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Abstract

Hypernuclear spectroscopy has received considerable attention lately, because it is an
essential tool for the study of the hyperon-nucleon interaction; this, in turn, is believed
to play an important role in dense nuclear matter, such as neutron star interiors. In
particular, the current experimental research is focusing on (e, e′K) reactions on various
nuclear targets, with an extensive measurement program being carried out at Jefferson
National Laboratory. With the aim of contributing to the theoretical understanding
of electroproduction of hypernuclei, we develop a formalism for the evaluation of triple
differential cross sections using the impulse approximation. We also develop a Python
program for the numerical calculation of these cross sections, and we present our results
for the unpolarized triple differential cross section of the e+12C → e′+K+12

Λ B reaction.
We find that our results are in agreement with previous calculations; the cross section
is a smoothly decreasing function of the kaon polar angle for different combinations of
particle-hole orbitals in the hypernucleus as well as for different kinematical conditions.
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Chapter 1

Introduction

1.1 Hypernuclei

A hypernucleus is a nucleus where one or more of the nucleons have been replaced by a
hyperon, i.e. a baryon containing one or more strange quarks. Thus, hypernuclei are part
of the so-called “exotic” matter, having strangeness S 6= 0, and SU(3)-flavor symmetry
is required in their theoretical treatment. The fact that hyperons have non-vanishing
strangeness makes them unaffected by the Pauli exclusion principle: hyperons can thus
penetrate deeply inside the nuclear system, providing a sensitive probe of the nuclear
interior.

The most studied and well known hypernuclei are the ones containing the lightest
hyperon, i.e. the Λ: their lifetime of about 10−11 to 10−10 s is long enough to give rise to
sharp nuclear energy levels. The next lightest hyperon is the Σ, but the strong reaction
ΣN → ΛN which takes place in nuclei makes Σ-hypernuclei unstable, and thus more
difficult to study than Λ-hypernuclei. A variety of Λ-hypernuclei has been observed and
studied experimentally: they can be seen in Fig. 1.1, where they are superimposed on
the chart of regular nuclei.

Hypernuclear spectroscopy is an interesting field of study, since the presence of a
hyperon can allow for the appearance of dynamical symmetries that are forbidden in
ordinary nuclei by the Pauli principle. It is also an essential tool for the understanding
of the hyperon-nucleon and hyperon-hyperon interaction, which is expected to play a
crucial role in dense nuclear matter, such as the interior of neutron stars. For this
reason, experimental data on hypernuclear properties have been collected since the mid
1950’s using different reaction channels [1].
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Figure 1.1: Nuclear chart including all the known nuclei and hypernuclei. The x axis
corresponds to the number of neutrons, the y axis to the number of protons, and
the z axis to the number of Λ hyperons. This image is from the “IX International
Conference on Hypernuclear and Strange Particle Physics” at Johannes Gutenberg-
Universität Mainz.

1.2 About this work

Currently, among the available reaction channels for the study of hypernuclear spec-
troscopy, the most promising one is (e, e′K). Experimental studies of this reaction
are currently being conducted or have been approved at Jefferson National Laboratory
(JLab), Halls A and C; these include a variety of nuclear targets, such as 6Li, 9Be, 12C,
16O, 40Ca or 48Ca. It is clear from the experience on (e, e′p) reactions that a sound
theoretical background is needed to understand the experimental results, so this thesis
aims at making a contribution to this knowledge.

In this work, thus, we will develop the theoretical framework that is necessary for the
evaluation of differential cross sections of (e, e′K) reactions: this includes the kinematics
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of the nuclear reaction, as well as a model for its dynamics. We also develop a Python
code to make numerical calculations of (e, e′K) cross sections, and we test it on a 12C

target.
This thesis is structured as follows. In Chapter 2 we review the development and

features of hypernuclear spectroscopy, and we go more in depth about the motivations
of this field of study. In Chapter 3 we develop the formulae for triple differential cross
sections of (e, e′K) reactions in the impulse approximation, including a treatment of the
leptonic and hadronic part of the reaction. Since a good knowledge of the elementary
process γ + p → K + Λ is required in order to achieve a reasonable description of the
nuclear reaction, in Chapter 4 we analyze the elementary process more in depth and
we go over several models that can be employed to describe it. Then, in Chapter 5
we present our numerical calculations for the 12C(e, e′K)12Λ B reaction and their results.
Finally, Chapter 6 contains a few concluding remarks on our results, as well as possible
future developments of this research.
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Chapter 2

Overview of hypernuclear
spectroscopy

2.1 Principles of hypernuclear spectroscopy

Λ hypernuclei can be produced through a variety of reactions with hadronic or electro-
magnetic beams. In the majority of these reactions, the hypernucleus is populated in
a nucleon-hole, hyperon-particle excited state, since a nucleon in the target nucleus is
converted to a Λ. Then, the hypernucleus decays through strong, electromagnetic and
weak interactions, according to the nature of the state; the possible decays are schemat-
ically illustrated in Fig. 2.1. The Λ binding energies are usually higher than those for
nucleons, and hypernuclei where the Λ is bound in an orbit above the p shell often decay
by emitting nucleons. Widths of hypernuclear states are also narrower than those of
ordinary nuclear states, since the ΛN interaction is weaker than the NN interaction,
the ΛN spin-spin interaction is weak and no exchange term with nucleons is required.
Thus, these widths are expected to be narrower than the spacing between the major
shells, so hypernuclear states should be observable as reasonably narrow peaks. When
hypernuclear states below particle emission threshold are populated, γ decays to the
ground state take place; the ground state will, in turn, decay via weak interaction.

The first experiments conducted to study hypernuclei were emulsion experiments.
Starting from the mid 1950’s, the binding energies of light (A ≤ 16) Λ hypernuclei
were measured from weak decays, and it was found that the Λ potential depth was
approximately 2/3 that of the nucleon. However, almost all of this data was limited to
binding energies of ground states.

Hypernuclei are more conveniently studied via nuclear reactions. There are essentially
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neutron, respectively. This diagram is from [1].

two types of probes that can be used for this purpose: hadronic probes and electromag-
netic probes.

At first (early 1970’s), a lot of data on hypernuclei was collected from hadron-induced
reactions. One is the strangeness exchange reaction

K− + n → π− + Λ. (2.1)

This reaction is characterized by a small momentum transfer q . 200MeV/c, as it can
be seen in Fig. 2.2, and a negligible spin-flip contribution at small pion angles (less than
10◦), i.e. transitions with ∆l = ∆s = 0 dominate. The states that are mainly populated
are substitutional states, where the nucleon is converted to a Λ in the same orbital. The
spin-orbit splittings in p-shell hypernuclei were also found to be quite small. Moreover,
because of the strong absorption of the kaon and pion, mainly the peripheral nucleons
are involved in this reaction. This leads to a fairly high differential cross section (of the
order of some mbarn/sr), but the missing mass spectra are not of very high quality, since
the ū quark in the K− can annihilate with a valence quark in the neutron and form a
three-quark resonance.
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Figure 2.2: Recoil hypernucleus momentum dependence on the incident beam mo-
mentum for a 12C target, plotted for kaon angles of 0◦ and 10◦. This plot is from
[1].

Another hadronic reaction that has been studied starting in the mid 1980’s is the
strangeness production

π+ + n → K+ + Λ. (2.2)

This has a higher momentum transfer with respect to the previous one, and the spin-flip
contribution is slightly larger but still weak at small kaon angles. The larger momen-
tum transfer makes it possible to excite high-spin hypernuclear states where the nucleon
hole has a large angular momentum and the Λ has a small angular momentum. Tran-
sitions with ∆l = 1, 2, ∆s = 0 dominate, and the differential cross section is of order
10 µbarn/sr, which is smaller than the one for (K−, π−) reactions due to the higher
momentum transfer. The data from this reaction on heavier nuclei have demonstrated
the existence of deep lying shell model Λ orbitals in the nuclear medium, but the energy
resolution is still not very good.

A more recent experimental technique is the study of gamma ray spectra of hyper-
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nuclei, i.e. gamma ray hypernuclear spectroscopy. This is characterized by a very good
energy resolution of a few keV; however, it only has access to hypernuclear states below
nucleon emission threshold. Still, gamma ray hypernuclear spectroscopy is a powerful
tool for the investigation of spin-dependent ΛN interactions, which requires very precise
information on the level structure of hypernuclei: this makes it a complementary tool to
reaction-based experiments.

An alternative reaction mechanism with a better energy and spatial resolution with
respect to hadronic reactions is the electromagnetic production using a real or virtual
photon:

γ + p → K+ + Λ. (2.3)

The momentum transfer associated with this reaction is higher, q & 350MeV/c, which
implies a smaller cross section, since the Λ has a smaller probability of sticking to the
nuclear system. This reaction also has a strong spin-flip contribution, even at zero kaon
angle, and transitions with ∆l = 2, ∆s = 1 dominate. The kaon distortion effects are
quite small, ranging from approximately 10% to 50%. Moreover, the photon interacts
relatively weakly with the nucleus, so the reaction is not confined to the nuclear surface,
offering the possibility to study hypernuclear states with a deeply bound hyperon. Using
electron beams, i.e. an electroproduction reaction that involves a virtual photon, allows
for a resolution of several hundreds keV, which is better than hadron-induced reactions,
but multiplet splitting is still problematic. However, electron spectroscopy makes it
possible to explore more excited states than gamma ray spectroscopy, e.g. between
nucleon and Λ emission threshold. In (e, e′K) reactions the products are emitted at very
forward angles, so it is necessary to detect the electron and the kaon in coincidence. There
are several advantages, other than the aforementioned energy resolution, of studying
electromagnetic production of hypernuclei, and particularly electroproduction, compared
to hadron-induced reactions. First, the virtual photon can excite both natural and
unnatural parity states with comparable strength, and makes it possible to obtain more
information on the elementary process, since its mass and polarization can be varied
independently. Also, electromagnetic production takes place on the proton, instead
of the neutron in hadron-induced reactions: this allows to produce hypernuclei that
are otherwise inaccessible, and opens the possibility to study charge dependent effects
in mirror hypernuclei. Additionally, electron beams are very clean and under control,
and can also be polarized, which is impossible for pions and kaons. Finally, from the
theoretical point of view, the electromagnetic part of the reaction is very well understood
from the very reliable field of QED.
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For completeness, let us mention that there are five other possible electroproduction
channels, namely

e+ n → e′ +K0 + Λ, (2.4a)

e+ p → e′ +K+ + Σ0, (2.4b)

e+ p → e′ +K0 + Σ+, (2.4c)

e+ n → e′ +K+ + Σ−, (2.4d)

e+ n → e′ +K0 + Σ0, (2.4e)

but they are not the object of this work. One can also note that the cross section
of Σ electroproduction will be different with respect to Λ electroproduction: this is
because, due to isospin selectivity, only the N nucleon resonances can be exchanged for
Λ production, while ∆’s are also allowed in Σ production.

2.2 Motivations of hypernuclear spectroscopy

It is not straightforward to investigate the innermost part of a nucleus or deeply bound
nuclear states using traditional experimental techniques. In fact, nucleon knockout re-
actions such as (e, e′p) and (p, 2p) can provide information on single-particle aspects of
deeply bound states, but deeper states also become broader, thus prohibiting a precise
spectroscopic investigation. The Λ particle that is present in hypernuclei provides an
excellent probe, because it can penetrate deeply inside the nucleus being unaffected by
the Pauli exclusion principle. This makes hypernuclear spectroscopy a very interesting
tool in the study of nuclear systems.

Another reason for the interest in hypernuclear spectroscopy lies in the fact that it can
provide valuable information on the hyperon production mechanism and the dynamics
of the associated elementary process. The energy position of high-spin terms of Λ-spin
doublets can be determined, as well as response functions (transition form factors) in a
large momentum range.

Perhaps the most prominent motivation for the research in hypernuclear spectroscopy
is the study of hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions, in order
to understand the role of strangeness in the context of hadronic interactions, and, in the
end, achieve a unified description of baryon-baryon interactions. Severe difficulties were
encountered in the determination of the YN potential from scattering data: hyperons
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have relatively short lifetimes (of the order of 10−10 s) and suitable hyperon beams are
not readily available; moreover, only the central part of these potential can be extracted
from scattering experiments alone, leaving no information on the spin-dependent part.
Due to this limitation, the knowledge in this field is still relatively incomplete (compared
to nucleon-nucleon interactions), and hypernuclear spectroscopy has been seen as the
alternative approach that could provide very important insights. What we know, e.g. in
the ΛN case, is that this interaction is much weaker than the NN force: this is due to the
fact that the Λ has zero isospin, so the exchange of a single vector meson, like the pion
or the ρ, is forbidden, which leads to the absence of a dominant tensor force. However,
some of the most outstanding issues in this field are the isospin dependence and the role
of three-body forces in YN interactions.

