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Introduction

This thesis aims to cover the knowledge needed in order to present no-
tions and results, introduced for the first time by Paul Balmer, which gave
rise to the field of tensor triangular geometry, with a particular focus on
the applications to algebraic geometry. The definition of spectrum of a
tensor triangulated category is central, and the general theory that can be
developed around this tool has, as a guiding example, the case of the cat-
egory of perfect complexes of sheaves of modules on a scheme X, endowed
with the derived tensor product. In this case, the spectrum coincides with
X, and therefore if the triangulated categories of perfect complexes on two
schemes X and Y are tensor equivalent, then the schemes are isomorphic.
It’s however remarkable that tensor triangulated categories, and therefore
applications of tensor triangular geometry, arise in many areas of mathem-
atics, such as stable homotopy theory and modular representation theory.

Questions as to what extent and under which conditions a category of
sheaves on a scheme determines the scheme go back in the years. In the
end of its 1962 thesis Des Catégories Abéliennes ([Gab62]), Pierre Gabriel
introduced the notion of spectrum of the category of sheaves of modules,
aimed to reconstruct a scheme. In 1980s, Alexander L. Rosenberg defined
the spectrum of any abelian category, and proved that a quasi-compact and
quasi-separated scheme can be reconstructed from the abelian category of
quasi-coherent sheaves of modules. This spectrum is constructed as the set
of equivalence classes of certain subcategories, called topologizing, together
with a natural topology and a structure sheaf defined in terms of centers
(endotransformation ring of the identity functor) of some abelian categories.
It follows that two schemes having equivalent categories of quasi-coherent
sheaves of modules are isomorphic.

A slightly different question concerns the derived category of the abelian
category of (coherent, quasi-coherent) sheaves of modules. Bondal and
Orlov proved in 1997 (see [BO97]) that for a smooth irreducible project-
ive variety X with ample canonical bundle, the bounded derived category
D?(Coh(Ox)) characterizes X among all other smooth varieties. This re-
quires a lot of assumptions, and in fact, derived categories of abelian cat-
egories of sheaves comes with a quite large loss of information about the
scheme, with respect to the abelian categories. This is in fact one of the



reasons why derived categories are introduced, in order to look closely to
cohomological properties. However, in 2004 Paul Balmer, probably inspired
by the Robert W. Thomason’s classification of certain thick subcategories of
the category of perfect complexes, observed that the latter, a triangulated
subcategory of the derived category of sheaves of modules on X, is suitable
in order to recover X, using the derived tensor product structure. It’s then
defined in [Bal04] the spectrum of any triangulated category endowed with a
symmetric monoidal structure as the set of those thick subcategories which
behave like prime ideals under the tensor product. The topology will be an
analogous of the Zariski topology, and eventually the structure sheaf will be
defined in terms of endomorphism rings of the unit for the tensor structure.



Chapter 1

Categories and sheaves for
geometry

Through this chapter we are going to recall some basic notions and facts
from category theory and sheaf theory, highlighting how they arise from
topological and geometric examples. Let’s start recalling the fundamental
result about presheaves on a locally small category.

1.1 The Yoneda Lemma

Definition 1.1.1. Let C be a locally small category. The category of
presheaves of sets C is the category whose objects are functors C — Set,
and morphisms are all the the natural transformations between these func-
tors. Namely, C = Set®™.

In order to study geometric spaces, are more useful sets with an algebraic
structure rather than just sets. Therefore, can analogously be defined the
category of presheaves of abelian groups, or commutative unital rings, by
replacing Set with respectively Ab or ComRing.

Example 1.1.2. The functor P : Set®”” — Set mapping a set X to its
power set P(X), and a function f : X — Y to the inverse image mapping
P(f) : V = f71(V) is a presheaf. Observe that P arise in the form of
Hom(—, ), for a set 2. More precisely, if we take = {0, 1}, there is a
natural isomorphism P = Hom(—, ) given object-wise by taking an element
A € P(X) to the characteristic function x4 : X — {0,1}.

Example 1.1.3. Let U : ComRing — Ab, or equivalently AffSch®” —
Ab, where AffSch is the category of affine schemes (see Remark 1.4.5),
be the functor associating to a ring R its group of units R*. This is a
presheaf over the category of affine schemes into the category of abelian
groups, mapping a morphism of affine schemes f : Spec(A) — Spec(B),



equivalently a morphism of rings g : B — A, to U(f) : B* — A* defined
as a restriction of g. This is certainly a group morphism because g is a ring
morphism.

This functor also arise as functor of the form Hom(—,Y"), precisely for
the affine scheme Y = Spec(Z[X, X~ !]). There’s in fact an isomorphism

U(R) —% Hom agrsen (SpecR, Spec(Z[X, X))
where t(u), seen as a morphism in HomcomRing(Z[X, X "], R), evaluates
polynomials p(X, X~1) + p(u,ut). Conversely, for any ring morphism

Z[X, X! — R, the image of X need to be a unit with inverse the image of
X 1. Quite obviously, these operations are inverses to each other.

We saw two examples of presheaves on a category C arising in the same
way from an object in C. On the other hand, any object C in a locally small
category C gives rise to a presheaf.

Definition 1.1.4. The Yoneda functor y : C — C is the functor defined,
on an object C, to be the presheaf

yco = Homeg(—, C).

This is a presheaf since it maps an object A of C to the set Hom(A, C'), and
a morphism g : A — A’ to the function

Hom(g,C) : Hom(A4’,C) — Hom(A, C)

a— ag

On a morphism f : C — C’, the functor y is defined object-wise to be the
precomposition by f

y(f)a : Hom(A,C) — Hom(A4,C")

ar— fa

The main foundational result describing the category of presheaves,
which is a starting point for the whole category theory, is the following
theorem, and is a result about morphisms from a representable presheaf.

Theorem 1.1.5 (Yoneda Lemma). For a presheaf F' on a category C and
an object C in C, there is a bijection

fe,r s Homg(ye, F) — F(C)

Moreover, this bijection is natural in both F and C in the following sense:
ifn: F— F and g: C' — C, the diagram



fo,r

Hom(yc, F) —— F(C)
Hom(y(g),n)i lﬁc’F(Q)
HOHl(yC/7 F/) - F/(C/)

fC’,F’

commutes in Set.

Proof. Note, first of all, that Hom(y(g),n) is the function mapping v
nvy(g).

The bijection is given on one hand by evaluation at the identity: the
map for sends 1 : yo — F to nc(lg) € F(C). Conversely, an element
x € F(C) determines a natural transformation that at the object C’ is
nés + yo(C') = Hom(C",C) — F(C"), given by mapping f : C' — C to
the evaluation at x of F(f) : F(C) — F(C"). Let’s prove that this defines
a bijection. The element 7o (1¢) uniquely determines 71 : yo — F, since it
holds, for C" in C and f : C" — C, that ne(f) = F(f)(nc(1c)), by the
naturality of n at C

ye(C) —= F(C)

vl |Fo

ye(C') —> F(C)

So, the first map is injective. To associate to = € F(C') the natural trans-
formation n* : yo — F also is an injective operation, and this can be
checked at 1¢. More precisely, if 71 = 7y are such that for every C’ and
every f : C'" — C one has nicv : f = F(f)(x1), and nocr = f — F(f)(z2),
then in particular this holds for ¢/ = C and f = 1¢, showing that if 1 = 9,
then 1 = x9.

Moreover, let g : ¢/ — C in C and 5 : F — F’ in C. The map
Hom(y(g),n) sends the natural transformation v : yo — F' to the natural
transformation \ : yor — F defined, for any C” and h : C" — C’, by

A (h) = ner (ver (y(g)cr (h)),
that is 9o (ver(gh)). Observe then that
forr(N) = Aor(1er) = ner(ver(9)) =

= nc(F(9)(ve(1e))) = (ne F(9))(fe,rv).-
This proves naturality of the bijection. O
Corollary 1.1.6. The functor y: C — C is fully faithful.
Proof. for C,C’ in C it holds, applying Yoneda to the functor F = y¢r,

Homg(C,C") = yor (C) = Homg(ye, yer)



Corollary 1.1.6 says that y is an embedding, and hence that we can look
at C as sitting in its category of presheaves C. Objects in C of the form Yo
for some C'in C are called representable functors. As we are going to remark,
the category Cisin general much larger that C, nevertheless, representable
functors contains all the information needed to compute any presheaf. More
precisely, the following theorem holds true.

Theorem 1.1.7. Any presheaf is colimit of a diagram of representable
presheaves.

Proof. The construction is explicit and canonical. Let P be a presheaf and
consider the category fC P whose objects are pairs (C,p : yo — P) and
morphisms (C, p) — (C', ) are the arrows f : C — C” in C making the
triangle

y(f)
Yyc — Ycr

to commute. Observe that there is a projection functor wp : fc P - C
mapping (C,u) — C. The composition of this functor with y defines a
diagram in C

C
with a cocone having vertex P and cocone morphisms

P =k iymp(Cip) =yo — P

In order to prove this cocone to be limiting, suppose ), with morphisms
Acp) P Yo — @, to be another cocone over the same diagram. Let’s define
a morphism v : P — @ such that vpc ) = A(c,)- For any C and § € P(C),
consider the morphism u : yo — P corresponding to £ under the Yoneda
Lemma, and set vo(§) = (A¢,u))c(ide).

More explicitly, p : yo — P is the morphism defined on the component
D tobe up:(g: D — C)— Pg(&).

Therefore, a morphism f : ¢’ — C defines a morphism (C’, ') — (C, p)
where u' : yor — P is the morphism corresponding to Pf(§) € PC’, so that
for any object D and morphism g : D — C’ one has

upyfp(g) = up(fg) = P(f9)(€) = Pg(Pf(€)) = up(g),

namely, the triangle

Yyer —> Yo

N



commutes. Then, observe that also the triangle

Yer —> Yo

A’ k‘ /(c )

is commutative because A defines a cocone. Now we need to prove the
commutativity of each of the triangles of the form

P2 Q

"
T /(C,u)

Yo

Let f : C' — C be a morphism and suppose pu to correspond under the
Yoneda Lemma to an element which we call £&. Therefore, consider the
morphism y' : yor — P constructed above corresponding to Pf(£). We can
compute

vor(per(f)) = vor(per (yfor(ider))) = ver(pe(ider)) = ver(P(iden ) Pf(€)) =
ver(Pf(£)) = Mo ) or(ider) = (M) er(vf(ider)) = ANy (f)-

This proves the commutativity of the desired triangles. Uniqueness is easily
given because if v and v are such that vy = ACp) = V' for every p: yo —
P, then for any C' and £ € P(C) one can consider the morphism p : yo — P
corresponding to &, and observe that

ve(§) = ve(pe(ide)) = (A op)elide) = ve(uclide)) = vp(8)
O

Remark 1.1.8. From the fact that Set, Ab, ComRing are complete and
cocomplete, we can deduce that the category of presheaves on a category C
with values in sets, abelian groups or commutative rings is both complete
and cocomplete. Limits and colimits of presheaves are computed “point-
wise”, namely if

D:1I—C

is a diagram, consider the class of diagrams indexed by Ob(C) from I into
Set, Ab or ComRing given by i — D(i)(C), and compute the colimit
X (C) for this diagram. This defines a presheaf X which is colimit for D.
The same holds true for limits.

Remark 1.1.9. In order to taste how many non-representable presheaves
there could be, one can consider a category which is not (co)complete, and
compute in C any (co)limit which doesn’t exist in C. Since y is full and
faithful, it reflects (co)limits, hence the computed presheaf cannot be rep-
resentable.



Not only the category of presheaves is complete and cocomplete, but also
the Yoneda embedding y : C — C is the “free colimit completion” of C in
the following sense.

Theorem 1.1.10. Let F': C— D be a functor into a cocomplete category
D. Then, there exists a unique, up to isomorphism, functor F : C — D
that preserves colimits and makes the following diagram to commute

c-—Y.

N

Proof’s idea. In the notations of Theorem 1.1.7, F(P) is defined to be the
colimit of the diagram

Q>

F

Sp

P c LD

C
O

Remark 1.1.11. The functor F is called left Kan extension of F. From
Theorem 1.1.10 it follows that for every functor G : C — D, its composition
with the Yoneda embedding yp of D, induces a functor ypG : C — D. This
construction happens to define a functor from the category Cat to its full
subcategory of cocomplete categories

(—) : Cat — CocompCat

which is left adjoint to the forgetful functor U : CocompCat — Cat.

1.2 Sheaves on topological spaces

The theory of sheaves has a very general flavor which allows to talk about
them over any (locally small) category. However, for our purposes aimed to
the study of schemes, it will be sufficient to consider sheaves on a topological
space, namely we restrict ourselves to the case where the category considered
is the partially ordered set X of the open sets of a fixed topological space
X, where the arrows are the inclusion morphisms.

Deﬁnifion 1.2.1. Let X be a topological space. A sheaf on X is a presheaf
F in QX such that for any U C X, any open cover {U;};er of U and any
set {z; € F(U;)|i € I} such that Vi,j € I

in|UiﬂU]’ = Ij|UiﬂUj

there exists a unique x € F(U) such that x|y, = z; for all i € I.

The full subcategory of X whose objects are sheaves is denoted by
Sh(X). The category QX is usually denoted by Psh(X). Wheneveri: V' C

10



U is a morphism in QX and P is a (pre)sheaf on X, the induced morphism
P(i) : P(U) — P(V) is called restriction, and P(i)(s) is denoted by s|y .

One of the main reason why we care about sheaves is the notion of stalk,
and in particular Proposition 1.2.11 below. The following constructions will
be done in the setting of sheaves of sets, and then extended to the case of
sets with an algebraic structure.

Definition 1.2.2. Denote by 2, X C QX the partially ordered set of the
open neighborhoods of x. The stalk at a point z € X of a presheaf P on X
(i.e. a presheaf on X)) is the colimit of the diagram

Q. X°? — Set

induced by P, that associate to any U > z the set P(U), and acting the
same as P on morphisms V C U.

Such colimit is denoted by P,, and the images under the colimit morph-
isms of a section s € P(U) (which certainly does not depend on U) is denoted
by s, and is called germ of s at .

The stalk of a sheaf is a particular case of a general kind of colimit.
Definition 1.2.3. A non-empty category I is said to be filtered if

(a) for any two objects i, i’ there exists an object k with morphism i — k
and ¢ — k,

(b) for any pair of morphisms u,v : ¢ — j there is a morphism w : j — k
such that wu = wv.

Remark 1.2.4. The opposite category of open neighborhood of a fixed
x € X is filtered. Condition (a) is provided by intersection, while condition
(b) is trivial because by definition there are no distinct parallel arrows in a
partially ordered set.

Definition 1.2.5. The colimit of a diagram I — C is said to be filtered if
the category I is filtered.

Remark 1.2.6. For general diagrams in a complete and cocomplete cat-
egory C, limits does not commutes with colimits, in the sense that for a
diagram

D:IxJ—C

one can consider limits or colimits over the diagrams with a fixed index, and
then take the other one letting vary the previous fixed index. More precisely,
we have for a fixed i € Ob(I), a functor D(i,—) : J — C, of which we can
consider the limit, with morphisms

Lim;D(i, j) ~% D(i, j)

11



This defines a diagram I — Set mapping ¢ — Lim;D(4, j), with morphisms,
for f:i— 7,
Lim;D(i, j) — Lim;D(i, )

induced by D(f,j)n; : Lim;D(i,j) — D(7,j). We can take the colimit of
this diagram, with morphisms
Lim; D(i, j) 2% Colim,Lim,D(5, 5)
Analogously, we can consider the colimit
D(i,j) =5 Colim; D(i, 5)

and, as before, the limit of the induced diagram Lim;Colim;D(4, j).
Observe then that there is a canonical morphism which we may call
switching morphism

Colim;Lim;D(i, j) — Lim;Colim; D(3, j) (1.1)
induced by the family of morphisms
Lim;D(i, j) — Lim;Colim; D(4, j)
which is in turn induced by the morphisms
vim; » Lim; D(i, j) — Colim;D(4, j)
In general, the switching morphism is not an isomorphism

Example 1.2.7. Consider the categories I = (N, <) as a partially ordered
set, and J = N as a discrete category. Define a functor

IxJ— Set

by A;; = A(i,j) = {0, ..., i}, with inclusion morphisms for every i < i’ arrow
in I.

Observe that Colim;A4; ; = J {0, ...,i} = N, with inclusions {0, ...,i} —

€N
N as cocone morphisms, hence
LiijOhHliAiJ == HN == NN.
JEN
On the other hand, Lim;A4; ; = [] {0, ...,7}, and the colimit of the induced
JjEN

diagram is

Colimi(ll;[{(), ey i})

TN T

[1{0} ——— [[{0,1} —— [[{0,1,2} —— ---
N N N

12



where the base morphisms are the inclusions induced by [[{0,...,i} —
N

{0,...,i} <= {0,...,i + 1}. Therefore, the coproduct is again the union of
these objects, namely

ColimiLiminyj = U{O, ceny Z}N
€N
The natural morphism
Ufo, ... i}" — N¥
1€N

maps a function f: N — {0,...,i} to the composition with the inclusion

N -1 {0,...,i} — N

and cannot be surjective because it cannot have unbounded functions in its
codomain.

Example 1.2.8. An even easier example of limits not commuting with
colimits is the case of binary products and coproducts: If I =J = {0, 1} are
discrete categories with two elements, a diagram in Set consists of four sets
Ao, Ao, A1p and Ap1. Certainly we can choose this sets in a way that
the morphism

(A1 x A1) U (Ao, x Ao1) — (Aoo U A1) X (Ao U A1)

is not an isomorphism, because if for example all the sets are the one point
set, cardinality fails to be the same because (1x1)+(1x1) # (1+1)x(1+1).

The two previous examples shows the failure of a desirable result about
commutativity of limits with colimits. In the first one the category I is
filtered but J is infinite, while in the second one the category J is finite,
but I is not filtered. One could then suspect then, that filtered colimits
commutes with finite limits, and in fact this is the case for Set.

Theorem 1.2.9. Let D : I x J— Set be a diagram where I is filtered and
J finite. Then, for any diagram D : I x J — Set, the morphism

defined in (1.1) is an isomorphism.
Proof. See [ML97], IX.1.2.1. O

Remark 1.2.10. Taking stalks defines a functor St, : Sh(X) — Set. On
a morphism of sheaves ¢ : ' — G, this functor is defined to be the colimit
map induced by the set of morphisms Ay¢ry, where A defines the cocone
structure of G

13



FU) 2% qU)
Proposition 1.2.11. A morphism ¢ : F' — G in the category of sheaves
is a monomorphism (resp. epimorphism) in Sh(X) if an only if for every
x € X the morphism ¢y : Fy — G, is a injective (resp. surjective) map.

Proof. See [MLM91] I1.6.6. O

One way to prove the result above is to make use of the following functor.

Definition 1.2.12. Let X be a topological space and x € X. The skyscraper
sheaf over z is the functor

Sk, : Set — Sh(X)
mapping a set A to the sheaf defined for U € QX by

A fxeU

Ske(A)(U) = {{0} ifz¢U

with the obvious restriction morphisms. The identity on A if x € V C U,
and the only existing morphism into the terminal object in the other cases.

Lemma 1.2.13. Let X be a topological space and x € X. The functor Sk,
is right adjoint to the stalk functor St,.

Proof. Let’s prove the bijection, for a set A and a sheaf F,
Hom(F,, A) = Hom(F, Sk, (A)).

Given a function f : F, — A set the morphism h : F' — Sk;(A) on a

component U to be
hy : F(U) — Sk, (A)(U)

defined as the unique possible function F(U) — {0} if z ¢ U, and as the
function s — f(s;) if x € U.

Conversely, if h : F' — Sk, (A) is a morphism of sheaves, one can define a
morphism f : F, — A as the colimit map induced by a family of morphisms
{F(U) = A}ys; commuting with restrictions. This is easily done mapping
s — hy(s).

These mappings are clearly inverses to each other: if f : F, — A is
associated to a morphism h : F' — Sk, (A), then the morphism f associated
to this h is the unique morphism such that f’(s,) = hy(z), but this is f by
definition of h. On the other hand, if h : FF — Sk,(A) and f : F, — A is
the morphism associated to it, then the morphism A’ associated to f is, on
a section U over which is non-trivial, hy; : s — f(s;). By definition of the
colimit morphism f, it is f(s;) = hy(s), therefore h = h'. O

14



Remark 1.2.14. By Theorem 1.2.9, the functor St, preserves finite limits.
The previous lemma says that it also preserve, as a left adjoint, any colimit.

The following construction provides a canonical procedure to determine
a sheaf from a given presheaf. Such a construction will satisfy a univer-
sal property, and will be used when operations defined on sheaves will not
provide another sheaf, but just a presheaf. The main case of this happening
is taking colimits.

Definition 1.2.15. The étale space of a presheaf P on a topological space

X is the space
Ap =[P
zeX

with topology generated by those sets of the form {(z,s;)|x € U}, with U
ranging over the topology of X and s € P(U).

Definition 1.2.16. A bundle on a topological space X is an object in the
category Top/X whose objects are morphisms of topological spaces

p:F— X
and morphisms are commutative triangles

Remark 1.2.17. Observe that the étale space of a presheaf P on X defines
a bundle over X with the canonical projection

Ap—>X

given by (z,s;) — x, which is continuous by the very definition of the
topology on Ap.

Moreover, A defines in fact a functor Psh(X) — Top/X, because to
any morphism of presheaves 7 : P — @) correspond a morphism

Ap: HPx — HQ‘T :AQ
zeX zeX

induced by the morphisms P, — ][] Q., each of which is induced in turn
zeX
by the family of morphisms ny : P(U) — Q(U), for any U > x, composed

with the composition of the two cocone morphisms
QU) — Q. — [] s
zeX

The resulting morphism Ap — Ag certainly maps each P, to (., hence it
defines a morphism of bundles over X.

15



Remark 1.2.18. Any bundle determines a sheaf as its sheaf of sections.
More in detail, if f : E — X is a bundle, one can consider the sheaf I'y :
QX — Set defined on an open subset ¢ : U < X to be the set

{s:U — E|fs=1}.

This is a clearly a sheaf, and T" is a functor Top/X — Sh(X), because a
morphism of bundles

E1—>E2

NS

Ff1 — Ffz

defines a morphism

defined on an open U C X to maps sections as s — fs, which is a section
on Fj because fa(fs) = fis is the inclusion of U in X.

Proposition 1.2.19. There is an adjunction I' = A between the section and
the étale bundle functors

Top/X # Sh(X)
Proof. See [MLM91] 11.6.2. O

Remark 1.2.20. As a consequence, the functor I preserves limits, while
A preserves colimits. Moreover, by Theorem 1.2.9 we have that A also
preserves finite limits. In fact, Ap can be described, as a set, as the colimit
over the filtered diagram

Q. X°P — Set

U— [[P©)
zeX
which is in fact Colim( [[ P(U)) = [] ColimP(U) = Ap.
Usz cx rex Udz

Not only the section functor defines sheaves, the next result says that
any sheaf arises as a sheaf of sections, precisely on its étale space.

Definition 1.2.21. Let P be a presheaf on a topological space X and Ap
its étale space. The sheaf of sections I'Ap is called sheafification of P.

Theorem 1.2.22. Let P be a presheaf on a topological space X. The natural
transformation
n:P—TAp,

defined on each open U to be ny(s)(x) = (x,8z), is an isomorphism whenever
P is a sheaf.

16



Proof. See [MLM91] IL.5.1. O
The sheafification (morphism) is universal for morphisms into a sheaf.

Theorem 1.2.23. Let P be a presheaf on a space X and n: P — I'Ap its
sheafification morphism. For any sheaf F' and morphism o : P — F there
exists a unique morphism of sheaves & : 'Ap — F' such that the diagram

P "5 TAp

xa

F
commutes in Psh(X).
Proof. See [MLM91] I1.5.2. O

More in general, the sheafification functor is a particular case of a more
general one arising whenever f : X — Y is a morphism of topological spaces.

Definition 1.2.24. Let f : X — Y be a morphism of topological spaces.
If F' is a sheaf on X, the direct image presheaf of F' is the presheaf f,F
on Y defined by
Vi F(f7H(V))

with restriction morphisms induced by F'.
If G a sheaf on Y, the inverse image presheaf of G is the presheaf f~1G
on X defined by
-1 .
G)(U) = ColimG(V
FHE)W) = ColimG(V)
where the colimit is taken on the diagram induced by G from the par-
tially ordered set of the open containing f(U). Restriction morphisms are
here colimit morphisms, induced by themselves because whenever U’ C
U, any cocone map G(V) — ‘953}1(%1) G(V) is also a cocone morphism for
Colim G(V), since V 2 f(U) 2 f(U").
V§g>()$me 2 f(U) 2 f(U)
Remark 1.2.25. For a morphism of topological spaces f : X — Y and
sheaves F' on X and G on Y, the presheaf f.F' is actually a sheaf, while
f71G isn’t in general. From now on, unless otherwise stated, by f~'G we
mean its sheafification T'A y-14.
These constructions define functors f, : Sh(X) — Sh(Y) and f~! :
Sh(Y) — Sh(X).

Theorem 1.2.26. Let f: X — Y be a morphism of topological spaces. The
functor f=1 is left adjoint to f..
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Proof. The argument goes on proving that there is an adjunction in the
category of presheaves

Hompgp(x)(f G, F) = Hompgy(y) (G, f+ F)

if we look at f~'G before the sheafification. Then, from the universal prop-
erty of the sheafification in Theorem 1.2.23, the left hand side is isomorphic
to HomSh(X)(f_lG, F), while the right hand side is Homgy(y)(G, f«F), be-
cause sheaves are defined as a full subcategory of presheaves.

Hence, let’s prove the adjunction at the level of presheaves. Let n €
Hompgh vy (G, f«F), and consider, for a fixed U C X, the cocone morphisms
Ow : GIW) — f~1G(U) for every open W D f(U). The family of morphisms

Gw) ™ P w)) 15 Pu)

defines another cocone structure over the same diagram {Gw }wo ), in-
ducing a colimit morphism which we call (¢n)y : f~1G(U) — F(U)

GW) —— F(f~1(W))

This defines a natural transformation ¢n : f~'G — F, and hence a morph-
ism

¢ : Hompgh(y) (G, fo F) — Hompghx)(f ", F)
Let’s find an inverse of this morphism. Observe that for any open W C Y
-1 -1 -1 :
JTGW) = G W))= Colim GW)=GW),
£ATIGW) = FIGUTIW)) = | Colim G(W) = G(W)

therefore the functor f, induces on morphisms a mapping

Hompgn(x)(f G, F) =, Hompgp(v)(f«f "G, f«F) = Hompgnv) (G, f..F)

The mappings ¢ and ¢ are inverses. The definition of ¢n on the component
F1(W) gives

() p-1(wy = nw,
but (¢n)s-1wy is, by definition of fi on morphism, (¥(¢n))w. This gives
¥(¢(n)) = n. On the other hand, suppose & : f~1G — F and use again the
definition of the morphism (¢1)) -1y, for any open W C Y, which is the
unique such that the diagram

GW) = f.f'GW)
WEw
9wl \
FGH W) e » F(f1(W))



commutes, where 6y is, since f(f~1(W)) = W, the cocone morphism

G(W) — ColimG(V) = G(W),
VoW
namely the identity. Therefore it suffices. by uniqueness, to prove that
§y—1(w) is such that it makes commute the above triangle. That is straight-
forward from the definition of v, because

(WOw = (f£w = 1wy = OwEp(wy-
O

Remark 1.2.27. In the form of one of the isomorphisms stated above,
precisely the one

Homgyx)(f ™G, F) = Hompgy(y) (G, f+F),

the adjoint functors f~' = f, reduce, in the case f = idy : X — X, to be
f« the forgetful functor U : Sh(X) — Psh(X), while f~! the sheafification.
Therefore we see that there is an adjunction

FAAU.

Remark 1.2.28. In particular, by the previous Remark we get that the
sheafification functor I'A preserves all colimits, while the forgetful functor
U preserves all limits.

In other words, we can say that the limit for a diagram F': I — Sh(X)
in the category of sheaves on a space X, seen as a presheaf, is

U(Lim; F (7)) = Lim;U F (i),

which means that the limit in Sh(X) can be computed as the limit in
Psh(X) obtained applying the forgetful functor.

The fact that the sheafification functor preserves colimits implies that if
we consider a diagram I — Sh(X) and the composed diagram UF : I —
Psh(X), the sheafification of the colimit for this diagram is the colimit of the
sheafification of the UF(i)’s, which are sheaves yet. Therefore the colimit
of sheaves is computed by the sheafification of the colimit of presheaves
obtained applying the forgetful functor.

1.3 Sheaves with algebraic structure

In the beginning we have introduced presheaves with values on some
categories different from Set, but the results and the construction for sheaves
in the previous section was entirely focused on the case of sets. In this
section we are going to argue that the main results proved about sheaves
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hold similarly for the categories which we will be interested in, such as
sheaves of rings and abelian groups, and can be described starting from the
category of sheaves of sets.

I has to be said that to consider algebraic structure on the category
of sheaves is going to brutally change many categorical properties of the
category of sheaves of sets. Nevertheless, from the fact that both Ab and
ComRing admits forgetful functors with nice algebraic properties, we can
specialize most of the arguments above.

Lemma 1.3.1. The forgetful functors U : Ab — Set and U’ : ComRing —
Set have left adjoint functors.

Proof. Let F' : Set — Ab be the functor associating to any set A the
free abelian group on A, that is the abelian group presented by the set A
together with only the commutators a~'b~1ab for a,b € A as relations. A
function g : A — B defines a group morphism in the obvious way, mapping
ai---an +— g(ai)---g(an). Given a group morphism h : FA — G, consider
the function h : A — UG defined by a + h(a), applied to the one element
word. Conversely, to any set function f : A — UG we can associate the
group morphism

f:FA— @

mapping a word aj ...a, to the product element f(aj)--- f(a,). These
mappings are natural in A and G, and clearly inverses to each other, so that
UFF.

In order to prove the same for ComRing, we consider the functor
F’ mapping a set A to the polynomial ring F'(A) = Z[A] with integer
coefficients and variables from A. This naturally defines a functor since
any function g : A — B defines a ring morphism F’(g) : p(ai,...,an) —
p(g(aq), ..., g(ay)). Similarly as above, a ring morphism h : Z[A] — R defines
a function h on A as seen applied to the one-variable polynomial, and a func-
tion f: A — U'R defines a ring homomorphism

f:Z[A) — R

mapping p(aq, ..., a,) to the evaluation in R of p(f(a1), ..., f(an)). Again, it’s
immediate to see that these mappings are natural in A and R and inverses
to each other. O

Remark 1.3.2. In particular, Lemma 1.3.1 says that limits in Ab and
ComRing are computed as in set. In particular, will sounds familiar that
the product of abelian groups is the obvious group structure given on the
cartesian product of the underlying sets, and the same is true for commut-
ative rings.

Observe, moreover, that any abelian groups or rings morphism which is
a bijection of the underlying sets is an isomorphism. That means forgetful
functors U and U’ reflects isomorphisms.
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Remark 1.3.3. A category C whose objects are defined as sets and morph-
isms are functions (with additional structure), admits in general a forgetful
functor to U : C — Set. However, it’s not guaranteed for U to reflect iso-
morphism. Any continuous bijection of topological spaces which is not an
isomorphism provides a counterexample. The forgetful functor Top — Set
is however faithful.

There’s also a forgetful functor, from the category Sch of schemes to the
category of sets, which isn’t even faithful. In fact, any morphism

f :SpecC — SpecC

is defined by a continuous morphism between the underlined topological
spaces, which are just one point sets 1, and a ring morphism Ogpecc —
f+Ospecc, namely a ring morphism C — C. As well known, there are 92"0
of such morphisms, but only one map of sets 1 — 1.

What about colimits? The example of coproducts of two abelian groups
A and B, which we know to be the direct sum A® B, says that the forgetful
functor doesn’t preserve colimits. In fact, the underlying set of A ® B is
emphatically not the coproduct of sets A U B.

Recall, moreover, that the coproduct of commutative rings A and B is
given by the tensor product as Z-module A ® B, with cocone morphisms
a—a®land b— 1®b. Again, the underlying set isn’t in general the
disjoint union.

However, may be that some kind of colimits do commute with these
forgetful functors. This is in fact the case for filtered colimits. Let’s see how
it works for the case of abelian groups.

Remark 1.3.4. Recall that the colimit of a diagram of sets D : I — Set
can be explicitly described as

[T D@/

i€Ob(I)

where ~ is the smallest equivalence relation containing a pair ((¢,d;), (7,d;))
whenever there exists ¢ : ¢ — j such that D(¢)(d;) = d;. More explicitly,
two pairs (i,d;), (J,d;) are equivalent if and only if there exists a chain of
morphisms in I

19n—1

z’z’o/il\h/ig \

19n :.7

with objects d;; € D(ij) mapping each other through the morphisms induced
by D.
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If the small category I is filtered, there is an easier description. Let’s
claim that if I is filtered, (¢,d;) ~ (j,d;) if and only if

3k3¢i A /i', d)j ] — k s.t. D((bl)(dl) = D(qb])(dj)

One one hand it’s clear that if this is the case, then (i,d;) ~ (k, D(¢;)(d;)) =
(k,D(¢;)(d;)) ~ (i,d;). Conversely, if there is a chain of morphisms as de-
scribed above, one can iteratively apply the two conditions defining a filtered
category, finding k] with morphisms iy — k] ¢ i2, and then consider an
object k; with morphism k] — k; such that the resulting pair of morphisms
i1 — k1 coincide. The next step consists of taking an object k3 and morph-
isms ki — ko < i4 such that the composites i3 — ko are the same. This
process eventually gives k = k,, as desired.

The stalk of sheaf of sets F', for example, can be explicitly described as

F,=1FU) /o
Usx
where (U,s) ~ (V,t), with s € F(U) and t € F(V), if and only if there
exists W C U NV such that s|y = t|y. Both the categorical and this more
concrete description of a stalk are important.

Here it comes the case of abelian groups

Proposition 1.3.5. The filtered colimit of a diagram D : I — Ab is com-

puted as
Colim;D(i) = @ D)/
i€Ob(I)
where ~ s the equivalence relation generated by (i.e. the smallest equi-
valence relation compatible with the group structure containing) the pairs
(di, F(¢)(d;)) whenever ¢ : i — j is a morphism in L.

Proof. Cocone morphism for the diagram are the natural inclusions
D(i) — @ D(i) /.
i€Ob(I)
d; — [(d;)]

where (d;) denotes the sequence where only the i-th element is not the
neutral element. The imposed equivalence relation says exactly that these
morphisms define a cocone. If () is an abelian group with morphisms 7; :
D(i) — @ defining a cocone structure, the colimit map

D D)/w —Q

i€Ob(I)
is defined by (di)iecr = > (di) — >. mni(d;). This is certainly the

icOb(I) icOb(I)
unique morphisms of abelian groups mapping (d;) — n;(d;). O
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Proposition 1.3.6. Let D : I — Ab be a diagram from a filtered category
to the category of abelian groups, and consider the diagram UD : I — Set.
The canonical morphism

Colim;UD(i) — U(Colim;D(7))
18 an isomorphism of sets.

Proof. Tt has to be proven that the morphism of sets

Il UD@) /. —uU( @ D)/

icOb(I) i€Ob(I)
[di] — [(d;)]

is a bijection. If [d;] and [d;] are classes of element d; € UD(i) C [[UD(%)
and d; € UD(j) C [[UD(j) such that [(d;)] = [(d;)], we can find a finite

chain of morphisms

A1 13 19n—1

7N S .

1 =1 12 lon =]

such that d; € D(i) comes from an element in d;; € D(i1), which is mapped
to an element d;, € D(i2), and so on up to reach d; € D(j). Since I
is filtered, we can iterate the same process described above of finding an
object k] with morphisms ¢ — k| < i2, and an object k1 with a morphism
K} — ki such that the two resulting morphisms i; — k1 coincide. This
process ends providing two morphisms ¢; : ¢ — k, and ¢; : j — k, such
that the induced morphisms D(¢;) and D(¢;) map respectively d; and d;
to the same element. Therefore, we get that [d;] = [d;] in the domain of .
Hence, that the morphism % is injective.
In order to prove surjectivity, consider an element

(di)ierl € €D D)/ ~

i€Ob(I)

where all but finitely many are the neutral element of the group, say (d;) =

(diy,-..,d;,). Since I is filtered, we can find an object k with morphisms
¢j : ij — k
for every j € {1,...,n}. Therefore, we can consider the finite sum

> "D(¢;)(d;,) € D(k).
j=1
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This element is a one element sequence, so it is in the range of 1, and it’s
in the same equivalence class of

n
(di)ier = (diy, - di,) = > _d;,
j=1
because the equivalence relation on the codomain of 1 is compatible with
the group structure. O

It follows the analogous result to Theorem 1.2.9.

Corollary 1.3.7. Let D : I x J— Ab be a diagram where I is filtered and
J is finite. Then the canonical morphism

Colim;Lim;D(i, j) — Lim;Colim; D(3, j)
18 an isomorphism.

Proof. Since the result holds true for the functor UD : I — Set, and U
preserves (all) limits and filtered colimits, it holds

The result follows since U also reflects isomorphisms. 0

Definition 1.3.8. A sheaf of abelian groups on a topological space X is a
functor F': QX — Ab such that the composition UF : QX — Set of F
with the forgetful functor U is a sheaf of sets. Morphisms between sheaves
of abelian groups are all natural transformations. This defines the category
Ab(Sh(X)).

Analogously, a sheaf of commutative rings on X is a functor F' : QX —
ComRing such that U'F is a sheaf of sets, where U’ : ComRing — Set is
the forgetful functor.

Definition 1.3.9. A bundle of abelian groups is a surjective bundle p :
E — X in Top/X together with a structure of abelian group on each fiber
(p~(z),+) in such a way that abelian group operation

m:YxxY —Y

mapping (y,y') with & = p(y) = p(y’) to y + ¢ € p~*(x), and
1:Y =Y

mapping y +— y~! € p~1(p(y)), are continuous morphisms.
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Both these constructions are a special case of the general notion of inner
abelian group.

Definition 1.3.10. Let C be a locally small category. An object G in C is
an abelian group object if for every C' in C there is an abelian group structure
on the set Hom(C, G) in such a way that yg defines a functor C” — Ab.
A morphism of group objects G, G’ is a morphism f : G — G’ in C such
that for every C in C the morphism y(f)(C) : Hom(C,G) — Hom(C,G’) is
a group morphism.

This defines a category denoted by Ab(C).

Remark 1.3.11. To give a natural structure of abelian group to the set
Homgy,(x)(yc, F) for any C, is the same as to give a natural structure of an
abelian group to F'(C), by Yoneda Lemma. Therefore, sheaves of abelian
groups are the abelian group object in the category Sh(X). It’s straightfor-
ward to prove as well that the category of bundles of abelian groups is the
category Ab(Top/X).

Remark 1.3.12. Observe that the definition of abelian group object in a
category C with finite products, and hence with a terminal object 1, gives
the following morphisms:

u:l— G,

the neutral element in Hom(1, G), called unit,
m:GxG—G

defined by the sum in Hom(G x G, G) of the two projections p,q : GXG — G,
called multiplication, and eventually the inverse morphism

i:G— G
defined to be the group inverse of idg € Hom(G, G).

Proposition 1.3.13. Let F': C — D be a functor between categories with
finite products, and suppose F' to preserve them. Then F maps abelian group
objects of C to abelian group objects of D.

Proof. Let G be a group object in C and D any object in D, let’s define a

group structure for
Hom(D, FG).

The neutral element of this group is defined to be the morphism

D—)ngF(lc)MFG

where D — 1p is the unique morphism into the terminal object, while u is
the unit morphism of the group object G.
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Given two morphisms f,g € Hom(D, F'G), they induce a morphism
(f.9) : D — FG x FG = F(G x G). The morphism f + g € Hom(D, F'G)
is then defined to be the composition

pTe)

p Y raxa)
where m : G X G — @ is the multiplication morphism.
Eventually, if f € Hom(D, FG), we analogously define —f as the com-
position

DL ra T pg

where i is the inverse morphism.
The verifications that this actually defines an abelian group structure on
Hom(D, FG) is straightforward. O

Remark 1.3.14. It follows that both I and A, which preserves respectively
all and finite limits, and hence products, define functors

Ab(Top(X)) # Ab(Psh(X))

which still give rise to an adjunction, whose unit np : P — I'Ap is said to
be sheafification of the presheaf of abelian groups P.

From now on, when no confusion arises, we denote the category of sheaves
of abelian groups on X just by Sh(X).

The notions of direct and inverse images can be transposed in the context
of sheaves of abelian groups, too. If f : X — Y is a morphism of topological
spaces and F', G are sheaves of abelian groups respectively on X and Y, the
direct image f,F and the inverse image f~'G are defined in the same way
as sheaves of abelian groups, and give rise to the adjunction f~ 4 f,

fx
Sh(X) THT Sh(Y)

between categories of sheaves of abelian groups.

