
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

Scuola di Ingegneria e Architettura

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

MLOps - Standardizing the Machine
Learning Workflow

Thesis on
Big Data

Relatore
Dott. Enrico Gallinucci

Correlatore
Dott. Alessandro Bianchi

Candidato
Enrico Salvucci

I Sessione di Laurea

Anno Accademico 2020-2021

ii

Abstract

MLOps is a very recent approach aimed at reducing the time to get a Machine
Learning model in production; this methodology inherits its main features from
DevOps and applies them to Machine Learning, by adding more features specific
for Data Analysis. This thesis, which is the result of the internship at Data Reply,
is aimed at studying this new approach and exploring different tools to build an
MLOps architecture; another goal is to use these tools to implement an MLOps
architecture (by using preferably Open Source software). This study provides a
deep analysis of MLOps features, also compared to DevOps; furthermore, an in-
depth survey on the tools, available in the market to build an MLOps architecture,
is offered by focusing on Open Source tools. The reference architecture, designed
adopting an exploratory approach, is implemented through MLFlow, Kubeflow,
BentoML and deployed by using Google Cloud Platform; furthermore, the archi-
tecture is compared to different use cases of companies that have recently started
adopting MLOps.

MLOps is rapidly evolving and maturing, for these reasons many companies are
starting to adopt this methodology. Based on the study conducted with this thesis,
companies dealing with Machine Learning should consider adopting MLOps. This
thesis can be a starting point to explore MLOps both theoretically and practically
(also by relying on the implemented reference architecture and its code).

iii

iv

Acknowledgements

Throughout the writing of this dissertation I have received a great deal of support
and assistance.

First of all, I would like to thank my supervisor, Prof. Enrico Gallinucci, for
the thoroughness with which he took care of me both during the implementation
of the reference architecture and during the writing of this thesis.

I would like to thank my colleagues from my internship at Data Reply, espe-
cially Alessandro and Michele, for assisting me with great willingness.

I also would like to acknowledge the MLOps Community for the knowledge
they shared, which allowed me to deepen various topics in this thesis.

Last but not least, I really want to thank all my closest friends who supported
me both during my university career and in the writing of my thesis.

v

vi

Contents

Abstract iii

Introduction 1

1 MLOps 3
1.1 DevOps . 4

1.1.1 Influence on MLOps . 4
1.1.2 MLOps, DataOps, ModelOps and AIOps 5

1.2 The Machine Learning lifecycle . 6
1.2.1 A process, not only a product 8
1.2.2 People involved in the Machine Learning lifecycle 9

1.3 State of the Art and the need for MLOps 11
1.3.1 Technical Debt in Machine Learning systems and anti-patterns 12
1.3.2 Challenges . 15

1.4 MLOps features . 15
1.4.1 Continuous . 16
1.4.2 Reproducibility . 17
1.4.3 Versioning and Experiment Tracking 17
1.4.4 Testing . 18
1.4.5 Monitoring . 19
1.4.6 Modularity . 19
1.4.7 Automation . 19
1.4.8 Workflow Pipeline Design Pattern 22

2 A survey of technologies for MLOps 25
2.1 Open Source technologies . 25

2.1.1 Environment/Containerization 26
2.1.2 Experiments tracking . 26
2.1.3 Pipeline Orchestration . 30
2.1.4 CI/CD . 32
2.1.5 Feature Store . 34

vii

viii CONTENTS

2.1.6 Serving . 35

3 Design and implementation of a reference architecture for MLOps 37
3.1 Introducing an MLOps architecture in the business process 38
3.2 The reference architecture . 39
3.3 Deployment of the architecture . 44
3.4 The training and the prediction pipelines in detail 47
3.5 Code publication . 51

4 MLOps use cases and scenarios 53

5 Conclusions 61

Glossary 65

List of Figures

1.1 DevOps lifecycle . 5
1.2 Components of a Machine Learning system [1] 6
1.3 Machine Learning lifecycle [2] . 7
1.4 Trends for MLOps searches, January 2017 - May 2021 11
1.5 Machine Learning models life time [3] 12
1.6 Level 2: CI/CD and automated ML pipeline [4] 22

2.1 Example of different runs of a model training and the tracked pa-
rameters and metrics . 27

2.2 Example of the parameters recorded in a single run of the model
training (with also the the experiment duration, the date and the
user who executed it). 28

2.3 Example of different versions of a model trained through MLFlow.
The models can also be compared with each other. 29

2.4 Kubeflow components usage (emerged from the survey conducted
by the Kubeflow community in march 2021) [3] 31

2.5 Hopsworks architecture [5] . 34
2.6 Comparison between the most used Feature Stores [6] 35

3.1 The designed and implemented MLOps architecture [7]. 39
3.2 The DAG of the training pipeline on Kubeflow. 40
3.3 The DAG of the prediction pipeline on Kubeflow. 40
3.4 Successful runs of the model training experiments, tracked through

MLFlow. 41
3.5 Runs of the training and predictions pipelines in Kubeflow. 42
3.6 OpenAPI specifications of the BentoML service. 43
3.7 Successful response of a prediction through the BentoML ReST API. 44
3.8 The sequence of the steps performed in the CI/CD flow. 45
3.9 Runs on Google Cloud Build, triggered by a commit or a merge in

the code repository. 46
3.10 Example of substitution variables in Google Cloud Build. 46

ix

x LIST OF FIGURES

3.11 The DAG of the training pipeline on Kubeflow, triggered by Google
Cloud Functions as consequence of a file upload (or update), while
running the model traininig components. 47

3.12 The DAG of the prediction pipeline on Kubeflow while running both
the load-data and remove-header components. 47

3.13 The logs of Google Cloud Functions when a new file in the bucket
is uploaded (or updated). 50

4.1 Stack of the technologies included in Metaflow [8]. 55
4.2 CI/CD architecture of Itau Unibanco [9]. 56
4.3 MLOps tools stack used by GreenStream [10]. 57
4.4 Architecture of Uber Michelangelo [11]. 58
4.5 MLOps architecture of H&M [12]. 59

Listings

3.1 The definition of the data-ingestion Kubeflow component 48
3.2 The kfp-cli command used to run programmatically the Kubeflow

pipeline . 49

xi

xii LISTINGS

Introduction

MLOps is a very recent approach aimed at reducing the time to get a Machine
Learning model in production. A model may employ many months, or even an
entire year, to cover all its end-to-end process. Covid-19 pandemic, for example,
has disrupted many supply chains, whose models were not updated frequently
enough to handle the change in the data; these changes were mostly caused by
the different lockdowns in the world. In addition to the model building and train-
ing, the end-to-end Machine Learning process involves many steps; MLOps allows
data scientists to focus on all of them. Moreover, MLOps inherits its main fea-
tures from DevOps and applies them to Machine Learning. Due to the differences
among traditional software and Machine Learning models MLOps includes other
characteristics such as Continuous Training and Continuous Monitoring; tracking
and versioning the experiments performed to build a model are specific features
of MLOps as well. By adopting MLOps companies can manage their models with
flexibility and update them quickly and easily. MLOps’ benefits can really improve
the quality of the development of a model and can significantly reduce the time to
get the model itself into production.

This thesis is the result of the internship at Data Reply and its purpose is to
deeply investigate MLOps methodology from both theoretical and practical per-
spectives. Given its very recent nature, companies are not yet embracing the idea
of bringing the DevOps methodologies into Machine Learning processes. The re-
quirements that Data Reply had for the internship were to acquire the know-how
about the state-of-the-art of MLOps, to understand which technological stacks can
be set up for an MLOps project and, also, to build and test a reference architec-
ture to serve as a template for future projects. This thesis starts by comparing
DevOps and MLOps; thereafter it provides an overview of the state-of-the-art of
this very recent approach. A deep analysis of MLOps’ features will be also pro-
vided. According to the specific requirements of each company, which employs
this new methodology, many tools can be adopted to build an MLOps architec-
ture. A deep survey on the main technologies will be presented, by focusing on
the Open Source ones; some of the discussed tools have been employed to build
the reference architecture for this thesis. The architecture is designed according

1

2 Introduction

to an exploratory approach and is implemented by using three Open Source tools:
MLFlow, Kubeflow and BentoML; the whole architecture is deployed through
Google Cloud Platform. Some considerations on introducing MLOps in a com-
pany will be offered; afterward different use cases about how various companies
adopt MLOps will be discussed and their architecture will be also compared to
the reference architecture of this thesis. Some of the mentioned companies are
AstraZeneca, Netflix, Uber and H&M.

Chapter 1 examines MLOps features, including its differences with DevOps
and its state-of-the-art. Chapter 2 explains the main technologies to implement
an MLOps infrastructure, by focusing on the Open Source ones. Chapter 3 firstly
offers some considerations on introducing MLOps in a company; moreover, it de-
scribes the implementation of the reference architecture of this thesis. Chapter 4
explains different use cases about how various companies adopt MLOps and the
previously mentioned example about Covid-19 as well.

MLOps is rapidly evolving and maturing, for these reasons many companies are
starting to adopt this methodology. Based on the study conducted with this thesis,
companies dealing with Machine Learning should consider adopting MLOps. This
thesis can be a starting point to explore MLOps both theoretically and practically
(also by relying on the implemented reference architecture and its code).

Chapter 1

MLOps

A typical pain point in Machine Learning is the large amount of time to get
a model into production. MLOps is “an approach in which a cross-functional
team produces Machine Learning 1 applications; these are based on code, data, and
models in small and safe increments that can be reproduced and reliably released
at any time, in short adaptation cycles” [13]. Due to the large amount of time
required to get a model into production and due to the small lifetime of the model
itself in production, the full potential of Machine Learning is not currently being
reached. The delay between initiating the data science project and deploying the
model (so it can make predictions) often leads to having a model in production
that no longer conforms to real-world data. One of the main goals for MLOps
is to let companies reduce the time to deploy a model and get it into production
faster; MLOps is also aimed at providing an approach to simplify and standardize
the Machine Learning lifecycle. These objectives require organizations to address
different Technical Debts, reduce the gap between data scientists and operational
teams and adopt a new approach to develop Machine Learning systems.

The term “MLOps” is strictly related to the DevOps approach. As the name
itself suggests, MLOps inherits its main principles from DevOps; yet deploying
software code is deeply different from deploying Machine Learning models into
production: code is static, data changes constantly. The word “MLOps” has been
introduced for the first time by Kaz Sato, Staff Developer Advocate at Google
Cloud. He thought that “DevOps is all about unifying the development and op-
erations (Dev and Ops), we can use the same concepts on the Machine Learning
based systems” [14].

1For the sake of consistency, the term Machine Learning (ML), is used here in a broadly
fashion; MLOps is not referred only to Machine Learning but to all the data science fields (other
terms can be used, see Section 1.1.2).

3

4 CHAPTER 1. MLOPS

1.1 DevOps

DevOps is a cultural movement, a way of thinking and working, which supports
intentional processes that accelerate the rate by which business value is obtained.
It has its roots in Agile software development principles and could be considered an
extension of them. DevOps is especially focused on the first principle of the Agile
Manifesto: “Individuals and interactions over process and tools” [15]. As DevOps
encourages critical thinking about tools it considers them a value, but it does not
mandate or require any specific one. It is also crucial to underline that effective
tool usage is necessary for a successful DevOps transformation but not sufficient.
DevOps emphasizes that interactions and collaborations among individuals are at
the core of the development process (as at the core of the entire organization) and
those technologies might assist in improving them.

In a DevOps approach, development and operation2 teams should exchange
information and work together as much as possible. A team is responsible for
the subproduct for its whole lifetime and there should not be a handover from
developers and infrastructure operators. In DevOps is also central to focus on
the process instead of just on the product; since the spotlight is on the process,
automation is a resource to be exploited as much as possible to enhance and
simplify it. If there are repetitive tasks, that could be automated, people can work
more efficiently.

In DevOps, automation also enables Continuous Integration and Continuous
Delivery. Continuous Integration (CI) is the process of integrating frequently new
code written by developers. This is in contrast to having developers working on
independent feature branches for weeks; long periods of time in between a merge
and another mean that a lot of code has already changed, the goal is instead to
avoid integrations problems that come from large and infrequent merges. When
changes are committed and merged the tests automatically start running; failing
tests means the build is broken and it needs to be fixed. With this kind of workflow,
problems can be identified and quickly fixed. Continuous Delivery (CD) “is the
ability to get changes of all types—including new features, configuration changes,
bug fixes, and experiments—into production, or into the hands of users, safely and
quickly in a sustainable way” [16]

1.1.1 Influence on MLOps

MLOps derives its main principles from DevOps but some differences exist: both
are aimed to reduce the time to get the system into production by simplifying the
lifecycle and by standardizing it. This goal is achieved by letting teams collaborate

2Operations is about the managing of the infrastructure and the services it hosts.

1.1. DEVOPS 5

Figure 1.1: DevOps lifecycle

together and by enhancing automation. In DevOps and MLOps a team is respon-
sible for the subproduct for its whole lifetime and there should not be a handover
from developers and infrastructure operators. Though in MLOps, teams need to
incorporate Machine Learning researchers and data scientists who are often not
experienced software engineers. Due to the different nature between DevOps and
MLOps also the approach to tests is different: since DevOps requires tests for
the code, MLOps requires tests also for data validation, model validation, model
quality. Both the approaches do not impose to use some specific tool, but in the
two cases choose the right instrument is crucial to reach the goals.

Another important area that deviates MLOps from DevOps is how Continuous
Integration/Continuous Delivery (CI/CD) pipelines are constructed. In MLOps,
CI components need to extend to testing and validating data schemas, data, and
models. CD components need to support the deployment of the training pipeline
as well as the final model prediction service or application. Additionally, there is
another component, Continuous Training (CT), that needs to be accounted for to
enable automatic model retraining and refinement. The process in Figure 1.1 is
part of the MLOps workflow as well, but the latter adds some more steps related
to data and model management.

1.1.2 MLOps, DataOps, ModelOps and AIOps

In the years, since the popularization of DevOps, a lot of ops-terms born: terms
as SecOps (for security), NetOps (for networks), ITOps or GitOps. Referred to
data, besides MLOps, emerged terms as DataOps, ModelOps and AIOps (other
terms can be less frequently used).

DataOps This term is often used as a synonym of MLOps but it is slightly differ-
ent. “The main tasks in DataOps include data tagging, data testing, data pipeline
orchestration, data versioning and data monitoring. Analytics and Big Data teams
are the main operators of DataOps” [17]; other people who can adopt DataOps

6 CHAPTER 1. MLOPS

Figure 1.2: Components of a Machine Learning system [1]

could be data analysts, BI analysts, data scientists or data engineers. The DataOps
manifesto strictly reminds the Agile Manifesto and it can be resumed as “Individu-
als and interactions over processes and tools; working analytics over comprehensive
documentation; customer collaboration over contract negotiation; experimentation,
iteration, and feedback over extensive upfront design; cross-functional ownership
of operations over siloed responsibilities” [18].

ModelOps Also ModelOps and MLOps are often used interchangeably. Mode-
lOps is more general than MLOps: it’s not only about Machine Learning models
but about any kind of model.