Hypernuclei also offer the possibility to study mesonic (Λ → N+π) and non-mesonic
(Y + N → N + N) weak decays in the nuclear medium. The last one, in particular, is
a unique opportunity to study the strangeness-changing weak decay, so that the four-
fermion weak vertex may be investigated.

Additionally, hypernuclear spectroscopy can be a useful tool for the study of baryon
resonances. Our current theoretical understanding of baryon (and, more specifically,
nucleon) excitation spectra comes from the quark model framework; this model, however,
predicts a much richer spectrum than what has been observed in πN → πN scattering
experiments, and there are a number of so-called “missing resonances”. These could
be identified through the study of the electromagnetic production of hypernuclei, since
nucleon resonances are exchanged in the reaction. This can also provide an opportunity
to study the coupling of N∗ and ∆ resonances to meson-hyperon final states, and compare
it to the SU(3) predictions.

Another very interesting motivation for studying hypernuclei is their relevance in
neutron stars. A free Λ is unstable, and will primarily decay into a pion and a nucleon
via the weak interaction; however, in a stellar environment it will interact strongly with
other nucleons, forming a hypernucleus. The appearance of hyperons is thus expected to
be energetically favored in dense nuclear matter. Many models that predict the presence
of hyperons in neutron star cores rule out the existence of two-solar-mass neutron stars,
which have instead been recently observed. This suggests that our knowledge of nuclear
interactions involving hyperons and hyperon matter is incomplete, and is known as the
“hyperon puzzle”. In the light of this, studying electroproduction reactions on heavy
nuclear targets with large neutron excess, such as 208Pb, could provide our best proxy
for the neutron star environment [2].

12



Interactions including hyperons are also pertinent in the field of heavy-ion collisions,
which is mainly concerned with the analysis of the nuclear equation of state, the possible
phase transitions from hadronic matter to quark-gluon plasma and the modification of
hadron properties in dense, strong-interacting environments (e.g. the magnetic moment
of the Λ in the nuclear environment). The precise measurement of single-particle level
positions of the Λ from 12

Λ C to 208
Λ Pb can shed some light on the quark deconfinement

reaction in the nuclear medium.

2.3 Tools for the theoretical study of hypernucleus
electroproduction

Let us conclude this chapter by introducing the tools that are needed to conduct a
theoretical analysis of electroproduction of hypernuclei. The leptonic part of the reaction
is well understood from QED, so the main difficulties arise from the hadronic part.

The first ingredient that is needed is the state of the target nucleus and the produced
hypernucleus, i.e. their wavefunctions. If one considers the reaction to take place on
the full nucleus and hypernucleus, then the full nuclear and hypernuclear wavefunctions
are needed, and obtaining them becomes increasingly difficult as the size of the nucleus
increases. Alternatively, on can adopt a factorization approach, where the virtual photon
is considered to interact with a single nucleon: this is a good approximation when the
photon momentum is high enough. In this case, one only needs the wavefunctions of
the bound nucleon and hyperon, which can be obtained from mean field methods or ab
initio methods.

Then, one needs the distorted wavefunction of the kaon, which can be obtained from
the study of the hypernucleus’ optical potential. However, since the kaon distortion is
rather small, we will neglect it in this work.

The last ingredient is the amplitude for the elementary reaction γ + p → K+ + Λ.
There are two main approaches to tackle it: QCD or effective field theories (quantum
hadrodynamics). The parton-based QCD approach uses quark and gluon degrees of
freedom, and the strange quarks that appear in the final state emerge from the quark sea.
In these models, hadronic resonances are implicitly included as excited states, making
the number of free parameters relatively small. The internal structure of hadrons is also
implicitly included, and doesn’t need to be modeled phenomenologically. However, using
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quark models for electroproduction of hypernuclei is extremely complicated, and below
the energies where QCD can be treated perturbatively quarks are not the ideal degrees
of freedom to use. Effective field theories, on the other hand, use mesons and baryons as
degrees of freedom, and the elementary reaction is modeled as the exchange of baryon
and meson resonances, each one with its own properties. This makes the number of
free parameters of the theory rather large; these free parameters are generally fitted to
photoproduction data, and since the χ2 hypersurface doesn’t have a pronounced global
minimum, but rather many local minima, one can have many different sets of parameters
that describe photoproduction equally well but give different results when extended to
electroproduction. There are several types of hadrodynamical approaches, which include
isobar models, Regge and Regge-plus-resonance models and multipole approaches; in
this work we will use an isobar model, since it is the one that can be integrated in the
full nuclear reaction in the most straightforward way.
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Chapter 3

Formalism

In this section we are going to address the formalism that is necessary to tackle the
hypernucleus electroproduction reaction and its cross section. The following conventions
will be used throughout this thesis: natural units ~ = c = 1, and the (+,−,−,−)

Minkowski metric, i.e. gµν = diag(1,−1,−1,−1).

3.1 General cross section formula

Our goal is to evaluate the differential cross section for kaon electroproduction on nuclei.
We write the reaction in the following way:

e(k) + A(P ) → e′(k′) +K+(p′1) + ΛA(P
′) (3.1)

where the four-momenta of the particles are indicated inside the brackets (we are follow-
ing the notation of [3]). The components of these four-momenta are denoted as follows:
kµ = (Ek,k), P µ = (EP ,P), k′µ = (Ek′ ,k

′), p′µ1 = (Ep′1
,p′

1), P ′µ = (EP ′ ,P′). We also
define the momentum transfer qµ = kµ − k′µ = (ω,q), which corresponds to the four-
momentum of the virtual photon. In our case qµ is space-like (q2 = qµq

µ < 0), so we
define the photon virtuality Q2 = −q2 = |q|2 − ω2.

We will consider the above reaction in the impulse approximation regime, where the
wavelength of the exchanged photon is smaller than the typical internuclear distance
of 1.5 fm. This corresponds to an energy greater than about 130 MeV, which means
that we can assume the electron to be in an ultra-relativistic regime: in the upcoming
calculations we will therefore use |k| ' Ek, |k′| ' Ek′ .
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The cross section for a generic 2 → 3 particle reaction can be written as (see e.g. Eq.
5.22 of [8])

dσ =
(2π)4δ4(k + P − k′ − p′1 − P ′)

(2Ek) |vk − vA|
|M|2 d3k′

2Ek′(2π)3
d3p′

1

2Ep′1
(2π)3

d3P′

(2π)3
(3.2)

where vk − vA is the relative velocity of the electron with respect to the target nucleus.
Note that, in the above formula, we have included the normalization factor 1

2E
for the

electrons and kaon, but not for the nucleus and hypernucleus: this is because for the
electrons and kaon we will adopt the normalization for free spinors u†

pup = 2p0, while
for the nucleus and hypernucleus we will adopt the normalization for bound spinors∫
d3p u†

pup = 1.
We will simplify Eq. (3.2) in the laboratory frame of reference (see Fig. 3.1), where

P µ = (MA,0), with MA being the mass of the target nucleus, and where we take the z

axis in the direction of q. The leptonic plane contains k, k′ and q: we will identify it
with the xz plane. The electron scattering angle is θ′, and the direction of the incident
electron with respect to the z axis is denoted by the angle α. The hadronic plane contains
q, p′

1 and P′, and the kaon scattering angle is denoted by θ′1; the angle this plane forms
with respect to the leptonic plane will be called φ′

1.

ẑ

ŷ

x̂

φ′
1

e(k)

e′(k′)

αθ′

γ∗(q)

ΛA(P
′)

K(p′1)

θ′1

Figure 3.1: Laboratory frame of reference, with the leptonic plane in yellow and the
hadronic plane in green.

We can start by using the spatial part of the delta function to integrate out the
three-momentum of the recoiling hypernucleus and by noting that in the ultra-relativistic
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regime vk − vA = c = 1. This leads to

dσ =
δ(Ek +MA − Ek′ − Ep′1

− EP ′)

23(2π)5EkEk′Ep′1

d3k′ d3p′
1 |M|2. (3.3)

The two differentials can be rewritten in spherical coordinates: if we define Ω′
1 = (θ′1, φ

′
1),

then

d3k′ = 2πE2
k′ dEk′d(cos θ

′) (3.4a)

d3p′
1 = p′21 dp′1dΩ

′
1 = p′1Ep′1

dEp′1
dΩ′

1 =
√

E2
p′1
−m2

K −−Ep′1
dEp′1

dΩ′
1. (3.4b)

The second equality is obtained by using p′1dp
′
1 = Ep′1

dEp′1
, which comes directly from

the differentiation of the mass-shell condition E2
p′1

= p′21 +m2
K .

Inserting the differentials (3.4) into Eq. (3.3) we get

d3σ

dEk′d(cos θ′)dΩ′
1

=
δ(Ek +MA − Ek′ − Ep′1

− EP ′)

23(2π)4Ek

Ek′

√
E2

p′1
−m2

K |M|2 dEp′1
. (3.5)

A more explicit expression for the energy of the recoiling hypernucleus is given by

EP ′ =
√

|P′|2 +M2
ΛA

=

=

√
|q− p′

1|2 +
[
MA −

(
mp − E

(p)
B

)
+
(
mΛ − E

(Λ)
B

)]2
=

=

√
|q|2 + E2

p′1
−m2

K − 2|q|
√

E2
p′1
−m2

K cos θ′1 +
[
MA −

(
mp − E

(p)
B

)
+
(
mΛ − E

(Λ)
B

)]2
,

(3.6)
where |q| =

√
E2

k + E2
k′ − 2EkEk′ cos θ′, and E

(p)
B and E

(Λ)
B are the binding energies of a

proton and of a Λ, respectively.
We can now use the remaining delta function to integrate out Ep′1

: defining f(Ep′1
) =

Ek +MA − Ek′ − Ep′1
− EP ′(Ep′1

), then

δ
(
f(Ep′1

)
)
=

δ(Ep′1
− E∗

p′1
)

|f ′(E∗
p′1
)|

, (3.7)

where E∗
p′1

is the root of the equation f(Ep′1
) = 0. The triple differential cross section

now takes the form

d3σ

dEk′d(cos θ′)dΩ′
1

=
Ek′

√
E∗2

p′1
−m2

K

23(2π)4Ek|f ′(E∗
p′1
)|
|M|2. (3.8)

More explicitly, f ′(Ep′1
) is given by

f ′(Ep′1
) = −1−

Ep′1

(
1− |q| cos θ′1

/√
E2

p′1
−m2

K

)
√

|q|2 + E2
p′1
−m2

K − 2|q|
√

E2
p′1
−m2

K cos θ′1 +M2
ΛA

. (3.9)
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To conclude this section, let us also compute the analytical expression for E∗
p′1

. Setting
f(Ep′1

) = 0 and inserting expression (3.6) for EP ′ we get

Ek +MA − Ek′ − Ep′1
=

√
|q|2 + E2

p′1
−m2

K − 2|q|
√

E2
p′1
−m2

K cos θ′1 +M2
ΛA

. (3.10)

Since Ek, MA and Ek′ do not depend on Ep′1
, we can collect them under the name of

C ≡ Ek + MA − Ek′ . Using this shorthand notation and squaring both terms of the
above equation, we obtain−C2 + 2CEp′1

+ |q|2 −m2
K +M2

ΛA
= 2|q|

√
E2

p′1
−m2

K cos θ′1

Ep′1
≤ C.

(3.11)

The condition in the second line comes from requiring the positivity of the left-hand
side of Eq.(3.10), and has the clear physical meaning that the energy of the outgoing
kaon should not exceed the energy of the incoming electron plus the nucleus mass minus
the energy of the outgoing electron. After introducing another shorthand notation D ≡
−C2 + |q|2 −m2

K +M2
ΛA

and squaring both sides of the above equation, we are left with

(
C2 − |q|2 cos2 θ′1

)
E2

p′1
+ CDEp′1

+
D2

4
+ |q|2m2

K cos2 θ′1 = 0

D + 2CEp′1

cos θ′1
≥ 0

Ep′1
≤ C.