1.4 Sheaves of modules

For a commutative unital ring R there’s a category Mod(R) of modules
over it, which generalizes notions such as ideals, quotients, and provides a
nice (abelian) category where to study geometrical properties of Spec(R).

Analogously, to endow with a sheaf of rings Ox a topological space X
turns it into a so called ringed space, and there is a category Mod(Ox ) which
is useful in order to study (X, Ox), especially when the space (X,Ox) is a
scheme.
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Definition 1.4.1. Let (X, Ox) be a ringed space. An Ox-module F is a
sheaf of abelian groups on X such that for any open U C X the abelian
group F(U) is endowed with the structure of an Ox (U)-module in a way
compatible with the restrictions, namely it’s required that (st)|y = s|yt|v
whenever V C U, and s € Ox(U) acts on t € F(U).

A morphism of Ox-modules is a morphism of sheaves 1 : F — G such
that for any U C X the morphism 7y is a morphism of Ox (U)-modules.
This defines the category Mod(Ox).

Ox-modules are also referred to as sheaves of modules when the sheaf
of rings Ox is understood. The notion of sheaf of modules allows to import
constructions from commutative algebra. One of the main one is the tensor
product.

Definition 1.4.2. Let (X,Ox) be a ringed space. Given Ox-modules F'
and G consider the presheaf

Ur— F(U) ®oxw) GU)
and define F' ®p, G to be its sheafification.

Remark 1.4.3. From the fact that the tensor product is commutative and
associative over the category of R-modules for a commutative ring R, the
same follows for

— ®oy —: Mod(Ox) x Mod(Ox) — Mod(Ox)
More precisely, there are isomorphisms
aac: (A®oy B)®oy C — A®oy (B®oy O)
natural in A, B and C, and
Y4,B: A®oy B— B®o, A
natural in A and B. In other words, o and 7y defines natural isomorphisms.

In the following, we will focus on schemes, abandoning the full generality
of ringed spaces.

Definition 1.4.4. A locally ringed space is a ringed space (X,Ox) such
that each stalk of Ox at a point z € X, denoted by Ox ., is a local ring.
Since each ring Ox ; is local, it has a unique maximal ideal which we
denote by m,, and we indicate by k(z) the residue field Ox o /mg.
A morphism of locally ringed spaces (X, Ox) — (Y, Oy) is a morphism
of ringed spaces, i.e. a pair of morphisms (f, f#) with f : X — Y in Top
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and f# : Oy — f.Ox a morphism of sheaves of rings, such that for every
x € X the morphism at the stalk f(x)

# . ; -1 —
Ffw) Ovif@) — f@l?ggz(?x(f (U)) =Oxp
is a local ring morphism, meaning that the image of the maximal ideal is
contained in the maximal ideal.

Remark 1.4.5. A motivation for locally ringed spaces comes from geo-
metrical observations. One of the first examples of Ox-module that one
encounter is the sheaf of continuous real valued functions Cx on a topo-
logical space X, associating to any open subset U C X the ring of con-
tinuous functions U — R. The stalk at = of this sheaf is the ring of
germs, namely equivalence classes of functions [h] where h ~ h' if they
agree on a neighborhood of . This ring is local, with unique maximal ideal
mg = {[h] € Cxz|h(xz) = 0}. If we consider the morphism of locally ringed
spaces (f, f7): (X,Cx) — (Y,Cy), where

18 ey (U) — Cx(f 1)
maps a function h to hf, we get that on stalks at f(x) this morphism become
7 Cyp) — Cxa

mapping [h] — [hf], and if h(f(x)) # O, then certainly hf(z) # 0, too. So
this is a local ring morphism.

From a more general perspective, after observing that a natural sheaf of
rings R on Spec(R) turns it into a locally ringed space, we can argue that
locally ringed spaces are suitable in order to define Spec as a full and faithful
functor from ComRing® into the category of locally ringed spaces. This
point of view leads to define AffSch as the essential image of the functor
Spec, over which this functor will be full, faithful and essentially surjective,
i.e. an equivalence ComRing® ~ AffSch.

Remark 1.4.6. For an R-module M the sheaf M is the sheaf of mod-
ules on the topological space Spec(R) defined on basic opens D(f) = {p €
Spec(R)|f & p} to be the localization M(D(f)) := My = M ®p Ry, with
restriction morphisms for D(f) C D(g) C Spec(R), given by the universal
properties of localization and tensor product.

More precisely, if D(f) C D(g), if follows that g divides some power f"
of f, say mg = f", hence the natural morphism R — Ry maps g to the
invertible element ¢ = (fﬂn)_l. Therefore it’s induced a morphism R, — Ry
by the universal property of the localization, and we get two morphisms
M — My = M ®pg Ry, the inclusion, and Ry — M ®pg Ry, composing
R, — Rj; with the other inclusion. This gives a morphism M, — M;
induced by the pullback property defining the tensor product in
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Q:U%:U

M®RRf

The particular case R clearly defines a sheaf of rings whose stalks are
local rings.

Definition 1.4.7. An affine scheme is a locally ringed space (X, Ox) which
is isomorphic to the spectrum of a ring (Spec(R), R).

More in general, a scheme is a locally ringed spaces (X,Ox) which is
locally isomorphic to an affine scheme, i.e. such that for every x € X there
exists an open neighborhood U of z such that (U, Ox|y) is isomorphic to
an affine scheme.

Definition 1.4.8. Let (X,Ox) be a scheme. An Ox-module F is said to
be quasi-coherent if for every x € X there is an affine open neighborhood
U = Spec(R) of z such that F|y is isomorphic to the sheaf M in Spec(R)
associated to an R-module M.

Remark 1.4.9. There’s a full subcategory QCoh(Ox) C Mod(Ox) whose
objects are quasi-coherent Ox-modules. Moreover, if R is a commutative

ring, there’s an equivalence of categories QCoh(R) ~ Mod(R).

Here’s an important example of how some O x-modules on a scheme X
arise.

Example 1.4.10. Recall that a closed subscheme of a scheme (X,Ox) is
given by a scheme (Z,07) together with a locally ringed space morphism
(i,i%) : (Z,0z) — (X, Ox) such that the morphism i : Z — X is a closed
immersion, and i# : Ox — i,Oy is an epimorphism of sheaves.

There’s a correspondence

{closed subschemes of (X,Ox)} <> {quasi-coherent J C Ox in Mod(Ox)}

This correspondence is given on one hand by taking, if J C Ox is a quasi-
coherent Ox-module, the support Z of the quotient sheaf Ox /7, with the
induced structure sheaf. Conversely, a close subscheme (i,i%) : (Z,0z) C
(X,Ox) defines a Ox-submodule of Oy by taking the kernel of i# : Ox —
1xOz.

Definition 1.4.11. Let (X, Ox) be a scheme. An Ox-module F is said to

be free if it’s isomorphic to a direct sum Ox for a set I, i.e. Ox-module
el

29



associating to each open U the direct sum of modules @Ox (U), with the
il
obvious action by Ox (U). A free sheaf is said to be of rank n € N if the set
I can be chosen to be of cardinality n.
The Ox-module F is said to be locally free (of rank n) if it’s locally
isomorphic to a free module (of rank n). More precisely, if for every z € X
there exists an open neighborhood U of x and a set I (with |I| = n) such

that
Fly = ov,
i€l

where by Oy we indicate the restriction Ox|y.

Remark 1.4.12. Certainly, a locally free sheaf I’ is quasi-coherent. For
any x € X consider an affine open U = Spec(R) containing x, over which
Fly = @Oy, then the module M = @R shows F|; = M.
icl T

The category of Ox modules can be seen as a generalization of the
concept of vector bundle. Those Ox-modules specializing to the latter are
in fact the locally free Ox-modules. Let’s now briefly sketch how this cor-
respondence works, introducing the basic notions.

Definition 1.4.13. Let (X,Ox) be a scheme. An Ox-algebra is an Ox-
module A which is also a sheaf of rings. These objects form a category
Alg(Ox) whose morphisms are the morphisms of Ox-modules which are
also morphisms of sheaves of rings.

Example 1.4.14. Given an Ox-module E, we can construct its symmetric

sheaf algebra Sym(FE) as the sheafification of the presheaf U — Sym(E(U)).

The symmetric algebra Sym(M) for an R-module M is the quotient of the

tensor algebra T'(M) = @T™(M), withT"(M) = RRRM®pg- - -@rM (with
n>0

n + 1 factors), by the two-sided ideal generated by the elements of the form

r®y—y®xcT?(M). The same way, the sheaf Sym(E) can be described

as analogous quotient of the tensor sheaf algebra T(E) = @ T"(E), with
n>0

TME)=0x @0, E®oy - ®oy E.

The symmetric sheaf algebra certainly is an Ox-algebra, and it satis-
fies the same universal property of the symmetric algebra. More precisely,
Sym(E) comes with a morphism E — Sym(E) such that for any morphisms
of Ox-modules h : E — F into an Ox-algebra F there exists a unique
morphism h : Sym(E) — F making
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to commute.

Remark 1.4.15. The notion of spectrum of a commutative ring can be
generalized by considering the spectrum of an Ox-algebra. Fix a scheme X
and an Ox-algebra A, and consider the family of affine scheme

{Spec(A(Ui))}

indexed by the set of affine open subsets {U; = Spec(R;)} of the scheme X.
These affine schemes can be glued together by morphisms induced by those
morphisms defining X as gluing of its affine subschemes, in order to define
a scheme which we call MX(A). Such a scheme comes together with a
natural morphism

f: MX(A) — X.

such that f=1(U) = Spec(A(U)).

Recall by A.0.1 that the functor Spec can be defined to be the right
adjoint to the global section functor I'. It follows that for a fixed ring A the
scheme Spec(B) with a morphism Spec(B) — Spec(A) is characterized by
the adjunction isomorphism

Hompg(4)(B,T'(Y)) = Homgen/ spec(4) (Ys Spec(B))

describing the morphisms into Spec(B) as those morphisms of A-algebras
from B to I'(Y, Oy).

Analogously, Spec, (A) can be characterized by the adjunction isomorph-
ism, for any scheme Y over X, i.e. with a morphism 7 :Y — X,

Homajg0,) (A, mOx) = Homgep,/ x (Y, Spec, (A)).

Definition 1.4.16. Let X be a scheme. Set, for any open U C X, the
scheme
& = SpecZ[zi,...,xn] Xspecz U

A geometric vector bundle of rank n is a morphism of schemes f :Y — X

with an open cover X = | JU; and isomorphisms in the category Sch/U;
el

wi : f_l(Uz) — Ani
such that for every affine open Spec(A4) = U C U; N U; the morphism

¢i¢j_1|U t Ay = Spec Az, ..., xp] = Ay = Spec Alz1,. .., zp)

is Spec(¢) for a automorphism of A-algebras ¢ : Alz1,...,x,] — Az, ..., Ty

There’s a category of geometric vector bundles whose objects are geo-
metric vector bundles over X, and morphisms f — f’ are commutative
triangles
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y — 4 5y

N T

in the category of schemes.

Definition 1.4.17. For any Ox-module E consider its symmetric Ox-
algebra Sym(F), and set

V(E) = Spec  (Sym(£)),

and call the natural morphism f : V(E) — X the vector bundle associated
to L.

Remark 1.4.18. In the case of E locally free of rank n over X, the scheme
morphism V(E) — X defined above gives in fact a geometric vector bundle.
Let U be an open such that E|y is free, hence E(U) has a basis {1, ..., %}
Consider the identification Sym(E(U)) = O(U)|z1, ..., xy,) to which we can
apply Spec in order to get an isomorphism of schemes

Y : Spec(Sym(E(U))) = f_l(U) — Spec(O(U)[x1, ..., zy]) = AL

These isomorphisms provide the structure of geometric vector bundle.

Conversely, if we consider a geometric vector bundle f : Y — X, we can
take the sheaf of sections I'y defined on U C X to be the set of morphisms
s: U — Y such that fs =¢: U C X. This module has a natural structure
of locally free Ox-module. It’s know that it suffices to define the structure
of module on a basis. So, suppose U = Spec(A) to be affine, and moreover
assume it to be trivializing for the vector bundle, i.e. such that f=1(U) =
Spec Alx1, ..., zy]. Therefore, a section s € I'y(U) is a morphism

s:U — Spec A[z1, ..., xy),
coming from a morphism of A-modules
0:Alxy,..,xn] — A

This shows a correspondence between n-tuples (6(z1), .. .,0(x,)) of elements
in A (i.e. elements of the A-module @A) and sections s € I'f(U). Therefore,

n
the module structure of I'f is just the multiplication of an n-tuples in A
n

by an element r € Ox(U) = A. It’s clear that restricted to each open in
the chosen basis for the topology of X, the module I'y is free, hence I'y is
locally free.

Now, if F is a locally free Ox-module and f : V(E) — X is its associated
vector bundle, then there is an isomorphism of locally free sheaves

Iy~ EY.
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IfU C X isopen and EY = Hom(E, Ox) is the dual sheaf of F, i.e. the sheaf
U ~ Hom(E|y,Oy), an element ¢t € EV(U) is a morphism s : E|y — Oy
of Opy-modules. From the universal property of the symmetric algebra, this
determines a morphism of Op-algebras

Sym(E|U) — OU

which, applying the functor SpecX, gives rise to a morphism of schemes,
which we still call s,

s : U = Spec, (Oy) — V(Ely) = f'(U)

and which happens to be a section in I'¢(U).
Therefore, this leads us to conclude that the mappings

E s V(E)
(T f

define a one-to-one correspondence between geometric vector bundles of rank
n over a scheme X and locally free Ox-modules of rank n.

Now we would like to specialize the adjunction between the operation
of taking, for a morphism f : X — Y, direct image f.F and inverse image
f~1G of sheaves F on X and G on Y respectively, to the case of a morphism
of schemes X — Y and sheaves of modules F' and G. The main adversity is
that the sheaf f~'G may not carry the structure of an O x-module. However,
it has a natural structure of f~'Oy-module.

Remark 1.4.19. Let (f,f#) : (X,0x) — (Y,Oy) be a morphism of
schemes, and suppose F' to be an Ox-module and G an Oy-module.
On each open subset V' C Y the morphism

Oy (V) x i F(V) — fi F(V)
(s,t) — [ (s)t

defines a Oy-module structure on f,F. Therefore, there is a well defined
functor
f* : MOd(OX) — MOd(Oy)

The action, for any open U C X,

FOy(U) x fTIGU) — fTIG(U)
((Visv € Oy (V)] [(Vity € GV))]) — [(V, sviv)]

defines an f~!Oy-module structure on f~'G.
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Moreover, the structure sheaf Ox also carries a natural structure of
f~1Oy-module, given by the action, for any U C X,
f_loy(U> X Ox(U) — Ox(U)
([(Vty € Oy (V)] 8) — fiF (tv)|us
where this mapping is in fact well defined because it doesn’t really depend

on V. If (V,ty) ~ (W, tw) one can take H with f(U) C H C V NW such
that ty |y = tw|y and consider, since U C f~1(H)

@)l = £ vimlo = £ twlmlo = £ tw)lo

Definition 1.4.20. If f : X — Y is a morphism of schemes and G is an
Oy-module, the inverse image sheaf of modules of G is defined to be the
O x-module

G =f"G®10, Ox

This certainly defines a functor
f* : MOd(Oy) — MOd(Ox)

It’s important to highlight that this construction is not just “bug fixing”
of the functor f~! in the case of modules. The functor f* is in fact left
adjoint to the functor f, between categories of sheaves of modules. This
property is known to characterize f* up to unique isomorphism.

Theorem 1.4.21. Let f : X — Y be a morphism of schemes. There is an
adjunction f* - f. between the functors

f«
MOd(Ox) T#{ MOd(Oy>

Proof. From what argued in Remark 1.4.19, if F' is an Ox-module and G
an Oy-module, the adjunction isomorphism of Theorem 1.2.26, induces an
isomorphism between the subgroups of morphisms of sheaves of modules

Hompgoq(f-10y)(f ' G, F) = Hommodq(oy) (G, fF) (1.2)

Now, this reduces to a general fact in abstract algebra ensuring an adjunction
between the so called restriction of scalars and extension of scalars. More
precisely, if h: A — B is a ring homomorphism there are functors

pf: Mod(B) — Mod(A)

mapping a module M over B to itself with the structure of A-module induced
by h with action am = h(a)m for a € A and m € M. This functor, which is
somehow forgetful, admits a left adjoint construction of a B-module starting
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from a A-module N, which is the tensor product functor with the A-module
B
— ®4 B:Mod(A) — Mod(B)

providing a natural isomorphism
Homygoq(p) (N ®4 B, M) = Hompgoq(a) (N, M)

This argument clearly generalizes to sheaves of rings and modules. In con-
clusion, the morphism of sheaves of rings f* : f1Oy — Ox, which is the
transposed of f# : Oy — f.Ox, induces a natural isomorphism

Hompgoq(0y) (f G ®f-10, Ox, F) = Homppoq(f-104)(f G, F)

giving, together with (1.2), the desired adjunction. O
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Chapter 2

Triangulated categories

Triangulated categories naturally arise inverting some classes of morph-
isms of an abelian category. Intuitively, to invert morphisms is a method
for losing some information and focus on the properties which are of our
interest. The triangulated structure is then a more flexible environment
aimed to deal with the analogous of properties of an abelian category that
we lose after the operation of inverting some morphisms.

2.1 Abelian categories

Let’s recall definition and first properties of an abelian category. The
reason why here we care about them is that examples of abelian categor-
ies are the categories mainly used to study geometric spaces, such as the
categories of modules and the categories of sheaves of modules.

Definition 2.1.1. A category A is called pre-additive if for every two ob-
jects A and B in A the set Hom(A, B) is endowed with an abelian group
structure in such a way that whenever C' is another object in A, the com-
position

o: Hom(A, B) x Hom(B, C) — Hom(A, C)

is bilinear with respect to the group structure. That is fo(g+h) = fog+ foh
as well as (f +g)oh = foh+goh.

Example 2.1.2. Rings are precisely pre-additive categories with exactly
one object. A category with just one object is in fact precisely a monoid
under composition, while the abelian group structure of the morphisms,
together with the distributive laws, concludes the definition of a ring.

Definition 2.1.3. A pre-additive category A is called additive if it admits
finite products
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Definition 2.1.4. A functor F' : A — B between additive categories is said
to be additive if the map induced between groups

Hom(A, B) — Hom(F'A, F'B)
is a group homomorphism.

This notion defines a subcategory of Cat whose objects are additive
categories and morphisms between them are additive functors.

Remark 2.1.5. Having finite products for an additive category C implies
of course to have a terminal object 1. Let’s show that 1 is also initial object.
In order to prove that, consider any object A in C and any f € Hom(1, A),
which, being a group, is not empty. Then it holds f = foid; = foe, where
e is the unique element, by terminality, of Hom(1,1). In particular e = e—e,
and since composition is bilinear, the last term is just f o (e —e) = €, the
neutral element of Hom(1, A). This concludes the proof of the claim, since
shows that there is a unique map 1 — A.

More in general, the additive structure provides the following.

Proposition 2.1.6. Let C be an additive category and {A;};cr be a finite set
of objects in C, then the coproduct HAi exists and is naturally isomorphic
i€l
to the product HAj.
jeI
Proof. The proof is by induction, with base step provided by Remark 2.1.5.
The inductive step just consists of proving the binary case. Consider two

objects A and B and their binary product A x B, with projection maps
p:AxXxB—>Aandq: AXxB— B.

Ax B
k/f//// \\g\>l
A B

Let the morphism ¢ : A — A x B be induced as a product map by id: A — A
and 0 : A — B, aswellas j : B - A x B induced by 0 : B — A and
id: B — B. That is

id /4
P
A

N

B

; '
B\ O/ Ax B
q p
B A

id
q
B

X ¢=--
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Now, let’s prove that ¢ and j are coproduct morphisms. In order to do so,
consider any object C' with morphisms f : A — C and g : B — C, and
define explicitly the desired morphism as h = fp+gq: A x B — C. The
commutativity in

is given by the calculation

hi = (fp+gq)i = f (pi) +g (q¢i) = f
—~—

—~—
=idy =0

hj = (fp+99)j = f (i) +g (¢j) =g.
0 id
- s

This gives existence. In order to prove uniqueness, observe that ip + jq is a
morphism A x B — A x B such that p(ip+ jq) = pip+pjq = idap+0q = p,
as well as q(ip + jq) = qip + qjq¢ = q. Another map making this service
is the identity of A x B, hence by uniqueness in the property of product
1p + jq = id g« g. Now, if another map A’ is such that h'i = f and h'j = g,
then

h—h"=(h—h)idaxp = (h—h)(ip+ jq) = (fp+ g99) — (fp + 9q) = 0,
that is A’ = h. ]

Corollary 2.1.7. Let F': A — B be an additive functor between additive
categories with finite products. Then F preserves finite products, i.e. for
every X andY in A there is a canonical isomorphism F(X @Y ) = F(X)®
F(Y).

Proof. The coproduct X &Y comes with canonical inclusions

XaY
X Y
and, thanks to Proposition 2.1.6, with canonical projections

XY
/ \A
X Y
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It suffices to prove that FI(X & Y') satisfies the definition of F'(X) & F(Y).
The cocone structure is provided by

F(X®Y)
F(X) F(Y)

and whenever we consider two morphisms h : @ — F(X)and k: Q — F(Y),

the morphism
Fli)h+F(j)k:Q — F(XadY)

is such that

F(p)(F(i)h+ F(j)k) = F(pi) h + F(pj) k = h,
~—— ——
—id =0
and similarly F'(q)(F(i)h + F(j)k) = k.
Uniqueness is given because whenever f,g: Q — F(X @Y’) are morph-
isms such that, for example, F'(p)f = F(p)g, then F(i)F(p)f = F(i)F(p)g,
that is f = g. O

Example 2.1.8. The category Ab of abelian groups is additive, and, more
in general, is additive the category Mod(R) of modules over any commut-
ative unital ring R.

Example 2.1.9. The category of commutative unital rings ComRing is
not an additive category. One way to prove that is to observe that initial
and terminal objects, which are respectively Z and the zero ring {0}, does
not coincide.

Definition 2.1.10. Let C be a category with initial and terminal objects
respectively 0 and 1, and let f : A — B be a morphism in C. Define its
kernel, if it exists, as the pullback Ker(f) in the diagram

Ker(f) ——

.

Dually, define its cokernel, if it exists, as the pushout Coker(f) in the dia-
gram
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Usually, when no confusion arises, we talk about kernel and cokernel
to mean either the objects or the maps Ker(f) — A and B — Coker(f)
respectively.

Definition 2.1.11. For a morphism f : A — B with cokernel Coker(f), the
image of f is defined as the kernel, if it exists, of the map B — Coker(f).
Dually, the coimage is, if it exists, the cokernel of the kernel map.

Observe that since the pullback of any mono is mono, and pushout of
any epi is epi, a kernel is a subobject of the domain. On the other hand, we
can define the quotient object for any mono i : A — B as B/A = Coker(i).
This, when A = Im(f), fit the usual definition of cokernel of a linear map
as codomain modulo image.

Definition 2.1.12. An additive category A is called abelian if every morph-
ism f: A — B admits kernel and cokernel, and the natural map

Coim(f) — Im(f)

is an isomorphism.

Remark 2.1.13. The natural map Coim(f) — Im(f) is given by the fol-
lowing observations: one has pullback and pushout squares defining ker-
nel and cokernel (recall that 0=1 in any abelian category), that now ex-
ists by assumption. The definition of Ker(f) gives that the composition

Ker(f) oA i> B is zero, since the square commute passing through the
terminal object. Thus there exists unique a map Coker(i) — B making the
following commute

Ker(f) ——— A

| NS

0 —— Coker(i) ----- > B

Now, A RN R Coker(f) is zero by definition of the cokernel, thus by
commutativity of the previous diagram, is zero the the factorization A —
Coker(i) — B — Coker(f). Observe that the map A — Coker(i) is the
pushout of the epimorphism Ker(f) — 0, hence is epimorphism, from what
we deduce that the composition Coker(i) — B — Coker(f) is zero, and
hence defines a cone over the following pullback diagram:

Coker(i) ----- » Ker(m) —— 0

B ———— Coker(f)

So, in any abelian category, every morphism f : A — B factors as
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Ker(f) —— A B —"— Coker(f)

[N e

Coker(i) —— Ker()

Proposition 2.1.14. In any abelian category C, for a morphism f: A —
B, it holds

(i) f is monomorphism if and only if Ker(f) = 0. And dually, f is
epimorphism if and only if Coker(f) =0

(1i) f is isomorphism if and only if f is monomorphism and epimorphism.

Proof. (i): If f is mono, then the fact that Ker(f) — A — B is zero, implies
by definition that Ker(f) — A is zero, hence 0 works as kernel. Conversely,

!
if Ker(f) = 0, any pair of morphism C' = A — B such that compositions
g

coincide, gives a composition C f;g A — B which is zero, and pullback
property gives that f —¢g = 0 because factors through Ker(f) = 0. The dual
property is proved by reversing arrows.

(74): On one hand it’s certainly true in any category that isomorphisms
are both mono and epi. Conversely, suppose, by (i), to have Ker(f) =
Coker(f) = 0. The decomposition of f defining abelian categories is given

by
Coker(0 — X) = Ker(Y — 0)
but Coker(0 — X) = X and Ker(Y — 0) =Y. O

Remark 2.1.15. If A is an abelian category, every monomorphism f :
A — B is isomorphic to the kernel map of the cokernel 7 : B — Coker(f)
as objects in the category of objects over B. In particular A = Ker(B —
Coker(f)) (which is by definition Im(f)). This follows straightforward form
the observation that f : A — B being mono gives Ker(f) = 0, hence
A = Coker(0 — A) = Coker(i), and the isomorphism Coker(i) = Ker(7)
through which f factors in the diagram of Remark 2.1.13.
Dually, every epimorphism is a cokernel.

Lemma 2.1.16. Let A be an abelian category and

A+ B

C’L>D



a pullback square. Then, Ker(g) = Ker(h).

Proof. Consider Ker(g) and the morphisms Ker(g) < B and Ker(g) % c
inducing

Ker(g)
A B
|l
C — D

By commutativity of the pullback diagram, the morphism Ker(g) — A in-
duces a morphism ¢ : Ker(g) — Ker(h). Now, consider the object Ker(h) C
A and observe that by commutativity of the pullback square, k induces a
morphism Ker(h) — Ker(g), which is inverse to ¢. O

Proposition 2.1.17. Let A be an abelian category and

A—*F.pB

hi L"
c-—14p

a commutative diagram. Then, such a diagram is a pullback if and only
t —
0—4 8 pece=lp

is an exact sequence.
Dually, the square is a pushout if an only if the sequence

t —
A pacv=0p_ 9

1S exact.

Proof. Certainly, commutativity of the diagram implies that Im’(k,h) C
Ker(g, —f) and vice versa. Now, suppose the sequence to be exact, and
consider two morphisms

t _
A pace=Dp_ L

K : A — Band B/ : A — C such that gk’ = fh’. Then we have
Im‘(K', 0') C Ker(g, —f) = Im*(k, h). Therefore, since !(k,h) : A — B®C is
monomorphism, is induced a unique morphism P’ — P proving the square
to be pullback. On the other hand, if the square is a pullback, we need to
prove that Ker'(k,h) = 0 as well as Ker(g, —f) C Im’(k, h). The inclusion
defining the subobject Ker!(k,h) C A is the unique morphism induced by
the restrictions of k and h to Ker(k, h). However, we can observe that the
zero morphism works in making the diagram
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Ker®(k, h)
wlﬂ
h|Kert(k,h) ‘f[ T
h g
f

C —— D

to commute. It follows that Ker’(k, h) = 0, and hence that }k; is mono.

Now, consider the object Ker(g, — f) with its inclusion morphism Ker(g, —f) —
B @& C, which we can compose with the two projections in order to obtain
two morphisms

C L Ker(g,—f) > B

such that fp = gq. This induces a unique pullback morphism u : Ker(g, — f) —
A such that (i) U= <Z ) Therefore, the image of <Z> contains the do-

main of u, which is Ker(f, —g), which is what we needed in order to prove
exactness.
The dual statement is analogous. O

Remark 2.1.18. It follows from Proposition 2.1.17 that a necessary and
sufficient condition for a square diagram to be both a pullback and a pushout
is the exactness of the sequence
t(k,h —
0— A (—>)B®C(g—{)D—>O

In particular, not only the pullback of a monomorphism is a monomorph-
ism as in any category with pullbacks, but also the pushout of a monomorph-
ism is a monomorphism. In fact, for m mono in a pushout square

A—"+ B
ol
C — D

we find an exact sequence

)

tnm —
A" pac P p o

but since m is mono, this extend to a short exact sequence

(

tnm —
0— A %)B@C(M)D—m

Therefore, the square is also a pullback. Now, from Lemma 2.1.16, we get
that 0 = Ker(m) = Kerg, hence ¢ is a monomorphism.
Dually, the pullback of an epimorphism is epi in any abelian category.
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Definition 2.1.19. An additive functor F' : A — B between abelian cat-
egories is said to be exact if any short exact sequence 0 — A Lo
is such that

Fo=0— FAXL PR % PO — Fo=0
is again a (short) exact sequence.

The use of the decomposition for proving (i7) in Proposition 2.1.14 is
not just convenient, it’s necessary. In fact, there are additive (non-abelian)
categories in which a morphism that is mono and epi need not to be an
isomorphism:

Example 2.1.20. Consider the full subcategory of Ab whose objects are
torsion-free abelian groups, and any non-zero, morphism ¢ : Z — Z, say
¢(k) = nk for some fixed n € Z\ {0}. Then ¢ is certainly a monomorphism,

f
since whenever G is an abelian group with group morphisms G = Z such

g
that compositions with ¢ are the same, that is nf(k) = ng(k) € Z, and
since n # 0 we get f(k) = g(k) for any £ € G. The morphism ¢, however,
is also an epimorphism: consider in fact a torsion free abelian group G and

f
morphisms Z = G such that precompositions with ¢ are equal, that is for

g
all k € Z it holds f(nk) = g(nk). That means nf(k) = ng(k) € G, and
hence n(f(k) — g(k)) = 0. Since G is torsion free, that implies f(k) = g(k)
for every k € Z.

As any full subcategory of Ab closed by taking finite products, the
category of torsion-free abelian groups is additive. However, it’s not abelian,
since we can take ¢ to be non-isomorphism, but epi and mono.

Some important abelian categories are the following.

Example 2.1.21. The category Ab of abelian groups is abelian. It admits
finite products, the additive structure is clearly given by (f+g¢)(a) = f(a)+
g(a) for f,g € Hom(A, B). Composition is bilinear. Kernel and cokernel of a
morphism f : A — B certainly exists, and the well known First Isomorphism
Theorem A/ Ker(f) = Im(f) is another way of stating the isomorphisms

Coker(Ker(f) — A) = Ker(B — Coker(f)).

More in general, the category Mod(R) of R-modules, as well as its full
subcategory of finitely generated R-modules, is abelian for any commutative
unital ring R. Just as for abelian groups, the additive structure is obvious
as well as the existence of kernel and cokernel of any morphism, and again
the First Isomorphism Theorem for modules concludes.
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Example 2.1.22. The category Psh(X) of presheaves of abelian groups on
a topological space X is abelian. Recall from Remark 1.1.8 in the context
of sheaves of abelian groups, that we can compute kernels and cokernels
pointwise, just as any limit and colimit. Moreover, the isomorphisms of
presheaves are just the open-wise isomorphisms, therefore the proof is an
immediate consequence of the case of abelian groups.

Example 2.1.23. The category Sh(X) of sheaves of abelian groups on a
topological space X is abelian. Remember that for a morphism ¢ : F — G
in Sh(X), the sheaf Ker(¢) is computed as in presheaves, just as any limit.
That is, the presheaf U +— Ker(¢y) is actually a sheaf. However, to deal
with cokernels, and in general with colimits, requires the sheafification of
the corresponding presheaf. That is, the sheaf Coker(¢) is the sheafification
of the presheaf associating U — Coker(¢r).

Consider then a morphism ¢ : F' — G, and let’s prove that the morphism
of sheaves Coker(Ker(¢) - F) — Ker(G = Coker(¢)) is an isomorphism.
This can be done by checking on stalks.

Since colimits commutes with colimits, the stalk Coker(i), is the same
as Coker (i), where i, : Ker(¢), — Fy. Kernels also, being finite limits,
commutes with stalks which are filtered colimits. Therefore, since Ab is
abelian

Coker(iy) = Ker(G, — Coker(¢,)) = Ker(G5 — Coker(¢),) = Ker(my)
which is isomorphic to Ker(w), as desired.

Example 2.1.24. On a ringed space (X, Ox) the category Mod(Ox) of
sheaves of modules is abelian. The same argument as above works, and the
result follows since Mod(R) is abelian.

Example 2.1.25. It’s a well established result that on any scheme X, both
the categories of quasi-coherent sheaves QCoh(X) and its full subcategory
Coh(X) of coherent sheaves are abelian categories.

Here there are some important non-examples.

Example 2.1.26. For a fixed scheme X the category of vector bundles
over X, i.e. the category of locally free Ox-modules, is not abelian. More
precisely, if we look at the vector bundles as a full subcategory of Mod(QOx),
then kernel and the cokernel of morphisms need not to be vector bundles.

An easy example happens on the affine line Spec(k[z]) for, let’s say,
k = C. Consider the vector bundles Ox, the structure sheaf, associated
to the module k[z], and the vector bundle F' associated to the free module
xk[xz]. This is a subsheaf of the structure sheaf, in the sense that it comes
with a monomorphism

m:F — O X
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which is of course given because on any open set D(f) = {p € Spec(k[z]), f ¢
p}, the module F(D(f)) = (zk[x])s is a submodule of (k[z]); = Ox(D(f)).
The cokernel of this morphism can be computed by looking at its stalks. If
() # p € Spec(k[z]), then x ¢ p, therefore k[z], = (zk[z]),, and the stalk
at p of the quotient is

Ox p/Fp = klzlp/xk[z], = 0.
If we take the stalk at (x), we find

klx]()/ (2k[2]) @) = kl]@) /2 (k] @) = k.

Therefore the sheaf of modules Coker(m) is the skyscraper sheaf centered
at 0 with value k. This is not a vector bundle because k is not a free
k[x](z)-module.

However, observe that this example provides an instance of skyscraper
sheaf of modules which is quasi-coherent, because quasi-coherent modules
do form an abelian category.

Example 2.1.27. The category Gr of groups is not abelian. In fact, it’s
not even additive, since no natural structure of commutative operation can
be given to the Hom-sets. However, a nice way to prove that is to consider
a non abelian group G with a subgroup H which which is not normal, and
hence the inclusion H — G cannot be a kernel, contradicting Remark 2.1.15.

Remark 2.1.28. The category of vector bundles over a ringed space (X, Ox)
is additive, that is because we can look at it as the full subcategory of locally
free O x-modules inside of the category of all Ox-modules. This subcategory
admits finite direct sums, which are products as well as coproducts, by the
very definition of locally free Ox-module, and clearly is induced the struc-
ture of abelian group on the Hom-sets by fullness.

Moreover, by the same argument, is additive also the category of finite
rank vector bundles over a ringed space (X, Ox).

The non-example 2.1.26, as well as 2.1.20, shows that being abelian is a
stronger requirement than being additive. The latter shows, moreover, that
it is also stronger than being additive and having kernel and cokernel of any
morphism.

2.2 The homotopy category of an abelian category

One of the most convincing arguments for the introduction of derived
categories is that, as we are going to see, they lead to identify one object in
some abelian category with its resolutions. In order to deal with a category
where this makes sense, we need to enlarge the abelian category to the
category of its complexes. The notion of homotopy category is not really
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necessary in order to define what the derived category is, but it’s useful in
order to describe its morphisms.

Definition 2.2.1. Let A be an abelian category. The category of complexes
Kom(A) is the category whose objects A" are chain complexes in A, i.e.
sequences of objects (A%);cz and morphisms d* : A* — A! with d'd~' =0
for all i € Z. A morphism A" — B’ in Kom(A) is a family of morphisms
fi: A* = B' making the diagram

Ai—l Ai Ai+1 .
b
Bi—1 Bi B+l ...

to commute.

Remark 2.2.2. The category of complexes of an abelian category A is
abelian. (Co)kernels are pointwise the (co)kernels in A.

Remark 2.2.3. Any abelian category A is a full subcategory of Kom(A)
by mapping an object A to the complex which is A in degree 0 and zero
everywhere else.

Remark 2.2.4. For any integer k is defined the cohomology functor

H* : Kom(A) —» A
by A"+ Coker(Im(d*~!) — Ker(d¥)). For a morphism f : A" — B, one
has the pushout diagram

k
Im(d%!) —— Ker(d¥) —— Ker(d%) —— HNB)

T

0 — HFA)

where by f* we mean actually the restriction of f* to Ker(d¥), which have
in fact image contained in Ker(d%) by definition of chain morphism. The
first row composition gives in fact the zero morphism, because by defini-
tion H*(B') is such that the morphism Im(d% ') — Ker(d%) — H*(B') is
zero, and the composite Im(d% ') — Ker(d%) — Ker(d¥) in the first row
factors through Im(al']“;l)7 again by commutativity in the definition of chain
morphisms.

Lemma 2.2.5. Let A be an abelian category. Then for any integer k the
cohomology functor H* is additive.

Proof. Let f,g: X — Y be morphisms in Kom(A). By definition, H*(f+g)
is the unique morphism H*X — H*Y such that the diagram
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k k T
Im(dy ) —— Ker(d) 7% Ker(df) " HYY

00— 5 Hkx

commutes. Thus it suffices to prove that H*(f)+ H*(g) works as well. That
is by the easy calculation

(H*f + Hrg)rx = H* frx + Hegnx = ny f* + 7y g* = 7y (5 + g").
Il

Definition 2.2.6. A complex A" in Kom(A) is said to be acyclic whether
its cohomology H*(A") is zero for every integer k.

A fundamental characterization of exact functors is provided by the no-
tion of acyclic complex in the category of complexes:

Proposition 2.2.7. An additive functor F : A — B between abelian cat-
egories is exact if an only if its extension KomF : Kom(A) — Kom(B)
preserves acyclic objects.

Proof. On one hand, any short exact sequence 0 - A - B — C — 0 is
surely acyclic, thus if F' preserves acyclic, 0 - FA — FB — FC — 0 will
be exact. On the other hand consider a complex A" in Kom(A), and let’s
focus on a degree k:

k—1 k
Ak—1 d Ak d AR+l

Consider then the commutative diagram

dk—1

Ak-1 L d* Ak+1

\/

Im(d*1) = Ker(d¥)

/

0
containing a short exact sequence, which remains exact if we apply F' to the
whole diagram. Thus, let’s compute

Ker(Fd*) = Ker(FA* — FImd* — FA*) = Ker(FA* — FImd¥)
=Im(FImd* ! = FA*) = Im(FA*! - FImd* ' — FA®) = Im(Fd*1).
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One of the main results on abelian categories, allowing to generate long
exact cohomology sequences, is the following.

Theorem 2.2.8 (Snake Lemma). Let A be an abelian category and
0—a Lip Yo o
be a short exact sequence of objects in Kom(A). Then, there exists a family
of morphisms §¥ : H*(C") — H**1(A") indexed by k € Z such that
k k k+1
S R A " mh ey T R ey 8 g an LY gy S
is a long exact sequence.
Proof. See any book in homological algebra, e.g. [Lan02] II1.9. O

Here it comes a particularly central notion. Roughly speaking, the de-
rived category will be such that the morphisms that we are going to consider
become isomorphism, and that happens in a universal way that will be later
precised.

Definition 2.2.9. A morphism f : A — B’ in Kom(A) is said to be
a quasi-isomorphism (or giso, for short) if for every i € Z the morphism
Hi(f): H(A) — H(B’) is an isomorphism.

Proposition 2.2.10. Let A be an abelian category and A an object. Any
resolutions of an object A, that is any exact sequence

o — R — Ry— A —0
1S a quasi-isomorphism.

Proof. First observe that Remark 2.2.3 makes sense of the statement, be-
cause we actually have a morphism of complexes R* — A’

Ry —— Ry > 0
I
> 0 y A > 0

in which all cohomologies are 0 but the one in degree zero. Clearly the iso-
morphism on cohomology for 7 # 0 is induced by the only existing morphism
in these degrees. In order to see that f induces isomorphism on cohomology
at the zero degree, look at the canonical decomposition of f into
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f

\ / ’

Coker(Ker(f) — Ro) = Ker(A — 0)

and observe that that by exactness Coker(Ker(f) — Rp) = Coker(Im(r) —
Ker(Ry — 0)) = HO(R’). This isomorphism, composed with the one
provided by the decomposition, is an isomorphism between the 0-th co-
homologies (by Ker(A — 0) 2 A = HO(A')), and fits into

m(Rl — Ro) )

| l /

0 — H°R

By the commutativity in the canonical decomposition of f, this last diagram

commutes as well, and hence by uniqueness the isomorphism H°(R’) —
HO(A") is HO(f). O

Example 2.2.11. Quasi-isomorphism are not invertible. In fact, in the
category of abelian groups, between the complex

X= 02252 —0— -
and the complex
Y=—50—0—52Z/2—0—---

there exists a quasi-morphism X — Y given by the unique non-trivial
morphism Z — Z/2, but no morphism at all Y — X.