AIOps AIOps can be confused with MLOps but it refers to the process of solving
operational challenges through the use of Artificial Intelligence.

1.2 The Machine Learning lifecycle

A common feature between DevOps and MLOps is that they both highlight the
process prior to the product. The Machine Learning lifecycle does not involve only
the model building: the infrastructure of a Machine Learning system is vast and
complex and only a small fraction of it is composed of the code for the Machine
Learning model (the black component in Figure 1.2). For this reason, is crucial
to underline that MLOps is focused on the whole Machine Learning lifecycle and
not only on the model building phase. In Data Science the system lifecycle can be
declined in different forms according to the specific field (the process can spotlight
the business understanding, as in CRISP-DM, or it can, for example, favour the
data), thus they all share some common steps. Figure 1.3 shows the steps of the
Machine Learning lifecycle.

1.2. THE MACHINE LEARNING LIFECYCLE 7

Figure 1.3: Machine Learning lifecycle [2]

Data Extraction and Exploration Data Extraction is typically the first step
in Data Science projects: the data in various formats need to be extracted and
cleaned to be used for further analysis. Once the data are ready they can be
explored to understand the hidden patterns. The Data Exploration stage can
include documenting how the data was collected, looking at summarizing statistics
of data, taking a closer look at the distribution of the data, finding correlations
and cleaning reshaping, filtering, sampling the data.

Model Development The very first step of the Model Development phase is to
apply appropriate transformations on the data to enhance them and to make them
fit for Machine Learning algorithms: Feature Engineering. Adding more features
may produce a more accurate model, but it also comes with downsides: the model
can become more expensive to compute, more features require more inputs, more
feature means a loss of stability.

In an MLOps approach, it would be useful to automate feature selection, by
using heuristics, to estimate how critical some features will be for the performance
of the model. This deal also favours the adoption of a Feature Store, a set of
repositories of different features associated with business entities that are created
and stored in a central location for easy reuse. Once the data are prepared, the
model (or many models) can be built by applying Machine Learning algorithms
and by feeding them with the data themselves. All the Model Development stage
includes assessing how good a model can be built, finding the best hyperparam-
eters, tuning the tradeoff between underfitting and overfitting and also finding

8 CHAPTER 1. MLOPS

a balance between model improvement and computation costs. This step also
concerns experimentation, which takes place throughout the entire Model Devel-
opment process: every important decision comes with at least some experiment.
When the models are built they have to be validated to ensure they perform as
expected. “Essentially all models are wrong, but some are useful” - George E.P.
Box (20th century British statistician) [19]. It’s important to evaluate a model and
compare its performances to what existed before; this can be achieved by using
metrics, but there is no one-size-fits-all metric. In Model Development different
tasks may be repeated and automation can simplify the process. An MLOps atti-
tude can also provide tools to track hyperparameters, version the different models,
log metrics and simplify models comparison.

Deployment In this step, the models are taken from their original development
environment and integrated into business applications. There are two main kinds
of Model Deployment : Model-as-a-service, in which the model is deployed into a
framework to provide a REST API endpoint (that responds to requests in real-
time) or Embedded model. This last type is the most simple approach: we treat the
model artefact as a dependency that is built and packaged within the consuming
application. An MLOps approach can bring to the Deployment phase both CI/CD
and containerization.

Monitoring and Feedback Last but not least is the step about Monitoring
and Feedback : when the model is deployed in production it is crucial that it
continues performing well, thus it needs to be observed and audited to avoid (or
prevent) any kind of drift. Eventually, the performance will degrade and they will
be unacceptable, in these circumstances the model retraining will be necessary.
Adopting MLOps can simplify and easy to reproduce the process to rebuild and
redeploy a model.

1.2.1 A process, not only a product

Figure 1.3 points out that each step of the process may have, within it, other
steps, which could be considered as a “process in the process”. ‘Data extraction
and Exploration’ may be formed of two distinct phases, the ’Model Development’
step may cover Feature Engineering, Model Building and Model Validation. In the
image also the ’Monitoring’ phase is made of two steps: Monitoring and Feedback.
The image is not exhaustive: the lifecycle could cover other stages according to
each single circumstance. This perspective of the lifecycle, seen as a composition
of modules (and submodules), allows to pipeline the process and automate it. We
may also have different pipelines: for example, we can have a Training pipeline,

1.2. THE MACHINE LEARNING LIFECYCLE 9

for the Training phase, and a Prediction pipline for the ‘Model Deployment’ and
‘Monitoring’. Using a modular approach for the lifecycle allows data scientists also
to reuse each component in distinct pipelines (for example we may need to run the
Feature Engineering step both in the Model Development/Training pipeline and
in the Prediction pipeline). This point of view of the lifecycle, seen as a set of
pipelines made of reusable and modular components, enables three main concepts
about automation in MLOps: Continuous Integration, Continuous Deployment
and Continuous Training.

1.2.2 People involved in the Machine Learning lifecycle

Even though Machine Learning models are primarily built by data scientists, the
entire lifecycle of a Machine Learning system involves many people from differ-
ent teams. One of the main features of MLOps is to foster collaboration between
teams: MLOps can affect everyone working on the Machine Learning lifecycle and,
improving collaboration, provides benefits on avoiding the silos between different
teams. Various roles can be involved in the lifecycle of a Machine Learning system,
the main ones are Subject Matter Experts, Data Scientists, Data Engineers, Soft-
ware Engineers, DevOps. A new role arises with MLOps: the MLOps Engineer.

Subject Matter Experts This is the first role involved when the Machine
Learning lifecycle starts, and the Subject Matter Experts must be committed during
all the process. Data-oriented profiles tend to lack a deep understanding of the
business and the problems that need to be addressed. A Subject Matter Expert
defines the goals, the business needs and the Key Performance Indicators (KPIs)
that they want to achieve or address. This figure has a role, not only at the
beginning of the process but at the end as well. Sometimes, to understand if a
Machine Learning is performing well or as expected, traditional metrics (accuracy,
precision, recall, etc.) are not enough and data scientists need feedbacks from
the Subject Matters Experts. For example, data scientists could build a model
that has very high accuracy in a production environment but doesn’t provide the
expected results from a business point of view. When building an MLOps process,
it’s critical to provide to the Subject Matter Experts an easy way to understand
deployed model performances in business terms. That is not just about metrics
but also about the results or the impact of the model on the business process. It
also would be useful to provide a way to dig into individual decisions made by a
model to understand why it came to that decision (such as model interpretation
and explanation).

10 CHAPTER 1. MLOPS

Data Scientists Often the role of the Data Scientist in the Machine Learning
lifecycle is read as strictly related to the model building step, actually it is wider:
Data Scientists need to be involved with Subject Matter Experts, understanding
and helping to shape business problems in such a way that they can build a valuable
solution. A Data Scientist does not only need technical skills but he/she also needs
to communicate effectively with other people involved in the process, people from
he/she are often siloed. A robust MLOps system should help to facilitate and
simplify collaboration between Data Scientists and other profiles with suitable
organizational infrastructure. Building good MLOps practice should also allow
Data Scientists to quickly take action on the deployed models.

Data Engineers The role of the Data Engineers in the lifecycle is to optimize
the retrieval and to use data to eventually power Machine Learning models; this
means working closely with Subject Matters Experts to identify the right data and
also prepare them for use. They also work closely with Data Scientists to resolve
any data issue that might cause a model to behave undesirably in production.

Software Engineers Software Engineers are involved in building classic soft-
ware and applications and it is important that they work together with Data
Scientists to ensure the functioning of the whole system. For example, Machine
Learning code has to fit into the CI/CD pipeline that the rest of the software is
using (think to a Machine Learning model, built by Data Scientists, which needs
to integrate itself with the app or the website used by the very last users).

DevOps MLOps was born out of DevOps principles, but they can coexist to-
gether. DevOps, within the Machine Learning lifecycle, are people smoothing
the transition from development to operations by maintaining the infrastructure.
They must ensure security, performance and availability of the Machine Learning
models; they also are responsible for bridging the gap between traditional CI/CD
and Machine Learning CI/CD. Because of these two roles, DevOps require tight
collaboration with Data Scientists as well as Data Engineers.

MLOps Engineers The rise of MLOps introduced a new role: the MLOps
Engineer. An MLOps Engineer is someone with enough knowledge of Machine
Learning models to understand how to deploy them and with enough knowledge
of operational systems, to understand how to integrate, scale and monitor models.
The MLOps Engineer plays the role of glue between all the other profiles. With
one foot on DevOps, the MLOps Engineer has responsibilities on the pipeline
and in the successful operationalization of the Machine Learning model. With the
Data Scientists, the MLOps Engineer tests and deploys models. Dedicated MLOps

1.3. STATE OF THE ART AND THE NEED FOR MLOPS 11

solutions make the collaboration between all the different profiles more efficient
and simple.

1.3 State of the Art and the need for MLOps

MLOps is a really new and young approach and it is constantly evolving; though
probably due to its youth, it does not have a clear manifesto and it lacks a certified
and a shared definition. A more interesting reason for a lack of a common manifesto
comes from the DevOps community and it could be applied also for MLOps: “it
would be the end of the discussion. And that’s exactly the problem with a manifesto.
[...] The community likes to enhance, educate, enliven, inform and energize people.
Basically, everyone is wide open to embracing anything that helps out” [20].

MLOps is very flexible also about technologies. Today cloud providers, such
as Google, Amazon, Microsoft or Databricks, offer solutions for adopting MLOps.
There is also copiousness of Open Source tools on the stage and the respective
communities are highly active in enhancing their tools. Today plenty of compa-
nies are starting using an MLOps-based approach to develop a Machine Learning
system, but unfortunately, in Italy, MLOps is still not (or little) known.

Through a GoogleTrends search, it becomes clear that the MLOps topic is
climbing in interest from both a scientific and practical perspective. Google Trends
puts MLOps as one of the most promisingly increasing trends [21] (Figure 1.4).

Figure 1.4: Trends for MLOps searches, January 2017 - May 2021

“As detailed in a recent Cognilytica report on MLOps [22], increasingly the
market is seeing the emergence of MLOps solutions designed to simplify the us-
age and consumption of various AI and ML models. These solutions will become
increasingly required as the bulk of the market adopts AI [...]. The MLOps mar-
ket is relatively immature and nascent, with technology solutions emerging only
in the last year or two [...]. Indeed, it’s been predicted to be a major trend even
for 2020”. Moreover, according to Cognilytica, the MLOps market is expected to

12 CHAPTER 1. MLOPS

expand to nearly US$4 billion by 2025 [23]. “As a result, IDC reports, 28% of AI/-
machine learning projects fail, with lack of necessary expertise, production-ready
data, and integrated development environments cited as the primary reasons for
failure.3 Many more projects (47%) fail to even make it out of the experimental
phase and into production” [24]. In March 2021 the Kubeflow Community con-
ducted a survey 3 on benefits, gaps and requirements for Machine Learning, by also
outlining the need for MLOps. According to the survey, the majority of Machine
Learning models have a fairly short life: 50% run in production for 3 months or
less. On the other end of the spectrum, 25% of the models remain in production
for 6 months or longer.

Figure 1.5: Machine Learning models life time [3]

“Beyond ML codes, these frameworks and platforms have provided functional
components and utilities to help avoid ongoing maintenance costs brought by hidden
Technical Debt in Machine Learning systems” [25] MLOps comes into play to face
different “Technical Debts”, anti-patterns and challenges common in developing
and deploying a Machine Learning system.

1.3.1 Technical Debt in Machine Learning systems and
anti-patterns

“Technical Debt” is a term related to immature, incomplete or inadequate code
(due to design deficiencies, low quality or other problems), which will require ad-
ditional work to be fixed. It is a metaphor linked to finance: having technical
debts on software would be like paying interest on a loan. In the popular pa-
per “Hidden Technical Debt in Machine Learning Systems” are summarized some
pitfalls in operating ML-based systems into production. “Technical debt may be
paid down by refactoring code, improving unit tests, deleting dead code, reducing
dependencies, tightening APIs and improving documentation. The goal is not to
add new functionality, but to enable future improvements, reduce errors and im-
prove maintainability” [1]. Machine Learning systems have a special capacity for

3The survey collected 179 responses

1.3. STATE OF THE ART AND THE NEED FOR MLOPS 13

incurring in Technical Debt, because they have all of the maintenance problems of
traditional code plus an additional set of ML-specific issues. Some Technical Debt
may be related to data dependencies, model complexity, reproducibility, testing,
monitoring and dealing with changes in the real world. Kaz Sato summarizes, in
his talk at Cloud Next’18 [26], some Technical Debts and anti-pattern, classified
as Development, Deployment and Operation anti-patterns.

Development anti-patterns

Super-hero A Super-hero is a Machine Learning researcher, a Data Scientist or
an engineer (or someone else) who has a skill set on preparing data, on building the
model and also on operating the infrastructure by using Kubernetes and Docker;
he/she manages all the system lifecycle from its start to the production phase.
The Super-hero has essentially two problems: he/she does not scale and the know-
how about the system is pinpointed in a single person; for this second reason the
knowledge could be lost, for example, when the super-hero changes job or when
she/he is staffed in a different team. A solution for this anti-pattern could be
found in building a scalable team and split the roles into much simpler ones.

A black-box that nobody understands Sometimes, due to the teams’ silos
and the handover between people involved in the lifecycle, it is possible that no one
understands the whole system. It’s important to make everything interpretable by
humans and to have not a “black-box”. A solution could be an approach where
engineers and researchers are embedded together on the same teams. This attitude
leads to tight and close communication and lets to share all the results.

CACHE principle In a Machine Learning system, generally, is not possible
to make isolated changes. A change to one feature could affect all of the other
features, or a change on a hyper-parameter could affect the whole result. More
generally, if the model is changed, we have no guarantee of the model will keep
generalizing well. This is called CACHE principle: Change Anything Changes
Everything. “Starting with an interpretable model makes debugging easier” and
“Keep ensembles simple” [27] could be two approaches to deal with the CACHE
principle. Some models are easier to understand and to interpret, but a drawback
could be a loss of accuracy on the performances of the model itself (for example
Deep Learning is attractive and, dealing with complex problems, leads to better
results than other approaches; but, as a flaw, a deep model is more difficult to
understand). If simple models are not enough for the performance requirements
using Ensembled Models could represent a solution for the CACHE principle.

14 CHAPTER 1. MLOPS

Deployment anti-patterns

Lack of Machine Learning lifecycle management Figure 1.2 shows the
elements of a Machine Learning system and it underlines that the whole lifecycle
is more complex than dealing with only the model building. In the diagram, the
rest of the system is composed of configuration, automation, data collection and
verification, serving, monitoring. Due to the silos between different teams a lack
of Machine Learning lifecycle management may occur. The lifecycle itself must
instead be handled as an end-to-end process and not as a set of independent tasks.
The solution for this anti-pattern is to have integrated job management and a job
orchestrator, so we can define all the components as modules of a pipeline; dealing
with this approach everything is built as continuous deployment and repeatable
infrastructure, not depending on a team or a person only.