(3.12)

The solution for the second-degree equation on the first line is

E∗
p′1

=
−CD ±

√
C2D2 − (C2 − |q|2 cos2 θ′1) (D2 + 4|q|2m2

K cos2 θ′1)

2 (C2 − |q|2 cos2 θ′1)
. (3.13)

3.2 Factorization of the matrix element

Having completely treated the kinematics of the reaction, we now turn to the matrix
element M. In the impulse approximation (see Fig. 3.2), only one virtual photon is
exchanged, so using standard Feynman rules the matrix element can be written as

M = ūfγµui
e2

q2
〈
K+

ΛA
∣∣ Jµ(q) |A〉 , (3.14)

where ui = u(k, h) and ūf = ū(k′, h′) are the spinors for the incoming and outgoing
electron, respectively, which depend on the corresponding electron helicities h and h′,
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A ΛA

p Λ

e e′

γ∗

K+

Figure 3.2: Feynman diagram for the e+A → e′+K++ΛA process in the impulse ap-
proximation: the virtual photon interacts with a single proton from the target nucleus,
and the other nucleons act as spectators.

and are normalized as u†(p)u(p) = 2p0, ū(p)u(p) = 2m; |A〉 and |K+
ΛA〉 are the initial

and final hadronic states, and Jµ is the hadronic current operator.
The modulus squared of the matrix element can then be cast in the form

|M|2 =
(
e2

q2

)2

LµνW
µν (3.15)

where Lµν and W µν are the leptonic and hadronic tensor, respectively, and are defined
as

Lµν = ūfγµuiūiγνuf = tr (uf ūfγµuiūiγν) (3.16)

W µν =
∑

αA,αY

〈
K+

ΛA
∣∣ Jµ(q) |A〉αA,αY

〈
K+

ΛA
∣∣ Jν(q) |A〉∗αA,αY

(3.17)

where αA and αY are the quantum numbers that define the transition from the nucleus
to the hypernucleus.

Let us now see a consideration that will allow us to simplify the sum over repeated
indices in Eq. (3.15). For convenience, let us define

lµ ≡ ūfγµui and wµ
αA,αY

≡
〈
K+

ΛA
∣∣ Jµ(q) |A〉αA,αY

, (3.18)

so that
Lµν = lµl

∗
ν and W µν =

∑
αA,αY

wµ
αA,αY

w∗ν
αA,αY

. (3.19)

Gauge invariance, or equivalently lepton current conservation, implies

qµlµ = 0 ⇒ ωl0 − |q|l3 = 0 ⇒ l0 =
|q|
ω
l3. (3.20)

Similarly, hadron current conservation implies (omitting the quantum numbers for brevity)

w0 =
|q|
ω
w3. (3.21)
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Consequently,

lµw
µ =

|q|2

ω2
l3w3 − l1w1 − l2w2 − l3w3 = −l1w1 − l2w2 − ω2 − |q|2

ω2
l3w3

= −l1w1 − l2w2 − q2

ω2
l3w3 = liw

i

(
−Q2

ω2

)δi3

,

(3.22)

where i = 1, 2, 3. This means that we can restrict ourselves to the space-like parts of
the leptonic and hadronic tensors, provided that we include a factor −Q2

ω2 for each third
component. It is convenient to include this factor in the leptonic tensor and ignore it in
the hadronic one: we can thus define a modified leptonic tensor

L̃ij ≡
(
−Q2

ω2

)δi3+δj3

Lij, (3.23)

and Eq. (3.15) becomes

|M|2 =
(
e2

q2

)2

L̃ijW
ij. (3.24)

3.3 The leptonic tensor

3.3.1 Expansion for the four possible polarization combinations

Let us compute the leptonic tensor in four different cases, corresponding to the four
combinations of polarized/unpolarized incoming/outgoing electron beams. When a beam
is unpolarized, in the leptonic tensor we will take the sum over the two possible helicities,
and we will use the identity ∑

h=±1

u(p, h)ū(p, h) = /p, (3.25)

where we have neglected the mass because the electron is in the ultra-relativistic regime.
On the other hand, when a beam is polarized, we will project the desired helicity by
first summing over the possible helicities and then acting on the sum with the projection
operator

Ph =
1 + hγ5

2
. (3.26)

It is now easy to compute the four possible leptonic tensors following this procedure
and using trace identities for the Dirac matrices (see Appendix A.2). When both the
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incoming and outgoing beams are unpolarized, the leptonic tensor reads

L(0)
µν = tr

[∑
h,h′

u(k′, h′)ū(k′, h′)γµu(k, h)ū(k, h)γν

]
= tr(/k′γµ/kγν)

= 4(kµk
′
ν + k′

µkν − k · k′gµν)

(3.27)

(to obtain the third line from the second one we have used Eq. (A.7)).
When the incoming beam is polarized and the outgoing beam is unpolarized, the

result is

L(1)
µν = tr

[(
1 + hγ5

2

)∑
h,h′

u(k′, h′)ū(k′, h′)γµu(k, h)ū(k, h)γν

]

=
1

2
tr[(1 + hγ5)(/k′γµ/kγν)]

=
1

2
L(0)
µν +

h

2
k′αkβ(−4iεαµβν)

= 2(kµk
′
ν + k′

µkν − k · k′gµν − ihkαk′βεµναβ),

(3.28)

where εµναβ is the anti-symmetric tensor with ε0123 = 1 (to go from the second to the
third line we have used Eq. (A.10)).

Similarly, when the incoming beam is unpolarized and the outgoing beam is polarized
we have

L(2)
µν = 2(kµk

′
ν + k′

µkν − k · k′gµν − ih′kαk′βεµναβ). (3.29)

Finally, when both the incoming and outgoing beams are polarized, the leptonic
tensor becomes

L(3)
µν = tr

[(
1 + hγ5

2

)(
1 + h′γ5

2

)∑
h,h′

u(k′, h′)ū(k′, h′)γµu(k, h)ū(k, h)γν

]

=
1

4
tr[(1 + hγ5)(1 + h′γ5)(/k′γµ/kγν)]

=
1

4
L(0)
µν +

h+ h′

4
k′αkβ(−4iεαµβν) +

hh′

4
L(0)
µν

= (1 + hh′)(kµk
′
ν + k′

µkν − k · k′gµν)− i(h+ h′)kαk′βεµναβ

(3.30)

(for the last term of the third line we have used Eq. (A.3)).

3.3.2 Components of the fully unpolarized leptonic tensor

It is now our goal to compute the space-like components of the modified leptonic tensor
in the fully unpolarized case more explicitly. First, it is customary to define the virtual
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photon polarization density matrix as

ρij =
1

4Q2
L̃ij, (3.31)

which, for the fully unpolarized case, becomes

ρij =
1

Q2

(
−Q2

ω2

)δi3+δj3

(kik
′
j + k′

ikj + k · k′δij). (3.32)

Let us also define the transverse and longitudinal polarization parameters, respectively,
as

ε =
ρ11 − ρ22
ρ11 + ρ22

, εL =
ρ33

ρ11 + ρ22
. (3.33)

We are now going to calculate the components of ρ in the laboratory frame. Let us
recall that the components of k, k′ and q in this frame are:

k = (k1, 0, k3) (3.34a)

k′ = (k′
1, 0, k

′
3) (3.34b)

q = (0, 0, |q|) (3.34c)

The fact that q = k−k′ implies that k1 = k′
1 and k3−k′

3 = |q|. We can also evaluate the
x and z components of k and k′ by considering the following scalar and vector products:

(k× k′)2 = |k||k′| sin θ′ = (k3k
′
1 − k′

3k1) = k1|q| ⇒ k1 = k′
1 =

EkEk′ sin θ
′

|q|
(3.35a)

k · q = |k|2 − |k||k′| cos θ′ = k3|q| ⇒ k3 =
Ek

|q|
(Ek − Ek′ cos θ

′) (3.35b)

k′ · q = |k||k′| cos θ′ − |k′|2 = k′
3|q| ⇒ k′

3 =
Ek′

|q|
(Ek cos θ

′ − Ek′) (3.35c)

In view the upcoming computations, it is useful to evaluate the following quantities, too:

Q2 = −(k − k′)2 = 2k · k′ = 2(EkEk′ − EkEk′ cos θ
′) = 4EkEk′ sin

2 θ
′

2
, (3.36)

Ek + Ek′ =
√
(Ek + Ek′)2 =

√
[(Ek + Ek′)2 − |k− k′|2] + |q|2 =

=
√
[2EkEk′ + 2EkEk′ cos θ′] + |q|2 =

√
4EkEk′ cos2

θ′

2
+ |q|2.

(3.37)

We are now ready to insert the components of Eq.ns (3.35) into Eq. (3.32). Starting
with the 11 and 22 components, we have

ρ11 =
1

Q2

(
2
E2

kE
2
k′ sin

2 θ′

|q|2
+

Q2

2

)
=

1

Q2

(
2
Q4 · 4 sin2 θ′

2
cos2 θ′

2

16 sin4 θ′

2
· |q|2

+
Q2

2

)
=

Q2

2|q|2
cot2

θ′

2
+
1

2

(3.38)
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ρ22 =
1

Q2
· Q

2

2
=

1

2
. (3.39)

This allows us to compute

ε =

Q2

2|q|2 cot
2 θ′

2

Q2

2|q|2 cot
2 θ′

2
+ 1

=

(
1 + 2

|q|2

Q2
tan2 θ

′

2

)−1

. (3.40)

It is useful to solve this equation for the recurring combination Q2

2|q|2 cot
2 θ′

2
: the result is

Q2

2|q|2
cot2

θ′

2
=

ε

1− ε
. (3.41)

We can also rewrite ρ11 in terms of ε:

ρ11 =
ε

1− ε
+

1

2
=

1

2

1 + ε

1− ε
. (3.42)

Turning to the calculation of ρ33, we have

ρ33 =
Q2

ω4

[
2
EkEk′

|q|2
(Ek − Ek′ cos θ

′)(Ek cos θ
′ − Ek′) +

Q2

2

]
=

=
Q2

ω4

[
Q2

2 sin2 θ′

2
|q|2

(E2
k cos θ

′ + E2
k′ cos θ

′ − EkEk′ − EkEk′ cos
2 θ′ ± 2EkEk′ cos θ

′) +
Q2

2

]
=

=
Q4

ω4

[
1

2 sin2 θ′

2
|q|2

((Ek − Ek′)
2 cos θ′ − EkEk′(1− cos θ′)2) +

1

2

]
=

=
Q4

ω4

[
1

2 sin2 θ′

2
|q|2

(
ω2 cos θ′ − Q2

4 sin2 θ′
4 sin4 θ′

)
+

1

2

]
=

=
Q4

ω4

[
ω2(1− 2 sin2 θ′

2
)

2 sin2 θ′

2
|q|2

− Q2

2|q|2
+

1

2

]
=

Q4

ω4

[
ω2

2 sin2 θ′

2
|q|2

− ω2

|q|2
+

ω2

2|q|2

]
=

=
Q4

ω2

1− sin2 θ′

2

2 sin2 θ′

2
|q|2

=
Q4

ω2

cot2 θ′

2

2|q|2
=

Q2

ω2

Q2

2|q|2
cot2

θ′

2
=

Q2

ω2

ε

1− ε
(3.43)

where, in the second line, ±2EkEk′ cos θ
′ means that we are adding and subtracting this

term. Thus,

εL =
Q2

ω2

ε

1− ε
·
(
1

2

1 + ε

1− ε
+

1

2

)−1

=
Q2

ω2
ε. (3.44)

The last non-vanishing component of ρij is

ρ13 = ρ31 = − 1

ω2

EkEk′ sin θ
′

|q|

[
Ek

|q|
(Ek − Ek′ cos θ

′) +
Ek′

|q|
(Ek cos θ

′ − Ek′)

]
=

= − Q2 sin θ′

4 sin2 θ′

2
|q|2

E2
k − E2

k′

ω2
.

(3.45)
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Let us compute the two fractions separately for the sake of clarity:

− Q2 sin θ′

4 sin2 θ′

2
|q|2

= −
2Q2 sin θ′

2
cos θ′

2

4 sin2 θ′

2
|q|2

= −
Q2 cot θ′

2

2|q|2
= − Q

|q|

√
ε

2(1− ε)
, (3.46)

E2
k − E2

k′

ω2
=

Ek + Ek′

ω
=

√
4EkEk′ cos2

θ′

2
+ |q|2

ω
=

|q|
ω

√
Q2 cos2 θ′

2

sin2 θ′

2
|q|2

+ 1 =
|q|
ω

√
1 + ε

1− ε
.

