ALMA MATER STUDIORUM - UNIVERSITY OF BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MASTER DEGREE IN COMPUTER ENGINEERING

Reinforcement learning over encrypted data

COURSE OF
AUTONOMOUS AND ADAPTIVE SYSTEMS

SUPERVISORS: PRESENTED BY:
Chiar.mo Prof. ALBERTO JESU
Mirco MUSOLESI

ASSISTANT SUPERVISORS:
Chiar.ma Prof.ssa

REBECCA MONTANARI
ALESSANDRO STAFFOLANI
VICTOR-ALEXANDRU DARVARIU

ACADEMIC YEAR 2019/2020

Abstract

Machine learning, in its various forms and flavours, is a very widespread technique that
has been applied to the most diverse fields. It enables its users to analyze and extract
information from big amounts of data, allowing them to benefit from very useful insights
on the data itself. Reinforcement learning is a particular paradigm of machine learning
that, recently, has proved times and times again to be a very effective and powerful
approach.

On the other hand, cryptography usually takes the opposite direction. While machine
learning aims at analyzing data, cryptography aims at maintaining its privacy by hiding
such data. However, the two techniques can be jointly used to create privacy preserving
models, able to make inferences on the data without leaking sensitive information.

Despite the numerous amount of studies performed on machine learning and cryptog-
raphy, reinforcement learning in particular has never been applied to such cases before.
Being able to successfully make use of reinforcement learning in an encrypted scenario
would allow us to create an agent that efficiently controls a system without providing it
with full knowledge of the environment it is operating in, leading the way to many possi-
ble use cases. Therefore, we have decided to apply the reinforcement learning paradigm
to encrypted data.

In this project we have applied one of the most well-known reinforcement learning
algorithms, called Deep @Q-Learning, to simple simulated environments and studied how
the encryption affects the training performance of the agent, in order to see if it is still
able to learn how to behave even when the input data is no longer readable by humans.

The results of this work highlight that the agent is still able to learn with no issues
whatsoever in non-secure encryptions, like AES in ECB mode. For fixed environments,
it is also able to reach a suboptimal solution even in the presence of secure modes, like
AES in CBC mode, showing a significant improvement with respect to a random agent;

however, its ability to generalize in stochastic environments suffers greatly.

i

Contents

Abstract

List of Figures

List of Tables

List of Algorithms

1

Introduction

1.1 Overview e
1.2 Contributions
1.3 Structure of the Thesis

Background

2.1 Reinforcement Learningo
2.1.1 Brief History of Reinforcement Learning
2.1.2 Elements of Reinforcement Learning
2.1.3 Finite Markov Decision Processes
2.1.4 Monte Carlo Methods
2.1.5 Temporal Difference
2.1.6 Value Function Approximation
2.1.7 OpenAl Gym

2.2 Cryptography
2.2.1 Symmetric-key Settingo
2.2.2 Modes of Operation
2.2.3 AES - The Advanced Encryption Standard
2.2.4 Homomorphic Encryption

2.3 Related Work o
2.3.1 Machine Learning with Encrypted Datasets

il

vil

ix

xi

N NN =

© oo O ot Ot

Contents

2.3.2 State Manipulation in Reinforcement Learning 29
24 SUMmMAary . o.o.o. oo e 30
Approach 33
3.1 Reinforcement Learning over Encrypted Data 33
3.1.1 Purpose 34
3.1.2 Research Questions 34
3.2 The Algorithm 35
3.3 Summary . o.o.o. .o 38
First Case Study: MiniGrid 41
4.1 Experimental Settings Lo 42
4.1.1 MiniGrid 42
4.1.2 State Preprocessing oL 44
4.1.3 Encryption 45
4.1.4 Neural Network Architecture. 48
4.1.5 Hyperparameters Lo 50
4.2 Implementation Lo 50
4.2.1 Environment Wrapper oL o1
4.2.2 Image Processing Lo 52
4.2.3 Encryptiono 52
424 Padding 53
425 Agent 53
4.3 Experimental Results L 55
4.3.1 Encryption Overhead 56
4.3.2 Fixed Starting Stateo 57
4.3.3 Random Starting State 60
4.4 Summary ... 63
Second Case Study: Lunar Lander 65
5.1 Experimental Settings L. 65
5.1.1 Lunar Lander 66
5.1.2 State Processing 67
5.1.3 Encryption 68
5.1.4 Neural Network Architecture. 69
5.1.5 Hyperparameters o 69