Lack of data validation In an IT system, the behaviour is defined by the code,
in a Machine Learning system (also) by the data; in the first, validation can be
achieved by unit tests, though in a Machine Learning system is harder to deal with
validation. The solution is to use data validation tools, integrated into the system
and to use them as a step (or steps) of the pipeline which manages the Machine
Learning lifecycle.

Operation anti-patterns

Lack of continuous monitoring Any kind of model will see a drop in accuracy
over time; it may take years or maybe quarters or months or hours, but the
accuracy will drop. There must be practices to monitor the model in production
and to update it quickly.

Training-serving skew Any single difference in the training data or in the
preprocessing method between training and serving can change the accuracy.

Not knowing the freshness requirements Each Machine Learning system
has its own freshness requirements. According to the different business domains,
we may want to update our model every minute, day, week, month or year and
it is necessary to know this “freshness-time”. For example, an advertising appli-
cation may require a refresh every day, an NLP problem every month or a voice
recognition system every year. A solution could be, first, having a large knowledge
of the business domain and then, when the model is in production, do analytics
on it such to know how much the model performances degrade over time.

1.4. MLOPS FEATURES 15

1.3.2 Challenges

In a Machine Learning system the real challenge is not about building a model, it is
instead to build an integrated system and continuously operate on it in production:
namely, handle the system as a process instead of as a product. From this point of
view, we may want to automate as much as possible the whole lifecycle and we may
desire to be able to reproduce all the steps of the pipeline in a simple fashion. Other
desiderata when developing and building a Machine Learning system include:

• Increase collaboration between different teams.

• Choose the right tools from a plethora of different frameworks.

• Validate the data, to face the previously mentioned problem about lack of
data validation.

• Reproduce the steps to build the model without effort, whenever we want.
Also track, in a transparent way, the parameters used to train a model and
its metrics.

• Deal with heterogeneous skills among the people involved in the lifecycle:
“the Machine Learning lifecycle involves people from the business, data sci-
ence and IT teams; none of these groups are using the same tools or even -
in many cases - share the same skills” [19].

• Test the model (remark that unit tests, from traditional software develop-
ment, are not enough).

• Cope with “many dependencies: not only is data constantly changing, but
business needs shift as well” [19].

• Face the Drift problem, “Change is the only constant in life” said Heraclitus,
the Greek philosopher. The models fail to adapt to changes in the dynamics
of the environment, or to changes in the data that describes the environment.
A complex challenge is to avoid Data Drift and Concept Drift as much as
possible.

• Automatically moves the model from staging to production.

1.4 MLOps features

Before delving into the main concepts in MLOps a secondary one, but no less
valuable, needs to be explained: containerization.

16 CHAPTER 1. MLOPS

Containerization This is a technique used to encapsulate or package up soft-
ware code (and all its dependencies) so that it can run uniformly, consistently and
independently on any infrastructure. Containerization, a lightweight alternative
to virtual machines, consists of bundling the application code in a self-contained
environment, also with the related configuration files, libraries, and dependencies
required for it to run. The single package of software (or container) is abstracted
away from the host operating system and it is able to run across any platform or
cloud. Containerization is a requirement to enable many of the concepts described
below.

1.4.1 Continuous

As underlined before, the Machine Learning lifecycle is not done when the model
is put into production. Models need to be monitored and retrained, changes are
commonplace and Data and Model Drift may occur. Being continuous can be
declined in different ways for a Machine Learning system: Continuous Integration,
Delivery, Training and Monitoring. An essential ingredient to enable all of these
concepts is pipelining the whole lifecycle making use of containers.

Continuous Integration In traditional software Continuous Integration is a
practice about testing and validating code and components; it also refers to run
unit tests when a source code gets changed. The goal of CI is to quickly make sure a
new change from a developer is “good” and suitable for further use. Additionally,
in MLOps, CI is related to testing and validating data and models. We want
each push to the code repository (that contains our training code), to trigger
a rebuild of the assets that constitute our Machine Learning pipeline: training
containers, hyper-parameters tuning, retrain the model and others. Since in an
MLOps-approach the lifecycle is organized in one pipeline (or more), Continuous
Integration can be achieved by running the data pipeline and the training pipeline
when a change in the code occurs.

Continuous Delivery “Continuous Delivery is the ability to get changes of all
types — including new features, configuration changes, bug fixes, and experiments
— into production safely and quickly in a sustainable way” [28]. In Machine
Learning, Continuous Delivery is about delivering an application, based on code,
data and models, in small and safe increments, that can be reproduced and reliably
released at any time.

Continuous Training It is a new feature, not included in DevOps, concerned
with automatically retrain and serving the models. When the data used to train the

1.4. MLOPS FEATURES 17

model(s) change (an update occurs or new data are added) we want to retrain the
model itself by automatically triggering the whole training pipeline. Continuous
Training is a powerful approach to deal with Data Drift.

Continuous Monitoring While the model is in production it may change due
to Data Drift or Concept Drift: monitoring concerns with auditing production
data and model performance metrics, strictly related to business metrics. We
want to understand how the model performs in production and trigger alerts when
something goes out of the ordinary and, in this latter case, to rebuild our pipeline
and retrain the model.

1.4.2 Reproducibility

Reproducibility is a crucial feature for MLOps (indeed it appears also in the defini-
tion of the term). Being reproducible, for a system, enables and favours productiv-
ity. Reaching reproducibility is a hard challenge: in traditional software the code is
static and it is straightforward to reproduce it; in Machine Learning the data and
the models eventually will change and different mechanisms are needed to repeat
actions executed in the past. Reproducibility also paves the way to automation.
When we are able to reproduce the steps and the whole pipeline of the system, we
can automate and enable all the Continuous-related concepts previously exposed.

1.4.3 Versioning and Experiment Tracking

The data will eventually change and a model may be retrained as a consequence
of a data update or due to drift (or because a better model is developed). Models
may require a revision or their performances may degrade over time. In an MLOps
approach is quintessential to keep versioned the data and the models as well. In a
Machine Learning system, versioning is harder than in traditional code. The data
cannot be versioned using a classical Version Control System (e.g. git); due to
the large amount of data involved it requires different techniques: data snapshots
may be too large and increment data versioning technologies are in their infancy.
Also versioning the model needs a different attitude than code, as the version of a
model must track how the model itself is built: used parameters, the environment
in which the model is developed, related artefacts and the metrics obtained after
the training. In Machine Learning, to obtain good performances for a model, many
experiments may be needed. ml-ops.org suggests, as approach, to “use different
(git-) branches, each dedicated to the separate experiment” [29]. I do not agree
with this approach as the branch concepts differ to a specific version (a branch
typically includes many commits and versions) and it would lead to an explosion of
the number of branches in the repository. Versioning and tracking the experiments,

18 CHAPTER 1. MLOPS

performed to build the models, are also ingredients to enable reproducibility. Using
these practices is possible to simply retrain a model in the same way of previous
training and using the same data (and, as consequence, it is easy to compare
different models with each other).

1.4.4 Testing

In Machine Learning testing the system does not involve only the code, it includes
also testing the features and data, the model development and the infrastructure.
While some aspects are inherently non-deterministic and hard to automate, dif-
ferent kinds of automated tests can add value and improve the overall quality of
the system. Testing includes:

• Validating data and features: the input data must be validated against the
expected schema, with assumptions about their valid values.

Feature creation code should be tested by unit tests (to capture bugs in
features) and the data should be policy-compliant (e.g. GDPR). These re-
quirements should be programmatically checked in both development and
production environments. Further, features importance tests may be useful
to understand whether new features add predictive power.

• Validating the model quality: test for the Machine Learning training should
verify that algorithms make decisions aligned to the business objective: namely
algorithm loss metrics (MSE, loss, etc.) should correlate with business im-
pact metrics.

• Validating model bias and fairness: the performances of a model and test-
ing the fairness/bias/inclusion of the training data is needed; for example,
there might be unbalanced data for a given feature (e.g. gender or region)
compared to the actual distribution.

• Avoid stale models: the system, in production, must not have stale models,
which may affect the quality of the prediction.

• Value the trade-off between performances and the model complexity: it is
necessary assessing the cost of more sophisticated models (e.g. linear model
vs neural network).

• Test the infrastructure: the training of the ML models should be reproducible
(that means that training the model on the same data should produce iden-
tical results). The architecture must be stress-tested and the full Machine
Learning pipeline should be integration-tested. Before serving the model it

1.4. MLOPS FEATURES 19

must be validated; the model in the training environment must give around
the same score as the model in the serving environment.

1.4.5 Monitoring

In a Machine Learning system, the performances of a model degrade over time,
the data change and the model itself needs to be retrained. Once the model has
been deployed it requires to be audited to assure that it performs as expected
in production. Monitoring involves checking data invariants and set up alerts
to notify if input data does not match the schema; it concerns controlling the
numerical stability of the model as well (and trigger alerts for the occurrence of
any NaNs or infinities). One of the previously mentioned anti-patterns was about
training-serving data skew: what data is being fed to the models is the object
of monitoring. Another field for monitoring is the degradation of the predictive
quality of the model on served data. Also conduct auditing on the user actions
is primary: based on further user actions, reward metrics may be captured to
understand if the model is having the desired behaviour. For example, if the
system shows product recommendations, it can track when the user decides to
purchase the suggested product as a reward. Two other objects of monitoring are
how stale the system in production is (by measuring the age of the model: older is
the model itself more it will tend to decay in performance) and the model fairness.
This last concept refers to analyzing input data and output predictions against
features that could bias, such as race, gender or age.

1.4.6 Modularity

In MLOps, from the point of view of the architecture of the system, the components
need to be loosely coupled. This key architectural property enables teams to easily
test and deploy individual components. Having a loosely coupled architecture
allows different teams to work independently, without relying on other teams. An
essential ingredient to achieve modularity is containerization, which paves the way
to handling the workflow as a pipeline composed of different modules.

1.4.7 Automation

Automation is quintessential in MLOps and its level defines the maturity of the
Machine Learning process, which reflects the velocity of training new models or
training new ones. Google identifies three levels of automation [4] for a Machine
Learning system: in the first (level 0) all the process is handled manually, level 1
includes the execution of the model training automatically and, in the final stage,
a CI/CD system is introduced. The three steps do not have to be immediately

20 CHAPTER 1. MLOPS

and simultaneously implemented, these practices can be gradually realized to help
improve automation of the Machine Learning development and production system.

Level 0: manual process Level 0 is referred to as a process, for building and
deploying Machine Learning models, entirely manually (namely without MLOps).
This is the most basic level of maturity and it is common in many businesses that
are beginning to apply Machine Learning to their use cases. This manual approach
might be sufficient when models are rarely changed or trained; in practice, models
often break when they are deployed in the real world. By using this approach the
execution of each step is manual: including data analysis, data preparation, model
training and validation and the transition from one step to another as well. Ma-
chine Learning and operations are totally disconnected and the data scientists hand
over a trained model, as an artefact, to the engineering team to deploy it. Release
iterations are infrequent and due to the long time to get the model in produc-
tion problems related to training-serving skew may occur. Continuous Integration
and Continuous Delivery are not adopted because few changes are assumed. This
approach also might lead to a lack of active performance monitoring.

Level 1: Machine Learning pipeline automation The main goal of level 1 is
to perform Continuous Training of the model by automating the Machine Learning
pipeline. This approach enables rapid experiments, thanks to the orchestrations
of the steps to train and build the model. The transition between different steps is
automated, this allows rapid iteration of experiments. By embracing Continuous
Training the model is automatically trained in production, using fresh data based
on live pipeline triggers (incoming new data can trigger a new run of the training
pipeline or scheduled triggers can be used as well). Another central feature of
this level of automation is the symmetry among experimental and operational
environments: the pipeline implementation, used in the development or experiment
environment is used also in the preproduction and production environment. This
is a key aspect of MLOps practice. To construct Machine Learning pipelines,
components need to be reusable, composable and, potentially, shareable across
the pipeline (or different pipelines). Modularization becomes quintessential in this
level of automation: it allows to decouple the execution environment from the
custom code runtime and to isolate each component in the pipeline (components
can have their own version of the runtime environment and can be implemented
through different languages and libraries). In level 0 a trained model is deployed
as a prediction service, in level 1 a whole training pipeline is deployed. Additional
components may be used in this level of automation:

• Data and model validation.

1.4. MLOPS FEATURES 21

• Feature Store: it is a centralized repository where we standardize the defini-
tion, storage and access of features for training and serving. It helps discover
and reuse available features instead of recreating them.

• Metadata management: information about each execution of the pipeline
should be recorded in order to enhance reproducibility and comparisons.
Each time the pipeline is run different metadata may be recorded; for ex-
ample, can be logged the pipeline and component version that is executed,
the start and end time (and the execution duration as well), the parame-
ters passed to the pipeline or also the metrics produced during the model
evaluation step.

• Pipeline triggers: the pipeline can be run according to different events: man-
ually on demand, on a schedule (each hour, each day, each month), on avail-
ability of new training data, on performance degradation or also on significant
changes in the data distribution.

Level 2: CI/CD pipeline automation The final stage involves the full au-
tomation of the CI/CD system which implements the Machine Learning pipeline.
Setting up a CI/CD system enables to automatically test and deploy new pipeline
implementations. This approach allows coping with rapid changes in the data
and business environment. The whole pipeline consists of the numbered stages in
Figure 1.6:

1. This phase concerns the development and the experimentation. New Ma-
chine Learning algorithms are explored and new models are built. The out-
put of this stage is the source code of the pipeline steps, ultimately pushed
to a source repository.

2. Then Continuous Integration of the pipeline comes into play. The source code
is built as various tests as well. The outputs here are pipeline components
to be deployed later.

3. After Continuous Integration the artefacts produced are deployed to the
target environment.

4. With all these steps implemented the pipeline can be automatically executed
in production according to a schedule over time or in response to a trigger.
The output of this stage is a trained model that is pushed to the model
registry.

5. The trained model is served as a prediction service and exposed for the
predictions.

22 CHAPTER 1. MLOPS

6. The last step involves monitoring: statistics on the model performances,
based on live data, are collected. Triggers to execute the pipeline or a new
experiment cycle will be executed as a consequence of changes in the perfor-
mances.