(3.47)
Putting them together, we have

ρ13 = −Q

ω

1

1− ε

√
ε(1 + ε)

2
= − 1

1− ε

√
Q2

ω2
ε
1 + ε

2
= − 1

1− ε

√
εL

1 + ε

2
. (3.48)

We can finally write the complete polarization density matrix by putting together Eq.ns
(3.42), (3.39), (3.43) and (3.48):

ρij =
1

1− ε


1+ε
2

0 −
√
εL

1+ε
2

0 1−ε
2

0

−
√

εL
1+ε
2

0 εL

 . (3.49)

3.4 Model-independent parametrization of the had-
ronic tensor

In this section we are first going to see a model-independent procedure to parametrize
the hadronic tensor using structure functions; then, we will expand Eq. (3.24) for the
matrix element squared in the fully unpolarized case in terms of those structure functions.
Finally, we will explain how these structure functions can be extracted from an arbitrary
hadronic tensor.

3.4.1 Parametrization with structure functions

Since the hadronic tensor W µν just involves hadronic variables, the only four-momenta
it can depend on are q, P , P ′ and p′1; further, energy-momentum conservation fixes
one of them: we will eliminate P ′ = q + P − p′1 and keep q, P and p′1 as our three
independent variables. We will also assume a parity conserving current, which forbids
the linear dependence of W µν on the totally antisymmetric tensor. It follows from these
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considerations that W µν must have the form

W µν =W1g
µν +W2q

µqν +W3p
′µ
1 p

′ν
1 +W4P

µP ν +W5q
µp′ν1 +W6p

′µ
1 q

ν+

+W7q
µP ν +W8P

µqν +W9p
′µ
1 P

ν +W10P
µp′ν1 ,

(3.50)

where the Wj, (j = 1, 2, ..., 10) are called structure functions. Another constraint comes
from current conservation:

qµW
µν = 0, qνW

µν = 0. (3.51)

Imposing this on (3.50) results in six equations, one of which is linearly dependent on
the other five: this leaves us with only five independent structure functions.

However, it is easier to build W µν directly form current-conserving terms. Notice that,
given a tensor with n indices tµ1,...,µn , it is possible to construct its current-conserving
counterpart T µ1,...,µn , which automatically satisfies qµT

µ,µ2,...,µn = 0, as follows:

T µ1,...,µn = tµ1,...,µn + tµ,µ2,...,µnqµ
qµ1

Q2
, (3.52)

Applying this procedure to q gives 0, while applying it to gµν , P µ and p′µ1 , respectively,
results in the following tensors:

Gµν = gµν +
qµqν

Q2
(3.53a)

Aµ = P µ +
P · q
Q2

qµ (3.53b)

Bµ = p′µ1 +
p′1 · q
Q2

qµ. (3.53c)

We can now write W µν as a combination of the tensors above, which leaves us with five
structure functions, as expected:

W µν = W1G
µν +W2A

µAν +W3B
µBν +W4(A

µBν +BµAν)+W5(A
µBν −BµAν). (3.54)

Here, for the last two terms, we have separated the symmetric and antisymmetric part,
and of course the structure functions have been redefined from the ones in Eq. (3.50).

3.4.2 Expansion of the matrix element

It is now straightforward to compute the matrix element squared by contracting the
above hadronic tensor with the leptonic one (Eq. (3.24)). For the fully unpolarized case
we have

|M|2 =
(
e2

Q2

)2

4Q2[ρ11W
11 + ρ22W

22 + ρ33W
33 + ρ13(W

13 +W 31)]. (3.55)
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We will now express the above formula in terms of the structure functions. To do so,
let us first compute the relevant components of Gµν , Aµ and Bµ: since, in the laboratory
frame, the momenta are given by

q = (ω, 0, 0, |q|) (3.56a)

P = (MA, 0, 0, 0) (3.56b)

p′1 =
(
Ep′1

,
√

E2
p′1
−m2

K(sin θ
′
1 cosφ

′
1, sin θ

′
1 sinφ

′
1, cos θ

′
1)
)
, (3.56c)

we have

G11 = −1, G22 = −1, G33 =
ω2

Q2
, G13 = 0, (3.57a)

A1 = 0, A2 = 0, A3 =
MAω|q|

Q2
, (3.57b)

B1 =
√

E2
p′1
−m2

K sin θ′1 cosφ
′
1, B2 =

√
E2

p′1
−m2

K sin θ′1 sinφ
′
1, (3.57c)

B3 =
ω

Q2

(
|q|Ep′1

− ω
√

E2
p′1
−m2

K cos θ′1

)
≡ ω

Q2
b. (3.57d)

Inserting these into Eq. (3.54) allows us to express the components of the hadronic
tensor in terms of the structure functions; the components we need are

W 11 = −W1 +W3(E
2
p′1
−m2

K) sin
2 θ′1 cos

2 φ′
1, (3.58a)

W 22 = −W1 +W3(E
2
p′1
−m2

K) sin
2 θ′1 sin

2 φ′
1, (3.58b)

W 33 = W1
ω2

Q2
+W2

(
MAω|q|

Q2

)2

+W3

(
ωb

Q2

)2

+ 2W4
MAω

2|q|
Q4

b, (3.58c)

W 13 +W 31 = 2
ω

Q2
sin θ′1 cosφ

′
1

√
E2

p′1
−m2

K(W3b+W4MA|q|). (3.58d)

We can finally insert these expressions into Eq. (3.55) to find the matrix element
squared:

|M|2 = 4e4

Q2(1− ε)

[
1

2
(−2W1 +W3(E

2
p′1
−m2

K) sin
2 θ′1)

+
ε

2
W3(E

2
p′1
−m2

K) sin
2 θ′1(cos

2 φ′
1 − sin2 φ′

1)

+ εW1 + εW2
M2

A|q|2

Q2
+ εW3

b2

Q2
+ 2εW4

MA|q|b
Q2

−
√

2ε(1 + ε)

√
E2

p′1
−m2

K

Q
sin θ′1 cosφ

′
1(W3b+W4MA|q|)

]
.

(3.59)
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This can be simplified to

|M|2 = 4e4

Q2(1− ε)

[
W1(ε− 1) +W2ε

M2
A|q|2

Q2
+W3(E

2
p′1
−m2

K)
sin2 θ′1

2
(1 + ε cos 2φ′

1)

+W4ε
MA|q|b
Q2

+ (W3b+W4MA|q|)

ε
b

Q2
−
√
2ε(1 + ε)

√
E2

p′1
−m2

K

Q
sin θ′1 cosφ

′
1

].
(3.60)

3.4.3 Extracting structure functions from a hadronic tensor

Now, let us see how one can extract the structure functions from a given (model-
dependent) hadronic tensor W µν . From (3.54), we can write the symmetric part of
the hadronic tensor as

W µν
s =

4∑
i=1

Wiu
µν
i , (3.61)

where uµν
i ≡ {Gµν , AµAν , BµBν , (AµBν +BµAν)}. If we multiply the above equation by

uj µν on both sides, we get

W µν
s uj µν =

4∑
i=1

Wiu
µν
i uj µν ≡

4∑
i=1

UjiWi, (3.62)

where we have defined the symmetric matrix

Uij = Uji = uµν
i uj µν . (3.63)

Let us rewrite Eq. (3.62) in a matrix-vector form:

−→
Wu = U

−→
W, (3.64)

where the components of the vectors are (
−→
Wu)i = W µν

s ui µν , (
−→
W )i = Wi and U is the

matrix whose elements are the ones in Eq. (3.63). Thus, in order to extract the structure
functions, we need to invert the above equation:

−→
W = U−1−→Wu. (3.65)

In order to get an explicit form of the U matrix, let us compute the contractions
between the Gµν , Aµ and Bµ tensors:

GµνG
µν = 3 (3.66a)

GµνA
µAν = AµA

µ = A2 = M2
A

|q|2

Q2
(3.66b)
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GµνB
µBν = BµB

µ = B2 = m2
K +

(
|q|b
ωQ

−
Ep′1

Q

ω

)2

(3.66c)

GµνA
µBν = AµB

µ = A ·B =
MA|q|b
Q2

. (3.66d)

Note that, owing to the current conservation property of these tensors, Gµν acts on Aµ

and Bµ as the normal Minkowski metric. Then, using the definition (3.63), the U matrix
takes the form

U =


3 A2 B2 2A ·B
A2 A4 (A ·B)2 2A2(A ·B)

B2 (A ·B)2 B4 2B2(A ·B)

2A ·B 2A2(A ·B) 2B2(A ·B) 2A2B2 + 2(A ·B)2

 . (3.67)

Its inverse U−1 is easily obtained with a symbolic calculation software, and its elements
are listed below.

(U−1)00 = 1

(U−1)01 = (U−1)10 =
−2A4B6 + 4A2B4(A ·B)2 − 2B2(A ·B)4

2A6B6 − 6A4B4(A ·B)2 + 6A2B2(A ·B)4 − 2(A ·B)6

(U−1)02 = (U−1)20 =
−2A6B4 + 4A4B2(A ·B)2 − 2A2(A ·B)4

2A6B6 − 6A4B4(A ·B)2 + 6A2B2(A ·B)4 − 2(A ·B)6

(U−1)03 = (U−1)30 =
2A4B4(A ·B)− 4A2B2(A ·B)3 + 2(A ·B)5

2A6B6 − 6A4B4(A ·B)2 + 6A2B2(A ·B)4 − 2(A ·B)6

(U−1)11 =
4A2B6 − 4B4(A ·B)2

2A6B6 − 6A4B4(A ·B)2 + 6A2B2(A ·B)4 − 2(A ·B)6

(U−1)12 = (U−1)21 =
2A4B4 − 2(A ·B)4

2A6B6 − 6A4B4(A ·B)2 + 6A2B2(A ·B)4 − 2(A ·B)6

(U−1)13 = (U−1)31 =
4B2(A ·B)3 − 4A2B4(A ·B)

2A6B6 − 6A4B4(A ·B)2 + 6A2B2(A ·B)4 − 2(A ·B)6

(U−1)22 =
4A6B2 − 4A4(A ·B)2

2A6B6 − 6A4B4(A ·B)2 + 6A2B2(A ·B)4 − 2(A ·B)6

(U−1)23 = (U−1)32 =
4A2(A ·B)3 − 4A4B2(A ·B)

2A6B6 − 6A4B4(A ·B)2 + 6A2B2(A ·B)4 − 2(A ·B)6

(U−1)33 =
A4B4 + 2A2B2(A ·B)2 − 3(A ·B)4

2A6B6 − 6A4B4(A ·B)2 + 6A2B2(A ·B)4 − 2(A ·B)6

(3.68)
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3.5 Model for the hadronic tensor

3.5.1 Integration of the elementary current

In order to model the hadronic tensor W µν , we are going to employ some approximations.
First, since we consider a high photon momentum, we will assume that it interacts with
just one bound nucleon (see Fig. 3.2). This allows us to neglect two- and many-body
components of the current operator. We will also neglect rescattering processes of the
produced kaon and Λ, as well as kaon distortion effects.
We are going to denote the four-momenta of the bound proton and Λ pµ = (Ep,p) and
p′µ2 = (Ep′2

,p′
2), respectively. Recalling that we had set wµ

αA,αY
= 〈K+

ΛA| Jµ(q) |A〉αA,αY
,

the above approximations allow us to rewrite it as

wµ
αA,αY

=

∫
d3p′

2 d
3p δ3 (q+ p− p′

1 − p′
2)UαΛ

(p′
2) Ĵ

µ(q)Uαp(p)

=

∫
d3p UαΛ

(q+ p− p′
1) Ĵ

µ(q)Uαp(p)

=

∫ pmax

0

dp

∫ π

0

dθ

∫ 2π

0

dφ
(
p2 sin θ

)
UαΛ

(q+ p− p′
1) Ĵ

µ(q)Uαp(p)

(3.69)

where Uαp and UαΛ
are the spinor wavefunctions of the bound proton and Λ, respectively,

and Ĵµ(q) is the current operator for the elementary process γ∗ + p → K+ + Λ, with
γ∗ the virtual photon; pmax is the maximum momentum for which the momentum space
wavefunctions are still appreciable.

Finally, all that is left to do in order to obtain the hadronic tensor for this model is
to insert wµ

αA,αY
, calculated with the formula above, into Eq. (3.17).