5.2 Implementation 69

Contents

5.3 Experimental Results

5.4 Summary .

6 Conclusions

6.1 Contributions

6.2 Limitations
6.3 Future Work

6.4 Implications

Bibliography

70
71

73
73
74
74
75

77

vi

Contents

List of Figures

2.1 Markov Decision Process oo 10
2.2 Value function approximation scheme 15
2.3 Agent-environment loop Lo 20
2.4 Symmetric encryption schemeo 21
2.5 Comparison of the tux penguin encrypted with ECB with a secure mode 24
3.1 General project workflow. oL 36
4.1 Example of environment in MiniGrid 42
4.2 Example of an observation in MiniGrid 43
4.3 Image processing pipeline L 45
4.4 Comparison of the two padding techniques 47
4.5 Examples of encrypted 16x16 states 48
4.6 Illustration of CNN architecture for the 8x8 state. 49
4.7 CNN architecture for the 16x16 state. 50
4.8 Encryption timings in seconds. Lo a7
4.9 Training results on the fixed starting state environments. 58
4.10 Impact of the type of padding 60
4.11 Impact of the key length L. 61
4.12 Training results in the random starting state environments 62
4.13 Evaluation results in the random starting state environments. 63
5.1 Screenshot of the LunarLander environment 66
5.2 Performance of the agent in the LunarLander environment. 71

vil

viii List of Figures

List of Tables

4.1
4.2
4.3

4.4

5.1
5.2
5.3
5.4

MiniGrid action space 44
Hyperparameters for each MiniGrid environment. 51
Comparison in seconds of the duration of an average full step on the

environment. L L. e e e 59
Number of unique states in MiniGrid 64
Action space of Lunar Lander. 67
Discretization intervals of the continuous variables of the state. 68
Hyperparameters for LunarLander. 70
Number of unique states in LunarLander 72

X

List of Tables

List of Algorithms

1 Q-learning

2 DQN with encrypted states L

xi

Xil

List of Algorithms

Chapter 1

Introduction

1.1 Overview

As of late, reinforcement learning has proved many times of being able to effectively
learn and solve the most diverse types of problems, such as games. This field boasts a
very active research activity and, thanks to the very promising results shown up to now,
it has the potential of being adopted as a solution for many and new types of problems.
Indeed, recent results such as AlphaGo [1, 2, 3], DQN [4, 5], Rainbow [6], and PPO [7]
have proved that state-of-the-art reinforcement learning is a very powerful technique,
and this has motivated many researchers to apply this approach to different fields.

Furthermore, since the introduction of homomorphic encryption, machine learning in
general, and even deep learning, has been used in conjunction with encrypted data order
to obtain privacy preserving inference models, such as ML Confidential [8], CryptoNets
[9, 10], and CryptoDL [11]. These results prove that it is possible to build inference
models in which the model itself has no visibility of the input data, which might be
sensitive, and any possible leak of data cannot be exploited by a malicious third party.

Moreover, some recent work [12] has shown that supervised learning models, specifi-
cally deep convolutional neural networks, are able to easily fit a random labeling of the
training data, even if such data is only noise.

Similarly to machine learning with encrypted data, being able to apply reinforcement
learning to encrypted states would provide immense value. Indeed, not only it would be
possible to keep the confidentiality of possibly sensitive data intact even by delegating the
execution of the model to someone else, but we would also be able to leverage the power
of the recent reinforcement learning techniques. Hence, we have decided to investigate

this possibility so as to test if it is possible for a reinforcement learning agent to operate

2 Chapter 1. Introduction

a system without providing it full knowledge of its environment, therefore maintaining
its privacy, while also studying the effects that the encryption step causes on the agent’s

performance.

