ALMA MATER STUDIORUM — UNIVERSITA DI BOLOGNA
CAMPUS DI CESENA

Scuola di Ingegneria e Architettura
Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

Logic Reasoning in BDI Agents:
Current Trends and Spatial
Integrations

Tesi di laurea in
SISTEMI AUTONOMI

Relatore Candidato
Prof. Andrea Omicini Maicol Forti

Correlatore
Prof.ssa Roberta Calegari
Dott. Giovanni Ciatto

Anno Accademico 2019-2020

il

111

Keywords

MAS

BDI

Spatial Reasoning
2P-Kt

Geo2p

v

Abstract

This thesis finds its place in the context of BDI agents and aims to enable a form of
situated spatial reasoning. A survey is proposed in which the possible techniques
and technologies that can be integrated into the BDI model to provide a form of
spatial reasoning are analyzed. This review highlights a technological gap that we
have therefore decided to fill, with the goal of providing a way to locate logical
information in certain spatial areas and to be able to constrain reasoning on them.
In this thesis we propose Geo2p, a technological prototype based on 2P-Kt that
allows you to query situated information in tuProlog, enabling a form of spatial
reasoning: given a region of space where certain Clauses are valid, a Theory can
be defined, constraining the knowledge on what is true in the selected area.

vi

To my family
who gave me the opportunity to choose my own path.

vii

viii

Acknowledgements

[would like to thank Prof. Andrea Omicini for his teachings and for giving me the
opportunity to conduct this thesis. I would like to express my gratitude to Prof.ssa
Roberta Calegari and Dott. Giovanni Ciatto for having patiently supervised my
work and for giving me support. Moreover I would like to show my sincere respect
to all the Professors who have passed on their passion to me over the years.
Finally, I would like to express my gratitude to my family, who have always
supported me and without whom I would not have achieved these goals.

X

Contents

[Abstractl v
(1__Introductionl 1
2__State of the Art] 3
2.1 Multi-Agent-Systems| oL 3
2.1.1 Multi-Agent-Systems| o000 3
RI2 BDIo 3
[2.2 Spatial Reasoning|o o000 4
[2.2.1 Geometry|)
OZIC .« v v v o e e 5)
[2.2.3 Mathematical Morphology| 5
2.3 Prologl 5)
2.3.1 tuPrologl o 6
RA2PKH 7
[2.4.1 Application scenarios| 8
2.4.2 The motivation behind 2P-Kt| 8
D5 _Tiedq 8
2.0.1 Installationl oo 9
2.5.2 Object Types| 9
.53 Commands 10
2.0.4 Client Libraries| 10
26 Teffucd. 10
2.7 Related Worksl. o 11
[2.7.1 Game Engines e MAS: Spatial Tuples in Unity3D| 11

[2.7.2 Introducing a novel model of beliet-desire-intention agent

for urban land use planningl 12
[2.7.3 A multi-agent architecture for geosimulation of moving agents| 12
[2.7.4 Using conceptual spaces for belief update in multi-agent sys-
[temd 13
[2.7.5 Solace a multi-agent model of human behaviour| 13

X1

xii CONTENTS
(3 BDI & Al techniques integration: a Systematic LR] 15
[3.1 Systematic Literature Review| 15
[3.2 A categorization of BDI integrations| 16
B2T Goall o 16

B22 Method 17

.23 Results. 18

3.3 Thesis Directionl. L 22

4 Geo2p Designl 25
4.1 Scenarial e e e 25
[4.2 Project Organization| 25
[4.3 Region modulel 000 26
[4.3.1 Geolocating a region| 27

[4.3.2 Summary| 27

(4.4 GeoShape modulelo L 28
[4.4.1 Summary| 28

[4.5 Theory module| 28
[4.5.1 Theory methods|. 29

[4.5.2 Caching clauses|, 30

[4.5.3 Summary| 30

4.6 Tiled8 modulelo 31
[4.6.1 Geolocationof datal 31

[4.6.2 Associating clauses to objects| 32

[4.6.3 Ordering of objects| 32

[4.6.4 Geolocating Clauses| 32

[4.6.5 A parserofresults|] 33

[4.6.6 Summary| 33

M7 Solvermodulel 35

[5 Implementation| 37
[>.1 Region module, 0o 37
H.1.1 Boundsl 37

BI2 Herd 38

[5.1.3 Regionkactory]. 39

[>.2 GeoShape modulelo 40
[.2.1 GeoPolygon| oL 41

H.2.2 Geolocationl.o o 41

[5.2.3 GeoRectanglelo 41

b24 GeoPointl 41

[5.3 Theory module| 41

[>.3.1 Tiled38SpatialTheoryl 42

CONTENTS xiii

[b.3.2 Tile38MutableSpatialTheory| 45

Hh4 Tiled8 modulelo 46
(5.4.1 Tile38Object| o 46
H.4.2 Tile38Point] 47
(b.4.3 Tile38Polygon|. oo 47
[b.4.4 Tile38ObjectFactory| 48
645 Tile38Commands 48
4.6 JSONUtlsl o 49
4.7 Tiled8Parser 50
H.4.8 Tiled8Connectionlo 50

b5 Solvermoduld 52
[>.5.1 SpatialClassicSolver|. 52

6 Conclusions and Future Worksl 55
6.1 Summary| 959

xiv CONTENTS

List of Figures

[2.1 Basic architecture of a BDl agent|. 4
[4.1 A bounding area and an area.| 27
[4.2 Factory pattern with sealed classes.| 28
[b.1 Using Bounds to find objects that intersect or are within the region.| 39
[>.2 Using Here to find nearby objects.. 39

XV

xvi LIST OF FIGURES

Chapter 1

Introduction

Agent-based systems technology has generated lots of excitement in recent years,
because of its promise as a new paradigm for conceptualizing, designing and imple-
menting software system, particularly in distributed and open environments such
as the internet [85].

A multi-agent-system can be conceived as a group of agents that interact with
each other and with the environment, establishing a society. Agents are the entities
of the system, they are autonomous, social and immersed in a society, because
autonomy does not make sense in isolation, and the environment is the container
in which agents are immersed.

Humans tend to interpret the behaviour of an entity in terms of mental prop-
erties, as if it were rational. According to this level of abstraction a new successful
framework for agent technology is that of Rao and Georgeff [72], the BDI frame-
work. The agents of the BDI framework are called BDI agents, as the notions of
Belief, Desire and Intention are central. BDI technologies are a research topic of
particular relevance, and the possibility of integrating them with other AI tech-
niques opens up a world of possibilities.

A survey is proposed in which the possible techniques and technologies that can
be integrated into the BDI model to provide spatial reasoning are analyzed. This
review highlights a technological gap that we have therefore decided to fill. The
type of reasoning we want to deliver consists of providing a way to locate logical
information in certain spatial areas and to be able to constrain reasoning on them.
In this way it is possible to enable a form of situated spatial reasoning. This
goal is supported by two technologies: Tile38, one of the most famous geospatial
database, and 2P-Kt, a multi-paradigm logic programming framework written in
Java.

In this thesis we propose Geo2p, a technological prototype based on 2P-Kt that
allows you to query situated information in tuProlog, enabling a form of spatial
reasoning: given a region of space where certain Clauses are valid, a Theory can

2 CHAPTER 1. INTRODUCTION

be defined, constraining the knowledge on what is true in the selected area.

Thesis Structure. This thesis is structured as follows. Chapter |2[provides
the background needed to understand the topics of the following chapters, by
making available the necessary information and presenting some related works.
Chapter [3] presents an SLR conducted on the topic of BDI and Al tech integrations.
Chapter 4] presents Geo2p and explains the design choices made for integrating a
form of spatial reasoning in 2P-Kt. The implementation is presented in Chapter
Finally, Chapter [6] concludes this thesis by summarising its main contribution and
possible future works.

Chapter 2

State of the Art

2.1 Multi-Agent-Systems

2.1.1 Multi-Agent-Systems

Agent-based systems technology has generated lots of excitement in recent years
because of its promise as a new paradigm for conceptualizing, designing and imple-
menting software systems [85]. This promise is particularly attractive for creating
software that operates in environments that are distributed and open, such as the
internet [85].

Agents, society and the environment, are the basic design abstractions of Multi-
Agent-Systems (MAS), which can be conceived as a group of agents that interact
with each other and with the environment establishing a society.

Even though somehow blurred throughout the vast literature on multiagent
systems, the notion of agent can be characterised by few fundamental key-points
[26]: (i) autonomy, (7i) interaction, and (i) task. In other words, an agent
may be thought as an autonomous software component which interacts with its
environment in order to achieve its tasks [26].

Managing the interaction is the goal of coordination: the space of agent in-
teraction is no longer to be seen as merely the space of communication, but also
the space of coordination [26]. Coordination languages are meant to express the
agent’s observable behaviour and to design its interaction protocol; coordination
models allow the interaction space to be shaped and ruled, while coordination
architectures provide for patterns for the organisation of agent ensembles [26].

2.1.2 BDI

The model from which the BDI agents take inspiration is the human one. Humans
tend to interpret the behaviour of an entity in terms of mental properties, as if it

4 CHAPTER 2. STATE OF THE ART

Sensing / G " \
ERF Beliefs Oeglfgﬁ: e

Filter

\ M Agent /

l Acting

Figure 2.1: Basic architecture of a BDI agent.

were rational, this level of abstraction is defined as intentional stance.

In accordance with [28], one of the most popular and successful framework for
Agent technology is that of Rao and Georgeft [72].

The agents of the BDI framework are called BDI agents, as the notions of
Belief, Desire and Intention are central.

Beliefs represent the agent’s current knowledge about the world, including in-
formation about the current state of the environment inferred from perceptions
devices and messages from other agents, as well as internal information [28]. De-
sires represent a state which the agent is trying to achieve. Intentions are the
chosen means to achieve the agent’s desires, and are generally implemented as
plans and post-conditions [28§].

An example of a BDI architecture is shown in figure 2.1}

2.2 Spatial Reasoning

The way in which we represent space mutually affects the way in which we can
reason about it. It may be either qualitative or quantitative, but is mostly ap-
proximated [33].

Mathematics and Logic can be exploited as tools to represent, analyze and
reason on space, allowing to compute on it and on its organization, on different
levels of efficiency.

Some different approaches to the representation of space and reasoning on space
are presented next in brief, taking from [62].

2.3. PROLOG 5

2.2.1 Geometry

Geometry is an approach to the representation of space that abstracts from our
perception of reality. For instance, we can use Euclidean Geometry to represent
space and reason about it through axioms, theorems and proofs.

A further step can be taken from non-Euclidean geometry, with the aim of rep-
resenting the true physical space that goes beyond our direct sensory and cognitive
perceptions.

2.2.2 Logic

Modal logic have proved to be particularly interesting, as they are very specific
and have a computational behaviour that is often decidable, they can be used to
model, analyse and reason about space.

The modal operators are reinterpreted:

e [(necessarily) as the interior operator.
e o (possibly) as the closure operator of a topological space.

Another example is S4 [19], sound and complete with respect to topological se-
mantics [56] and represents the modal logic of any Euclidean space.

2.2.3 Mathematical Morphology

Mathematical morphology (MM) [2] analyses shape, spatial information and image
processing. It comes from the similarity between the algebraic properties of MM
operators and of modal operators.

It is efficient for spatial reasoning, for instance to guide the exploration of space,
in a focus of attention process, and for recognition and interpretation of tasks.

2.3 Prolog

Prolog is a logic programming language that has its roots in first-order logic.
When stripped to the bare essentials, logic programming can be summarized
by the following three features [3]:

e computing takes place over the domain of all terms defined over a “universal”
alphabet.

e values are assigned to variables by means of automatically generated substi-
tutions, called most general unifiers.

6 CHAPTER 2. STATE OF THE ART

e the control is provided by a single mechanism: automatic backtracking.

Logic programming in its pure form supports declarative programming. A
declarative program admits two interpretations [3]:

e The first one, called a procedural interpretation, explains how the computa-
tion takes place.

e The second one, called a declarative interpretation, is concerned with the
question what is being computed.

Programs become executable specifications and the programmer will have to
worry about what will be computed, while delegating how to the underlying ma-
chine.

Another important feature of logic programming is that it supports interactive
programming. That is, the user can write a single program and interact with it
by means of various queries of interest to which answers are produced [3].

The Prolog systems greatly support such an interaction and provide simple
means to compute one or more solutions to the submitted query, to submit another
query, and to trace the execution by setting up, if desired, various check points,
all within the same “interaction loop”, leading to a flexible style of programming

[3].

2.3.1 tuProlog

The complexity of Internet-based system engineering calls for suitable infrastruc-
tures, meant to make the designers’ and developers’ task easier by providing
commonly-required services to applications [31].