Automatedpipeline

ML metadata store

MLOps

4

experimentation/development/test

staging/preproduction/production

Data
analysis

Orchestrated
experiment

Model
analysis

1

Feature
store

Source
code

Source
repository

CI: Build, test, & package
pipeline components

2

Packages

Model
registry

CD: Model
serving

CD: Pipeline
deployment

3

5

Trained
model

Data
validation

Data
preparation

Model
training

Model
evaluation

Model
validation

Data
extraction

Performance
monitoring

6

Prediction
service

Trigger

Figure 1.6: Level 2: CI/CD and automated ML pipeline [4]

1.4.8 Workflow Pipeline Design Pattern

A Design Pattern is a solution for a problem that occurs over and over again,
in such a way the solution itself can be adopted many times. Machine Learning
Design Patterns [30] book explains MLOps as a Design Pattern called “Workflow
Pipeline”. The approach covers all the features of MLOps explained above, by es-
pecially emphasizing and focusing on creating an end-to-end reproducible pipeline
by containerizing and orchestrating the steps in our Machine Learning process.
The Workflow Pipeline Design Pattern highlights that monolithic apps should
be replaced in favour of a microservices architecture, where individual pieces of
business logic are built and deployed as isolated (micro-)packages of code. With

1.4. MLOPS FEATURES 23

microservices, a large application is split into smaller, more manageable modules
so that developers can build, debug, and deploy pieces of an application indepen-
dently. Without running our Machine Learning code as a pipeline, it would be
difficult for others to reliably reproduce our work. The Workflow Pipeline pattern
lets others run and monitor our entire end-to-end process in both on-premises and
cloud environments. Containerizing each step of the pipeline ensures that others
will be able to reproduce both the environment we used to build it and the entire
workflow captured in the pipeline (potentially also months later). This approach
allows faster development and minimizes the risks associated with a monolithic
process. The Workflow Pipeline pattern comes with a Directed Acyclic Graph
(DAG), for this reason we can enjoy a flexible workflow environment: we have the
option of executing individual steps or running an entire pipeline end-to-end. This
also gives us logging and monitoring for each step of the pipeline across different
runs and, additionally, enables tracking artefacts from each step of the workflow.

24 CHAPTER 1. MLOPS

Chapter 2

A survey of technologies for
MLOps

MLOps does not enforce an implementation through a specific set of tools, though
choosing the right instrument (according to business requirements) may be crucial
to building a good MLOps infrastructure. A large number of tools are available
to reach different goals and to deal with various challenges explained in Chap-
ter 1. In the following will be discussed some of the most used Open Source tools;
different solutions by the main cloud vendors (especially Google [4] [31], Amazon
[32], Microsoft [33] and others) have been developed as well, but they will not
be explored here. In most cases, Open Source tools offer solutions to deal with
specific problems (experiment tracking, CI/CD, pipeline orchestration, etc.), while
cloud vendors’ tools provide full environments to deal with MLOps. Remarkably,
commercial solutions often integrate the Open Source tools; for instance, the so-
lutions offered by Databricks and Google respectively integrate the Open Source
tools MLFlow and Kubeflow.

2.1 Open Source technologies

Using Open Source software in a business environment always requires to evaluate
a trade-off: on one hand the reliability of the tool (and its outlook), for example
a new project can be abandoned after a while because the tool does not grow as
expected; on the other hand, it may be subject to the work of a large community
and, consequently, it may be continuously improved over time. A strong commu-
nity is one of the most valuable elements for an Open Source software, both for its
growth and for its solid users’ support. Unfortunately, a common drawback for the
Open Source software mentioned below is a lack of quality in the documentation.

25

26 CHAPTER 2. A SURVEY OF TECHNOLOGIES FOR MLOPS

2.1.1 Environment/Containerization

Docker Docker is an Open Source platform for developing and running applica-
tions, leveraging on the idea of containerization: it provides the ability to package
and run an application in a loosely isolated environment, i.e., a container. Docker
enables the separation of the applications from the infrastructure and also allows to
significantly reduce the delay between writing code and running it in production.
Docker containers can run on a developer’s local laptop or on a cloud environment.
Docker portability and lightweight nature also make it easy to dynamically man-
age workloads, scaling up applications and services (as business needs dictate), in
near real-time.

In an MLOps infrastructure, Docker allows packaging all the steps of the
pipeline in microservices. This approach enables to reproduce the pipeline stages
(or a single container) in different environments and, also, along with Kubernetes
and other tools, to build a CI/CD Machine Learning pipeline.

Kubernetes Kubernetes is an Open Source orchestration framework, which
helps to manage applications made of a large number of (docker) containers in
different environments (e.g. physical machines, virtual machines, cloud, hybrid
environments, etc). Kubernetes allows to maintain consistency across develop-
ment, testing, and production phases; it also enables to embrace a microservice-
based approach (instead of building monolith applications). As a consequence, it
allows handling loosely coupled, distributed and modular systems, providing high
availability and scalable architecture. “The Design Pattern of Kubernetes is that
infrastructure definitions are declarative and new versions of a resource definition
force a reconciliation process to change the infrastructure running on the cluster
to eventually reflect the current definition. The process allows for the beneficial
“GitOps” pattern to be followed where every version of a resource is committed to
source control (e.g., Github)” [34].

Kubernetes paves the way for a distributed environment and, in MLOps, is
widely used (also along with Docker) as a low-level tool to enable orchestration
and Machine Learning CI/CD. On top of Kubernetes different tools are used, such
as Kubeflow (for the pipeline orchestration) or Jenkins, JenkinsX (for CI/CD) or
Seldon Core and KFServing (for serving the model into production).

2.1.2 Experiments tracking

Data science and Machine Learning are iterative processes that require a large
number of attempts to reach a certain level of a metric.

2.1. OPEN SOURCE TECHNOLOGIES 27

Figure 2.1: Example of different runs of a model training and the tracked param-
eters and metrics

MLFlow MLFlow is an Open Source API “that allows integrating MLOps prin-
ciples into a Machine Learning project with minimal changes made to existing code.
With just a couple of lines of code, you can track all of the details relevant to the
project. Furthermore, you can even save the model for future use in deployment,
for example, and you can compare all of the metrics between individual models
to help you select the best model” [35]. In Machine Learning, tracking an experi-
ment requires to record the environment where the experiment itself takes place.
Another remarkable piece of information, which has to be
tracked, regards all of the packages and the dependencies used
to build a model. This tool provides a way to package the Ma-
chine Learning code in a reusable and reproducible fashion; this
deal allows to share the code (and its environment) with other
data scientists (and enhance collaboration). Another characteristic of MLFlow is
to provide a central Model Store to collaboratively manage the models. Below are
listed the main features of MLFlow:

• MLFlow Tracking: this element of MLFlow enables reproducibility, automa-
tion, allows to make experiments comparable and filter experiments accord-
ing to different criteria. Figure 2.2 and Figure 2.1 show two examples of the
parameters, metrics and other information logged by MLFlow.

• MLFlow Project: this feature allows to track the environment and the depen-
dencies needed to run an experiment. The approach, here, is very similar to
a gradle file: in a file, called MLProject, is recorded the conda environment
and the run entry point.

• MLFlow Models, a standard format for packaging Machine Learning models
that can be used in two different ways: real-time serving, through a REST

28 CHAPTER 2. A SURVEY OF TECHNOLOGIES FOR MLOPS

Figure 2.2: Example of the parameters recorded in a single run of the model train-
ing (with also the the experiment duration, the date and the user who executed
it).

API, or batch inference. Machine Learning models can be saved in different
“flavors” 1.

• MLFlow Model Registry: the developed model could evolve over time and
needs to be retrained a few times, for example due to a change in the data.
Different versions of the model are needed to be managed. MLFlow Model
Registry is one of the most powerful features for MLFlow: this component is
a centralized Model Store to collaboratively manage and version the trained
models. Along with a model, to store and version it, other information are
needed; a model version must record the environment in which it has been
trained (and its dependencies), the artefacts it produced and the model itself.
A registered model has a unique name, contains versions, associated transi-
tional stages and other metadata or additional annotations. Each distinct
model version can be assigned one stage at any given time. A model can be
”candidate” to be used in production and a model stage can be changed in
a programmatic fashion using the MLFlow library (default values are “Stag-
ing”, “Production” and “Archived”).

• Serving: The operation of getting a model into production is always complex
and frequently the environment in which the model was built is different from

1Flavors are a convention that deployment tools can use to understand the model; this makes
it possible to write tools that work with models from any ML library without having to integrate
each tool with each library. MLFlow defines several standard flavors, for example, for models
developed through Scikit-learn, Tensorflow, Keras, XGBoost, Spark (or other libraries).

2.1. OPEN SOURCE TECHNOLOGIES 29

the production environment. MLFlow also includes tools for running mod-
els locally and exporting them to Docker containers or commercial serving
platforms (such as Azure ML or Amazon SageMaker).

Figure 2.3: Example of different versions of a model trained through MLFlow.
The models can also be compared with each other.

MLFlow provides an API for different languages: Python, R, Java; though it is
a very recent tool and unfortunately the API supports all the mentioned features
only for Python (only MLFlow Tracking can be used with R and Java).

DVC DVC is a data and Machine Learning experiment management tool whose
main characteristic is to be “git-oriented”: its approach is to handle parameters,
metrics, artefacts, models tracking, and data as well, in the same way code is
captured. DVC brings agility, reproducibility, and collaboration into a data science
workflow.

DVC consists of a set of commands (some of which very are similar to git
commands) that allow tracking all the Machine Learning workflow components
(e.g. experiments, parameters, metrics, models, artefacts, log model versions and
also data). DVC is built to track everything in a reproducible and easily accessible
way. In DVC metrics are first-class citizens and the tool includes a command to
list all metric values, to track the progress of an experiment or to pick the best
version. DVC also allows to build pipelines of the Machine Learning workflow (for
CI/CD) and it provides Data Versioning features as well.

30 CHAPTER 2. A SURVEY OF TECHNOLOGIES FOR MLOPS

2.1.3 Pipeline Orchestration

Kubeflow Kubeflow project, developed by Google, is dedicated to making de-
ployments of Machine Learning workflows on Kubernetes simple, portable and
scalable. This tool is built on top of Kubernetes, so anywhere Kubernetes itself is
running Kubeflow is able to be run. Kubeflow was developed to use Kubernetes to
standardize and streamline the DevOps work around Machine Learning. The goal
of this tool is to make scaling Machine Learning models and deploying them to
production as simple as possible, exploiting Kubernetes’s potentialities (making it
easy, flexible, repeatable, portable deployments, potentially on different infrastruc-
tures; deploying and managing loosely-coupled microservices and scaling based on
demand). Kubeflow is made of many components, as shown in Figure 2.4, such as
Notebooks for spawning and managing Jupyter notebooks, KFServing (and also
Seldon and TFServing, which it is integrated to) for deploying Machine Learning
models on Kubernetes, Katib for hyperparameters tuning and many others. The
main (and the most used) component in this tool is “Kubeflow Pipelines”.

Kubeflow Pipelines allow to model the Machine Learning workflow as a se-
quence of steps, each one can receive data as input and produce one or more
outputs. A DAG (Direct Acyclic Graph) defines the ordered sequence of steps
and the dependencies among the different components of the pipeline. Each task
in the DAG can be visualized through the Kubeflow UI. Kubeflow tracks all the
experiments, all their single run and the parameters they used as well (either they
have succeeded or not). Along each run different information are logged, such as
metrics or the run logs.

A Kubeflow pipeline can be defined by using two different approaches: a simple
notebook (by using Kale, another component of the Kubeflow project) or Docker
containers. Kale (Kubeflow Automated pipeLines Engine) is a project that aims
at simplifying the Data Science experience of deploying Kubeflow Pipelines work-
flows. Developing and maintaining Kubeflow workflows can be hard for data sci-
entists, who may not be experts in working orchestration platforms and related
SDKs. Kale bridges this gap by providing a simple UI to define Kubeflow Pipelines
workflows without the need to change a single line of code. Kale allows to “tag”
one or more cells of a Jupyter Notebook. Each piece of code with the same tag
will be considered a single step of a Kubeflow pipeline. Dependencies among tags
(namely Kubeflow pipeline’s components) can be also defined. Kale is a very
simple approach to define a Kubeflow pipeline but, as such, it does not provide
flexibility, composability, reusability and other advantages given by using Docker
containers. By adopting this last method each Machine Learning task is conceptu-
alized as a Docker container. Every single container can be aimed at handling, for
example, data ingestion, data preparation, model training or model evaluation.
Kubeflow, by making use of Docker containers, provides portability, repeatabil-

2.1. OPEN SOURCE TECHNOLOGIES 31

Figure 2.4: Kubeflow components usage (emerged from the survey conducted by
the Kubeflow community in march 2021) [3]

ity, reusability, encapsulation, very large flexibility and a modular approach. A
container, developed to be run in a pipeline, can be used in more pipelines (for
example it would be useful to reuse the same component, to prepare the data,
both in the training pipeline and the batch prediction pipeline). By using Docker
containers, as an approach, the Kubeflow pipeline can be defined through the
Python SDK and its Domain Specific Language. A Kubeflow pipeline is a very
powerful tool, which enables, in addition to composability, reusability, flexibility
and other mentioned advantages, also Continuous Integration, Continuous Deliv-
ery and Continuous Training (if used along with CI/CD tools), key features of
MLOps.

Airflow Airflow, by Airbnb, is a general-purpose platform for describing, execut-
ing, and monitoring workflows. Airflow pipelines are defined, as code, in Python
to get more maintainable, versionable, testable, and collaborative workflows. A
drawback in Airflow is that tasks do not move data from one to the other, they
only exchange metadata. Airflow workflows’ are represented in the form of DAGs
and each DAG may or may not have a schedule (cron expressions). Airflow can be
integrated into a large number of platforms, such as AWS, Google Cloud Platform,
Hadoop, Kubernetes and lots of other tools.

TensorFlow Extended TensorFlow Extended (TFX) is a Google-production-
scale Machine Learning platform based on TensorFlow. It provides a configuration
framework and shared libraries to integrate common components needed to define,

32 CHAPTER 2. A SURVEY OF TECHNOLOGIES FOR MLOPS

launch, and monitor the Machine Learning system. TensorFlow Extended allows
defining pipelines, sequences of components which is specifically designed for scal-
able, high-performance Machine Learning tasks. Orchestrators such as Airflow
and Kubeflow can be used, along with TensorFlow Extended to make configuring,
operating, monitoring, and maintaining a Machine Learning pipeline easier.

DVC DVC, exposed in the sections above, among its features, allows defining
a pipeline made of different stages. Each stage is associated with a command
(to run the step’s python script), its dependencies, its parameters and its output.
According to the DVC approach, the pipeline is defined in a yaml file, and han-
dled “as code”. A DVC pipeline can be also expressed in the form of a Directed
Acyclic Graph. DVC pipelines solve a few important problems: automation and
reproducibility (the file which defines the pipeline describes what data to use and
which commands will generate the pipeline results).

Other tools Elyra AI Toolkit is an Open Source project by IBM, that extends
JupyterLab, which has become a standard tool for model development. Elyra
provides a visual editor for building Notebook-based AI pipelines, simplifying the
conversion of multiple notebooks into batch jobs or workflows. Elyra can also be
integrated along Kubeflow.

There are many other tools in the stage, two of them are Kedro, by Quantum-
Black (part of McKinsey Company), and Argo, a container native workflow engine
for orchestrating parallel jobs on Kubernetes. Kubeflow uses Argo under the hood
to orchestrate Kubernetes resources.

2.1.4 CI/CD

Jenkins and JenkinsX Jenkins is an automation server that can be used to
handle all sorts of tasks related to building, testing, and delivering or deploying
any kind of software. Jenkins can automatically detect code commit in a repos-
itory and, consequently, trigger commands (e.g. building a Docker image from a
Dockerfile, running unit tests, push an image to a container registry or deploy it to
the production server) without manually doing anything. Jenkins is widely used
in DevOps and, unlike GitHub Actions, Google Cloud Build or other tools, it is
platform-agnostic and self-contained. Jenkins can be installed in many environ-
ments such as Linux, Windows, MacOs, Docker and also, as typically happens, in
Kubernetes. Jenkins allows defining pipelines, collection of jobs following a partic-
ular order or sequence, which can be triggered when an event occurs (for example
a push in the code repository). Jenkins can be linked with GitHub, GitLab or
Bitbucket repositories.