Remark 2.2.12. As we will see later on based on the previous example, it
could happens that two complexes have the same cohomology in each degree
but no quasi-isomorphism exists between them, neither way.

Definition 2.2.13. Two morphisms of complexes f,g : X — Y are called
homotopically equivalent, in symbols f ~ g, if there exists a family of morph-
ism h': X* — Y~ for i € Z, such that

The homotopy category K(A) of an abelian category A is the category
whose objects are the same as in Kom(A), and morphisms between two
complexes X and Y are considered up to homotopical equivalence, that is
HomK(A) (X> Y) = HomKom(A) (Xa Y)/ ~

50



Remark 2.2.14. The previous definition makes sense once proved that
homotopical equivalence is, as the name suggests, an equivalence relation.
Certainly f ~ f because h’ = 0 for every i works. For f ~ g, by a family
(h%); of morphisms, to consider (—h?); gives the desired family of morphisms
showing g ~ f. Eventually, for fo ~ fi by (h); and fi ~ fa by (ht);,
transitivity is proved taking (h} + hj).

Remark 2.2.15. If f: X - Y and ¢g: Y — X are morphisms in Kom(A)
such that gf ~ idx and fg ~ idy then f is homotopical inverse of g, as
they are in fact inverses of each other in K(A).

Proposition 2.2.16. Let f,g: X — Y be morphisms in Kom(A). If f ~ g,
then H*(f) = H*(g) for every k € Z.

Proof. Let’s prove HE(f — g) = 0, the result follows since H* is additive
functor, Lemma 2.2.5. Recall that cohomology is defined on a morphisms f
as the dashed pushout map in the diagram

k
Im(dk ) —— Ker(dh) —— Ker(dh) —— HH(Y)

0 — HNX)

where as usual we mean by f* the restriction
k kK
Kerdy — X" — Y

Thus, in order to prove that H¥(f — g) = 0 one can prove to be zero the
map inducing it, that is

Ker(dx*) =4 Ker(dy*) —s H*(Y),

and since 0 will works, by uniqueness it has to be H*(f — g) = 0.
k_  k
Note that the composite Ker(d%) — X* 7224 ¥k is the same arrow as

k—1pk
Ker(dx®) — Xx* 4 Y, and that is because f* —g* = d*='hk 4-pF+1gk,
but d* is clearly zero on its kernel.
Thus the diagram

Ker(d¥,

)
f’“V \

Ker(d%) —— X* Im(d¥1) —2 H*(Y)

Py

kal
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is commutative, and chasing it shows that
Ker(dx*) 1% Ker(dy*) — H*(Y)
is in fact zero. O

Corollary 2.2.17. Let X and Y be complexes in Kom(A) and f : X —
Y, g:Y — X be homotopical inverses of each other. Then f and g are

quasi-isomorphism. More precisely, for every k € 7 the inverse of HX(f) is
H*(f)~" = H*(9).

Proof. It’s basically Lemma 2.2.16 and the fact that H* is a functor:
HMg)HM(f) = H*(9f) = HM(idx) = iy,

and similarly for the reverse composition. O

2.3 Translations and Mapping cones

Let’s introduce the objects that will give to the homotopy category, as
well as to the derived category of an abelian category, the necessary structure
in order to develop some homological algebra.

Definition 2.3.1. Let A be an abelian category, X an object in Kom(A)
and n an integer number. The translation by n of X is a complex denoted
by X[n] and defined in degree i to be X [n]t = X" for every integer 4, and
with differential dé{[n] to be (—1)"d¥™.

More in general, there is a translation functor [n], defined on a morphism

f:X =Y tobe f[n]' = fi+m.

Definition 2.3.2. Let f: X — Y be a morphism of complexes in Kom(A),
for an abelian category A. The mapping cone of f is the complex C(f)
defined in each degree to be C*(f) = X**1 @ Y* and with differentials
d¥: XL oYk o XFP2 @ YR given by

go (Ca o
- _fk+1 d];/

acting to the left.

Remark 2.3.3. Many would agree that signs are troublesome. However,
observe that one need to consider some minus signs defining differentials in
the mapping cone of a morphism in order to turn it into an actual chain

complex.
p_(—d 0 AR R 0
“\—f o) " \fd—ar )"
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The following result, moreover, also explain the choice of (—1)" in the defin-
ition of the differentials of the translation [n]. In fact, we are going to see
that there is, for any morphism of complexes f : X — Y, a canonical pro-
jection morphism C(f) — X[1], which wouldn’t make the squares commute
if differentials in X [1] weren’t defined as such.

Lemma 2.3.4. Let A be an abelian category, and f : X —'Y a morphism
in Kom(A). Then there is a short exact sequence of complexes

0—Y —C(f) — X[1] — 0

Proof. Non-trivial morphisms in each degree k are just the inclusion Y* —
X1 @ Y* and the projection X 1@ Y* — X*+1 Let’s prove them to define
morphisms of chain complexes. Commutativity, for every k, of squares

Yk—l SN Xk EBYk_l SN Xk:—l[l]
4| et |
YE —— Xkl gyh —— XF[1]

is given just checking that

JE-1 0 _(=d% 0 0 (0N [0 JE-1
CH \idyrr ) — \=fF d&1) \idyrt ) — \d571) — \idys ) Y

and

gk
(id yks1 0)<_‘j},§ d§_1>:(—d’§( 0) = —dk (idxx 0).

O]

Mapping cones, which will be needed in order to define the triangulated
structure both of the homotopy and the derived category of an abelian
category, are useful in order to characterize quasi-isomorphisms.

Proposition 2.3.5. Let A be an abelian category. A morphism f: X —Y
in Kom(A) is a quasi-isomorphism if and only if its mapping cone is an
acyclic complex.

Proof. Just consider, using the Snake Lemma, the cohomology long exact
sequence associated to the short exact sequence

0—Y —C(f) — X[1] —0
of Lemma 2.3.4. That is
— H*1O(f) = H'X[1] — H*Y — H*C(f) — H*X[1] —
where exactness tells us that H*X = H*"1X[1] — H*Y is isomorphism for

every k if and only if H*C(f) is zero for every k. O
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2.4 Axioms of triangulated categories

The notion of triangulated category is introduced abstracting the prop-
erties of the homotopy category of an abelian category. The homotopy cat-
egory K(A) of an abelian category A, as well as the derived category D(A),
will happen in fact to be triangulated, and triangles are the data used as a
replacement for exact sequences in order to develop the homological algebra
of derived categories, which are almost never abelian.

Definition 2.4.1. Let C be a category with an endofunctor 7' : C — C.
A triangle in C is a tuple (X,Y, Z,u,v,w) of objects and morphisms in C
giving a sequence
X5y 52725 7X)
Often, for X and f an object and a morphism in C, the object T'(X)

and the morphism 7'(f) are respectively denoted by X[1] and f[1], as well
as TF(X) and T*(f) are denoted by X[k] and f[k].

Remark 2.4.2. There is a notion of morphism between triangles which is,
for triangles A - B — C — A[l] and A’ - B’ — C" — A'[1], a triple of
morphism (f, g, h) providing a commutative diagram

A B C All]
T
A B c’ A1)

A morphism between two triangles is isomorphism if all of the three f.g
and h are in C. We can take this as a definition or introduce in a obvious
way a category whose objects are triangles of a triangulated category and
check that this actually happens, the same way it happens for complexes.

Definition 2.4.3. A triangulated category is an additive category together
with an endofunctor 7' : C — C, which is called shift functor and required
to be an additive equivalence, and a class of triangles called distinguished
triangles satisfying the axioms T1-T4 below.

Axiom T1:

(i) Any triangle of the form
A4 —0—TA
is distinguished
(74) Any triangle isomorphic to a distinguished triangle is distinguished

(731) For any morphism f : A — B in C there exist a distinguished triangle

A B o TA
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Axiom T2: Any triangle A — B — C — T'A is distinguished if and
only if the rotated triangle

B-%C-“%TATYTB
is distinguished.

Axiom T3: For any commutative pair of triangles A - B — C — TA,
A" - B' - C" — T A" and morphisms f and g making

A B C Al]
b b
A B c’ A1)

commutes, there exists a (not necessarily unique) morphism h : C — C’
such that the completed diagram

A B C Al]
bk
A B c’ A1)

is commutative.
Axiom T4: Given three distinguished triangles of the form

AL B D 1A
B0 X p,— 1B

A 0y ps A,

there is a triangle
Dy — D3 — Dy — T D,

such that the following diagram commutes:

A o ¢ b Dy mmmmmmeeeeeeee y TD,
A
x / XA /’/ \ A
B Dy TB
A
D, TA

Remark 2.4.4. Axioms T1-T3 seems reasonable, they guarantee to have
enough triangles to work with and ensure the class of triangles to be closed
under isomorphism and “rotation”: more precisely, axiom T2 allows to think
triangles as infinitely long helices
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\C 1] C[2]
///’

A[2]

such that any three consecutive vertices form a triangle. Axiom T3 give a
sufficient condition to the existence of morphisms between these helices.

However, the meaning of T4 may look quite unclear. What goes on here
is that, as we will see, a distinguished triangle A — B — D — T A of com-
plexes in the derived category D(A) of an abelian category A, arises exactly
when we have a short exact sequence 0 - A - B — D — 0 in Kom(A)
(see Proposition 3.3.4). Hence, if we write D as the quotient of the previous
ones, that is D; & B/A, Dy = C/B and D3 = C/A, the requirement of
axiom T4 boils down to the statement that C/B = (C/A)/(B/A). This is
known is module theory as the Third Isomorphism Theorem.

Observe then, that this set of axiom is not independent. In fact, axiom
T3 is only stated because it’s frequent to apply it on its own, but follows
actually from the other ones.

Proposition 2.4.5. Let C be an additive category equipped with o class of
distinguished triangles and a shift functor satisfying axioms T1 and T4,
then it also satisfies axiom T3.

Proof. Consider two distinguished triangles A = B = C' = TA and A’ 5
B %o A together with morphisms f : A — A" and g : B — B’
making the following diagram to commute

A"+ B "5 C "5 TA
i b
A/

! / !
“* s B Y0 X TA

Consider now, thanks to axiom T1, the completion to a distinguished tri-
angle of the morphism gu = v'f : A — B’, in order to get a triangle

AT g ko x dra

Also, complete the two morphisms f and g to a pair of distinguished triangles
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A—" s B "2 TA
! g |rs
A B s o s TA

Dy Dy

TA TB

and use axiom T4 in order to get triangles
- x -5 D,—TC

D, x o' — TD,

from the commutative diagrams

\ 2 \ N
N \TAA

and

A u'f B’ Y O > T Dq
A X
s 7

D —TA

The two triangles so obtained suggest to consider t's : C — C” as morphism
proving T3, and the two diagrams tell us that such a morphism works,
because t'sv = t'kg = v'g, as well as w't's = (T'f)js = (T'f)w, that is, the
diagram

A" B YO - ,TA
lf lg lt’s le
A C

B Y ¢ M TA

is commutative. O
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It is useful to define an environment in which to consider triangulated
categories and morphisms between them. In fact, there is a category TrCat
of triangulated categories as described below.

Definition 2.4.6. An additive functor F' : C — C’ between triangulated
categories with shift functors 7" and T is said to be a triangulated functor
if it commutes with the shifts, i.e. there is a natural isomorphism 7" o F' =
F oT, and map distinguished triangles to distinguished triangles, i.e. for
any distinguished triangle A — B — C' — T A, the triangle

FA—FB—FC—FTA=TFA

is a distinguished triangle.

TrCat is then the subcategory of Cat whose objects are triangulated
categories and morphisms between them are triangulated functors.

Definition 2.4.7. A triangulated subcategory B C A of a triangulated
category A is a subcategory with a structure of triangulated category and
such that the inclusion functor ¢ : B — A is triangulated.

Let’s now state and prove some of the main properties of triangulated
categories, in order first of all to examine how triangles are related to the
notion of exact sequence. We start with an easy observation.

Remark 2.4.8. In any triangle A — B — C — TA, the composition
A — C'is zero. That is because T1 provides the triangle A - A — 0 — T A,
and by T3 there is a morphism 0 — C such that the following diagram
commute

A—45 4 0 TA
bl
A——=B——C TA

Hence gf = 0.

Lemma 2.4.9. Let A - B — C — TA be a distinguished triangle in a
triangulated category A. Then for any object D in A the sequences obtained
applying the Hom functors to A - B — C

Hom(C, D) — Hom(B, D) — Hom(A, D)
Hom(D, A) — Hom(D, B) — Hom(D, C)

are exact.
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Proof. The fact that the image of Hom(C, D) — Hom(B, D) is contained
in the kernel of Hom(B, D) — Hom(A, D) is given by Remark 2.4.8. Con-
versely, for f : B — D to be in the kernel of Hom(B, D) — Hom(A, D)
means that precomposed with A — B is the zero morphism. Then consider
the triangle D — D — 0 — T'D provided by T1, and its rotation, distin-
guished by T2, 0 = D — D — 0, where clearly 70 = 0 by additivity. The
morphism f is hence such that the diagram

A B C TA
AT
0 D D 0

commutes. Axiom T3 provides then a morphism C — D such that pre-
composed with B — C gives f, that is f is in the image of Hom(C, D) —
Hom(B, D).

The exactness of the other sequence is analogous: the first inclusion
is still given by Remark 2.4.8, and conversely one consider a morphisms
f : D — B which is zero ones composed with B — C. Then there is a
commutative diagram

D4, D 0 TD
]
A B C TA

that gives, rotating by axiom T2 and using T3, a morphism D — A lifting
f to B, proving that f is in the image of Hom(D, A) — Hom(D, B). O

Remark 2.4.10. Thanks to axiom T2, if A - B — C — TA is a distin-
guished triangle and D any object, Lemma 2.4.9 provide actually long exact
sequences induced by the Hom functors.

Proposition 2.4.11. Let A i) B C — TA be a distinguished triangle in
a triangulated category A such that g is a split monomorphism, then f =0

Proof. Consider, for any D in A, the exact sequence
Hom(D, A) — Hom(D, B) — Hom(D, C)

and observe that whenever hy, ho : D — B are such that gh; = gho, we can
take the left inverse ¢’ of g and find that hy = ¢’ghi1 = ¢’ghs = ho. Therefore,
the morphism Hom(D, g) : Hom(D, B) — Hom(D, C) is injective, and hence
by exactness Hom(D, f) = 0. Since D was any, we can take it to be A and
observe that f = fidqa = 0. O

The following result illustrates a phenomenon related to distinguished
triangles which we will encounter later on.
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Lemma 2.4.12. Let the following be a morphism of distinguished triangles:

A B C TA
bbb
A B’ c’ TA

Then, if two of the morphisms f, g and h are isomorphism, so is the third
one.

Proof. Note, first of all, that by axiom T2 one can prove the statement
assuming a particular choice of which among the three are the isomorphisms.
So, suppose f and g to be isomorphisms and consider, for any object D, the
long exact sequence from Remark 2.4.10

Hom(D, A) — Hom(D, B) — Hom(D,C) — Hom(D,TA) — Hom(D,TB)

Out of the terms of each degree but the mid one, are defined isomorphisms
given by Hom(D, f), Hom(D, g) in the first two degrees, and Hom(D, T f),
Hom(D,Tg) in the last two. The mid morphism is Hom(D, h) : Hom(D, B) —
Hom(D, B'), and the Five Lemma ensures that this also is an isomorphism.
Now, this diagram is natural in D, hence we get an isomorphism of functors
Hom(—, k) : Hom(—, B) — Hom(—, B’), and from the Yoneda Lemma, in
particular Corollary 1.1.6, we get that h : B — B’ is an isomorphism. O

A similar argument is carried in order to prove the following result.

/

Proposition 2.4.13. Let A% B 5 C 5 TA and A’ “wB Yoy
be two distinguished triangles. Then, their direct sum

Ao A" BeB S cac ™ TAeTA =T(A® A

s a distinguished triangle.

u 0

Proof. Consider the morphism u @ v = < 0 o

> A A - Be B and

complete it to a distinguished triangle
ApA —BoB —Z—T(Aa A)

Observe that by axiom T3 there is a morphisms of distinguished triangles
induced by inclusions
A B C TA

l [ b [

ApA —— BB —— 7 — > TAGTA

as well as
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[ |

Ap A —— Bp B’ Z TA®TA

Morphisms ¢, ¢’ give rise to the morphism ¢ : C & C’ — Z, which we claim
to be an isomorphism. In order to see that, it suffices to consider the long
exact sequences induced by representable functors Hom(D, —), and observe
that the exactness of both

-+ — Hom(D, B) - Hom(D,C) — Hom(D,TA) — ---
and
--+ = Hom(D, B") = Hom(D,C") — Hom(D,TA") — -+

implies, since both the Hom and cohomology functors preserve finite direct
sums, the exactness of

-+ — Hom(D, B® B') — Hom(D,C & C') — Hom(D, T(A® A")) — -

Hence, the morphism induced by the identities and ¢ : C @ C' — Z gives a
diagram with exact rows

Hom(D,B ® B') —— Hom(D,C & C') —— Hom(D,T(A® A'))

| | |

Hom(D, B ® B') —— Hom(D, Z) —— Hom(D,T(A&® A’))

which allows to conclude by the Five Lemma, that Hom(—,C @& C') =
Hom(—, Z), and therefore C' @ C" = Z via 1 by the Yoneda Lemma. This
concludes because triangles isomorphic to distinguished triangles are them-
selves distinguished. d

Lemma 2.4.14. In any triangulated category, if a distinguished triangle

A4 C — TA is such that C — TA is zero, then C' decomposes as
C=AdB.

Proof. The long exact sequence obtained applying Hom(C, —) gives in fact
a short exact sequence

0 = Hom(C, A) 5 Hom(C, B) % Hom(C,C) — 0

since both the morphisms Hom(C, C[—1]) — Hom(C, A) and Hom(C,C) —
Hom(C, A[1]) are (precomposition with) zero by hypothesis. By exactness
at Hom(C, C), the map g : k — gk is surjective, for any map h : C — C
we find a map k : B — C such that gk = h, hence we get a right inverse
5 : Hom(C,C) — Hom(C, B) mapping h — k. This implies by Splitting
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Lemma that Hom(C, B) = Hom(C, A) & Hom(C,C). Now set s = 5(1¢) :
C — B, then for every object FE the exact sequence

0 — Hom(E, A) - Hom(E, B) — Hom(E,C) — 0

also splits by the right inverse § : Hom(E, C') — Hom(F, B) mapping h —
sh. Moreover, everything is natural in E, and hence the isomorphism of
functors

Hom(—,A & C) = Hom(—, A) ® Hom(—C) = Hom(—, B)
gives, by Yoneda Lemma, the desired decomposition A @ B = C. 0

Remark 2.4.15. The zero object Op in any triangulated subcategory B C
A is isomorphic to the zero object 0o of A. Consider in fact, by axiom T1,
for an object B in B the distinguished triangle B 4B 0p — T'B, then
look at the distinguished triangle in A given by i(B) q i(B) — i(0B) —
i(TB) = Ti(B). The distinguished triangle in A given by axiom T1 again,
i(B) — i(B) — 0aA — Ti(B), together with Lemma 2.4.12, gives then
i(0B) = 0A.

The structure of triangulated category of a full triangulated subcategory
B C A is uniquely determined by the structure of triangulated category of
A. More precisely one has the following result, whose proof is quite trivial,
but it’s useful to keep it in mind.

Proposition 2.4.16. Let B C A be a full subcategory of a triangulated cat-
egory A. Then B is a triangulated subcategory if and only if B is invariant
under the shift functor and any triangle A — B — C — TA in A such that
A and B are objects in B, is such that C' is isomorphic to an object in B.

Proof. On one direction, assume the full subcategory to be triangulated with
shift functor 7”. First of all, given A — B — C — T'A a triangle in A with
A, B in B, by fullness also A — B is a morphism in B. Then use axiom
T1 for B in order to complete it to a triangle A — B — C' — T'A, and
apply to it the inclusion triangulated functor i : B — A, finding again a
distinguished triangle. Now, shifts commute with inclusion, that is TA =
Ti(A) =i(T"A) = T' A, hence axiom T3 for A with Lemma 2.4.12 provides
the commutative diagram

A B C TA
lid lid i = lid
A B c’ TA

and the desired isomorphism C' — C’. Being invariant under the shift
functor is implicit in the definition of triangulated subcategory: if B is an
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object in B, then T"B certainly is, and as before, since inclusion functor is
triangulated 7B = T'B.

Conversely, the triangulated structure on the subcategory is defined in-
ducing the shift functor, which requires to be invariant under its action, and
declaring a triangle A — B — C' — T'A in B to be distinguished whether it
is distinguished as a triangle in A after applying the inclusion functor. With
this class of triangles, axioms of triangulated categories obviously hold true
for the full subcategory B. O

Remark 2.4.17. From now on, we will assume any triangulated subcat-
egory B C A to be strictly full, i.e. such that whenever an object A in A is
isomorphic to an object B in B, then A is actually in B.

2.5 The homotopy category is triangulated

At this point, one can imagine that we will have triangulated categories
whose objects are complexes, with shift functors the actual shifts of the com-
plexes one step towards the left. Triangles will be given using the mapping
cone construction.

Definition 2.5.1. Let A be an abelian category. For the category K(A)
together with its shift functor 7' = [1], a triangle
X —Y — 7 — X'[1]

is said to be ezact whether it’s isomorphic (through morphisms in K(A)) to
a triangle of the form

AL o — A

Example 2.5.2. This choice of triangles makes sense also for the category
of complexes Kom(A), however, it’s easily seen that they cannot match
the requirements for the distinguished triangles of a triangulated category,
because for any non-trivial complex X, the triangle

XM x o0 TXx

cannot be isomorphic to a triangle of the form

A LB o) —Ta

because it should certainly be A, B 2 0, and the cone of any morphism
A — B would not be isomorphic, in Kom(A), to zero.

More in general, one can prove (see [GMO02], IV.1 Exercise 1), than any
triangulated category which is also abelian, has to be semisimple, namely
such that any short exact sequence splits, and this is not the case, e.g. for
Kom(Ab).
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Remark 2.5.3. Observe that for every X in K(A), the complex C(idx) is
homotopically equivalent to 0. In fact, there is an homotopy between the
morphisms

O,id : C(idx) — C(idx)
given by the morphisms (h?) in

—— L) L () s CHI(f) —— -

I ey

(f) == CU(f) — CF(f) — -

i (0 —idx:
Wi = (0 d )
In fact, the morphism d*~'h’ + h't1d’ is computed as
—dy 0 0 —idy) | (0 —idyin —dit 0
—idy: di')\0 0 0 0 —idyitr dy)

0 dy L (idxin —diy\ _ (idx 00N L
0 idys 0 0 ) \ 0 idyi) —CUr

Also the rest of the axioms of triangulated categories can be proven for
the homotopy category. More precisely, the following theorem holds true.

defined by

Theorem 2.5.4. Let A be an abelian category. The category K(A) with its
shift functor and its class of exact triangles as distinguished triangles is a
triangulated category.

Proof. See [GM02] IV.1 10-14. O

Remark 2.5.5. Observe the fact, implicitly proved yet in Lemma 2.3.4
and Proposition 2.3.5, that a distinguished triangle A - B - C — TA in
K(A) gives rise, thanks to the Snake Lemma, to a long exact sequence in
cohomology

.= H7YC) - H(A) - H(B) - H(C) - HT'(A) — - -
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Chapter 3

Derived categories

The idea is the following: in order to define the derived category of
an abelian category A we do not need the homotopy category K(A), and
in a way that will be more precise using the notion of localization, that
is because as a result of passing from the category of complexes to the
homotopy category we get that homotopical inverses become isomorphisms,
while the operation of constructing the derived category from the category of
complexes consist of turn quasi-isomorphisms into isomorphisms. Corollary
2.2.17 tells us, however, that homotopically invertible morphisms are quasi-
isomorphisms yet.

Why, then, we went through the previous discussion of homotopy cat-
egories? Because the “abstract” definition of derived category does not
provide any tool aimed to compute and understand how the morphisms
work in there, and the homotopy category is a natural context in order to
do so.

3.1 Localization of morphisms

The following is a first, naive but very general, definition of localization.

Definition 3.1.1. Let C be a category and .S be a class of morphisms in C,
and introduce a variable symbol x, for every s in S. The localization at S
of C, denoted by C[S~!] is a category defined to have as objects the same
objects as C.

In order to define morphisms, consider an intermediate step in which we
let, for every objects X and Y, an arrow x5 : X — Y forevery s: Y — X in
S, as well as all the compositions with these new morphisms. A morphism
X — Y in C[S™!] is then an equivalence class of morphisms X — Y in this
intermediate category under the equivalence relation, for every A and B in
C,

TS ~idy, sxs ~idp
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for every s : A — Bin S.

Remark 3.1.2. Any localization comes together with a localization functor
Q:A — A[ST]
mapping any object to itself and any morphism to its class.

This category defined as such, has the advantage to provide an easy proof
of the existential result for derived categories, defined so in term of their
universal property. However, it has the following main problem: denoting
by s~! the morphism z,, we do not know how to compute composition of
morphisms using desirable algebraic manipulations. As an example, for the
composition fsfl gsy 1 we’re not able to find a common denominator s such
that it becomes equal to f'g’s™!.

Theorem 3.1.3. Let C be a category and S a class of morphisms in C. If
F : C— D is a functor such that F(s) is isomorphism in D for every s in
S, then there erists a unique functor F': C[S™'] — D such that F'Q = F

i lF,

Proof. The functor F’ is defined on objects to be F'(X) = F(X) for every
X in C. If [f] is a morphism of C[S™!], first suppose it to be the class of
a morphism which is actually in C, which we still call f. In this case just
set F'([f]) = F(f). If [f] is of the form [z4], then set F'([f]) = F(s)™!
(this shows that the previous definition of F’ on arrows in C is actually
well defined on classes). This clearly suffices in order to define the functor
F' on every morphism of C[S~!], since these are composition of morphism
from C and morphism of sort s, and hence F’ applied to the class of this
composition is the composition of F' applied to the classes of the component.

Suppose F” : C[S™!] — D to be a functor with the same property of F”,
that is F”’QQ = F. Then F’ and F” clearly are the same on objects because
F'X =FQX =FX = F'QX = F"X. A morphism [f], as before, is the
class of a composition of morphisms fi--- f, which are either in C or of
the form f; = x5, with s; in S. Applying F” will provide the composition
F'([f1]) - - - F'([fn]), and each of these components is either F"Q(f;) = F(f:)
if f; isin C, or F"([zs,]) if fi = xs,. Observe, eventually, that the relation
imposed on morphisms of C[S™!] forces F”([zs,]) to be such that for all
s:A— B

F(s)F"([as]) = F"([s]) F"([xs]) = F([szs]) = F"([idp]) = idpr ()
as well as F"([z,])F([s]) = idpn(a). That is F”([zs]) = F(s)~'. So, the
result is the same obtained applying F’. O
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Definition 3.1.4. Let A be an abelian category. The derived category
D(A) of A is the localization Kom(A)[S™!], where S is the class of all
quasi-isomorphisms.

Definition 3.1.5. Define the full subcategories Kom™(A), Kom™(A) C
Kom(A) whose objects are the bounded (i.e. eventually constant to 0),
respectively below and above, chain complexes of objects in A. Define as
well their intersection Kom®’(A).

Remark 3.1.6. The same construction of the derived category can be made
replacing Kom(A) with either Kom*(A), Kom™(A) and Kom®(A). The
resulting categories are denoted by DT(A), D™(A) and D°(A).

Moreover, if the abelian category in question is a category of modules
over a sheaf of rings Oy, we abbreviate Kom(Mod(Ox)) and D(Mod(Ox))
with, respectively, Kom(Ox) and D(Ox). Analogously for a ring R.

Remark 3.1.7. Thanks to theorem 3.1.3, any functor F' : Kom(A) — D
such that F'(i) is invertible for any quasi-isomorphism ¢, uniquely factors
through D(A).

Example 3.1.8. Let A = Vecy(k) be the category of finite dimensional

vector spaces over a field k. Then D(A) is equivalent to the product category

HA. In order to prove that, we show that any object in D(A) is isomorphic

fcf)zan object in its full subcategory of complexes with trivial differential

(which is isomorphic to HA) More precisely, for any complex V" there is
€L

a quasi-isomorphism

. i—1 . i .
Vz—l d Vi d v2+1 ..

| | |

—— HY v % gV 2 HEFY( V) —— -

This really is because for any ¢ one can find, in a highly non-canonical way,
a subspace W C V* such that

VixKer(d) oW =Im(d™ ) o H(V) e W'

Thus, one have a quotient projection morphisms f? : Vi — H' and the
resulting morphism (f?); between complexes certainly induces isomorphism
on cohomology, hence is an isomorphism in D(A).

A fancier notion of localization is provided by the following definition,
that will impose conditions on the class of morphisms at which we are allowed
to localize, providing some useful computational tools, which are basically
algebraic identities aimed to manipulate morphisms.
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Definition 3.1.9. Let C be a category, and S be a class of morphisms in
C. S is called a multiplicative system if it satisfies the following conditions:

(a) S is closed under composition, that is, for any X object in C, idx is in
S and for any pair of morphisms (f,g) of S such that the composition
gf exists, then gf is in .S

(b) Every diagram of the form

Z Z
s , respectively Ts
x 1oy x«l vy

with s in .S, may be completed to a commutative diagram

w2z Wtz
tl s , respectively J Ts
x Ly X ¥

where ¢ is in S.

(¢) Let f and g be morphisms X — Y. There exists s in S with sf = sg
if and only if there exists t in S with ft = gt.

Remark 3.1.10. Multiplicative systems straightforward generalize the no-
tion of multiplicatively closed subset of a commutative ring. In fact, given
a commutative ring R, i.e. a pre-additive category with exactly one object
X (and R = Hom(X, X)) and commutative composition, S is a multiplic-
ative system of this category if an only if S C R is such that 1 € S and
xz,y € S = zy € S. Certainly if S is a multiplicative system, then part (a)
says exactly that it is a multiplicative set. Conversely, parts (b) and (c) are

clear in the commutative case: if X i) X & X, then the same morphisms
give

x 1, x
x 1, x

which is commutative by commutativity of R. The same works for the
diagram with reversed arrows. Part (c) is given considering s = t.
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Remark 3.1.11. Given a category C and a multiplicative system S, con-

sider morphisms X vy & Z with s in S. There are, thanks to (b), morph-
isms ¢ in S and g such that ft = sg. Now, in C[S™!] there are morphisms
[xsf] and [gzy], and these are the same since

ft =59 = [vsf] = [ ftoy] = [xs5924] = [g4].

Thus, for a morphism of the form (class of) 81_1 fisy L £, there are t1,ta, g1, g2
such that it becomes gltl_l 9oty ! which again is of the form 9190ty 1t2_ L
g190(tato)~t. Similarly, the diagram with reversed arrows in (b) allows us to
move the denominators to the left.

The point is that the class of quasi-isomorphism does not form in gen-
eral a multiplicative system for Kom(A). However, the notion of quasi-
isomorphism makes sense also in K(A), because the cohomologies of ho-
motopically equivalent morphisms coincides (Proposition 2.2.16), and the
following result holds true.

Proposition 3.1.12. Let A be an abelian category. The class of quasi-
isomorphisms in K(A) is a multiplicative system.

Proof. See [GMO02] 111.4.4. O

Thus, the following Theorem will provide an operative definition of the
derived category of an abelian category.

Theorem 3.1.13. Let S be a multiplicative system in a category C. Then
the localization C[S™!'] can be described as the category whose objects are
the same as in C, while morphisms and compositions are described by

(i) A morphism X — Y in C[S™'] is an equivalence class of diagrams,
called “roofs”, of the form

X/
2N
X Y

denoted as a pair (s, f) with s in S and f a morphism in C. Two such
diagrams (s, f) ~ (t,g) are equivalent if and only if there are v in S
and h morphism in C forming a third common roof in the commutative
diagram

X///
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Identity of X is the class of (idx,idx)

(1i) The composition of two morphisms classes of diagrams (s, f) and (t, g)
is given using the definition of multiplicative system in order to find
morphisms t' in S and f' fitting the diagram

X//
PN
X' Y’
S 7N
X Y X
That is, the composition is the class of (st',gf")

Proof. See [GMO02] II1.2.8. 0

Proposition 3.1.14. The derived category D(A) of an abelian category
carries a natural structure of additive category.

Proof. Given a pair of morphisms X — Y in D(A), represent them using

Theorem 3.1.13 as morphisms X & 7/ Ny and X & 27 B v in the
homotopy category, where q1, g2 are quasi-isomorphisms. Then consider the
diagram Z' & X & Z”, and since quasi-isomorphisms are a multiplicative
system for K(A) complete it to

7z -z

W |

7" —— X
q2

where p (and hence also py) is giso. Call ¢ the morphism ¢1p1 = qap2 : Z —
X, and just set fqul + fgqgl to be the class of

x4z f1pﬂ2p2 %

Inverse is given by —(fq™%) = (—f)¢ L.

Moreover, finite products are the same as in K(A). If X and Y are
complexes in D(A), the complex X x Y is such that whenever P — X and
P — Y are two morphisms in D(A), represented as P <+ P’ — X and
P« P” — Y, one can complete P” — P + P’ to

Q —— P

L

Pl—— P
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where, as before, all morphisms are quasi-isomorphisms, and consider the
composition ¢ : Q — P as well as the two morphisms Q — P’ — X and
Q — P” — Y, inducing a unique morphism f : Q — X x Y commuting
with projections in K(A). The morphism

Pl xxy

will be the unique proving that D(A) admits finite products. Hence, the
category D(A) is an additive category. O

So, by Theorem 3.1.13 we get an explicit description for the derived
category of an abelian category, especially of its morphisms. One could
think in first approximation, supported by Example 3.1.8, that studying the
derived category of an abelian category amounts to look at the objects up
to cohomology, but this is not right. There are in fact complexes whose
cohomologies are isomorphic, but which aren’t isomorphic objects in the
derived category (see Example 3.4.8).

Moreover, it’s not even true that between isomorphic objects in a derived
category has to exists a quasi-isomorphism.

Example 3.1.15. If A is an abelian category and X and Y are isomorphic
objects in D(A), it may not exists a quasi-isomorphism between X and Y.
In order to see that, start considering quasi isomorphic complexes X and Y
such that there is no quasi-isomorphism Y — X: for example in A = Ab

X= 502232 —-0—--

and .
Y= 20=20—>2Z/2Z—0---

The morphism f : X — Y given by the only non-trivial morphism Z —
7,/2Z induces in fact isomorphism on cohomology. However, no nontrivial
morphism at all exists from Y to X, because Homap(Z/27Z,7) = 0. This
leads to consider two other complexes one build concatenating X and Y,
and the other concatenating Y and X, in the respective positions, that is,
in our example:

X=+-0-50-2/2-0-0-2Z—Z—>0—---
Y= 0-2Z—72Z—-0—-0—-0—->%Z/2—-0—---

There is no nontrivial morphism neither from X to Y nor from Y to X,
thus they aren’t quasi-isomorphic, but for the complex X' given as the
concatenation of two copies of X, clearly with the corresponding indexes:

X' = 022—72Z—-0=0—=2Z—7Z-—30—---

there are quasi-isomorphisms X < X " — 'Y, mapping each copy of X by f
to the copies of Y, and by the identity on the copies of X.
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Remark 3.1.16. For a general localization @ : C — C[S™!], if a morphism
n: X — Y is an isomorphism in C[S~!], then any representing roof

x<&w- Ly

is such that Qf is isomorphism as well. Consider in C[S~!] the diagram

QW
Qs Qf
X/ 77 \QY

It is commutative since the composition n@s is represented by the compos-
ition of roofs

/\
/\/\

which gives exactly a roof representing Q) f. Thus, Qf is invertible as com-
position of invertible morphisms.

In the particular case of the derived category, slightly more can be said,
providing the following useful result. From now on, we use the notation ~
above the arrows in order to indicate that it’s a quasi-isomorphism.

Proposition 3.1.17. If X and Y are isomorphic complexes in D(A), then
any representing morphisms of complezes X < A — Y is such that also
A =Y is a quasi-isomorphisms.

Proof. Consider the compositions of the isomorphism X — Y with its in-
verse Y — X. These are given as compositions of roofs




and the fact that these are the identities respectively on X and Y in the de-
rived category, means that there are commutative diagrams in the homotopy
category of the form

/T\ /T\

Ay and Ao

\i/ \i/

Thus, in particular, hg and h'¢g’ are homotopically equivalent to the quasi-
isomorphisms ¢ and j respectively, and hence, by Proposition 2.2.16 they
are quasi-isomorphisms as well. Therefore, for every integer k one has
H*(g)H*(h) = H*(gh) = H"(i), hence H*(h) has a right inverse given
by H*(i)™'H*(g). On the other hand H¥(g') has, in the same way, a left
inverse which is H*(j)~'H*(h’). Eventually, observe that from the com-
mutativity of composition diagram given by ¥ — X — Y, the morphisms
H*(g") and H*(h) are the same up to isomorphisms, thus the latter also has
a right inverse. In conclusion h is a quasi-isomorphism, and hence A, = A
gives
V<A x

working as desired.

The fact that any representative is of this form easily follows because
any other roof Y «<— A" — X is such that there is a commutative diagram

N
X/ ) ) \Y

But then, just being H” a functor Kom(A) — Ab, shows that both C' — A’,
and then also A’ — Y are quasi-isomorphisms. ]

3.2 Verdier quotient

Another kind of structure that can be defined using localization of morph-
isms is the so called Verdier quotient, and involves triangulated categories.
The structure of a triangulated category K with a full triangulated subcat-
egory J allows in fact the construction of a new triangulated category K/J
enjoying the usual algebraic universal property of quotients. More precisely,
its localization functor @ : K — K/J is such that whenever a triangulated
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functor G : K — H maps every object in J to an object isomorphic to 0,
then there exists a unique functor G : K/J — H such that the diagram

K 25 K/J

R \},G
H
commutes in TrCat.

In order to see that, let’s first of all define it, and then describe its
triangulated structure.

Definition 3.2.1. Let K be a triangulated category with shift T, and J a
triangulated subcategory. Consider the class S = S(J) of morphisms in K
given by those s : X — Y such that the completion of s to a distinguished
triangle X — Y — Z — TX is such that Z is in J.

Then, set K/J = K[S(J)™}]

Remark 3.2.2. The little of ambiguity in the previous definition of the
class S is justified by the fact that the completion to triangle of a morphism
is unique up to isomorphism, thanks to Lemma 2.4.12, and the fact that any
triangulated subcategory is assumed to be strictly full.

In order to being able to deal with morphisms in the quotient category,
it’s useful to prove that S is a multiplicative system, so that by Theorem
3.1.13, we will represent them through roofs.

Theorem 3.2.3. Let K be a triangulated category and J C K a triangulated
subcategory. The class S(J) is a multiplicative system for K.

Proof. Let’s prove to hold conditions (a), (b) and (c¢) of Definition 3.1.9.
Certainly 0 is an object of J, therefore, for any object X in K the distin-
guished triangle X 4 X 0 = TX show that id x is in S. Moreover, if

X i> Y4 Zisa composition of morphisms with f and g in S, one has
distinguished triangles

x-Sy _p —Tx

Y 247 —Dy—TY
XY 7 Dy TX

with D; and Ds in J. We want to prove D3 to be in J, and that is by axiom
T4, providing another distinguished triangle

D1—>D3—>D2—>TD1

in which two out of three vertices are in J. Since J is a triangulated sub-
category, D3 also is in J, by Proposition 2.4.16. This proves (a).
Claim: Let S be a class of morphisms satisfying (a) and such that
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(7) if sis in S, so is each T"s for every integer n;

(11) for every pair of distinguished triangles X - Y — Z - TX, X' —
Y - 7' — TX' and morphisms s’ : X — X', s :Y - Y in S
making

X —Y

Lo

X —Y'

to commute, there is a morphism s : Z — Z’ in S turning

X Y A TX
ls ls’ ls lTs
X' Y’ 4 TX'

into a morphism of triangles.