Easily deployable infrastructures are needed, which can (i) be easily config-
ured to match the application needs, both statistically and dynamically, (i) rule
component and application interaction, and possibly (7i4) encapsulate some form
of intelligence to be exploited by applications [31]. In this scenario, where Soft-
ware Engineering, Programming Languages, and (Distributed) Artificial Intelli-
gence meet, logic-based languages are fighting to find a role to play [31].

tuProlog is a Java-Based Prolog designed to build Internet-based intelligent
components, which are (i) easily deployable, (ii) lightweight, (i) scalable, (iv)
statically and dynamically configurable, and (v) interoperable [31].

tuProlog makes a core Prolog inferential engine available as a Java class, so
that an unlimited number of tuProlog engines can be exploited at the same time
by the same application or process [31].

Each engine can be configured independently, and integrated into a system
according to the preferred /required interaction pattern: as a Java object, a Java

2.4, 2P-KT 7

bean, via RMI or CORBA, or as an Internet Service [31]. Moreover, tuProlog
integrates basic coordination capabilities, by providing logic tuple spaces as a co-
ordination media. This makes tuProlog a good choice as an establishing technology
for flexible and effective Internet infrastructures [31].

tuProlog natively supports multi-paradigm programming, so as to provide an
integration model between Prolog and other object-oriented languages.

2.4 2P-Kt

2P-Kt is the natural evolution and modernisation of Prolog implementation [7§],
Kotlin-based, and provides a Prolog framework that natively supports multi-
paradigm programming.

It aims at becoming an open ecosystem for Symbolic Artificial Intelligence
(AI). For this reason, 2P-Kt consists of a number of incrementally interdependent
modules aimed at supporting symbolic manipulation and reasoning in an extensible
and flexible way [1].

2P-Kt currently focuses on supporting knowledge representation and automatic
reasoning through logic programming, by featuring [1]:

e a module for logic terms and clauses representation, namely core

e a module for logic unification representation, namely unify

a module for in-memory indexing and storing logic theories, as well as other
sorts of collections of logic clauses, namely theory

e a module providing ISO Prolog resolution of logic queries, namely solve,
coming with two implementations (i.e. solve-classic and solve-streams)

e a number of modules (i.e., the many dsl-* modules) supporting a Prolog-
like, Domain Specific Language (DSL) aimed at bridging the logic program-
ming with the Kotlin object-oriented & functional environment

e two parsing modules: one aimed at parsing terms, namely parser-core, and
the other aimed at parsing theories, namely parser-theory

e two serialisation-related modules: one aimed at (de)serialising terms and
clauses, namely, serialize-core, and the other aimed at (de)serialising
terms theories, namely serialize-theory

e a module for using Prolog via a command-line interface, namely repl

e a module for using Prolog via a graphical user interface (GUI), namely ide

8 CHAPTER 2. STATE OF THE ART

The modular, unopinionated architecture of 2P-Kt is deliberately aimed at
supporting and encouraging extensions towards other sorts of symbolic Al systems
than Prolog. Furthermore, 2P-Kt is developed as in pure, multi-platform Kotlin
project, which brings two immediate advantages [1]:

1. it virtually supports several platforms, there including JVM, JS, Android,
and Native (even if, currently, only JVM, JS and Android are supported),

2. it consists of a very minimal and lightweight library, only leveraging on the
Kotlin common library, as it cannot commit to any particular platform stan-
dard library.

2P-Kt can either be used as a command-line program or as a Kotlin, JVM, Android
or JS library.

2.4.1 Application scenarios

As explained in [78], 2P-Kt has been thought to explicitly address two main use
scenarios: (i) its use by software programmers as a library to exploit the logic pro-
gramming paradigm and (77) its use as a basic component to be further extended
by adding new Prolog libraries, primitives and so on. The first scenario is intended
for “final users” that would like to inject in their software some logic programming.
The secondary usage is as a code base to implement Prolog extensions, deviating
from the Prolog Standard functionalities.

2.4.2 The motivation behind 2P-Kt

In this thesis we realized that the main focus was on how to manage logical infor-
mation and consequently locate it spatially. What we needed then was to be able
to take and manipulate logical knowledge directly. 2P-Kt allows us to do this,
unlike for example Prolog or Jason, which must be taken in their entirety, as its
modular structure allows us to exploit the concepts that were of interest to us,
such as that of Theory, individually.

2.5 Tile38

In order to enable situated reasoning, in this thesis it was decided to adopt Tile38.
Tile38 is an ultra fast geospatial database and geofencing server for location-based
applications. It is open source (MIT licensed) and supports in-memory geolocation
data store, spatial index, and realtime geofence [7].

V)

—

2.5. TILE3S 9

Tile38 was adopted as it provides simple commands, which can be exploited
directly to solve the issues posed by this thesis, such as geolocalizing data, recov-
ering data belonging to a certain region of space and removing data from space.
It is also open source, and can be supported by several client libraries, including
one in Java already available, which will be exploited.

Among its characteristics we find:

e spatial index with search methods such as Nearby, Within and Intersects.
e support to different Object types, such as lat/lon, GeoJSON and XYZ tile.
e support for lots of Clients Libraries written in many different languages.

e server response in RESP or JSON.

e in-memory database that persists on disk.

e it also supports realtime geofencing through webhooks or publish subscribe
channels, where a geofence is a virtual boundary that can detect when an
object enters or exits the area.

2.5.1 Installation

Tile38 can be easily installed and run with Docker [57], with the following com-
mands:

docker pull tile38/tile38
docker run -p 9851:9851 tile38/tile38

2.5.2 Object Types

Tile38 provides a series of object types that can be stored in a collection, with an
exception to XYZ Tiles and QuadKeys that are reserved for the SEARCH keyword
only.

The most basic one is a point, composed of a latitude and a longitude. An
optional z may be used for auxiliary data such as elevation or a timestamp.

Another important type is the bounding box, which consists of two points: the
first being the southwestern most point and the second is the northeastern most
point.

It also supports Geohash, a string representation of a point, and GeoJSON,
an industry standard format for representing a variety of object types, such as
a point, multipoint, linestring and polygon. All coordinates are in Longitude,
Latitude order.

10 CHAPTER 2. STATE OF THE ART

2.5.3 Commands

Within the list of commands that Tile38 makes available, some examples are re-

ported below:

SET key id [FIELD name value ...] [EX seconds] [NX|XX]
(OBJECT geojson) | (POINT lat lon z)|(BOUNDS minlat
minlon maxlat maxlon) | (HASH geohash) | (STRING value)

J

set the value of an id, if already associated it’ll be overwritten,

p
GET key id [WITHFIELDS] [OBJECT|POINT|BOUNDS | (HASH
geohash)]

S

get the object of an id, GeoJSON is the default output,

(NEARBY key [CURSOR start] [LIMIT count] [SPARSE spread]
[MATCH pattern] [DISTANCE] [WHERE field min max ...]
[WHEREIN field count value [value...] ...] [WHEREEVAL
script numargs arg [arg...] ...] [WHEREEVALSHA shal
numargs arg [arg...] ...] [NOFIELDS] [FENCE] [DETECT

what] [COMMANDS which] [COUNT|IDS|OBJECTS|POINTS |
BOUNDS | (HASHES precision)] (POINT lat lon meters) |(
ROAM key pattern meters)

.

searches a collection for objects that are close to a specified point,

{DROP key

remove all objects from specified key.

2.5.4 Client Libraries

Tile38 supports HT'TP and telnet options, but it is recommended to use a client
library or the Tile38 CLI. Tile38 uses the Redis RESP protocol natively, therefore
all clients that support basic Redis commands will in turn support Tile38.

2.6 Lettuce

Among all the popular clients, for this thesis we opted for Lettuce [50], a scalable
and thread-safe Redis client for synchronous, asynchronous and reactive usage, in

Java.
Lettuce enables a connection to Tile38,

N

10

2.7. RELATED WORKS 11

val client = RedisClient.create("redis://localhost
:9851")
val connection = client.connect ()
val sync = connection.sync()
val codec = StringCodec.UTF8

(S

on which it is possible to send commands, an example:

sync.dispatch (
CommandType . SET,
StatusOutput (codec),
CommandArgs (codec) .addValues (
"fleet",
"truck1l",
"OBJECT",
"{\"type\": \"Point\", \"coordinates\":
[-112.2693, 33.5123]}"

)
S

The command set sets the value of a key. The value in the example is an an object
of type Point with coordinates in longitude, latitude order.

2.7 Related Works

Some related works are discussed in this section, in which the BDI model is inte-
grated with spatial concepts.

2.7.1 Game Engines e MAS: Spatial Tuples in Unity3D
Game Engines and MAS: BDI & Artifacts in Unity

The purpose of the work of [71] was to propose a different, more expressive and in-
tuitive design approach for the definition of Al based on the notion of autonomous
agents in a simulated environment, powered by the Unity game engine.

The resulting language is Prolog based and Jason [16] inspired and provides
high-level declarative behaviours for autonomous agents. The behaviour is defin-
able through a Prolog file.

Acknowledging similarities between logical reasoning and agent’s cycle of rea-
soning, the author decided to use a logical paradigm as foundation.

12 CHAPTER 2. STATE OF THE ART
Spatial Tuples in Unity3D

Spatial Tuples [74] is an extension of the basic tuple-based model for distributed
multi-agent-system where (a) tuples are conceptually placed in regions of the phys-
ical world and possibly move anchored to a mobile computational device, (b) the
behaviour of standard Linda coordination primitives is extended so as to depend
on the spatial properties of the coordinating agents, tuples, and the topology of
space, and (c) the tuple space can be conceived as a virtual layer augmenting
physical reality.

The master thesis [6] provides a model for Spatial Tuples in Unity3D that
exploits the API produced in [71] and [23], allowing the programmer to use the
Spatial Tuples model when programming a BDI Agent, using the primitives of
Spatial Tuples directly inside the plan of an agent written in Prolog.

2.7.2 Introducing a novel model of belief-desire—intention
agent for urban land use planning

The goal in the works [I1] and [I2] from the same authors, is to develop a BDI
agent based model to handle spatial issues. The fundamental concepts of practical
reasoning architecture such as belief, desire, intention, along with commitment ad
interaction, have been combined with analyses and applications of GIS. In [I1] a
Desktop GIAgent software is introduced, with the advantage of using agents for
spatial analysis. In [I2] particular attention is given to land use planning defined
by three main components: land areas, goals and actions, translated to a spatial
BDI agent architecture.

2.7.3 A multi-agent architecture for geosimulation of mov-
ing agents

In [89] a novel architecture is proposed in which an axiomatic derivation sys-
tem in the form of first-order logic facilitates declarative explanation and spatial
reasoning. The objective is to describe and develop an architecture that com-
bines a multi-agent system with GIS, logical deduction and qualitative reasoning.
The systems integrates multiple moving agents and the concept of means-ends
spatio-motional reasoning. The paper provides details about the architecture and
simulation system for moving reasoner agents (SISMORA).

2.7. RELATED WORKS 13

2.7.4 Using conceptual spaces for belief update in multi-
agent systems

The work presented in [I8] comprises the design and implementation of an integra-
tion of a conceptual-space level into the BDI agent architecture, with the aim of
helping people who are blind or visually impaired to know where they are, where
they want to go and how to get there safely and independently. This integration
is developed on top of the resources of the Jason platform and the CSML APIL.

2.7.5 Solace a multi-agent model of human behaviour

The paper [10] presents SOLACE (SOcial. Attachment Crisis Evacuation), a multi-
agent model of human behaviour during seismic crisis based on social attachment
theory, where real geographic data are used to define the spatial context of the crisis
environment, delimit mobility with barriers and constrain movement to free space.
The novelty of this model must be sought in the integration of social attachment
and GIS data. The model was implemented using the GAMA platform using a
BDI approach.

14

CHAPTER 2. STATE OF THE ART

Chapter 3

BDI & Al techniques integration:
a Systematic LR

A research topic of particular relevance is that which concerns BDI (Belief-Desire-
Intention) technologies. The BDI model is a well-known software programming
model for programming intelligent agents. However, this model has some lim-
itations: for example the lack of learning techniques, the fact that it does not
take into account the emotional state of the agents and it does not involve spa-
tial reasoning. These limitations can be addressed by integrating other techniques
and technologies. This chapter summarizes a Systematic Literature Review that
I conducted on this subject.

3.1 Systematic Literature Review

The notion of systematic literature reviews (SLR) basically develops in the health-
care domain [60], where the notion of meta-analysis gets early relevance [48] [64],
giving rise to the need of a well-founded methodological approach to literature
results.