3.5.2 Momentum space wavefunctions for bound spinors

Let us write down the explicit form of the bound spinor wavefunctions U(p). To do this,
we start from the coordinate representation

UEκm(x) =


gEκ(r)

r
Yκm(x̂)

ifEκ(r)

r
Y−κm(x̂)

 , (3.70)

where x̂ is the unit vector associated to the position x, E is the binding energy of the
spinor, m is the total magnetic quantum number (i.e. associated with the total angular
momentum j), and κ is the generalized angular momentum.
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The relations between κ, j and l are:

j = |κ| − 1

2
, l =

{
κ if κ > 0

−1− κ if κ < 0
, (3.71)

or equivalently

κ =

{
j + 1

2
= l if j = l − 1

2

−j − 1
2
= −l − 1 if j = l + 1

2

. (3.72)

Note that j(−κ) = j(κ), while l(−κ) = l(κ)±1, the upper and lower signs corresponding
to the cases j(κ) = l(κ)± 1

2
. In other words, switching from κ to −κ leaves j unchanged,

while l changes to the other orbital angular momentum that can give rise to the same
total j, according to the summation rules of angular momentum. One can easily check
that, for both cases j(κ) = l(κ)± 1

2
, the following equality holds:

l(−κ) = 2j(κ)− l(κ). (3.73)

The Yκm(x̂) in Eq. (3.70) are the spinor spherical harmonics, which have the form

Yκm(x̂) =
∑

s′z=±1/2

(l,m− s′z,
1
2
, s′z|jm)Yl,m−s′z(x̂)χs′z

=

(
(l,m− 1

2
, 1
2
, 1
2
|j,m)Yl,m−1/2(x̂)

(l,m+ 1
2
, 1
2
,−1

2
|j,m)Yl,m+1/2(x̂)

)
;

(3.74)

The expressions for the Clebsch-Gordan coefficients appearing in the equation above are,
for the cases j = l ± 1

2
,

(l,m− 1
2
, 1
2
, 1
2
|l ± 1

2
,m) = ±

√
l ±m+ 1

2

2l + 1

(l,m+ 1
2
, 1
2
,−1

2
|l ± 1

2
,m) =

√
l ∓m+ 1

2

2l + 1
.

(3.75)

Let us also mention that the wavefunctions in Eq. (3.70) are normalized as∫
d3x U †

Eκm(x)UEκm(x) =

∫
d3r
(
g2(r) + f 2(r)

)
= 1. (3.76)

To get the momentum space version of Eq. (3.70), one has to take the Fourier
transform

UEκm(p) =
1

(2π)3/2

∫
d3x e−ip·xUEκm(x), (3.77)

which can be simplified using three mathematical identities. The first one is the partial
waves decomposition of a plane wave

e−ip·x = 4π
∞∑
l=0

(−i)ljl(pr)
l∑

m=−l

Y ∗
lm(x̂)Ylm(p̂), (3.78)

30



where jl(x) denotes the spherical Bessel function of order l; the second one is the nor-
malization of spherical harmonics∫

dΩY ∗
lm(Ω)Yl′m′(Ω) = δll′δmm′ ; (3.79)

the third one is a recurrence relation for spinor spherical harmonics [36]:

σ · x̂Yκm(x̂) = −Y−κm(x̂), (3.80)

where σ is the vector containing the three Pauli matrices.
We will start by taking the Fourier transform of the upper part of UEκm(x): inserting
Eq. (3.78) into (3.77) we obtain

1

(2π)3/2

∫
d3x e−ip·x gEκ(r)

r
Yκm(x̂) =

=
4π

(2π)3/2

∞∑
l′=0

(−i)l
′
∫ ∞

0

dr r2jl′(pr)
l′∑

m′=−l′

∫
dΩx Y

∗
l′m′(x̂)Yl′m′(p̂)

gEκ(r)

r
Yκm(x̂) =

=

√
2

π
(−i)l Yκm(p̂)

∫ ∞

0

dr rg(r)jl(pr),

(3.81)

where the second line follows from using Eq. (3.80) and the fact that Yκm contains the
spherical harmonic of degree l. Similarly, for the lower part of UEκm(x) we have

i

(2π)3/2

∫
d3x e−ip·xfEκ(r)

r
Y−κm(x̂) =

=
4πi

(2π)3/2

∞∑
l′=0

(−i)l
′
∫ ∞

0

dr r2jl′(pr)
l′∑

m′=−l′

∫
dΩx Y

∗
l′m′(x̂)Yl′m′(p̂)

fEκ(r)

r
Y−κm(x̂) =

=sgn(−κ)

√
2

π
(−i)l Y−κm(p̂)

∫ ∞

0

dr rf(r)j2j−l(pr)

=sgn(κ)

√
2

π
(−i)l σ · p̂Yκm(p̂)

∫ ∞

0

dr rf(r)j2j−l(pr),

(3.82)
where, once again, the second line follows from using Eq. (3.80) and the fact that Y−κm

contains the spherical harmonic of degree 2j − l; additionally, one can easily check that
(−i)2j−l−1 = (−i)l sgn(−κ) for both cases κ > 0 and κ < 0.

Putting back together the upper and lower parts of the bound spinor wavefunction
in momentum space, we finally obtain

UEκm(p) =

√
2

π
(−i)l

( [∫∞
0

dr rg(r)jl(pr)
]
Yκm(p̂)

sgn(κ)
[∫∞

0
dr rf(r)j2j−l(pr)

]
σ · p̂Yκm(p̂)

)

≡
√

2

π
(−i)l

(
g(p)Yκm(p̂)

sgn(κ)f(p)σ · p̂Yκm(p̂)

)
.

(3.83)
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These wavefunctions are normalized as∫
d3p U †

Eκm(p)UEκm(p) = 1 ⇒
∫

d3p p2
(
g2(p) + f 2(p)

)
=

π

2
. (3.84)

Note that, if we fix the orbital to which the proton or Λ belongs, the above wavefunc-
tion still depends on the magnetic quantum number m: this means that, when building
the hadronic tensor using Eq. (3.17), we will have to sum over the magnetic quantum
numbers of the proton and Λ.
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Chapter 4

The elementary process

We have seen that, in order to evaluate the hadronic current and tensor, one of the
key ingredients is the current operator Ĵµ for the elementary process γ∗(q) + p(p) →
K(p′1) + Λ(p′2). In this section we will see how to model this operator, but first we need
to know how the kinematics of the elementary process is fixed.

4.1 Kinematics of the elementary process

A full knowledge of the kinematical variables of the γ∗+ p → K+Λ process is needed in
order to evaluate the associated current operator. Given the initial four-momenta q and
p, then, due to energy-momentum conservation, the kinematics of the reaction is fixed if
we provide two variables for the final state. In this work, we will choose these variables
to be the kaon’s polar and azimuthal angles (i.e. θ′1 and φ′

1).
We will now derive the expression for the kaon energy Ep′1

. Recall that the virtual
photon momentum is fixed by the leptonic part of the process as

qµ = (ω, 0, 0, |q|). (4.1)

For the proton, since its wavefunction is given in terms of its three-momentum in polar
coordinates, we will parametrize the four-momentum in terms of the same variables:

pµ =
(√

|p|2 +m2
p, |p| sin θ cosφ, |p| sin θ sinφ, |p| cos θ

)
. (4.2)

Now, given θ′1 and φ′
1, the energy of the outgoing kaon is determined by requiring that

the following equations are simultaneously satisfied:

p′2 = p+ q − p′1 (4.3a)

(p′2)
2 = m2

Λ. (4.3b)
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The first equation corresponds to momentum conservation, while the second one is the
mass-shell condition for the bound Λ. Let us also fix the form of the kaon four-momentum
as

p′µ1 =
(
Ep′1

,
√

E2
p′1
−m2

K sin θ′1 cosφ
′
1,
√
E2

p′1
−m2

K sin θ′1 sinφ
′
1,
√

E2
p′1
−m2

K cos θ′1

)
.

(4.4)
We can plug this equation into (4.3a) in order to find a more explicit expression for the
Λ four-momentum

p′µ2 =
(√

|p|2 +m2
p + ω − Ep′1

,

|p| sin θ cosφ−
√
E2

p′1
−m2

K sin θ′1 cosφ
′
1,

|p| sin θ sinφ−
√

E2
p′1
−m2

K sin θ′1 sinφ
′
1,

|p| cos θ + |q| −
√

E2
p′1
−m2

K cos θ′1

)
(4.5)

and then impose (4.3b): this gives

0 =m2
K −m2

Λ + (q + p)2 − 2Ep′1

(
ω +

√
|p|2 +m2

p

)
+

+ 2
√

E2
p′1
−m2

K

[
|q| cos θ′1 + |p|(sin θ sin θ′1 cos(φ− φ′

1) + cos θ cos θ′1)
] (4.6)

For the sake of brevity, let us denote

α ≡ m2
K −m2

Λ + (q + p)2 (4.7a)

β ≡ |q| cos θ′1 + |p|[sin θ sin θ′1 cos(φ− φ′
1) + cos θ cos θ′1] (4.7b)

so that Eq. (4.6) becomes

2β
√

E2
p′1
−m2

K = 2
(
ω +

√
|p|2 +m2

p

)
Ep′1

− α. (4.8)

Squaring both sides of this equation gives a second-degree equation in Ep′1
with an

additional condition:

[(
ω +

√
|p|2 +m2

p

)2
−β2

]
E2

p′1
− α

(
ω +

√
|p|2 +m2

p

)
Ep′1

+
α2

4
+ β2m2

K = 0

2
(
ω +

√
|p|2 +m2

p

)
Ep′1

− α

β
≥ 0.

(4.9)
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The solution is (naming
√

|p|2 +m2
p = Ep)

Ep′1
=

α(ω + Ep)±
√

α2(ω + Ep)2 + (α2 + 4β2m2
K)[β

2 − (ω + Ep)2]

2[(ω + Ep)2 − β2]

=
α(ω + Ep)±

√
α2β2 − 4β2m2

K [(ω + Ep)2 − β2]

2[(ω + Ep)2 − β2]

2 (ω + Ep)Ep′1
− α

β
≥ 0.

(4.10)

Now both the kaon and Λ four-momenta are fixed: for the kaon, one simply needs to
insert the energy of Eq. (4.10) into Eq. (4.4), while the Λ four-momentum is obtained
via Eq. (4.3a).

4.2 Elementary observables

Since all the models we are about to see are fitted to experimental data, we need to
briefly mention which are the observables for the elementary process and how they are
calculated. Note that, unlike what we have seen for the nuclear reaction, the elementary
observables are usually evaluated in the center of mass frame.

The first observable is, of course, the differential cross section. Following a procedure
analogous to the one we have described in Section 3.1, factorizing the matrix element
as we have done in Section 3.2 and parametrizing the leptonic tensor as in Section 3.3,
the triple differential cross section for the elementary electroproduction process with
unpolarized electron beams can be written as [6]

d3σ

dEk′dΩ′dΩ′
1

=
1

(2π)3
α2

Q2(1− ε)

Ek′mp

k · p
mΛ|p′

1|2

4Ep′1
Ep′2

R

[
(W̃ 11 + W̃ 22)

+ ε(W̃ 11 − W̃ 22) + 2εLW̃
33 −

√
2εL(1 + ε)

(
W̃ 13 + W̃ 31

)]
,

(4.11)

where α = e2

4π
, R =

|p′
1|

Ep′1
− p′

1p
′
2

|p′
1|Ep′2

, and

W̃ µν =
∑
spins

J̃µJ̃ν ∗ (4.12)

is the hadronic tensor for the elementary process. Note that J̃µ is not the elementary
current operator that we need, e.g., to model the nuclear reaction; it is, instead, the

35



sandwich of the elementary current operator between free Dirac spinors for the incoming
proton and outgoing Λ:

J̃µ = uΛĴ
µup (4.13)

Formula (4.11) is valid for any reference frame; let us now concentrate on the center
of mass frame. It is common practice to define the effective photon energy Eγ and the
virtual photon flux Γ as, respectively,

Eγ ≡ ω +
Q2

2mp

and Γ ≡ α

2π2Q2

Eγ

1− ε

Ek′

Ek

. (4.14)

It is now possible to separate the dependence on the angle φ′
1 in Eq. (4.11) and rewrite

it as

d3σ

dEk′dΩ′dΩ′
1

= Γ

[
dσT

dΩ′
1

+ ε
dσL

dΩ′
1

+ ε
dσP

dΩ′
1

cos 2φ′
1 +

√
2ε(1 + ε)

dσI

dΩ′
1

cosφ′
1

]
, (4.15)

where σT , σL, σP and σI are called transverse, longitudinal, polarization and interference
cross sections, respectively, and are given by

dσT

dΩ′
1

=
α

4π

mΛ

Ep′2

|p′
1|2

4Ep′1
R

1

Eγ

(
W̃ 11 + W̃ 22

)
φ′
1=0

,

dσL

dΩ′
1

=
α

4π

mΛ

Ep′2

|p′
1|2

4Ep′1
R

1

Eγ

2
Q2

ω2

(
W̃ 33

)
φ′
1=0

,

dσP

dΩ′
1

=
α

4π

mΛ

Ep′2

|p′
1|2

4Ep′1
R

1

Eγ

(
W̃ 11 − W̃ 22

)
φ′
1=0

,

dσI

dΩ′
1

= − α

4π

mΛ

Ep′2

|p′
1|2

4Ep′1
R

1

Eγ

√
Q2

ω2

(
W̃ 13 + W̃ 31

)
φ′
1=0

.

