
4 (3.8)

By Corollary 3.1.5 ii), x has the previous property if and only if (x,−a1a2) =

(a1, a2) and (x,−a3a4) = (−a3,−a4).
If we call A the class of Q∗p/Q∗2p defined by the first condition and B the one defined

by the second, in order to have that f does not represent 0 we need to find that

the intersection of A and B is empty. From Theorem 3.1.3, point c), the two sets of

solutions to the previous equalities are disjoint if and only if

a1a2 = a3a4 and (a1, a2) = −(−a3,−a4) (3.9)

The first condition is equivalent to d = 1 in Q∗p/Q∗2p . If this is realized we have

ε = (a1, a2)(a3, a4) (a1, a3)(a1, a4)(a2, a3)(a2, a4)︸ ︷︷ ︸
=(a3a4,a3a4)

(3.10)

ε = (a1, a2)(a3, a4) (−1, a3a4)︸ ︷︷ ︸
(x,x)=(−1,x)

(3.11)
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ε = (a1, a2)(a3,−a4) (−1, a3)(−1, a3)︸ ︷︷ ︸
=1

(−1, a4)︸ ︷︷ ︸
=(−1,−1)(−1,−a4)

(3.12)

using condition two we can write

ε = − (a1, a2)(a1, a2)︸ ︷︷ ︸
=1

(−1,−1) (3.13)

from which the thesis follows.

iv) It is sufficient to prove the thesis for n=5. Indeed if every quadratic form of rank

5 represents 0 then given f of rank n > 5 we can write f = g+̇h with rank(g) = 5

and rank(h) = n− 5. Hence if g((x1, ..., x5)) = 0 then f((x1, ..., x5, 0, ..., 0)) = 0.

Using Corollary 3.1.5 and Theorem 3.1.3, a form of rank ≥2 represents at least 2r−1

elements of Q∗p/Q∗2p , hence f represents at least an element a in Q∗p/Q∗2p different

from d.

We can write f ∼ aX2 + g with g quadratic form of rank 4. The discriminant of g

is d/a hence it is different from 1. Using iii) we have the result.

3.2 Classification of quadratic forms over Qp

Theorem 3.2.1. (Equivalence)

Given a prime p, two quadratic forms over Qp, are equivalent if and only if they

have the same rank, discriminant and invariant ε.

Proof. We have already seen that equivalent forms have the same invariants d(Q)

and ε and the same rank.

The other way round can be proved by recurrence on the rank n of the forms.

By Corollary 3.1.5, if two quadratic forms have the same invariants then they rep-

resent the same elements of Q∗p/Q∗2p . Hence, given two quadratic forms, f and g, of

rank n, we can find an element a represented by both the forms. This allows us to

write

f ∼ aZ2 + f ′ and g ∼ aZ2 + g′ (3.14)

where f ′ and g′ are two forms of rank n− 1 and we have that

d(f ′) = d(f)a = d(g)a = d(g′)

and

ε(f ′) = ε(f)(a, d(f ′)) = ε(g)(a, d(g′)) = ε(g′).

(3.15)

We can then apply the recursive hypothesis.
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Example 7. In Example 5 we proved that the quadratic forms f = X2 + 2Y 2 and

g = X2 + Y 2 are not equivalent over Q5. We now want to prove that they are

equivalent over Q7. By Theorem 3.2.1 it is sufficient to show that these two forms

have the same rank, discriminant and Hasse-Minkowski invariant. The rank is 2 for

both forms. In Example 2 we saw that 2 is a square in Q7 and for this reason 1 ≡ 2

modulo Q2∗
7 , hence d(f) = d(g) in Q7. We are left with proving that ε7(f) = ε7(g).

This is true using Theorem 1.4.8 observing that in both cases α = 0 = β.

Theorem 3.2.2. (Existence)

Given n ≥ 1, d ∈ Q∗p/Q∗2p and ε = ±1, a quadratic form f of rank n such that

d(f) = d and ε(f) = ε exists if and only if we have:

n = 1, ε = 1; or n = 2, d 6= −1;

or n = 2, ε = 1; or n ≥ 3.
(3.16)

Proof. Case n = 1 is trivial since ε is the empty product.