A systematic review attempts to identify, appraise and synthesise all the empir-
ical evidence that meets pre-specified eligibility criteria to answer a given research
question. Researchers conducting systematic reviews use explicit methods aimed
at minimising bias, in order to produce more reliable findings that can be used to

inform decision making [39].
An SLR is divided in five stages:

e Research Questions and Goals: the goal of the research is defined and con-
sequently the questions to be answered are determined.

e Search Strategy: it is necessary to motivate a search strategy that allows

15

16CHAPTER 3. BDI & Al TECHNIQUES INTEGRATION: A SYSTEMATIC LR

to find as many pieces of scientific literature as possible, avoiding bias (the
tendency of deviating from the standards, the use of subjectivity or precon-
ceptions), and that can be reproducible.

e Study Selection: the criteria for exclusion and inclusion are defined on the
basis of the research questions defined in the first phase.

e Quality Assessment: the primary studies that have been collected are eval-
uated.

e Data Extraction and Analysis: selected studies should be read and the in-
formation needed to answer research questions and draw conclusions should
be extracted.

To summarize, a Systematic Literature Review (SLR) is a powerful technique
that allows to collect and summarize the information in the scientific literature
relating to a specific topic, using a rigorous and reproducible methodology.

3.2 A categorization of BDI integrations

This section summarizes the content of the SLR and is structured as follow: in
the goal of the SLR is presented, in the method by which the SLR was
performed is discussed, finally in the results are shown.

3.2.1 Goal

This works aims to categorize the possible types of integration of Al techniques
to the BDI model, in order to become a starting point for defining new research
areas and future projects.

The research questions that have given rise to the need for this SLR are so
defined:

e How can the BDI model be integrated with other Al techniques? (Goal)

e Which integration categories are the most widespread? (Research Question

1)

e Are there technologies to support these integrations or just the models are
described? (Research Question 2)

e Are these technologies effectively used in real-world applications? (Research
Question 3)

3.2. A CATEGORIZATION OF BDI INTEGRATIONS 17

3.2.2 Method

The search process was conducted on some of the most relevant digital libraries:
Google Scholar, IEEE Xplore, Springer Link, ACM Digital Library!.

The following keywords and their alternatives were defined from the research
questions:

e BDI, (belief-desire-intention, belief desire intention).

Integration, (integrat™®).

Al (artificial intelligence, artificial-intelligence).
e ML, (machine learning, learning®).
e Logic.

The sources were interrogated using predefined queries, obtained from the previ-
ously identified keywords:

e (model* OR technolog* OR technique® OR logic*) AND integrat* AND
(BDI OR “belief-desire-intention” OR “belief desire intention”) AND (ar-
chitecture® OR logic* OR model* OR framework™*)

e (BDI OR “belief desire intention” OR “belief-desire-intention”) AND inte-
grat®* AND (AI OR “artificial intelligence” OR “artificial-intelligence” OR
“machine learning” OR ML OR learning™)

With the exception of IEEE Xplore which supports fewer wildcards, the first query
was limited as follows: (model® OR technolog® OR technique® OR logic*) AND
integrat® AND (BDI OR “belief-desire-intention” OR “belief desire intention”)
AND (architecture OR logic* OR model* OR framework).

A total of 981 documents were collected and filtered with some constraints:
e Inclusion Criteria

— Full Paper.
— Sources discussing the topic of this research.

— Sources answering the research questions.
e Exclusion criteria

— Papers not discussing the subject of this SLR: the main check was
carried out on the abstract.

https://scholar.google.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://link.springer.com/
https://dl.acm.org/

18CHAPTER 3. BDI & AI TECHNIQUES INTEGRATION: A SYSTEMATIC LR

— Papers not answering the research questions: the check is carried out
on the full paper.

— Duplicate reports of the same study.

— Whole books.

Duplicates have been searched for and deleted, titles and abstracts were used as the
first filter to check the correlation with the topic to be discussed and the complete
papers have been reviewed in detail.

At the end of this selection process, the documents amount to 131. To obtain a
more targeted selection, one more check on full paper was performed in the phase
of quality assessment, with the result of filtering additional documents.

After the quality assessment phase, the number of remaining articles amounts
to 72.

3.2.3 Results

The results of this SLR have been summarized in the tables 3.1] 3.2 [3.3] If two
rows appear in correspondence with a category, you should read as follows: the
upper row refers to the studies of the category, the lower one to the studies of other
categories that also deal with that topic. For the lower ones, the technological
correspondence is not evaluated because it has already been counted in the related
category. In table there is a legend of the terms used.

The table collects the integrations resulting from the SLR divided by category,
and shows those for which a technology or a project is provided.

At the end of this research, what emerges is that there are various types of
integrations applicable to the BDI model, but still few technology ready to use or
projects available, especially with regards to real world applications.

There are related-works, for instance the work in [T4] puts its focus on identify-
ing a range of possible approaches to integrating Al into a BDI agent architecture
by organizing the work in: AI in the sense phase, plan phase, act phase and
discussing the architectural strategies for integrating Al in BDI agents.

Having said that, this work aims at a different and new objective, that of
categorizing the types of integration in order to understand in what ways the BDI
model can be augmented and in what fields it can be used. In this way, I believe
this SLR could become the starting point for defining new research areas and
future projects.

3.2. A CATEGORIZATION OF BDI INTEGRATIONS 19
Analysis
N° Integration Tech Project
[41] = Coherence-driven adaptive
Decision | [41][46][61] | [46] = Internal Performance)]
Making [88] [61] = Recognition-primed
[88] = Inner decision
(137 56 [13][17][36] = OCC
. [70] = Perception-Action Model
Emotions | [70][8] [84] = Emotions and Engagement 718 | [
[35] = OCC
3516 [86] = Ellis’s ABC Theory
[15] = Design-To-Criteria Scheduler
Intention [00] = Plan coverage
Selection 5] 0] o] [91] = Enablement Checking, A5t
Low-coverage prioritisation
[24] = Coalition logic
[66] = Propositional Dynamic Logic
Logic Eﬂ {Sﬂ (69 [69] = Many-sorted first-order logic 53]
& [83] = Fuzzy logic
[93] = Deontic epistemic action logic
[44] = FODL, Priority Logic
4] 63| [68] = Extension of CTL*
ST — RL @
Machine | [][5][52] [5] = TDL, Q—learnu.lg, SARSA [5]
Learning | polE2)7 | 24 = TDL, Q-learning B2 e
& [59] = LSTM 59]
[82] = Adaptive ML [87]
[34] = Linear Regression
54] = Intentional Learning,
[34][54] [&1]

Manipulative Abduction, RL

[R1] = ACL, BUL

Table 3.1: Analysis of the results part 1

20CHAPTER 3. BDI & AI TECHNIQUES INTEGRATION: A SYSTEMATIC LR

Analysis
N° Integration Tech | Project
[13] = CAB, FFM
[20] = Linear Threshold
s | oot
Modeling (58] 6] [23] [58] = Biological Immune System | [86] 20}
[86] = Psychoterapeutic Model
[95] = Petri Net
[8] = Event-based run-time model
of institutions
[B1135][44] | [35] = ReGreT
[69][80] [44] = BRS, ForTrust, ReGreT
[69] = Repage
[80] = Agent Based Model
[30] = Case Based Planning
[34] = Machine Learning [34]
[30][34][54] | [54] = Intentional Learning [54]
. [65][76][81] | [65] = Specifications [65]
94 (6] = Genetic Algorithms 6
Planning Genetic Aleorith [65]
[81] = Decision Tree [94]
[94] = First-Principles Planning
[82] [82] = Decision Tree
[9][73] = POMDPs »
191 [25] 291 [25] = Baye'smn Networks, 25]
129 [53] 73] Influence Diagrams 9]
Probabilistic 79] [29] = Bayesian Theories 53]
‘ [49] = BBN, DFT, PDFS o
09| |79] = Bayesian Networ
Bayesian N k
[30] = Bayesian Networks
[36] = Bayesian Decision Networks
[30] [36] [63] : .
[63] = Bayesian Algorithm
BT [81] = Probabilistic
plan selection function

Table 3.2: Analysis of the results part 2

3.2. A CATEGORIZATION OF BDI INTEGRATIONS

21

Analysis
N° Integration Tech Project
[8] = Event-based run-time model
of institutions
8]
[35] = Trust processes
Reasoning 18]35 2] [42] = Organizational Reasoning 2] [42]
[44]147)[92] [47]
[44] = Trust model 92]
[47 = NARS '
[92] = Case-based reasoning
[22] = Linked Data
Semantic 22137/ [38] [37] = Rule I.ntterchang.e Format [22]
Web 0|1 52 [38] = Description Logic [40]
© 2HR4 I = OWL, RDF 52]
[51][52] = OWL-S
63] = High-level architecture
63180
Simulation [80] = Agent Based Simulation [80] [80]
[49] [49] = AnyLogic 6.0
Spatial MO [2] | IO [2][89] = GIS OIS
Concept [18][89] [18] = CSML
[21] = Distributed Transactions
[27] = Possibilistic framework
21][27][67] | [67] = Interactive Storytellin
Extra %68} {75} {77} %68} = Policy T B7 27
[75] = Cloud computing
[77] = Social Influence Theory

Table 3.3: Analysis of the results part 3

22CHAPTER 3. BDI & AI TECHNIQUES INTEGRATION: A SYSTEMATIC LR

Legend
0CC Ortony, Clore, and Collins theory
FODL First-Order Dynamic Logic
CTL Computation Tree Logic
RL Reinforcement Learning
TDL Temporal Difference Learning
SARSA State—Action—Reward—State—Action
LSTM Long Short-Term Memory
ML Machine Learning
ACL Aggressive Concurrent Learning
BUL Bottom-Up Learning
CAB Culturally Affected Behavior
FFM Five Factor Model
BRS The beta reputation system
POMDPs | Partially Observable Markov Decision Processes
BBN Bayesian Belief Network
DFT Decision-Field-Theory
PDFS Probabilistic Depth-First Search
NARS Non-Axiomatic Reasoning System
OWL Web Ontology Language
OWL-S Web Ontology Language for Services
RDF Resource Description Framework
GIS Geographic Information System
CSML Conceptual space markup language

Table 3.4: Legend for tables [3.1] [3.2]

3.3 Thesis Direction

Among the categories identified in the SLR, some have less results than others and
a lack of technology. Among these, the category of our interest is that linked to
spatial concepts.

Intelligent agents are possibly the most suitable vessel for spatial reasoning
[45], including languages for spatial representation and logic for spatial reasoning.

Cognitive abilities of intelligent agents can be in principle exploited for spa-
tial reasoning [33], for instance the ability to separately handle and properly use
epistemic knowledge is an obvious benefit when dealing with spatial information.

Diverse logic can be embedded into an agent architecture, so as to provide for
different ways to reason about space.

Despite this, few works have been found in this SLR that attempt to integrate

3.3. THESIS DIRECTION 23

spatial reasoning into the BDI model: this works are summarized in the related
works section with the exception of which comes from a different study.

We decided therefore to fill this technological gap highlighted in this survey.
The type of reasoning we want to deliver consists of providing a way to locate
logical information in certain spatial areas and to be able to constrain reasoning on
them. In this way it is possible to enable a form of situated spatial reasoning. This
goal is supported by two technologies: Tile38, one of the most famous geospatial
database, and 2P-Kt, a multi-paradigm logic programming framework written in
Java.

We propose Geo2p, a technological prototype based on 2P-Kt that allows to
query for situated information in tuProlog, enabling a form of spatial reasoning.

24CHAPTER 3. BDI & AI TECHNIQUES INTEGRATION: A SYSTEMATIC LR

Chapter 4

Geo2p Design

This chapter presents Geo2p and explores the choices that have been made during
this thesis.

The scenario is first defined in section the organization is presented in
and then each further section discusses a different module.

4.1 Scenario

The main goal of this thesis is to define a form of spatial reasoning where logical
information can be located in certain spatial areas and to be able to constrain
reasoning on them.

In particular, we provide a way that will allow to query for situated information
in tuProlog. Given a certain region of space where certain clauses are valid, the
current theory will be constrained on the basis of what is true in that area.

It should be possible to geolocate the clauses of a Prolog program within a
certain region of space. In this way, different clauses can be placed in different
regions of space.

Given a region of space, one must be able to load the clauses that have been
geolocated within that region. In such a manner, knowledge can be constrained
to what is true in the selected region of space.

Finally, we must be able to remove selected clauses from a region of space.

It will be necessary to understand how to seamlessly integrate spatial concepts
within 2P-Kt, so as not to have to modify what already exists.

4.2 Project Organization

The project is divided into two sub-projects, one dedicated to the Prolog theory
(theory-geo) and the other to the Prolog solver (solve-geo). Both are structured

25

26 CHAPTER 4. GEOZ2P DESIGN

in modules, so that each module handles a different responsibility. Each module
can contain a sub-module impl within which the implementations are defined.
The first project includes the following modules:

e region: it models the concept of a region of space.

e geoshape: it models the concept of a geometric shape that represents a
region of space.

e theory: it models the concept of a Prolog theory that is obtained from a
certain region of space. This theory is called SpatialTheory. Both mutable
and immutable versions are provided.

e tile38: it provides the functionality to interact with Tile38. It also contains
the tile38object sub-module which models the objects that Tile38 accepts.

