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Introduction

The use of digital images is becoming more and more widespread across

many different scientific and technical fields as well as within aspects of every

day life. Image processing techniques are thus becoming increasingly impor-

tant to improve the quality of captured images and extract the required

information. Super-resolution and segmentation are two difficult problems

in image processing and in the past years there has been continuous work to

improve existing algorithms and find new approaches.

Our main contribution is the implementation of an efficient solution for the

super-resolution problem that significantly improves the speed of a previous

algorithm. We apply this new method to two joint super-resolution and seg-

mentation models based on on `0 gradient minimization and compare the

results of the algorithms.

In chapter 1 we briefly introduce digital images and the formation model of

digital photographs. We then go over the super-resolution and segmentation

problems and some of the fields of application.

In chapter 2 we define the numerical model of image reconstruction and its

application to super-resolution.

In chapter 3 we introduce the optimization algorithm ADMM and how it

is applicable to the super-resolution problem. We also outline the imple-

mentation of the new and more efficient super-resolution algorithm, and two

regularization models based on `0 gradient minimization.

In chapter 4 we analyse the results of the algorithms and discuss time com-

plexity and measured execution time.
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Chapter 1

Super-resolution and segmentation

1.1 Digital images

Digital images are most commonly captured with a digital camera, but

this is only one of the many possible ways. Images can be constructed for

countless purposes and from many different types of signals, for example

tomography techniques produce images by sections through the use of dif-

ferent penetrating waves, such as X-rays and ultrasound. Astronomical pho-

tography allows us to see extremely far away in the universe and electron

microscopes make it possible to capture images of surfaces smaller than the

wavelength of visible light. We will mainly use digital photographs in our ex-

amples as it’s the type of image everyone is most familiar with, but in general

we can think of a digital image as the capture of any two-dimensional signal

by an image sensor that is processed by a computer and then displayed as

visible light.

A digital image is stored in the memory of a computer as a two-dimensional

array of numbers and it can be written as a matrix whose elements represent

the intensity of a small square section called pixel. The number of pixels in

an image is its resolution, higher resolutions allow for greater detail. The

simplest way to store a grayscale image is with an 8 bit integer number per

pixel with values between 0 and 255. Whenever we want to operate on images

it’s useful to represent pixels as floating point numbers with values between

1



2 1. Super-resolution and segmentation

0 (minimum intensity) and 1 (maximum intensity) for higher precision. To

represent color images we also need more than one value for each pixel, a

format commonly used is RGB: for each pixel we store 3 numbers that are

referred to as channels and represent the intensity of the color red, green and

blue respectively. Other colors are obtained through the sum of these 3, as

it happens in LCD displays where each pixel is made of three small LEDs

positioned very close to each other. Color images can thus be represented as

three matrices, one for each channel.

1.2 Image formation model

When we take a picture with a digital camera light enters through the

lens and is measured by a sensor made of a matrix of elements sensitive to

light that correspond to the pixels of the image. The two most common types

of image sensors are the Charge coupled device (CCD) and the active-pixel

(CMOS) which convert the measured light to an analogical signal that is then

read and stored as a digital number. The greater the number of elements of

the sensor the higher will be the resolution of the captured image.

However, captured images are often subject to degradation from various

sources that lower their quality. For example a photograph may appear

blurred because it was captured with an out-of-focus lens, due to atmospheric

conditions or because of movement of the camera. Furthermore acquired

images are almost always contaminated with noise that can be of various

types and come from various sources. The most common type of noise that

we will consider is additive noise, that is values summed to the pixels of the

original image. A typical source of noise for images captured with a camera

sensor is caused by errors in the measurement of voltage values. This readout

noise is usually assumed to consist of independent and identically distributed

random values (white noise) with a Gaussian distribution with mean zero and

standard deviation proportional to the amplitude of the noise, for this reason

it is known as Additive White Gaussian Noise (AWGN).
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1.3 Super-resolution

Image super-resolution refers to the process of reconstructing an image

with a higher spatial resolution using low resolution observations while pre-

serving its quality and interesting features. This is often desirable for many

purposes, improving the resolution and detail of an image can be important

in many fields, such as medical, astronomical, and satellite imaging. The

resolution of images is usually limited by the resolution of the sensor used to

capture them, larger or more dense sensors allow for higher resolutions but are

obviously more expensive and not always available. Furthermore to achieve

higher density, the elements of the sensor have to be smaller and thus the

amount of light incident on each one decreases resulting in additional noise.