Then, condition (b) holds.
In fact, consider a pair of morphisms (s, f) with s in S

X/
N
Z —— X

and extend f to a triangle in order to get Z i> X %Y — TZ, and shifting,
u v Tf
X —=Y —T7—=TX
Extend then the morphism us : X’ — Y, and get the triangle

us w’

X' g My
Certainly there is a commutative square
X Y
Sl lldy
X ——Y

with both vertical arrows in S. Thanks to condition (i7), there exists in S a
morphism ¢ : Z' — T'Z such that

X s,y A TX'
1 b bk
X 4,y Tz . rx
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is commutative. In particular, a shift of the third square provides a morph-
ism 771t : T71Z' — Z, which still remain in S thanks to (i), and it com-
pletes the pair of morphisms (s, f), as required by (b) to a commutative
square

Tz — 5 X’

7| s

71 ox

So, let’s prove (i) and (ii) to hold for S. Invariance under the shift
functor follows from the same invariance of J. If s : X — Y is such to fit a
triangle

XY —-27Z-—TX

with Z in J, then certainly T"s fits the shifted triangle
X B3y 17— TX

and since T"Z still happens to be in J by Proposition 2.4.16, being J a full
triangulated subcategory. Then T"s is in S. Analogous argument proves
also the dual part of (b).

Eventually, let’s prove (c). Observe first of all that the pre-additive
structure allows us to prove that for any pair of morphisms f : X — Y,
are equivalent the existence of a morphism s in S such that sf = 0 and the
existence of a morphism ¢ in .S such that ft = 0.

Suppose then to have s : Y — Z such that sf = 0, and complete s to a
distinguished triangle

Y 57 —W —TY

where W is in J by our assumption. Then, since the composite sf : X —
Y — Z is zero, the diagram

Yy 257 s W sy TY
T ] s
X 0 TXx X, 7x

is commutative, and being both the rows distinguished triangles, can be
completed to a morphism of distinguished triangles by an arrow g : TX —
W. Consider then a completion of this morphism to a distinguished triangle

TX LW —V —T2X

and its shift
TV% 17X LW —V
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Call ¢ the morphism 7'V — TX and observe that it’s in S because W
is in J and, by Remark 2.4.8, that gt = 0. Hence hgt = 0, and this is
(Tf)t = 0. This proves one implication up to replace ¢t by Tt giving
0=T710=T1(Tf)t) = fT't. Certainly, T~'# still is in S by what
proved above. The reverse part is given by a completely analogous proof. [J]

Now, we want to endow K/J with a triangulated structure turning the
localization functor into an exact functor. The easy way to do that happens
to work.

Definition 3.2.4. Let K be a triangulated category and J C K a full
triangulated subcategory. The shift functor Tx /gy is defined to be the same
as T on objects. On a morphism f : X — Y, which can be represented by
aroof X «+— W — Y, Tf is defined to be the class of

TX +—TW —TY

A triangle in K/J is said to be distinguished whether it is isomorphic to the
image under the localization functor of a distinguished triangle in K.

In order to prove axioms of triangulated categories, especially axiom T4,
to hold true for a Verdier quotient, we need the following lemma.

Lemma 3.2.5. Let K be a triangulated category, and
X—Y —7—TX
X —Y —7Z —TX

two distinguished triangles in K. Suppose to have a pair of isomorphism in
K/J giving a commutative square

QX —— QY

L

QX —— QY

Then, there exists a third isomorphism QZ — QZ' providing an isomorph-
ism of triangles in K/J.

Proof. See [NeeO1] 2.1.38. O

Theorem 3.2.6. The category K/J with its shift functor and its class of
distinguished triangles defines a triangulated category.

Proof. Let’s check the axioms. Recalling that axiom T3 is in fact a theorem,
it suffices to check T1, T2 and T4.
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Let A be an object in K/J. A is also an object in K, hence consider the
distinguished triangle in K

AMA A0 TA
Since for any functor Q(ida) = idga, and quite trivially
QTkA =TkA =T34 =Tx;3Q4,

the image under the localization functor gives the desired distinguished tri-
angle in K/J, proving T1-(i). Moreover, if two triangles in K/J are iso-
morphic, then composing the isomorphism leads to conclude that if the first
one is isomorphic to a triangle of the form QX — QY — QZ — QT X =
TQX, so is the second one. This proves (ii) in axiom T1.

If f: X - Y is a morphism in K/J, represented in K by

us 1 X +— W —Y

complete in K the morphism w : W — Y to a distinguished triangle W —
Y = Z — TW, and apply Q to it in order to get a distinguished triangle in
K/J

QW — QY — QZ — TQW

There is then an isomorphism

Qu Qu Quw

QP QY QZ TQP
l@s lid lid lTQs
QX —— QY —5~ QZ 570 TQX

since Qs is isomorphism in K/J, as well as certainly are the identities. This
gives T1-(iii)

Axiom T2 is trivially true. The shift ¥ — Z — TX LYTY of a
triangle X — Y — Z — TX, isomorphic to the image of a triangle under
the localization functor QA — QB — QC — TQA of a triangle in K, is
isomorphic to the image of the shift of the triangle in K.

In order to check axiom T4, let’s prove the following

Claim: Any commutative square in K/J can be lifted by S to a com-
mutative square in K, that is, for any commutative square in the quotient

W ——X

]

Y — 7

there exists a commutative square in K
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W — X'
[
Y —— 7'

together with morphisms W/ — W, X’ - X, Y’ - Y and Z' — Z in S(J)
making the following to commute in K/J

w X

AN e

W — X’
Y —— 7

N

Start considering the morphism W — X — Z, represented in K by the
composition of two roofs

Y

/\
/\/\

where X’ — X is in S. Let’s write this roof avoiding explicit compositions

as
441
w Z
with W7 — W in S. The same morphism W — Y — Z is represented also

/\
/\/\

where Y/ — Y is in S, and again we can write it as
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Wa

7N

w VA

with Wy — W in S.

Then, these two roofs represent the same morphism, hence they are in
the same equivalence class, so that there exists an object W’ and morphisms
W1 <+ W' — Wy such that the following diagram is commutative

where both W/ — Wy and W7 — W are in S, and so is their composition
W — W.

Therefore, we have two commutative squares

W’*)Wl W/*>W1
[l ]
WQ*}Z WQ*)W

Since the morphisms W; — Z, for i = 1,2, are compositions W7 — X' — Z
and Wy — Y' — Z, the left square can be written as

w’ %] X'
W
Y’ s 7

Eventually, one can even consider Z’ — Z to be the identity. It remains to
prove commutativity in (3.1), which is fairly obvious by construction. Let’s
prove for example to hold the commutativity on the left side of the diagram,
that is

W —— W'

o

Y +— Y’

The morphism W' — W — Y is represented by
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N
NN

where, by definition, W' — W3 factors as W' — Wy — Wj. The morphism
W' — Y’ =Y is represented by

SN
W// \Y’/ \Y

where, by definition, W/ — Y factors as W/ — Wy — Y.

Thus, in order to see that these two roofs are in the same class, just take
identities W’ < W' — W’ as a common roof, and everything to check is the
commutativity in K of

W — Y’

L

W, —— Y

which holds thanks to the factorization just recalled and the commutativity,
given by the definition of Wy, of

WQ*)Y/

L]

W, ——Y

This proves the claim. Moreover, observe that if one of the morphisms
between X — Z and Y — Z in the original square where an identity, let’s
say Z = X, then X’ is defined to be X itself, with X’ — X the identity.

Now, Consider three triangles in K/J

xLy_ 7z 71X
y Ly — 7' 5 TY
x Ly sz _srx

and consider the commutative square
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x L.y

idl lg
x Yy

which by the claim can be lifted to a commutative square in K, giving a

commutative diagram

X Y
x_1.,y
id idl lﬁ g
X Y,y
/ of \

X Y’

with morphisms linking the two squares in S. Observe then, that sides

x- -y y 2.y X Yy
A S l I
x 1y y %,y _9f Ly

are such that Xertical morphisms are isomorphism in K/J.
Complete f, g, gf to distinguished triangles in K
XLy 71X
Y LY 77— TV
X%y 7 1x%
Now, the given distinguished triangles in K/J are by definition the image

under ) of distinguished triangles in K. Therefore, up to consider the
distinguished triangles in K from which they come from, one has morphisms

between distinguished triangles in K

PN v Z TX
Si lt }¢ lTs
x -ty _t,z TX
y 9.y 7" Y
ti lt’ 11 th
) N, v z" TY
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9,y 7 TX

|
lt’ i A lTs

9 oy kg TX

SPEENY

where Lemma 3.2.5 provides the existence of the dashed isomorphisms of
K/J. Let’s use the fact that axiom T4 holds for K, hence deduce that

there exists a triangle
75T T T

filling the commutative diagram

NN
NN

Now we use this new triangle and previous isomorphisms to define the de-
sired triangle Z — Z' — 7" - TZ.
Set

YA A

>

=t 2 = 2"

>

W= (To)w\™': 2" - TZ

Let’s check whether these morphism work, proving commutativity of (part

of) the following diagram
\ / / \ /
\ \ /

TZ

namely of the square

83



The rest is analogous diagram chasing. The morphism @h is by definition
Yudp th = puht™t = kgt ! = kt'gt ™! = kg.
O
Remark 3.2.7. It’s now clear from how shifts and distinguished triangles
are defined, that the localization functor K — K/J is triangulated.
Therefore, one can prove the Verdier’s Theorem stated as follows.

Theorem 3.2.8. Given a triangulated category K with a triangulated sub-
category J C K, the triangulated localization functor

Q:K— K/J

is universal for the property of quotients. Namely, whenever a triangulated
functor G : K — H is such that G(J) = 0 for any J in J, then there exists
a unique functor G : K/J — H such that the following commutes in TrCat

K- K/J

|
Ré

H

Proof. We are going to use the universal property of localizations in Theorem
3.1.3, so that it suffices to prove G(s) to be isomorphism whenever s : X — Y
is in S(J). Just consider the triangle, with J in J, witnessing s to be in S

X -5y —J—TX

and apply to it the triangulated functor G, obtaining, up to isomorphism, a
triangle
GX &% QY — 0 — TGX

which gives Gs: GX = GY. O

3.3 The derived category is triangulated

The procedure illustrated in order to define a triangulated structure of
the Verdier quotient (Theorem 3.2.6) enjoy a much greater generalization
which applies to any localization by a multiplicative system.

Definition 3.3.1. Let T be a triangulated category and S a multiplicative
system of morphisms in T. Then, define a triangle in T[S™!] to be distin-
guished if it’s, up to isomorphism, the image of a distinguished triangle in
T under the localization functor @ : T — T[S™1].

The shift functor easily extend to T[S~!] in the obvious way on objects,
and for a morphism X — Y represented by X < W — Y, is defined to be
the class of TX < TW — TY.
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Theorem 3.3.2. Let T be a triangulated category and S a multiplicative
system of morphisms. The shift functor of T[S™!] together with the class of
distinguished triangles defines the structure of a triangulated category of the
localization T[S™1].

Proof. See [GM02] IV.2 2-6. O

In particular D(A) for any abelian category A has a natural structure of
triangulated category, since D(A) is the localization of K(A) at the class of
quasi-isomorphisms, which is a multiplicative system by Proposition 3.1.12.

Remark 3.3.3. It follows that distinguished triangles in D(A) are defined
just as those triangles arising, up to isomorphism, as image under the loc-
alization functor of triangles in K(A). Therefore, they are exactly those
triangles X % Y % Z % TX such that there are isomorphisms in D(A)
providing an isomorphism of triangles

X. u Y v N w TX.

1

c(f) s TA

~

L

A- f B-

Proposition 3.3.4. If 0 — A i> B % C" = 0 is an ezact sequence in
Kom(A) for an abelian category A, then there is a morphism ¢ : C* — A’[1]
in D(A) such that

A Lip Lo A
is a distinguished triangle in D(A).
Proof. Let’s call f the given morphism A" — B’ and let ' : A" — Im(f)
be the induced isomorphism. Therefore, we get that f’ is in particular a

quasi-isomorphism, and hence its mapping cone C(f’) is acyclic. Consider
then the short exact sequence

0—C(f) — C(f) 5 0 —0

where the morphism C(f’) — C(f) is the obvious inclusion, while 1 is
the composition of g with the projection p : C(f) — B’. Observe that 1
composed to the inclusion i : B — C(f) gives g. This short exact sequence
induces a long exact cohomology sequence

o= HEO(f) = HENO(f)) = HE(C) = HMHC(f) = -

where, as observed, H¥(C(f')) = 0 for every k. It follows that 1 is a quasi-
isomorphism, hence, we can consider its inverse ¢~! as an arrow C* — C(f)
in D(A), and the composition with the projection ¢ : C(f) — A’[1] in order
to get a morphism

6:C L C(f) L A

This morphism is now such that there are isomorphisms
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AL o) 4 An
P

N

-1
A-Lsp—9 0,

proving that the bottom row is a distinguished triangle ad desired. O

3.4 Derived functors

Let’s start observing that an additive functor F' : A — B between
abelian categories which is not exact doesn’t preserves acyclic objects, by
Proposition 2.2.7. That means, in particular, that applying it pointwise
won’t provide an extension to the derived category, at least as an additive
functor, because an acyclic complex, which is the same as 0 in D(A), won’t
be mapped to 0.

The following starts from the observation that exact functors are quite
rare, but a lot of interesting functors still carries some sort of exactness.

Definition 3.4.1. Let 0 - A — B — C' — 0 be a short exact sequence in
some abelian category A, and let F' : A — B be an additive functor between
abelian categories. Consider the sequence

0—-FA—-FB—-FC—=0

The functor F' is said to be left exact if the sequence is exact except possibly
at FIC. Also, F' is said to be right exact if the sequence is exact except
possibly at FA.

Proposition 3.4.2. An additive functor between abelian categories F': A —
B is left exact if and only if for every exact sequence 0 - A — B — C,
the sequence 0 — FA — FB — FC is exact. Dually, F' is right exact
if and only if for every evact sequence A — B — C — 0 the sequence
FA— FB — FC — 0 is exact.

Proof. Suppose F' to be left exact and observe first of all that F' preserves
monomorphisms. That is because if f : A — B is mono, one can consider the
short exact sequence 0 — A — B — Coker(f) — 0, apply F and find that

0 - FA — FB if exact, that is F(f) is monomorphism. So, let 0 — A EN

B % €, and consider the short exact sequence 0 — A 5L B9 Im(g) — 0,
where ¢’ is clearly such that ig’ = g for ¢ : Imf — C. Applying F gives the
exact sequence

0 — FA L pB % P(lmg)

Now, since i is mono, so is F'i, hence Im(F' f) = Ker(F¢') = Ker(FiFyg') =
Ker(Fg).
The reverse implication is obvious. The dual statement is analogous. [
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Proposition 3.4.3. An additive functor F : A — B between abelian cat-
egories is left exact if and only if it preserves finite limits. Dually, F is right
ezxact if and only if it preserves finite colimits.

Proof. On one hand if F' preserves finite limits and 0 — A i> B4 Cc—>o0
is a short exact sequence, then looking at

0— ra L FB Y PO

one has Ker(Ff) = F(Ker F) = F(0) = 0, so F(f) is mono as desired.
Exactness at F'B is now given since

Ker(Fg) = F(Kerg) = F(Im f) = F(A) = Im(F'f).

For the reverse implication one can use the fact that for a functor to preserve
finite limits it suffices that it preserves finite products and equalizers. Being
in the setting of abelian categories, the equalizer between f and g can be
described as Ker(f —g). Now, the functor F' is supposed to be additive, so it
preserves finite products. It suffices then to prove that F' preserves kernels.
Let f : A — B be any morphism in A, consider 0 — Ker(f) - A — B.
Being F' left exact and thanks to Proposition 3.4.2, one has 0 — F(Kerf) —
FA — FB exact, thus Ker(F'f) = F(Ker f). O

Remark 3.4.4. By Proposition 3.4.3, one can define (left and right) ex-
actness of functors between any finitely complete categories, i.e. categories
admitting finite limits and colimits.

Remark 3.4.5. Let A and B be any finitely complete categories. If F :
A — B is a left adjoint functor, then it preserves colimits, and in particular
it is right exact. Dually, if F' is a right adjoint functor, then it is left exact.

Remark 3.4.6. Recall that for any fixed R-module M there is an adjunction
between functors — ®r M 4 Hom(M, —), that is, one has natural isomorph-
ism, for any pair of R-modules N and K,

Hom(N @ M, K) = Hom(N, Hom(M, K))

mapping f: N ® M — K to the map A defined by A(n)(m) = f(n ® m).
Thus, —®M : Mod(R) — Mod(R) is right exact, and dually Hom (M, —)
is left exact.

Our purposes requires mainly to define the derived tensor product of
chain complexes, which will provide more structure to the derived category,
and consequently the internal Hom of a derived category.
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Remark 3.4.7. In general, for a left exact functor F' : A — B, if the
category A contains enough injective objects, there is a functor

RF :D'(A) — D*(B)

which is computed on an object X in DT (A) by taking a bounded below
complex of injective objects I quasi-isomorphic to X, applying to it the func-
tor K(F'), and looking at the result KF'(I) in D(B) through the localization
functor K*(B) — DT (B).

Dually, if A has enough projective objects and F' : A — B is a right
exact functor, it can be induced a functor

LF:D (A) - D (B)

computed on a complex X by taking a quasi-isomorphic bounded above
complex of projective objects P, applying to it the functor KF', and looking
at the result KF(P) in D~ (B).

For more details and for the proof that this is a well posed definition see
[Huy06] 2.2.

Now that we know the triangulated structure of derived categories and
a bit of derived functors, we are able to show the following.

Example 3.4.8. Let’s provide a concrete example of complexes of sheaves
on a scheme X with same cohomology which aren’t isomorphic in D(Ox).
Consider X to be a compact, simply connected complex surface with trivial
bundle of differential 2-forms Qx = Ox, which is usually called K3 surface,
and has sheaf cohomology I'(X,Qy) = H*(X,Qx) = C.

It’s also known, and is an extremely useful result to deal with derived
categories, that for any abelian category A with enough injective objects,
we can consider the Ext functors defined as

Ext’(A, —) = H'(RHom(A, —))
and it holds, for objects A and B in A,
Ext'(A, B) & Hompa) (A, Bli]).

The proof of this fact can be found in [Huy06] and is an easy consequence,
at least for A = Mod(QOx), of Lemma 3.6.11 below.

Now, by Serre duality we get, for any coherent sheaf F, the isomorphism
Ext!(F,Qx) = H>Y(X,FE) = H>ZRI(X, E). In particular, for £ = Ox
and 7 = 2, we find that

Ext?(Ox,Ox) = H(X,Qx) = C
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and therefore Homp o, )(Ox, Ox[2]) = C. We can therefore consider a non-
zero morphism f : Ox — Ox|[2] and complete it to a distinguished triangle
in D(Ox)

ox -1 0x[2) % K 5 0x]1)

where neither f nor the inclusion g or the projection h are zero. In order to
see this, observe that the distinguished triangle completing f is isomorphic
in D(Ox) to a distinguished triangle in K(Ox)

Ox = 0x[2] — C(p) — Ox/[1]

Now, p is certainly not a qiso, and therefore C'(p) is not acyclic, i.e. not
zero in D(Ox), and hence are not zero the inclusion and the projection
Ox[2] — C(p) and C(p) — Ox][1]. It follows, since the two triangles are
isomorphic in D(Ox), that neither g nor h are zero. Therefore, the same
hold true for the morphisms of the rotated triangle

OX — K[—2] — Ox[—l] — OX[l]

and hence this triangle doesn’t split, as a direct consequence of Proposition
2.4.11. That means, K[—2] is not isomorphic to the complex with trivial
differentials Ox @ Ox[—1] in degrees 0 and 1

—0—0x —0x —0—

However, the cohomology sheaves of K[—2] are the same as those of Ox®
Ox[—1]. In order to see that consider, by the definition of the triangulated
structure of D(Ox), a distinguished triangle A — B — C — A[1] in K(Ox),
its image under the localization functor and an isomorphism of triangles in

D(Ox)
A—2 B C > All]

T

Ox —— Ox[2] — K —— Ox[1]

Inducing, in particular, isomorphism on the cohomology of each vertex.
Thus, H'(A) = Ox if i = 0, and is zero everywhere else, while H*(B) = Oy
if i = —2, and is zero everywhere else. Therefore, since C' = C(g), we can
consider the long exact cohomology sequence

- H%B)—-H?*C)—-H YA - HYB) - HYC)— HA) —
which reduces to
502 0x - H2(C) =020 H(C)=0x -0—---

Hence, H 2(K) = H 2(C) & Ox and H }(K) = H}(C) = Oy, while
H(K) = 0 everywhere else. This implies the cohomology of K[—2] to be
isomorphic to the cohomology of Ox & Ox|[1].
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3.5 Derived tensor product

Through this section we are going to define the tensor product of com-
plexes of Ox-modules and see how it induces a functor on the derived cat-
egories. This construction will in turn be a generalization of the derived
tensor product obtained as in Remark 3.4.7 deriving the functor that takes
the tensor product by a fixed Ox-module.

Definition 3.5.1. Given a chain complex K of Ox-modules, define the
tensor product of chain complexes as the functor

—® K : Kom(Ox) — Kom(Ox)

mapping N' — N° ® K" defined to be, in degree j,

@N”@K‘?

p+q=j

with differentials d/ = dgv ®id+(—1)7 id®d§(. The signs as usual are needed
in order to turn d into a differential.

On a morphism f : N° — L’ the tensor product of chain complexes act
diagonally: the j-th component of f® K" is (f@ K') : @ NP® K9 —

p+q=j
P LP ® K? and is defined component-wise to be fP ® idgaq.

P+q=j
Remark 3.5.2. When confusion could arise, we are going to indicate the
complex N' ® K as Tot'(N* ® M) as it is by definition the total complex
of the double complex N' ® K".

Recall now the following definition.

Definition 3.5.3. A module M over a (sheaf of) ring(s) is flat if the tensor
product functor — ® M is exact.

Fix now a complex M" in D™ (Ox). What we are going to prove is
that there is a bounded above resolution K of flat modules, i.e. a quasi-
isomorphism K* — M where K7 is flat for every integer j. Subsequently
we will use this fact in order to define a functor inducing the tensor product
by M" at the level of the derived categories.

Lemma 3.5.4. An Ox-module F is flat if and only if for every x € X the
Ox z-module Fy is flat.

Proof. Follows by elementary property of the tensor product of Ox-modules,
and the fact that exactness may be checked on stalks. More precisely if one
consider a short exact sequence on Ox-modules

0—K—L—N—70
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the resulting sequence
0 —KQ®F —LQF —NK —0

is exact if an only if it is exact at each stalk, and each stalk, say (K ®o, F')z,
is isomorphic to K, ®0x . Fa- This proves F' to be flat if each of F} is flat.
Conversely, let M be an Ox ,-module and consider the skyscraper sheaf
Sk, (M) on x with value M. Since (Sk;(M)® F), = M ® F, one finds that
the functor — ® F), is the composition of Sk, (—)® F with taking stalks, and
both are exact. O

Lemma 3.5.5. Let A be an abelian category and P a class of objects in A
with 0 in P such that any object of A is a quotient of an object in P. Let
m € Z and K' a complex in Kom(A) bounded above by m, i.e. Vj > m
PJ =0, then there exists a complex P* bounded above by m with P in P
for every i € Z and an epi quasi-isomorphism P — K*

Proof. The proof is by induction on the integers. Let’s start taking n =
m ~+ 1, so that the following inductive hypothesis holds: there exist objects
{P7} >, with morphisms ¢’ : P/ — PJ*! defining a chain complex P with
PJ = ( whenever j < n, and epimorphisms o/ : P — K7 for every j > n,
inducing isomorphism on cohomology for every j > n, and epimorphism
Ker d" — Ker d’:

0 P sy prtl
e Kl K" S GL

As said, the base step n = m+1 is easily true considering the zero complex.
Let’s now suppose the inductive hypothesis true and prove it for n — 1,
extending the complex --- — 0 — P® — P"tl — ... one step further to a
complex --- — 0 — P* ! — P* — ... In order to define P! and the
morphisms d”~! and o' consider the pullback diagram

K" 1 xpn Kerd® —— Kerd® «— P"
K1l X K

and observe that being Im(d; ') C Ker(d%), the pullback considered is
K" 1 xgn Kerd® = K*1 XKerdy. Kerd™. Now since any object in A is
quotient of an object in P, find a projection P* 1 — K" ! x gn Kerd® =
K™ and observe that the composite

o't PP — K Ker d" = K1 = K™ xgergp Ker d — K™
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is an epimorphism because in any abelian category the pullback of an epi-
morphism is an epimorphism (Remark 2.1.18), and by assumption «” in-
duces epimorphism Ker d" — Ker d¥.

Then, define the new differential d"~! to be the composite

Pl K gen Kerd® —s Ker d® — P"

This morphism turn P° into another chain complex, since d"d"~! = 0 from
the fact that d”~! factors though Kerd”. In order to see that this new
complex gives isomorphism on cohomology for degrees j > n — 1 one has to
check only degree n.

The fact that the induced map on cohomology is epimorphism is given by
the assumption that ™ is epimorphism on kernels, hence on cohomology.
In order to show that in cohomology it becomes also a monomorphism,
consider a cycle [c] € H"(P"). To say that [a"c] = 0 means that there exists
k € K™ ! such that o€ = d?{_l(k), that is exactly to say that c¢ sits in the
image of "1, i.e. that [c] = 0 in H"(P"). Eventually, the morphism a™~!
on kernels is epi, since any k € Ker d’ ! comes from any preimage of (k,0) €
K™ 1 x gn Ker d” through the chosen projection P"~1 — K™ x grn Ker d”.

In conclusion, the inductive hypothesis holds true for n — 1, as desired.

O

Theorem 3.5.6. Let M° be any bounded above complex of Ox-modules,
and let m such that M7 = 0 for every j > m. There exists a bounded above
complex of flat Ox-modules K*, with KI = 0 for every j > m, with an epi
quasi-isomorphism K' — M.

Proof. The proof immediately follows from Lemma 3.5.5, once observed that
any Ox-module is quotient of a flat Ox-modules. In fact, if F' is an Ox-
module, for any open subspace j : U C X and any section s € F(U) consider
the corresponding morphism Oy — F|y and its extension to zero 5Oy — F,
where 71Oy is defined to be the sheafification of the presheaf

ou(V) fVCU

0 otherwise

70u(V) = {

Now, all these morphism for each open U and each section in F(U) define
a morphism
P oy —F

UCX
seF(U)

which is surjective on sections, and in particular is an epimorphism of
sheaves.
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Now, thanks to Lemma 3.5.4 and from the fact that direct sum of flat
modules is flat since cohomology commutes with direct sums, one can con-

clude that the big module & Oy is flat because each stalk at z of 5,0y
UCX
sEF(U)

is either 0 or Ox ,, which is free and hence flat. O

Eventually, let’s prove that taking the tensor product with a bounded
above chain complex of flat Ox-modules preserves acyclic bounded above
complexes. This will give, for a fixed module M", a resolution K* — M~
such that the functor N° — N° ® K' maps quasi-isomorphism to quasi-
isomorphism. Thus, it will induce the desired functor — @ M" : D(Ox) —
D(Ox).

Recall the following result about the spectral sequence associated to the
total complex of a double complex.

Proposition 3.5.7. Let C" be a double chain complex such that for every
n there are finitely many (p,q) with p+ q = n such that CP? # 0. There is
a spectral sequence

EYY = HPHY(C™") = HPTI(Tot (C™))
The first page of this spectral sequence is EY = H1(C"P).
Proof. See [Huy06] Proposition 2.64. O

Theorem 3.5.8. Let K be a bounded above complex of flat Ox-modules,
and let A" be an acyclic complex. Then the tensor product of chain complex
Tot (A" ® K*) is acyclic.

Proof. Fixn € Z. Thanks to boundedness of K", any element in any section
of the sheaf H"(Tot" (A" ® K')) has components coming from the corres-
ponding sections of modules in the following complex

i — 00— Kerd™ — A™ — A™TL 5 L.

for a fixed m depending on n. So, in order to prove that any such an element
is zero, we can replace A* with this new bounded below complex, which still
remains acyclic.

The double complex is now such that each diagonal p+¢q = n is eventually
zero both sides, thus the hypothesis of Proposition 3.5.7 holds true, providing
a spectral sequence E]"! = H1(A" ® KP) = HP*4(Tot' (A" ® K")). From the
assumption of KP being flat for every p and A" being acyclic, we conclude
that the n-th cohomology of the total complex is zero. Since n was any, the
total complex is then acyclic. O

Lemma 3.5.9. Let K* be a bounded above complex of flat objects. Then
the functor — ®@ K : Kom(Ox) — Kom(Ox) maps quasi-isomorphisms to
quasi-isomorphisms.
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Proof. Recall by Proposition 2.3.5 that f : A* — B" in Kom(Oyx) is giso if
and only if its mapping cone C(f) is an acyclic complex. Thus, the result
is true whenever the functor — ® K" preserves acyclic complex, and that is
the case thanks to Lemma 3.5.8. O

Remark 3.5.10. The functor —® K" composed with the localization functor
Kom(Ox) — D(Ox) gives, for K* bounded above complex of flat Ox-
modules, a functor mapping each quasi-isomorphism to an invertible map.
One can apply then Theorem 3.1.3 in order to make sense of the following
definition.

Definition 3.5.11. Fix a bounded above complex of Ox-modules M" in
D~ (Ox) and find (by Theorem 3.5.6) a resolution by a bounded above
complex of flat modules K° — M*. The derived tensor product of complexes
is the functor

— ol M :D(0Ox) — D(Ox)

induced by N' — N ® K composed with the localization functor.
In general, is defined the functor — ®“ — : D=(Ox) x D™ (0Ox) —
D_(OX).

Certainly, Definition 3.5.11 isn’t automatically well posed. It is, however,
thanks to the next result.

Proposition 3.5.12. Let f : P° — @ be a quasi-isomorphism between
bounded above complexes of flat Ox-modules. Then, for any bounded above
compler M*, the morphism M" ® f : M ® PP — M ® @ is a quasi-
isomorphism.

Proof. Thanks to Theorem 3.5.6, find a quasi-isomorphism ¢ : K — M~
and consider the diagram

K- ® P- K.®f K- ® Q-

g®P'i lg@Q'

M ®P et M ®Q
in which vertical arrows and the top horizontal one are quasi-isomorphisms
because, by Lemma 3.5.9, taking tensor product by a bounded above com-

plex of flat modules maps quasi-isomorphisms to quasi-isomorphisms. Thus,
the bottom horizontal arrow also is a quasi-isomorphism. O

In particular, the derived tensor product is well defined because whenever
one consider two resolutions by bounded complex of flat modules for a com-
plex M", say K; = M" and K; — M, then for any other complex N* one
has that both the complex N° ® K; and N' ® K; will be isomorphic to
N ® M.

94



3.6 Internal Hom

In the following, we want to define the internal Hom in D(Ox). Given
two complexes N, M" of Ox-modules, we want a third complex of Ox-
modules RHom(N", M) giving adjunction between the functor — @ N
and the functor RHom(N", —). That is, for any K" complex of Ox-modules
we are going to prove

Homp o) (K, RHom(N', M")) = Homp(o, (K" ®@" N', M)

In order to define such a functor, we let first of all the following definition.
Definition 3.6.1. Let N', M be complexes of Ox-modules. The Hom
complex Hom'(N*, M") is defined by

Hom"(N",M") = H Homo, (NP, M) = HHom@X(Nk,M’”")

pta=n k
with differential d” induced by morphisms, for every k,
H?—lomox (N, M) = Homo, (N*, MFFHL
1EZ

defined on an open subset U to act on a morphism (f?) € [[Home,, (N*|, M"*|1)

1

as

(f) = dagy, £* = (=1)" fFdyy,
For short, we are going to use the less explicit notation df = dyf —
(=) fdn.

Remark 3.6.2. The differential d? is actually 0 since it is on each open,
where one has (dpy, f — (=1)""! fdy, ) (dag, f — (=1)" fdny,,) = 0 because
f commutes with differentials.

Proposition 3.6.3. Let N, M be complexes and let f be a morphism in
Hom™(N", M"), defined by a family of morphisms (f¥)rez with f*: N¥ —
ME+n
(1) df =0 if and only if f defines a morphism of chain complexes N —
M[n]
(ii) f = dg is differential of a morphism g in Hom™ (N, M") if and only
if f is homotopically equivalent to zero.
Proof. In order to prove (i) just consider 0 = df = dy;f — (—1)" fdy, and
the fact that d’fw[n] = (—1)”c1llf\z,r " saying exactly that for every k one has
dﬁ}nfk — fk+1d§cv_
For part (i7), observe first of all that by part (i) and Remark 3.6.2, f

actually defines a morphism of complexes N* — M'[n]. Now consider g as
the family of morphisms N* — M*+7~1 and the diagram
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k
ax N Nk+1

Nk
/g’c lfk 4“

Mk—i—n—l — Mk+n Mk:—i—n—i—l
’ dk— 7 ’ 7
Mn]

Nkfl

f = dg means f = dyg — (—1)" " tgdy = dyrg + (—1)"gdy, thus for every
integer k
fk — d’]c\;—n—lgk + (_1)ngk+1d§€\]

which means, if n is even,

fF=0=fr =gy + (-1)"dy et = g + dyy 7

while if n is odd just consider (—1)"(f* —0) = 0— f* giving the same result.
Thus f is homotopically equivalent to zero. O

Corollary 3.6.4. Let N, M be complezes of Ox-modules. For every open
U C X there is a canonical isomorphism

Homg (o) (N"|u, M'[n] i) & H"(Hom’ (N", M")(U))

Proof. It’s just a reformulation of Proposition 3.6.3: Thanks to part (i)
a morphism of complexes N'|yy — M’ [n]|y defines a cycle and vice versa,
hence one get a surjective map between the two. Part (i7) says that this
map is injective. [

Remark 3.6.5. Hom (N°,—) defines a functor mapping f : M* — L’ to
Hom (N°, f): Hom (N, M") — Hom (N, L")
defined in degree n to be
Hom™(N", f): HHom@X(Nk,Mk+") — HHom@X(Nk,Lk+”)
k k

the diagonal morphism mapping, for a fixed k and open U C X, a morphism
g € Homo, (N*, M*+™)(U) = Homo,, (N*|y, M¥7|y) as

g g € Homo (N, LF™)(U)

So defined, the Hom complex functor is naturally right adjoint to the
tensor product of complexes.

Proposition 3.6.6. Let K*, L', M" be complexes of modules. There is a
natural isomorphism

Hom (K, Hom (L', M")) = Hom (Tot (K" ® L"), M")
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Proof. Hom (K',Hom(L",M")) has degree n given as

HHom(Kj,’Homj+”(L',M')) = HHom(Kj,Hom(Li,Mi+j+n)) =
j J
HHom(Kj,Hom(Li,MiHJr”))

1,7

to which one can apply the usual adjunction in order to get

[[Hom(K? @ L', Mty =[] Hom(K’ @ L', M?) =

1] ¢,i+j=q—n
[THom( @ K@ L\, M%) =][Hom(Tot?(K" @ L), MP™™)
q i+j=q—n p
which is exactly Hom™(Tot (K" ® L"), M"). O

Remark 3.6.7. Recall that the category of Ox-modules has enough inject-
ives. That is, for any Ox-module F' there is an injective module I and a
monomorphism F' — 1.

Analogous to Lemma 3.5.6, but easier thanks to the existence of enough
injective objects, is the following result.

Proposition 3.6.8. Any bounded below complex of Ox-modules M admits
a resolution M™ — I by a bounded below complex of injective modules.

Proof. Let’s construct I by induction. Start with n small enough so that
the zero complex I' = 0 works.

Suppose then to have defined a complex I" with I* injective for k < n
(and just set I* = 0 for k > n), together with a morphism f : M* — I" such
that C'(f) is acyclic in degrees k < n.

oy pnl M™ Ml
L]
VL

Y L 0

Let’s define the injective object 1™ together with the morphisms d” : I"™ —
I and ot Mt — 7 redefining I" and f, such that C(f) is acyclic
in degree n.

Consider C' = Coker(dgz}) : M™ @ I — M™TL @ I™), and by Remark

3.6.7 take a monomorphism C' — I"*!, for some injective object I"*!. The
morphism
h: Mt — C — 1"

determines two morphisms which we call hy = d* : I — I""! and hg =
7fn+1 . Mn+1 SN I’VH-l_
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One needs to check that these two morphisms define respectively the
structures of a new chain complex I and of a morphism of chain complexes.
This is given by the observation that the composition

hd’g{]}) M eIt 5 M e I — T

is zero, since the second morphism factors through Coker(dgz;)), so that

_Jn
(_fn+1’ dn) <_df]\g dn0_1> — (fn+1d7w . dnfn,dndnil) =0
which means exactly that --- — I"™! — J* — "1 5 0 — ... defines a
chain complex, as well as the desired commutativity in
D — M b M By i
l if’n lf“ﬂ-%l
.y -l L ar 1 N

The fact that C(f) is acyclic in degree n follows by construction, because

_mn+1
Ker(d¢, ) = Ker (?%_1 c?”) C Ker(—f",d") = Ker(h) =

Ker(M™ ™ @I — C) = Ker(Coker(d%@}))) = Im(d’é@})).
Definition 3.6.9. Let N be an object in D~ (Ox). The functor
RHom(N',—): D" (Ox) — DT (Ox)
is the functor induced by
K+(Ox> — D+(Ox)

defined on an object M by taking an injective resolution M~ — [I' and
computing Hom (N, I"). On a morphism f: M" — L’ it is

Hom (N, I") — Hom (N",J")

for ¢ : M — I' and v : N° — J' injective resolutions, defined acting
diagonally on the k-th component of a degree n section g : N¥|iy — I¥7|
as Ylu flugug : NF|y = JF"y.

Remark 3.6.10. Definition 3.6.9 gives a functor

RHom(—,—): D™ (Ox)® x D*(Ox) —s DT (Ox)
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where the image is in fact bounded below since one has N* bounded above,
and given an injective resolution M* — I' with I' in D*(Ox), one can
take n < min{j|I/ # 0} — max{j|N/ # 0}, so that RHom(N',M") =
Hom (N, I') has degree m given by

[[Homoy (N*, 1Fm)
k

Now, by our choice of n, this product has each term zero whenever m < n.
That is because if N¥ # 0, then k < max{j|N7 # 0}, hence

k+m <k+n<k+min{j|l’ #0} — max{j|N7 # 0} < min{j|I? # 0}
Hence I*+t™ = 0. Similarly, if I¥*™ £ 0, has to be N* = 0.

Certainly, one has to prove this functor to be well defined. Precisely,
one has to prove that the functor K*(Ox) — DT (Ox) actually induces
one on the derived category, and also that it’s independent on the choice
of the injective resolution. Both these facts are provided by the following
results, in particular Theorem 3.6.13, once observed that any pair of injective
resolution Iy <— M — I determines an isomorphism in D(Ox).

Lemma 3.6.11. Let N', I" be bounded below complexes of Ox-modules, with
I’ injective for every j. Then

HOHIK(OX)(N., I) = I‘IOIHD(OX)(]V.7 I)

Proof. Consider the natural morphism Homg o (N, I') — Homp o) (N, I")

mapping f : N° — I" to the class represented by N* d4 N i> I.
It suffices to prove that for any morphism N* — I" in D(Ox), that is for
any pair of morphisms in K(Ox)

N «— M — T

there exists a unique morphism N° — I' in K(Ox) making the resulting
triangle

N

to commute in K(Ox). Such a morphism, if seen in the derived category
as N' «+ N — I', will in fact have a common roof with the given N* «+
M — I' provided by M" itself. Thus, the proof of the theorem reduces to
the following.
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Claim: Given a quasi-isomorphism g : M° — N of bounded below
complexes and a bounded below complex of injective objects I", the induced
morphism

HOHIK(OX)(N', I) — HOIHK(OX)<M', I)

is a bijection.
In order to see that, use the fact that K(Ox) is a triangulated category
and consider the completion of g to a distinguished triangle

M — N — C" — N'[1]

by the mapping cone C". Being g a quasi-isomorphism, its mapping cone C"
is acyclic by Corollary 2.3.5. Moreover, by Lemma 2.4.9 one can consider
the long exact sequence of homomorphisms in K(Ox)

Hom(C",I') — Hom(N",I') — Hom(M",I') — Hom(C"[-1],I")

showing that in order to prove the claimed bijection, it suffices to prove
that for any acyclic complex A°, any morphism A" — I" is homotopically
equivalent to zero. This homotopy is constructed by induction using the
boundedness of both A" and I", so that for any index less than a sufficiently
small n, such that both A™ and I™ are zero, the homotopy is of course given
by the zero morphism.

Now suppose to have homotopy h’/ : A7 — I/ between ¢ and 0 for every
j < n. Let’s build A"+

An+1

An—l A"
pn—1 B //’
/ lg” % lg" -
v
In—2 >In—l

> I

Consider the morphism
g —diT I AT — I

and let’s prove that it’s well defined on the quotient A™/Imd"~!, that is,
(9" — d7~'h™)d"~' = 0. This is just the computation

gndnfl o d?—lhndnfl — d?—lgnfl . d}t—l(gnfl . d?—2hn71) —
dnfl(gn—l . gn—l + dn72hn—1) _ dnfldanhn—l =0
T I =4y 4 =
Thus, one can consider, using the isomorphisms induced by the differential
d: A" — A+l
A" /Imd" 1 =2 A"/ Kerd" = Imd"

the morphism A"*! induced by I™ being injective
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A"/ Im(d"!) —=— Im(d") —— A"+!