The second project includes the solver module, which models the Prolog solver
that supports the concept of SpatialTheory.

4.3 Region module

The first module deals with defining the representation of a region and its imple-
mentations.

The main problem is understanding how a region must be defined in order to
use it to recover the data that is geolocated with Tile38. In fact, given a region of
space, our goal is to retrieve the information that is located in it.

Among the commands that Tile38 provides, the following can be exploited for
this scenario:

e Nearby: searches a collection for objects that are close to a specified point.

e Within: searches a collection for objects that are fully contained inside a
specified bounding area.

e Intersects: searches a collection for objects that intersect a specified bounding
area.

These commands provide two alternatives: nearby allows you to define a point
and search for information around it by defining a certain radius, intersects and
within require a bounding area, which delimits the area to be searched.

Taking a cue from these commands, at least two types of regions will be needed
in this project: a bounding area, and an area around a point, see 4.1

4.3. REGION MODULE 27

BOUNDING AREA Area

Figure 4.1: A bounding area and an area.

4.3.1 Geolocating a region

Since a Region itself could be geolocated (the reason behind this decision is ex-
plained in}4.6.4]), each region must also provide a geometric shape, called GeoShape.

4.3.2 Summary
Region

Represents the concept of a region of space and it is the base interface for every
region. Every region must expose a region type, an identifier and the geometric
shape.

RegionType

The possible types of regions are defined with an enum. At least two different types
are needed:

e The bounding area which is defined in Tile38 as a bounding box that consists
of two points: the first being the southwestern most point and the second is
the northeastern most point.

e The area around a point is a simple point with a given radius.

28 CHAPTER 4. GEOZ2P DESIGN

RegionFactory ed
«Seadleds

RegionFactoryParam

+ getRegion{id:String, param: RegionFactoryParam): Region

 J J
HereParam BoundParam

+ point: GeolLocation + southWesternPoint: GeoLocation

+ radius: Int + northEasternPoint: GeoLocation

Figure 4.2: Factory pattern with sealed classes.

RegionFactory

Having planned the possibility of having regions of different types, the creation is
delegated to a factory. Although it is reasonable to think that for different regions
different data will be needed (a bounding area is defined by two vertices, an area
around a point is defined by a point and a radius), Kotlin provides the possibility
to use sealed classes as a solution, see figure [4.2]

4.4 GeoShape module

This module represents the concept of the geometric shape of a region, with all
the information needed to be able to geolocate in Tile38. Each region will have its
own geometric shape.

4.4.1 Summary
GeoShape

Represents the concept of a geometric shape that represents a region of space.
Every shape must expose an identifier, a shape type and the coordinates.

e a method convertToTile380bject () is required to convert the shape into
an object that can be accepted by Tile38.

4.5 Theory module

In this module it was necessary to understand how to integrate spatial concepts
within 2P-Kt.

The goal is to allow to query a certain region of space where certain clauses are
valid, so as to constrain a Prolog theory on the basis of what is true in the given
area.

4.5. THEORY MODULE 29

Two possible approaches were considered:

e Solver approach: the idea was to define a component that enables the inter-
action with Tile38, which managed by the solver, could be used to load the
clauses from a certain region.

e Theory approach: the idea was to define a new implementation of Theory,
which is located in a certain region of space, and consequently when an
operation is requested on it, the changes are also applied to the space by
interacting with a component that enables the interaction with Tile38.

The second approach is the best one, as it is better suited to the 2P-Kt project:
it allows to extend it without modifying what is already present, and allows for a
better division of responsibilities.

4.5.1 Theory methods

A Prolog program is basically a collection of Clauses. A theory, during execu-
tion, can be read and written (enabling meta-programming) and because of these
features it can be referred as a Clause database [78].

The theory module implements the ClauseDatabase abstraction, and as a real
database it has methods to read, write and remove Clauses [78]:

e assertA, adds the given clause before the others.
e plus, aliases the assertZ method

e assertZ, adds the given clause after others

e contains, checks for presence of matching clauses
e get, retrieves all matching clauses

e retract, deletes one matching clause and returns a RetractResult

retractAll, deletes all matching clauses and returns a RetractResult

The matching is done using structurallyEquals, a method to enable structural
comparison of Terms.

The RetractResult type holds the information of a retract operation (removal
operation). It can be a Success, and hence contains the new database and the
removed Clauses, or it can be a Failure, containing the same database with no
modifications [78].

30 CHAPTER 4. GEOZ2P DESIGN

In order to seamlessly integrate situated reasoning to the current 2P-Kt project,
we have decided to give a new implementation of Theory, which takes into account
the fact of being situated in a region of space.

There are two versions that need to be implemented, one that is mutable and
one immutable.

4.5.2 Caching clauses

Having chosen to adopt a new implementation of Theory, it was necessary to define
how the loading of the clauses occurs. This can be done in two ways, one static
and one dynamic, and it was decided for the latter.

A SpatialTheory when instantiated has no clauses in it. These will in fact
be loaded only when an operation on the theory is performed, such as an assert,
and only the first time. The clauses are cached and made available for subsequent
operations. Subsequent requests on the same theory will no longer need to reload
the clauses, making them lighter.

In this way instantiating a theory does not mean directly loading the clauses,
and the operation is postponed to when is required.

4.5.3 Summary
SpatialTheory

Represents the concept of an immutable theory loaded from a certain region of
space. The operations carried out on the theory must not have effects on it but
return a new one on which the effects will be visible.

e a method setRegion(region: Region) is required to set the region from
which the theory can load the clauses.

e a method loadClausesIfNecessary() is required to load the clauses from
the specified region and cache them when requested for the first time.

e assertA, assertZ, plus, the assert methods will not simply have to return
a new theory with the asserted clauses, but will also have to locate the clauses
in the region of space.

e retract, retractAll, the retract methods will not simply have to return a
new theory with the matching clauses retracted, but also remove the match-
ing clauses from the region of space.

4.6. TILE38 MODULE 31

MutableSpatialTheory

Represents the concept of a mutable theory loaded from a certain region of space.
The difference from the immutable version is that the changes will be applied
directly to the theory. The theory itself is returned instead of a new one.

4.6 Tile38 module

As for this module, it provides a way to establish a connection with Tile38, it
defines the list of commands that can be used to interact with it, and finally it
models the concept of an object that can be geolocated in Tile38. In fact, as far
as geolocation is concerned, it was decided to separate the concept of a region of
space from that of objects in the space:

e A region of space represents an area on which at least one of the search
methods offered by Tile38 can be used to retrieve the objects located in
it. For example, a region could be a bounding box, on which the intersect
command can be used, which searches a collection for objects that intersect
that region.

e On the other hand, there can be different types of objects which can be
geolocated, and therefore which can be searched within a region.

In particular it is necessary to understand which objects can be geolocated with
Tile38 and how.

4.6.1 Geolocation of data

The geolocation of data is an important aspect. Tile38 was adopted as it provides
simple commands which can be exploited directly to solve the issues posed by this
thesis, such as geolocalizing data, recovering data belonging to a certain region of
space and removing data from space.

The first problem to be faced concerns how to geolocate the data in Tile38, that
is, the identification of the geographical position in the space of a given object.

The command that Tile38 makes available for this problem is the set command.
This command set the value of an id, and if is already associated to that key/id,
it will be overwritten. Given a key and an id, different objects can be located in
the space:

e Point: a simple point defined by a latitude and a longitude.

e Bounds: a bounding rectangle defined by four values (southwest latitude,
southwest longitude, northeast latitude, northeast longitude)

32 CHAPTER 4. GEOZ2P DESIGN

e Geohash: a way of expressing a location using a short alphanumeric string.

e GeoJSON: a GeoJSON object.

The choice fell on the GeoJSON format, as it represents an industry standard
format and makes it possible to represent a variety of object types.

In this way, regardless of the implementation that will be given of an object,
if it is convertible in GeoJSON format then it can be geolocated.

4.6.2 Associating clauses to objects

Since what is localized are GeoJSON objects, it is possible to decorate the object
with a key-value pair, which associates the clauses as a value to a key common to
all objects.

Clauses can be defined as a String, and 2P-Kt provides the ability to parse a
String into a list of clauses.

Consequently, given a clause, it is possible to use its String representation as
a value to decorate the objects, by associating it to the relative key.

When it is necessary to retrieve data from a certain region of space, it will be
sufficient to retrieve the values associated with the common key, which decorate
each object, and parse them into clauses.

4.6.3 Ordering of objects

The ordering of the objects that are loaded by Tile38 depends on the type of
command being used. For this reason, an arrangement has been devised that is
common to all.

Given the list of objects loaded from a region, an order has been defined in
which the position acts as a discriminant. Objects are sorted from the leftmost to
the rightmost.

In this way, the ordering mirrors the spatial one.

4.6.4 Geolocating Clauses

A SpatialTheory is a Theory located in a certain region of space. This region can
be used to load the clauses associated to the localized objects that are enclosed
within it.

A theory also provides for the possibility of asserting new clauses, that is,
adding them before (or after) the others already existing. These clauses will not
simply have to be added to the theory, but also localized within the region.

We need to define what it means to add a clause before (or after) the others,
within the given region. There are two scenarios:

4.6. TILE38 MODULE 33

e As already stated in [£.6.3] objects that are loaded from a region are sorted
by their position, from leftmost to rightmost to mirror the spatial ordering.
The current theory is represented by the clauses associated to these objects.
If any objects are already present inside the region, asserting a clause means
taking the leftmost (or the rightmost) object, which has associated clauses,
and adding it before (or after) them.

e Otherwise, if there are no objects, it is necessary to localize one to decorate
with the clause. In this case, the region itself is converted into an object that
is localized and to which the clause is associated.

Whoever loads the clauses from the same region will find them in the correct order.

4.6.5 A parser of results

Given the result of a command to search a region executed on Tile38, it will be
necessary to parse it in order to obtain usable data.

A parser that given the result of a command, returns a list of objects will be
provided. The objects will be sorted based on their position.

4.6.6 Summary
Tile380bject

Represents the concept of an object that can be converted in GeoJSON format
so that it can be geolocated with the set command of Tile38. It will contain an
identifier, the coordinates of the object, the list of clauses that the object contains
and the common key to which the clauses will be associated as a value in the
GeoJSON representation. It is the base interface for every object.

e a convertToGeoJSON method is required to convert the object in GeoJSON
format, so that is supported by Tile38. In addition to the representation of
the geometry, the GeoJSON must also contain a key-value pair where the
value represents the clauses. The key is common to all objects.

e it will also be necessary to provide methods to add and remove clauses from
the object list.

Tile380bjectType

The possible types of object are defined with an enum.

34 CHAPTER 4. GEOZ2P DESIGN

Tile380bjectFactory

As decided for the regions, the creation of the objects is delegated to a factory
which will return an object of the requested type.

Comparator

A Comparator of objects is needed, which sorts them according to their position,
from the leftmost to the rightmost.

Tile38 Commands

A list of the possible commands used to interact with Tile38 is needed.

Tile38Parser

A parser of the results obtained from Tile38 commands.

Tile38Connection

An object that provides the method to reflect the operations applied to the theory
on the region of space is required.

e loadClausesInRegion(region:Region) :List<Clause>, a method to load
all clauses of a region depending on the type of region.

e putClauseFirst(clause:Clause, region:Region), a method that reflects
the assertA and add the clause to the region of space before the other
clauses.

e putClauselLast(clause:Clause, region:Region), a method that reflects
the assertZ and add the clause to the region of space after the other clauses.

e retractClause(clause:Clause, region:Region), a method that retract
a matching clause from the region of space.

e retractAllClause(clause:Clause, region:Region), a method that re-
tract all matching clauses from the region of space.

4.7. SOLVER MODULE 35

4.7 Solver module

The 2P-Kt solver module contains the main implementation of a Solver, called
ClassicSolver, that provides a Prolog ISO Standard resolution. This implemen-
tation is State-Machine-Based. An instance of the solver can be created via the
ClassicSolverFactory and it is also accessible via Solver.classic.

For this thesis the main idea is to define a solver that can work with the
previously defined spatial theory without modifying what is already present in
2P-Kt. Knowing the region of space we want to query, the goal is to be able to
provide it to the solver, so that it can perform a query bound to that area.

The strategy that has been decided to adopt is to exploit the transitions
of the finite state machine: specifically the solver-classic module provides
a particular sort of solution iterator supporting hijack of state transition, the
MutableSolutionIterator. This allows to alter the execution context or the des-
tination state of the transition, in particular what we need is to be able to get the
current theory of the context and set it to the new region it belongs to. In this
way, when the solver will query the knowledge base, it will depend on the region
that was provided.