For all these reasons chips and optical components to capture very high-

resolution images are prohibitively expensive and not practical in most real

applications. Often it’s easier to address this problem by accepting the image

degradations and by using signal processing techniques to post-process the

captured images and use computation to save on the hardware cost. These

techniques are specifically referred as super-resolution reconstruction. Some

of the fields where super-resolution addresses these problems are:

Video information enhancement In this field the use of super-resolution

techniques is aimed at improving the quality of video images, for example

used to convert from Standard Definition TV (SDTV) to High Definition

TV (HDTV). This techniques can also be employed to improve the quality

of everyday pictures and videos captured with phones, tablets and computers.

Surveillance The use of video recorders (DVR) devices is becoming more

and more widespread in applications such as traffic surveillance and security

monitoring. It is, however, impossible to to equip large-scale high resolution

devices for these purposes because of the prohibitive costs. This field is also

particularly challenging because of the impact of weather conditions and

other sources of degradation such as video compression.
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(a) observation (b) ground truth (c) super-resolution

Figure 1.1: Example of image super-resolution

Medical diagnosis Images are used in the medical field to provide both

anatomical information about the human body structure and functional in-

formation. Many of the instruments used to capture medical images have

limited resolutions and are subject to different kinds of degradations. Super-

resolution technologies have been used with multiple medical imagin modal-

ities, including magnetic resonance imaging (MRI), functional MRI (fMRI),

and positron emission tomography (PET).

Astronomical observation The physical resolution of astronomical imag-

ing devices limited by system parameters also provides a chance for SR tech-

niques to play a role. Astronomical systems can typically collect a series of

images for SR. By improving the resolution of astronomical images, Super-

resolution can help astronomers with the exploration of outer space.

Biometric information identification Super-resolution is also impor-

tant in biometric recognition, including resolution enhancement for faces,

fingerprints and images. The resolution of biometric images is pivotal in the

recognition and detection process.
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1.4 Segmentation

Image segmentation involves partitioning digital images into multiple seg-

ments or objects to simplify or change the representation into something that

is more meaningful and easier to analyse. It can be formulated as a classi-

fication problem of pixels with semantic labels, the input is a digital image

and the output is a new image of the same size in which all pixels of the

same segment or class have the same value. We can divide segmentation

problems in two categories: semantic segmentation and instance segmenta-

tion. Semantic segmentation is concerned with labeling pixels with a set of

object categories, such as human, car, tree. Instance segmentation extends

semantic segmentation by also detecting each distinct object of interest, for

example by partitioning individual persons.

Image segmentation has many applications in the field of remote sensing,

including techniques for land-cover classifications, urban planning and preci-

sion agriculture. Other important application fields include medical imaging,

biology and evaluation of construction materials.

Numerous image segmentation algorithms have been developed, from the

earliest methods such as thresholding, region growing, k-means clustering

and watershed to more advanced algorithms such as active contours, graph

cuts, conditional and Markov random fields and sparsity based methods.

In recent years with the rapid growth of Artificial Intelligence techniques,

Deep Learning based methods have provided a new generation of segmen-

tation models with remarkable improvements. We refer to [8] for a detailed

review of Deep Learning models used for image segmentation.

Figure 1.2: Example of semantic segmentation (results of DeepLabV3)
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1.5 Joint super-resolution and segmentation

When working with low resolution images it may be useful to increase the

quality of the data by applying a super-resolution algorithm before segmen-

tation. As shown in [4], in several imaging applications, such as computed

tomography, magnetic resonance and microscopy, carrying out reconstruction

and partitioning tasks, jointly, has provided better results than performing

the two steps sequentially. In figure 1.3 we show an example of the improve-

ments of performing joint super-resolution and segmentation.

(a) LR (x5) + mask (b) GT + mask (c) SR + IP + mask (d) Joint + mask

Figure 1.3: (a) Segmentation of a low resolution observation. (b) Segmentation of the

ground truth. (c) Segmentation applied after super-resolution. (d) Joint super-resolution

and segmentation.



Chapter 2

Numerical Model

2.1 Numerical model for super-resolution

We are interested in reconstructing the original image from an observa-

tion, we can use a discrete linear model to approximate the degradation and

take advantage of numerical methods to deal with this problem. We will first

analyse the numerical model used for deblurring images, and we will then

expand it to the problem of super-resolution.