For n = 2, f ∼ aX2 + bY 2, and if d = −1, ε(f) = (a, b) = (a,−ab) = (a, 1) = 1,

hence we can not have d(f) = −1 and ε(f) = −1 for the same form.

The other way around, if d = −1 and ε = 1 we choose f = X2 − Y 2 . If d 6= −1 by

Theorem 3.1.3 there exists a in Q∗p such that (a,−d) = ε. The form f = aX2+adY 2

satisfies the requests.

If n = 3 and we choose a ∈ Q∗p/Q∗2p different from −d, from what we have just seen

there exists a quadratic form g of rank 2 such that d(g) = ad and ε(g) = ε(a,−d)

(ad 6= −1); the form aZ2 + g fits.

The case n ≥ 4 follows from n = 3 by adding X2
4 + ... + X2

n to a quadratic form g

of rank 3 verifying the requests.

Theorem 3.2.3. (Number of classes)

The number of classes of quadratic forms over Qp with p 6= 2 (respectively p=2) is:

i) equal to 4 (respectively 8) if n=1;

ii) equal to 7 (respectively 15) if n=2;

iii) equal to 8 (respectively 16) if n ≥ 3.

Proof. By Theorem 1.3.8 (respectively Theorem 1.3.13) d can assume 4 values (re-

spectively 8) while ε can always assume two values (-1 and 1).
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3.2.1 Classification of quadratic forms over R

In Chapter 2.2 we saw that two quadratic forms f and g of rank n over R are

equivalent if and only if they have the same signature.

Here we show that knowing d∞(f) and ε∞(f) is insufficient to classify quadratic

forms over R. In particular they only give information on the signature modulo 4.

Theorem 3.2.4. Given two non-degenerate quadratic forms f and g over R, the

following statements are equivalent:

i) If (r, s) and (r′, s′) are the signatures of f and g, respectively, then s ≡ s′

modulo 4;

ii) d∞(f) = d∞(g) and ε∞(f) = ε∞(g).

Proof. i)⇒ ii) It is easy to verify that if s ≡ s′ modulo 4, in particular s ≡ s′

modulo 2, hence d(f) ≡ d(g) modulo R2∗. Moreover (a, b)∞ = −1 if and only if

a < 0 and b < 0, hence ε∞ = (−1)s(s−1)/2, with s(s − 1)/2 being the number of

Hilbert symbols in ε∞ in which both elements are less than 0. If s′ = s + 4k with

k ∈ Z then

(−1)s
′(s′−1)/2 = (−1)s(s−1)/2+2k(s−1)+2ks+8k2 = (−1)s(s−1)/2. (3.17)

ii)⇒ i) Conversely if d∞(f) = d∞(g) then

s ≡ s′ (mod 2). (3.18)

Moreover if ε∞(f) = ε∞(g) then the number of Hilbert symbols equal to −1 has

the same parity for f and g. This happens only if s ≡ s′ modulo 4. Indeed by 3.18

s = s′ + 2k with k ∈ Z, but (−1)s(s−1)/2 = ε∞(f) = ε∞(g) = (−1)s
′(s′−1)/2 and

(−1)(s
′+2k)(s′+2k−1)/2 = (−1)s

′(s′−1)/2

⇔
(s′ + 2k)(s′ + 2k − 1)/2 ≡ s′(s′ − 1)/2 (mod 2).

This happens if and only if k(s′ + s′ − 1) + 2k2 ≡2 0 and hence if and only if

k ≡2 0.

Theorem 3.2.4 shows that we can not use the results seen in Chapter 3.1 for R.

The crucial reason relies in the fact that in the proof of Theorem 3.1.4 and Corollary

3.1.5, we used Theorem 3.1.3.
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3.3 Hasse-Minkowski

From now on all the quadratic forms are supposed to be over Q and non degenerate.

We call V the set of all prime numbers and infinity.

Remark 3.3.1. Let f ∼ a1X
2
1 + ...anX

2
n be a quadratic form of rank n. For every

v ∈ V the injection Q ↪→ Qv allows to consider f as a quadratic form over Qv (we

will denote this by fv). Due to Section 3.2, in order to give a complete classification

of the forms fv we need the two invariants d(fv) and ε(fv).