Consequently, it is necessary to define a new solver which adopts as the solu-
tion iterator the MutableSolutionIterator. Following the example of the classic
solver, this solver is called SpatialClassicSolver and an instance of it can be cre-
ated via the SpatialSolverFactory and it is also accessible via Solver.classic.

36

CHAPTER 4. GEOZ2P DESIGN

Chapter 5

Implementation

This chapter describes how the decisions made in the design are concretized in the
implementation. Each section describes a different project module.

5.1 Region module

A Region is an interface, and each region implementation must provide an identi-
fier, a region type and the geometric shape.

In this way, a region can be used both to retrieve information from space, but
it can also be geolocated by exploiting its geometric shape.
Region
An interface that represents a region of space.

e val type: RegionType, the region type.

e val id: String, the region identifier.

e val shape: GeoShape, the region geometric shape.

As previously stated, two important regions have been identified: the bounding
area and the area. The first has been renamed to bounds (Bounds). The second
to here (Here), as it is designed to represent the current position of an agent with
a certain coverage area. These types have been defined with an enum class.

enum class RegionType { BOUNDS, HERE }

5.1.1 Bounds
The Region implementation of the type RegionType.BOUNDS was called Bounds.

37

38 CHAPTER 5. IMPLEMENTATION

Bounds

A region of type BOUNDS is an area represented by a bounding box, which consists
of two GeoLocation points: the first being the southwestern most point and the
second is the northeastern most point. An additional parameter has been added,
a Boolean value called within that determines whether the search on the region
should be carried out considering only what lies within it, or also what intersects
it. The region must also provide the geometric shape, in this case a GeoRectangle.

e val shape: GeoShape, a rectangle with the four vertices defined as follows:

— Southwestern vertex: same as the southwestern vertex of the bounding
box.

— Northeastern vertex: same as the northeastern vertex of the bounding
box.

— Southeastern vertex: can be obtained by combining the longitude of
the northeastern vertex of the box and the latitude of the southwestern
one.

— Northwestern vertex: can be obtained by combining the longitude of
the southwestern vertex of the box and the latitude of the northeastern
one.

A region of type Bounds can be used in conjunction with the intersect and the
within commands to search for objects that intersect or are within the specified

area, see 0.1}

5.1.2 Here

The Region implementation of the type RegionType.HERE was called Here.

Here

A region Here represents a point in space with a certain coverage area. Accordingly,
it consists of a GeoLocation and an Int value that represents the radius which
determines the area.

e val shape: GeoShape, a point that is located in the same GeoLocation.
GeoJSON does not support the circle among its geometric figures, which
would have been the most immediate representation for an area. For this rea-
son, the Region is considered for loading geolocated data, which is supported
by the previously explained command nearby, but the related GeoShape to
which it can be converted is a point.

5.1. REGION MODULE 39

Space
-
O
- O
C} Bounds
o @
@
O @ @
Q © O

Figure 5.1: Using Bounds to find objects that intersect or are within the region.

A region of type Here can be used in conjunction with the nearby command
to search for objects that are nearby the specified point, the search is limited by
the radius, see

Space
O
O
O O
O
O
O
o O

Figure 5.2: Using Here to find nearby objects.

5.1.3 RegionFactory

The creation of regions is implemented through a factory: based on the parameters
that are supplied to the factory, it is possible to obtain the region you need.

N

40 CHAPTER 5. IMPLEMENTATION

object RegionFactory {
fun getRegion(id: String, param: RegionFactoryParam)
Region {
return when (param) {
is RegionFactoryParam.HereParam -> Here(id,
param.point, param.radius)
is RegionFactoryParam.BoundParam -> Bounds(
id, param.southWesternPoint, param.
northEasternPoint,
param.within)

}

NS

A sealed class is provided which contains a data class for each region to man-
age the parameters difference, as explained in the design phase.

e Bounds requires as parameters the southwestern point and the northeastern
point defined as GeoLocation. The Boolean within was added to the class
with the default value set to false.

e Here requires as parameters a point defined as a GeoLocation and the radius
in Int.

5.2 GeoShape module

A GeoShape is an interface, and each object implementation must define a method
that convert the shape into a Tile380bject.

GeoShape

A representation of a shape that represents a region of space.
e val id: String, the identifier of the shape.

e val coordinates: String, the string representation of the coordinates of
the object, defined in GeoJSON format.

e fun convertToTile380bject(clauses:List<Clause>):Tile380bject. A

method that converts the shape into an object that can be converted in
GeoJSON format.

5.3. THEORY MODULE 41

5.2.1 GeoPolygon

An interface used to collect the GeoShape of type polygon.

5.2.2 GeoLocation

To represent a position, a specific class has been defined.

GeoLocation

A geolocation is a point defined by a longitude and a latitude.

e class GeoLocation(val longitude: Double, val latitude: Double)

5.2.3 GeoRectangle

A GeoRectangle is an implementation of a GeoPolygon.

GeoRectangle

A rectangle that is defined by four points, where each point is a GeoLocation and
represents a vertex, and an identifier.

e fun convertToTile380bject(clauses:List<Clause>):Tile380bject. A
method that returns an object that can be geolocated in Tile38.

5.2.4 GeoPoint

A GeoPoint is an implementation of a GeoShape.

GeoPoint

A point that is defined by a GeoLocation, which represents the position of the
point and an identifier.

e fun convertToTile380bject(clauses:List<Clause>):Tile380bject. A
method that returns an object that can be geolocated in Tile38.

5.3 Theory module

This module implements the two versions of SpatialTheory.

42 CHAPTER 5. IMPLEMENTATION

SpatialTheory

Is an interface that models a Theory that loads its clauses from a Region of space.
e val region: Region: the region from which the clauses are loaded.

e setRegion(region: Region): SpatialTheory, a method that returns a
spatial theory of the specified region.

The implementation of this theory will have to be immutable: the methods will
not modify the current theory, but will return a new one with the required changes.

MutableSpatialTheory

Is an interface that models a Theory that loads its clauses from a Region of space.
The difference with a SpatialTheory is that the implementation will have to be
mutable: the methods will directly modify the theory and return the theory itself.

e setRegion(region: Region): MutableSpatialTheory, a method to mod-
ify the current region of the spatial theory which is then returned.

The val region that was present in the SpatialTheory will be inserted in the
implementation constructor as a variable, as it will have to be modifiable, but only
by the setRegion method.

5.3.1 Tile38SpatialTheory

Having chosen Tile38 as a tool to geolocate the data, a specific implementation of
SpatialTheory was provided for Tile38: Tile38SpatialTheory. In this way, if
we wanted to use different technologies in the future, it would be possible to do so
by adding new SpatialTheory implementations specific to them.

Each implementation must do two things: implement the methods defined by
the SpatialTheory interface and those of Theory.

To create a connection to Tile38 an ulterior field is required: the Redis URI,
a string which is used to create the connection. Therefore, being a dedicated
implementation for Tile38, the field was added in the constructor.

Tile38Spatial Theory

Is an implementation of a SpatialTheory specific for Tile38. It is immutable.

e setRegion(region: Region): SpatialTheory, this method returns a new
theory located in the new region, not modifying the current one, that is
immutable.

5.3.

THEORY MODULE 43

e loadClauseFromTile38IfNecessary():

1

2

(/** Load clauses and put each one in cachex*/

private fun loadClausesFromTile38() {
cache.assertA(Tile38Connection.loadClausesInRegion

(region, uri))

loaded = true

}

/** Load clauses if not already donex/

private fun loadClauseFromTile38IfNecessary () =
if (!loaded) loadClausesFromTile38() else Unit

when a spatial theory is instantiated, the clauses are not loaded automati-
cally, but are retrieved only when required by an operation. For this reason,
the methods of the theory that require the clauses, will first have to execute
the method to load them if necessary. At the first operation, the clauses are
loaded and put in a cache.

— cache, the cache is represented by a MutableTheory initialized empty.
To insert the clauses in the cache it is sufficient, given the list of clauses
obtained with the method provided by the connection object, to dele-
gate an assertA operation to the MutableTheory, that inserts them in
order.

assertA(clause: Clause): Theory, this method adds the given clause be-
fore all other clauses. For a spatial theory implemented for Tile38, asserting
a clause does not simply mean adding the clause to the theory, but also ge-
olocating it. This is possible with the methods provided by the connection
object. Being immutable, the modification is not directed on the current the-
ory and a new one is returned. The new theory, which draws data from the
same region, will be able to load the new clauses that have been geolocated,
in addition to those already present.

(/** Adds given clause before all other clauses in
this theory x*/
override fun assertA(clause: Clause): Theory {
loadClausesFromTile38IfNecessary ()
Tile38Connection.putClauseFirst (clause,region,uri)
return Tile38SpatialTheory(region, tags, uri)
+

\. y

44

CHAPTER 5. IMPLEMENTATION

assertA(clauses:Iterable<Clause>) :Theory, this method adds the given
clauses before all other clauses in this theory. It is easy to transform this
case in the first one, by converting the Iterable into a List and iterating
it in reverse order.

assertA(clauses:Sequence<Clause>) : Theory, this method adds the given
clauses before all other clauses in this theory. It is easy to convert this case to
the second, by creating an iterable instance that wraps the original sequence.

assertZ, adds the given clauses after all other clauses in this theory. The
implementation is analogous to that of assertA and three methods are pro-

vided.
plus(theory: Theory): Theory, aliases the assertZ method.

get (clause:Clause) : Sequence<Clause>, retrieves matching clauses from
the cache.

contains(clause: Clause): Boolean, checks if a given clause is contained
in this theory. It uses the get method and checks if the sequence contains
at least one element.

retract(clause: Clause): RetractResult<Theory>, this method tries to
delete a matching clause from this theory. The retract operation is performed
on a a mutable copy of the current theory, which must not be changed di-
rectly. In this way the retract methods are delegated to the already exist-
ing methods provided by the implementation of MutableTheory. If it is a
Success, then the deleted clause is also removed from the region. Unlike the
assert, the retract returns a RetractResult type that holds information of
the retract operation.

p
/** Tries to delete a matching clause from this

theory x*/

override fun retract(clause: Clause): RetractResult<
Theory> {

loadClausesFromTile38IfNecessary ()

val newTheory = ClauseQueue.of (clauses)

return when (val retracted = newTheory.

retrieveFirst (clause)) {
is RetrieveResult.Failure ->
RetractResult.Failure(this)
else -> {

5.3. THEORY MODULE 45

9 (retracted as RetrieveResult.Success).clauses.
forEach{ Tile38Connection.retractClause(it,
region, uri)}

10 RetractResult.Success (

11 Tile38SpatialTheory (

12 region,

13 tags,

14 uri

15) ,

16 retracted.clauses
17)

18 }

o}

20 }

e retract(clauses:Iterable<Clause>) :RetractResult<Theory>, tries to
delete the matching clauses from this theory. The approach is similar to
that of the previous case, but is done for each clause of the Iterable.

e retract(clauses:Sequence<Clause>) :RetractResult<Theory>, tries to
delete the matching clauses from this theory. This case can be traced back
to the previous by creating an Iterable instance that wraps the original
sequence.

e retractAll(clause:Clause) :RetractResult<Theory>, this method tries
to delete all matching clauses from this theory, and returns a RetractResult.
In case of success, the deleted clauses are also removed from the space. The
difference from the previous case is in the method provided by the connection
object, which instead of removing the first matching clause from the region,
deletes them all.

5.3.2 Tile38MutableSpatialTheory

An implementation of a MutableSpatialTheory specific for Tile38 is given. The
theory is directly modified and all methods that used to return a new theory in the
immutable case, now return the theory itself. Only the methods for which there
are additional differences besides the latter will be discussed.

e setRegion(region: Region) : MutableSpatialTheory, this method will
not simply return a new theory with the new region, but it will also change
the current region and reset the cache. The value of loaded is set to false, so
the clauses can be loaded from the new region when necessary.

46

NS

CHAPTER 5. IMPLEMENTATION

override fun setRegion(region: Region):
MutableSpatialTheory {
return this.also {
this.cache = MutableTheory.empty ()
this.region = region
this.loaded = false

}

AssertA, AssertZ, the assert methods follow the same logic as those of
the immutable version, the difference is that the cache is directly modified
and what is returned is the theory itself, in this case a MutableTheory. We
rely on the fact that the cache is an implementation of MutableTheory and
the assert method is delegated to it. In the same way as in the immutable
version, the clauses are also geolocated.

Retract, in the mutable case, creating a mutable copy of the current cache on
which to make the retrieval of the clauses is not necessary, as it can be directly
applied to the current cache, which can be modified. As in the mutable case,
if the RetractResult ends successfully, the clauses are removed from the
relative region of space.

5.4 Tile38 module

This section covers how interaction with Tile38 has been enabled.