2.1. OPEN SOURCE TECHNOLOGIES 33

Jenkins has served as a CI/CD tool for a long time before the emergence
of Kubernetes and distributed systems running on cloud native platforms, thus
working with Jenkins can be extremely difficult. Recently, with the shift to cloud
native and specifically along with the spread of Kubernetes, Jenkins X has emerged
as a way to improve, automate, accelerate and simplify Continuous Integration and
Continuous Delivery pipelines in cloud environments, so developers can focus on
building software. Jenkins can be integrated with other Open Source software
such as Grafana (for centralized logs and observability), Tekton (for cloud native
pipeline orchestration), Jenkins itself and other tools.

Both Jenkins and JenkinsX can, thus, be used to enable CI/CD and automa-
tion: in MLOps the two tools can be adopted to automatically build and run the
Machine Learning pipeline.

Other tools Very often also Kubeflow is referred to as a CI/CD tool. In my
opinion this assertion is partially correct: Kubeflow enables pipeline orchestration
but, at the current state, it does not provide automation (unless using scheduled
runs) and a pipeline cannot be triggered when code changes (a primary feature of
CI/CD), so it needs to be integrated with other tools to get it.

Also DVC allows to define a pipeline of the Machine Learning workflow and
easily reproduce it, but it does not provide automation as well. Another tool,
by DVC community, is CML (Continuous Machine Learning); CML is an open-
source library for implementing CI/CD in Machine Learning projects by using just
GitHub (GithHub Actions) or GitLab (GitLab CI/CD) and a cloud service such
as AWS, Azure or Google Cloud Platform.

34 CHAPTER 2. A SURVEY OF TECHNOLOGIES FOR MLOPS

2.1.5 Feature Store

A Feature is a measurable property of phenomena under observation and (part of)
input to a Machine Learning Model. A Feature Store is a new layer of abstraction
aimed to reduce the time that Data Scientists spend on getting the data into a
format they can use to train models and maximize the amount of time they actually
do data science. It is a repository of different features, associated with business
entities, that are created and stored in a central location. A Feature Store enables
to reuse and share the same features among different business units in a company.

Hopsworks Hopsworks is a complete end-to-end platform for the development
and operation of Machine Learning applications, by Logical Clocks, and its main
feature is its Feature Store; it is the most popular Open Source software which acts
as Feature Store. In Hopsworks, which architecture is shown in Figure 2.5, Feature
Store simplifies the end-to-end pipeline, providing an API for data engineers to
produce features and an API with which data scientists can easily select features
when designing new models.

Figure 2.5: Hopsworks architecture [5]

2.1. OPEN SOURCE TECHNOLOGIES 35

Figure 2.6: Comparison between the most used Feature Stores [6]

2.1.6 Serving

Seldon Core Seldon Core is the most powerful Open Source platform for rapidly
deploying machine learning models on Kubernetes. Seldon handles scaling to
thousands of production machine learning models and provides advanced Ma-
chine Learning capabilities out of the box including advanced metrics (by us-
ing Prometheus, an Open Source monitoring tool), Request Logging, Explainers
(by using its Open Source library, Alibi), Outlier Detectors, A/B tests, Canaries,
Multi-Armed Bandits and more. Seldon Core can be integrated with Kubeflow to
manage the deployment of the Machine Learning system from the pipeline orches-
trator, Jenkins and JenkinsX for CI/CD and many other tools.

KFServing KFServing is a model deployment and serving toolkit, by Kube-
flow, created to solve the core challenges about the model deployment. It “enables
serverless inferencing on Kubernetes and provides performant, high abstraction
interfaces for common Machine Learning frameworks like TensorFlow, XGBoost,
scikit-learn, PyTorch, and ONNX” [36]. KFServing intends to provide an infer-

36 CHAPTER 2. A SURVEY OF TECHNOLOGIES FOR MLOPS

ence service, it allows data scientists to add transformers 2 and to add explainers
to the core model server 3. An autoscaler can also be further added to the KF-
Serving service to watch traffic flow to the application and scale replicas based on
configured metrics.

Other tools Another serving tool is BentoML. It is a flexible, high-performance
framework for serving, managing, and deploying machine learning models. Ben-
toML supports multiple frameworks (e.g. Tensorflow, PyTorch, Keras, XGBoost),
cloud native deployment (e.g. with Docker, Kubernetes, AWS, Azure), an High-
Performance online API serving and offline batch serving.

2Transformers allow data transformations of the request and response from the model; for
example, a text model may need input words transformed into feature embedding vectors which
are the raw input to the model.

3“Explainers allow model explanation methods to be attached to the service so an individual
request/response from the model can be sent for providing human-understandable explanations.
This allows users and auditors to better understand why a model is providing the predictions for
certain inputs.” [34]

Chapter 3

Design and implementation of a
reference architecture for MLOps

Building an effective architecture, according to each different needs of a company,
is crucial to get the best from MLOps.

Due to the plethora of tools, which are continuously arising, it may be very
hard to select exactly the best technologies and infrastructures to use. First of all,
it is necessary to understand the business process, how the models are developed
and how they are put into production; by doing so a clear understanding of what
tools and technologies better fit the business needs can be achieved. The MLOps
space is not done yet and it is constantly evolving; it is important to have an
architecture, from a technical point of view, which is very modular, in such a way
that it will be possible to change the building blocks, the tools and the technologies
at any time [37].

Chapter 2 offers a large variety of Open Source tools but, as pointed out,
different solutions by the main cloud providers are available. Adopting Open
Source instruments or building the MLOps architecture on a cloud solution is not
a mutually exclusive choice, a mixed approach can be adopted. Open Source tools
provide transparency and flexibility with respect to the cloud vendor since they
typically are cloud-agnostic. Moreover, some tools are considered “standard de
facto” at the moment, some noteworthy examples are Docker and Kubernetes;
Open Source tools also allow a modular approach. On the other hand cloud
solutions provide a full-stack environment, they ensure enterprise support and
typically offer best-known tools with respect to specific Open Source instruments.
However, proprietary solutions have different drawbacks: “they reduce extendibility
and transparency on a pipeline while enforcing heavy vendor lock-in. Further cloud
providers services are often not a feasible solution for companies that work on
regulatory software devices or software with user-privacy concerns; they require an
MLOps solution that can be run cloud-agnostic and on-premises machines” [38].

37

38CHAPTER 3. DESIGN AND IMPLEMENTATIONOF A REFERENCE ARCHITECTURE FORMLOPS

Existing cloud providers offer Machine Learning platforms such as AI Platform
(Google Cloud), AzureML (Microsoft) and SageMaker (AWS) to build an MLOps
architecture. “The adoption of such Machine Learning platform depends on the
cloud strategy of the organisation” [29]. When an in-house hosted solution is
preferred, using Open Source tools is a better choice (as they typically are cloud-
agnostic).

3.1 Introducing an MLOps architecture in the

business process

The process of introducing MLOps and building a successful Machine Learning
system might be challenging for a company: it requires to change the approach
of developing and deploying the system, it involves a lot of people in different
teams (cf. Section 1.2.2), it needs to introduce new tools in the whole process and
the tools to be introduced need to integrate with the existing enterprise systems,
platform choices, pipeline strategy, and monitoring applications. MLOps should
help the Machine Learning workflow, not inhibit it; thus, designing a good strategy
to bring an MLOps approach in the business process is very important and it is
crucial to focus on the change management it requires.

Two different approaches can be adopted; those procedures may also be in-
terleaved, depending on the experience and the skills of the people involved, the
customer’s requirements and the infrastructure currently in use. The first method
is based on the complexity of the tools, the second on the level of automation
instead. Regardless of the approach, it is first essential to do a diagnosis of the
current practices and processes used by the different teams, also by organising
multiple interviews with the key stakeholders from the business, IT, Data Science
and Ops teams. The most straightforward method concerns introducing MLOps
technologies step-by-step, starting from the simplest tool: for example, MLFlow
is very easy to use and it provides different benefits, from an MLOps point of
view, by only using a Python API. The sooner the teams experience the benefits
of MLOps best practices, the better; by doing so the people involved in the process
familiarise themselves with the new method. Afterwards, the focus, when building
an MLOps architecture with this approach, can shift on the tools which provide
the highest value, possibly prioritising reproducibility and automation; by using
Kubeflow, for example, reproducibility, validation and the focus on the process
can be guaranteed (and, in addition, CI/CD and Continuous Training can be im-
plemented by adopting, along Kubeflow itself, few other tools). A finer and neater
approach consists of enhancing the level of automation in the process of building
a Machine Learning system. As explained in Section 1.4.7, Google identifies three

3.2. THE REFERENCE ARCHITECTURE 39

levels of automation [4]: in the first (level 0) the whole process is handled manually
(without MLOps), level 1 adds the execution of the model training automatically
and, the last stage, consists of introducing a full CI/CD system.

3.2 The reference architecture

Figure 3.1: The designed and implemented MLOps architecture [7].

This section is intended to show the implementation of the reference MLOps
architecture for this thesis and its benefits on the whole Machine Learning system;
the architecture does not leverage in the considerations exposed in the previous
section but an exploratory approach has been adopted. This implementation is
the result of the internship at Data Reply; the goal of the company was to explore
the different tools in the market and use them to build an MLOps architecture (by
using preferably Open Source software).

40CHAPTER 3. DESIGN AND IMPLEMENTATIONOF A REFERENCE ARCHITECTURE FORMLOPS

Figure 3.2: The DAG of the training
pipeline on Kubeflow.

Figure 3.3: The DAG of the predic-
tion pipeline on Kubeflow.

The project is built upon a Kaggle notebook [39] as use case example; though,
here, the focus is on the whole architecture itself and not on the model only; in the
Github repository [7] of the project detailed documentation about the architecture
implementation is provided. The original notebook builds and trains three different
models to forecast total German power consumption, on an hourly basis, with a
lead time of 24 hours in the data; in this implementation two of the three models
in the original notebook has been employed (SGD Regressor and Random Forest
Regressor) and, instead of the German dataset, the Italian one has been used
(available within the same notebook). Since the aim of this implementation is to
build an MLOps architecture, instead of training a Machine Learning model, the
dataset has a very simple structure; it is composed of a “start” column, an “end”
column and a “load” column; “start” and “end” respectively contain the start
time and the end time of the measured power consumption, the “load” column
represents the power consumption itself in the range of time between “start” and
“end”.

Figure 3.1 shows the whole implemented architecture, which is composed of two
different pipelines (a training pipeline and a prediction pipeline); the prediction
pipeline was not in the original notebook and it has been implemented, in this
project, in order to serve the trained models.

Implementation of the two pipelines The components of each pipeline are
orchestrated together; this allows to foreground the whole process instead of fo-
cusing only on the model building. Figure 3.2 shows the DAG of the training

3.2. THE REFERENCE ARCHITECTURE 41

pipeline implemented through Kubeflow, used in this project as pipeline orches-
trator; the green tag, beside each component, represents the component itself has
been run successfully. In order to implement the two pipelines, the original note-
book has been split into multiple Docker containers, one for each component of the
pipelines. This approach allows to build a modular architecture and also to reuse
some components in both the pipelines (Data Extraction and Feature Engineering
in Figure 3.1). The components of the training pipeline include: data ingestion,
data preparation and feature engineering, model training and, the last step, is
aimed to promote the model from “Staging” to “Production” according to its per-
formances; the promotion of a model has been implemented comparing the results
of the two trained models by using the Conditions mechanism of Kubeflow, which
allows choosing a specific path in the DAG according to specific circumstances.
The prediction pipeline (Figure 3.3), besides the components to extract and pre-
pare the data, includes a component to load a pre-trained model and two different
containers to build a batch and a real-time prediction service. Kubeflow allows to
reuse components implemented by other people: the “remove-header” component
in the prediction pipeline is an example of a “reusable component” and it removes
the header from the dataset.

The implementation of both the pipelines, through different Docker containers,
guarantees flexibility, reusability, portability, encapsulation and repeatability.

Figure 3.4: Successful runs of the model training experiments, tracked through
MLFlow.

42CHAPTER 3. DESIGN AND IMPLEMENTATIONOF A REFERENCE ARCHITECTURE FORMLOPS

Figure 3.5: Runs of the training and predictions pipelines in Kubeflow.

The data flow Within the training pipeline the data, first of all, are ingested and
appended to the existing data (in the “data-ingestion” component in Figure 3.2),
then the dataset is transformed and prepared in such a way as to be processed
by the model (“data-preparation” component in Figure 3.2) by performing feature
engineering; afterwards the data pass to the Model Training and Validation com-
ponent (which, in Figure 3.2 could be either the “linear-regression-training” or the
“random-forest-regressor-training” component).

In the prediction pipeline data are ingested and prepared in the same way
as the training pipeline, thereafter they feed either the REST API or the Batch
prediction components; the output produced by the Batch Prediction component
is finally saved on the prediction bucket.

Implementation of Models Experiment Tracking and Versioning The
model training component includes experiment tracking and versioning, imple-
mented by using MLFlow. The component, in addition to build and train the
model, also logs the parameters (cf. Figure 2.2), the metrics (cf. Figure 3.4) and
the artefacts produced by the model itself; through MLFlow it also tracks the
model versions (cf. Figure 2.3) and stores them in a Model Registry. MLFlow is
also used, in this project, to promote a version of a trained model for a “Produc-
tion” usage and to load it in the prediction pipeline (in such a way as to be used
for batch or real-time analysis). Figure 3.4 shows some of the successful runs of

3.2. THE REFERENCE ARCHITECTURE 43

the experiments tracked by MLFlow.
By tracking the whole training, in this architecture, all the experiments can be

easily reproduced, versioned, compared with each other and executed in the same,
logged, environment.

Figure 3.6: OpenAPI specifications of the BentoML service.

Implementation of Automation, Continuous Integration, Continuous
Delivery and Continuous Training The training and the prediction pipelines
can be executed automatically according to a run schedule. Moreover, when the
code in the repository changes (for example as a result of a commit or a merge)
or new data are available, the two pipelines are automatically run. These two fea-
tures, Continuous Integration and Continuous Training, enable automation and
they have been implemented through Kubeflow and, respectively, Google Cloud
Build and Google Cloud Functions. Figure 3.5 shows some runs of the training
and the prediction pipelines on Kubeflow, the green tag in the “Status” column
represents the run completed successfully; in the “Run name” column the runs
with the commit hash are those triggered by Google Cloud Build and, the runs
with the updated dataset name, those triggered by Google Cloud Functions.