In particular d(fv) is the image of d(f) through the map Q∗/Q∗2 → Q∗v/Q∗2v and

ε(fv) =
∏
i<j

(ai, aj)v (3.19)

where by (ai, aj)v we mean the Hilbert symbol of ai, aj on the field Qv.

We associate the following invariants to the form f :

i) The discriminant d(f) ∈ Q∗/Q∗2.

ii) For all v ∈ V the Hasse-Minkowski invariants of fv.

iii) The signature (r,s) of the real quadratic form f∞.

The invariants d(fv), ε(fv) and (r, s) are called local invariants of f .

Theorem 3.3.2. (Hasse-Minkowski)

Let f be a quadratic form over Q. Then f represents 0 if and only if for all v ∈ V ,

the quadratic form fv represents 0.

(In other words f has a ”global” zero if and only if it always has a ”local” zero).

Proof. The necessity is trivial since if no element of Qn
v maps onto 0 through f , in

particular no element of Qn does.

To see that the condition is sufficient we write f in the form

f = a1X
2
1 + ...+ anX

2
n with ai ∈ Q∗. (3.20)

By replacing f with a−11 f we can suppose a1 = 1.

We now consider the cases n=2,3,4 and ≥ 5 separately.

Case n = 2
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f = X2
1 − aX2

2 , since f∞ represents 0 in Q∞ = R then a > 0.

If we write a in the form

a =
∏
p

pvp(a), (3.21)

since fp represents 0, a is a square in Qp, therefore vp(a) is even (Theorem 1.3.8 and

Theorem 1.3.13). Since this holds for every p, a is a square in Q and f represents 0.

Case n = 3

f = X2
1 − aX2

2 − bX2
3 , up to multiplication by two squares we can assume a and b

as two square-free integers (i.e. vp(a), vp(b) are equal to 0 or 1 for all primes p). We

can suppose |a| ≤ |b|. By recurrence on the integer m = |a| + |b| we can argue as

follows:

If m = 2 then f = X2
1 ±X2

2 ±X2
3 . The case f = X2

1 +X2
2 +X2

3 is ruled out since f∞

does not represent 0. In the other cases the zero is trivial (i.e. (1, 1, 0) or (1, 0, 1)).

If m > 2, i.e. |b| ≥ 2, b = ±p1...pk with pi different primes for i = 1, ..., k. We want

to show that a is a square modulo pi for all primes in b. If a ≡ 0 (mod pi) this is

trivial, else a is a p-adic unit. By hypothesis there exists (x, y, z) ∈ (Qp)
3 such that

z2 − ax2 − by2 = 0. (3.22)

We can suppose (x, y, z) to be primitive (i.e., that not all x, y and z are divisible by

pi, since 1
ph

(x, y, z) with ph|x, y and z, is still a zero). We then have

z2 − ax2 ≡ 0 (mod pi). (3.23)

If it was x ≡ 0 (mod pi) we would as well have z ≡ 0 (mod pi). But in this case

by2 would be divisible by p2i . This cannot happen since vpi(b) = 1 and (x, y, z) is

primitive. So we have x 6≡ 0 (mod pi) and from (3.22) it follows that a is a square

modulo pi. Since Z/bZ =
∏

Z/piZ, a is also a square modulo b. There exist two

integers t and b′ such that

t2 = a+ bb′ (3.24)

and we can choose t such that |t| ≤ |b|/2. Since bb′ = t2 − a we can think of bb′ as

a field norm for the extension K(
√
a)/K where K is either Q or Qv. We conclude

that f represents 0 in K if and only if f ′ = X2
1 − aX2

2 − b′X2
3 does. This is due to

the fact that Z2 − αX2 − βY 2 has a non zero root when α = z2 − βy2, and on the

other hand if Z2 − αX2 − βY 2 has a non zero root (z, x, y) then a is the norm of

the element z
x

+ β y
x

(see the proof of Theorem 1.4.6). In particular f ′ represents 0
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in every Qv. But we also have

|b′| =
∣∣t2 − a

b

∣∣ ≤ |b|
4

+ 1 < |b| ( since |b| ≥ 2) (3.25)

We write b′ as b′′u with b′′ and u integers and b′′ square-free. Of course |b′′| < |b|
hence we can apply the recursive hypothesis to the form f ′′ = X2

1 − aX2
2 − b′′X2

3 .