5.4.1 Tile380bject

A Tile380bject is an interface that represents the concept of an object that can
be converted in GeoJSON format so that it can be geolocated.

val id: String, the identifier of the object.

val coordinates: String, the coordinates of the object prepared for the
GeoJSON format.

val clauses: List<Clause>, the list of clauses associated to the object.

val key: String, the common key between the objects to which the clauses
are associated when converted in GeoJSON format.

V)

5.4. TILE38 MODULE 47

e convertToGeoJSON() : String, convert the object into a string in GeoJSON
format.

e addClauseFirst(clause: Clause): Tile380bject, returns a new object
with the given clause in the first position of the list.

e addClauselast(clause: Clause): Tile380bject, returns a new object
with the given clause in the last position of the list.

e retractClause(clause: Clause): Tile380bject, returns a new object
with the first occurence of the given clause removed.

The possible types of objects have been defined with an enum class:

enum class Tile380bjectType(val type: String) {
POINT("Point"),
POLYGON ("Polygon")

5.4.2 Tile38Point

The implementation of the object type Tile380bjectType.POINT.

Tile38Point

An object of type point consists of an identifier, its coordinates and the list of
clauses.

e convertToGeoJSON(): String, the object is converted into a GeoJSON
string representing a point.

The implementation of the other methods followed that dictated by the design
phase.

5.4.3 Tile38Polygon

The implementation of the object type Tile380bjectType.POLYGON.

Tile38Polygon

What was said for the point is valid, but the conversion operation transforms it
into a GeoJSON string representing a polygon.

48 CHAPTER 5. IMPLEMENTATION

5.4.4 Tile380bjectFactory

The creation of the objects is implemented through a factory: based on the type
that is supplied to the factory, the needed object is obtained.

(object Tile380bjectFactory {
fun getObject(type: String, id: String, coordinates:
String, clauses: List<Clause>): Tile380bject {
return when (type) {
Tile380bjectType.POINT.type -> Tile38Point (
id, coordinates, clauses)
else -> Tile38Polygon(id, coordinates,
clauses)

=
-

5.4.5 Tile38 Commands

Lettuce provides two alternatives to defining commands for interacting with Tile38:

e implement the ProtocolKeyword interface through an enum, where each item
of the enumerator is a command keyword, for example NEARBY. Then
Lettuce provides an API to dispatch commands.

e using command interfaces that provide you with an higher level of abstraction
by declaring command methods on a Java interface. A method signature
matches the command to invoke. For example:

1(@Command(“SET region 70 OBJECT 71")
ol fun set(

3 key: String,

1 geoJSON: String

): List<Any?>7

\. J

In this case a command interface has been chosen, as it provides a dynamic way
for type-safe Redis command invocation. It is also less verbose than invoking a
Redis command.

Tile38 Commands

An interface which collects the possible usable command:

V)

5.4. TILE38 MODULE 49

e set: set the value of an id. If a value is already associated to that key /id, it’ll
be overwritten. This command requires a key (String) and the associated
object, defined as a GeoJSON String.

e intersects: searches a collection for objects that intersect a specified area.
This area is defined as a bounding box. This command requires an identifier
(String) of a collection of objects (a common identifier for all geolocated
objects was defined), the southwestern point and the northeastern point
latitude and longitude, both defined as Double.

e within: same as intersects, but searches a collection for objects that are
within the specified area.

e nearby: searches a collection for objects that are close to a specified point.
The distance is determined by a given radius. This command requires an
identifier (String) of a collection of objects, the latitude and longitude in
Double of the point and the radius (Int).

e drop: remove all objects associated to a specified key. This command doesn’t
require any parameters and is applied to the common identifier of all geolo-
cated objects.

Accessing these commands can be done through a RedisCommandFactory that
exposes all the defined commands.

private val factory = RedisCommandFactory (connection)
private val commands = factory.getCommands (
Tile38Commands::class. java)

5.4.6 JSONUtils

Through the intersect /within and nearby commands it is possible to obtain the list
of geolocated objects: as explained before, these objects are in GeoJSON format
and contain a common key to which the clauses are associated. To provide an
ordering of the clauses it was decided to define an ordering depending on the
longitude, from the leftmost position to the rightmost. To do so, a Comparator
has been defined.

GeoJSONComparator

A Comparator of JSONArray.

50 CHAPTER 5. IMPLEMENTATION

e compare(a: JSONArray, b: JSONArray), given two array, each contains a
JSONObject, for each object the longitude values are taken and sorted from
smallest to largest. Then the minimum values for each object are taken and
compared to find which is the leftmost.

A method sortGeoJSONArray(geoJsonArray: JSONArray) : List<JSONArray> has
been defined, which sort a JSONArray with the GeoJSONComparator.

5.4.7 Tile38Parser

The wntersect, the within and nearby commands defined in the command interface
return a List<Any?>7. A parser is then set up to manipulate the result into a
more convenient one.

Tile38Parser

A parser of Tile38 results.

e parseResult(result:List<Any?>?7):List<Tile380bject>, given a Tile38
command result, a list of Tile380bject is returned. The list is sorted with
the Comparator of GeoJSON.

5.4.8 Tile38Connection

A Tile38Connection is an object that exposes the methods needed to interact
with Tile38.

Tile38 Connection

Represents the link between the SpatialTheory and Tile38, and provides the
necessary methods to enable interaction.

To interact with Tile38, Lettuce provides the ability to define a client on which
a connection can be established. Consequently, each method, given the uri address
passed by parameter, checks if a connection has already been established on that
address, otherwise it creates it. In this way the connection is established when
requested, and changed if requested on a different address.

Having used a Kotlin object, Tile38Connection is a singleton that exposes
the necessary methods.

e The Theory interface requires two types of assertion methods, assertA and
assertZ. The first method adds the given clause before the others, the lat-
ter adds the given clause after the others. From the spatial point of view,

5.4. TILE38 MODULE o1

the choice made was to order the spatial information based on their posi-
tion, from the leftmost to the rightmost, using longitude as discriminant.
Accordingly, an assert operation on the current theory is defined spatially:

— assertA: adding a clause before the others means that the clause should
be located in the leftmost position available, in order to maintain the
spatial order.

— assertZ: adding a clause after the others means that the clause should
be located in the rightmost position available, in order to maintain the
spatial order.

Two methods have therefore been made available: one that locates the clause
in the leftmost position, one in the rightmost position.

— putClauseFirst(clause:Clause, region:Region, uri:String). A
method that given a clause and a region of space, locates the clause in
the leftmost position. This operation is done as follows:

« If the supplied region is of type Bounds, all localized objects that
intersect or are within the bounding area are loaded. If the region
is of type Here, all localized objects that are close to the region are
loaded.

x If the previous operation doesn’t load any objects, the region itself
is located by situating the corresponding GeoShape.

x Otherwise it will be sufficient to take the clauses defined in the first
object, which is the leftmost, and add the clause to be asserted
before them. Then the object is updated and put in Tile38.

In this way, whoever requests the clauses of the current region will
obtain a list of clauses in which the first is the one just inserted.

Considering the possibility of multiple invocations of the same method,
the methods have been designed to be thread safe. The main reason
this is necessary is to avoid the lost update problem. In order to add
a clause to an object located with Tile38, this method first retrieve the
list of objects and then make the change on the correct one which is
then updated. If different threads load the objects list at the same time
and then update the object, only the last update will be made, as it will
be applied to the old object, losing the change made by others. For this
reason, all methods that perform an update are accompanied by the
Synchronized keyword which guarantees one access to the method at
a time.

52

CHAPTER 5. IMPLEMENTATION

— putClauselast(clause:Clause,region:Region,uri:String), given
a clause and a region of space, locates the clause in the rightmost
position. This method works as the previous one, but the clause is
associated to the last object after the existing clauses.

e retractClause(clause:Clause,region:Region,uri:String), remove the

first matching clause from the region.

retractAllClause(clause: Clause, region: Region, uri:String) re-
move all matching clauses from the region.

loadClausesInRegion(region: Region, uri:String):List<Clause>. A
method that given a region, returns the list of clauses located in the region.
Based on the type of the region, the clauses are loaded in two different ways:

— Bounds: in the case of a region of type Bounds, the loading is done
through the intersect command, that searches a collection for objects
that intersect the region, or the within command.

— Here: in the case of a region of type Here, the loading is done through
the nearby command, that searches a collection for objects that are
close to the specified point.

The result is parsed and a list of Tile380bject is obtained. The clauses are
then retrieved from the objects and the list is returned.

dropAl1(), remove all objects from a specified key. Is a function useful
mainly for testing, which allows to remove all objects from a specified key by
using the Tile38 DROP command on the region key, which is the one common
to all the located objects. This feature is used to remove all geolocated
objects from the space, so as to start from a basic situation.

5.5 Solver module

This module implements the SpatialClassicSolver.

5.5.1 SpatialClassicSolver

The SpatialClassicSolver implements the abstract class provided by 2P-Kt for
classic-like solver, the AbstractClassicSolver. The peculiarity lies in the type
of solution iterator it uses, in particular the MutableSolutionIterator.

5.5. SOLVER MODULE 53

override fun solutionIterator(

initialState: State,

onStateTransition: (State, State, Long) -> Unit
) = MutableSolutionIterator.of (

initialState,

this::hijackStateTransition,

onStateTransition

)

(S

This iterator allows to alter the execution context or the destination state of the
Prolog State Machine, and this is done through the following method:

p
private fun hijackStateTransition(

source: State,
destination: State,
index: Long

): State

(S

Whenever the destination state of the transition is that of StateRuleSelection,
which is the one that precedes each access to the knowledge base, the destina-
tion context is altered. Within the context, two knowledge bases are defined, a
static one that hold all static predicates loaded upon construction, a dynamic
one for changeable knowledge base. The method takes care of setting the re-
gion of the SpatialTheory that defines the static knowledge base and of the
MutableSpatialTheory that defines the dynamic one to the current region.

Among the methods the solver provides for solving a goal, the solveOnce
method accepts resolution options and it is exploited to provide the region of
interest.

e solveOnce(goal:Struct,option:SolveOptions) :Solution, this method
checks if among the custom options, defined as a key-value map, there is
the Region key, which is associated with the region on which to perform the
resolution. If present, the region associated to the key replaces the current
one.

e private var region: Region, the current region that the solver is to query.
When the solver is instantiated the region is set to a default value defined in
the factory.

The creation of the solver is delegated through a factory, following the example
of the ClassicSolver, and the extensions called SpatialSolverExtensions are
provided.

o4

CHAPTER 5. IMPLEMENTATION

e Solver.Companion.spatialSolver, it makes the solver also accessible via
Solver.classic. The creation is delegated to the factory method with the
same name which allows to instantiate the solver.

e Solver.Companion.spatialSolverWithDefaultBuiltins, like the previ-
ous case, but adds the default builtins.

Chapter 6

Conclusions and Future Works

The work that has been done in this thesis is summarised in section [6.1] Finally,
some possible future works are discussed in section [6.2]

6.1 Summary

This thesis finds its place in the context of BDI agents and aims to enable a form
of situated spatial reasoning.

A survey proposed regarding the BDI model and the possible techniques and
technologies that can be integrated to provide a form of spatial reasoning high-
lighted a lack of technology that we have decided to fill.

We wanted to define a type of spatial reasoning that consists of providing
a way to locate logical information in certain spatial areas and to be able to
constrain reasoning on them. In this way it is possible to enable a form of situated
spatial reasoning. This goal was supported by two technologies: Tile38, one of the
most famous geospatial database, and 2P-Kt, a multi-paradigm logic programming
framework written in Java.

As a result, in this thesis we have proposed GeoZ2p, a technological prototype
based on 2P-Kt that allows you to query situated information in tuProlog, enabling
situated spatial reasoning: given a region of space where certain Clauses are valid,
a Theory can be defined, constraining the knowledge on what is true in the selected
area. The functionalities that were required by the scenario discussed in the design
phase have been respected: given a certain region of space where certain clauses
are valid, the current theory is constrained on the basis of what is true in that
area. Prolog clauses can also be geolocated within a certain region of space or
removed from it.

25

56 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

6.2 Future Works

In this section are listed some possible future works which serve to consolidate the
thesis work or to take it in new directions.

Other Technologies

One possible direction is to define new implementations based on a technology
different from Tile38.

Performance

One aspect that has not been considered in this thesis is that of performance.
One might also think about comparing the performance of this Tile38 specific
implementation with one that uses a different technology.

BDI in 2P-Kt

As already stated, the idea behind this thesis was to provide something that could
be exploited to perform spatial reasoning. An idea would be to integrate BDI
concepts into 2P-Kt, so that Geo2p could be directly exploited. It would be
interesting to see this happening and how the agents will benefit from GeoZ2p.

Bibliography

[1] 2P-Kt. https://github.com/tuProlog/2p-kt. Last access: March 14,
2021.

[2] Marco Aiello, Guram Bezhanishvili, Isabelle Bloch, and Valentin Goranko.
Logic for physical space. from antiquity to present days. Synthese, Volume
186:pp 619-632, 06 2012.