Let b ∈ RN be the observed image of size N = m × n, where m is the

number of pixels in each column and n the number of pixels in each row,

and x ∈ RN the original image of the same size. A ∈ RN×N is a matrix that

describes the linear application of the blurring process and η ∈ RN represents

the Additive White Gaussian Noise. We can describe the effect of blurring x

through A and adding the noise η to obtain b with the following formula

b = Ax+ η

We are interested in solving the inverse problem, that is computing the orig-

inal image x given the observation b and the approximation of the blurring

matrix A. This is an ill-posed problem as the linear system is usually overde-

termined and does not admit a solution. Therefore we look for the solution

to the following least squares problem:

arg min
x

1

2
||Ax− b||22

7



8 2. Numerical Model

Although this formulation admits a solution, the results are heavily corrupted

by the presence of noise in the observation. A general approach to improve

these results is to add a regularization term to encode some prior knowledge

about the solution x and improve stability, we thus look for a minimizer of

the following function

arg min
x

1

2
||Ax− b||22 + µR(x)

where µ > 0 is the regularization parameter that balances the weight of the

fidelity term ||Ax−b||22 and the regularization term R(x). The regularization

term usually aims at reducing the noise in the resulting image by increasing

the smoothness of the solution, some common choices are functions of the

norm of the image, the image gradient or the total variation of the image. For

this reason the optimal value of the regularization parameter is dependant on

the amount of noise present in the image, stronger noise requires an higher

parameter to achieve the desired smoothness in the solution.

Reconstruction based super-resolution approaches expand on the image

reconstruction model we have just seen by introducing the downsampling

operator. As we did before we are going to solve an inverse problem, the

downsampling operator discards pixels of the input image lowering its reso-

lution. Let g ∈ RNl be the low resolution observation of size Nl = ml × nl
and u ∈ RNh the high resolution original image of size Nh = mh × nh that

we want to reconstruct. We assume the degradation model given by

g = SHu + η

where H ∈ RNh×Nh is the blurring operator, S ∈ RNl×Nh is the downsampling

operator and η ∈ RNl the Additive White Gaussian Noise. Again we will use

a minimization approach to find a solution to the inverse problem, looking

for a minimizer of the following function

arg min
u

1

2
||SHu− g||22 + µR(u)

where µ > 0 is the regularization parameter that balances the weight of the

fidelity term ||SHu− g||22 and the regularization term R(u).
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We will also consider a constrained model for super-resolution given by

arg min
u∈RNh

1

2
||SHu− g||22 s.t. R(u) ≤ α.

in this formulation the parameter α acts as a constraint on the value of a

certain property of the result described by R(u).

2.2 Blurring operator

The blurring operator H represents the linear application describing the

blurring process. We are going to consider blurs that are spatially invariant

and can thus be applied through convolution of the image with a blur kernel.

The most common type of kernels that we are going to use is the Gaussian

kernel, but the same techniques can be applied to other kernels that describe

effects such as motion blur, out-of-focus lenses and atmospheric turbulence.

A two-dimensional Gaussian kernel is described by the following formula

pij = exp

(
−1

2

(
(i− k)

σ

)2

− 1

2

(
(j − l)
σ

)2
)

pij represents the element at the row i and column j of the kernel, r is the

blur radius, k and l are the pixel coordinates of the center of the Gaussian

function. σ represents the standard deviation of the Gaussian function and

affects the blur magnitude. The elements of the Gaussian kernel must be

normalized so that they sum to 1 to preserve the average brightness of the

input image.
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Figure 2.1: 3D plot of a Gaussian kernel with standard deviation σ = 2

If we consider periodic boundary conditions the matrix H is Block Circu-

lant with Circulant Blocks (BCCB), therefore it can be decomposed through

the Fourier Transform in the following way

H = FHΛF

F is the two-dimensional discrete Fourier transform (DFT) matrix and FH is

the inverse transform. Λ is a diagonal matrix containing the eigenvalues of

H. This decomposition makes the computation of the blurring particularly

efficient because we can use the Fast Fourier Transform (FFT) algorithm

to compute the DFT and its inverse with complexity O(N logN) instead of

O(N2) required for matrix-vector multiplication.

2.3 Decimation operator

The decimation operator S ∈ RNl×Nh performs downsampling of an high

resolution image of size Nh = nh×mh and returns a low resolution image of

size Nl = nl×ml. The effect of applying the decimation operator is equivalent

to discarding rows and columns of the input image. The downsampling factor
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d = dr × dc is defined such that Nh = Nl× d. The decimation factors dr and

dc represent the discarded rows and columns of the input images respectively,

satisfying the relation mh = ml × dr and nh = nl × dc. We will also consider

the conjugate transpose operator SH ∈ RNh×Nl as the interpolation of the

input image with zeros to obtain an image with higher resolution. With these

definitions we have the following equality SSH = INl
.

S SH

Figure 2.2: Example application of the decimation operator S and its conjugate SH .