Despite Seldon Core and KFServing are the main tools on the landscape of
Open Source serving tools, in this project both the batch and the real-time pre-
diction service have been implemented through BentoML. As mentioned in Sec-
tion 2.1.6 BentoML is an emerging high-performance Open Source framework for

44CHAPTER 3. DESIGN AND IMPLEMENTATIONOF A REFERENCE ARCHITECTURE FORMLOPS

Figure 3.7: Successful response of a prediction through the BentoML ReST API.

serving, managing, and deploying Machine Learning models. This choice is due
to the effectiveness and the easiness of use of BentoML. This tool allows to build
a REST API (by also providing an OpenAPI graphic interface and its specifica-
tions, cf. Figure 3.6) and a prediction service in a very simple fashion and with
few lines of code. Figure 3.7 shows a successful response of a prediction through
the BentoML ReST API.

3.3 Deployment of the architecture

The whole project is designed and implemented to run on Google Cloud Platform
and it uses both Open Source software and tools from the AI Platform by Google.
Since all the three Open Source tools used in this project (MLFlow, Kubeflow
and BentoML) are platform-agnostic they can be executed on any other cloud
platform.

Google Cloud Platform is the high-performance infrastructure, by Google, for
cloud computing, data analytics and Machine Learning. The technologies adopted
in this project, from Google Cloud Platform, are:

• Google Cloud Storage

• Google Cloud Functions

3.3. DEPLOYMENT OF THE ARCHITECTURE 45

• Google Cloud Build

• Google Container Registry

• Kubeflow (which, in Google Cloud Platform, is called AI Platform Pipelines).

Google Cloud Storage Google Cloud Storage is a service for storing objects
in Google Cloud Platform. In Google Cloud Storage the data are held by basic
containers, called “Buckets”.

Google Cloud Functions Cloud Functions is a lightweight solution to create
single-purpose, stand-alone functions that respond to Cloud events without the
need to manage a server or runtime environment; namely a tool for creating event-
driven applications according to the “Function as a Service” (FaaS) paradigm.

In this project a Function is used to provide Continuous Training: whenever
a new file is uploaded to the bucket, where the training dataset is stored, the
Function triggers a new run of the Kubeflow (training) pipeline. In practice,
inside the training pipeline code, a Python function is defined: this is the Cloud
Function to be triggered. This generic function logs relevant data when a file is
changed, compiles the training Kubeflow Pipeline and runs it.

Google Cloud Build Google Cloud Build is the serverless CI/CD tool in Google
Cloud Platform. It allows to import sources from Cloud Source Repositories,

Figure 3.8: The sequence of the steps performed in the CI/CD flow.

46CHAPTER 3. DESIGN AND IMPLEMENTATIONOF A REFERENCE ARCHITECTURE FORMLOPS

Figure 3.9: Runs on Google Cloud Build, triggered by a commit or a merge in the
code repository.

Github or Bitbucket and, then, build each component according to a build config-
uration file (cloudbuild.yaml) and produce artefacts such as Docker containers.

In this architecture, CI/CD is implemented through Kubeflow and Google
Cloud Build together (Figure 3.8). Each component of the Kubeflow Pipeline is
built by Google Cloud Build, which is triggered by a specific event on the Github
repository (e.g. a commit or a merge). When the event occurs, the Kubeflow
Pipeline is compiled and run. In such a way, whenever a piece of code changes in
the Github repository, each component of the Kubeflow Pipeline is built up and
the Kubeflow Pipeline itself is automatically executed.

A very powerful feature, in Google Cloud Build, is Substitution. Cloud Build
allows you to use variables in the configuration file and define their actual value be-

Figure 3.10: Example of substitution variables in Google Cloud Build.

3.4. THE TRAINING AND THE PREDICTION PIPELINES IN DETAIL 47

fore each individual run; this characteristic is helpful for variables whose value isn’t
known until build time. These variables include $COMMIT SHA, $REPO NAME,
$BRANCH NAME, $TAG NAME. Other non-trigger-based variables are $PROJECT ID
and $BUILD ID. In this project Substitutions are used, specifically, to tag each
Kubeflow run, triggered by Google Cloud Build, with the corresponding git com-
mit hash. Figure 3.10 shows an example of Substitutions used in this project;
Figure 3.9, instead, shows some successful run on Google Cloud Build, triggered
as a consequence of a commit or a merge in the code repository.

Google Container Registry Google Container Registry is a container image
registry that runs on Google Cloud Platform; in this project, it is used to push
the Docker images of each Kubeflow component and pull them from the training
or prediction pipeline.

3.4 The training and the prediction pipelines in

detail

Figure 3.11: The DAG of the train-
ing pipeline on Kubeflow, triggered
by Google Cloud Functions as conse-
quence of a file upload (or update),
while running the model traininig
components.

Figure 3.12: The DAG of the predic-
tion pipeline on Kubeflow while run-
ning both the load-data and remove-
header components.

48CHAPTER 3. DESIGN AND IMPLEMENTATIONOF A REFERENCE ARCHITECTURE FORMLOPS

Listing 3.1: The definition of the data-ingestion Kubeflow component�
1 def __data_ingestion_step(bucket_name):

2 return kfp.dsl.ContainerOp(

3 name=’data_ingestion ’,

4 image=os.environ[’

DOCKER_CONTAINER_REGISTRY_BASE_URL ’] +

5 ’/’ +

6 os.environ[’PROJECT_NAME ’] +

7 ’/’ +

8 os.environ[’DATA_INGESTION ’] +

9 ’:’ +

10 os.environ[’TAG’],

11 arguments =[’--bucket_name ’, bucket_name],

12 file_outputs ={’dataset_path ’:

13 ’/tmp/dataset.csv’}

14)
� �
In the previous section a generic description of the training and the prediction

pipelines was provided; in this section will be explained, in more detail, the exe-
cution of the two pipelines. The first one is aimed at build and train two different
models; the second one, on the other hand, is aimed at building two different
services that handle batch or real-time predictions. Figure 3.11 and Figure 3.12
shows the two running pipelines.

The training pipeline The training pipeline (Figure 3.2) builds and trains an
SGD Regressor and a Random Forest Regressor. The pipeline can be triggered
manually, according to a scheduled run, by Google Cloud Build or by Google Cloud
Function. When new data are available, within the bucket containing the dataset,
the pipeline is automatically triggered by Google Cloud Function; Figure 3.13
shows the logs of the Function triggered as a consequence of a new file upload or
update and Figure 3.11, instead, the running pipeline triggered by the Function
itself. To run the pipeline, through Google Cloud Functions, the latest version of
the Docker container of each component is used. When the pipeline is triggered
by Google Cloud Build, as a consequence of a commit or a merge in the code
repository, each component is built up in a new Docker container (according to
the new code) and, then, the pipeline starts its run.

The pipeline is orchestrated through Kubeflow. Listing 3.1 shows how a Kube-
flow component is defined (the data-ingestion component in the example): the

3.4. THE TRAINING AND THE PREDICTION PIPELINES IN DETAIL 49

Listing 3.2: The kfp-cli command used to run programmatically the Kubeflow
pipeline�

1 kfp --endpoint $_ENDPOINT run submit

2 -e "${_PIPELINE_NAME}"
3 -r ${SHORT_SHA}
4 -p $(kfp --endpoint $_ENDPOINT pipeline

list | grep -w "${_PIPELINE_NAME}" |

5 grep -E -o -e "([a-z0 -9]) {8} -([a-z0

-9]) {4}-([a-z0 -9]) {4} -([a-z0 -9])

{4} -([a-z0 -9]) {12}")
� �
function returns a ContainerOp, which takes in input the name of the component,
the docker image to be retrieved to run the component and a list of arguments (ac-
cording to the type of argument both a simple parameter or a file can be passed);
the parameter “file outputs” defines the name of the artefacts produced in out-
put by the component itself, which will be passed to the next component of the
pipeline. To run the pipeline through Google Cloud Build the Kubeflow’s kfp-cli
command is employed in different ways: Listing 3.2 shows the command to run
the new pipeline on Kubeflow.

The pipeline starts with the “data-ingestion” component; this component gets
each file, from the dataset bucket, and appends it to the others. The dataset,
merged in a single csv file, is passed to the “data-preparation” component which
performs Feature Engineering: time features (month, weekday and hour), national
holiday features and lag features (load data with a lag value ranging from 24 to 48
hours) are added, then one-hot encoders, on categorical features (time features),
and a standard scaler, on numerical features (lag features), are applied.

The dataset (including all the new features) is passed to both the model training
components: “linear-regression-training” and “random-forest-regressor-training”
in Figure 3.2; the first component trains an SGD Regressor and, the second one,
a Random Forest Regressor. The experiments performed on both the models are
tracked and versioned through MLFlow (including the parameters, the metrics
and the artefacts); this approach allows to easily reproduce the experiments and
compare them. The built models are saved on the MLFlow Model Registry, in
such a way that they can be easily loaded in the prediction pipeline. In both, the
Model Training components Model Validation is also performed.

The last component of the training pipeline, “promote” in Figure 3.2, makes use
of Conditions, a mechanism of Kubeflow that allows choosing a path in the DAG
according to specific circumstances; in the “promote” component a “condition”

50CHAPTER 3. DESIGN AND IMPLEMENTATIONOF A REFERENCE ARCHITECTURE FORMLOPS

Figure 3.13: The logs of Google Cloud Functions when a new file in the bucket is
uploaded (or updated).

compares the metrics of the two, trained, models and tags the best one as available
to be used in production.

The prediction pipeline The prediction pipeline (Figure 3.3) builds two differ-
ent services to handle real-time and batch predictions; the pipeline can be triggered
manually, by a scheduled run or by Google Cloud Build (as a consequence of a
commit or a merge).

Thanks to the modular implementation of the training pipeline, the prediction
pipeline can reuse both “data-ingestion” and “data-preparation” components. In
this pipeline Kubeflow is used as an orchestration tool as in the training pipeline;
this tool also allows to employ components designed and implemented by other
people: this kind of components is called “reusable components”; the “remove-
header” component, which is a “reusable component”, removes the header from
the dataset.

In a parallel path (cf. Figure 3.12), the model to be used for the prediction
(the one with the tag “Production”) is loaded through MLFlow within the “load-
model” component. The prediction pipeline includes a service to perform real-
time predictions and another to perform batch predictions: “scikit-learn-inference-
service” is the component which produces an artefact, deployed by using BentoML,
to handle real-time predictions; “scikit-learn-batch-prediction”, instead, gets the
artefact produced by the “scikit-learn-inference-service” and employs it to perform

3.5. CODE PUBLICATION 51

a batch prediction on the transformed dataset.

3.5 Code publication

The code of the implementation, of the reference architecture, is available on
Github [7] and is published as Free Software, under GPLv3 licence. The repository
aims to provide the implementation of the architecture and a detailed explanation
of how the tools have been employed; the advantages on the Machine Learning
workflow have been also underlined within the project.

The doc directory contains deep documentation of the usage of each tool em-
ployed within the architecture. In the demo folder a concise explanation on how
to run the whole project is provided; in the same directory the dataset used in the
project can be also found. The components directory contains the code of each
component of both the two Kubeflow pipelines; the folder of each component is
constituted of:

• A Dockerfile, to build the corresponding Docker image.

• A bash script, used to build the Docker image of the component and push it
into the Container Registry.

• The src folder, which contains the code of the component.

• The requirements.txt file, used to install all the dependencies of the compo-
nent.

The prediction pipeline and training pipeline folders contain the code used to de-
fine the two Kubeflow pipelines. In both the directories a cloudbuild.yaml file is
also included: it defines the steps to be executed by Google Cloud Build to build
all the components, compile the Kubeflow pipeline and run it. prediction pipeline
training pipeline also contains a Dockerfile: it is used to build a Docker image
with kfp-cli, the Kubeflow’s command line tool (which is employed in the cloud-
build.yaml file). The main.py file contains the implementation of the Kubeflow
pipeline. Furthermore, the .env.yaml file, used by Google Cloud Function, contains
the environment variables needed to compile the Kubeflow pipeline.

52CHAPTER 3. DESIGN AND IMPLEMENTATIONOF A REFERENCE ARCHITECTURE FORMLOPS

Chapter 4

MLOps use cases and scenarios

MLOps is a very recent methodology, nevertheless it is rapidly taking hold in
business contexts thanks to the benefits it has on putting a model into production;
as explained in Chapter 1, MLOps can help to significantly reduce the time to
deploy models, allowing more flexibility on updating them. In the following will
be discussed different use cases in which MLOps is currently used by different
companies of different business domains; a generic scenario related to the Covid-
19 pandemic will be also provided. All the architectures exposed below share a
common trait: they are built up according to the specific needs of each company.

Covid-19 pandemic Modern business applications leverage Machine Learning
and Deep Learning models to analyze real-world and large-scale data, to predict,
or to react intelligently to events; however, data change according to the environ-
ment and the events, causing Concept Drift. As already mentioned, Concept Drift
is a challenging problem in Data Science: it may happen due to changes in con-
sumer preferences, technological innovations, catastrophic events, etc. Covid-19
pandemic is a very clear example of this problem; “the pandemic disrupted many
supply chains because demand planning models weren’t updated frequently enough
to account for the quickly emerging “new normal” as the pandemic itself began”
[24].

Covid-19 caused a huge change in the data used to make predictions. The
unexpected first lockdown, which has expanded becoming worldwide, day by day,
deeply impacted the sales of every kind of market and, consequently, on their data.
The Covid-19 pandemic caused Machine Learning models across many industries
to go haywire because of rapidly changing conditions; moreover, due to the long
time to get a model in production, it was difficult to overcome the Concept Drift
caused by the pandemic itself.

“Investing in MLOps allows organisations, and their Machine Learning solu-
tions in production, to be more resilient to external volatile events, like rapid mar-

53

54 CHAPTER 4. MLOPS USE CASES AND SCENARIOS

ket landscape changes, regulatory changes, and other unforeseen external events
like the Covid-19 pandemic” [40]. MLOps is primarily aimed at reducing the time
to get a model in production as much as possible. One of the most important
features of MLOps, to face Concept Drift, is Continuous Training, since it helps to
be fastly resilient to unexpected events which cause a change in the data. MLOps
speeds up the development, deployment, and management of models, thus enabling
the creation of applications that can rapidly adapt to changes in the environment.
“Using MLOps automation, businesses can monitor and detect changes that impact
their AI models, make swift changes to their AI applications and get new solutions
to market faster and in a much more agile way” [41].

AstraZeneca AstraZeneca, multinational pharmaceutical company, leverage Ma-
chine Learning and Deep Learning techniques to accelerate drugs discovery. Its
platform, called Augmented Drug Design, helps chemicals develop drugs faster by
using Machine Learning and other techniques, alongside the work performed in
chemical laboratories; this approach allows to save both a lot of time and money.

“MLOps plays a key part in AstraZeneca’s mission to reduce the research phase
of the drug discovery cycle by half, from 24 months to 12 months, by 2025” [37]
says Adrian Rossall, head of Augmented Drug Design, at the Seldon 1.0 launch
event. MLOps helps AstraZeneca deploying models faster, monitoring and re-
training them. AstraZeneca makes use of scientifically aware and industry-specific
tools, for this reason it needed a customizable solution; other requirements to build
an MLOps architecture, for the company, were flexibility and scalability. In 2019
AstraZeneca started using Seldon on top of Kubernetes. Seldon simplified and
enhanced model deployment, Kubernetes allowed to scale up and down, granted
flexibility and allowed the company to deploy models faster; “MLOps really helped
to accelerate the whole pipeline”, says Adrian Rossal [37].