[3] Krzysztof R Apt. The logic programming paradigm and prolog. arXiv
preprint ¢s/0107013, 2001.

[4] Dejanira Araiza-Illan, Anthony G. Pipe, and Kerstin Eder. Intelligent
agent-based stimulation for testing robotic software in human-robot interac-
tions. In Proceedings of the 3rd Workshop on Model-Driven Robot Software
Engineering, MORSE ’16, page 9-16, New York, NY, USA, 2016. Associa-
tion for Computing Machinery.

[5] C. Badica, A. Becheru, and S. Felton. Integration of jason reinforcement
learning agents into an interactive application. In 2017 19th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), pages 361-368, 2017.

[6] Alessandro Bagnoli. Game Engines e MAS: Spatial Tuples in Unity3D.
Master’s thesis, Alma Mater Studiorum Universita di Bologna, 2018.

[7] Josh Baker. Tile38. https://github.com/tidwall/tile38, 2020.

[8] T. Balke, M. De Vos, J. Padget, and D. Traskas. Normative run-time rea-
soning for institutionally-situated bdi agents. In 2011 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent Tech-
nology, volume 3, pages 1-4, 2011.

9] Kim Bauters, Kevin McAreavey, Jun Hong, Yingke Chen, Weiru Liu, Lluis
Godo, and Carles Sierra. Probabilistic planning in agentspeak using the
pomdp framework. In lIoannis Hatzilygeroudis, Vasile Palade, and Jim

57

https://github.com/tuProlog/2p-kt
https://github.com/tidwall/tile38

58

[10]

[11]

[12]

[14]

[15]

BIBLIOGRAPHY

Prentzas, editors, Combinations of Intelligent Methods and Applications,
pages 19-37, Cham, 2016. Springer International Publishing.

J. Bangate, J. Dugdale, E. Beck, and C. Adam. Solace a multi-agent model
of human behaviour driven by social attachment during seismic crisis. In
2017 4th International Conference on Information and Communication
Technologies for Disaster Management (ICT-DM), pages 1-9, 2017.

Saeed Behzadi and Ali Alesheikh. Hospital site selection using a bdi agent
model. International Journal of Geography and Geology, 2:36-51, 01 2013.

Saeed Behzadi and Ali A. Alesheikh. Introducing a novel model of be-
lief-desire-intention agent for urban land use planning. FEngineering Ap-
plications of Artificial Intelligence, 26(9):2028 — 2044, 2013.

Mouna Belhaj, Fahem Kebair, and Lamjed Ben Said. Agent-based modeling
and simulation of the emotional and behavioral dynamics of human civil-
ians during emergency situations. In Jorg P. Miiller, Michael Weyrich, and
Ana L. C. Bazzan, editors, Multiagent System Technologies, pages 266281,
Cham, 2014. Springer International Publishing.

Rafael Bordini, Amal Seghrouchni, Koen Hindriks, Brian Logan, and
Alessandro Ricci. Agent programming in the cognitive era. Autonomous
Agents and Multi-Agent Systems, 34, 05 2020.

Rafael H. Bordini, Ana L. C. Bazzan, Rafael de O. Jannone, Daniel M.
Basso, Rosa M. Vicari, and Victor R. Lesser. Agentspeak(xl): Efficient
intention selection in bdi agents via decision-theoretic task scheduling. In
Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems: Part 3, AAMAS 02, page 1294-1302, New
York, NY, USA, 2002. Association for Computing Machinery.

Rafael H Bordini, Jomi Fred Hiibner, and Michael Wooldridge. Program-

ming multi-agent systems in AgentSpeak using Jason, volume 8. John Wiley
& Sons, 2007.

Mathieu Bourgais, Patrick Taillandier, and Laurent Vercouter. An Agent
Architecture Coupling Cognition and Emotions for Simulation of Complex
Systems. In Social Simulation Conference, Rome, Italy, September 2016.

J. M. L. Brezolin, S. R. Fiorini, M. de Borba Campos, and R. H. Bordini.
Using conceptual spaces for belief update in multi-agent systems. In 2015
IEEE/WIC/ACM International Conference on Web Intelligence and Intelli-
gent Agent Technology (WI-IAT), volume 2, pages 178-181, 2015.

BIBLIOGRAPHY 59

[19]

[20]

[21]

22]

[24]

[25]

[26]

[27]

Robert Bull and Krister Segerberg. Basic Modal Logic, pages 1-88. Springer
Netherlands, Dordrecht, 1984.

C. Bulumulla, J. Chan, and L. Padgham. Enhancing diffusion models by
embedding cognitive reasoning. In 2018 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining (ASONAM),
pages 744-749, 2018.

Paolo Busetta, James Bailey, and Kotagiri Ramamohanarao. A reliable
computational model for bdi agents. In 1st International Workshop on Safe
Agents. Held in conjunction with AAMAS2003. Citeseer, 2003.

Y. E. Cakmaz, O. F. Alaca, C. Durmaz, B. Akdal, B. Tezel, M. Challenger,
and G. Kardas. Engineering a bdi agent-based semantic e-barter system.

In 2017 International Conference on Computer Science and Engineering
(UBMK), pages 1072-1077, 2017.

Mattia Cerbara. Game engines and MAS: tuplespace-based interaction in
Unity3D. Master’s thesis, Alma Mater Studiorum Universita di Bologna,
2018.

Qingliang Chen, Kaile Su, Abdul Sattar, Xiangyu Luo, and Aixiang Chen.
A first-order coalition logic for bdi-agents. Frontiers of Computer Science,
10, 10 2015.

Yingke Chen, Jun Hong, Weiru Liu, Lluis Godo, Carles Sierra, and Michael
Loughlin. Incorporating pgms into a bdi architecture. In Guido Boella,
Edith Elkind, Bastin Tony Roy Savarimuthu, Frank Dignum, and Martin K.
Purvis, editors, PRIMA 2013: Principles and Practice of Multi-Agent Sys-
tems, pages 54—69, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Paolo Ciancarini, Andrea Omicini, and Franco Zambonelli. Multiagent sys-
tem engineering: The coordination viewpoint. In Nicholas R. Jennings and
Yves Lespérance, editors, Intelligent Agents VI. Agent Theories, Architec-
tures, and Languages, pages 250-259, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

Célia da Costa Pereira and Andrea G. B. Tettamanzi. An integrated pos-
sibilistic framework for goal generation in cognitive agents. In Proceedings
of the 9th International Conference on Autonomous Agents and Multiagent
Systems: Volume 1 - Volume 1, AAMAS ’10, page 1239-1246, Richland,
SC, 2010. International Foundation for Autonomous Agents and Multiagent
Systems.

60

28]

[29]

[30]

[31]

32]

BIBLIOGRAPHY

Aniruddha Dasgupta and Aditya K. Ghose. BDI agents with objectives
and preferences. In Andrea Omicini, Sebastian Sardina, and Wamberto
Vasconcelos, editors, Declarative Agent Languages and Technologies VIII,

volume 6619 of Lecture Notes in Computer Science, pages 22—-39. Springer
Berlin Heidelberg, 2011.

Darryl N. Davis and Hossein Miri. Probabilistic bdi in a cognitive robot
architecture. International Journal of Computer Science and Artificial In-
telligence, pages 1-10, 09 2012.

Juan F. De Paz, Manuel Pablo Rubio, and Angélica Gonzalez. Dynamic
planning with bayesian network applied in mas. In Yves Demazeau, Frank
Dignum, Juan M. Corchado, Javier Bajo, Rafael Corchuelo, Emilio Cor-
chado, Florentino Fernandez-Riverola, Vicente J. Julidn, Pawel Pawlewski,
and Andrew Campbell, editors, Trends in Practical Applications of Agents
and Multiagent Systems, pages 113-121, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

Enrico Denti, Andrea Omicini, and Alessandro Ricci. tuprolog: A light-
weight prolog for internet applications and infrastructures. In I. V. Ramakr-
ishnan, editor, Practical Aspects of Declarative Languages, pages 184—198,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

Meenakshi D’Souza and Rajanikanth N. Kashi. Avionics self-adaptive soft-
ware: Towards formal verification and validation. In Gilinter Fahrnberger,
Sapna Gopinathan, and Laxmi Parida, editors, Distributed Computing and
Internet Technology, pages 3-23, Cham, 2019. Springer International Pub-
lishing.

Soumitra Dutta. Approximate spatial reasoning. In Proceedings of the 1st
international conference on Industrial and engineering applications of artifi-
cial intelligence and expert systems-Volume 1, pages 126-140, 1988.

J. Faccin and I. Nunes. Bdi-agent plan selection based on prediction of plan
outcomes. In 2015 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT), volume 2, pages
166-173, 2015.

T. A. Gelaim, R. A. Silveira, and J. Marchi. Towards a model of cognitive
agents: Integrating emotion on trust. In 2015 Fourteenth Mezican Interna-
tional Conference on Artificial Intelligence (MICAI), pages 80-86, 2015.

Joao Carlos Gluz and Patricia Augustin Jaques. A probabilistic approach
to represent emotions intensity into bdi agents. In Béatrice Duval, Jaap

BIBLIOGRAPHY 61

37]

[42]

[43]

[44]

[45]

van den Herik, Stephane Loiseau, and Joaquim Filipe, editors, Agents and
Artificial Intelligence, pages 225242, Cham, 2015. Springer International
Publishing.

Yiwei Gong, Sietse Overbeek, and Marijn Janssen. Business rules for cre-
ating process flexibility: Mapping rif rules and bdi rules. In Dickson K. W.
Chiu, Ladjel Bellatreche, Hideyasu Sasaki, Ho-fung Leung, Shing-Chi Che-
ung, Haiyang Hu, and Jie Shao, editors, Web Information Systems Engi-
neering — WISE 2010 Workshops, pages 142—-155, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

T. G. Halac, E. E. Ekinci, and O. Dikenelli. Description logic based bdi im-
plementation for goal-directed semantic agents. In 2011 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent Tech-
nology, volume 2, pages 62-65, 2011.

Julian Higgins and Sally Green. Cochrane Handbook for Systematic Reviews
of Interventions. John Wiley & Sons, Ltd, 2008.

D. Holmes and R. Stocking. Augmenting agent knowledge bases with owl
ontologies. In 2009 IEEE Aerospace conference, pages 1-15, 2009.

S. Isci, O. Topcu, and L. Yilmaz. Extending the jadex framework
with coherence-driven adaptive agent decision-making model. In 201/
IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT), volume 3, pages 48-55,
2014.

Andreas Schmidt Jensen, Virginia Dignum, and Jgrgen Villadsen. The
aorta architecture: Integrating organizational reasoning in jason. In Fabi-
ano Dalpiaz, Jiirgen Dix, and M. Birna van Riemsdijk, editors, Engineering
Multi-Agent Systems, pages 127-145, Cham, 2014. Springer International
Publishing.

Philip Kerbusch, Jeffrey Schram, and Karel van den Bosch. Modeling cul-
tural behavior for military virtual training. In Proceedings of the NATO
MSG107 meeting. Held at: Orlando, Florida, 1-9, 2011.

Andrew Koster, Marco Schorlemmer, and Jordi Sabater-Mir. Opening the
black box of trust. Journal of Logic and Computation, 23:25-58, 02 2013.

Christian Kray. The benefits of multi-agent systems in spatial reasoning. In
FLAIRS Conference, pages 552-556, 2001.

62

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

BIBLIOGRAPHY

R. Lang, S. Kohlhauser, G. Zucker, and T. Deutsch. Integrating internal
performance measures into the decision making process of autonomous
agents. In 3rd International Conference on Human System Interaction,
pages 715-721, 2010.

Francesco Lanza, Patrick Hammer, Valeria Seidita, Pei Wang, and Antonio
Chella. Agents in dynamic contexts, a system for learning plans. In Pro-
ceedings of the 35th Annual ACM Symposium on Applied Computing, SAC
20, page 823-825, New York, NY, USA, 2020. Association for Computing
Machinery.

Joseph Lau, Elliott M. Antman, Jeanette Jimenez-Silva, Bruce Kupelnick,
Frederick Mosteller, and Thomas C. Chalmers. Cumulative meta-analysis

of therapeutic trials for myocardial infarction. New England Journal of
Medicine, 327(4):248-254, 1992. PMID: 1614465.

Seungho Lee, Young-Jun Son, and Judy Jin. An integrated human decision
making model for evacuation scenarios under a bdi framework. ACM Trans.
Model. Comput. Simul., 20(4), November 2010.

Lettuce. Lettuce. https://github.com/lettuce-io/lettuce-core, 2020.

W. Lian, Y. Liang, and Q. Zeng. Integrating semantics and agent technol-
ogy to automatic web service composition. In 2010 IEEE 2nd Symposium
on Web Society, pages 201-206, 2010.