Unfortunately, the operator S does not share the same properties of H,

since it cannot be diagonalized by the 2D discrete Fourier Transform. Under

the previous assumptions, by denoting with Jd ∈ Rd×d a matrix of ones, 1d a

d-dimensional vector of ones and Id ∈ Rd×d the identity matrix, the following

chain of equalities holds:

FSHSFH =
1

d
(Jdr ⊗ Inr)⊗ (Jdc ⊗ Inc)

=
1

d

(
1dr1

T
dr ⊗ InrInr

)
⊗
(
1dc1

T
dc ⊗ IncInc

)
=

1

d

(
(1dr ⊗ Inr)

(
1Tdr ⊗ Inr

))
⊗
(
(1dc ⊗ Inc)

(
1Tdc ⊗ Inc

))
=

1

d
((1dr ⊗ Inr)⊗ (1dc ⊗ Inc))

(
1Tdr ⊗ Inr

)
⊗
(
1Tdc ⊗ Inc

)
where we apply the following property AB⊗CD = (A⊗ C) (B ⊗D) of the

Kronecker product ⊗. In the next chapter we are going to use this equality

to efficiently solve the super-resolution optimization problem.
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2.4 Image gradient

As we have seen the purpose of the regularization term is to preserve

some properties of the original image in the solution. Many of the properties

that we are interested in can be expressed in terms of the image gradient.

The gradient of a function of two variables f(x, y) is defined as the two

dimensional column vector of the partial derivatives with respect to x and y

∇f =

[
∂f
∂x
∂f
∂y

]

We can compute approximations of the partial derivatives of a digital im-

age using finite differences. We will use forward finite differences as described

by the following formulas

∂u

∂x
(i, j) = u(i+ 1, j)− u(i, j)

∂u

∂y
(i, j) = u(i, j + 1)− u(i, j)

where u(i, j) refers to the pixel at row i and column j of the image u. There-

fore the image gradient is composed of two images of the same size as the

input image and whose pixels represent the difference with the adjacent pixel

in the horizontal and vertical direction respectively. This is the same as ap-

plying the following filters through convolution

∂u

∂x
=
[
−1 +1

]
∗ u

∂u

∂y
=

[
−1

+1

]
∗ u

For this reason we can define the partial derivatives of u ∈ RN as the

application of the linear operator Dh ∈ RN×N and Dv ∈ RN×N and the

image gradient as D ∈ R2N×N such that Du = (Dhu; Dvu). Since Dh and

Dv are BCCB matrices we can compute the image gradient efficiently in
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the frequency domain in the same way as we did for the blurring operator.

Therefore, there exist two diagonal matrices Σh ∈ RN×N and Σv ∈ RN×N

such that

Dh = FHΣhF and Dv = FHΣvF.

where F and FH are the two-dimensional discrete Fourier transform ma-

trix and its inverse.





Chapter 3

Methods

3.1 ADMM algorithm

The ADMM (Alternating Direction Method of Multipliers) algorithm

solves constrained optimization problems in the form

minimize f(x) + g(z)

subject to Ax+Bz = c

with variables x ∈ Rn and z ∈ Rm where A ∈ Rp×n, B ∈ Rp×m and

c ∈ Rp. This method can be used for single variable optimization problems

where the variable x that we want to minimize is split in two parts, x and z

in this case, and with objective function separated into f and g across this

splitting.

The optimal value is denoted by

x∗ = inf {f(x) + g(z) | Ax+Bz = c}

The augmented Lagrangian function is given by

Lβ(x, z, λ) = f(x) + g(z) + λT (Ax+Bz − c) +
β

2
||Ax+Bz − c||22

15



16 3. Methods

and the general algorithm for ADMM consists of the following iterations

xk+1 = arg min
x

Lβ(x, zk, λk) (1)

zk+1 = arg min
x

Lβ(xk+1, z, λk) (2)

λk+1 = λk + β(Axk+1 +Bzk+1 − c) (3)

where β > 0, è is the penalty parameter. The three steps of the algorithm

are the minimization of x (1), the minimization of z (2) and the update of

the dual variable λ using a step of length β (3). The variables x and z are

updated in an alternating fashion which accounts for the name Alternating

Direction.

We can also write the algorithm in a more convenient form combining the

linear term λT (Ax+Bz− c) and the quadratic term β
2
||Ax+Bz− c||22 of the

augmented Lagrangian function Lβ and by scaling the dual variable λ.