- ’hn+1
I &7

such that h"H1d" = g™ — d?ilh". That is exactly what we want for h to be
homotopy between g and 0. O

Remark 3.6.12. Dually, one can prove that if P and M" are bounded
above complexes of Ox-modules, with P’ projective for every integer j,
then the natural morphism

HOHIK(A)(P', M) — HOHID(A)(P', M)
is an isomorphism.

Theorem 3.6.13. Let I;, I, be bounded below complexes of injective Ox -
modules, and suppose I; = I in D(Ox). Then, for every bounded below
complezx of Ox-modules N*, one has

Hom (N',I;) = Hom (N', I5)

Proof. Let the isomorphism I; = I, be represented, thanks to Proposition
3.1.17, by a pair of quasi-isomorphisms

I & M2

Thus, recall the claim proved in Lemma 3.6.11, giving that the morphism
M — I induces isomorphism Homy o) ([1,15) = Homg o) (M, 15) by
precomposition with ¢;. Consider then the morphism f : I}y — Iy corres-
ponding to io, and observe that the relation fi; = is, as well as the fact that
HP is a functor for every integer k, tells us that f also needs to be a giso.

Let’s prove then Hom (N, f) to be a quasi-isomorphism. For any open
U C X consider the complex Hom (N, I;)(U), whose n-th cohomology can
be computed using Corollary 3.6.4 and Proposition 3.6.11 as

1%

H"(Hom'(N", IT)(U)) = Homk o) (N'|v, Ii [n]|v

I

)
Homp o) (N'|v, I1[n]|v) = Homp o) (N'|v, I3[n]|v)
Homg o) (N'|v, I[n]|v) = H"(Hom' (N, I3)(U)

~—

Therefore, is induced isomorphism on cohomology sheaves. O

Observe that the same argument of the proof above proves the following.
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Proposition 3.6.14. Let N° be a bounded above complexr and P° — N a
quasi-isomorphism with P a bounded above complex of projective modules,
and M" a bounded below complex with M* — I' a quasi-isomorphism with I’
a bounded below complex of injective modules. Then, the induced morphisms

Hom (P, M) — Hom (P, I") «— Hom (N, I")
are quasi-isomorphisms.

Proof. Take a generic integer n and an open U C X and consider, thanks
to the claim proved in Lemma 3.6.11, the isomorphism

Homg o,y (N'|v, I'[n]|v) = Homg o) (P |u, I'[n]]v)
Thanks to Lemma 3.6.11, this isomorphism expands to an isomorphism
Hompo,)(N'|v, I'[n]|v) = Hompo,) (P |u, I'[n]|v)
Now, Corollary 3.6.4 gives isomorphism
H"(Hom (N, I')(U) = H"(Hom (P, I'))(U)
proving that the morphism Hom (N, I') — Hom (P, I") induces isomorph-
ism on cohomology sheaves.

The second part is proved using a dual version of the claim proved in
Lemma 3.6.11, i.e. the fact that the natural morphism

HomK(@X)(P',M') — HomK(OX)(P',I')

is isomorphism. Then, Remark 3.6.12 extends this to an isomorphism
HomD(OX)(P',M') — HomD(oX)(P',I')

and the argument is the same as above. O

Remark 3.6.15. The previous proposition allows to compute RHom(N", M)
by projective resolutions P° — N as Hom' (P, M").

Let’s now observe that the adjunction holds at the level of the derived
categories.

Theorem 3.6.16. For complexes of Ox-modules K*, N* in D™ (Ox), M-
in DT (Ox) it holds

RHom(K',RHom(N",M")) = RHom(K " N, M")
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Proof. Let’s consider a resolution M* — I' by a bounded below complex
of injective modules, and F* — N a resolution by a bounded above com-
plex of flat modules. Observe that RHom(N',M') = RHom(F",M") =
Hom (F",I") is again a bounded below complex, because it suffices to con-
sider n < min{j|I’ # 0}—max{k|F* # 0} in order to get that Hom™(F",I') =
[THom(F¥, I*™) has each factor equal to 0.

k

Moreover, let’s prove that Hom ' (F", I") is a complex of injective modules
yet, so that it will be RHom (K", Hom (F",I')) = Hom (K", Hom (F",I")).
Recall that to be injective for an Ox module @ is the same as to say that
the functor Homo, (—, @) is exact. Thus, consider for any pair of indexes
k, 7, the usual adjunction in order to get isomorphism of functors

Homox(—,Hom@X(Fk, Ij)) = Homo, (— Roy Fk, Ij)

and observe that the right hand side is exact, because it is composition of
the functors — ®p, F* and Homo, (—, I/) which both are exact for flatness
of F* and injectivity of I7. Therefore the left hand side is also exact, that is,
for any pair of indexes k,j the module HomoX(Fk, I’) is injective, and so
is for every n the module Hom™(F",I"), being product of injective modules.

Now, we reduced to prove the isomorphism in the non-derived case, so
that we can use Proposition 3.6.6 in order to get

12

RHom(K ,Hom (F",I')) = Hom (K", Hom (F",I))
Hom (Tot' (K* ® F*),I') = RHom (K" @" N', M")
O

Remark 3.6.17. As a special case, Theorem 3.6.16 provides what we claimed

about RHom(N", —) being right adjoint to —®“N", at least for the bounded

case, where they actually restricts to functors in opposite directions.
Consider in fact the isomorphism

H(RHom(K', RHom (N, M"))(X)) = H(RHom (K' ®" N', M")(X))

which becomes, taking a bounded below resolution M* — I’ by injective,
and a bounded above resolution F* — N by flats,

HY(RHom(K", Hom (F',I'))(X)) = H(Hom(K ®@" N*, I')(X))

Again, as in the proof of Theorem 3.6.16, one can observe that Hom(F",I")
need not to be resolved, since yet it is a bounded below complex of injective
modules. Hence the isomorphism becomes

HY(Hom (K, Hom (F",I'))(X)) = H(Hom (K ®" N",I')(X))
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to which we can apply Corollary 3.6.4, in order to get
Homp (o) (K, Hom'(F",I')) = Homp o) (K* @“ N, I')

which clearly gives, since resolutions are isomorphisms in D(Ox), the ad-
junction isomorphism

Hompo ) (K", RHom(N", M")) = Homp o, (K" @“ N', M)

Remark 3.6.18. All the constructions given for the derived tensor product
and the inner Hom can be generalized with a bit more of work to unbounded
chain complexes. Our attention in the next chapters, however, will be drifted
to a particularly nice subcategory of D(Ox) which will in fact be equivalent
to a subcategory of the bounded derived category D*(Ox).
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Chapter 4

Perfect complexes

As we’re going to see, the spectrum construction is a very general tech-
nique associating a locally ringed space to any (essentially small) triangu-
lated category equipped with the structure given by a symmetric tensor
product. Our aim is, however, to show how it works in a specific case, that
will lead us to reconstruct a scheme X starting from the category of the so
called perfect compleres on X. Perfect complexes are, roughly speaking, an
enlargement of the concept of bounded complex of vector bundles, obtained
refining the huge generalization consisting of the complexes of O x-modules.

Perfect complexes on a scheme X will form a triangulated subcategory
of D(Ox) in which we are allowed to use general results about derived
categories and derived functors (especially the derived tensor product ®I@X)
but still being able to compute them without much trouble, since perfect
complexes will locally be, up to quasi-isomorphism, complexes of (locally)
free, and hence projective, Ox-modules.

4.1 Truncations and inductive construction

One of the main tool that we are going to use in order to deal with
construction of complexes in the derived category is Lemma 4.1.9, which
under rather technical hypothesis will provide, given a morphism of com-
plexes, the existence of complexes inductively defined, quasi-isomorphic to
the codomain and through which the given morphism factors injecting the
domain in it. One reason why we care about this result is that the complex
inductively defined will be a complex of objects in a general additive sub-
category of an abelian category, if the domain is, while the codomain may
be taken in a subcategory of cohomologically bounded above complexes of
the ambient abelian category.

Definition 4.1.1. A morphism f : A" — B’ in the category of complexes
Kom(A) of an abelian category A is called n-quasi-isomorphism (or n-
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qiso, for short) if the induced morphism H'(f) : Hi(A") — H!(B’) is an
isomorphism for every integer ¢ > n and an epimorphism for i = n.

Remark 4.1.2. A morphism f : A~ — B’ in the category of complexes
Kom(A) of an abelian category A is a quasi-isomorphism if an only if it is
an n-quasi-isomorphism for every integer n.

Moreover, are defined the following operations on complexes.

Definition 4.1.3. Let A" be a complex, with differential d, in Kom(A) for
an abelian category A. Define the standard trucation ™ = 72" A" to be the
complex

- —— 0 — Coker(d™ 1) Artl
and similarly, 7S" A" is the complex
e A — s Ker(d?) —— 0 —— -+

Moreover, in a naive way we get the stupid truncations o = o="A" to

be
0 A" Artl
and 0S"A" = A" JoZ" L A

S Al An 0

Remark 4.1.4. In the definition of the standard truncation 7"A", the
morphisms Coker(d"~!) — A"~! is defined by the pushout property for
the map d™:

An— 1 An An+1

l l T

0 —— Coker(d™ 1)

as well as, dually, the map A"~! — Ker(d") defining 7<" A" is given by the
pullback property for the map d”~!.

Remark 4.1.5. Both ¢ and 7=" define filtrations of the complex. That is
because there are monomorphisms

00— - —0"A —o" 14— ... A
and monomorphisms
0— - — 754 — 7Sl A

Hence, since these are all monomorphisms into A°, we can think of them as
subobjects.
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Proposition 4.1.6. Truncations T and o define functors from the category
of complexes of an abelian category to itself.

Proof. Let’s prove that if f: A* — B" one has 7" f : 7" A" — "B’

- —— 0 — Coker(d} ") Antl
J l an+l
- —— 0 — Coker(d}y ") » Bl

The non obvious morphism is f : Coker(d’; ') — Coker(d; '), which is
given by the pushout property of Coker(dz_l) for the map A" — B" —
Coker(d% ) = B"/Im(d}; )

Anl An B" » Coker(dy 1)

=

0 —— Coker(d’; 1)

where the first row composite is actually zero because f”dZ_I(A"*I) =
d%flfn—l(An—l) C Im(d%ﬁl).

The fact that this defines a chain morphism is a consequence of the fol-
lowing computation. Call w4, wg the projections of respectively A and B on
the cokernel of the respective differentials @', and call r4 : Coker(d’; ') —
A" g : Coker(dy ') — B™*! the morphisms in Remark 4.1.4. The situ-

ation is expressed by the diagram

ATL
m

Coker(d’; 1)

- e

—1 TB
Coker(d ) Bt
2
in which the commutativity of the central square is given by the computation

rpfra =rprpf" =dpf" = f"dy = f"rana.

Eventually, since 74 is epimorphism, this gives the desired commutativity
rpf = f"ra. O

We now state and prove two categorical lemmas, modeling the situation
that appear when we consider the category of Ox-modules and its full sub-
category of vector bundles.

B?’l
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Lemma 4.1.7. Let A be an abelian category and B C A a full additive
subcategory. Suppose B to be closed under taking kernel of epimorphisms.
Let C" be a bounded above complex of objects in B and let n be integer such
that H®(C*) = 0 for k > n. Then, the object Z"(C") = Ker(C™ — C"*1)
is in B, and the complex C" is quasi-isomorphic to the truncated complex
TSC" given by

— 2 vl M) —— 00— -

Proof. Let n be such that H*(C") is zero for every k > n and since C"
is bounded above, let N integer be such that C? = 0 for every p > N.
The proof is by induction on IV by observing that the theorem is trivial for
N < n: in this case in fact C" is

con —— Nt » CN >N[J)r1 » 0
and Z"(C") = Ker(C™ — C™*1) = C" is surely in B. Clearly in this case
the complex C" is actually the same as its truncation.

Suppose then N > n and the theorem to hold, by inductive hypothesis,
for bounded complexes of objects in B starting vanishing before N. Since
N > n, it holds HY(C") = 0. Hence, from the fact that Ker(CV — CN+1) =
CN, we deduce that the same is the image of CN~1 — CV, which is then
an epimorphism. By our assumption we get that its kernel ZV~1(C") is an
object in B as well. This leads us to consider the shorter complex C"* =
7SN=1C" which is again made of objects in B:

s CN2 —— ZN () 0 0
and is quasi-isomorphic to C":

——s VN2 — N2 cN > 0

Thus C” satisfies the hypothesis of the theorem, and being shorter than C"
leads to conclude by induction that for the fixed n one has that Z™(C") is
in B. Moreover it’s clear that Z*(C") = Z¥(C") for every k < N — 1, in
particular for k = n. Together, we get that Z"(C") = Z™(C") is in B.
Eventually, there are quasi-isomorphisms C* ~ C" ~ 7S"C" ~ 7SPC"
given respectively by what observed before, the inductive hypothesis, and a
the general fact that truncations of quasi-isomorphic complexes are quasi-
isomorphic. In fact, if C* — C” is a morphism of complexes, one induces
a quasi-isomorphism 75"C" — 7="C" because Z"(C") is actually mapped
into Z"™(C"). O

Now, observe that we can apply Lemma 4.1.7 when dealing with the
category of locally free Ox-modules.
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Remark 4.1.8. Let ¢ : FF — G be an epimorphism of locally free Ox-
modules. Then, there is an exact sequence

0 — Ker(¢p) — F — G —0

and therefore, since the functor St, preserves both colimits and finite limits,
an exact sequence, for every x € X,

0 — K=Ker(¢p)y — F, — G — 0

Now, G, is a free Ox ;-module, and hence it is projective. Therefore, the
exact sequence splits, and we get that K is a direct summand of the free
module F,. That is equivalent of K being projective. Now, since K is a
projective module over a local ring, it is also free, as a consequence of the
Nakayama Lemma.

Therefore, since any stalk is a free module, the sheaf of modules Ker(¢)
is locally free.

Lemma 4.1.9 (Inductive construction). Let A be an abelian category and B
an additive subcategory. Let C be a full subcategory of Kom(A) and suppose
it to be closed under taking quasi-isomorphic objects. Suppose that every
complex in C is cohomologically bounded above. Suppose that any bounded
complex D of objects in B is in C, and that C contains, for any D" bounded
complex of objects in B, the mapping cone of any C-morphism D — C",
for any C" in C. Moreover, suppose the following condition to hold:

(%) for any integer n and any C" in C such that H*(C") = 0 for k > n and
any epimorphism A — H"1(C") in A, there exists D in BC A and
a map D — A such that the composite D — H"~1(C") is epimorphism
n A.

Then, for any D" in Kom™(B)N C, any C" in C and any map x : D — C"
there exists a D" in Kom™ (B) N C, a degree-wise split monomorphism a :
D' — D", and a quasi-isomorphism x’' : D" — C" such that v = 2'a.

Proof. The idea of the proof is to construct D" by induction. More precisely,
we define for a sufficiently large n a bounded complex in B suggestively called
0" D" (which will actually be a fortiori the n-th truncation of D”") and maps
of complexes called 0"a : 0"D" — o"D" and o"x’' : ¢"D" — o"C" such
that:

(i) o*a is a degree-wise split monomorphism for k > n
(i1) o™z = o"a'oc™a
(#41) o™’ composed with the inclusion ¢"C" — C" is a n-quasi-isomorphism

o"D"" — C".
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Then we will suppose for n to have constructed a bounded (below by n,
above by whatever) complex called 6" D" and maps c"a and o™’ satisfying
conditions (7)-(7i7), and the inductive step consists of defining the previous
ones. That is, we will find a complex ¢” !D" and morphisms ¢" la :
o" 1D — o™ ID", o™ l2’ o™ ID" — 0" IO satisfying conditions (4)-
(7i1) above with n replaced by n — 1.

It will eventually be clear that the n-th truncations of the object and
morphisms constructed in the inductive step will be the assumed existing
object and morphisms in the inductive hypothesis. This leads eventually to
consider the diagram (Z,>) — Kom(A) given by the family {¢"D" },cz an
call its colimit D”*. The analog has to be done with the morphisms ¢"a and
o™x’, and check that they works as desired.

In order to prove the base step, look at x : D° — C", defined with D"
bounded above complex of objects in B lying in C, while C" is in C and
hence cohomologically bounded above. So, consider n such that both D-
and C" are cohomologically 0 above n. For such a n set ¢"D" = o¢"D",
o"a : o"D" — ¢" D" the identity map and "z’ = ¢"z. Among conditions
(7)-(4i7) the unique not completely trivial is (iii) In fact, isomorphism on
cohomology for k > n H¥(D') — H*(C") gives isomorphism in cohomology
for £ > n for the morphism oc"x

0 D" y DML —— ...
0 y O y O

but this doesn’t define isomorphism, and in general neither epimorphism, in
degree n. However, condition (iii) holds, because in order to get an n-qiso
it suffices to compose with the inclusion ¢"C" — C", since in degree n the
composition will give on cohomology the epimorphism Ker(d") — H"(C") =
H"™(D") = Ker(d™)/Im(d"~!). This concludes the base step.

Now, suppose (7)-(7i7) to hold for n. To fix notation, call d the differential
in D and 9% for k > n the differential in o™ D". Let M" be the mapping

cone of the n-qiso o™ D" — C", that is
Cn—2 (o_nDl)n @ Cn—l (O.nD/)n+1 o Oon

By our inductive assumption ¢”D” is a bounded (below by n, above by
whatever) complex of objects in B, hence, by assumptions of the theorem is
in C, as well as the mapping cone M". Considering the long exact cohomo-
logy sequence

H™(6"D") — H™(C") — H"(M') — H"'(c"D")

= HPY(CY) — H"YY (M) — H" (0" D) = H"2(C")
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where the first arrow is epimorphism, provides H*(M") = 0 for every k >
n. Now since M" is in C and H¥(M") = 0 for k > n, considering the
epimorphism Z"~! — H"~Y(M") leads to apply the hypothesis (), so that
there exists an object D in B C A and a map D — Z"~'(M") such that the
composite D — Z"~1(M") — H"1(M") is epimorphism in A. Recall that
the differential in M is given by

8}\‘[1 . Mn—l — (JnD/-)n a Cn—l s M" = (UnD/->n+1 oo

as the matrix _2 , n_Ol .
—o"z" di (c)

Claim: Z"~1(M") is the pullback of the diagram
Z"(e"(D"))

lcr”x’
dc

cnt ey (e

In order to make sense of it, observe that o"a’ : ¢™(D") — o"C" is a
chain map, so actually maps kernel into kernel. Moreover, pullback arrows
are the projections on the summands of the mapping cone restricted to
the kernel of 9", Note that over Z"~!(M"), the differential 0}, *(a,c) =
(—=0™(a), —o"™a'(a) + di%'(c)) is zero, so is the differential 9"(a), as well
as it holds dy !(c) = o"a'(a). Hence is well defined and commutative the
diagram

Z" Y M) —— Z"(c"D")

L

Cnfl y cn
C

In order to see that it’s a pullback, note that an object () together with
maps f : Q — Z"(¢"D") and g : Q — C™ ! making the relative square
commute, forces Q — Z"~1(M") mapping q — (f(q),9(q)) to be the unique
that composed with the projections provide f and g.

Thus, it is Z""1(M") = Z"(0™D") X gn(c-) C"~'. This helps us in the
following way: define the object (6"~ 1D")*~! := D" 1@ D, and let it extend
the complex o™ D"

8n+1
-

0 0 (O_nDI-)n o s (O_nD/-)nJrl
one step below by

0 (O_nle/-)nfl on—1 (JnD/-)n o (JnD/-)nJrl ontl
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The map 0"~ ! is defined on the first summand D" ! as
(O,na)ndnfl :anl - D" (o,nD/-)n,

and on the second summand D, thanks to the map D — Z" (M), as the
composite

D —— Z™(0"D") X gn(cy C"F —— Z"(¢"D") — (¢"D")"

Call this new extending complex ¢" ' D". First of all, let’s check that the
map O actually defines a complex, that is 9"9"~! = 0. On the first sum-
mand D"~! the component of 9"~! composed with 9" is 9"(¢"a)"d" ! =
(o™a)"1d"d"1 = 0, while on the second summand 15, by definition 9"~!
factors through Z"(¢™D"), hence composing with 9" is zero again.

Let’s define the arrows. Set 0" 'a : 0" 'D" — o™ D" to be o™a for
every degree k > n, and (6" ta)" 1 : D" — (o7 1Dl = pnl g D
is just the split monomorphism given by the inclusion. The arrow ¢ 'z’ is
as well defined to be o™z’ in degree greater than n, while

O'n_ll‘/ . Dn—l @D N Cn—l

is defined to be z" ! : D" ! — C" 1 in the first component, and D —
Z"n=1 — C"~! on the second component, where Z"~1(M*) — C"! is the
pullback map in the previous pullback diagram.

Now a bunch of things need to be checked, first of all that these two
morphisms define chain maps. The only nontrivial part is the commutativity
of the squares from degree n — 1 to degree n. However, it’s clear that the
diagram

——— D! d___, pn >

(" ~tay | |y

pr-l D D g (O_nle/-)n ;

is commutative because 0 is defined on the first component exactly as
(0™a)™d™~!. For what concerns the morphism 0"~ !z’ one has the diagram

pn—1 ® D 9 (O_nD/)n

(O.nflxl)nfll J(Unx/)n
Cn—l dc cn

which is commutative since both squares

o"a)™ n—1 N
Dn—f ) d (O.nD/-)n D (UnD/-)n
xn—ll i(o_nx/)n and l l(o_nxl)n
Cnfl do cn Cn—l do cn
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commute. The left one because by inductive hypothesis holds true that
(o"z")*(o"a)"d" "t = z™d""!, and this is df; '2""! being = a chain map.
The right one commutes because both the morphisms from D by definition
factors through Z"~1(M"). In a diagram is

(O.nD/-)n

l(o.nz,/)n

cn— 1 do (C ) c cn

where each square and each triangle commute, and so does the exterior
diagram.

It remains to prove (ii) and (4ii). Being (6" 'a)"~! the inclusion D"~ —
D" 1@ D, it’s clear that (0" 12/)" (0™ )" is just the first component
of (6" 12’)"~! which by definition is 2"~ ! = (¢"lz)"~ 1.

In order to prove that the composition

n—1,./

o ID L sl s

is an n — 1-qiso, consider its mapping cone M"

Cn—3 s pn—1 D E D Cn—2 (O.n—th)n D Cn—l

N

and recall that by (x), existence of D comes with a morphism f : D —
Z"Y(M") such that

D— 2z (M) — H" (M) = Z"" (M")/B" (M)

is epimorphism, where we denote as usual with B¥(M") the image of 8’54 :
MF — M*+1. Then if we call s and ¢ the pullback maps in

Zn—l(M-) % Zn(D/) C D"

(| o

Cnfl dc Zn(c)
so that "2 : D" '@ D@ C" 2 = (6" 'D")* ® C"!, which by definition
_8n—1

i ted by th tri
is represented by the matrix <_g"—1$’ de

> can be written decomposing
~ —_an J—
the arrows from D"~ 1 @ D as <—x2_1 _i}c dOC>
Claim: O maps epimorphically onto Z"~!. It suffices to prove that

—sf 0 > Thanks to

for the map restricted to the last two summands < tfd
- C
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the epimorphism D ER Zn=Y (M) — H" (M) there is an epimorphism
D@ B"%(M') — Z"Y(M") which is f in the first component and the
inclusion in the second one. That means there’s an epimorphism (f, ) :

DaM™ 2 — Z"=1 Now observe that M™ 2 = C"2, and that 9y, = (d() )
C

Hence the epimorphism (f,dys) composed with <§) 7Y M) - Do

C"1is, up to signs doesn’t affecting the image, the restriction of 9, showing
that & maps onto Z"~Y(M"). This proves the claim.

Observe that Z"~*(M") is the same as Z"~1(M"). In particular we get
H" (M) = 0 as well as H*(M") = H*(M") = 0 for k > n. Thus looking
at the long exact cohomology sequence for the mapping cone

o — H" 0" D) — HYHC) — H" N (M) =0

— H"(6""'D") = H™(C") — H"(M') =0 —> - --

we get that H"~1(¢""1D") — H"1(C") is epimorphism and that the map

on1pr T nelor s 0 is (n — 1)-giso. This concludes the inductive
step.

Eventually, we define D" to be the colimit of all the 6" D" with inclusions
between them. Observe now that in general, for a complex X", truncations
0" X" for n running through integers come with inclusion monomorphisms
in 2 0" X C o™X as well as 0" X" C X, and this provides a limiting
cocone structure for X . In fact, given a family of morphisms f, : 6" X" —
P, is clearly defined a unique chain map g : X° — P’ making gi, = fn,
that is ¢" = f'. That means we get also morphisms a = colim(c"a) and
' = colim(¢™2’), which clearly are as desired, because they are on each
component. ]

Remark 4.1.10. A porism of theorem 4.1.9 is given observing that for a
fixed integer m, if we assume the hypothesis to hold for any n > m, the
inductive step can be applied until to construct a complex ¢™ D" with the
corresponding morphisms. More precisely, we get that given a bounded
above complex D of objects in B and a map x : D° — C" such that the
condition (*) holds true for the n > m, then there are a complex ¢ D"
and morphisms c™a : 0™D" — oc™D" degree-wise split mono and o™z’ :
o™D" — ¢™C" such that the composition c™D" — ¢™C" — C" is quasi-
isomorphism, such that o™z = o™a'c™a.

Moreover, observe that we don’t need to ask D™ to be in B for any n,
but just for those n > m, so that any added piece of the truncation until

the lower one ¢™D’ is build up from objects in B.

Remark 4.1.11. Consider the assumption of Lemma 4.1.9 and assume,
moreover, x : D° — C" to be a m-qiso for some integer m.
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Claim: then a can be taken to be such that a" : D' — D" is isomorph-
ism for n > m.

In the proof of lemma, observe that at the base step, for sufficiently large
n, we take the map o™a to be in fact the identity, and so c"x = o™x’. In the
inductive step, this can’t be done, because in general D # 0. However, the
assumption on x of being m-qiso and the new inductive hypothesis c"z =
o™z’ leads to observe that, if n > m, the exact cohomology sequence for the
mapping cone M of "z’ = o™z becomes

H"(¢"D)—H"(C") — H"(M') — H""'(¢"D")
= H'WH(C) — H™H (M) — H™(0"D") —> H™F(C7)

with the first arrow epimorphism, that is H" (M) = 0 for every n > m.
In particular the epimorphism Z" (M) — H"(M") = 0 tells us that at any
n-th step, the summand D of D' = D" & D can be taken to be 0. Thus,
the inclusion a” : D™ — D™ @& D is isomorphism for every n > m.

4.2 Pseudocoherent complexes

Definition 4.2.1. Let X be a scheme and m € 7Z, a complex E° of Ox-
modules is strict m-pseudocoherent if E* is a locally free Ox-module of finite
rank for every i > m and E' = 0 for sufficiently large i.

E" is strict pseudocoherent if it’s strict m-pseudocoherent for every m €
Z.

In other words, a strict pseudocoherent complex is a bounded above
complex of vector bundles, while in a strict m-pseudocoherent we don’t
require conditions for the sheaves in degrees lower than m.

Definition 4.2.2. A complex E° of Ox-modules is strictly perfect if it is
strictly pseudocoherent and bounded below. That is: E" is a bounded com-
plex of vector bundles.

Remark 4.2.3. Recall that the stalk of a quotient sheaf (F/G), is the
quotient of stalks Fj/G,. That is true by the isomorphism between the
stalk of any presheaf and the stalk of its sheafification, and by the fact that
taking filtered colimits over the category of presheaves is an exact functor
into the category of abelian groups. More precisely, it holds

(F/G). = Colim(F(U)/G(U)) = ColimF(U)/ColimG(U) = G/ F

Moreover, the following will be needed below

Proposition 4.2.4. Let X be a scheme and F, G be locally free Ox-
modules, with F of finite type. Then, a morphism ¢ : F, — G, between
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stalks at x € X can be extended locally. That is, there exists an open neigh-
borhood V' of x and a morphism of Oy -modules F|y — G|y inducing ¢ on
its stalk at x.

Proof. The morphism ¢ is given by ®¢; : @Ox  — G, where ¢; : Ox o, —
k k

G,. Thus, consider ¢;(1) € G, and extend it to a small neighborhood W; 5
x, that is, let t; € G(W;) such that (¢;), = ¢i(1). Now, recall that there is a
bijection between sections ¢ in G(W;) and morphism ¢ : Oy, — G|, hence
the family {ti|nw-} (which we will still call {¢;}) determines a morphism

@(’)X\DW — G\QW Let’s call V = ﬂW and assume it, up to

1ntersect Wlth a tr1v1ahzlng neighborhood of z, to be trivializing. Therefore,
the morphism @t EB(’)V — G|y is actually a morphism Fl|y — Gl|y.

Eventually, it’s clear that it induces the original morphism on stalks. Its
stalk is, on each component, ((€©%;);); = (£;) (since colimits commutes with
7

colimits), which is the map Ox, 3 a — a(t;)z = ¢i(a) € G,. O
Lemma 4.2.5. Let X be a scheme and A" be a complex of Ox-modules with
cohomology H¥(A") = 0 for every k > m-+1. then H™(A") is an Ox-module
of finite type if and only if for every x € X there exists an open neighborhood

U of x and a quasi-isomorphism between A'|yy and a strict m-pseudocoherent
complex on U.

Proof. H™(A") being of finite type means that locally (for every x € X
there’s U neighborhood of x such that) there is an epimorphism

Poxly — H™(A)ly
k
Look at the induced epimorphism on stalks @Ox, — H™(A"),. Now
k
POx ; is a free Ox z-module, hence is projective. Thus, the map on stalks
k

lifts to the quotient projection Z™(A*), — H™(A), = Z™(A"),/B™ 1(A'),
(see Remark 4.2.3), that is

ZM(A),

-
-
P
P
.
-
.
P

@OX@ m— Hm(A')x
k

Hence, by Proposition 4.2.4 we get a morphism @POx|y — Z™(A")|y C

k
A™|y, for a suitable small neighborhood U of z. Since H™(A’) is of finite
type, by shrinking U we can also assume that this open neighborhood of
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x is such that composing with quotient projection gives the epimorphism
POx|y — H™(A")|y. Thus, we have a morphism, call it x, of complexes
k

0 POx|v 0
k

L

e Ay —— Ay ——— AT ——

inducing isomorphism in cohomology for i > m + 1 (by hypothesis on A")

and epimorphism on m-th stage. This leads us to use Lemma 4.1.9 in order

to deduce that there exists a complex E° on U and a quasi-isomorphism

2+ E' — A’ly. By Remark 4.1.11, since z is a m-qiso, this inductively

constructed complex E° is isomorphic, in degrees greater than m, to the

complex --- — 0 = POy — 0 — ---, that is E™ = @Oy ad E¥ = 0 for
k k

k > m. Hence, E" is strict m-pseudocoherent and quasi-isomorphic to A'|y.

Conversely, suppose A to be locally quasi-isomorphic to a strict m-
pseudocoherent complex, that is for any x € X there exists U open neigh-
borhood of z and a strict m-pseudocoherent complex A;; quasi isomorphic
to A’|y. Being strict m-pseudocoherent, A;; is a bounded above complex,
and if we consider its truncation ¢™A;; we get a bounded above (and below)
complex of finite dimensional vector bundles such that for any & > m + 1 it
holds (see Remark 4.2.6 below)

H*o™Ay) = HY(Ay) = HY(A'|y) = HY(A) |y =0,

by our assumption for such a k to have H*(A*) = 0. The idea is to use Lemma
4.1.7 with A = Mod(Ox) and B its full subcategory of finite dimensional
vector bundles, giving that Z™ (0™ A};) = Z™(Ay) is a finite dimensional
vector bundle, hence of finite type. Then, H™(A;;) = H™(A'|y) being a
quotient of Z™(Ay;) is of finite type as well. That means H™(A")|y is of
finite type, and so is H™(A"). O

Remark 4.2.6. In the previous proof we made use of the fact that for a
complex of sheaves A" it holds H*(A'|yy) = H*(A’)|y. That is because both
taking kernel and cokernel commute in this sense with restrictions. While
it is obvious for kernel, that Ker(A — B)|y(V) = Ker(A(V) — B(V)) =
Ker(A|y — B|y)(V), this is less trivial for Coker(A — B), defined to be the
sheafification of the presheaf U — Coker(A(U) — B(U)). This is because,
in general, the sheafification I'Ap|,, of the restriction of a presheaf F' is
isomorphic to the restriction of the sheafification I'Ap|y. In order to see
that, consider the universal morphisms n : F|y — T'A Fly and ¢ : F — T'Ap.
Restricting ¢ to U provide a map F'|y — I'Ap|y, and being 'Ap|y a sheaf,
we find by universal property a morphisms I'Ap,, — I'Ap|y making the
diagram
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F|U L> FAF|U
dlu v
FAF|U

to commute. Now, the sheafification morphisms (and their restriction) are
isomorphisms on stalks, thus, taking any stalk at x in the previous diagram
shows that the map (I'Ag|, ). — (Ap[y): is also isomorphism, and so is
the sheaf morphism I'Ag, — I'Ar|y.

Lemma 4.2.7. Let U be a scheme and x € U. Let F", G', E° be complex
of Oy -modules with morphisms F* — G — E°. Then, under the hypothesis
in any of (a),(b) or (c) below, there are V. C U open neighborhood of x, a
complex E" of Oy -modules with maps d : F'|ly — E" and ¢: E" — G|y
such that cd = aly

E"
F T> G
I
E

SH

and conclusion in respectively (a), (b) and (c¢) holds.

(a) If both E* and F" are strict m-pseudocoherent and the truncation 7™b :
TG — T™E" is qiso, then E” can be taken to be m-pseudocoherent
and c to be qiso

(b) If E" is m-pseudocoherent, F" strictly perfect and the truncation T™b :
TG — T™E" is qiso, then E" can be taken to be strictly perfect and
c to be m-qiso

(¢) If both E* and F" are strictly perfect and b: G* — E" is qiso, then E”
can be taken to be strictly perfect and c to be qiso.

Proof. Let’s start observing that in any of cases (a), (b) or (¢), F" and E*
are bounded above. So, since 77*b is m-qiso, G is cohomologically bounded
above by some integer k. That means we can, up to quasi-isomorphism,
replace G* with 7<FG. If we prove any of the thesis in (a),(b) or (c) for such
a replaced G°, we can get the original statement composing ¢ with the qgiso
<kGr = G

Now fix m such that hypothesis holds. Let us pass to stalks and apply
Lemma 4.1.9 with the following categories. Let:

A be the category of Op ,-modules,

B the category of finitely generated free Oy z-modules,
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C the category of complexes of objects in A having a map b into a
strict m-pseudocoherent complex of O ,-modules (that is: a bounded above
complex of Oy z-modules free in degrees k > m) such that 7b is giso.

These three categories satisfy the hypothesis of the Inductive Construc-
tion Lemma: any object in C is cohomologically bounded above as its 7™
truncation is quasi-isomorphic to a strict m-pseudocoherent complex, which
is by definition bounded above, and if D" is a bounded complex of objects
in B, then it is clearly in C being itself strictly m-pseudocoherent. In order
to see that C contains mapping cones of morphisms D° — C", consider,
as C" in C, a strict m-pseudocoherent A" and a map C° — A’ such that
TmC" — ™A’ is qiso. Its mapping cone is clearly mapped in each degree
DF+1 g CF, with identity in the first component, to D1 @ A* which is
again a strict m-pseudocoherent complex as D" is perfect, and truncation
is clearly still giso. Eventually, condition (*) holds true by considering the
quasi-isomorphism 7™b : 7™C" — 7™ A" with A", and hence 7™ A", strict m-
pseudocoherent, so that by Lemma 4.2.5 H™ (7™ C") = H™(C") is finite type.
Hence there exist £ and an epimorphism from the free of finite type module
D = @Oy, — H™(C"). Thus, being D in particular projective module,

k

any epimorphism onto H™(C") serves as factorization of D — H™(C"), and
hence D in B uniformly shows (*) to hold.

Now, F, is a complex of objects which are in B in degrees k& > m,
since taking stalk of a locally free sheaf of finite type provides a finite type
free module. Moreover GG, is clearly in C. Thus Inductive Construction in
it’s form of Remark 4.1.10 applies to F,, — G, providing a bounded above
complex of Oy -modules in B which we shall call 6™ E, together with a
degree-wise split monomorphism which we call

o"dy : c™F;, — o™ E}

and m-qiso
/. .
0"y 0"E; — 0"G),

Since all of the three o™E!, ¢™F,; and ¢™@;, are bounded complex of
free modules of finite type, an argument analogous to the one in the proof
of Proposition 4.2.4 tells us that we can degree-wise locally (on an open
neighborhood V; of = for each degree i) extend the complex given by the

o™ E" = @Oy . to a strict perfect complex having degrees o™ E" = @Oy,
k:i ki
as well as the morphisms ¢"d, and ¢""c, to morphisms of Oy-modules ¢""d

and 0™ c on a suitable small neighborhood V' = V; of x, where bounded-

3
ness allows to do that, such that blyc™c : ¢™ : E" — E’|y is a quasi-
isomorphism. In order to see that the extended map o™E" — G'|y is
an m-quasi-isomorphism, we use the fact that 7"b is qiso, hence so is the
extended o™c: c™E" — G'|y.
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Then, in order to build the rest of E”, as well as of morphisms d and
¢, apply again Lemma 4.1.9 without any requirement on B, that is A =
B = Oy-modules, and C the category of cohomologically bounded above
complexes of Oy-modules. The resulting E” is strict m-pseudocoherent
since 0" E" is strictly perfect. this concludes the proof of (a).

In order to prove (b), since we want E” to be strictly perfect, consider
o™E" previously constructed over V' C U together with the map ¢ F"|y —
o™E". Consider also the morphism ¢ F* — F", and call the pushout of
these maps E”". Consider then the pair consisting of @ : F* — G and the
composition ¢™E"” — G'|y given by the inclusion ¢™G'|y — G|y after
o™c: E" — G'|y. This gives

UmF’|V B — F’|V

~

o
JmG"V — G’V

Is induced a map which we shall call ¢ : E" — G'|y extending ¢™¢, and
the commutativity of the lower part of the diagram says that it is an m-qiso
since both the inclusions and ¢™¢ are. In order to see that E” is strictly
perfect, observe that it’s bounded by the same bound of F*. Moreover, the
pushout of free Ox-modules by split monomorphisms is free. In fact, in for
general degree-wise split monomorphisms of complexes of free modules, the
pushout is given in each degree as

@OV (;) @OV
k h

i| |

@(’)V N ?OV D @OV /N
l

where ~ is the equivalence relation generated on each section over W C V
by i(r) ~ j(r) for every r € @Oy (W). From i and j having both a left
k
inverse we deduce that the pushout is isomorphic to @ Oy, because the
h+l—k
images of ¢ and j are the same copy of @Oy seen as submodule of @GOy

k h
and of Oy respectively.

1
Let’s eventually prove (c¢). Being both F" and E" strictly perfect, take
m integer small enough so that Yk < m + 1 we have E¥ = F¥ = 0. For such
an m, we can apply part (b) of the Lemma, which provides a strictly perfect
complex of Oy-modules E" with ¢™E" = E" (since 0™F" = F') and a
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m-qiso ¢ : E* — G'|y. Our aim is to extend E” and ¢ in degree m — 1, in
order to turn the latter into a quasi-isomorphism. Since b is by assumption
a quasi-isomorphism, we get an m-qiso b|yc : E" — E'|y, whose mapping
cone M = C(blyc) is

N E/mfl D Em72 N E/m D Emfl SN Elm+1 @Em —
but by our assumption on m we get that this is just
—0— E™m — pmtt

where the morphism E'™ — E™~1 is just —dg. Moreover, since b|yc is
m-qiso, this complex is such that H*(M") = 0 for every k > m, and we just
observed that H™ Y(M") = Ker(E™ — E'™*+1). Therefore, we can apply
Proposition 4.1.7 with B the full subcategory of Mod(Oy ) of locally free
Op-modules of finite rank, in order to get that

H™ Y (M) =z""YM") =Z2™(E")

is a locally free Ox-module of finite rank.
Now, the morphism ¢ : E” — G|y is certainly well defined on kernels,
in degree m as
" Z"™EN) — Z™(G )
Moreover, since b|y : G|y — E'|y is a quasi-isomorphism and we supposed
m such that E™ = 0, then 0 = H™(E"|y) = H™(G"|y). Therefore, the map

¢ is actually defined into Im(dg‘;l) = Z"(G"|v). Hence we have

ZmE" — Tm(dY)

~

Sl m—1
™ T~ TdG
S

Gm—l‘v

where the morphism can be lifted because Z™E" is a free Opy-module of
finite rank, and hence is projective in the category of coherent sheaves.