(4.16)

Experimental data may also be presented in terms of

dσU

dΩ′
1

≡ dσT

dΩ′
1

+ ε
dσL

dΩ′
1

. (4.17)

Another common practice is to express the elementary current and the above cross
section components in terms of the so-called CGLN (Chew-Goldberg-Low-Nambu) am-
plitudes fi, i = 1, 2, ..., 6 [12]. If ε is the polarization vector of the photon, then one can
write

ε · Ĵ =f1(σ · ε) + if2 (σ · p̂′
1) [σ · (q̂× ε)] + f3(σ · q̂) (p̂′

1 · ε)

+ f4 (σ · p̂′
1) (p̂

′
1 · ε) + f5(σ · q̂)(q̂ · ε) + f6 (σ · p̂′

1) (q̂ · ε),
(4.18)

where q̂ and p̂′
1 are the unit vectors of the photon and kaon momentum, respectively.
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Now the cross section components take the form

dσT

dΩ′
1

= C Re

{
|f1|2 + |f2|2 − 2f1f

∗
2 cos θ

′
1 + sin θ′1

[
1

2

(
|f1|2 + |f2|2

)
+ f1f

∗
4 + f2f

∗
3 + f3f

∗
4 cos θ

′
1

]}
dσL

dΩ′
1

= C
Q2

ω2
Re
{
|f̃5|2 + |f̃6|2 + 2f̃5f̃

∗
6 cos θ

′
1

}
dσP

dΩ′
1

= C Re

{
1

2

(
|f3|2 + |f4|2

)
+ f1f

∗
4 + f2f

∗
3 + f4f

∗
3 cos θ

′
1

}
dσI

dΩ′
1

= −C

√
Q2

ω2
Re
{
(f1 + f4) f̃

∗
6 + (f2 + f3) f̃

∗
5 +

(
f3f̃

∗
6 + f4f̃

∗
5

)
cos θ′1

}
,

(4.19)

where we have defined

f̃5 = f1 + f3 cos θ
′
1 + f5 (4.20a)

f̃6 = f4 cos θ
′
1 + f6 (4.20b)

and
C =

α

4π

mΛ |p′
1|

|q|
√
s
. (4.21)

When the (virtual) photon is polarized, other observables emerge. First, the cross
section acquires two additional components:

d3σpolarized

dEk′dΩ′dΩ′
1

=
d3σunpolarized

dEk′dΩ′dΩ′
1

+ Γ

[
h
√
1− ε2

dσP ′

dΩ′
1

cos 2φ′
1 + h

√
2ε(1 + ε)

dσI′

dΩ′
1

sinφ′
1

]
.

(4.22)
Then, one can measure the Λ polarization P , the beam asymmetry Σ and the target
polarization T . These are all expressed in terms of CGLN amplitudes; for example, for
the first one we have

P = −Im
{
2f ∗

1 f2 + f ∗
1 f3 − f ∗

2 f4 − (f ∗
2 f3 − f ∗

1 f4) cos θ
′
1 − f ∗

3 f4 sin
2 θ′1
}
sin θ′1. (4.23)

4.3 Models for the elementary process: overview

Having established the formalism to treat the elementary process, we are ready to see
which are the models that can describe the current operator. As we have seen in Section
2.3, there are two main types of approaches: QCD and hadrodynamical ones. Since it
is extremely challenging to use the first at the energies of our interest, where QCD is
non-perturbative, we are going to focus on the second approach.

37



One can distinguish two other categories of models: single-channel or coupled-channel
approaches. In coupled-channel approaches one fully takes into account the interaction
between the meson and the baryon in the final state, such as rescattering effects and
interactions; this type of approach has the benefit to explicitly preserve unitarity, but
of course the full treatment of the final state interaction is rather complicated. The
simplified single-channel approaches, instead, neglect all higher-order effects; unitarity
is restored, for example, with the help of energy-dependent decay widths. Additionally,
the effective coupling constants of these models include part of the rescattering effects.
Due to their simplicity, we are going to focus on single-channel approaches.

There are three main approaches to model the elementary process that are both
hadrodynamical and single-channel: isobar models, Regge-plus-resonance (RPR) models
and multipole approaches. In the following sections we are going to see their character-
istics in more detail, particularly for the isobar models. Among isobar models, we will
focus on the Kaon-MAID, since it is the one we will employ in our numerical calculations.

4.4 Isobar models

Isobar models use an effective meson-baryon Lagrangian to build the reaction amplitude
as a sum of tree-level Feynman diagrams; neglecting higher order diagrams corresponds
to neglecting, e.g., rescattering effects. Thus, the elementary process is viewed as an
exchange of particles in the ground state (Born diagrams) or their resonances. Figure
4.1 depicts the Born diagrams for all possible reaction channels: we have an exchange of a
proton in the s-channel, a kaon in the t-channel and a Λ or a Σ in the u-channel; for non-
Born diagrams, one just needs to consider the exchange of resonances of these particles.
The contact diagram is included whenever one needs to restore gauge invariance; this
can happen, for example, when a pseudo-vector coupling is used or after the inclusion of
hadron form factors. Nucleon resonances are the ones which are responsible for creating
resonant structures in the observables, since the poles on the other diagrams are far from
the physical region and cannot create peak-like structures.

4.4.1 The current operator

In isobar models, the current operator is built from these Feynman diagrams by using
standard Feynman rules (see, e.g., [13]). Since Feynman rules contain Dirac γ matrices,
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Figure 4.1: Feynman diagrams for the elementary process in the Born approximation.
For non-Born diagrams, the exchanged particles are replaced by their resonances.

the current operator will be a 4 × 4 matrix. The current must also be gauge invariant
(i.e. it must satisfy Ĵµqµ = 0), so it is useful to express it as a linear combination of a
basis of six gauge invariant matrices Mi:

Ĵµ =
6∑

i=1

AiM
µ
i . (4.24)

The coefficients Ai are also Lorentz invariant, and are called Lorentz invariant ampli-
tudes. Of course, there are many possibilities for the choice of the basis {Mi}; a popular
one is

Mµ
1 = 1

2
γ5(γµ/q − /qγµ)

Mµ
2 = 1

2
γ5[(p+ p′2) · q (2p′1 − q)µ − (2p′1 − q) · q (p+ p′2)

µ]

Mµ
3 = γ5(p′1 · q γµ − /qp

′µ
1 )

Mµ
4 = iεαβλνγ

αp′β1 q
νgλµ

Mµ
5 = γ5

(
q2p′µ1 − p′1 · q qµ

)
Mµ

6 = γ5
(
qµ/q − q2γµ

)
(4.25)

Extracting the Ai for a specified model is also useful because the CGLN amplitudes can
be expressed in terms of them, so one doesn’t need to explicitly build the hadronic tensor
in order to compute the cross section.

4.4.2 Born-only model and symmetry constraints

The most basic isobar model includes only the Born diagrams: this gives rise to the
following current [14]
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Ĵµ = iegKΛN

[
γ5/p+ /q +mp

s−m2
p

(
γµF p

1 + iσµνqν
κp

2mp

F p
2

)
− γ5 q

µ

q2
F p
1

+iσµνqν
κΛ

2mΛ

FΛ
2

/p′2 − /q +mΛ

u−m2
Λ

γ5 + γ5

(
2p′µ1 − qµ

t−m2
K

+
qµ

q2

)
FK

]
+ iegKΣN iσµνqν

κΛΣ

mΛ +mΣ

FΛΣ
2

/p′2 − /q +mΣ

u−m2
Σ

γ5,

(4.26)

with the convention σµν = i
2
[γµ, γν ]. F1 and F2 are the Dirac and Pauli form factors, FK

is the kaon form factor and FΛΣ
2 is the ΛΣ transition form factor. Here we have used a

pseudo-scalar coupling, thus the contact diagram is not needed. For the pseudo-vector
case, one needs to replace the gKΛNγ

5 vertex with the gpv
KΛNγ

5/p′1 vertex, where gpv
KΛN and

gKΛN are related by gKΛN = (mp+mΛ)g
pv
KΛN . In order to preserve gauge invariance, one

needs to add the contact diagram, whose Feynman rule is

iegKΛN
Fc

mp +mΛ

γ5

(
/q
qµ

q2
− γµ

)
, (4.27)

where Fc is the contact form factor. The ambiguity between pseudo-scalar and pseudo-
vector coupling hasn’t been clearly resolved, but the community is leaning towards the
pseudo-scalar theory, since it is simpler and can reproduce experimental data as satis-
factorily as the pseudo-vector one. Additionally, an analysis has been performed near
threshold for a mixture between pseudo-scalar and pseudo-vector theory, where it was
seen that the fit to experimental data required a coupling that was mainly pseudo-scalar
[16].

Another comment that can be made from the Born terms only is about the coupling
constants. These are related to the pion-nucleon coupling constants by the SU(3)F

symmetry, which allows to connect the couplings of the up-down sector to those of the
strange sector. The relations are

gKΛN = − 1√
3
(3− 2αD) gπNN , (4.28a)

gKΣN = (2αD − 1) gπNN , (4.28b)

where gπNN is the pion-nucleon coupling constant, whose experimental value is given by
g2πNN/4π = 14.4, and αD is the fraction of the symmetric coupling in the πNN vertex,
whose experimental value is 0.644 ± 0.006. However, due to the different mass of the
strange quark with respect to the up and down quarks, SU(3)F is not exact, and the
mass of the Λ is different from the mass of the proton. Since the breaking is of about
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20%, we can give the following boundaries for gKΛN and gKΣN , which can be used as
constraints in the fitting procedure:

−4.4 ≤gKΛN√
4π

≤ −3.0, (4.29a)

0.8 ≤gKΣN√
4π

≤ 1.3. (4.29b)

An additional constraint that can be used when constructing isobar models is crossing
symmetry, i.e. requiring that the same amplitude describes the K−+p → γ+Λ process.

4.4.3 The inclusion of resonances

It turns out that the Born terms are not enough to describe the elementary process of
kaon production, since the χ2 from fits is rather large and the Λ polarization cannot be
explained by Born therms alone. Since the threshold energy (

√
s = 1610 MeV) is higher

than the rest masses of some baryon resonances, the contribution of excited states in all
channels cannot be excluded, and thus one needs to include resonances in the current.
Poles corresponding to the resonances are shifted to the complex plane, and the Feynman
propagator is

1

/qR −mR + iΓR/2
=

/qR +mR − iΓR/2

q2R −m2
R + imRΓR + Γ2

R/4
≈ /qR +mR − iΓR/2

q2R −m2
R + imRΓR

, (4.30)

where mR and ΓR refer to the mass and width of the resonance, respectively, and qR

is the exchanged momentum; the last equality refers to an approximation that is often
used. In order to approximately account for unitarity corrections, one can also use
energy-dependent widths. A problem that is faced when introducing resonances with
spin ≥ 3

2
is that their Rarita-Schwinger description includes non-physical degrees of

freedom, which may participate in the interaction if the particle is off-shell. A consistent
prescription for the interaction of spin 3

2
resonances was proposed by Pascalutsa [22] and

was generalized to arbitrary spins by the Ghent group [23].
One of the characteristic features of isobar models for describing the electromagnetic

production of kaons is the excessively large contribution of Born terms to the cross
section, which overpredicts experimental data. Two main ways have been identified
for reducing the strength of these contributions: introducing hadron form factors in
the strong vertices, or exchanging hyperon resonances; different models can choose to
adopt one or a combination of both solutions. Note that there is still an ambiguity for
the selection of hadron form factors, which can be taken in any of the following forms
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(dipole, multi-dipole, Gaussian and multi-dipole Gaussian, respectively):

Fd =
Λ4

R

(x−m2
R)

2
+ Λ4

R

Fmd = F
JR+1/2
d (x,mR,ΛR)

FG = exp
[
−
(
x−m2

R

)2
/Λ4

R

]
FmdG = F

JR−1/2
d

(
x,mR,mRΓ̃R

)
FG (x,mR,ΛR) ,

(4.31)

where x = s, t, u (according to the channel under consideration), JR is the resonance
spin, ΛR is an energy cutoff parameter and Γ̃R is a modified width, namely

Γ̃R =
ΓR√

2JR/2 − 1
. (4.32)

Moreover, introducing hadron form factors breaks gauge invariance, which has to be
restored via a contact interaction. Prescriptions for this contact interaction have been
proposed by Ohta [24] and Haberzettl [25], the latter being the most commonly used due
to its flexibility.