We define the value of the residual r = Ax+Bz− c and obtain the following

equalities

λT r +
β

2
||r||22 = λT r +

β

2
||r||22 +

1

2β
||λ||22 −

1

2β
||λ||22

=
β

2
(||r||22 +

2

β
λT r +

1

β2
||λ||22)−

1

2β
||λ||22

=
β

2
||r +

λ

β
||22 −

1

2β
||λ||22

=
β

2
||r + u||22 −

β

2
||u||22

where u = λ
β

is the scaled dual variable. Using this form we can rewrite the

3 passages of the algorithm in the following way

xk+1 = arg min
x

f(x) +
β

2
||Ax+Bzk − c+ uk||22 (1)

zk+1 = arg min
z

g(z) +
β

2
||Axk+1 +Bz − c+ uk||22 (2)

uk+1 = uk + Axk+1 +Bzk+1 − c (3)

We can also define the residual at iteration k as rk = Axk + Bzk − c and



3.2 ADMM for super-resolution 17

compute the value uk as the running sum of the residuals

uk+1 = uk + rk+1 = u0 +
k+1∑
j=1

rj

This last form of the ADMM is known as the scaled form, since it’s

expressed in terms of the scaled dual variable. Although the two forms are

equivalent, we are going to express the algorithms in the next section in the

scaled form as the formulas are often shorter and simpler. We refer to [7] for

more details on the ADMM algorithm.

3.2 ADMM for super-resolution

We can apply the ADMM algorithm to the super-resolution problem by

setting the objective functions f(u) = 1
2
||SHu − g||22 which represents the

fidelity term and g(z) = µR(z) which represents the regularization term

with parameter µ. Regarding the constraint, we have that A = D is the

linear application that computes the image gradient, B = −I is the negated

identity matrix and c = 0 the null vector. The super-resolution problem can

then be rewritten as

arg min
u∈RNh

1

2
||SHu− g||22 + µR(z)

subject to Du− z = 0

The augmented Lagrangian is given by

Lβ(u, z,λ) =
1

2
||SHu− g||22 + µR(z) + λT (Du− z) +

β

2
||Du− z||22

where β > 0 is the penalty parameter and λ is the dual variable, also known

as the Lagrange multiplier. The three ADMM steps are given by the following
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scheme

zk+1 = arg min
z

µR(z) +
β

2
||Duk − (z− λk

βk
)||22 (1)

uk+1 = arg min
u

1

2
||SHu− g||22 +

β

2
||Du− (zk+1 − λk

βk
)||22 (2)

λk+1 = λk + βk(Duk+1 − zk+1) (3)

We compute the solution by solving subproblems (1) and (2) and updat-

ing the dual variable λ (3) iteratively. In the next section we analyse an

efficient solution for subproblem (2) and in the rest of the chapter we see two

possible choices for the regularization term R(z) and the respective solutions

for subproblem (1).

3.3 Fast Super-Resolution

Our main contribution is the implementation of the following fast super-

resolution algorithm as described in [2].

We show, under the hypothesis considered on the discrete operators S and

H in the previous chapter how subproblem (2) can be efficiently solved in

the frequency domain. The problem is a standard SR `2 − `2 optimization

problem which admits a solution since the objective considered is convex. In

particular, by applying the first order optimality conditions, a solution uk+1

of (2) can be viewed as the solution of the following linear system:

(HHSHSH + βkDHD)uk+1 =

(
HHSHg + βkDH(zk+1 − λk

βk
)

)
.

In [1] the problem of finding uk+1 is addressed by applying the Conjugate

Gradient (CG) iterative scheme. Despite its good performances, this ap-

proach is not efficient in terms of the overall computational cost, therefore a

direct solver is preferable. Unfortunately, because of the particular structure

of the decimation matrix, the joint operator SH cannot be diagonalized in

the frequency domain, thus preventing any direct implementation of uk+1.
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By considering the assumptions in the previous chapter and manipulating

the last expression in terms of F and FH we deduce the following chain of

equalities:

(FHΛHFSHSFHΛF + βkFH
(
Σh

HΣh + Σv
HΣv

)
F)uk+1 = rk

(FHΛH 1

d
(Jdr ⊗ Inr)⊗ (Jdc ⊗ Inc) ΛF + βkFH

(
Σh

HΣh + Σv
HΣv

)
F)uk+1 = rk

(ΛH 1

d
(Jdr ⊗ Inr)⊗ (Jdc ⊗ Inc) ΛF + βk

(
Σh

HΣh + Σv
HΣv

)
F)uk+1 = Frk

(
1

d
ΛHΛ + βkΣh

HΣh + Σv
HΣv)Fuk+1 = Frk

where rk := HHSHg+βkDH(zk+1−λk

βk
) and Λ :=

(
1Tdr ⊗ Inr

)
⊗
(
1Tdc ⊗ Inc

)
Λ.

Therefore we deduce:

uk+1 = FH(
1

d
ΛHΛ + βkΣh

HΣh + Σv
HΣv)

−1Frk.

Using the Woodbury formula as in [2], the expression of uk+1 reads as in

the following:

uk+1 =
1

β
FHΨFrk − 1

β
FHΨΛH

(
βdINl

+ ΛΨΛH
)−1

ΛHΨFrk.

we observe that under the assumptions of cyclic boundary conditions the

discrete Laplacian DHD is not invertible. As in [2] we add to the objectives

in (2) a regularization term σDλ‖u‖22 defined in terms of a small constant

1� σD > 0.