Now, our complex E" = ¢™E" is ready to be extended in degree m — 1
by the term E™~! = Z™E" and boundary morphism the inclusion d'%, ' :
Z™E" — E'™. This new complex E” is again strictly perfect, because
Z™E" is free of finite rank, and we can extend the morphism c¢ in degree
m — 1 by the lifted morphism found above ¢™ : ZmE" — G™ 1|,;. Now
the cohomology H™(E") is zero, just as H™(E"|y) = H™(G"|v), hence the
new morphism ¢, which is ¢ = ¢™ in degree m, induces isomorphism in
cohomology, as desired.

In degrees other than m there’s not much to check. For greater ones
we have the thesis from (b), for m — 1 the kernel of the inclusion d;’},‘l is
of course zero again, just as H™ '(G"|y), and in lower degrees the terms
themselves of E” are zeros. O

121



Proposition 4.2.8. On a scheme X, for a complex " of Ox-modules, the
following are equivalent

(1) Yz € X there exist U neighborhood of x, a strict n-pseudocoherent F"
and a qiso F* — E'|y

(2) Yz € X there exist U neighborhood of x, a strict perfect F" and a
n-qiso F* — E'|y

(3) Yz € X there exist U neighborhood of x, a strict n-pseudocoherent
F" and an isomorphism between F* and E'|y in the derived category
D(Ov)

(4) Yz € X there exist U neighborhood of x, a strict perfect F" and a
n-qiso F° — E'|y in the derived category D(Oy), i.e. there is a map
F" — E'|y in the derived category represented by a roof inducing on
cohomology epimorphism in degree n and isomorphism for later de-
grees.

Proof. (1) = (2): Suppose to have a strict n-pseudocoherent F" and a qiso
F* — E’|y. Thus on the same open set, just consider o™ F" which is perfect
and the induced restriction map ¢"F" — E'|y, being clearly isomorphism
on cohomology for degrees i > n, and epimorphism Ker(F" — F"tl) —
H"(F') = H" Y(E"|y), with kernel Im(F"~! — F™), in degree n.

(1) = (3) and (2) = (4) are obvious.

(3) = (1): Any isomorphism F' — E'|y in D(Ox) is represented by a
roof of complex maps F" - G — E’|y, where both the arrows are quasi-
isomorphisms by Proposition 3.1.17. Now, since F" is strict n-pseudocoherent,
we apply Lemma 4.2.7(a) to the qgiso b : G — F". It provides, up to shrink
U to a smaller open neighborhood V' of z, a strict n-pseudocoherent com-
plex of Oy-modules F"* and a quasi-isomorphism F” — G'|y. Hence the
composite F" — G’y — E'|y is the desired quasi-isomorphism.

(4) = (1): It’s similar to the previous implication. Let us represent the
n-qiso F* — E’|y by a pair of chain morphisms F < G — E’|y, where
the left one is as usual a qiso, while the right one is an n-qiso. Thus, being
F" perfect, by Lemma 4.2.7(c) we get, after shrinking U to a smaller neigh-
borhood which we still call U, a perfect complex F” together with a qiso
F" — G". Hence the composition F"" — G — E’|y is a n-qiso. Now F” is
strict perfect, and this is more than (1) requires, however it only provides
a n-qiso F" — E'|y, while is required a quasi-isomorphism. It helps us
Lemma 4.1.9 with A = B = Mod(Ox) and C the category of cohomo-
logically bounded above complexes of Ox-modules. Thus, apply Inductive
Construction Lemma starting from n, that is, construct inductively a com-
plex F using the base step n, which is true since we have yet an n-qiso, call
it z : G — E'|y, hence we can just consider oM = g"F" (i.e. o™a to be
the identity) and o™z’ : 0" F" — 0" E’|y to be just o”z. The composition
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o"F" = g"F" — o"E'|y — E’|y is then an n-qiso as required by induct-
ive step, because F"" — E"|y is, and this induces the same morphisms on
cohomology for degrees greater than n, while in degree n we have surjectiv-
ity since H™(F"") is quotient of H"(F"). Thus we end up with a complex
F" which is strict n-pseudocoherent because " F" = ¢™F" and F" is strict
perfect, and a quasi isomorphism J E’|y as desired. O

Definition 4.2.9. A complex E of Ox-modules on a scheme X is said to be
n-pseudocoherent if it’s locally quasi-isomorphic to a strict n-pseudocoherent
complex. That is, if any of the equivalent conditions (1)-(4) in Proposition
4.2.8 holds. E" is said to be pseudocoherent if it is n-pseudocoherent for
every n.

Remark 4.2.10. In [TT90] 2.2.7, is argued that a pseudocoherent com-
plex, being n-pseudocoherent for each integer n, admits locally a quasi-
isomorphism with a strict n-pseudocoherent complex, but such a local neigh-
borhood clearly could not be suitable for every n, giving that a priori a
pseudocoherent complex couldn’t be locally quasi-isomorphic to a strict
pseudocoherent complex.

Moreover, see again [TT90] 2.2.7, it turns out that pseudocoherent com-
plexes have quasi-coherent cohomology, and it happens to be true (see Pro-
position 4.3.13 and subsequent Remark) for complexes of quasi-coherent
Ox-modules that they are locally quasi-isomorphic to a strict pseudocoher-
ent complex. Therefore !, using a result by Bokstedt and Neeman [BN93]
Corollary 5.5, we observe that any complex E* with quasi-coherent cohomo-
logy is locally isomorphic in D(Ox) to a complex of quasi-coherent sheaves
on an open affine neighborhood U. Thanks to Proposition 4.2.8 such a com-
plex E" is locally quasi-isomorphic to a complex of quasi-coherent sheaves
F"on U via F* — E"|y. The complex F" so found is again pseudocoherent,
since for every n we can compose the isomorphisms in the derived category
E'|yr = K, for K" strict n-pseudocoherent on U’, and F* = E" |y, previously
restricted to U NU’.

Summing up, this complex F", being a pseudocoherent complex of quasi-
coherent modules, is locally quasi-isomorphic to a strict pseudocoherent G
onV CU,viaG" — F'|y, and sois E' by composing the quasi-isomorphisms

G — F"V — E‘|V
The notion of pseudocoherent complex is well behaved with respect to

the triangulated structure of the derived category D(Ox), in the sense that
they form a triangulated subcategory.

Proposition 4.2.11. If K 5 L % M — K[1] is a distinguished tri-
angle in D(Ox) and K and L are respectively m + 1-pseudocoherent and
m-pseudocoherent, then M also is m-pseudocoherent.

!Thanks to Alberto Canonaco for explaining this to me
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Proof. The idea of the proof is to use condition (2) in Proposition 4.2.8
and lift the problem on the level of strict perfect complexes. So, for the
m-pseudocoherent complex L, find an open cover {U;} and strict perfect
complexes L; with m-quasi-isomorphisms 3; : L; — L|y,. Analogously, up
to refining the open cover, find strict perfect complexes K; and m + 1-quasi-
isomorphisms K; — K|y,. We want to lift the morphism f|y, to a morphism
of perfect complexes ~; : K; — L;.
Consider then the complex C(f3;) giving the diagram

K; L;

o,

U; i
K|y, » Ly, —— C(5)

and let’s claim that the morphism r;f|y,a; @ K; — C(p;) is locally ho-
motopically equivalent to 0. In fact, This can be proven by induction on
the amplitude of the bounded complex K;. Suppose K; = K["[—m] to be
non-zero only in degree m, then observe that the morphism C™ 1(3;) —
Ker(d™) C C™(f;) in

> 0 K™ 0 >

Lo o |

— C™H(B) = C™(Bi) — CmrL(B) ——

is epi, because H™(C(5;)) = 0 from the fact that §; is a m-qiso (an easy
generalization of Proposition 2.3.5). Therefore, since this is an epimorphism
of sheaves, for every U and section h(t) € C™(3;)(U) there is an open cover
{U;} of U such that h(t)|y, is is the image of d™!|y,. This allows us to
define the homotopy over each open.

If K; has amplitude in the interval [a,b], and we assume the result to
hold for the degrees up to b — 1, consider the exact sequence of complexes

0 — Kb[-b] — K; — o=""'K; — 0

and the associated triangle in K(Ox) induced by Theorem 3.3.4. Then,
taking Hom in K(Ox) induces a short exact sequence

Hom(ogb_lKi, C(B;)) — Hom(K;,C(5;)) — Hom(KZb[—b], C(B)

and we can observe from the base step that the third group is zero. There-
fore, by exactness, the morphism h is in the image of the first morphism,
hence is the precomposition of the projection K; — o=™"1 K; with a morph-
ism, by inductive hypothesis, homotopically equivalent to 0, hence is itself
homotopically equivalent to 0, by precomposition of the homotopy with the
same projection.

This gives the existence of a pair of morphisms
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Kz' id > Kz > 0 > Kz[l]

Lol i

Li % Ly~ €(8;) —— Li[l]

which can be completed to a morphism of triangle by the desired morphism
Yi-

Eventually, consider the perfect complex C(+;) and the morphism of
triangles

K, —2 5 L, s C(v) —— K;[1]
I |
K’Ui L’Ui ” M’Ui — K‘Ui[l}

The induced morphism on the long exact cohomology sequences

H™L; —— H™C(y;) — H™K; —— H™'L; —— H™C(v)

! ! | s |

H™L|y, — H™M|y, —— H™K|y, —— H™"L|y, —— H™ M|y,

proves, by the Five Lemma, C(v;) — M|y, to be a isomorphism on cohomo-
logy for degree greater than m, and epimorphism in degree m. That means
M|y, is m-pseudocoherent. O

Lemma 4.2.12. On a scheme X, for a complex E° of Ox-modules, are
equivalent

(1) Yz € X exist U neighborhood of x, a strict perfect complex F* on U
and a quasi-isomorphism F* — E'|y

(2) Vx € X exist U neighborhood of x, a strict perfect complex F* on U
and an isomorphism F* — E’|y in D(Ox)

Proof. Clearly (1) = (2). Conversely the isomorphism is given by a pair
of quasi-isomorphisms F* <+ G* — E’|y. Apply then Lemma 4.2.7 to the
morphism b : G — F" in order to produce, on a smaller neighborhood
V C U, a strict perfect complex F” and a qiso F”" — G'|y, which gives a
composed qiso F"" — G'|y — Ely. O

Definition 4.2.13. A complex E" of Ox-modules on a scheme X is said to
be perfect if it is locally quasi-isomorphic to a strict perfect complex, i.e. if
any of the two condition of Lemma 4.2.12 holds.
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Remark 4.2.14. Observe that one could just say that a complex of Ox-
modules is perfect whether it’s locally quasi-isomorphic to a bounded com-
plex of free modules of finite type, not only locally free, as the definition of
strict perfect complex requires.

If £ is perfect, then for any = one can find an open neighborhood U
such that E"|y is quasi-isomorphic though a quasi-isomorphism F* — E’|¢
to a bounded complex F" of locally free Opy-modules of finite type. Consider
then for the same z, and for any k such that F* £ 0, an open neighborhood
U}, such that F k\Uk is free Oy, -module. Since F" is bounded, we are taking

these k’s from a finite set, hence on the finite intersection V' = (Uj, one
k
has that F"|y is a bounded complex of free Oy-modules.

Perfect complexes are quite easy to handle because they have, locally,
a resolution by free (and hence projective) modules. This makes them a
convenient implement which we are able to deal with technically. On the
other hand, we are going to see that they form a triangulated subcategory
of D(Ox) and that they also enjoy nice categorical properties.

4.3 Ample families of line bundles

Still following the work [TT90] by Thomason and Trobaugh, we’re going
to see in this section what is useful to assume in order to describe per-
fect complexes and pseudocoherent ones more explicitly, but still remaining
under reasonable assumptions.

The possibility to describe globally a pseudocoherent or a perfect com-
plex as quasi-isomorphic to a strict pseudocoherent or a strict perfect one,
rely on a geometrical condition of the underlined scheme. While for pseudo-
coherent complexes we should require also the quasi-coherence of the mod-
ules, for perfect complexes the condition on the scheme is enough, and this
provides a more explicit and clear picture of what perfect complexes look
like, at least when the scheme is nice enough. To begin, assume every scheme
in this section to be quasi-compact and quasi-separated.

Definition 4.3.1. A line bundle L on a scheme X is a locally free Ox-
module with rank 1.

Definition 4.3.2. A line bundle L on a scheme X is said to be ample if the
set {Xs} s, where
Xy={re X|fs ¢ m:v(L®n)w}

and where f runs through all the global sections in the global sections mod-
ules {I'(X, L®")},,>1, form a basis for the Zariski topology of X.

For sake of simplicity, having in mind what happens when the invertible
sheaf in question is the sheaf rings of functions into a field, one usually
abuses notation and indicates Xy as {x € X|f(x) # 0}.
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Remark 4.3.3. On any affine scheme X = SpecR the structure sheaf Ox
is ample, because a basis for the Zariski topology is given by distinguished
open sets D(f) for f running over R = I'(X, Ox).

Usually (e.g. in [Har77]) ample line bundles are defined in an equivalent
way that we are going to see.

Definition 4.3.4. An Ox-module F on a scheme X is said to be generated
by global sections if there is a set of global sections {s'};c; C I'(X, F) such

that for any € X the set of germs {(s"), }; generates the Ox z-module F;.

Remark 4.3.5. An Ox-module is generated by global sections if and only
if it is a quotient of a free Ox-module. Both are in fact equivalent to the
existence of a surjective morphism of sheaves

@Ox—>F
I

Proposition 4.3.6. Let X = Spec(R) be an affine scheme, then any quasi-
coherent Ox -module is generated by global sections.

Proof. Since F is quasi-coherent and X is affine, F = M for an R-module
M. Thus just consider a set of generators {m'} for M = I'(X, F). Tt works
as desired because on any prime ideal p € X and any ¢t € F,, = M, = M,,
will be t = ™ with m,s € M and s ¢ p. Thus if m = Z;]ajmj, then
j€
coefficients b; = %” € R, provide t = ;]bjmj. O
jE

Proposition 4.3.7. An locally free Ox-module L is ample if and only if for
every coherent Ox-module F' there exists N € N such that for every n > N
the sheaf F(n) = F @ L®" is generated by global sections

Proof’s idea. This can be done observing that if we denote by S the graded

ring @TI'(X,L£%") and if the set of {X;} with f homogeneous of positive
n>0
degree covers X, then there is a canonical morphism

X — Proj(S5)

Then, one can argue that both sides of the equivalence claimed boil down
to this morphism being an open immersion. O

Remark 4.3.8. If X = SpecR is affine, then not only the structure sheaf,
but any line bundle is ample. That is because for any coherent sheaf F'
one clearly has that F'(n) is also coherent, and in general for quasi-coherent
sheaves Proposition 4.3.6 applies.
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Definition 4.3.9. A scheme is said to have an ample family of line bundles
if it’s quasi-compact, quasi-separated and there exists a set A and a family
of line bundles {Lq }aeca such that the set {X ¢} s, where

Xp={v € X|fs ¢ ma(LG")a}

and where f runs through all the global sections in the global sections mod-
ules {T(X, LE™) }ae nen, is a basis for the Zariski topology of X.

Remark 4.3.10. Clearly, the existence of an ample line bundle £ implies
having an ample family with the one-point set A. In particular, any affine
scheme X = SpecR has an ample family of line bundles.

Actually, a quite large class of schemes enjoy this property.

Proposition 4.3.11. Suppose X to be any separated, reqular and noetherian
scheme, then X have an ample family of line bundles.

Proof. See [BGI71] 1T 2.2.7.1. O

In the following we are going to state that for a scheme X with an
ample family of line bundles and a perfect complex on X, there is a global
isomorphism (in the derived category) with a strict perfect complex. The
proof is not so hard but it’s rather technical and we can avoid it without
losing so much of the meaning of our construction. The proof uses this
characterization for perfect complexes:

Theorem 4.3.12. Let X be a scheme. The following are equivalent.
(a) E" is perfect.

(b) E° is pseudocoherent and has locally finite Tor-dimension, that is, X
is covered by open subsets U over which the complex of Oy-modules
E'|y is such that for all Oy-modules F, the module H*(E |y ®éU F)
is zero for every k out of a range of integer numbers [a, b].

Proof. See [TT90] 2.2.12. O

Proposition 4.3.13. Suppose X to have an ample family of line bundles,
then

(a) Let E" be a strict pseudocoherent complex, F* a pseudocoherent com-
plex of quasi-coherent Ox-modules and x : E° — F" a chain morph-
ism. Then, there exists a strict pseudocoherent complex F", a morph-
isma: E° — F" and a quasi-isomorphism x' : F"" — F° such that
r’a=x:
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B a E

1.2

(b) If F" is any perfect complex of Ox-modules (possibly not quasi-coherent),
then there exists a strict perfect complex E° and an isomorphism F* —
E" in the derived category D(Ox)

Proof. See [TT90] 2.3.1. 0

Remark 4.3.14. In particular, when E* = 0, part (a) of the previous result
tells us that a pseudocoherent complex of quasi-coherent O x-modules on any
scheme X is locally quasi-isomorphic to a strict pseudocoherent complex, be-
cause this is true on any affine open subset since affine schemes certainly
have an ample family of line bundles (by Remark 4.3.10). For what ob-
served in Remark 4.2.10 we get that the quasi-coherence assumption can be
dropped.

Moreover, thanks to (b) and using the really same proof of Lemma 4.2.12,
we have that a perfect complex F on a scheme with an ample family of line
bundles X is globally quasi-isomorphic to a strict perfect complex.

Proposition 4.3.15. Let f : X — Y be a morphism of schemes and E" a
strict perfect complex in Kom(Oy). The pointwise pullback complex f*E" is
a strict perfect complex in Kom(Ox).

Proof. Recall that f*: Mod(Ox) — Mod(Ox) is a left adjoint functor, so
it preserves colimits.
It suffices to prove that if F' is a locally free sheaf, then so is f*F. for a
fixed y € Y we can find an open neighborhood V' such that F = @Ox|yv,
n

thus

(f* P10y = [(Flv) = FF@0vIv = @B f (Ovlv) = f Oy,

where f* preserves direct sums, since they are colimits, and eventually it
Y

holds for any morphism of schemes that f*Oy = f~ 'Oy ® 10y Ox =
Ox. O

Proposition 4.3.16. For a morphism of schemes f : X — 'Y, the left de-
rived functor Lf* : D= (Oy) — D™ (Ox) is well defined on the subcategories
of perfect complezes.

Proof. Let’s assume first Y to be affine. Any complex E° in Pf(Y) C
D~ (Oy) is, by Proposition 4.3.13, isomorphic to a strict perfect complex,
which we still call £°. Such a complex is a complex of free and hence pro-
jective objects, and we can compute the derived functor Lf*(E") just as the
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pointwise functor f*(E"), providing a strict perfect complex by Proposition
4.3.15. For the general case, let’s prove that Lf*(E") is locally a strict per-
fect complex. Let x € X, take V C Y to be an affine open neighborhood
of f(z) and call U = f~1(V) C X. Then Lf*(E")|y = Lf|};(E'|v) is strict
perfect for the above case. O

Definition 4.3.17. Let f : A — B be a ring morphism of finite presenta-
tion, i.e. f gives to B the structure of an A-module isomorphic to a quo-
tient A[zy,...,2zx]/(f1,-.., fm). A complex of B-modules M’ is said to
be n-pseudocoherent relative to A if it is a n-pseudocoherent complex of
Alxy,...xy]-modules for some presentation (surjective map of A-modules)
Alzy ...z, — B. It is pseudocoherent relative to A if it is n-pseudocoherent
relative to A for every integer n.

A morphism of rings f : A — B is said to be pseudocoherent if B itself
as a complex of B-modules is pseudocoherent relative to A.

Definition 4.3.18. A morphism of schemes f : X — Y is said to be perfect
if for every affine subspaces U C X and V' C Y such that f(U) C V one has
that the resulting morphism of rings

Oy(V) — O)((U)

is pseudocoherent and of finite Tor-dimension, where a morphism of rings
[+ A— Bissaid to have finite Tor-dimension if for every A-module M the
module Tor’ (B, M) = 0 for every i out of a bounded range.

Example 4.3.19. Let X and Y be schemes of finite type over a fixed scheme
S = Spec(k) for a fixed field k. That certainly implies the morphisms
f: X — S aswell as g: Y — 5, to be flat, since each stalk

ik — Ox,

is a flat morphism, being Ox . a vector space over k, and hence a necessarily
flat k-module.

Let’s now observe that the projection morphisms p: X xgY — X and
q: X xXsY =Y in

X xgY 24 X

| J

Y — S

are perfect. In order to do so, we use the fact that for a flat morphism to be
perfect is equivalent to being of finite type, hence the morphism f: X — S
is perfect because is of finite type by assumptions, as well as g. By taking
open affine subschemes and by definition of perfect morphism of schemes,
the problem can be reformulated by saying that if A — B and A — A’ are
perfect and flat ring morphisms (we just need the first one to be perfect and
the second one to be flat), then their pushout
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A®sB+" B

I

A+— A

gives a perfect morphism j : A’ — A’ ® 4 B. Therefore, we need to prove j
to be of finite Tor-dimension and pseudocoherent. Being A’ a flat A-module
is obvious that for every A’-module M, which is also an A-module, the
modules Torf4/(A’ ®4 B, M) and Tor% (B, M) are isomorphic. Moreover, the
morphism j is pseudocoherent because given, for each m, a presentation

Alxy,...,xy)| — B
such that B is a m-pseudocoherent A[xy,...,z,]-module, we have an m-
qiso B' — B with B’ a bounded above complex of finite free Alxy,...,x,]-

modules. Therefore it suffices to consider the presentation given by taking
the tensor product with the flat A-module A’

Alley, .. xp) = A @4 Alxy, ... 2] — A @4 B

which is certainly surjective because A’ ® — is always right exact. Since it’s
actually exact, the morphism A’ ® 4 B’ — A’ ®4 B is still an m-qiso, and
A" ®4 B’ is a bounded above complex of free A'[z1,...,x,]-modules since
each term is the tensor product by A’ of a free A[xy,...,x,]-module.

Remark 4.3.20. The derived direct image Rfx : DT(Oy) — DT (Ox) also
preserves perfect complexes, but we have to assume the morphism f to be
perfect. More precisely, if f : X — Y is a perfect morphism and Y is locally
noetherian, then any complex E° in Pf(Y") is such that R f.(E") is a complex
in Pf(X). See [TT90] 2.5.4.

The following will lead us to consider, for a sufficiently decent scheme X,
the category of perfect complexes as a subcategory of the bounded derived
category D?(Ox)

Proposition 4.3.21. Let X be a scheme which can be written as finite union
of affine open subschemes (e.g. noetherian). Then, any perfect complex F"
on X is isomorphic in D(Ox) to a bounded complex E".

n
Proof. Consider the affine cover X = |JU; and assume moreover, thanks
i=1
to Proposition 4.3.13, that these affine opens are such that for every i there
exists a strict perfect complex E; = F"|y, in D(Ox). That means in partic-

ular H7(E;) = HJ(F"|y), so that one can set k; = max{j € Z|EZ] # 0} and

h; = min{j € Z|E} # 0}. Then, take k = max{k;}?, and h = min{h;}?_,
so that one has a cover {U;}; of X such that for every integer i

H(F'|y,) = HY (E;) 20
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whenever j ¢ [h,k]. Therefore, the sheaf H7(F") = 0 whenever j ¢ [h, k].
Now, recall that truncations provide quasi-isomorphisms for cohomologically
bounded complexes. Hence there are quasi-isomorphisms

rheskp o 7Shp oy B
which proves the theorem with E° = 7hr<kF" ]

The next step is to provide a description in terms of categorical properties
of these objects when we look at them in the derived category D(Ox). The
full subcategory of D(Ox) whose objects are perfect complexes is denoted
by Pf(X).

Remark 4.3.22. Proposition 4.3.21 shows that up to equivalence Pf(X) C
Db(X).

Theorem 4.3.23. P{(X) is a triangulated subcategory of D(Ox)

Proof. To prove that Pf(X) is triangulated is equivalent, by Proposition
2.4.16, to prove that it is invariant under the shift functor and that the cone
of a morphism of perfect complexes is again perfect. Being invariant under
the shift functor is an obvious property of perfect complexes, since one can
argue locally that strict perfect complexes are. In order to prove that the
cone of a morphism of perfect complexes is again perfect, one consider a
morphism A° — B’ between perfect complexes, which is locally, on U C X,
where ew can assume A’'|y and B[y to be strict perfect, represented by a
pair o chain morphisms

A'|U — G — B'|U

with G* — A’|y qiso. Now apply to this morphism Lemma 4.2.7(¢), in order
to find a strict perfect complex of Op-modules A" and a quasi-isomorphism
A" — G". Since we're in D(Ox ), we can replace A’ |y by the quasi-isomorphic
A" and prove the theorem for the chain morphism of strict perfect complexes

A" — G — By

whose cone certainly is strict perfect and quasi-isomorphic to the (restriction
at U) of the actual cone of A — B, which is then perfect. O

Another interesting tool applying to perfect complexes is the following
isomorphism.

Proposition 4.3.24. For a perfect complex F* on X there is an isomorph-
sm

RHom(F',0x) @Y F" = RHom(F", F")
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Proof. Consider the basis formed by affine open subspaces {U;} and for
every i, using Proposition 4.3.13 and Remark 4.2.14, take a complex of free
Oyp,-modules of finite type E; with a giso

Being a free resolution, it’s projective and flat, therefore by Remark 3.6.15
we can use it in order to compute, on an open U;
(RHom(F",0x) @" F)(U;) = (Hom'(E;, Ox) @ F*)(U;)
= Tot (Hom (E;,Ox) ® E;)(U;)

In each degree n, this complex of Ox (U;)-modules is
P Hom?(E;, Ou,)(Us) @ EL(U;)
p+g=n
that is, being Oy, a complex centered in degree 0,
@ HomOUi (Ei_p7 Ou,) ® E;I(Uz)
ptg=n

Now recall the well known isomorphism for finite type free Ox-modules A
and B

A :Homp, (A,0x) ® B(X) = Homop, (A, B)
¢ s 6

defined by q[;U(t) = ¢y(t)s|y for every U C X. Surjectivity suffices to prove
the isomorphism for (finite) dimensional reasons, and it’s given taking basis
{a;} and {b;} of the Ox(X)-modules A(X) and B(X), and observing that
the elements of the form A(a} ® b;), where a;7;(aj|v) = d;5 € Ox(U), give a
basis for Homp, (4, B).

Therefore, what we found is isomorphic to

@ Homo,, (E; ", EY).
pt+a=n

Now, the set of indexes is finite because £ is bounded, hence by Proposition
2.1.6 it’s isomorphic to

[T Homoy, (577,50 = [ Homoy, (5%, E)U) = How™ (E;, )
pHq=n ptq=n

that is the degree n module of RHom(F"|y,, E;)(U;) = RHom(F", F")(U;).
O
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Recall now an important result relating geometric objects, here spe-
cifically finite dimensional vector bundles, with their algebraic counterpart,
finitely generated projective modules, through the global section functor.

Theorem 4.3.25 (Serre-Swan duality). The category of finitely generated
projective R-modules over a noetherian ring R is equivalent to the category
of locally free Ox-modules of finite rank over Spec R.

Proof. See [Ser55]. O

Proposition 4.3.26. Let X = Spec R be an affine scheme over a noetherian
ring R. Then the category Pf(X) is equivalent to the full subcategory of
D(R) ~ D(Coh(Ox)) C D(Ox) consisting of bounded complexes of finitely
generated projective R-modules.

Proof. Since the scheme X has an ample family of line bundles, Proposition
4.3.13 tells us that Pf(X) is equivalent to the full subcategory of D(Ox)
whose objects are the strict perfect complexes, i.e. complexes of locally free
Ox-modules of finite rank. Serre-Swan duality then concludes the proof. [

Eventually, observe that we can deal with the derived tensor product on
the category of perfect complexes.
Proposition 4.3.27. The derived tensor product functor
@ : D™ (Ox) x D™ (Ox) — D™ (Ox)
is a well defined functor on the subcategory Pf(X) C D®(Ox). More pre-

cisely, if E* and F are perfect complezes, the complex E° QY F* is again
perfect

Proof. Fix x € X and open neighborhoods VW C X such that E'|y is
quasi-isomorphic to a strict perfect complex E” on V, via E" — E’|y,
while F"|y is quasi-isomorphic to a strict perfect complex F”* on W, via
F" — F'|w. Then, let’s compute E° ® F" by a bounded above resolution
K — F" of flat objects, so that
E @Y F =Tot(E ® K°).
Therefore, if we restrict £ @ F* to U = VNW, we get a chain of isomorph-
ism in D(Ox)
E QU F |y =Tot(E" @ K')|y = Tot(E'|y @ K'|y) =

Tot(E" |y ® K'|y) = Tot(E" |y @ F'|y) = Tot(E'- @ F"|v)

where Lemma 3.5.9 provides the quasi-isomorphism

Tot(E" |y @ K'|y) — Tot(E' |y @ K'|v)

as well as the last two isomorphisms in D(Ox ), because locally free modules
also are flat, since their stalks are free and flatness can be checked on stalks
by Lemma 3.5.4. O
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Chapter 5

Classification of ®-ideals

In this chapter we are going to study some triangulated subcategories
of a triangulated category T, and the objects that classifies them. At first
it’s described an important tool, the Grothendieck group associated to an
essentially small triangulated category T, encoding as subgroups a kind
of strictly full triangulated subcategories called dense. Moreover, it will be
introduced the crucial notion of thick subcategory of a triangulated category,
and in the particular case of T = Pf(X), for X a scheme with noetherian
topological space, we are going to prove a correspondence between those
thick subcategories acting as “ideals” for the derived tensor product and
the set of those subsets of X with the topological property of being union
of closed subspaces. This result will be crucial for the reconstruction of X
from the category Pf(X).

5.1 Grothendieck groups

Definition 5.1.1. The Grothendieck group of an essentially small triangu-
lated category T with shift functor 7" is the quotient group Ky(T) of the
free abelian group on the set of isomorphism classes is(A) of objects A in T
by the equivalence relation generated by

R = {(is(B),is(A) +is(C)), for A— B — C — TA triangle in T}.

Remark 5.1.2. In the following we denote by [A] the R-class of is(A).
In other words, the Grothendieck group is constructed by imposing the so
called Euler relations [B] = [A] 4+ [C] whenever A - B — C — TA is a
distinguished triangle.

Let’s stress once and for all the importance of being essentially small,
and hence the possibility to replace T with a small equivalent category.
From now on, essential smallness is tacitly assumed whenever we consider
Grothendieck groups.
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Proposition 5.1.3. In the Grothendieck group of a triangulated category
Ko(T) it holds [A] + [B] = [A @ B] for every pair of objects A and B in T.
Proof. Consider the zero map B — T A and complete it to a distinguished

triangle B % T4 5 E — TB. Now apply axiom T2 (i.e. rotate the
triangle) twice in order to get a distinguished triangle

AT 'ESBYSTA

which, by Lemma 2.4.14, is isomorphic to A - A® B — B — T'A, which is
then a distinguished triangle by axiom T1, proving the desired equality. [J

Corollary 5.1.4. In the Grothendieck group Ko(T) of a triangulated cat-
egory T it holds

(i) 0] =0

(i) [TA] = —[A]
Proof. Part (i) follows from Proposition 5.1.3 for A®0 = A, that is [A]+[0] =
[A], hence [0] =0 € Ky(T). Part (i7) comes from the distinguished triangle
Ad a0 TA, that rotated is A - 0 - T A — T A, giving by definition
of Ko(T) that [A] + [T'A] = [0] = 0. O

Remark 5.1.5. The construction of K gives a functor TrCat — Ab from
the category of (small) triangulated categories and triangulated functors to
the category of abelian groups. To any triangulated functor F': S — T we
associate

Ko(F) : Ko(S) 2 [A] — [FA] € Ko(T).

Observe that Kj is a group morphism since any additive functor preserves
direct sums. Hence
KoF([Al+[B]) = KoF([A® B]) = [F(A® B)]
=[F(A)® F(B)]=[F(A)]+ [F(B)] = KoF[A] + KoF[B].

It’s obvious that K preserves identities and compositions.

The Grothendieck group of a triangulated category T enjoy the following
universal property.

Proposition 5.1.6. Let T be a triangulated category, G an abelian group,
and § : Ob(T) — G a monoid morphism which is additive, i.e. if A— B —
C — TA is a triangle in T, then §(B) = §(A) + 0(C). Then, there exists a
unique morphism of abelian groups 'R Ko(T) — G such that the diagram
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Ko(T)

Ob(T) —— G
commutes. Here, the map Ob(T) — Ko(T) is D w [D], which is a commut-
ative monoid morphism by Proposition 5.1.5.

Proof. The proof is quite trivial. The map 5 is obviously defined just as
6([D]) = 6(D) for D in T and extended by linearity. This gives uniqueness
once proved that the map is well defined. First of all, 5 is defined on the
isomorphism classes of objects: in fact, if is(A) = is(B), consider the tri-

angle A 5 B — 0 — TA which is isomorphic to A - A — 0 — TA and
hence, as the latter, distinguished. In order to see that § is well defined
on Ky(T) consider two elements isomorphic in Kj, which are given by a
triangle A - B — C — T'A as elements [B] and [A] + [C]. Using additivity
of § and linearity of & one has

N

8([B]) = 8(B) = 6(A) +6(C) = 8([A]) + ([C)) = 6([A] + [C]).
O

The Grothendieck group in this pretty much general context will be
useful in order to work with subcategories of the triangulated category.

Definition 5.1.7. A (strictly full) triangulated subcategory A C T of an
abelian category T is called dense if any object in T is a direct summand
of an object in A.

Theorem 5.1.8. Let T be a triangulated category. There is a bijective cor-
respondence between dense triangulated subcategories A C T and subgroups
H of the abelian group Ko(T).

Proof. By the fact that K is a functor, for a dense triangulated subcategory
i : A C T there is a group morphism Ky(i) : Ko(A) — Ko(T), giving
the subgroup Im(Ky(A) — Ko(T)), which is just Kyg(A) because Ky(i) :
[A] — [iA] = [A] is clearly a monomorphism. Conversely, to a subgroup
H C Ky(T) one can associate the subcategory Ay of those elements D in
T such that [A] € H.

On one hand, it’s cleat that H = Ko(Apg). In fact, [A] € Ko(Ag) if and
only if A is an object in A, that is [A] € H.

On the other hand, for a fixed subcategory A C T, we need to show
Afya) = A. Let’s restate that in the form of the following claim: for every
object D in T

D is object in A <= [D] € Ko(A) C Ko(T). (5.1)
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Equivalently, we can show that D is object in A if and only if [D] =0 €
Ko(T)/Ko(A).

Consider, thanks to essential smallness, the relation ~ on the set of iso-
morphism classes of objects in T given by

[D]~[D] <34, A inAst. Do A=D ¢ A.

It’s obviously an equivalence relation. Let G be the quotient of the set of
isomorphism classes by this relation, and denote (D) the ~-class of [D].
Observe that an element D is in A if and only if (D) = (0) in G. That is
because if D is in A, then for any A in A we can call A’ = D @ A, and this
shows that (D) = (0). Conversely if (D) = (0) there are by definition A and
A’in A such that DA 0P A= A, hence D@ Ais in A, and the triangle

A—-DdoA—-D—-TA

tells us that D is in A, since we can complete here the morphism A — DDA
to a triangle and the resulting object is in A and isomorphic to D.

Now, in order to see that (5.1) holds, it suffices to prove that there is a
group isomorphism Ko(T)/Ko(A) = G. So that will be D in A if and only
if (D) = (0) in G if and only if [D] € Ky(A).

We are going to prove that there is a group morphism

7 Ko(T) =G
[D] — (D)

and that its kernel is Ko(A) C Ko(T). First of all, observe that G is not just
a commutative monoid with direct sum as operation (D)+ (D’) := (D& D’),
but in fact an abelian group: by density of A, given D in T and so (D) in
G, we find another summand D’ such that D @ D’ is in A, but that means
(D@ D'y = (0). So (D') is the desired inverse. Eventually one need to
prove that 7 is a group morphism, and this is true in fact because 7 is the
morphism given by the universal property in Proposition 5.1.6 once we prove
that the map D — (D) is additive. Let A — B — C — T'A be a triangle in
T, since A is dense, there are A’ and C’ in T such that A® A’ and C & C’
are in A. Hence it holds (A @ A') = (C & C'") = (0), that is (4') = —(A)
and (C') = —(C) in G. Now, observe that besides A — B — C' — T A there
are distinguished triangles

A5 A 50->TA
0-C'—-C' =0

and the direct sum of all of these three triangles gives, by Proposition 2.4.13,
another distinguished triangle

ApA—-Bao Aol -CopC' -T(Ap A)
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with the two vertexes A @ A" and C @ C’ sitting in A, and hence so is
B ® A’ ® C' because we can complete the triangle in A, which is supposed
to have all the objects isomorphic to some of its objects. Again, as showed
before, this is equivalent to be 0 in G, that is

(0)=(BaA' @ C) =(B)-(4) - (C)

This proves additivity, so that the map 7 is actually a group homomorph-
ism by the universal property. Clearly 7 is surjective since is a quotient
map. Eventually, since any element in Ky(T) admits a representative in
T such that it’s of the form [D], we can describe Ker(w) as the subgroup
{[D] € Ko(T), (D) = (0)}, that is exactly the subgroup of those [D] €
Ko(T) for which D is in A, i.e. coming from Ky(A). This concludes that

5.2 Triangulated subcategories of Pf(X)

The following general definition indicates a first condition for subcat-
egories of the category of perfect complexes. Subsequently, we are going to
use the derived tensor structure of Pf(X) in order to refine the set of subcat-
egories of our interest. These further notions will be naturally generalized
to general tensor triangulated categories.

Definition 5.2.1. A full triangulated subcategory A of a triangulated
category T is called thick if whenever X is an object in A splitting as
X =2Y & Z, then both Y and Z are in A.

Example 5.2.2. A first example is the whole category Pf(X) C D(Ox).
Let E° @ F" be a perfect complex. Then we know it from Theorem 4.3.12 to
be pseudocoherent and of locally finite Tor-dimension. The fact that both
E" and F" has locally finite Tor-dimension is clear since both the cohomology
and the derived tensor product functors preserve direct sums.

If suffices then to prove that both E* and F" are pseudocoherent. Observe
that there are distinguished triangles

E"— E — 0— E'[1]
and
FFr—F — F @ F[l] — F'[1]
Therefore, their direct sum
EeoF —wFEoF —FaoF[l] — (E®F)[]

is a distinguished triangle, and being the first two pseudocoherent by as-
sumption, so is F* @ F"[1] by Proposition 4.2.11. Surely, we have that all
the complexes F[n] & F[n + 1] are pseudocoherent.
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For any fixed integer m, since F" is (up to quasi-isomorphism) bounded
above, one can take an n > 0 big enough so that F'[n] is m+1-pseudocoherent.
Therefore, consider the triangle

Fiin] — Fln)@ Fln—1] — F'ln—1] — F'ln+1]

which gives, again by Proposition 4.2.11, that also F"[n—1] is m-pseudocoherent.
Since m was arbitrary, F"[n — 1] is pseudocoherent, and this iterates up to
show that F" is pseudocoherent. The same certainly holds true for E".

Let’s introduce an important notion describing some thick subcategories
of a triangulated category. It will be crucial the notion of derived tensor
product ®" introduced in §3.5, defined on the derived category and well
defined on perfect complexes by Proposition 4.3.27. From now on when we
refer to complexes in D(Ox ), by the symbol ® we mean the derived tensor
product.

Definition 5.2.3. A full triangulated subcategory A C Pf(X) is a ®-ideal
(“tensor-ideal”) if it is thick and such that whenever F" is any object in A
and E" any object in Pf(X), then F* ® E" is in A.

Remark 5.2.4. The intersection of ®-ideals is again a ®-ideal. In particu-
lar, there exists the smallest ®-ideal containing a fixed object in T.

Definition 5.2.5. A subspace Y C X of a topological space X is said to
be specialization closed if it is union of closed subspaces.

Remark 5.2.6. A subspace is specialization closed if and only if it is union

of the closure of its points, that is Y = |J {y}. Clearly if Y is union of the
yeyY
closure of its points it is specialization closed. Conversely, if Y = [JY,, is

(0%
specialization closed and y € Y, then find a closed Y, such that y € Y, and

itis {y} CY, CY. Thus |J {y} C Y, and the reverse inclusion certainly
yey
holds true.

The main theorem of this section provides a correspondence between ®-
ideal in Pf(X) and specialization closed subspaces of a noetherian scheme
X. The constructions which will provide this correspondence are described
in the following.

Definition 5.2.7. Let E' be a perfect complex over a scheme X. The
cohomological support of E" is the subset of X given by

Supph(E") = {x € X|E, is not acyclic}
Remark 5.2.8. It holds clearly Supph(E°) = |J Supp H*(E"), where for a

kEeZ
sheaf of modules F' over X, its support Supp(F') C X denotes as usual the

subset {z € X|F, # 0}.
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A more convincing description of the cohomological support Supph(E")
may be as the subset of those z € X such that E;, 20 in D(Ox ).