1.2 Contributions

Specifically, the core of this work orbits around three key research questions, that will be
central in the development of the algorithm. The first one is whether it is possible that
a reinforcement learning agent learns from encrypted data, which should be intrinsically
noise. The second one contemplates what is the impact of the encryption step in terms
of training and evaluation performance. Finally, the last one is about the overhead

introduced by the encryption. Following this lead, we are going to:

e Extend the standard Markov Decision Process framework and DQN algorithm so

to include the encryption of the states;

e Identify the core issues arising from the employment of encrypted states in a re-
inforcement learning setting, such as the choice of a fitting state transformation
pipeline and of a padding technique, the definition of the cipher mode of operation,

and the decision of a key length;

e Present two case studies that explore the aforementioned issues and explore their

implications on the ability to learn of the agent.

The case studies are essential in that they provide a common testbed for which exist-
ing reinforcement learning algorithms are known to perform well. The introduction of an
encryption step arises numerous issues, such as state processing before the encryption,
padding, the decision of the encryption cipher, and so on. All of these issues are likely
to impact the behaviour of the agent, which can then be compared to the well-know
algorithms. OpenAI Gym [13] is one of the most widely used collections of benchmark-
ing environments in the reinforcement learning literature, and we will leverage two such
environments, specifically MiniGrid and LunarLander, in order to cover both discrete

and continuous state spaces.

1.3 Structure of the Thesis

Initially, we will start by defining what reinforcement learning means. We will formulate

the reinforcement learning problem starting from a simplified version, and working up to

1.3. Structure of the Thesis 3

its full formulation. Furthermore, we will go over some of the most important algorithms
that have been applied to this task, while also discussing some of the most recent and
breakthrough results obtained by this technique, touching also on some very widespread
frameworks for the development and training of reinforcement learning agents. Subse-
quently, we will introduce the basic concepts of cryptography, by outlining the most
diffused cryptographic schemes, starting with the symmetric-key scheme, the block ci-
phers and their modes of operation, while also reviewing the AES encryption standard.
Moreover, we will talk about homomorphic encryption, employed in many recent work.
Lastly, we will overview some recent and interesting works that aim to obtain a privacy-
preserving machine learning model, or have studied state manipulations to increase the
stability and better the performance of reinforcement learning algorithms.

The third chapter, instead, aims to create the building blocks for what will be central
in the later chapters and to lay out the core concepts of this work. We will provide a
high-level analysis of what it means to apply reinforcement learning to encrypted data
by describing a hypothetical real-world use case; then, we will define what are the key
research questions and what challenges the algorithm needs to overcome for it to be
successful. Afterwards, we will provide the core concepts of the algorithm proposed, by
detailing a modified MDP framework, identifying the components that our agent will
make use of, and outlining the key aspects of our reinforcement learning agent.

In the fourth and fifth chapters we will go over the environments that our reinforce-
ment learning agent will be tested upon, with each of the two chapters being specific
to the related case study. In both chapters we will start by describing the key features
of the environment chosen for the given tests; then, we will describe the experimental
settings of each investigation, by listing the parameters chosen, the architecture of our
agent, and the method we observed for carrying out such experiments. Afterwards, we
will overview the implementation details of the classes developed, while also outlining
their scope in the context of our application and their functional interfaces. Lastly, we
will analyze the experimental results observed during the execution of the evaluation of

our algorithm.

Chapter 1. Introduction

Chapter 2
Background

This chapter serves as an introduction to the core aspects of the work presented in this
dissertation. Firstly, we will introduce the reinforcement learning problem, starting a
with brief history of its early days to the current state of the art; then, we will illustrate
the mathematical framework of the Markov Decision Processes of the full reinforcement
learning problem; then, the main algorithms relevant for this work will be explained,
from Monte-Carlo methods and temporal difference methods, to function approximation
and Deep Q-Learning.