Case n = 4

f = aX2
1 +bX2

2−(cX2
3 +dX2

4 ). By Corollary 2.1.25 fv represents 0 if and only if there

exists an element xv ∈ Q∗v that is represented both by aX2
1 + bX2

2 and cX2
3 + dX4

4 .

Using Corollary 3.1.5 this happens when (xv,−d) = ε, i.e.

(xv,−ab)v = (a, b)v and (xv,−cd)v = (c, d)v. (3.26)

Since by Theorem 1.4.11
∏

v∈V (a, b)v =
∏

v∈V (c, d)v = 1 and, for almost all v,

(a, b)v = 1; then we can apply Theorem 1.4.15 (with {ai for i ∈ I} = {−ab,−cd}
and {εi,v for i ∈ I an v ∈ V } = {(a, b)v for v ∈ V } ∪ {(c, d)v for v ∈ V }) from

which we have that there exists an element x ∈ Q∗ such that

(x,−ab)v = (a, b)v and (x,−cd)v = (c, d)v for all v ∈ V. (3.27)

The form aX2
1 + bX2

2 − xZ2 represents 0 in every Qv hence it represents 0 in Q. We

conclude that x is represented in Q by both aX2
1 + bX2

2 and cX2
3 + dX2

4 , using the

same argument. This proves that f represents 0.

Case n ≥ 5

We argue by recurrence on n. We write f in the form

f = h−̇g, (3.28)

with h = a1X
2
1 + a2X

2
2 and g = −(a3X

2
3 + ... + anX

2
n). Let S be the part of V

consisting of ∞, 2 and those primes p for which vp(ai) 6= 0 for an i ≥ 3; this is

a finite set. Let v ∈ S, since fv represents 0 there exists an element av ∈ Q∗v
represented by both h and g, i.e. there exists (xv1, ..., x

v
n) such that

h(xv1, x
v
2) = av = g(xv3, ..., x

v
n). (3.29)

By Theorem 1.3.10 the squares in Q∗v form an open subgroup. Using Lemma 1.4.13

there exist x1, x2 ∈ Q such that a = h(x1, x2) and we have a/av ∈ (Q∗v)2 for all

v ∈ S. (In order to explain this passage we argue as explained in the footnote [1] of

Theorem 1.4.15, with both x1 and x2, and we obtain that the image through h has
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the required property). We now consider the form

f1 = aZ2−̇g. (3.30)

If v ∈ S then g represents av in Qv and hence it also represents a since a/av is a

square; we conclude that f1 represents 0, in Qv.

If v 6∈ S the coefficients −a3, ...,−an are v-adic units, the same is true for dv(g) and

since p 6= 2, we have εv(g) = 1. Since rank(g) ≥ 3, Theorem 3.1.4 shows that g

represents 0 hence f1 represents 0 (we are using Theorem 1.4.8 from which we have

that the Hilbert symbol of two units is 1). In all the cases f1 represents 0 in Qv,

since the rank of f1 is n− 1, the recurrence hypothesis shows that f1 represents 0 in

Q, i.e. g represents a in Q as well as h represents a. Hence f represents 0 in Q.

Corollary 3.3.3. Let a ∈ Q∗. f represents a in Q if and only if it represents a in

every Qp.

Proof. It results using Theorem 3.3.2 on aZ2−̇f .

Corollary 3.3.4. A quadratic form f of rank ≥ 5 represents 0 if and only if it is

indefinite, i.e. if it represents 0 in R.

Proof. It is trivial since from Theorem 3.1.4 f represents 0 in every Qp.

Corollary 3.3.5. Let f be a quadratic form of rank n = 3. If f represents in every

Qv except at most one, then f represents 0. The same statements holds if f has

rank n = 4 and d(f) = 1.