Two of the main properties of the cohomological support, which will be
axioms in a more general context (see §6.3) are the following.

Proposition 5.2.9. Let X be a scheme and E°, F" be complexes of finite
type modules in D™ (Ox ) (e.g. perfect). Then it holds

(a) Supph(E" & F") = Supph(E") U Supph(F")
(b) Supph(E" ® F") = Supph(E") N Supph(F").

Proof. Part (a) is easy. Thanks to the fact that colimits commutes with
colimits, we get that x € Supph(E" @ F") if and only if there exists an
integer k with

HY(E @ F),)=HNE,® F,)=H"E,) @ HY(F;) #0

which is true if and only if either one of the two summand is non-zero, that
is € Supph(E") U Supph(F").

Part (b) is a bit trickier, because dealing with cohomology of (derived)
tensor products requires more advanced tools. On one hand it’s clear that if
(E"® F)z # 01in D(Ox ), then the Ox ;-module £, ®o , F, is non-zero,
and so are both E, and F,. This proves

Supph(E" ® F") C Supph(E") N Supph(F")

In order to prove the reverse inclusion, recall that for complexes of modules
K, N°, there is a spectral sequence

EY? = HP(HY(K') ®" N') = HPT™(K " N")

Let then € Supph(E") N Supph(F"), namely E; and F, are non-zero in
D(Ox.). Find then the maximal integers k; and ko such that H* (E;) # 0
and H*(F;) # 0.

The idea in order to prove x € Supph(E" ® F") is to prove

HM (B @0y F')a) = H (B, @0y, Fy) #0,

and do so proving that the corresponding term in the second page of the
spectral sequence H¥ (H*2(F,) ®o, , E,) is non-zero and is a vertex, i.e.
all the terms in place (p,q) are zero whenever p > k; or ¢ > ky. Therefore,
any subsequent page will keep the same non-zero term in place (ki, k2).

It helps a well know result from commutative algebra (see [AM71]) as-
serting that the tensor product of two finitely generated non-zero modules
over a local ring is itself non-zero. Therefore, if we consider the derived
tensor product

H"(F;) @0, E;

xT
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it can be computed taking a bounded above resolution of flat Ox ; modules
M" — E; as the complex having degree n given by

P (H*(F))y © M? = H*(F)) @ M*.
ptg=n

Observe that since the resolution is isomorphism on cohomology, the degree
k1 of M" is non-zero, hence the n-th term just computed is non-zero because
HF*2(F") also is.

Now, in order to compute its cohomology H¥!, observe that the differen-
tial morphisms of the total complex behave just like the differentials of M-,
that is because H*2(F;) is centered at degree 0. More precisely, the chain
complex

oF1—1

Hb(F;) @ MR 220 Hb(Fy) @ M 2 HR () @ Mb
has 9 = id ® dys, up to a sign. Therefore,
H* (H™(F;) o" E;) = H" (H*(F;) @ M') = HM(M") = H" (E}) # 0

The fact that H* (H*2(F,)®E;,) is a vertex is clear from the choice of k;
and k. If ¢ > ko, is HI(F,) to be zero and hence certainly is HP(H?(F,) @
E), while if p > k; the computation above gives

HP(HY(F;) ©" B;) = HP(M") = HP(E;) = 0.
O]

A useful property characterizing the cohomological support of a perfect
complex is the following.

Proposition 5.2.10. Let X be a noetherian scheme and E° a perfect com-
plex on X. For any x € X denote by k(x) the residue field at x. Then
x ¢ Supph(E") if and only if E; ®I@Xz k(x) (sometimes abbreviated as
E ® k(x)) is acyclic. ,

Proof. Suppose = ¢ Supph(E"), that is E;, acyclic, or equivalently E; = 0
in D(Ox ). Therefore E, ®o,, k(z) is certainly zero in D(Ox ), namely
acyclic, because the derived tensor product is an additive functor.

Conversely, suppose E; ®oy, k(z) = 0 in D(Ox ;). Observe that the
skyscraper sheaf Sk, (k(z)) over  with value k(x), is such that

(B @,y Ska(k(2)))x = E; @, _ k(x).

That is because everything works as in the non-derived case once we consider
a flat resolution of Sk, (k(z)).
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Therefore, x ¢ Supph(E" ®o, Sk, (k(x))) which is, by Proposition 5.2.9,

x ¢ Supph(£") N Supph(Sk, (k(2))).

Eventually, Supph(Sk,(k(z))) is the whole scheme, because the residue field
is never zero, hence this proves x ¢ Supph(E"). O

Recall the following basic but crucial fact.

Proposition 5.2.11. Let X be a scheme and F a coherent Ox-module.
Then Supp(F) is a closed subspace of X.

Proof. Consider x ¢ Supp F' and by coherence an affine open neighborhood
V = Spec R > x over which F|y = M for a finitely generated R-module
M. Let x correspond to a prime ideal p C R, and consider a finite family
{mi,...my} of generators for M. The stalk M, = M, is zero, hence for
every i the element 5% € M, is zero, that means by definition of localization
that there exists f; € R\ p and an integer k; such that fikimi =0in M. By
taking k to be the maximum in {k;} and f = (f1--- fa)¥, we've found that
the open set {q € Spec A|f ¢ q} = D(f) C Spec R is an open neighborhood
of x, since f; ¢ p for every i and so is f, and whenever y correspond to a
prime ideal ¢ € D(f) the stalk My = M, is zero, because fFm; = 0 with
f ¢ q. Therefore, D(f) is the desired open neighborhood of x contained in
(Supp F)°. O

Proposition 5.2.12. Let E° be a perfect complexr on a noetherian scheme
X, then Supph(E") is a closed subspace.

Proof. Consider locally a quasi-isomorphism F* — E'|y with F* strictly
perfect, and since X is noetherian, find a finite cover of affine open sub-
spaces {V;} and quasi-isomorphisms F; — E"|y;,. Thus we can compute the
cohomological support of " as

Supph(F U Supph(E'|y;) UU Supp Hk(E lv;) UU Supp Hk
k 1 k i

Observe than that in the last term both unions are finite, since supports of
H*F" are empty when k is out of the finite range where F" is bounded, so
one has to prove Supp HkFi' to be closed. That is true because F¥’s are
free, hence coherent as well as their cohomology since Coh(X) is abelian,
and eventually the support of coherent sheaves is closed by Proposition
5.2.11. O

Definition 5.2.13. Let Y be any subspace of a scheme X. Denote by
Pfy (X) C Pf(X) the full subcategory whose objects E* have Supph(E") C
Y.
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Lemma 5.2.14. If A — B" — C° — TA" is a distinguished triangle in
D(Ox), then
Supph(A") € Supph(B") U Supph(C").

Proof. The distinguished triangle A’ 5Lp C(f) — TA gives a long
exact cohomology sequence

H*YB') — H*'(C") — H*(A) — H*B) — H*(C")

Taking stalks, functor that certainly commutes with cohomology, gives the
exact sequence

H"Y(B;) — H"'(C;) — H*(A,) — H¥(B;) — H*(C;)

Therefore, if z € Supph(A°), it exists a k such that H*(A;) # 0, and hence
at least one of the two H* 1(C;) and H*(B,) has to be non-zero, and

xT

therefore € Supph(B") U Supph(C"). O

Proposition 5.2.15. Let Y be any subspace of a scheme X, then Pfy (X) C
Pf(X) is a ®-ideal.

Proof. The subcategory Pfy (X) is triangulated because it’s invariant under
the shift functor and the mapping cone of two complexes supported in Y
is again supported in Y. In fact, Lemma 5.2.14, gives that if in a triangle
A —- B — C" — TA two objects, let’s say B" and C" have cohomological
support contained in Y, so does A'. The other cases are given by rotation
of the triangle.

Thickness is given by part (a) of Proposition 5.2.9, since whenever E* 2
F* ® G", has cohomological support contained in Y, then

Supph(F") U Supph(G") C Y

and hence both F" and G* are in Pfy (X).

In order to see that it’s also a ®-ideal, we use part (b) of Proposition
5.2.9, which gives that if E" is in Pfy (X) and F" any other perfect complex,
then

Supph(E" ® F") = Supph(E") N Supph(F") C Y.

O
The following results, whose proofs can be found in the huge paper by
Thomason and Trobaugh, show how the Grothendieck group functor Ky

provides a criteria for the extension of a perfect complex defined on an com-
pact open subset to the whole scheme, under suitable geometric assumptions.
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Proposition 5.2.16. Let X be a quasi-compact, quasi-separated scheme
and j : U C X a compact open subspace. For any two perfect complexes E-,
E" on X and any morphism b : j*E" — j*E" in D(Oy), there exists a third
perfect complex E" on X and morphisms a : E'" — E*, a’ : E" — E" in
D(Ox) such that j*a is isomorphism in D(Oy) and the diagram

j*E//-

~

commutes in D(Op).

Proof. See [TT90] Proposition 5.2.3. O

Proposition 5.2.17. Let X be a quasi-compact quasi-separated scheme and
j: U C X a compact open subspace. Let E*, E" be two perfect complexes
on X, and suppose

E ——= E"
b

to be two morphisms in D(Ox) such that they agree on U, that is j*a =
j*b in D(Oy). Then, there exists a third perfect complex E" on X and a
morphism

c: B — FE
in D(Ox) equalizing a and b and such that j*c is an isomorphism in D(Oy).
Proof. See [TT90] Proposition 5.2.4. O

Proposition 5.2.18 (K, extension lemma). Let X be a quasi-compact
quasi-separated scheme, Y C X a closed subspace with quasi-compact com-
plement and U C X a quasi-compact open subscheme. Let E° be a perfect
complex in Plyny(U). Then, there exists in X a perfect complex F in
Pfy (X) such that F'|y is quasi-isomorphic to E" if and only if the class of
E in Ko(Pfyny(U)) is in the image of the restriction homomorphism

K()(Pfy(X)) — KO(PfYﬁU(U)).
Proof. See [TT90] Proposition 5.2.2. O

Remark 5.2.19. In the following we will assume our scheme X to be no-
etherian, and not just quasi-compact and quasi-separated. Therefore, the
results stated above, will apply on any open subspace of the scheme, since
any open of a noetherian scheme is quasi-compact.

For the case of a noetherian scheme, let’s observe that in the previous
result it makes sense to consider Grothendieck groups of the category of
perfect complexes and its subcategories.
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Theorem 5.2.20. Let X be a noetherian scheme. Then the category Pf(X)
1s essentially small.

Proof. Let’s assume X = Spec(R) to be affine. In this case we have proved
in Proposition 4.3.26 that Pf(X) is equivalent to the full subcategory of
D(R) whose objects are bounded complexes of finitely generated projective
R-modules. In order to prove this category to be essentially small, it clearly
suffices to prove that the subcategory P C Mod(R) whose objects are
finitely generated projective R-modules is essentially small. Once proved
that, in fact, we will have a set of objects such that any finitely generated
projective R-module is isomorphic to a module from this set, hence taking
countably many copies of these modules with all the possible chain structure
(recall that morphisms between two fixed modules surely form a set) will
provide the desired set of complexes.

The fact that the P is essentially small follows from the fact that the
whole subcategory of finitely generated R-modules is essentially small. Con-
sider any finitely generated module M: by definition there is a surjection

@R—>M
k

with k& < g, showing that the cardinality of M is |M| < |R| (in the case
|R| > Ng, otherwise one just have |M| < RXg). Up to isomorphism, one can
certainly take M to be hereditarily of cardinality less or equal to |R|: all of
its elements in fact, can be chosen to be for example the ordinals up to |R|,
because this doesn’t affect at all the module structure. With this choice one
can consider the subset

{M|M has structure of R-module} C |R|"

where |R|* denotes the successor cardinal (actually, it suffices to take the
successor ordinal) of |R|. Therefore, we have proved that every finitely
generated projective R-modules is isomorphic to a module that may be
picked up from a fixed set.

Then let us assume X to be a separated noetherian scheme. For this
case it suffices to prove that if Pf(Uy), Pf(Uz) and Pf(U;NUs) are essentially
small, so is Pf(U; U Us).

In fact, by our further assumption and A.0.6 we can start the induction.
More precisely, consider X = (JU; be the finite union of its affine open

subspaces, and let Uy, Us be afﬁrzle subschemes. So the intersection Uy N Uy
will also be affine, and by the previous part of the proof the categories
of perfect complexes on these subschemes are essentially small. Suppose
we have proved Pf(U; U Us) to be essentially small, too. The next step
is to consider another affine subspace Us and prove Pf(U; U Uy U Us) to be
essentially small. That will be true because we will have Pf(U; UU,), Pf(Us)
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and Pf((U1UU2)NUs) essentially small, the first one for what will be proven,
as well as the last one, since (U3 UU2) NUs = (U3 NU3) U (Uz N Us) is union
of two affine subschemes.

So, consider subspaces Uy, Us C X and the commutative diagram with
canonical inclusions

Ui NUy ‘k—/> U,

J ’j ij

UQ‘T)UlLJUQ

and call h = jk' = kj’. Let Si,Sa, Si2 be sets in Pf(Uy), Pf(Us), Pf(Us)
respectively, witnessing essential smallness. That is, any perfect complex
is isomorphic to one of the respective set. Let E° be a perfect complex
on U; U Uy. Observe that thanks to the fact that open immersions are
flat morphisms, i.e. their inverse image functors are exact, hence we can
compute the derived inverse image pointwise as the non-derived functor.
Therefore, there are perfect complexes Fj, F;, F}, respectively in 57, 52, S12
and isomorphisms

¢1:J B — Fy
P9 : K*E — F2
(2512 hE — FiZ
By the adjunction f* - f, for functors between the categories Mod(Ox)

and Mod(Oy ) for any morphism of schemes f : X — Y, we get also adjoint
isomorphisms with the pointwise direct images

é1: B — j.F;
¢y : B — k,Fy
P12 : B — h.Fjy

Consider then morphisms ¢~12¢~1—1 : J«F] — hyFj, and q@lng}_l Dk F, —
h«Fj5. They define a morphisms

3o F; ® ko Fy — hyFy
which we can complete to a triangle in Pf(X) given by
G — 3. F] ® ko Fy — hoFjy — TG

Now, by Mayer-Vietoris Theorem, there is a short exact sequence of com-
plexes
0—F — L jJ E®kk*E — hh"E" — 0
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inducing by Proposition 3.3.4 a distinguished triangle in the derived category
E — . E®kk*E — hh'E" — TE"

Observe then that there are isomorphism j.¢1 @ ky«¢2 and h,¢12 making the
following diagram to commute, and hence there exists a third isomorphism
E° — G completing the morphism of triangles

E —— jj'F ® kk*E —— hh*E® —— TE"

O L

G —— jFi@&kF, — hFy —— TG

This proves that a priori we could have fixed a set S of objects consisting
of perfect complexes representing the isomorphism class of those complexes
completing a triangle given by a morphism from a direct sum of direct images
of complexes belonging to the sets S; and Sy respectively, into the direct
image of a complex belonging to the set S12. What just proved is that any
perfect complex on Uy U Uy is isomorphic to a perfect complex in this set,
hence Pf(U; U Us) is essentially small.

Eventually, let us drop the hypothesis of X being separated. Let us cover
X =UyU---UU, by separated noetherian (e.g. affine) schemes. The proof is
by induction on n, and the base case of X = U is given by the proof under
the assumption of X being separated. Now assume X = Uy U...U,, and
Pf(Uy U---UU,_1) to be essentially small, as well as Pf(U,,). We observe
that by inductive hypothesis, the same is true for the category of perfect
complexes on

(U1U-”UUn_1)ﬂUn:(UlﬂUn)U-”U(Un_lﬂUn)

since this also is union of n — 1 separated subschemes. Therefore from what
argued above we deduce that Pf(X) is essentially small. O

Lemma 5.2.21. Let X be a noetherian scheme and Y C X a closed sub-
space. Then there exists a perfect complex E on X such that Supph(E") =
Y.

Proof. Since X is a noetherian schemes, it is a noetherian topological space,
and so is its closed subscheme Y. That means Y has finitely many irreducible
components Y7,...Y;, and each of them by Proposition A.0.7 has a unique
generic point y;, with ¢ € {1,...k}. If we prove that there exist perfect
_ k
complexes E; with Supph(E;) = {y;}, then the complex E* = @E; has
i=1
support the union J{y;} =Y.
So assume Y = {y} to be a single irreducible component. Let U =
Spec(A) C X an affine open neighborhood of y. The subscheme YNU C U is
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irreducible, so it correspond to a prime ideal of A, which has a finite number
of generator {f1,..., fn} since A is noetherian, and any affine subspace of
a noetherian scheme is the spectrum of a noetherian ring. Consider the
complexes given in degrees —1 and 0 by the multiplication f; : A — A, and
let

K':®(-~—>0—>AL>A—>O—>-~)
=1

be their derived tensor product.
Claim: Supph(K*) =Y NU. On one hand,

n
Supph(K") = |_J Supp H'(K") 2 Supp H(K").
i=1
Now the tensor product of these complexes is computed just as chain com-
plexes, since they are free and hence flat. If Ch = (A LN A) and Cy =
(A EEN ), the tensor product C; ® Cy is given as the complex having
(C1®Cy)F = @ C!®CY, and morphisms 0F = de, ® id + (—1)*id ® d,,

i+i=k
that is

A—A0A— A

with morphisms a — (fia, — fea) and (a1, a2) — faa1 + fias. In general, so,
we argue that K in degree 0 will be

@A—>A—>()

mapping (a1, ...a,) + f1a1 + ... + foan, so that HO(K") = A/(f1,..., fa).
Observe now that for any ideal ¢ C A one has Supp(A4/q) = {¢} C Spec(A),
that is because for any ideal p one has p ¢ {¢} <= p Pqg= TIreq\p=
Va € (A/q)p it holds a = 1ra = 0, since r € q.

Hence

Supph(K°) 2 Supp(H K") = Supp(A/(f1,- .-, fa)) =
{(fi,---,fn)} NSpecA=Y NU.
One the other hand, observe that there is a resolution, and hence a quasi-
isomorphism

fi

~

O—— O

1

> R
> 0 » R/(fi) — 0 —— -~

~
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Which implies that K* = R/(f1)®" - -®@“R/(f,), whose support is Supph(K") =
ﬂ Supph(R/(fi)) = ﬂ {(f)} = Supp(A/(f1,-.., fa)) =Y NU.

Consider then the shlft of the complex K, namely K'[1], and observe
that both has the same cohomological support, as well as their sum K @
K'[1], whose cohomological support is the union of the two. Now in the
group Ko(Pfyny(U)), one certainly has from Proposition 5.1.3 and Corol-
lary 5.1.4 that [K" @& K'[1]] = 0 and so it is in the image of the restriction
Ko(Pfy (X)) = Ko(Pfyny(U)). Hence, by Proposition 5.2.18, there is a per-
fect complex E" on X acyclic off Y and such that E|y is quasi-isomorphic to
K @ K'[1]. That means on one hand that Supph E* C Y, and on the other
hand Supph E|y = Supph(K" @ K'[1]) =Y NU > y, so that y € Supph E
which is closed by Lemma 5.2.12, and hence Y = {y} C Supph E’. Thus
Supph E" =Y. O

The following computation will be needed in the subsequent Lemma.

Proposition 5.2.22. Let A RN SN C — TA be a distinguished tri-
angle in D~ (Ox) and D any object in D~ (Ox). Then, the triangle

D@l A% D®LB—>D®LC’—>T(D®LA)
1s distinguished.

Proof. Tt clearly suffices to prove that D®"C/(f) is isomorphic to C(D&" f).
Start considering two flat resolutions by bounded above complexes of flat
modules K" — A" and K" — B, and compute the i-th degree of C(D®" f)
as

C(D ®L f)z — (D ®L A)i—i—l D (D ®L B)z _
P prer"o P oreK™
pt+q=i+1 pt+q=t

Now, observe that the complex K = K"[1]@& K" define, by diagonal mapping
of the previous resolutions of A* and B°, a bounded above resolution of flat
objects for the complex C(f). Therefore, we can compute

(DeVC(f)'= @ Drreki= P Do K" oK") =
pFHq=i p+g=i
P prek e Dok = P DPeK'e @ DPe K™
ptq=i pg=i+1 p+q=i

So, they are the same, as well as the morphisms of these two complexes

. —idp ® da 0 . —da 0
whlchare<_idD®f idD®dB>_1dD®<—f dB>. O
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Let’s now state a result known as Tensor Nilpotence Theorem, which
will be needed in Lemma 5.2.24.

Theorem 5.2.23 (Tensor Nilpotence). Let X be a noetherian scheme, E
and G° perfect complexes on X, and F° a complex with quasi-coherent co-
homology. Let f : E* — F" and suppose for all x € Supph(G") that, denoting
by k(z) the residue field at x, one has f @ k(x) =0 in D(k(x)). Then there
is a natural n such that G' @ (" f) : G ® (I"E") = G" @ (Q"F") is zero in
D(Ox).

Proof. See [Tho97] Theorem 3.8. O

Lemma 5.2.24. Let X be a noetherian scheme, and suppose E°, F" to be
perfect complexes in P{(X) such that Supph(E") C Supp(F"). Then E° is
an object of the smallest ®-ideal of Pf(X) containing F".

Proof. Let us call A C Pf(X) the smallest ®-ideal containing F". Note that
for a morphism a : G* — Ox in Pf(X) we can set C(a) to be the cone of a
and get the triangle

G % 0y — Ca) — TG

The same way, for any natural n > 1, the map ®"a : QG — Ox gives us
n

a triangle

X6 28 0x — O(@"a) — TG
n n
By Proposition 5.2.22 there is a third distinguished triangle

¢ o (@) I ¢ — ¢ o ) — TG 2 (RE)

Moreover, under the identification ®"*'a = a o idg ® (®"a) we are in the
hypothesis of axiom T4, so that these three triangles in the three different
colors gives a diagram of the form

G oG —2 oy s Cla) - T(G" @ C(a"a))
n 1
idG'®(®na)i / l //’/ l /
G C(®"*a) TG

I

G ®C(@") — T(G"® (RG))
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and thus there exists a further distinguished triangle
G ®C(@"a) — C(®"a) — Cla) — T(G" ® C(®"a))
Now, observe that for every natural n > 1 it holds
E'®C(a)isin A= E"® C(®"a) also is in A.

This is easily proved by induction taking the tensor product (Proposition
5.2.22) by E" with the new triangle obtained by axiom T4. The base step is
in fact trivial, while if E"® C(a) and E" ® C(®"a) are in A, sois E' @ G" ®
C(®"a) being A a tensor ideal, hence two sides of a distinguished triangle
in a triangulated subcategory are in the triangulated subcategory A, and
by Proposition 2.4.16 so is the third one, which is £ ® C(®@"ta).
Moreover the isomorphism of Proposition 4.3.24, for F" perfect,

RHom(F",0x) @ F" =2 RHom(F",F")

tells us, since F" is in the ®-ideal A, that RHom(F", F") is in A. Thus,
consider idp- € Hompp,)(F", F") and its correspondent morphism, under
the isomorphism

HomD(OX)(F'7F') = HOHlD(@X)(Ox,RHOWL(F', F))
given by the adjunction — ®" F* 4 RHom/(F", —),
f:0x — RHom(F",F").

Let then a : G° — Ox be its completion to a triangle, so that there is a
triangle
G % Ox L RHom(F, F') — TG

with RHom(F",F") = C(a) an object in A, as well as E* ® C(a) and, for
what proved above by induction, E' ® C(®"a). What we are going to prove
is that E" is a direct summand of E* ® C(®"a) for some n, and being the
former in the ®-ideal A, which is in particular thick, £ will also be in A.

Claim: There exists a natural n > 1 such that E° ® (®"a) is the zero
map in Pf(X). If we prove this last claim, for this particular n we have the
distinguished triangle

Eo(QG) -5 E — E®C(@"a) — T(E  (R)G))
whose shift

E — E ®C(@") — T(E ® (X)G)) —= TE
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shows by Lemma 2.4.14 that £ ® C(®"a) =2 E' & T(E" ® (QG")), and

n

eventually that E" is in A.

It remains then to prove the claim, and by Tensor Nilpotence Theorem
5.2.23 it suffices to prove that Vz € Supph(E") it holds a ® k(x) = 0 in
D(k(x)). Now we use the hypothesis, so far untouched, that Supph(E") C
Supph(F"). Thanks to Proposition 5.2.10 we have that F* ® k(z) 2 0 in
D(k(x)). Thus, under the derived ®-Hom adjunction (Theorem 3.6.16 and
subsequent Remark) between the functors F* ® — and RHom(F, —)

Hom(F" ® k(z), F" ® k(z)) 2 Hom(k(x), RHom(F", F" ® k))

idp-gi(y) corresponds to a non-zero morphism k(z) — RHom(F", F" ® k).
As a non-zero monomorphism between chain complexes of vector spaces, it
splits, and so does once composed with the isomorphism (for perfect com-
plexes, Proposition 4.3.24)

RHom(F", F" @ k(z)) = RHom(F",F") @ k(x)

which gives clearly f ® k(x) : k(z) = RHom(F", F") ® k(x).
Eventually, being f ® k(z) split mono in the distinguished triangle

G @ k() ‘LY k@) Y RUom(F, F) © k(z) — T(G ® k()

implies a ® k(z) = 0 by Proposition 2.4.11. O

Theorem 5.2.25. Suppose X to be a noetherian scheme. Let T = {A C
Pf(X)|A is a ® -ideal} and S = {Y C X|Yis specialization closed}. There
is a bijection between T and S provided by

T+—S
A~ U Supph(E")
E-€Ob(A)
Pfy (X) < Y

Moreover, this mapping is also inclusion-preserving.

Proof. Let’s give a name to these mappings ¢ : T — Sand ¢ : S — T. The
fact that they are well-defined follows respectively from Propositions 5.2.12
and 5.2.15. Let’s remark again the fact that A is a subcategory of a small
category, so it has a set of objects Ob(A).

Now, on one hand it’s clear that

(V)= |J  Supph(E)CY
E*€0b(Pfy (X))
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since is union of subsets contained in Y by definition of Pf(Y). The reverse
inclusion is given considering z € Y = (JY,,, with the Y,’s closed, so that

[0
there exists a with z € Y,,, and Lemma 5.2.21 provide a complex E;, on X
such that Supph(E;) = Y, C Y. Then E;, € Ob(Pfy(X)) and z € Y, =
Supph(E;,) € ¢ip(Y)
For the reverse composition, is clear that

¢¢(A) = PfUSupph(E')(X) DA,

since any object E" in A has support containedin ~ |J  Supph(E"). Con-
E"€0b(A)
versely, let G* be any object in ¥)¢(A), that means

Supph(G') € | J  Supph(E").
E*€Ob(A)

By Lemma A.0.8 let us find a finite set J indexing {E;};c; € Ob(A) such
that
Supph(G") C | J Supph(E;) = Supph(EPE;).
e ieJ
Now, by Lemma 5.2.24, G" is in the smallest ®-ideal containing @ E;, and
ieJ

since each of the E; for i € Jis in A, so is their direct sum (any triangulated
subcategory is closed under taking finite direct sum by additivity. Thus the

smallest ®-ideal containing @ E; is in particular contained in A, hence G*
icJ
is in A as desired.
O
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Chapter 6

The spectrum construction

In general, even for very well behaved schemes such as abelian varieties,
the derived category of the category of sheaves of modules is not an invariant.
A well known example is the one provided by Shigeru Mukai (see [Muk81]),
where it’s proved that for an abelian variety X and its dual X subsists an
equivalence of categories D(Ox) ~ D(Oy). The equivalence is provided
considering the product variety X x X with its projection morphisms

X x X
/ X
X X
Then, a particular line bundle P over X x X , provides an equivalence of
categories

D D(Ox) — D(OX)
E — Rq.(Lp*E" @b P)

We know by Example 4.3.19 that the projection g is a perfect morphism,
hence we deduce from Proposition 4.3.16, Remark 4.3.20 and Proposition
4.3.27, that this equivalence passes to the full subcategories of perfect com-
plexes.

The aim of the following chapter is to provide the structure needed to
the category Pf(X) in order to characterize X. It happens to be sufficient
to consider its derived tensor product structure, and this gives rise to the
general theory of tensor triangulated categories.

6.1 Symmetric monoidal categories

A category is monoidal when is equipped with the structure of a “product”
operation, satisfying certain associativity and existence of neutral element.
Let’s proceed by steps.
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Definition 6.1.1. A strict monoidal category (B,®,1) is a category B
together with a tensor functor — ® — : B x B — B which is associative,
that is one has identity of functors

®(® xidg) =®(dg x®): Bx Bx B— B
and such that 1 is neutral element for ®, that is
®(1 X idB) =idg = ®(idB X 1),

where clearly 1 x idg : B — B x B is the functor X — (1, X), and mapping
a morphism f: X — Y toid; x f

In a less cryptic way, the functor ® maps each pair of objects (X,Y") to
an object X ® Y, and we just required for any triple of objects (X, Y, Z) to
holds (X ®@Y)@Z=(X@Y)®Z,aswellas 1@ X =X =X ® 1.

Example 6.1.2. A monoid (M, *), regarded a set of objects given by its
elements and without non-identical morphisms, is a strict monoidal category
with tensor structure given by (a,b) — a * b. Properties of strict monoidal
category are the very definition of monoid.

Example 6.1.3. For a fixed category X, the category End(X) whose objects
are the functors X — X and whose morphisms are the natural transform-
ations between them is a strict monoidal category. That is just because
composition of natural transformations is associative and has a unit.

However, the category of sets endowed with its structure of product
® = X is not strictly monoidal, since given sets X, Y and Z, the sets
(Ax B) x C and A x (B x C) are not the same set. They are isomorphic in
a natural way though.

Definition 6.1.4. A monoidal category (B,®,1,a,\,p) is a category B
together with a functor B x B — B, an object 1 and natural isomorphism

axyz: XY ®2)=2(XQY)®~Z

called associator, making the following pentagonal diagram to commute:

XY QZaW)) 25 (XaY)(ZaW) 2= (XoY)0Z)aW

\Lid@a a®id1\

X(Y®Z)W) a » (XY ®2)W

and left and right unitors
Ax 1l X=2Xandpy : X®1=2X

such that A\; = p; : 1®1 — 1 and making
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X®(1aY) a y (X®1) Y

idm Aid

X®Y
to commute.

Example 6.1.5. Now, Set is certainly a monoidal category with product
giving the tensor structure and the singleton terminal object giving the unit.

Remark 6.1.6. More in general, in any category with finite products the
product gives a monoidal structure with unit the terminal object. Dually,
any category with finite coproduct has a tensor structure given by the cop-
roduct. The category of sets has both structures.

Example 6.1.7. The usual tensor product of modules over a fixed commut-
ative ring R endows the category Mod(R) of the structure of a monoidal
category. Defined through its universal property, in fact, the tensor product
of two R-modules M ®pr N comes with a bilinear morphism M xN — M&®rN
mapping (m,n) — m®n which is universal for any other bilinear map from
M x N into another R-module.

Thus, for modules N, M and L, the isomorphism o : M @ (N ® L) —
(M ® N)® L is given by

Mx(N®L) —25 M®(N®L)

X \}/O‘

(M®N)® L

where f : (m,n ® 1) — (m ® n) ® [, which is bilinear because the inner
tensor product is. Its inverse is given by the same sort of diagram with
f:(M®N)xL— M®(N® L) mapping (m ®n,l) — m® (n®1). This
gives a map o such that o/((m ®n) ® 1) = m ® (n ® 1), which is clearly
inverse to a.

The pentagon is easily seen to commute, and the unit is well known to
be R, as well as the isomorphisms RQ M 2 M =2 M ® R.

Remark 6.1.8. The pentagon identity, although looks extremely natural,
could seem sort of arbitrary. The reason beyond it is the so called Coherence
Theorem (see [ML97] VIIL.2), which roughly speaking says that it is the
minimal requirement in order to get any diagram involving only unitors and
associators to be commutative.

A particular kind of monoidal categories are those where the tensor
product is commutative. The following makes this precise.
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Definition 6.1.9. A symmetric monoidal category (B,®,1,a,\,p) is a
monoidal category equipped with isomorphisms, for every pair of objects
XY,

’)/X7y:X®YgY®X

natural in X and Y, such that vx yyy,x =id, py = Ayy,1 : Y ®1 =Y and
making the following hexagon diagram to commute:

XY oZ) 25 (XQY)9Z = Zo(X®Y)

lid@w \La

X®(ZoY) 25 XeZ2)oy 2% ZeX)oY
Remark 6.1.10. There is a version of the Coherence Theorem (see Remark
6.1.8) also for symmetric monoidal categories, and that is the reason why
we require the hexagon diagram to commute.

Example 6.1.11. The category of R modules is symmetric monoidal, since
the morphism M ®r N — N ®r M mapping m®n — n®m is an isomorph-
ism. Analogous arguments and standard results for sheaves of modules
prove also the category of sheaves of modules Mod(Ox) on a scheme X to
be symmetric monoidal under the tensor product of sheaves.

Remark 6.1.12. The derived category of bounded above complexes D™ (R)
is a symmetric monoidal category with the monoidal structure given by the
derived tensor product ®Y. We avoid the proof, which follows by taking
bounded above resolutions by complexes of flat objects and knowing the
axioms of symmetric monoidal category to hold for the category of modules.

Moreover, in a completely analogous way, it can be proven that the
category D™ (Ox) and, since the derived tensor product is defined on perfect
complexes, its full subcategory Pf(X) are symmetric monoidal.

6.2 Prime ®-ideals

Let’s now go back to triangulated categories and introduce a way to
combine their structure with the one of symmetric monoidal category.

Definition 6.2.1. A tensor triangulated category (K, ®,1) is an essentially
small triangulated category (K,7T') endowed with the structure of a sym-
metric monoidal category given by a tensor product ® such that

(i) ® : K x K — K is a triangulated functor in each variable.

(i4) There is a natural isomorphism between (7T'—) ® — and T'(— ® —)
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Definition 6.2.2. A tensor triangulated functor between tensor triangu-
lated categories F' : K — L is a triangulated functor such that it respects
monoidal structure and identity. That is, F(A ® B) = F(A) ® F(B) and
F(lk) = 1y.

Example 6.2.3. The category of perfect complexes on a scheme (X, Ox)
has a structure of tensor triangulated category (Pf(X),®% Ox).

In this situation, one can straightforward generalize Definition 5.2.3 of
®-ideal to an arbitrary tensor triangulated category:

Definition 6.2.4. A ®-ideal in a tensor triangulated category K is a trian-
gulated thick subcategory A C K such that whenever Aisin A, sois AQ B
for every B in T

Remark 6.2.5. Since we are working with essentially small triangulated
categories and ®-ideals are strictly full subcategories, there is a set of these
subcategories, and each of them is equivalent to a set. Therefore, meaning
to work up to equivalence, we are going to consider elements of these ideals.

Remark 6.2.6. The Verdier quotient K/A of a tensor triangulated category
K by a ®-ideal A, carries the structure not only of triangulated category
(Theorem 3.2.6), but also that of tensor triangulated category.

The tensor product functor A ® — is trivially extended on objects in
K/A, which are the same of K. On a morphism f : B — C, represented by
a roof

B+ W —C

with C(s) in A, the functor A ® — is defined as the morphism represented
by
ARs
ARB+— AW — A®C
and it’s well defined because C(A ® s) = A ® C(s) still is in A, since A is.

A tensor triangulated category roughly speaking looks like a categorical
version of a commutative ring. This can be made clearer using Grothen-
dieck groups (§ 5.1), anyway the symmetric monoidal structure given by
the tensor product correspond to the commutative monoid structure of the
multiplication. Having this in mind makes us more comfortable with the
next definition.

Definition 6.2.7. A proper ®-ideal P C K in a tensor triangulated cat-
egory is said to be prime if whenever A ® B € P, then either A or B are in
P.

Now we are ready to define the spectrum at the level of sets.

Definition 6.2.8. The spectrum of a tensor triangulated category is the set

Spec(K) = {P C K|P is a prime ® -ideal}
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Definition 6.2.9. For any set of objects S C K, define
Z(S) ={P € Spec(K)|P NS = &}
Define also its complement U(S) = {P € Spec(K)|P NS # &}

Proposition 6.2.10. The set {Z(S)|S C K} defines a base of closed subsets
for a topology on Spec(K).

Proof. (1 Z(8;) ={P € Spec(K)|Vj € J PNS; =z} = {P € Spec(K)|PN

jeJ

US; =2} =2(US)).
jed jed

Let’s prove that Z(S)U Z(T) = Z(S® T), where ST = {A® B €
K|A € S, B € T}. Recall that as any triangulated subcategory, P is closed
under taking direct sums, hence if P ¢ Z(S) U Z(T), by definition neither
P NS nor PN T are empty, so there are A, B in these two sets showing
that A@ B e PN(SaT) # @, thatis P ¢ Z(S & T). Conversely, if
P¢ Z(S®T), there are A€ S and B € T with A® B € P, and thickness
of P says that both A and B are in P, hence P ¢ Z(S) U Z(T)

Eventually, it’s clear that Z(@) = Spec(K) and Z(K) = @. O

The topology on Spec(K) generated by the closed subsets {Z(S)|S C K}
is called Zariski topology. The structure of scheme will be later discussed.

Remark 6.2.11. Just as the operation V on the ideals of a ring R defining
a base of closed subspaces of Spec(R) by V(a) = {p € Spec(R)|p D a}, the
operation Z reverses inclusions. Although a lot of notions in this setting
can be easily imported from standard affine algebraic geometry, one has to
be careful with what goes on under these definitions, which doesn’t match
faithfully those from commutative algebra. A main difference is highlighted
by the following phenomena of reversing inclusions with respect to what
happens for spectral spaces. Closed points in Spec(K) are, in fact, minimal
prime ideals.

Proposition 6.2.12. For any point P € Spec(K), its closure is

{P} ={Q € Spec(K)|Q C P}.

Proof. Let Sg = K\ P. Then certainly P NSy = &, that is P € Z(Sy).
Moreover Sy is maximal with this property, P € Z(8S) if and only if S C Sy,
which is equivalent to Z(Sg) C Z(S). In other words, we get that whenever
P belongs to a closed basic subset, then Z(Sy) is contained in this subset.
That means Z(Sp) = {Q € Spec|QN K\ P =2} = {Q € Spec|Q C P} is
the closure of P. O

Corollary 6.2.13. Let Py, Py € Spec(K). If {P,} = { P2}, then P, = P,
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Proof. Proposition 6.2.12 gives

{Q € Spec(K)|Q C P1} = {Q € Spec(K)|Q € P},

and hence is obvious that P; = P». ]

6.3 Supported topological spaces

Inspired by the operator Supph, which is an assignment of a closed sub-
space of X to any perfect complex on X, we generalize to this setting the
notion of support.

Definition 6.3.1. Let (K, ®,1) be a fixed tensor triangulated category. A
topological space X is said to be supported on K if it is endowed with an

assignment
0:K— {Y C X|Y is closed}

called support satisfying

(i
(i
(iii

(1v

)
)
)
)

(v) c(A® B)=0(A)No(B)

Definition 6.3.2. A morphism f : (X,0) — (Y, 7) of topological spaces
supported on a tensor triangulated category K is a morphism of topological
spaces f : X — Y such that

for any object A in K.

Remark 6.3.3. The previous definitions provide a category Topy, since
composition of maps with the required property for being a morphism in
Topy, still has the property. Isomorphisms in this category are precisely the
homeomorphism of topological spaces which are also morphism of supported
topological spaces.

Remark 6.3.4. The cohomological support Supph gives to any scheme X
the structure of a topological space supported on Pf(X). In Definition 6.3.1,
conditions (7i7) trivial for Supph, condition (7) is easy, since the zero complex
has clearly empty cohomological support, while for any x € X the ring Ox ;
cannot be zero. Conditions (i) and (v) are provided by Proposition 5.2.9,
and (iv) by Lemma 5.2.14.
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The following, generalizes Definition 5.2.13.

Definition 6.3.5. Let (X,0) be a topological space supported on K and
Y C X be any subspace. Define the full subcategory Ky C K to be the one
whose objects are all those A in K with o(A4) C Y.

Lemma 6.3.6. For any subspace Y C X the category Ky C K is a ®-ideal.

Proof. Observe first of all that support is invariant under the shift functor by
(#i7), and so is the full subcategory Ky . Moreover, if two objects in a triangle
A — B — C — TA are in Ky, suppose up to shift that these two objects
are B and C and use condition (iv) which gives 0(A) C o(B)Uo(C) C Y.
This proves Ky to be a triangulated subcategory. Thickness is given by
(i), since c(A® B) = o(A)Uo(B) CY = o(A),0(B) CY. Eventually,
condition (v) gives, for A in Ky, that 0(A® B) C 0(A) C Y, that is Ky is
a ®-ideal. O

A very special topological space supported on K is the spectrum Spec(K).

Definition 6.3.7. Given a tensor triangulated category K, let the function
supp : K — {Y C X|Y is closed}
be defined by supp(A4) = Z({A}) = {P € Spec(K)|A ¢ P}.