Secondly, we will introduce the topic of encryption: we will start by talking about the
first, and most basic, ciphers, like Caesar’s cipher; then, we will go over the symmetric
scheme, differentiating between stream and block ciphers. For the latter, we will also
briefly present some of the most common modes of operation. Afterwards, the Advanced
Encryption Standard, one of the most well-known and widely used symmetric encryption
schemes, will be introduced. The last section of this chapter will concern another scheme

named asymmetric-key scheme.

2.1 Reinforcement Learning

Learning through interaction with the environment is one of the first things that comes to
mind when thinking about learning. During our lives, we interact with our surroundings
constantly, and we are aware of how the environment reacts to our actions and behave
accordingly.

Reinforcement learning is a computational take on the concept of learning from inter-
action. The key idea behind this approach is that an agent finds itself in an environment

of which it knows nothing — or next to nothing — about, and tries to understand which

6 Chapter 2. Background

actions are beneficial by maximising a reward signal. The learner is not told which ac-
tions to take, but it must discover them by observing what behaviour yields the most
reward.

Alongside supervised learning and unsupervised learning, reinforcement learning is
one of the main paradigms of machine learning. It is different from the former because
in supervised learning there is an external supervisor that provides labelled examples,
and the objective of the process is to generalize and extrapolate a way of correctly
classifying examples never seen before. Reinforcement learning, though, is a heavily
interactive problem, and in such cases it is not practical to obtain examples of desired
behaviour that are both correct and representative, for the generalization process, of all
the situations the agent will come across: for this reason, the agent learns not from labels
but from its own experience. Moreover, it is also different from the latter: unsupervised
learning means finding hidden patterns and structure among unlabelled data, while in
our case the agent seeks to maximize a numerical reward signal.

Since experience is a key factor, one of the biggest challenges in reinforcement learning
is how to exploit this experience. In other words, when the agents finds itself in a new
situation, should it take advantage of his prior knowledge and act the way it thinks is
the best, or should it explore, hoping to find something better? This is the trade-off
between exploitation and exploration. Usually, to achieve the highest reward, the agent
should prefer the actions that it tried in the past, knowing that they are valuable. To
discover them, though, it should also try actions that it never tried before: chances
are that, by only exploiting, the agent gets stuck in a local maxima, rather than in a
global one. For example, if the problem is stochastic, each action should be tried many
times before gaining a reliable estimate of its value. Neither of the two approaches can
be sought exclusively without failing at the task; the agent should try all actions while
progressively favouring those that its experience proved to be the best.

Finally, reinforcement learning explicitly considers the whole problem of goal-directed
learning from interaction with an uncertain environment, whereas the other approaches
split the problem into sub-problems to tackle them individually. Instead, reinforcement
learning problems start with a complete goal-seeking agent, able to sense the environment

and to choose actions to influence its state despite the underlying uncertainty [14].

2.1.1 Brief History of Reinforcement Learning

The early history of reinforcement learning stems from two separated threads. One

thread concerned trial and error as the essence of learning, coming from the psycho-

2.1. Reinforcement Learning 7

logical analysis of learning in animals [15]. The other one involved the usage of value
functions and dynamic programming for solving the optimization control problem, that
laid out a mathematical framework for the modern reinforcement learning. In particular,
Richard Bellman was one of the most influential figures of the subject, introducing, in
the mid-1950s, the "optimal return function”, also known as Bellman equation, which is
a necessary condition of optimality in dynamic programming methods [16], the discrete
stochastic version of the optimal control problem called Markov Decision Processes, or
MDPs [17]. These two threads came together around the 1980s to create what is now
called reinforcement learning.

For the reinforcement learning paradigm to be more thoroughly known and applied,
we must wait a couple of decades, coinciding with the increase of computational power
and the surge of machine learning algorithms, with deep learning in particular contribut-

ing the most.

State of the Art

Since then, many problems of diverse nature were tested and solved by reinforcement
learning algorithms, sometimes even outperforming human counterparts. It is usual for
artificial intelligence algorithms to be tested on controlled environments, and games are
the perfect subject: they are easy to reproduce, easy to emulate, easy to play for many
episodes, and are easily generalizable to real-world scenarios, but at the same time they
are hard to solve. In particular, board games like chess have always drawn the attention
of the AT research, and reinforcement learning is no exception.