4.4.4 Variants of isobar models

Since there is no dominant resonance in the electromagnetic production of kaons, there
are many existing isobar models, differing in the choice of resonant contributions and in
values of coupling constants, that fit the experimental data equally well.

The first of these models to be developed is the Lyon-Saclay model, which includes
the K∗ and K1 resonances in the t-channel, three nucleon resonances in the s-channel
and four hyperon resonances in the u-channel; it includes no hadron form factors and is
constrained by SU(3)F and crossing symmetries. This group also performed an extensive
analysis of different models including various combinations of hyperon resonances, and
chose the one that fulfilled precise χ2 requirements on various observables.

Another popular model is the Kaon-MAID one, which differs from the Lyon-Saclay
model for the use of four nucleon resonances and no hyperon resonances; it uses dipole
hadron form factors and energy-dependent widths, and is only constrained by SU(3)F

symmetry. One of the nucleon resonances of this model was unobserved and absent from
the initial fit, but it was predicted by the authors due to the fact that it could reproduce
a particular resonant structure in the cross section data [26].

The last model we are going to see is the Ghent model. This group has tested
various ways of suppressing the Born background, i.e. hyperon resonances only, hyperon
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resonances and hadron form factors, and releasing the SU(3)F constraints to obtain
smaller Born couplings. This model includes the same nucleon resonances as the Kaon-
MAID, plus two hyperon resonances.

4.4.5 The Kaon-MAID model

Before moving on to the next section, let us provide some more detailed information
about the Kaon-MAID model, since it is the one that we will use for our numeric calcu-
lations.

This parametrization consists of gauge invariant background and resonance terms
[26]. The background terms include the standard s-, u-, and t-channel contributions,
i.e. the proton, Λ, K+, K∗ and K1, along with a contact term, which is required to
restore gauge invariance after the inclusion of hadron form factors. The resonant part
consists of three nucleon resonances that have been found in coupled-channels analyses
to have significant decay widths into the K+Λ channel: the S11(1650), P11(1710), and
P13(1720). Additionally, the model includes the D13(1895) state, which is found to be
important in the description of experimental data. Indeed, the parametrization was
fitted to photoproduction total cross section data collected by SAPHIR [29]: as it can
be seen in Fig. 4.2, the model cannot reproduce the resonant structure around a center
of mass energy W = 1900MeV without the inclusion of this last resonance with a mass,
width and coupling parameters that are in good agreement with the values predicted by
quark model calculations [28]. Note that a number of fits with several states predicted
by the quark model were performed in this energy region, allowing the fit to determine
the mass, width and coupling constants of the resonances. While all of the examined
resonances could reproduce the cross section structure and reduced the χ2 value, only
the D13(1895) state was predicted to also have significant photocouplings. However, the
reproduction of the visual peak in the cross section data should not be interpreted as a
steadfast evidence for the occurence of the D13(1895) missing resonance.

Since the amplitude of the Kaon-MAID model is not unitary by construction, energy-
dependent widths along with partial branching fractions in the resonance propagators are
included, which approximately account for unitarity corrections at tree-level. In order to
regularize too large a contribution of Born terms, hadron form factors are implemented
using the gauge method of Haberzettl [25]. This leads to a strong suppression of the
electric part of the s-channel Born term, which results in a bump in the cross section
prediction for small kaon angles (30◦) and total energy higher than 1900 MeV. The fit to
the data was significantly improved by allowing for separate cutoffs for the background
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Figure 4.2: Total cross section for the elementary photoproduction process as a function
of the total center of mass energy W . The solid line shows the prediction of the
Kaon-MAID model, while the dashed line corresponds to the same model without the
D13(1895) nucleon resonance. Blue data points are from the SAPHIR collaboration
[29], and light blue points correspond to older data, for which references can be found
in [29]. This plot is from [26].
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Figure 4.3: Differential cross section for the elementary photoproduction process as a
function of the kaon center of mass angle, at a total energy W = 1.835GeV. The solid
line shows the prediction of the Kaon-MAID model, while the dashed line corresponds
to the same model without the D13(1895) nucleon resonance. Blue points are from
recent SAPHIR data [30], green points are from older SAPHIR data [29], yellow points
are from the CLAS collaboration [31], and red points correspond to older data, for
which references can be found in [29]. This plot is from [4].

and resonant sector form factors. For the former, the fits produce a soft value around
800 MeV, leading to a strong suppression of the background terms, while the resonant
cutoff is determined to be 1900 MeV.

Fig. 4.3 shows more recent differential cross section data compared with Kaon-MAID
predictions. Clearly there are some discrepancies among the experimental data (espe-
cially between the new SAPHIR [30] and CLAS [31] data), which have been thoroughly
investigated in [34] with a multipole model. Anyway, this Figure shows that Kaon-MAID
still gives reliable predictions for kaon photoproduction.

Finally, since this model was proposed in the energy range from threshold up to
2.2GeV, the cross sections tend to become unreliable beyond this energy region.

A computational interface for this model is also available at [27].
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4.4.6 Limitations of isobar models

The major drawback of isobar models is their limited scope in energy. Indeed, a realistic
cross section should not increase with energy faster than ln2(s/s0), where s0 is a reference
scale which is commonly fixed to 1GeV2 (this is the Froissart bound for unitarity [32]).
On the contrary, in isobar models the contribution of the background rises as positive
powers of s; up to a certain energy, this behavior can be compensated by the introduction
of resonances that produce a destructive interference, but beyond 2 to 3 GeV, where
introducing individual resonances no longer makes sense, unphysical, diverging behaviors
appear. Thus, the validity of most isobar models is limited to the few-GeV region.

4.5 Regge-plus-resonance models

4.5.1 The Regge approach

The Regge phenomenology is a high-energy approach that was developed in order to
overcome the energy limitations of isobar models. The starting point of this formalism
is to consider partial wave amplitudes as a function of a complex angular momentum;
poles of the amplitudes in the complex momentum plane are thought to correspond
to resonant states, which can be classified into different families. These families are
called Regge trajectories, and its members share the same quantum numbers. This
allows us to treat the high-energy area, since here individual resonances can no longer
be distinguished and the exchange of entire Regge trajectories dominates, instead.

In its simplest form, a Regge model is constructed starting from the Feynman am-
plitude for a given particle exchange and substituting the Feynman propagator with the
Regge propagator PRegge , a procedure known as “reggeization”: this introduces the ex-
change of the entire Regge trajectory 1. For KΛ production, only the contributions of K
and K∗ are reggeized; this choice is motivated by the fact that the cross section is peaked
at small values of |t|, which indicates the dominant role played by t-channel exchanges.
However, the t-channel alone is not gauge invariant, so one also needs to include the
electric part of the s-channel to restore it. The resulting amplitude reads

MRegge = MK
Regge +MK∗

Regge +Mp,el
Feyn · PK

Regge ·
(
t−m2

K

)
. (4.33)

1For a more detailed description of Regge propagators and trajectories, see Appendix B of [17].
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This amplitude can then be written as in Eq. (4.24) and the Lorentz invariant amplitudes
can be extracted.

Regge models have the benefit of including a relatively small numbers of free param-
eters, but data at high energies to fit them to is still scarce. They work especially well in
the limit of extreme forward scattering angles for the kaon, corresponding to small |t|.

4.5.2 The Regge-plus-resonance approach

The purely non-resonant Regge description cannot reproduce the behavior of observ-
ables in the resonant region at lower energies, where peaks corresponding to individual
resonances can be distinguished. In order to achieve a treatment that is valid at both
low and high energies, one can extend the reggeized background with a small number of
resonant diagrams in the s-channel. For these diagrams, the standard Feynman propa-
gator is used; moreover, since resonances aren’t expected to contribute to observables at
high energies, one needs to introduce hadron form factors that limit their contribution
to the resonant region and ensure a smooth transition to the high-energy region. The
amplitude that is constructed with this procedure reads

M = MRegge +Mreson. (4.34)

This approach is known as Regge-plus-resonance (RPR).
RPR models have the benefit of being able to reproduce low- and high-energy data

(they have been shown to be valid up to Elab
γ ≈ 16 GeV), and also of introducing only 3

free parameters to model the non-resonant background. Another feature of these models
is that, contrary to isobar models, the Born contribution doesn’t turn out to be too
strong, so hadron form factors are not needed for background terms.

There are several variants of RPR models, which mainly differ by the combination
of nucleon resonances they include. They were analyzed by De Cruz at al. [33], and two
best models were identified, the first one containing 8 resonances and the second one
containing 5.

4.5.3 Hybrid isobar - Regge approach

Another option to get the high-energy behavior of a Regge model and keep the resonant
behavior at low energies is to build a hybrid between an isobar and a Regge model. This
has been done, e.g., in [19]: for energies below √

s1 = 2GeV, the invariant amplitudes
Ai are given by an isobar model, and for energies above √

s2 = 3GeV they are given by

47



a Regge model. In the transition region, the two types of amplitudes are combined as

Atrans
i =

1

s1 − s2

(
(s− s2)A

isobar
i + (s1 − s)ARegge

i

)
. (4.35)

4.6 Multipoles models

The multipoles framework introduces a different way to model the background and the
resonant part separately. This approach deals directly with the electric and magnetic
photon couplings, and the resonance terms are parameterized with a Breit-Wigner form

AR
`±(W ) = ĀR

`±cKY
fγR(W )Γtot(W )MRfKR(W )

M2
R −W 2 − iMRΓtot(W )

eiφ. (4.36)

Here, W =
√
s is the total center of mass energy, cKY is the isospin factor, which has

a value of −1, fKR is the Breit-Wigner factor indicating the strength of the decay of
a resonance R with a physical mass MR and a total width Γtot(W ), fγR represents the
γNR vertex, and φ is the corresponding phase 2. The background is modeled with an
arbitrary, smooth function. This is usually built from Feynman diagrams, which include
the Born s-, t- and u-channels plus the K∗ and K1 exchange in the t-channel; hadron
form factors are introduced in the strong vertices in order to avoid diverging behaviors
at large energies. This kind of background is gauge invariant and crossing symmetric.
The observables predicted by these theories are then computed from CGLN amplitudes,
which contain linear combinations of the A`± in addition to the background originating
from Feynman diagrams.

These models have the benefit of easily allowing to include a large number of reso-
nances with arbitrarily large spins, since each resonance only contributes with a term of
the form (4.36), whereas isobar models require a more cumbersome treatment through
Feynman diagrams. The electric and magnetic photon couplings can also be directly re-
lated to the helicity amplitudes A1/2 and A3/2

3 listed in the Particle Data Group review
[35].

2For additional details on the mathematical form of these factors, see Section II.B of [34]
3See, e.g., Table I of [34]
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Chapter 5

Numerical analysis

5.1 The Python program

In order to quantitatively evaluate the triple differential cross section for a e + A →
e′+K++ΛA reaction (Eq. (3.8)) with unpolarized electron beams, we have developed a
Python program that performs numerical computations for a specified nuclear target and
fixed kinematical conditions. The program consists of four modules, for each of which
we present a flowchart (Fig.s 5.1, 5.3, 5.4 and 5.5).

Kinematics:
fixed quantities (Ek, θ

′),
function parameters (Q2, |p|, θ, φ, θ′1, φ′

1),
functions (p, q, p′1, p′2)

Constants:
e,mp,mΛ,mK

Minkowski metric
and scalar product

γµ, γ5,

Dirac slash

εµνρσ
Ai

(Fortran module)
Mµ

i

Ĵµ

Figure 5.1: Flowchart for the first module of the Python program, dealing with the
elementary process.

The first module deals with the elementary process e + p → e′ +K + Λ. As shown
in Fig. 5.1, it contains functions to determine the four-momenta of all the particles
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involved, given some initial conditions. It also contains the routine for the evaluation
of the elementary operator Ĵµ as a function of the four-momenta of the virtual photon,
proton, kaon and Λ. Ĵµ is computed as in Eq. (4.24), where the gauge invariant matrices
Mi are evaluated through Eq. (4.25), while the Lorentz invariant amplitudes Ai are those
of the Kaon-MAID model. The Kaon-MAID parametrization has been kindly provided
to us by T. Mart by means of a Fortran module, which has been integrated into the
Python program.