Remark 6.3.8. Any basic closed subspace in Spec(K) is by definition of

the form Z(S) for S C K, and Z(S) = () supp(4). Thus the family
A€eS
{supp(A)|A € K} is a base for the Zariski topology.

Proposition 6.3.9. The space (Spec(K),supp) is supported on K

Proof. Certainly if P is any ®-ideal, it’s a triangulated subcategory, hence
the zero object of K is isomorphic to the zero object of P, and so is in P.
That means supp(0) = {P € Spec(K)|0 ¢ P} = @. It’s also clear that
1 cannot belong to any prime, since otherwise for any object A one would
have A® 1= A in P, which wouldn’t be proper. This proves (7).

As observed yet, P being thick triangulated subcategory implies that

AcPand BeP<«<— Ao BecP

. Thus supp(A @& B) = {P € Spec(K)|A® B ¢ P} = {P € Spec(K)|A ¢
P or B ¢ P} = supp(A) Usupp(B). This proves (ii).

The fact that any triangulated subcategory P is invariant under the shift
functor and the distinguished triangle 7~'A — 0 — A — A for any A in
P show that A is in P if and only if T'A is in P. That means supp(A) =
supp(T'A). This proves (7i).
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If A— B — C — TA is a distinguished triangle and P ¢ supp(B) U
supp(C), then both B and C' are in P, which is triangulated, hence also
A € P, that is P ¢ supp(A). This proves (iv).

Eventually, (v) actually needs P being prime ®-ideal, since in this case

A BeP<« AcPorBecP

hence A B¢ P < A ¢ P and B ¢ P, that is supp(A ® B) = supp(4) N
supp(B). O

Theorem 6.3.10. Let K be a tensor triangulated category, then the object
(Spec(K),supp) is final in the category Topg. Moreover, for any space
(X, 0) supported on B the unique morphism f : (X,0) — (Spec(K),supp)
1s explicitly given as

f(z) ={A € K[z ¢ o(A)}.

Proof. One has to check that the morphism (X,0) — (Spec(K),supp)
defined in the statement has actually range in the set of prime ®-ideal
and that it defines a morphism of spaces supported on K. For a fixed
x € X, Lemma 6.3.6 applied to the subspace ¥ = X \ {z} shows that
fx)={A€K|o(A) CY} =Ky is a ®-ideal. In order to see that it’s also
prime, let A® B € f(x), that means = ¢ 0(A® B) = o(A) No(B), thus
either = ¢ o(A) or x ¢ o(B), i.e. either A or B are in f(x).

The fact that f defines a morphism in Topg is given by x € f~!(supp(A))
if and only if f(z) € supp(A), that is A ¢ f(z) = {A € K|z ¢ 0(A4)}, equi-
valently = € o(A) as desired.

Uniqueness is proved considering f,g : (X,0) — (Spec(K), supp) such
that f~!(supp(A)) = o(a) = g '(supp(A)) for every object A in K, and
showing that then f = g. Let € X, then our assumption become f(z) €
supp(A) if and only if g(z) € supp(A). For what noted in Remark 6.3.8, one
can consider

{F@)} = N supp(4) = N supp(4) = {g(=)}
{A€K|f(x)€esupp(A)} {A€K|g(z)esupp(A)}
Corollary 6.2.13 provides then f(z) = g(z). O

Another notion that can be imported from commutative algebra is the
following

Definition 6.3.11. Let K be a tensor-triangulated category, and J C K a
®-ideal. The radical of J is defined to be

VI={AeK|In>1(X)Ac T}

The ®-ideal J is said to be radical whether J = v/J.
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Remark 6.3.12. For our purposes of studying the tensor-triangulated sub-
category of perfect complex, it’s irrelevant to introduce radical ®-ideals,
because all ®-ideals are radical in Pf(X). This is given by the following
argument.

Proposition 6.3.13. Let K be a tensor triangulated category. Then, are
equivalent:

(a) Any ®-ideal is radical.

(b) Any object A in K is in the smallest ®-ideal containing A ® A.

Proof. Call J4 the smallest ®-ideal containing A ® A. Certainly (7) implies

(i), because if J4 is radical, then it contains A because it contains A ® A.

Conversely, let J be any ®-ideal and suppose @A to be in J. Let’s prove A
n

to be in J by induction on n.
The base case n = 1 is trivial. Now, let n be an integer greater than 1.
If n is even, consider B = @A € J, and by our assumption observe that

2
B BeJmeans BQBeJg CJ, hence B Jg CJ. The theorem for B
holds true, so that A € J.

If n is odd, use the fact that J is a ®-ideal, so that @ A = A ® @
n+1 n
is in J. Use then the case n even, giving the result whenever "TH < n, i.e.

whenever n > 1, which is the case. O

Corollary 6.3.14. Every ®-ideal in P{(X) is radical.

Proof. Recall that Supph(E" ® F*) = SupphE" N SupphF", so that always
happens SuppE" C Supp(E" ® E°). Thus, Theorem 5.2.24 says that is
satisfied the condition (ii) in Proposition 6.3.13, and so is the equivalent
condition (7), saying that every ®-ideal is radical. O

Remark 6.3.15. Let (X,0) be a topological space supported on a tensor
triangulated category K, and Y C X a subspace. Then the ®-ideal Ky (see
Lemma 6.3.6) is radical. That is because o(@QA) =[o(A) = o(A).

n n

The next theorem has hypothesis mimicking the statement of Theorem
5.2.25, so that it will be applied subsequently.

Theorem 6.3.16. Let (X, Ox) be a noetherian scheme with a support o on
a tensor triangulated category K. Set T = {A C K|A is radical ®-ideal}
and S ={Y C X|Y s specialization closed} and suppose that there exists a
bijection between T and S given by

¢o: T +—S
A | Jo(4)

AcA
Ky —Y
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Then the unique morphism (X, o) — (Spec(K),supp) is a homeomorphism.

Proof. Let’s first of all prove the following claim, which is an analog result
of Lemma 5.2.21. The outline of the proof also is the same.

Claim: Whenever Y C X is closed subspace, there exists an object A in K
such that Y = o(A).

Being Y C X closed subspace of noetherian scheme it is noetherian, and
this gives a decomposition of Y as finite union of irreducible components,
each of which has a unique generic point by Proposition A.0.7. Thus, if one
supposes Y = @ and prove the result, the general case follows considering
the direct sum of the objects, whose support is the union of the single
supports. For the supposed case, Y = {y} = ¢(¢ 1 (Y)) = U o4

Aeggp1(Y)
gives the existence of an object A € ¢~1(Y) = {4 € Spec(K)|o(A) C YV}
such that y € o(A), but now o(A) is closed by definition, thus {y} C o (A).
That means both 0(A) CY and Y C o(A). This proves the claim.

Let’s prove that f is bijective and closed. For a fixed x € X set

Y(z) ={y € X|z ¢ {y}}

which is specialization closed since Y (z) = |J {z}. The left to right inclu-
¢ {z}
sion is in fact obvious, and whenever there exists z such that z ¢ {2} and
y € {2}, then = ¢ {2} D {y}, thus = ¢ {y}, i.e. y € Y(x).
Now let’s see that for any object A in K it holds

0(A) CY(x) <=z ¢ o(A).

One one hand if z € o(A), then one has found a point which is in o(A)
but not in Y (z), since clearly x € {x}. Conversely, if z ¢ o(A), take any
y € o(A), which is closed and hence z ¢ o(A) = |J {y}. So one has
y€o(A)
x ¢ {y}, that means y € Y(x). Thus o(A4) C Y (z).
This provides a description of f(z) as

fz) ={A €Kz ¢ o(A)} = {A€K|o(4) CY(x)} =67 (Y ().

Thus if f(z1) = f(22) onehas ¢~ (Y (1)) = ¢~ (Y (22)), and hence Y (z1) =
Y (x2). By definition that means {y € X|z; ¢ {y}} = {y € X|z2 ¢ {y}},
which can be more clearly stated as 1 € {y} <= z3 € {y}. In particular
one has for every y that {z1} C {y} <= {x2} C {y}, which shows by taking
y = 1 and y = x9, that {z;} = {x3}. Eventually, being X a scheme, and
hence Tj, that implies z1 = xs.

In order to prove f to be surjective, take any prime ®-ideal P C K,
and look at the specialization closed subspace Y = ¢(P). Being P a proper
subcategory of K and since ¢ certainly maps K +— X because 1 € K, then
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Y € X. Consider thus z,y € X \Y and find by the initial claim two objects
A, B with supports respectively m and @ Since x,y ¢ Y, this gives
o(A),0(B) € Y, which is by definition 4, B ¢ Ky = ¢~ 1(Y) = P. Being P
prime, neither their tensor product A ® B is in Ky, that is 6(A® B) € Y.
This leads us to find z again in X \ Y with z € 0(A ® B), that is z €

o(A)No(B) = {z} N {y}, implying {z} C {z},{y}.
In slightly more sophisticated terms, we just proved that the set partially
ordered by inclusion

F={{z} C Xz e X\Y}

is finitely complete, that is any finite family of objects admits a lower bound
in F. Moreover, since X is noetherian scheme, it has a noetherian topolo-
gical space, hence any totally ordered subset of F, being a chain of closed
subspace, has a minimal element. These two facts implies that F has a
minimum. That is because if it wouldn’t have a minimum, for any ag € F,
which is not a minimum one would find a; € F with a; # ag, that is either
a1 < ag or a1 and ag are not comparable. In this case, find a lower bound in
F for the two, and call it again a;. This inductively defines a chain without
minimal element.

So, there exists x € X \ Y such that whenever y € X \ Y it holds
{z} C {y}, that means

X\Y C{ye X|{z} S {y}} ={y € X|z € {y}}.

The reverse inclusion also hods true, because = ¢ Y = |J {y}, that means
yey

for any y € Y one has = ¢ {y}. Whence for this minimal x one has X \Y =
{y € X|z € {y}}, and thus

Y={yeXlzd{y}}=Y(2)

Therefore, using the description of f(z) as ¢! (Y (x)), one has the surjectiv-
ity proved since

P=¢'(Y)=¢"'(Y(2)) = f(2).

Eventually, given a closed subspace Y C X, let’s find by the initial claim
an object A such that o(A) = Y. Being f a morphism of Topgk gives
f~t(supp(A4)) = o(A), and hence f(Y) = f(o(A)) = supp(A), which is
closed. O

Corollary 6.3.17. Let X be a noetherian scheme. The topological space
(X, Supph) supported on Pf(X) is isomorphic to Spec(P{((X)) through the
map

f(z) = {A € PE(X)|A, 20 in D(Ox,)}.

Moreover, f maps Supph(A’) to supp(A’).
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Proof. 1t’s just the observation that Supph satisfies the hypothesis of The-
orem 6.3.16, and that is thanks to Theorem 5.2.25 and Corollary 6.3.14.
The map f is here defined to be f(z) = {A" € Pf(X)|z ¢ Supph(A4’)}, that
means A" € f(x) if and only if the stalk at = of A" is not acyclic. The
moreover part follows by the fact that this homeomorphism is a morphism
of topological spaces supported on Pf(X). O

6.4 Karoubi envelope

In this last part we are going to prove that the homeomorphism of Co-
rollary 6.3.17 is part of an isomorphism of schemes, once will be given to
Spec(Pf(X)) the structure of locally ringed space. In order to make this
construction is needed the Verdier quotient, from § 3.2, and the so called
Karoubi envelope.

Definition 6.4.1. Let C be a category and C an object in C. A morphism
f:C — C is said to be idempotent whether f2 = f.

Definition 6.4.2. A morphism f : C' = C in a category C is called split
idempotent whether there exists an object D and morphisms

CﬁiD
(3

such that ip = f and pi = idp.

Remark 6.4.3. A split idempotent is certainly idempotent because
f* = (ip)(ip) = i(idp)p = ip = f

Definition 6.4.4. A category C is said to be idempotent complete if any
idempotent is a split idempotent.

The following proposition explains the name “split”.

Proposition 6.4.5. Let C be an idempotent complete category. Then, any
idempotent e : X — X has kernel and image, and there is a decomposition
of X as

X =Im(e) ® Ker(e).

Proof. Observe first of all that the morphism idx — e is idempotent, since
(idxy — 6)2 =idx —e—e+ e =idx — e. Therefore we can consider a split of
e

X =Y
(2

with r¢ = idy, ir = e, and also a split of idx — e
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X T<:> w
7;/
with /¢’ = idy, ¢'r’ = idx —e. Let’s prove that W = Ker(e) and Y = Im(e).
The diagram

—

e

W
d
X —

0
X
is commutative since

ei' = —(id—e—id)i' = —(id—e)i’ +¢ = =i'"r'i' +i' = =i’ +i' =0

For any morphism j : Z — X such that ej = 0, the morphism r'j = Z - W
is such that ir'j = (idx — e)j = j — ej = j. Uniqueness is immediate from
the fact that ' is a left inverse of 7/, and hence a monomorphism.

Moreover, an analogous argument also proves that the morphism 7’ :
X — W satisfies the universal property of the cokernel of e. Therefore, the
image of e, if it exists, is the cokernel of 7’. Let’s show that Y works. The
diagram

0

;

|

<.

,r/

T

is commutative since

rlir=re=—r'(id—e—id) = —r'(id —e) + ' = —r"i'v' + 7' = ="' +1' = 0.
If moreover a morphism j : Z — X is such that v’ = 0, the morphism
rj: Z — Y is such that

ej=—(dxy —e)j+j=—irj+j=0.

Uniqueness, is given again from ¢ being mono.

Then, it remains to prove that the decomposition actually gives X, i.e.
that X is the coproduct W @& Y. The coproduct morphisms are i : ¥ — X
and i : W — X, and if another object Z comes with morphisms j: Y — Z
and 7/ : W — Z
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consider the morphism j'r’ + jr : X — Z which is such that
(' + gr)i’ = 3+ gri’
but r’¢’ = idyy, while i’ = 0 because
ri'r’ =r(idy —e)=r—re=r—rir=r—idyr =0

and 1’ is epi. Therefore (j'r' + jr)i’ = j'. Analogously, (j'r' + jr)i = j.
Eventually, the morphism j'r’ + jr is unique, because if g and ¢ were
two morphisms such that

gi' =j' =4 and gi = j = ¢i,

then gi'r’ = ¢'i'r’, that is g(id —e) = ¢/(id —e), giving g — g(ir) = ¢’ — ¢'(ir),
and therefore

g—jr=g—jr
which implies g = ¢'. O

Remark 6.4.6. There’s certainly also a converse of the previous result.
That is, if any idempotent e : X — X has kernel and image giving a
decomposition of X as Ker(e) @ Im(e), then the canonical projection r :
X — Im(e) and inclusion i : Im(e) — X provide a split of e.

A first example of idempotent complete category is certainly any abelian
category, where it’s by definition required that kernel and image do exist
for any morphism. However, also a lot of triangulated categories enjoy
the property of splitting idempotent morphisms. A result by Bokstedt and
Neeman asserts the following.

Theorem 6.4.7. Any triangulated category with arbitrary direct sums is
idempotent complete.

Proof. See [BN93], Proposition 3.2. O

Remark 6.4.8. In particular, the derived category D(Ox) is idempotent
complete.

The following definition aims to construct the smallest idempotent com-
plete enlargement of a category.

Definition 6.4.9. The Karoubi envelope of a category C is the full sub-
category of C C C consisting of objects which are retracts of representable
presheaves. Namely, a presheaf P is in C if and only if there exists an object
C in C and morphisms in C

Hom(—,C) ﬁ P
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such that ri = idp.

Remark 6.4.10. In the case of a retraction of Hom(—, C') to P, the morph-
ism ir : Hom(—,C') — Hom(—, C) is idempotent, because irir = i(idp)r =
.

Lemma 6.4.11. Any cocomplete category D is idempotent complete.

Proof. Let f: D — D be an idempotent. Since D is cocomplete, consider
the coequalizer (E,p) of the morphisms f,idp : D — D, and the unique
morphism i : E — D induced by f in

/
D—=D-5E

i ]
12
x ¥

D

such that ip = f. In order to see that also holds pi = idg, observe that
being p equalizer one has pf = p, and therefore, from f = ip,

pip =p = idgp

and since p is equalizer and hence epi, we get eventually pi = idg. This
proves f to split. O

Proposition 6.4.12. Let C be a category. Any idempotent f : P — P in

C is a split idempotent
Proof. Since C is cocomplete, consider a split of f in C

P——H
7

with pi =idy and ip = f.
Now, observe that by definition P is a retract of a representable presheaf,
that is there exists an object C' and morphisms
Hom(—,C) é P
J
such that rj = idp. But then assembling these morphisms one find that pr
and ji defines a retraction of Hom(—,C) to H, because prji = pi = idy,
and hence H is actually in C. O

Remark 6.4.13. The Yoneda functor y : C — C, which is fully faithful
by the Yoneda Lemma, obviously factors defining a fully faithful embedding
C—CcCC.

Theorem 6.4.14. Let C be a category and C — C its Karoubi envelope.
For any idempotent complete category D and any functor G : C — D there
exists a functor G : C' — D lifting G, i.e. such that the triangle
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i

G

.(7

N

)

commutes in Cat.

Proof. As proved in Lemma 6.4.11, the splitting of an idempotent f : C' — C

is just the same as the coequalizer of f and idc. Therefore, the result follows

in the same way as the construction of the Kan extension, in Theorem 1.1.10.
Explicitly, if P is in C one has a retraction

T
yo —— P
and G(P) is defined then to be the coequalizer of the parallel morphisms
G(ir) _
GC _:d; GC —— G(P)
1

If f: P — P’'is a morphism, P’ comes analogously with a retraction given
by ' : P' = yor and i’ : yor — P, and G(P') is the analogous equalizer,
with morphism e’ : GO’ — GP'. Let’s induce a morphism GP — GP'.

Observe that the morphism ¢’ fr : yo — yor correspond by the Yoneda
Lemma to a morphism C' — C’, and let us call it again 7' fr. Then, the
morphism

co U o < ap)
defines a cocone for the same diagram defining the equalizer (G(P),e), in
fact

G fr)G(ir) = G (idp) fr) = € G fr)idpc.

Therefore, it induces a unique morphism u : G(P) — G(P') such that
ue = ¢'F(i' fr). It’s clear than this construction preserves identities, while
for a composition
pLip 4 pr

using analogous notations as above for the retraction of yo» to P” and for
the equalizer G(P"), one finds a morphism ' : GP' — GP” such that
u'e’ = €"F(i"gr’). Tt has to be proved that v'u = G(gf), i.e. that v'ue =
e"F(i"gfr), and that is because

wue=ueF@i'fr)="F@i"gr"\F(i' fr) ="F(i"g(idp:) fr).
O

Remark 6.4.15. The idea behind the notion of the Karoubi envelope !
is that we can think of it as if we formally (and iteratively) add for each

!Thanks to Eric Wofsey for explaining this to me.
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idempotent f : C' — C' in C a new object D together with new morphisms
making f to split
p
C—D

7

and morphisms into D and out of D are those arising from the bijection
induced by p and 1.

More precisely, a morphism g : £ — D will be a morphism arising from
one of the form h : E — C with the property that fh = h by composition
with p. Compositions by p and 7 defines in fact, for every FE, a bijection
between the sets

{g:E%D}#{h:E%CUh:h}

because iph = fh = h and pig = idpg = g. Conversely, morphisms out
of D will be those g : D — FE arising from precomposition by p of those
h: C' — E such that hf = h, under the analogous bijection

{9:D— E} —= {h:C — E|hf = h}
We have in fact the following result asserting that the one just described
is the case.

Proposition 6.4.16. Let C be a category and f : C — C an idempotent of
C. Let then D be an object in C such that the induced idempotent y(f) :
Hom(—,C) — Hom(—, C) splits as

Hom(—,C) 7—= D

Let g : D — E be a morphism of presheaves in C. Then gpf = gp (i.e. g
arise from a morphism h = gp such that hf = h)

Proof. This is obvious since gpf = gpip = gidpp = gp. O

Remark 6.4.17. An analogous result describes the morphisms into D as a
particular set of morphisms into C.

Lemma 6.4.18. Let C be a category and D an idempotent complete category
with a fully faithful functor

G:C—D

Then, the induced functor G : C — D is fully faithful.

172



Proof. Let P be an object in C, which as seen arises as split of the idem-
potent ir : yo — yco, where i : P — yo and r : yo — P define a retraction
of yo to P.

Let us confuse objects in C and the correspondent representable presheaves.
Then, the morphism ér can be seen as an idempotent morphism ér : C' — C,
and we can look at the idempotent G(ir) : GC — GC, which splits since D
is idempotent complete as

GC —— D

Observe that D = G(P), directly from how we defined the extension G in
Theorem 6.4.14. Therefore, if we consider any object E in C, there is a
natural bijection

Hom(GE,GP) ={g:GE — D} = {h: GE — GC|G(ir)h = h}

where the last bijection is provided by compositions with Gi and Gr, and is
well defined because G(ir)G(i)h = G(iri)h = G(i)h. Now we know that the
set {g: GE — D} = {h : GE — GC|G(ir)h = h} is in natural bijection,
because G is fully faithful, with

{h:E — C|fh=h}

which is isomorphic by Remark 6.4.15 to the set of morphisms Hom(E, D).

This proves the result Hom(FE, P) = Hom(GFE, GP) when F isin C C C.
The general case is provided by a transfinite induction argument. O

Another result that will be needed below is the following.

Lemma 6.4.19. Let G : C — D be a fully faithful functor into an idem-
potent complete category D with coproducts, and let F' be an object in D. If
there exists an object W in D and an object E' in C such that GE' = FeW,
then there exists an object E in C such that GE = F.

Proof. The direct sum decomposition G(E') = F & W provides natural
inclusion an projection morphisms i : F — G(E') and p : G(E') — F,
giving a morphism ip : G(E') — G(E'), idempotent because pi = idp,
splitting as
G(E') &= F
(]

Being G fully faithful, we find a morphism f : B/ — E’ with Gf = ip, which
still is idempotent. That is because G(f?) = G(f)G(f) = ipip = ip, so that
f? corresponds under the natural bijection to ip, and hence f? = f.

Therefore, f splits in C, namely there exists an object F in C with
morphisms
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Jo—D)
J

with j¢ = f and ¢j = idg. Applying G to this, provides a splitting of

G(jq) = G(f) = ip. Summing up, we have two splitting of ip

G _
GIE) == F  G(E) = G(E)
? J

from which we get, thanks to Remark 6.4.15, that for any D in D, the
following natural bijections between set of morphisms holds:

{9:D— F}y~{h:D— G(E")|iph =h} =2 {g: D — GE}.
Therefore, there’s a natural isomorphism of functors
Hom(—, F) = Hom(—, G(E))
which gives by the Yoneda Lemma the desired isomorphism F = G(E). O

Remark 6.4.20. In the context of triangulated categories, one can prove
that the Karoubi envelope of a (®-)triangulated category K yields a natural
structure of (®-)triangulated category turning the inclusion K — K into a
triangulated functor. See [BS00].

6.5 The structure sheaf

Now, we're ready to define the structure sheaf of the spectrum.

Definition 6.5.1. Given a tensor triangulated category K, the structure
sheaf Ogpeq (k) on Spec(K) is defined to be the sheafification of the presheaf
defined by

pOSpec(K) U — EndK/Kz(lU)

where Z is the closed subspace Spec(K)\ U, and 1y = Qz(1k) is the image
of the unit under the localization functor Q7 : K — K/K.

Remark 6.5.2. Restriction morphisms are given by the universal property
of the localization. Observe, for V' C U, that Z = Spec(K)\U C Y =
Spec(K) \ V, and hence Kz C Ky. A morphism 1y — 1y induces then a
morphism 1y, — 1y as image of the former under the functor

K/KZ — K/Ky

given by Verdier’s Theorem in
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K %2, K/K,

Qv J
K/Ky

since the localization functor (Jy maps any object of Kz to 0.

This sheaf turns the spectrum of any tensor triangulated category into
a locally ringed space. In order to prove that, we characterize stalks of this
sheaf as endomorphism rings.

Lemma 6.5.3. Let K be a tensor triangulated category and P € Spec(K).
Then, there’s a natural isomorphism

(Ospec(k)) P = Endg/p(1)

Proof. Let U be an open neighborhood of P and Z its closed complement.
A morphism in K/K is represented as a roof

1 A—1

where, denoting as C(s) the completion of s to a distinguished triangle,
supp(C(s)) C Z. It follows that a morphism in the colimit

(OSpec(K))P = CUO;‘IPI,nEndK/KZ (1)

is a roof 1 <— A — 1 where supp(C(s)) C Spec(K) \ {P}, or equivalently
P ¢ supp(C(s)) = {QIC(s) € Q},

that is C(s) € P. Therefore, these are exactly the morphisms 1 — 1 in
K/P. O

Remark 6.5.4. Observe that when P is a prime ®-ideal, the category K/P
enjoy the usual property of quotient rings of being an integral domain. More
precisely, if A® B =0 in K/P, then A® B is in P, and hence either A or
B is zero in K/P.

Proposition 6.5.5. If P C K is a prime ®-ideal, then the stalk (OspeC(K))P
s a local Ting.

Proof. Thanks to Lemma 6.5.3, it suffices to prove that Endg p(1) is a
local ring. Let’s prove then, that any morphism f € Endg/p(1) is either
invertible, or such that id — f is invertible.

In order to do that, we are going to prove that either C(f), the comple-
tion of f to a distinguished triangle, or C(id — f), the completion of id — f
to a distinguished triangle, is isomorphic to 0 in K/P. For such, being P
prime, it suffices to prove C(f) ® C(id — f) = 0.
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Therefore, consider the distinguished triangles
11 5 od- f) — 11
and, being the tensor product a triangulated functor in each variable,

(d—f)®C(f)
o) 8
which tells us that it suffices to prove (id — f) ® C' to be an isomorphism.
Observe then that since the tensor product is a functor, from the morphism
id — f : 1 — 1 and the distinguished triangle

C(f) — Cld - f)eC(f) — TC(f)

151 S o) 1

we get a commutative diagram

101 22 101 2% 100 22 1071

l(id—f)@l l(id_f)(gl l(id—f)@C l(id—f)@Tl

1®1wl®1wl®Cwl®Tl

which is, up to isomorphism

LN RN 6 RN |

id—f lidff l(idff)®c lT(id— f)
1 C T1

f v w

= =

Now consider another morphism between the same distinguished triangles,
given by the commutative (because vf = 0) diagram

A RN o TN |
lf lf lo le
I 1 € T1

The sum of these two morphisms of distinguished triangles gives another
morphism of distinguished triangles

115125021
lid lid l(id—f)@c id
1 7 »1l —— C —— T1

Eventually, Proposition 2.4.12 tells us that (id — f) ® C' is isomorphism. [
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Back to the case where K = Pf(X) for a noetherian scheme X, as we
are going to see, the presheaf described is actually a sheaf yet, and it leads
to extend the homeomorphism

f:X — Spec(Pf(X))

of Corollary 6.3.17 to an isomorphism of schemes.
First, we need the following results.

Proposition 6.5.6. Let X be a scheme. Then the category Pf(X) is idem-
potent complete.

Proof. Let e : X — X be an idempotent in Pf(X). Since the category
D(Ox) is idempotent complete, take, thanks to Proposition 6.4.5, the de-
composition

X = Ker(e) ® Im(e).

From Example 5.2.2 the subcategory Pf(X) C D(Ox) is thick, from which
we get that both Ker(e) and Im(e) are perfect complexes. Therefore, by
Remark 6.4.6, e splits in Pf(X). O

Theorem 6.5.7. Let X be a noetherian scheme and U C X an open sub-
space, with complement Z = X\U. There is an equivalence of @-triangulated

categories -
Pf(X)/Pfz(X) ~ Pf(U)

Proof. In order to prove the equivalence, let’s induce a full, faithful and
essentially surjective functor

Pf(X)/Pfz(X) — Pf(U)

Consider the restriction functor ry : Pf(X) — Pf(U) mapping F" to F"|y,
and observe that any perfect complex F* on X whose support is contained
in Z, is such that the restriction F"|y has each stalk zero, and so is itself
the zero complex in Pf(U). Therefore, it’s induced a functor

1y PE(X) /Pt (X) —s PE(U)

such that r;Qz = ry, where () is the localization functor.
Let’s prove this functor to be full and faithful. Let E*, E” be perfect
complexes on X and take a morphism in Pf(U)

b: E'|U — E/.|U

By Proposition 5.2.16 there exists a third perfect complex E”* on X and
morphisms a : B’ — E', ' : E” — FE’ in Pf(X) such that the diagram
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E//~ |U

w N
b

> El"U

Ely

commutes in Pf(U), with a|y isomorphism. Let’s observe that the pair
of morphisms (a,a’) in Pf(X) defines a roof, and hence a morphism in
the quotient category. That is true if a happens to be in S(Pfz(X)), the
class of morphisms whose cone is in Pfz(X). The complex C(a), which is
perfect because Pf(X) C D(Ox) is a triangulated subcategory, is in fact in
Pfz(X), because C(a)|y = C(a|y) is isomorphic to zero, being the cone of
an isomorphism.

Therefore, we have a morphism in Pf(X)/Pfz(X) whose restriction at
U is the original morphism b. This proves ri; to be full.

In order to prove faithfulness, consider two perfect complexes E°, E”
and two morphisms

E —= E"
b

in Pf(X)/Pfz(X), and suppose ri7(a) = ry(b) in Pf(U). We can represent
a and b as roofs in Pf(X), given as

B E/.

Since "y Qz = ry, the functor 77y applies on the roofs E* <+~ W, — E"| E" +
W, — E", just as a restriction functor. Therefore, we have commutative

triangles in Pf(U)
Welu Wilu

E'|U E/.|U Tb(b)

Observe then, that being C(s) in Pfz(X), one has C(s)|y = C(s|y) = 0, and
therefore s|y is isomorphism in Pf(U). The same is true for ¢|y of course,
and thanks to these isomorphisms

=N
S

v (a)

Ely

El'|U

Welv = E'lu = Wilu

glu
we find morphisms W; |y = W; |y —= E"|y to which we can apply Pro-
flu

position 5.2.17 in order to find a perfect complex W* on X and a morphism

c: W' — E°
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with gc = fe and such that ¢|y is isomorphism in Pf(U). It follows that the
cone of ¢ is in Pfz(X). Therefore, we have a commutative triangle in Pf(X)

W

/ Xclzbc
a

B ; E"
b

proving that a and b are the same morphism in Pf(X)/Pfz(X). This gives
faithfulness of 77;.

Now Proposition 6.5.6 applied to U allows to lift the functor ry to the
idempotent completion, so that we get

77 PE(X)/Pfz(X) — Pf(U)

and Lemma 6.4.18 tells us that it remains full and faithful.

Then, let’s see that it’s also essentially surjective. Thanks to Lemma
6.4.19, it suffices to prove any perfect complex F on U to be direct summand
of the restriction of a perfect complex on X. This is immediately given by
the Ky Extension Lemma, Proposition 5.2.18, applied with ¥ = X, once
observed that the class [F* @ TF'] = 0 € Ko(Pf(U)) is certainly in the
image of the group homomorphism

Ko(Pf(X)) — Ko(Pf(U)).
O

Theorem 6.5.8. Let X be a noetherian scheme. Then (X,0Ox) is iso-
morphic to the locally ringed space (Spec(Pf(X)), Ospec(pi(x)))-

Proof. Since we already have an homeomorphism f : X — Spec(Pf(X)), it
suffices to prove an isomorphism between the structure sheaves Ogpe. and
f * OX .

For any open U C Spec(Pf(X)), the sheaf Ogpe.pr(x))(U) is the ring

Endpg(x)/pe(x)), (10),

where Z is the complement of U in Spec(Pf(X)). Observe then, that
this endomorphism ring is equal to the endomorphism ring in the category
Pf(X)/(Pf(X))z, because the Yoneda functor injects faithfully any category
in its Karoubi envelope.

Now, the category (Pf(X))z is given by the objects E" in Pf(X) such

that supp(E") C Z, or equivalently such that

£ (supp(E")) = Supph(E") C f(2).
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Therefore (Pf(X))z = Pf;-1(7)(X), and since 1 in Pf(X) (and hence 1y in
Pf(X)/Pf(X)z) is the complex Ox centered at degree zero, then

Ospec(pi(x) (U) = Endpgixy e, (x)(Ox)

Now observe that the equivalence of Theorem 6.5.7, which is given as the
functor induced by the restriction, provides isomorphism

Endpr(x)/pf,_, ,(x)(Ox) = Endpr(p-10) (Op-107).

Eventually, this is just Hom(O -1y, Of-117), which is isomorphic to the ring
of sections Ox (f~1(U)) = f.0x(U). O

Corollary 6.5.9. Let X and Y be two noetherian schemes such that there
exists a tensor triangulated equivalence of tensor triangulated categories

Pf(X) ~ P{(Y).
Then there exists an isomorphism of schemes X 2Y.

Proof. Tt certainly suffices to prove that equivalent tensor triangulated cat-
egories have the same spectrum. Let’s call F' : Pf(X) — Pf(Y) and
G : Pf(Y) — Pf(X) the tensor triangulated functors witnessing the equival-
ence. They induce a bijection, which we still call F' with a little of ambiguity,

F : Spec(Pf(X)) — Spec(P{(Y))
Pr— F(P)

with inverse Q — G(Q), where F(P) and G(Q) are respectively defined
as the full subcategories of Pf(Y) and Pf(X) whose objects are, up to iso-
morphism, of the form F(A) for A € P and G(B) for B € Q.

Everything that need to be checked is that these mappings are well
defined, continuous and that it’s induced an isomorphism of the level of
structure sheaves. If F'A is in F(P), then T(FA) = F(TA) also is in F(P)
since TAisin P, while if FA — FB — D — TF A is a distinguished triangle
with two objects, FFA and F'B, in F(P), then there is a triangle

GFA — GFB —GD —TGFA

which is isomorphic to A - B — GD — T A, which then is distinguished,
too. Now since A and B are in P, so is GD, and hence D = FGD is in
F(P).

This shows that the full subcategory F'(P) is triangulated. In order to see
that it’s a prime ®-ideal, consider F'(A) =2 E @ D, which gives A = GFA =
G(E® D) = GE @ GD, providing, since P is thick, that both GE and GD
are in P, and therefore both £ = FGE and D = FGD arein F(P). If FA is
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an object in F(P) and E is any object in Pf(Y), then G(FA® F) = A®Q GE
which is in the ideal P since A is. Therefore FA® F = F(A® GE) is in
F(P). This proves P to be a ®-ideal. Eventually, if FA =2 E ® D, then
A GFAXG(E®D) = GE®GD implies that either GE or GD are in P,
and hence either F = FGE or D = FGD is in F(P). So, F(P) is a prime
®-ideal.

Continuity may be checked on the basis of closed of the form {Q|A ¢
Q} C Spec(P{(Y)), whose preimage is {GQ|A ¢ Q}. Since A € Q if and
only if GA € G(Q), and G is essentially surjective, we get that the preimage
is the basic closed set {P|GA ¢ P}.

Eventually, observe that this homeomorphism comes together with an
isomorphism

Ospecpt(v)) — FeOspec(Pi(x)) (6.1)

For each open U C Spec(Pf(Y)), the functor F restricts to an equivalence
of subcategories Pf(Y)z >~ Pf(X)p-1(z), where Z is the complement of U.
This is because

{FE|supp E C F~!(Z)} = {FE|F(supp E) C Z},

and since F(suppF) = F{P|E ¢ P}) = {Q|FE ¢ Q} = supp FE, we
get, from F' being essentially surjective, that F'(Pf(X)p-1(5)) = Pf(Y)z. It
follows that F' passes to an equivalence between the quotients, and hence
that there is an isomorphism

Endps(yy/pe(v), (Ov) = Endpe(x)pe(x) s, (F ' (Oy))

(2)

which eventually, since F' preserves the unit of the tensor structure F~1(Oy) =
Ox, and F~1(Z) = F~Y(U)¢, is isomorphic to

Endpr(x)/pt,, (Ox) = Ogpee(pt(x)) (FHU)).

*1(U)C

This proves the desired isomorphism (6.1), giving an isomorphism of schemes.
O
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Appendix A

Some standard definitions
and results on schemes

Proposition A.0.1. (Isbell adjunction) There is an adjunction between the
functors (I' 4 Spec) between the categories of schemes and commutative
rings. I' : Sch — ComRing°® is the global section functor (X,0Ox) +—
['(X,0x), while Spec : ComRing’? — Sch is R — (Spec(R), Ospec(r))-
More explicitly, for every scheme X and any commutative ring R there is a
natural bijection

Hom comping(R, T'(X, Ox)) = Homgen(X, Spec R).

Proof. On one hand, a morphism X — Spec R comes by definition with a
morphism f# : Ospec R —+ f+Ox, which we can compute on global sections
in order to get the desired morphism R — I'(X, Ox).
Conversely, let ¢ : R — I'(X, Ox) be a ring homomorphism. The affine
case is well known, since AffSch = ComRing®P. Thus cover X = [JU;
(2

by affine schemes U; = Spec A;, and define for every index i a morphism
fi : Spec A; — Spec R to be the spectrum of the morphism

In order to get a morphism X — Spec R one has to prove that these morph-

isms f; agrees on each intersection. Let U;NU; be covered by affine subspaces

Ui N U;j = (JWijk, it suffices then to prove that filw,, = fjlw,,,. That is
k

because for every ¢ the morphism fi|Wijk is the spectrum of the map
R — F(X, Ox) — F(Ui, Ox) — P(Wijk, Ox),

which doesn’t really depend on Uj;, since restrictions can compose.
It’s clear that these operations are inverses to each other. O

Corollary A.0.2. Spec(Z) is the terminal object in the category of schemes.
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Proof. Since Z is initial object in the category of commutative rings, for any
scheme X there is a unique arrow X — Spec(Z) corresponding to the unique
arrow Z — I'(XOx) under the Isbell adjunction, Proposition A.0.1. O

Definition A.0.3. Let X be a scheme over S, that is a scheme together
with a morphism X — S. The diagonal morphism of X is the map A : X —
X xg¢ X induced by the pullback property with the identity morphisms

X xg X X

| l

X — S

Remark A.0.4. The product in the category of schemes does not provide
the same underlying set of the product in Set. In fact, being Spec(Z) the
terminal object, it follows that in the category of schemes, the product X xY
is in fact the fibered product X Xgpec(z) Y-

Definition A.0.5. Let X and Y be schemes. A morphism of schemes
f: X — Y is said to be quasi-separated if the diagonal morphism is quasi-
compact, i.e. if the preimage of any quasi-compact open subspace is again
quasi-compact. A scheme X is said to be quasi-separated if the morphism
X — SpecZ is quasi-separated.

The morphism f: X — Y is said to be separated if the diagonal morph-
ism is a closed immersion. The scheme X is said to be separated if the
morphism X — SpecZ is separated.

Proposition A.0.6. Let X be a separated scheme and A,B C X affine
subschemes. Then AN B is an affine subscheme.

Proof. Declare the affine subspaces to be U = Spec(A4) and V' = Spec(B),
and recall that by definition of product in the category of schemes it holds
U Xspecz V' = Spec(A ®z B), which is then an affine open subscheme of
X X SpecZ X.

Therefore, the result follows from the fact that closed immersions f :
Z — Y into an affine scheme Y = Spec R correspond to ideals I C R by
taking the module associated to the quasi-coherent sheaf Ker f#.

So, there’s an ideal J of the Z-algebra A ®z B such that the diagonal
closed immersion, which clearly restricts as

X —2 5 X xgpeez X

J ]

UNV —— U Xgpecz V.
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provides U NV = Spec(A ® B/J). O

Proposition A.0.7. Any irreducible component of a scheme X has a unique
generic point.

Proof. Let Y C X irreducible. For any affine subspace U C X, the subspace
Y NU of U = Spec(R) is given by V(I) = {p € Spec(R)|p 2 I} for a unique
radical ideal I C R. Now, Y NU is either empty or irreducible itself, and
we can certainly take at least one affine open U with Y NU # @. Thus for
U such, I = p is a prime ideal, i.e. a point in p € Spec(R) C X, and it’s so
clearly a generic point of its closure V(p) = Y NU. This holding for each U
implies that @ =Y. Uniqueness holds since any scheme is Tj, and hence

{z} ={y}=2=v O

Lemma A.0.8. Let X be a noetherian scheme and consider a family of

closed subspaces {Yo}taca, as well as a closed subspace Y C |J Yo. Then
a€A
there exists a finite set E C A such that Y C |J Y,.
aclk

Proof. Decompose Y, which is closed in a noetherian scheme and hence
noetherian, as the finite union of its irreducible components Y = Ty U- - -UTj,

each of which has a unique generic point y; for ¢ = 1,..., k. Thus there are

indexes aq,...,ar € A such that for every i € {1,...,k} y; € Y,,, and being
_ k

each Y, closed, T; = {y;} C Y,,. That means Y C |JY,,. d
i=1
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