Upon this assumption, we set Ψ :=
(
ΣH
h Σh + ΣH

v Σv + σDINh

)−1
.

The steps required to solve the super-resolution subproblem are summa-

rized in Algorithm 1.
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Algorithm 1 – FSR

input: g,S,H,Dh,Dv, z
k+1, β, d

output: uk+1

Factorizations of matrices H,Dh,Dv

1: H = FHΛF

2: Dh = FHΣhF

3: Dv = FHΣvF

Compute Λ and Ψ

4: Λ←
(
1Tdr ⊗ Inr

)
⊗
(
1Tdc ⊗ Inc

)
Λ

5: Ψ←
(
ΣH
h Σh + ΣH

v Σv + σDINh

)−1
Compute solution of the linear system

6: rk ← HHSHg + βkDH(zk+1 − λk

βk
)

7: uk+1 ← 1

β
FHΨFrk − 1

β
FHΨΛH

(
βdINl

+ ΛΨΛH
)−1

ΛHΨFrk.

3.4 `0 gradient minimization

We are going to define the regularization term using the `0 norm of the im-

age gradient. This choice is known to have a strong ability of edge-preserving

flattening. For this reason it is especially useful for achieving piecewise con-

stant segmentations of the input image. The `0 norm of the image gradient

(or `0 gradient in short) is defined as follows

||Du||0 := # {||(Du)i||, i = 1, . . . , N : (Du)i 6= 0}

which represents the number of elements of the image gradient that are

not null. Intuitively the `0 gradient is the number of pixels in the image in

which there is a discontinuity or a ”jump” when compared to the neighbour-

ing pixels.

The first model we are going to consider minimizes the value of the `0

gradient by solving the following optimization problem

arg min
u∈RNh

1

2
||SHu− g||22 + µ||Du||0
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We now see how to solve subproblem (1) of the ADMM scheme with this

choice of the regularization term. For each iterate k we denote vk the vector

Duk + λk

βk . Due to decomposability of the `0 term we observe that the objec-

tive in (1) is separable. Therefore, a solution zk+1 ∈ R2Nh of the optimization

problem (1) is computed solving for i = 1 . . . Nh the 2D optimization prob-

lems of the following form:

arg min
zi∈R2

δk||zi||0 + ||zi − vki ||22,

where δk = 2µ
βk . As explained in [1], computing zki corresponds to the

proximal mapping of the 2D `0 term with parameter δk evaluated in vk, which

is the 2D hard-thresholding operator. The necessary steps are summarized

in algorithm 2.

Algorithm 2 – `0 gradient prox

input: Duk, λk, βk, µ

output: zk+1

1: vk ← Duk + λk

βk

2: for vki ∈ vk do

3: zk+1
i ←

0 if ||vki ||22 <
2µ
βk

vki otherwise

4: end for

3.5 `0 gradient projection

The positive scalar parameter µ does not directly correspond to the de-

gree of flatness of the result, therefore the users have to deal with an heuristic

selection of a suitable value of this parameter. While it weights the contribu-

tion of the `2 and `0 terms, it lacks of a physical meaning. More precisely, the

larger the magnitude of µ, the smaller the `0 gradient value of the solution,

although an explicit relation between the magnitude of µ and the number
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of jumps is unavailable, and thus users cannot directly specify the degree

of flatness of the output image in advance. For this reason [3] suggests the

following constrained model

arg min
u∈RNh

1

2
||SHu− g||22 s.t. ||Du||0 ≤ α.

This constrained formulation introduces the positive integer α as upper

bounds of the `0-gradient. In the unconstrained formulation described in the

previous section, the parameter µ does not directly correspond to the degree

of flatness of the solution, whereas in the constrained formulation one can

determine α based on the information on the observed image g, such as a

certain percentage of total number of pixels we want to preserve or on the

value `0-gradient in g. Therefore, assigning a proper α is more intuitive and

meaningful than looking for µ.

The constrained model can also be expressed as follows

arg min
u∈RNh

1

2
||SHu− g||22 + i{‖·‖0≤α}(z)

where by i{‖·‖0≤α}(z) we denote the indicator function of the non-convex

set {z ∈ R2Nh|‖z‖0 ≤ α}

i{‖·‖0≤α}(z) :=

0 ||z||0 ≤ α

∞ otherwise

As proposed in [3] a solution of subproblem (1) with this choice of the

regularization term can be computed by the projection zk+1 = vk if and only

if ‖vk‖0 ≤ α, otherwise zk+1
i = ṽki for i = 1 . . . Nh, where

ṽki :=

vki i ∈ {(1), . . . , (α)}

0 i ∈ {(α + 1), . . . , (Nh)}

and the indexes (1), . . . (Nh) are computed by sorting in descending order

the 2D subvectors vki for i = 1 . . . Nh, in terms of their `2-norms and rela-



3.5 `0 gradient projection 23

belling them accordingly. More simply, zk+1 is computed by replacing with

zero the Nh − α elements of vk with the smallest `2 norm.