Chih-Hao Liu, Jason Jen, and Yen Chen. Using ontology-based bdi agent to
dynamically customize workflow and bind semantic web service. Journal of
Software, 7, 04 2012.

Emiliano Lorini and Michele Piunti. Introducing relevance awareness in bdi
agents. In Lars Braubach, Jean-Pierre Briot, and John Thangarajah, edi-
tors, Programming Multi-Agent Systems, pages 219-236, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

Waulfrano Arturo Luna Ramirez and Maria Fasli. Plan acquisition in a bdi
agent framework through intentional learning. In Jan Ole Berndt, Paolo
Petta, and Rainer Unland, editors, Multiagent System Technologies, pages
167-186, Cham, 2017. Springer International Publishing.

Luis Macedo. A computational model for forms of selective attention based
on cognitive and affective feelings. In Proceedings of the international con-
ference on cognitive modelling (ICCM 2012), pages 145-150, 2012.

https://github.com/lettuce-io/lettuce-core

BIBLIOGRAPHY 63

[56]

[57]

[58]

[62]

[63]

[64]

[65]

John Charles Chenoweth McKinsey and Alfred Tarski. The algebra of
topology. Annals of mathematics, pages 141-191, 1944.

Dirk Merkel. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linuz journal, 2014(239):2, 2014.

Salima Mnif, Saber Darmoul, Sabeur Elkosantini, and Lamjed Ben Said.
Integration of immune features into a belief-desire-intention model for
multi-agent control of public transportation systems. In Francisco Javier
Martinez de Pisén, Rubén Urraca, Héctor Quintian, and Emilio Corchado,
editors, Hybrid Artificial Intelligent Systems, pages 459470, Cham, 2017.
Springer International Publishing.

Sara Montagna, Stefano Mariani, Emiliano Gamberini, Alessandro Ricci,
and Franco Zambonelli. Complementing agents with cognitive services: A
case study in healthcare. Journal of medical systems, 44:188, 09 2020.

Cynthia Mulrow. Systematic reviews: Rationale for systematic reviews.
BMJ (Clinical research ed.), 309:597-9, 10 1994.

Emma Norling, Liz Sonenberg, and Ralph Ronnquist. Enhancing multi-
agent based simulation with human-like decision making strategies. In Scott
Moss and Paul Davidsson, editors, Multi-Agent-Based Simulation, pages
214-228, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

Andrea Omicini, Stefano Mariani, and Viroli Mirko. Spatial Multi-
Agent Systems. https://www.slideshare.net/andreaomicini/
spatial-multiagent-systems| 2016.

I Ourdev, Hua Xie, and Simaan Abourizk. An intelligent agent approach to
adaptive project management. Tsinghua Science € Technology, 13, 10 2008.

A. Oxman, D. Sackett, and G. Guyatt. Users’ guides to the medical lit-
erature. i. how to get started. the evidence-based medicine working group.
JAMA, 270 17:2093-5, 1993.

Lin Padgham and Dhirendra Singh. Situational preferences for bdi plans. In
Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-Agent Systems, AAMAS 13, page 1013-1020, Richland, SC,
2013. International Foundation for Autonomous Agents and Multiagent Sys-
tems.

Shamimabi Paurobally, Jim Cunningham, and Nicholas R. Jennings. A for-
mal framework for agent interaction semantics. In Proceedings of the Fourth

https://www.slideshare.net/andreaomicini/spatial-multiagent-systems
https://www.slideshare.net/andreaomicini/spatial-multiagent-systems

64

[68]

[69]

[70]

[71]

[72]

73]

BIBLIOGRAPHY

International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS 05, page 91-98, New York, NY, USA, 2005. Association for
Computing Machinery.

Federico Peinado, Marc Cavazza, and David Pizzi. Revisiting character-
based affective storytelling under a narrative bdi framework. In Ulrike
Spierling and Nicolas Szilas, editors, Interactive Storytelling, pages 83-88,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Y. Peng, L. Ye, Z. Zheng, J. Xiang, J. Gao, J. Ai, Z. Lu, Y. Jin, and
X. Jiang. Policy enhanced grid computing. In 2009 International Con-
ference on Education Technology and Computer, pages 133-136, 2009.

[saac Pinyol, Jordi Sabater-Mir, Maria Pilar Dellunde, and Mario Paolucci.
Reputation-based decisions for logic-based cognitive agents. Autonomous
Agents and Multi-Agent Systems, 24:175-216, 01 2012.

J. Polajnar, B. Dalvandi, and D. Polajnar. Does empathy between artificial
agents improve agent teamwork? In IEEE 10th International Conference
on Cognitive Informatics and Cognitive Computing (ICCI-CC’11), pages
96-102, 2011.

Nicola Poli. Game Engines and MAS: BDI & Artifacts in Unity. Master’s
thesis, Alma Mater Studiorum Universita di Bologna, 2018.

Anand S. Rao and Michael P. Georgeff. An abstract architecture for ra-
tional agents. In Bernhard Nebel, Charles Rich, and William R. Swartout,
editors, 3rd International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR ’92), pages 439-449, Cambridge, MA, USA,
25-29 October 1992. Morgan Kaufmann. Proceedings.

Gavin Rens and Thomas Meyer. A hybrid pomdp-bdi agent architecture
with online stochastic planning and desires with changing intensity levels.
In Béatrice Duval, Jaap van den Herik, Stephane Loiseau, and Joaquim
Filipe, editors, Agents and Artificial Intelligence, pages 3—19, Cham, 2015.
Springer International Publishing.

Alessandro Ricci, Mirko Viroli, Andrea Omicini, Stefano Mariani, Angelo
Croatti, and Danilo Pianini. Spatial tuples: Augmenting reality with tuples.
Expert Systems, 35(5):¢12273, 2018. ¢12273 10.1111/exsy.12273.

Sara Rodriguez, Dante 1. Tapia, Eladio Sanz, Carolina Zato, Fernando de la
Prieta, and Oscar Gil. Cloud computing integrated into service-oriented

BIBLIOGRAPHY 65

[77]

[82]

multi-agent architecture. In Angel Ortiz, Rubén Dario Franco, and Pe-
dro Gémez Gasquet, editors, Balanced Automation Systems for Future
Manufacturing Networks, pages 251-259, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

Gail Shaw and Etienne van der Poel. Genetic algorithms as a feasible re-
planning mechanism for belief-desire-intention agents. In Proceedings of
the 2015 Annual Research Conference on South African Institute of Com-
puter Scientists and Information Technologists, SAICSIT '15, New York,
NY, USA, 2015. Association for Computing Machinery.

Aaron XL Shen, Christy MK Cheung, Matthew KO Lee, and Huaping
Chen. How social influence affects we-intention to use instant messaging:
The moderating effect of usage experience. Information Systems Frontiers,
13(2):157-169, 2011.

Enrico Siboni. 2p-Kt: A Kotlin-based, Multi-Platform Framework for Sym-
bolic AI. PhD thesis, Ingegneria e Architettura, 2019.

D. G. Silva and J. C. Gluz. Agentspeak(pl): A new programming language
for bdi agents with integrated bayesian network model. In 2011 Inter-
national Conference on Information Science and Applications, pages 1-7,
2011.

Dhirendra Singh, Lin Padgham, and Brian Logan. Integrating bdi agents
with agent-based simulation platforms. Autonomous Agents and Multi-
Agent Systems, 30, 11 2016.

Dhirendra Singh, Sebastian Sardina, Lin Padgham, and Stéphane Airiau.
Learning context conditions for bdi plan selection. In Proceedings of the 9th
International Conference on Autonomous Agents and Multiagent Systems:
Volume 1 - Volume 1, AAMAS ’10, page 325-332, Richland, SC, 2010. In-
ternational Foundation for Autonomous Agents and Multiagent Systems.

Dhirendra Singh, Sebastian Sardina, Lin Padgham, and Geoff James. Inte-
grating learning into a bdi agent for environments with changing dynamics.
In Twenty-Second International Joint Conference on Artificial Intelligence,
2011.

Rosalvo Ermes Streit and Denis Borenstein. An agent-based simulation
model for analyzing the governance of the brazilian financial system. Ezpert
Systems with Applications, 36(9):11489 — 11501, 2009.

66

[84]

[85]

[36]

[87]

[33]

[89]

[90]

[91]

[92]

BIBLIOGRAPHY

L. Subramainan, M. A. Mahmoud, M. S. Ahmad, and M. Z. M. Yusoff. A
conceptual emotion-based model to improve students engagement in a class-
room using agent-based social simulation. In 2016 4th International Confer-
ence on User Science and Engineering (i-USEr), pages 149-154, 2016.

Katia P Sycara. Multiagent systems. Al magazine, 19(2):79-79, 1998.

Y. Sanchez, T. Coma, A. Aguelo, and E. Cerezo. Applying a psychothera-
peutic theory to the modeling of affective intelligent agents. IEFE Transac-
tions on Cognitive and Developmental Systems, 12(2):285-299, 2020.

Ah-Hwee Tan, Yew-Soon Ong, and Akejariyawong Tapanuj. A hybrid agent
architecture integrating desire, intention and reinforcement learning. FExpert
Systems with Applications, 38(7):8477 — 8487, 2011.

Cecilia Sosa Toranzo, Marcelo Errecalde, and Edgardo Ferretti. On the use
of agreement technologies for multi-criteria decision making within a bdi
agent. In Ana L.C. Bazzan and Karim Pichara, editors, Advances in Arti-
ficial Intelligence — IBERAMIA 2014, pages 54—65, Cham, 2014. Springer
International Publishing.

Mohammad H. Vahidnia, Ali Alesheikh, and Seyed Kazem Alavi Panah.
A multi-agent architecture for geosimulation of moving agents. Journal of
Geographical Systems, 17, 10 2015.

Max Waters, Lin Padgham, and Sebastian Sardina. Evaluating coverage
based intention selection. In Proceedings of the 201/ International Confer-
ence on Autonomous Agents and Multi-Agent Systems, AAMAS 14, page
957-964, Richland, SC, 2014. International Foundation for Autonomous
Agents and Multiagent Systems.

Max Waters, Lin Padgham, and Sebastian Sardina. Improving domain-
independent intention selection in bdi systems. Autonomous Agents and
Multi-Agent Systems, 29, 07 2015.

Y. Weihong. Active guidance mechanism of university public opinion based
on cbr and bdi agent. In 2018 IEEFE 3rd Advanced Information Technology,
FElectronic and Automation Control Conference (IAEAC), pages 1307-1311,
2018.

Vincent Wiegel and Jan Berg. Combining moral theory, modal logic and
mas to create well-behaving artificial agents. I. J. Social Robotics, 1:233—
242, 08 2009.

BIBLIOGRAPHY 67
[94] M. Xu, Kim Bauters, Kevin McAreavey, and W. Liu. A formal approach to
embedding first-principles planning in bdi agent systems. In SUM, 2018.

[95] Y. Zhang and W. Wu. Flight mission modeling based on bdi petri net.
Journal of Systems Engineering and Electronics, 28(4):776-783, 2017.

	Abstract
	Introduction
	State of the Art
	Multi-Agent-Systems
	Multi-Agent-Systems
	BDI

	Spatial Reasoning
	Geometry
	Logic
	Mathematical Morphology

	Prolog
	tuProlog

	2P-Kt
	Application scenarios
	The motivation behind 2P-Kt

	Tile38
	Installation
	Object Types
	Commands
	Client Libraries

	Lettuce
	Related Works
	Game Engines e MAS: Spatial Tuples in Unity3D
	Introducing a novel model of belief-desire–intention agent for urban land use planning
	A multi-agent architecture for geosimulation of moving agents
	Using conceptual spaces for belief update in multi-agent systems
	Solace a multi-agent model of human behaviour

	BDI & AI techniques integration: a Systematic LR
	Systematic Literature Review
	A categorization of BDI integrations
	Goal
	Method
	Results

	Thesis Direction

	Geo2p Design
	Scenario
	Project Organization
	Region module
	Geolocating a region
	Summary

	GeoShape module
	Summary

	Theory module
	Theory methods
	Caching clauses
	Summary

	Tile38 module
	Geolocation of data
	Associating clauses to objects
	Ordering of objects
	Geolocating Clauses
	A parser of results
	Summary

	Solver module

	Implementation
	Region module
	Bounds
	Here
	RegionFactory

	GeoShape module
	GeoPolygon
	GeoLocation
	GeoRectangle
	GeoPoint

	Theory module
	Tile38SpatialTheory
	Tile38MutableSpatialTheory

	Tile38 module
	Tile38Object
	Tile38Point
	Tile38Polygon
	Tile38ObjectFactory
	Tile38Commands
	JSONUtils
	Tile38Parser
	Tile38Connection

	Solver module
	SpatialClassicSolver

	Conclusions and Future Works
	Summary
	Future Works