One of the most important early works that explored this direction is T'D-Gammon,
[18, 19, 20, 21], a reinforcement learning agent that was capable of playing backgammon
at the level of the most skilled human players, while requiring minimal prior knowledge
of the game. Whereas the classic Al applied to games relies on heuristic searched, the
complexity of backgammon made these methods completely ineffective. The learning
was a combination of TD(\) and function approximation with artificial neural networks
trained by backpropagation. The training step consisted in self-play, a technique in
which the agent plays games against itself.

A group of researcher led by Vlodymyr Mnih published, in 2013 [4] and 2015 [5],
a reinforcement learning algorithm that played the games of the arcade Atari console,
reaching and even surpassing, on some of them, human-level performances, while having
no prior knowledge of the domain whatsoever. The algorithm took the name of Deep

Q-Learning and remains one of the most used and well-known reinforcement learning

8 Chapter 2. Background

algorithms to date. The DQN agent makes use of Convolutional Neural Networks (CNNs)
to extract features directly from pixel data. Each image, after a pre-processing step, is
directly fed into the CNN whose outputs are the estimated action-value functions for each
action in that state. A more in-depth analysis of these two papers is given in Subsection
2.1.6.

Soon after, another research group from Google Deepmind was able to achieve break-
through results with AlphaGo [1, 2, 3], a reinforcement learning agent that was able to
defeat the world champion of the chinese game Go Lee Sedol. This accomplishment is
considered ground breaking because Go has a very big state space, making an exhaustive
search infeasible, and it is very difficult to design an effective position evaluation func-
tion. AlphaGo took inspiration from the two preceding works by implementing self-play
from TD-Gammon and the CNN approach from DQN, merging them with Monte Carlo
Tree Search (MTCS) [22, 23]. The algorithm was improved twice: the first time, with
the creation of AlphaGo Zero [2], which did not require any domain-specific knowledge
and defeated the original AlphaGo 100 to 0; and the second time with AlphaZero [3],
that took its predecessor approach and generalized it other board games such as chess
and shogi.

The results here listed are only a small part of the ones obtained in recent years.
The research activity on the matter is as active as ever, motivating many researchers in

studying this subject and making reinforcement learning an ever-evolving paradigm.

2.1.2 Elements of Reinforcement Learning

In a reinforcement learning system, we can identify several sub-elements: beyond the
previously mentioned agent and environment, which will be expanded upon in the next
section, we can also recognize a policy, a reward signal, a value function, and, sometimes,
a model of the environment. [14]

The policy encodes the agent’s way of behaving at any given time, and it alone is
sufficient to determine behaviour. It can be considered as a mapping between perceived
states of the environment to actions to be taken in such situations. Generally, policies
can be stochastic, specifying, rather than a single action, probabilities for each action.
If the agent follows a policy m at time ¢, then m(als) is the probability that the agent
takes the action A; = a given that the environment is currently in the state S; = s.

The reward signal defines the goal of every reinforcement learning problem. At every
time step, the environment sends to the agent a scalar signal in response to its actions.

The objective of the agent is to maximise the total amount it receives in the long run.

2.1. Reinforcement Learning 9

The only way the agent can influence the reward signal is through its actions, either
directly or indirectly by changing the state of the environment. The reward is also the
primary basis for altering the policy: if an action selected by a policy yields a low reward,
that action can later be changed in hope for a better outcome. In general, reward signals
can be stochastic functions of the state and the action taken in such state.

The value function specifies what is good for the agent in the long run, whereas the
reward signal gives an immediate feedback. The value of a state is the total amount
of reward the agent can expect to accumulate in the future, starting from that state:
it determines the long-term desirability of the state after taking into account what it
is likely to follow. Formally, the value function of a state s under a certain policy m
is the expected return when starting in s and following 7 thereafter. There is also an
action value function, that, similarly, is defined as the expected return starting from s
and taking the action a, then following 7.