Algorithm 3 – `0 gradient projection

input: Duk, λk, βk, α

output: zk+1

1: vk ← Duk + λk

βk

2: Compute (1), . . . ,(Nh) by sorting the subvectors of vk in descending order

in terms of their `2 norm

3: for vki ∈ vk do

4: zk+1
i ←

vki i ∈ {(1), . . . , (α)}

0 i ∈ {(α + 1), . . . , (Nh)}.
5: end for





Chapter 4

Results

In this chapter we are going to show the results of the ADMM algorithm

for reconstruction based super-resolution that solves the optimization prob-

lem described in the previous chapters. We are going to compare the results

of using the two regularization methods that we described, the unconstrained

model, using the regularization parameter µ

arg min
u∈RNh

1

2
||SHu− g||22 + µ||Du||0

and the constrained model, where the desired value of the `0 gradient is

specified by the parameter α

arg min
u∈RNh

1

2
||SHu− g||22 s.t. ||Du||0 ≤ α.

We are going to test the algorithms by creating test problems from ex-

isting images; given a reference image (ground truth) we create a corrupted

version through blurring, downsampling and the addition of noise. We will

then evaluate the results of the algorithm on the corrupted image by com-

paring the reconstruction that we obtained with the ground truth and the

input. The low resolution test images will be constructed using the decima-

tion operator for downsampling with a factor of L, blurred with a Gaussian

kernel of standard deviation σH and corrupted with additive Gaussian white

noise of standard deviation ση.

One of the advantages of the constrained model over the unconstrained

is the interpretation of the parameter α compared to that of the parameter

25
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α = 25% α = 17% α = 10% α = 7%

µ = 0.005 µ = 0.01 µ = 0.02 µ = 0.04

Figure 4.1: Examples of different choices of regularization parameter for the two methods.

α is set to a percentage of the total number of pixels of the output image.

µ. Since α represents the value of the `0 gradient of the result, it’s easier

to estimate the level of segmentation that we are going to obtain. In the

following examples we will compare the two algorithms by choosing values of

the regularization parameter µ that result in similar values of the `0 gradient

and thus a similar level of segmentation.

In figure 4.2 we highlight the effect of the regularization term based on

the `0-norm of the image gradient. The graph below each image shows a line

profile of the luminance of one of the rows. As expected, we can see that the

graph is flatter when the value of the `0 gradient is lower, but hard edges in

the original image are preserved.
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input α = 16% α = 8% α = 4%

input µ = 0.004 µ = 0.022 µ = 0.055

Figure 4.2: Luminance line profile for different values of the regularization parameter

4.1 Convergence

The regularization step for the constrained algorithm guarantees that the

algorithm will converge to the desired value of the `0 gradient, therefore in

our tests we use the following stopping criteria:

||Du||0 ≤ 1.05 · α

whereas for the unconstrained method the algorithm is stopped when the

relative change of the solution is lower than a fixed threshold, meaning that

the image has not changed significantly in the last iteration:

||uk+1 − uk||2
||uk||2

≤ 5 · 10−4

In figure 4.3 we show a graph of the value of the `0 gradient at each

iteration of the algorithm for different choices of the starting value. The

three choices are a black image (zeros) an image obtained by scaling the

input with a lanczos filter (lanczos) and an image obtained by smoothing the

scaled input with a reconstruction algorithm based on the Total Variation
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(TV). In all three cases we see that the value of the `0 gradient decreases to

the desired value for the constrained model. For the unconstrained model the

different starting points result in slightly different values of the `0 gradient.

constrained unconstrained

Figure 4.3: `0 gradient at each iteration for different choices of the starting value

The resulting images are shown in figure 4.4. We can see that due to the

non-convexity of the regularization term the results are different based on

the starting point, but since they have similar values of the `0 gradient they

display a similar levels of segmentation.

ground truth c - lanczos c - zeros c - TV

corrupted u - lanczos u - zeros u - TV

1

Figure 4.4: Results for different starting points. Top row: constrained with α = 9%.

Bottom row: unconstrained with µ = 0.003
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4.2 Degradation

We now analyse the results of the algorithm on inputs created with dif-

ferent levels of degradation applied to the same reference image. In figure

4.5, 4.6 and 4.7 we see the results of varying the decimation factor, the stan-

dard deviation of the noise and the standard deviation of the Gaussian blur

respectively.