Netflix Netflix makes extensive use of Machine Learning across a lot of areas
in their product and deploys thousands of models; this helps to personalize the
experience of the customers and the content necessary to offer them an optimal ex-
perience. The business problem, for Netflix, is to estimate the size of the audience,
every day, of a show in the months leading up to the show’s launch. This is impor-
tant for a variety of reasons, including prioritization, allocation of resources etc.
Both accuracy and timeliness are crucial, because if predictions aren’t accurate
and fast then they’re not useful and, at the same time, they lose the opportunity
to make decisions based on them. A project typically starts with the exploration
of the data and looking for correlations among them; this phase can take between
two to four weeks. The next stage involves building and identifying the candidate
model to solve the business problem; this usually takes about six to eight weeks.

55

Then the model needs to be shipped into production, which concerns different
tasks and which requires from 12 to 14 weeks [8].

Metaflow is the Open Source Machine Learning infrastructure, originally devel-
oped at Netflix, to boost the productivity of data scientists. Metaflow can help for
rapid prototyping and for a fast deployment of the models, reducing the time to get
a model in production to less than 12 weeks [8]. Metaflow enables collaboration,
offers first-class support for prototyping and deployment, allows straightforward
scalability, provides specific data tooling and is designed to make operational is-
sues easy to diagnose and fix [42]. Metaflow can be thought of as a wrapper of
well-known tools: XGBoost, PyTorch, Tensorflow as Machine Learning libraries,
Pandas for Feature Engineering, Jupyter as a collaborative tool; Meson, a work-
flow management tool, to provide job scheduling and task isolation with Titus and
Apache Mesos, Spark as query engine and Amazon S3 as Data Lake. Figure 4.1
shows the stack of the tools included in Metaflow.

Compared to the architecture described in Chapter 3 Metaflow is a general-
purpose platform; it makes use of Airflow instead of Kubeflow and it includes
query engine and data lake tools, missing in the architecture exposed in the pre-
vious chapter. Moreover, Metaflow does not include any tool aimed to track the
experiments for the model training.

Figure 4.1: Stack of the technologies included in Metaflow [8].

Bank Itaú Unibanco “Itaú Unibanco is the largest private sector bank in Brazil,
with a mission to put its customers at the centre of everything they do as a key
driver of success” [9]; to deal with this goal the bank built Itaú Virtual Assistant,
a digital customer service tool that uses Natural Language Processing to under-
stand customer questions and respond in real-time. To help continually improve
and evolve Itaú Virtual Assistant the bank needed an efficient strategy for the de-
ployment of Machine Learning models; hence the Machine Learning team designed
a CI/CD pipeline, based on Kubeflow, on Google Cloud Platform. “For the Itaú

56 CHAPTER 4. MLOPS USE CASES AND SCENARIOS

Virtual Assistant project, two business requirements were essential: the ability to
have multiple models in production (whether using different techniques or models
trained using distinct data), and the ability to retrain the production model with
new data” [9].

The architecture was designed by using Open Source tools, including Kubeflow,
Kubernetes, Seldon Core, Docker, and Git. The goal was to have a single overall
solution that could be deployed on Google Cloud Platform or on-premises (for
example Origin, the Open Source version of RedHat OpenShift), according to the
needs and restrictions of each team inside the company. Figure 4.2 shows the
architecture built up by Unibanco.

Unibanco’s architecture is very similar to the architecture exposed in Chapter 3:
it includes a CI/CD pipeline (which, instead of Google Cloud Build, is implemented
through Jenkins) and, as the architecture in the previous chapter, it implements
a model training pipeline by using Kubeflow; Seldon Core is used for the model
serving instead of BentoML. Despite these differences, the reference architecture
for this thesis would fit Unibanco’s requirements.

Figure 4.2: CI/CD architecture of Itau Unibanco [9].

GreenSteam GreenSteam is a company that provides software solutions for
optimizing vessel performance, to save fuel and reduce emissions. Even though
GreenSteam has already built several Machine Learning products in the past,
which helped some major shipping companies make informed performance op-
timization decisions, in 2019 the need for a renewal of the process of building
Machine Learning models emerged: “We knew our Machine Learning operations
needed to grow with the company” [10]. For this reason, the company decided to
start from scratch and rethink its entire Machine Learning infrastructure.

The first step involved switching from Jupyter notebooks to Python packages,
versioned on git repositories. Subsequently, the company faced reproducibility

57

Figure 4.3: MLOps tools stack used by GreenStream [10].

issues; while the setup of the environments, in the different laptops, was similar
it was never the same: GreenStream started using conda, but it did not solve the
problem; “Docker helped with the problem and it enabled GreenSteam to have a
unified setup” [10]. Dealing with Docker containers also helped GreenStream to
build a Continuous Integration pipeline by using Jenkins. Through Docker the
company paved the way to move from monoliths to microservices, orchestrated
by using Argo (Open Source pipeline orchestrator). GreenStream also needed a
custom model serving solution: SageMaker and Kubeflow have been looked at as
solutions, but the tools did not meet the needs; FastAPI turned out to be the
best tool for the company requirements. The last step of rethinking the Machine
Learning infrastructure, for GreenStream, involved tracking the experiments, their
version and their metrics: Neptune was used as a tool. Figure 4.3 shows the full
technologies stack used by GreenStream for its MLOps infrastructure.

The architecture exposed in Chapter 3 would probably fit GreenStream’s re-
quirements. The architecture built up by the company, however, differs in the
employed tools: Argo is used instead of Kubeflow to orchestrate the pipelines,
AWS is used as cloud platform, Jenkins to implement CI/CD (instead of Kube-
flow and Google Cloud Build) and Neptune as Experiment Tracking tool, instead
of MLFlow.

Uber Uber employs Machine Learning to make data-driven decisions; it not only
enables services such as ridesharing (destination prediction, driver-rider pairing,
ETA prediction, etc) but also financial planning and other core business needs.
Machine Learning solutions are also implemented in some of Uber’s other busi-

58 CHAPTER 4. MLOPS USE CASES AND SCENARIOS

nesses such as UberEATS, UberPool, and Uber’s self-driving car division [43].
Uber faced, in the past, different challenges with building and deploying Ma-

chine Learning models: there were no systems to build reliable, uniform and re-
producible pipelines and there was neither a standard place to store the results of
training experiments and compare them together. “We were starting to see signs
of many of the Machine Learning ant-patterns documented by Scully et al. [1]”
[11].

Figure 4.4: Architecture of Uber Michelangelo [11].

Michelangelo is Uber’s Machine Learning-as-a-service platform, which enables
internal teams to easily build, deploy and operate Machine Learning solutions at
scale; it is designed to cover the end-to-end workflow: manage data, train, eval-
uate and deploy models, make predictions and monitor the models themselves.
Michelangelo is designed to address the gaps that emerged, by standardizing the
workflows and tools. Figure 4.4 shows both the online and the offline architecture
of Michelangelo. The platform consists of multiple Open Source tools and differ-
ent built in-house components; the primary Open Source components are HDFS,
Spark, Samza, Cassandra, MLLib, XGBoost and TensorFlow; to manage the re-
sources both YARN and Mesos can be used. Michelangelo is designed to provide
scalable, reliable, reproducible easy to use tools to address an end-to-end workflow.
Michelangelo is the first architecture that includes a centralized Feature Store; it
allows teams to create and manage canonical features to be used and shared.

With respect to the architecture exposed in Chapter 3 Michelangelo is a general-

59

purpose platform that intersects both MLOps and DataOps (cf. Section 1.1.2); it
also does not explicitly include an experiment tracking tool, a pipeline orchestrator
and a CI/CD tool. Due to these differences, the infrastructure presented in the
previous chapter would probably not be suitable for Uber’s requirements.

Figure 4.5: MLOps architecture of H&M [12].

H&M “We have a saying: ‘We don’t care how good your model is, if it’s not
in production and delivering value then it’s not worth anything’” [37] says Errol
Koolmeister, head of AI foundation at H&M Group. H&M, in its AI department,
has many different teams and counts hundreds of models across the entire H&M
value chain. Each team solves different business problems, potentially using dis-
tinct techniques, however the process is very similar: there is a Machine Learning
pipeline, a model deploying pipeline and monitoring infrastructure. Kevan Wang,
AI architect in H&M group, underlines the complexity of MLOps and the impor-
tance to first think about what kind of problem to address, what kind of process
is involved and which kind of skills a team owns [12].

In December 2020 H&M started building its own and centralized AI platform,
based on MLOps principles. Figure 4.5 shows the technologies stack for the MLOps
architecture of H&M, which is very similar to the reference architecture of this the-
sis, exposed in Chapter 3; the main difference is that H&M’s implementation is
a general-purpose architecture, in which the model training pipeline can be han-

60 CHAPTER 4. MLOPS USE CASES AND SCENARIOS

dled through Databricks, Airflow or Kubeflow, depending on the specific product
lifecycle (instead of Kubeflow only): “Airflow and Kubeflow are very similar but,
if starting from scratch, I’d probably suggest Kubeflow” [12], says Kevan Wang.
CI/CD is implemented, by H&M, by using Azure Native Service as opposed to
the reference architecture for this thesis, which adopts Kubeflow and, serving, is
provided through Seldon Core instead of BentoML. H&M additionally includes
monitoring and system availability, handled through Azure and two Open Source
tools: Graphana and Prometheus. Regarding the model management H&M makes
the same choice as the architecture in Chapter 3, by considering MLFlow as the
most mature solution today on the market.

Chapter 5

Conclusions

MLOps is a very recent approach aimed at simplifying the workflow and reduc-
ing the time to get models in production. The goal of this thesis was to provide
a deep study of this new methodology. Accordant with the analysis of the fea-
tures of MLOps, it can be concluded that the Machine Learning workflow can be
significantly simplified and, the process to get a model in production, can be accel-
erated thanks to this approach; this goal can be achieved by adopting techniques as
CI/CD, Continuous Training and Monitoring, automation, ensuring repeatability,
by designing the Machine Learning system in a modular fashion and by applying
all the other features of MLOps explained in Chapter 1. This thesis is the result
of the internship at Data Reply and it has also the objective of providing a deep
study on the plethora of tools to build an MLOps architecture; the analysis on the
different tools was conducted by focusing on the Open Source ones, as requested
by the company, in such a way as to be platform-agnostic respect to the cloud
platform used to deploy the architecture. Chapter 2 offers an in-depth analysis on
the main Open Source tools in the market and on their maturity level. According
to this deep exploration of the Open Source tools, it can be concluded that some
of them can be considered the best choice in the market and “standard-de-facto”
among the MLOps technologies. In addition to a deep study on MLOps’ features
and a deep analysis on its main technologies, the other main contribution was
to implement an MLOps architecture, designed by using some of those tools and
deployed on Google Cloud Platform. Due to Google Cloud Platform restrictions
Seldon Core, the main serving Open Source tool in the market, cannot be em-
ployed; future works concern implementing serving features by Seldon Core itself
and including in the reference architecture monitoring tools (for example Grafana).

This thesis can be a starting point to explore MLOps both theoretically and
practically (by relying on the implemented reference architecture and its code, pub-
lished as Free Software with GPLv3 licence). Nevertheless the tools mentioned in
Chapter 2 can be considered the best choice in the market, among the MLOps

61

62 CHAPTER 5. CONCLUSIONS

technologies, they are very recent and some of them are still immature. During
the implementation of the reference architecture, I ran into different lacuna both
using MLFlow and Kubeflow. The full MLFlow API is available only in Python
and the Java and R API are still in development; other shortcomings I run into,
while using MLFlow, were related to the XGBoost package (which didn’t work as
expected) and the lack of a method to retrieve the version of a model (information
required by other functions within the library). Related to Kubeflow, while using
the kfp-cli tool (to dynamically submit and run a pipeline), many Exceptions were
not handled and it was very difficult to find the root of the problems. Therefore,
even if both MLFlow and Kubeflow are very effective for generic usage, they re-
quire an improvement for deep and detailed usage. Furthermore, as mentioned in
Chapter 2, a common trait of the exposed tools is a lack in the documentation:
this needs to be improved in such a way as to make each tool easier to under-
stand. MLOps is rapidly evolving, maturing and is a topic with great potential
in the market: it will grow more and more in the near future. “MLOps market
is expected to expand to nearly US$4 billion by 2025 ” [23]. Moreover, MLOps
will impact the Machine Learning processes in the same way DevOps had a wide
impact on software development in the past. For these reasons many companies
are starting to adopting this methodology and it will be charming to have the
opportunity to work dealing with MLOps in the future; some use cases of compa-
nies, which recently started employing MLOps, are provided in Chapter 4. Based
on the study conducted with this thesis, companies dealing with Machine Learn-
ing should consider adopting MLOps (but it is crucial doing it according to their
specific requirements, as suggested in Chapter 3).