Finally, the model of the environment is something that mimics the behaviour of the
environment and allows us to make inferences on how it will react to the actions of the
agent. The models are typically used for planning, that is, deciding a course of action
by considering also possible future situations before they happen: in these cases, the
reinforcement learning problem is solved with a model-based, method, as opposed to the

simpler model-free approaches, that follow a intrinsically trial-and-error philosophy.

2.1.3 Finite Markov Decision Processes

Finite Markov Decision Processes, or MDPs, formalize the full reinforcement learning
problem, in which each action influences both the reward and the future situations (and
the rewards coming from them). As such, the sequential decision making outlined by
MDPs can be used as a mathematical idealisation of reinforcement learning, for which
we can make very precise theoretical statements.

Markov Decision Processes define two entities: an agent, which is the learner and
the decision-maker, and the environment, that is everything else outside the agent.
These two entities interact continually, with the former selecting actions and the latter
reacting to them by presenting new situations to the agent, as well as giving rise to a
reward signal that the agent seeks to maximize.

Formally, agent and environment interact at each of a sequence of discrete time steps
t=0,1,2,.... At each time step ¢, the agent receives a representation of the current
state of the environment S; € S, where S is the set of all the possible states, and uses this
information to select a valid action A; € A(S;), where A(S;) is the set of all the actions

10 Chapter 2. Background

Agent

state reward action
St R: Ay

Rei (

Environment

St+1

Figure 2.1: Agent-Environment interaction in a Markov Decision Process.

that can be taken in the state S;. During the following time step, the agent receives a
numerical reward R;;; € R C R and the representation of the new state S;;; € S. The
interaction between agent and environment over times gives rise to a trajectory of the

form

SOaA07R17317A17R27827A27R37"' (21)

This framework can be considered an abstraction of the problem of goal-directed learning:
the agent has the well-defined goal of maximising the total — that is, cumulative —
amount of reward it receives over time; or, in other terms, the maximisation of the
expected value of the cumulative sum of a received scalar signal called reward.

In this particular instantiation of the MDPs formulation, the sets of possible states
S, of possible actions A, and of possible rewards R are all finite, from which the name
finite MDP.

Returns

As previously mentioned, the agent’s goal is to maximize the cumulative reward it re-
ceives. This amount is formalized by the expected return. If we can identify a clear, final

time step 7', then it is simply the sum of all the rewards received:
Gi=Ryy1+Rio+Rius+...+ Ry (2.2)

Once again, this approach, though, is only feasible when there is a clear notion of

final time steps. In such cases, the interaction of the agent with the environment can be

2.1. Reinforcement Learning 11

broken into sub sequences called episodes, each starting in a standard starting state and
ending in a terminal state, followed by a reset to the initial configuration. Furthermore,

these episodes are all independent from one another. This kind of task is called episodic.

In other cases, though, the nature of the interaction between agent and environment
does not involve the concept of final time step, but it is continuous. In such continuing
tasks, using the definition (2.2) would be problematic, because a continuing task means
that the final time step T' = oo, and with it also G; would tend to infinity. For this reason,

the definition of G is slightly modified to include the concept known as discounting:

o

Gt = Rt+1 + "}/Rt+2 + ")/2Rt+3 + ... = Z’}/th+k+1, 0 < Y < 1 (23)
k=0

where 7 is called discounting factor, and it idealizes the present value of future rewards:
a reward received k time steps in the future is worth v*~! times of what it would be
worth if received immediately. If v = 0, the agent only focuses on immediate rewards,
and does not care about future implications; as v approaches 1, it takes future rewards

more and more into consideration.

Value Functions and Policies

In many reinforcement learning algorithms, the concept of value functions is of central
importance. Value functions are functions of states or state-action pairs that estimate
how good is, for the agent, to be in a given state, or to perform a certain action from
that state. The definition of these functions rely on the concept of policy, that encode a

particular behaviour.