Figure 4.5: From top to bottom: corrupted with a decimation factor of 2, 3, 4. From left

to right: input, constrained, unconstrained

The values of the regularization parameters are fixed for each set of tests

and they have been chosen so that the `0 gradient is approximately 6.5% of

the total number of pixels. We see that the presence of noise in the input

has very limited impact on the results, whereas we have loss of details in the

reconstruction of images that are heavily blurred or downsampled.
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Figure 4.6: From top to bottom: corrupted with noise with standard deviation ση =

0.1, 0.03, 0.05. From left to right: input, constrained, unconstrained.

Figure 4.7: From top to bottom: corrupted with gaussian blur with standard deviation

σH = 0.5, 0.8, 1.0. From left to right: input, constrained, unconstrained.
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4.3 Time

The time complexity of the two algorithms is O(kN logN) where k is

the number of ADMM iterations and N is the number of pixels in the high-

resolution reconstruction. The time complexity of each iteration is given by

the time required to solve the super-resolution subproblem and the regular-

ization step. Since the super-resolution subproblem is solved in the frequency

domain the most expensive operation is the computation of the Fourier trans-

forms and its inverse, which requires time O(N logN). Furthermore the regu-

larization subproblem has different time complexity depending on the chosen

model. In the case of the constrained model we need to sort the elements of

the image gradient in time O(N logN) whereas the unconstrained model is

implemented with a thresholding operation which only requires time O(N).

In figure 4.8 see that the unconstrained model is faster in our tests, due to

this difference.

constrained unconstrained

Figure 4.8: Execution time for color images of different sizes. The graph represents the

total time over the number of pixels in the high resolution reconstruction.

Both models execute in 2 to 3 minutes for images of 106 pixels, making

it feasible to run the algorithm on images of high dimensions or using high

upscaling factors.
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We now compare the execution time of the Conjugate Gradient (CG) itera-

tive scheme used in [1] with the direct solver of our two algorithms (FSR).

The closed form allows us to avoid the expensive iterations of the CG method,

and the resulting algorithms are about 30 times faster in our tests.

CG (µ = 0.003) FSR (µ = 0.003) FSR (α = 9%)

ADMM iterations 70 72 34

time per iteration 0.901 s 0.025 s 0.064 s

total time 63.11 s 1.79 s 2.19 s

Table 4.1: Execution time of the previous algorithm (CG) and our new method (FSR) on

a black and white image of size 480× 320

All the tests were executed in Matlab R2019b with an Intel i5-6500 and

8GB of RAM.

4.4 k-means segmentation

We have seen how the images produced by the algorithm show a good level

of segmentation with an appropriate choice of the regularization parameter.

We will now compare the result of a pixel labelling algorithm on the input

images and on our reconstructions. The pixel labelling is created applying the

k-means clustering algorithm in Matlab R2019b to the three color channels,

which identifies a fixed number (k) of segments in the input image and assigns

the index of the segment to each pixel.

Figure 4.9 and 4.10 show how applying this algorithm to an image that

has been segmented with one of our methods results in a cleaner segmentation

with more distinct boundaries between each segment.
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input constrained unconstrained

Figure 4.9: k-means clustering image segmentation with k = 4. Top row: input to the

k-means algorithm. Bottom row: pixel labelling on top of the input image

input constrained unconstrained

Figure 4.10: k-means clustering image segmentation with k = 3. Top row: input to the

k-means algorithm. Bottom row: pixel labelling on top of the input image





Conclusions

We introduced reconstruction based methods for joint super-resolution

and segmentation. Our main contribution is the implementation of a di-

rect solution for the super-resolution subproblem as proposed in [2] to the

joint super-resolution and segmentation approach in [1]. The new algorithm

is about 30 times faster in our measurements. We have also compared the

results of this algorithm with the constrained model proposed in [3]. The con-

strained and unconstrained models produce similar results at similar speed

even when executed on heavily corrupted images.

Future research could explore different choices of the decimation of operator

that result in higher quality super-resolution while maintaining the proper-

ties that allow for an efficient solution in the frequency domain. We briefly

analysed the segmentation obtained from the algorithms but additional work

is required to obtain higher quality pixel labelling from the reconstructions.

As proposed in [1] the algorithms can be applied as a preprocessing step for

Deep Learning based segmentation methods and could also be used to im-

prove training and verification of neural networks for image segmentation.

The Matlab implementation of the algorithms and the code to generate all

the images in the previous chapter are available at:

https://github.com/ramenguy99/JointSuperResolutionSegmentation.

35
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