In order to test the correct implementation of the elementary operator, which is
crucial for the evaluation of the full nuclear operator, we have used it to compute the
elementary electroproduction cross section in the center of mass frame. The transverse
and longitudinal differential cross sections can be evaluated using the following formulae
[3]:

dσT

dΩ′
1

=
|p′

1|
√
s

2
(
s−m2

p

) (W̃ 11 + W̃ 22
)
, (5.1a)

dσL

dΩ′
1

=
|p′

1|
√
s

2
(
s−m2

p

) 2Ep′1
Ep′2

Q2

ω2s
W̃ 33. (5.1b)

Here, W̃ µν is the hadronic tensor for the elementary reaction, defined as

W̃ µν =
∑

sp,sΛ=± 1
2

(
u(p′

2, sΛ)Ĵ
µu(p, sp)

)(
u(p′

2, sΛ)Ĵ
νu(p, sp)

)∗
=

=
6∑

i,j=1

AiA
∗
j tr
[
Mµ

i (/p+mp)M ν
j (/p

′
2
+mΛ)

]
,

(5.2)

where u(p, sp) and u(p′
2, sΛ) are free Dirac spinors for the proton and Λ, respectively,

while Mµ
i ≡ γ0Mµ†

i γ0: it can be easily checked that

Mµ
1 = Mµ

1 , Mµ
4 = −Mµ

4 ,

Mµ
2 = −Mµ

2 , Mµ
5 = −Mµ

5 ,

Mµ
3 = Mµ

3 , Mµ
6 = Mµ

6 .

(5.3)

The results of this calculation for a center of mass energy of W = 1.84GeV and a kaon
angle θ

′(c.m.)
1 = 0 are shown in Fig. 5.2. We can see that our calculation is in very good

agreement with the one from the Kaon-MAID interface [27], and it nicely compares with
experimental data.

The second module simply contains a function that evaluates the momentum space
transform of the f(r) and g(r) spinor wavefunctions that appear in Eq. (3.83), as shown
in Fig. 5.3. The input is assumed to be evaluated on a lattice of radial values, and the
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Figure 5.2: Transverse (above) and longitudinal (below) differential cross section for
the elementary electroproduction process as a function of the photon virtuality Q2,
at a total energy W = 1.84GeV and kaon angle θ

′(c.m.)
1 = 0. The solid line shows

the calculation with our code, while the dotted line shows the one from the Kaon-
MAID interface [27]. Solid squares show JLab data [37], which have been reanalyzed
by Mohring et al. [38], as shown by open squares; solid diamonds show SAPHIR data
[39], while the open circle is a photoproduction point from Bonn data [40].
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g(r), f(r)

on a lattice
Momentum lattice Spherical Bessel functions

g(p), f(p)

on a lattice

Figure 5.3: Flowchart for the second module of the Python program, dealing with the
momentum space transform of the g(r) and f(r) wavefunctions.

output is given on a regular momentum lattice that can be adjusted as needed. Since we
are operating with discretized functions, the integration is performed using a Simpson
algorithm. The transformed wavefunctions are then written to files for later use.

The third and more involved module, whose flowchart can be found in Fig. 5.4, evalu-
ates the components of the hadronic tensor W µν through the formula in (3.19), where the
wµ

αAαY
are given by Eq. (3.69). In our case, the quantum numbers αA and αY that are

summed over simply correspond to the total magnetic quantum numbers of the bound
proton and Λ, i.e. mp and mΛ, respectively. In order to perform these calculations, this
module also contains functions to build the bound spinor wavefunctions in momentum
space using Eq. (3.83), where the f(p) and g(p) are read from the files which have been
written with the previous module and interpolated for arbitrary momentum values. The
most computationally demanding function is the one that evaluates the integral in Eq.
(3.69), which repetitively calls the function which computes the integrand. The inte-
gration is done using a Monte Carlo method, since we have found it to be considerably
faster than Gaussian approaches; more precisely, we use the Vegas routine developed
by G. P. Lepage [41]. The correct use of this routine was initially checked by verifying
the normalization of the bound spinor wavefunctions. The Monte Carlo fluctuations
for the current code give rise to differential cross sections that are accurate up to the
fourth significant digit. As for the integrand function, given a proton three-momentum
in spherical coordinates, it first evaluates the momenta of the other particles involved
in the γ + p → K + Λ process, also making use of other kinematical conditions that
are provided as inputs, tanks to the elementary module; then it extracts the spherical
coordinates of the Λ three-momentum and computes the sandwich UΛĴ

µUp.
The last module deals with the kinematics of a full nuclear reaction e + A → e′ +

K+ + ΛA, then computes the matrix element using Eq. (3.15) and the triple differential
cross section using Eq. (3.8), as can be seen in Fig. 5.5.
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Figure 5.4: Flowchart for the third module of the Python program, dealing with the
nuclear current and the hadronic tensor.
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Figure 5.5: Flowchart for the fourth module of the Python program, dealing with the
final stages of the computation of the triple differential cross section.
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5.2 Ingredients for the 12C(e, e′K)12Λ B calculation

The initial ingredients that are necessary to perform the differential cross section calcu-
lation are essentially the f and g wavefunctions of the bound proton and Λ and their
binding energies for the orbitals they can belong to.
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Figure 5.6: Wavefunctions in configuration space for the bound proton and Λ in two
different orbitals of the 12C nucleus and the 12

Λ B hypernucleus, respectively. The upper
panel shows the upper g(r), while the lower panel shows the lower f(r) of Eq. (3.70).

In Fig. 5.6 we plot the radial g and f functions, respectively, for the 1s1/2 and
1p3/2 orbitals for both the proton in the 12C nucleus and the Λ in the 12

Λ B hypernucleus.
They are obtained from a relativistic mean field model, namely the FSUGold model [44].
In Fig. 5.7 we show the momentum space counterparts of Fig. 5.6, which have been
obtained with the transformation module of our program.

The binding energies for the proton and Λ are listed in Table 5.1. The proton binding
energies are an average of four different models, namely the QHDI [42], QHDII [42], NL3
[43] and FSUGold [44] models, while the Λ binding energies are only from the FSUGold
model.
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(3.83).

These binding energies give rise, through the formula

M
ΛA = MA −

(
mp − E

(p)
B

)
+
(
mΛ − E

(Λ)
B

)
, (5.4)

to the hypernucleus masses that are listed in Table 5.2.

5.3 12C(e, e′K)12Λ B calculation results

We have computed the triple differential cross section for the 12C(e, e′K)12Λ B process as
a function of the kaon polar angle in three different kinematical conditions, which are
summarized in Table 5.3. For the first conditions, we have an incident electron energy
of 3 GeV, an outgoing electron energy of 2 GeV, an electron scattering angle of 5◦ and a
vanishing kaon azimuthal angle. These are the same conditions as the main calculation
in [3], allowing us to check the correct implementation of our code. The results for
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1s1/2 1p3/2

p (12C) 42.713 MeV 14.685 MeV
Λ (12Λ B) 1.11 MeV 12.31 MeV

Table 5.1: Binding energies for the proton and Λ in the 1s1/2 and 1p3/2 orbitals of 12C

and 12
Λ B, respectively.

Λ : 1s1/2 Λ : 1p3/2

p : 1s1/2 11.39694 GeV 11.38574 GeV
p : 1p3/2 11.36891 GeV 11.35771 GeV

Table 5.2: Masses of the 12
Λ B hypernucleus for different combinations of the Λ-particle,

proton-hole orbitals.

this calculation are shown in Fig. 5.8. We can see that the curves for all the different
combinations of orbitals have the same structure, namely they are larger at vanishing
kaon angle and fall off when the kaon angle increases, reaching zero around 35◦. The
curves can be divided into two groups: the higher one for the proton hole in the 1p3/2

orbital and the lower one for the proton hole in the 1s1/2 orbital. In both groups, the
larger cross section is obtained for the Λ in the 1p3/2 orbital. We can also see that our
result is in rough agreement with the one in [3]: the shapes of the curves and their order
of magnitude are very similar, and the differences are likely due to the use of different
models for the elementary process.

For the next calculation we have kept the same conditions as before, except increas-
ing the electron scattering angle to 10◦, which increases the photon virtuality (see Eq.
(3.36)). As we can see in Fig. 5.9, the structure of the four curves remains essentially the
same, but the overall magnitude of the cross section decreases. This can be explained
by the increase in photon virtuality, which corresponds to a higher momentum transfer.

Then, we have decreased the ingoing and outgoing electron energies to 2 and 0.8

Ek Ek′ θ′ φ′
1 Q2

3 GeV 2 GeV 5◦ 0 0.0456636229 GeV2

3 GeV 2 GeV 10◦ 0 0.1823069639 GeV2

2 GeV 0.8 GeV 5◦ 0 0.01217696611 GeV2

Table 5.3: Different kinematical conditions that have been tested in Fig.s 5.8, 5.9 and
5.10.
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GeV, respectively, while restoring the electron scattering angle to 5◦. Fig. 5.10 shows
that this leads to a slight decrease in the cross section; additionally, the gap between the
two groups of curves increases, while the one between the two curves in the same group
decreases.

Finally, we have computed the triple differential cross section as a function of Q2 for
an incident electron energy of 3 GeV, an electron scattering angle of 5◦ and kaon angles
(θ′1, φ

′
1) = (5◦, 0◦). Varying Q2 corresponds to varying the final electron energy (see again

Eq. (3.36)), as shown in the axes of Fig. 5.11. From this Figure we can see that the cross
section is rather low at low final energies, then peaks around 1.6 GeV, has a secondary
peak at 2 GeV and falls off when approaching the maximum energy permitted by the
kinematics. The relative magnitude of the cross section for the different particle-hole
combinations stays more or less the same, except around 2 GeV where the gap between
curves differing by the Λ orbital increases; moreover, up to 1 GeV the cross section for
the proton in the 1p3/2 and the Λ in the 1s1/2 orbital is slightly larger than the one for the
proton in the 1p3/2 and the Λ in the 1p3/2 orbital, while for larger energies this behavior
is inverted.
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Chapter 6

Conclusions and outlook

To summarize, we have seen that hypernuclear spectroscopy is an interesting field of
study, because it allows us to gain insights on the ΛN and ΛΛ interactions, which are
expected to play an important role in dense nuclear matter like neutron stars. Exper-
iments that use (e, e′K) reaction to inspect different hypernuclei are receiving a lot of
attention lately, and since a sound theoretical background is needed in order to under-
stand experimental results, we have focused our attention on the numerical evaluation
of differential cross sections for these reactions. We have developed the formalism for
the computation of triple differential cross sections, particularly for totally unpolarized
electron beams, using the impulse approximation. This approximation allows us to view
the full nuclear reaction as the interaction of a virtual photon with a single proton in
the target nucleus, while the other nucleons act as spectators. We have written the
matrix element squared as a contraction of a leptonic and a hadronic tensor, and we
have parametrized the hadronic tensor in a model-independent way which makes use of
structure functions. Since a good knowledge of the elementary process e+p → e′+K+Λ

is required to successfully describe this interaction, we also have reviewed the different
approaches to model it. We have focused on hadrodynamical, single-channel approaches,
which include isobar models, Regge-plus-resonance models and multipoles models.

We have then developed a Python program to numerically compute unpolarized triple
differential cross sections, and we have presented our first results for computations on a
12C target nucleus. We have used bound proton and Λ wavefunctions from the FSUGold
model and the Kaon-MAID parametrization for the elementary current operator. Our
results show that the triple differential cross section for the different particle-hole orbitals
combinations has an order of magnitude of about 10 nbarnGeV−1sr−2. The cross section
is larger for the proton in the 1p3/2 orbital; all cross sections for different combinations of
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particle-hole orbitals have the same structure, smoothly decreasing as a function of the
kaon polar angle. We found this to be true for various kinematical conditions. Moreover,
our results are in rough agreement with the ones presented by [3], the differences being
attributable to a different parametrization of the elementary operator.

The work presented in this thesis has several possibilities for future extensions. First,
the program can be used on many different nuclear reactions, including the promising
208Pb, since we have the ability to compute nucleon wavefunctions from mean field and
ab initio methods. Additionally, the cross section formula can be straightforwardly
generalized to different polarizations of the electron beams.
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Appendix A

Identities for Dirac matrices

This appendix contains a few identities involving Dirac matrices that are useful to sim-
plify some types of calculations encountered in this work.

A.1 Dirac algebra

{γµ, γν} = 2gµν (A.1)

γ5 = iγ0γ1γ2γ3 (A.2)

(γ5)2 = 1 (A.3)

{γµ, γ5} = 0 (A.4)

A.2 Trace identities

tr(odd number of γα) = 0 (A.5)

tr(γαγβ) = 4gαβ (A.6)

tr(γαγβγγγδ) = 4(gαβgγδ + gαδgγβ − gαγgβδ) (A.7)

trγ5 = tr(γ5γαγβ) = 0 (A.8)

tr(γ5 · odd number of γα) = 0 (A.9)

tr(γ5γαγβγγγδ) = −4iεαβγδ (A.10)
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