Proof. If n = 3 then by Theorem 3.1.4 f represents 0 if and only if

(−1,−d(f))v = εv(f). (3.31)

The two families εv(f) and (−1,−d(f))v satisfy the product formula in Theorem

1.4.11. Hence if (3.31) is verified for all v apart from one it is verified for all v.

If n = 4 and d = 1, we reason in the same way replacing 3.31 with

(−1,−1)v = εv(f). (3.32)

3.4 Classification of quadratic forms over Q

Theorem 3.4.1. Let f, f ′ be two quadratic forms over Q. f and f ′ are equivalent

if and only if they are equivalent over every Qv.
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Proof. The necessity is trivial, to prove the sufficiency we reason by recurrence over

the rank n of f and f ′. If n = 0 there is nothing to prove. If not there exists an

element a ∈ Q∗ such that a is represented by f and f ′ (Corollary 3.3.3). We have

then from Theorem 2.1.26 g ∼ g′ over all Qp. The hypothesis of recurrence shows

that g ∼ g′ over Q and hence f ∼ f ′ over Q.

Corollary 3.4.2. Let (r, s) and (r′, s′) be the signatures of f and f ′. f and f ′ are

equivalent if and only if we have:

d(f) = d(f ′), (r, s) = (r′, s′) and εp(f) = εp(f
′) for every prime p. (3.33)

Proof. This is equivalent to saying that f and f ′ are equivalent over every Qv.

Example 8. We want to see whether or not the quadratic forms f = X2+2Y 2+2Z2

and g = X2 + Y 2 + Z2 are equivalent over Q.

The discriminats are d(f) = 4 and d(g) = 1, hence d(f) ≡ d(g) modulo Q2∗.

Moreover the signatures (r, s) and (r′, s′) are both equal to (3, 0).

Finally

εp(f) = (1, 2)p(1, 2)p(2, 2)p = (1, 2)2p(2, 2)p = (2, 2)p

while

εp(g) = (1, 1)p(1, 1)p(1, 1)p = (1, 1)2p(1, 1)p = (1, 1)p.

By Theorem 1.4.8 we have that, when p 6= 2 then (2, 2)p = 1 and when p = 2 we

have (2, 2)2 = 1. On the other hand (1, 1)p = 1 for all primes p, again using Theorem

1.4.8.

By Corollary 3.4.2 we have proved that the quadratic forms f and g are indeed

equivalent over Q.

Remark 3.4.3. The parameters d, εv and (r, s) are not arbitrary. Indeed they verify

the following relations:

i) εv = 1 for almost all v ∈ V and
∏

v∈V εv = 1;

ii) ε = 1 if n = 1, or if n = 2 and dv := [d] = [−1] in Q∗v/Q∗2v ;

iii) r, s ≥ 0 and r + s = n;

iv) d∞ = (−1)s;

v) ε∞ = (−1)s(s−1)/2.

Conversely

Theorem 3.4.4. Let d, (εv)v∈V and (r, s) satisfying i)− v) of Remark 3.4.3. Then

there exists a quadratic form of rank n having d, (εv)v∈V and (r, s) as its invariants.
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Proof. Case n = 1 is trivial

If n = 2 since the Hilbert symbol is non-degenerate and condition ii) is verified by

hypothesis, there exists xv ∈ Q∗v such that (xv,−d)v = εv. From this and condition

i), using Theorem 1.4.15 we have that there exists x ∈ Q∗ such that (x,−d)v = εv

for all v ∈ V . The form xX2 + xdY 2 proves the theorem in this case.

If n = 3, let S be the set of v ∈ V such that (−d,−1)v = −εv; This is a finite

set since (−d,−1)v = 1 for almost all v ∈ V and εv = 1 for almost all v ∈ V

(Theorem 1.4.11). If v ∈ S we choose an element cv ∈ Q∗v/Q∗2v different from −dv.
Using the Approximation Theorem (1.4.13) there exists an element x ∈ Q∗ such

that [x] = [xv] in Q∗v/Q∗2v for all v ∈ S. (It works as explained in footnote [1] to the

Theorem 1.4.15). From what we have just proven, there exists a form g of rank 2

such that d(g) = cd, εv(g) = (c,−d)vεv for all v ∈ V . Then the form f = cZ2+̇g

proves this case.

If n ≥ 4, we reason by recurrence over n. Let us suppose r =≥ 1, thanks to the

hypothesis of recurrence there exists a quadratic form g of rank n−1 with invariants

d, (εv)v∈V and (r − 1, s). The form X2+̇g satisfies the request. Finally if r = 0, we

build a form h of rank n − 1, with invariants −d, εv(−1,−d)v and (0, n − 1). The

form f = −X2+̇h proves the theorem.
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