63

64 CHAPTER 5. CONCLUSIONS

Glossary

A

A/B tests A/B testing is a way to compare the two versions of a variable to find
out which performs better in a production environment. 35, 63

C

Concept Drift Concept Drift refers to the phenomenon that happens when the
statistical properties of the target variable change. 15, 17, 53, 54, 63

containerization Containerization is an increasingly popular solution to deal
with dependencies when deploying a Machine Learning Model. 8, 19, 63

D

DAG A DAG is a collection of all the tasks to be run, organized in a way that
reflects their relationships and dependencies. ix, x, 23, 30, 31, 40, 41, 47, 49,
63

Data Drift Data Drift is an unexpected and unplanned change in the distribution
of the data used in a predictive task. Data drift happens when statistical
properties of the predictors change. 15, 17, 63

Design Pattern A design pattern is a solution for a problem which occurs over
and over again, in such way the solution itself can be adopted many times.
22, 26, 63

Domain Specific Language “DSLs are small languages, focused on a particular
aspect of a software system.” [44]. 31, 63

E

Ensembled Model Ensemble modeling is a process where multiple diverse base
models are used to predict an outcome. 13, 63

65

66 Glossary

F

feature A Feature is a measurable property of a phenomena under observation
and (part of) an input to a Machine Learning Model (e.g. a raw word, a
pixel, a sound wave, an aggregate, a time window, etc.) . 34, 63

Feature Store A Feature Store is a new layer of abstraction aimed to reduce
the time that Data Scientists spend on getting the data into a format they
can use to train models and maximize the amount of time they actually do
data science. Though it is a repository of different features associated with
business entities that are created and stored in a central location for easier
reuse. 7, 21, 34, 58, 63, 66

Function as a Service “FaaS (Function-as-a-Service) is a type of cloud-computing
service that allows you to execute code in response to events without the com-
plex infrastructure typically associated with building and launching microser-
vices applications. Serverless and Functions-as-a-Service are often conflated
with one another but the truth is that FaaS is actually a subset of serverless.”
[45]. 45, 63

M

metric A number that you care about. May or may not be directly optimized in
a machine-learning system. A metric that your system tries to optimize is
called an objective. 8, 9, 15, 17, 18, 21, 29, 42, 49, 50, 63

model A Machine Learning model is a mathematical function that relates an
input to an output. To do that mapping Machine Learning relies on pa-
rameters. It is the representation of what a Machine Learning system has
learned from the training data, based on statistical theory. 3, 8, 21, 29, 35,
36, 56, 63

Model Store It is a tool for versioning, exporting, and storing machine learning
models that allows to collaboratively manage the full lifecycle. 27, 28, 63

Multi-Armed Bandits Technique (and area of study) to deal with the problem
of deciding how to route requests to competing Machine Learning model and
determines which model is the best in the shortest amount of time can be
treated. 35, 63

O

Glossary 67

OpenAPI “The OpenAPI Specification (OAS) defines a standard, language-
agnostic interface to RESTful APIs which allows both humans and computers
to discover and understand the capabilities of the service without access to
source code, documentation, or through network traffic inspection.” . 44, 63

P

parameter A parameter is a real valued variable that changes during the model
training. A special kind of parameter is an hyper-parameter: it is set before
the training and it does not change (until the next epoch or retraining). 15,
17, 21, 27, 29, 30, 32, 42, 49, 63, 66

S

serving The process of taking some sort of trained Machine Learning model and
make its predictions available for its users. 28, 29, 35, 36, 56, 57, 60, 63

stale model The model is defined as stale if the trained model does not include
up-to-date data and/or does not satisfy the business impact requirements.
18, 63

T

Technical Debt Technical debt is a term related to immature, incomplete or
inadequate code (due to design deficiencies, low quality or other problems
on the software), which will require additional work to be fixed. It is a
metaphor linked to finance: having tecnical debts on a software, in economy
terms, would be like paying interest on a loan. Further, technical debt, is
related to “deficiencies in internal quality that make it harder than it would
ideally be to modify and extend the system [...]” [46]. 3, 12, 13, 63

68 Glossary

Bibliography

[1] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Di-
etmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and
Dan Dennison. Hidden Technical Debt in Machine Learning Systems. In
Proceedings of the 28th International Conference on Neural Information Pro-
cessing Systems - Volume 2, NIPS’15, page 2503–2511, Cambridge, MA, USA,
2015. MIT Press.

[2] Data Science project lifecycle. https://coursebricks.com/

blog-data-science-project-lifecycle/.

[3] Survey - Kubeflow continues to move into production. https://blog.

kubeflow.org/kubeflow-continues-to-move-to-production.

[4] Google. MLOps: Continuous Delivery and automation pipelines in Machine
Learning). https://cloud.google.com/solutions/machine-learning/

mlops-continuous-delivery-and-automation-pipelines-in-machine-learning.

[5] Theofilos Kakantousis, Antonios Kouzoupis, Fabio Buso, Gautier Berthou,
Jim Dowling, and Seif Haridi. Horizontally Scalable ML pipelines with a
Feature Store.

[6] FeatureStore.org. https://www.featurestore.org/.

[7] Enrico Salvucci. The reference MLOps architecture. https://github.com/

esalvucci/thesis-mlops-reference-architecture.

[8] Julie Pitt and Ashish Rastogi. Netflix Presents: A Human Friendly Approach
to MLOps — Netflix. https://www.youtube.com/watch?v=fOSZuONmLbA.

[9] Itaú Unibanco: How we built a CI/CD Pipeline for ma-
chine learning with online training in Kubeflow. https:

//cloud.google.com/blog/products/ai-machine-learning/

\itau-unibanco-how-we-built-a-cicd-pipeline-for-\

machine-learning-with-online-training-in-kubeflow.

69

https://coursebricks.com/blog-data-science-project-lifecycle/
https://coursebricks.com/blog-data-science-project-lifecycle/
https://blog.kubeflow.org/kubeflow-continues-to-move-to-production
https://blog.kubeflow.org/kubeflow-continues-to-move-to-production
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://www.featurestore.org/
https://github.com/esalvucci/thesis-mlops-reference-architecture
https://github.com/esalvucci/thesis-mlops-reference-architecture
https://www.youtube.com/watch?v=fOSZuONmLbA
https://cloud.google.com/blog/products/ai-machine-learning/ \ itau-unibanco-how-we-built-a-cicd-pipeline-for- \ machine-learning-with-online-training-in-kubeflow
https://cloud.google.com/blog/products/ai-machine-learning/ \ itau-unibanco-how-we-built-a-cicd-pipeline-for- \ machine-learning-with-online-training-in-kubeflow
https://cloud.google.com/blog/products/ai-machine-learning/ \ itau-unibanco-how-we-built-a-cicd-pipeline-for- \ machine-learning-with-online-training-in-kubeflow
https://cloud.google.com/blog/products/ai-machine-learning/ \ itau-unibanco-how-we-built-a-cicd-pipeline-for- \ machine-learning-with-online-training-in-kubeflow

70 BIBLIOGRAPHY

[10] Mlops at GreenSteam: Shipping Machine Learn-
ing [Case Study]. https://neptune.ai/blog/

mlops-at-greensteam-shipping-machine-learning-case-study.

[11] Meet Michelangelo: Uber’s Machine Learning Platform. https://eng.uber.
com/michelangelo-machine-learning-platform/.

[12] Keven Wang. Apply MLOps at Scale by H&M. https://databricks.com/

session_eu20/apply-mlops-at-scale.

[13] Danilo Sato, Arif Wider, and Christoph Windheuser. Continuous Delivery for
Machine Learning. https://martinfowler.com/articles/cd4ml.html.

[14] SREcon19 Asia/Pacific - What Is ML Ops Solutions and Best Practices.
https://www.youtube.com/watch?v=ALGxALx46f8&t=156s.

[15] Agile Manifesto. http://agilemanifesto.org.

[16] Continuous Delivery. https://continuousdelivery.com/.

[17] What the Ops are you talking about? https://towardsdatascience.com/

what-the-ops-are-you-talking-about-518b1b1a2694.

[18] DataOps Manifesto. https://www.dataopsmanifesto.org/.

[19] M. Treveil, N. Omont, C. Stenac, K. Lefevre, D. Phan, J. Zentici, A. Lavoil-
lotte, M. Miyazaki, and L. Heidmann. Introducing MLOps. O’Reilly Media,
2020.

[20] Why Is There No DevOps Manifesto? https://devops.com/

no-devops-manifesto/.

[21] Damian A Tamburri. Sustainable MLOps: Trends and Challenges. In 2020
22nd International Symposium on Symbolic and Numeric Algorithms for Sci-
entific Computing (SYNASC), page 1. IEEE, 2020.

[22] Ml Model Management and Operations 2020
(“MLOps”). https://www.cognilytica.com/2020/03/03/

ml-model-management-and-operations-2020-mlops/.

[23] Infographic: The Rapid Growth of MLOps. https://www.cognilytica.com/
2020/04/02/infographic-the-rapid-growth-of-mlops/.

[24] Mlops optimizes development, deployment, and management.
https://www2.deloitte.com/us/en/insights/focus/tech-trends/

2021/mlops-industrialized-ai.html.

https://neptune.ai/blog/mlops-at-greensteam-shipping-machine-learning-case-study
https://neptune.ai/blog/mlops-at-greensteam-shipping-machine-learning-case-study
https://eng.uber.com/michelangelo-machine-learning-platform/
https://eng.uber.com/michelangelo-machine-learning-platform/
https://databricks.com/session_eu20/apply-mlops-at-scale
https://databricks.com/session_eu20/apply-mlops-at-scale
https://martinfowler.com/articles/cd4ml.html
https://www.youtube.com/watch?v=ALGxALx46f8&t=156s
http://agilemanifesto.org
https://continuousdelivery.com/
https://towardsdatascience.com/what-the-ops-are-you-talking-about-518b1b1a2694
https://towardsdatascience.com/what-the-ops-are-you-talking-about-518b1b1a2694
https://www.dataopsmanifesto.org/
https://devops.com/no-devops-manifesto/
https://devops.com/no-devops-manifesto/
https://www.cognilytica.com/2020/03/03/ml-model-management-and-operations-2020-mlops/
https://www.cognilytica.com/2020/03/03/ml-model-management-and-operations-2020-mlops/
https://www.cognilytica.com/2020/04/02/infographic-the-rapid-growth-of-mlops/
https://www.cognilytica.com/2020/04/02/infographic-the-rapid-growth-of-mlops/
https://www2.deloitte.com/us/en/insights/focus/tech-trends/2021/mlops-industrialized-ai.html
https://www2.deloitte.com/us/en/insights/focus/tech-trends/2021/mlops-industrialized-ai.html

BIBLIOGRAPHY 71

[25] Yue Zhou, Yue Yu, and Bo Ding. Towards MLOps: A Case Study of ML
Pipeline Platform. In 2020 International Conference on Artificial Intelligence
and Computer Engineering (ICAICE). IEEE, 2020.

[26] Kaz Sato. What is MLOps? Best Practices for DevOps for ML (cloud next
’18). https://www.youtube.com/watch?v=_jnhXzY1HCw.

[27] Rules of Machine Learning. https://developers.google.com/

machine-learning/guides/rules-of-ml.

[28] Jez Humble and David Farley. Continuous Delivery: reliable software releases
through build, test, and deployment automation. Pearson Education, 2010.

[29] ml ops.org. MLOps principles. https://ml-ops.org/content/

mlops-principles.

[30] Valliappa Lakshmanan, Sara Robinson, and Michael Munn. Machine Learning
Design Patterns. ”O’Reilly Media, Inc.”, 2020.

[31] Setting up an MLOps environment on Google Cloud. https://cloud.

google.com/architecture/setting-up-an-mlops-environment.

[32] Aws MLOps Framework. https://aws.amazon.com/solutions/

implementations/aws-mlops-framework/, https://docs.aws.amazon.

com/sagemaker/latest/dg/sagemaker-projects-why.html.

[33] Azure MLOps Framework. https://docs.microsoft.com/en-en/

azure/architecture/reference-architectures/ai/mlops-python,
https://docs.microsoft.com/en-us/azure/machine-learning/

concept-model-management-and-deployment.

[34] Clive Cox, Dan Sun, Ellis Tarn, Animesh Singh, and David Goodwin. Server-
less inferencing on Kubernetes. arXiv preprint arXiv:2007.07366, 2020.

[35] Sridhar Alla and Suman Kalyan Adari. Introduction to MLFlow. In Beginning
MLOps with MLFlow, page 125. Springer, 2021.

[36] Kfserving documentation. https://www.kubeflow.org/docs/components/

kfserving/kfserving/.

[37] Seldon Deploy 1.0 Launch Event. https://www.seldon.io/

seldon-deploy-1-0-launch-event/.

[38] Sasu Mäkinen et al. Designing an open-source cloud-native MLOps pipeline.
University of Helsinki, Faculty of Science, 2021.

https://www.youtube.com/watch?v=_jnhXzY1HCw
https://developers.google.com/machine-learning/guides/rules-of-ml
https://developers.google.com/machine-learning/guides/rules-of-ml
https://ml-ops.org/content/mlops-principles
https://ml-ops.org/content/mlops-principles
https://cloud.google.com/architecture/setting-up-an-mlops-environment
https://cloud.google.com/architecture/setting-up-an-mlops-environment
https://aws.amazon.com/solutions/implementations/aws-mlops-framework/
https://aws.amazon.com/solutions/implementations/aws-mlops-framework/
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-why.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-projects-why.html
https://docs.microsoft.com/en-en/azure/architecture/reference-architectures/ai/mlops-python
https://docs.microsoft.com/en-en/azure/architecture/reference-architectures/ai/mlops-python
https://docs.microsoft.com/en-us/azure/machine-learning/concept-model-management-and-deployment
https://docs.microsoft.com/en-us/azure/machine-learning/concept-model-management-and-deployment
https://www.kubeflow.org/docs/components/kfserving/kfserving/
https://www.kubeflow.org/docs/components/kfserving/kfserving/
https://www.seldon.io/seldon-deploy-1-0-launch-event/
https://www.seldon.io/seldon-deploy-1-0-launch-event/

72 BIBLIOGRAPHY

[39] Forecasting hourly electricity consumption of Ger-
many. https://www.kaggle.com/francoisraucent/

forecasting-electricity-consumption-of-germany.

[40] How MLOps helps keep Machine Learning solutions relevant dur-
ing challenging times. https://medium.com/datasparq-technology/

how-mlops-helps-keep-machine-learning-solutions-relevant-during-challenging-times-8e12a609f1ec.

[41] Concept Drift and the Impact of COVID-19 on
Data Science. https://www.iguazio.com/blog/

concept-drift-and-the-impact-of-covid-19-on-data-science/.

[42] Metaflow Doc. https://docs.metaflow.org/introduction/

what-is-metaflow.

[43] How These 8 Companies Implement MLOps – In-Depth Guide. https://

neptune.ai/blog/how-these-8-companies-implement-mlops.

[44] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

[45] What is FaaS (function-as-a-service)? https://www.ibm.com/cloud/learn/

faas.

[46] Technical Debt. https://martinfowler.com/bliki/TechnicalDebt.html.

https://www.kaggle.com/francoisraucent/forecasting-electricity-consumption-of-germany
https://www.kaggle.com/francoisraucent/forecasting-electricity-consumption-of-germany
https://medium.com/datasparq-technology/how-mlops-helps-keep-machine-learning-solutions-relevant-during-challenging-times-8e12a609f1ec
https://medium.com/datasparq-technology/how-mlops-helps-keep-machine-learning-solutions-relevant-during-challenging-times-8e12a609f1ec
https://www.iguazio.com/blog/concept-drift-and-the-impact-of-covid-19-on-data-science/
https://www.iguazio.com/blog/concept-drift-and-the-impact-of-covid-19-on-data-science/
https://docs.metaflow.org/introduction/what-is-metaflow
https://docs.metaflow.org/introduction/what-is-metaflow
https://neptune.ai/blog/how-these-8-companies-implement-mlops
https://neptune.ai/blog/how-these-8-companies-implement-mlops
https://www.ibm.com/cloud/learn/faas
https://www.ibm.com/cloud/learn/faas
https://martinfowler.com/bliki/TechnicalDebt.html

	Abstract
	Introduction
	MLOps
	DevOps
	Influence on MLOps
	MLOps, DataOps, ModelOps and AIOps

	The Machine Learning lifecycle
	A process, not only a product
	People involved in the Machine Learning lifecycle

	State of the Art and the need for MLOps
	Technical Debt in Machine Learning systems and anti-patterns
	Challenges

	MLOps features
	Continuous
	Reproducibility
	Versioning and Experiment Tracking
	Testing
	Monitoring
	Modularity
	Automation
	Workflow Pipeline Design Pattern

	A survey of technologies for MLOps
	Open Source technologies
	Environment/Containerization
	Experiments tracking
	Pipeline Orchestration
	CI/CD
	Feature Store
	Serving

	Design and implementation of a reference architecture for MLOps
	Introducing an MLOps architecture in the business process
	The reference architecture
	Deployment of the architecture
	The training and the prediction pipelines in detail
	Code publication

	MLOps use cases and scenarios
	Conclusions
	Glossary