Formally, a policy 7 is a mapping from states to probabilities of selecting each action:
if the agent is following the policy 7 at time step ¢, then 7(a|s) is the probability that
A; = a given that S; = s. Therefore, we can define the state-value function v,(s) of
a state s under a policy 7 as the expected return when starting in s and following 7

thereafter.

Ur(s) = Ex[G¢|S; = s] = E,

Z’YthJrkH Sy = S] , VseS§ (2.4)
k=0

Similarly, the action-value function ¢,(s,a) of taking action a in the state s under a

policy 7 as the expected return starting from s, choosing the action a and then following

12 Chapter 2. Background

0r(s,a) =E [Gy|S; = s, Ay = a]| = E, S;=sA=a (2.5)

oo
k
E YV Riyrs
k=0

For any policy m and any state s, there is a consistency condition between the value of

s and the value of its successor states, known as Bellman equation [16]:

Vi(s) = Z 7(als) Zp(s’, rls,a)[r +yve(s")], VseS (2.6)

Solving a reinforcement learning task roughly means finding a policy that achieves a
great reward over the long run. In other words, a policy 7 is better or equal to a policy
7' if its expected return for all the states is greater or equal to that of «’. So, m > =’
if and only if v,(s) > v, Vs € S. There is always at least one policy which is better
than all the other ones, and we call it the optimal policy 7. The corresponding optimal

state-value function then is
v4(8) = max v, (s) (2.7)

and, similarly, the optimal action-value function
q«(8,a) = max q(s,a). (2.8)

Under these circumstances, we can rewrite (2.6) as the Bellman optimality equation:

v.(8) = max Zp(s’, rls, a)[r + yv.(s")] (2.9)

s',r

for state-value function, and
0.(s.0) = 3 plsrls.a)lr 4y max g (s, o) (2.10)

for action-value functions. These versions of the Bellman equation roughly express the
fact that the value of a state (or state-action pair) under a n optimal policy must equal

the expected return for the best action in that state.

2.1.4 Monte Carlo Methods

Monte Carlo methods do not assume full knowledge of the environment, but instead
learn from experience. The idea behind this kind of methods is to average the sample

returns actually observed during the interaction with the environment. Since returns

2.1. Reinforcement Learning 13

involve future rewards with respect to a certain time step ¢, they are only fully known if
there is a final time step T'. For this reason, usually Monte Carlo methods are employed
for solving episodic tasks: once the episode is over, the return is known and the policy
is updated.

In general, Monte Carlo methods can be broken down in three core problems:

e the prediction problem, that is how to compute v, and ¢,, assuming that the policy

7 is fixed;

e the policy improvement problem, which is the estimation of v, and ¢, while also

improving T;

e the control problem to find the optimal policy 7.

MC Control

The idea behind the control problem follows the process known as generalized policy it-
eration (GPI). We maintain an approximation of both the policy and the value function,
and, iteratively, we alter the value function to more closely approximate the value func-
tion for the current policy, and we improve the policy with respect to the value function.
Each acts as a moving target for the other, causing both to approach optimality.

For action-value functions, a greedy policy is one that deterministically chooses the

action with the highest action-value:

7(s) = argmax q(s, a) (2.11)

If, instead, we cannot use the assumption of exploring starts, we can identify two

approaches: on-policy and off-policy. On-policy methods attempt to improve the policy

used for deciding which action to take, whereas off-policy methods evaluate a completely
different policy from the one used for making decisions.

For on-policy methods, usually we define a soft policy, meaning that m(a|s) > 0 Vs €

S, Va € A(s). A very common on-policy method that does not rely on exploring start are

e-greedy policies, that grant all the non-greedy actions a minimal probability of selection

equal to @.

2.1.5 Temporal Difference

Temporal Difference methods are a union of Monte Carlo methods and Dynamic Pro-

gramming. Like MC methods, TD methods learn directly from experience without the

14 Chapter 2. Background

requirement of a model of the environment; while, like DP, TD methods update their
estimates based in part on other learned estimates. This process is called bootstrapping,
and has the advantage over MC methods that they do not need to wait for the episode

to finish before performing an update.

Q-Learning: Off-policy TD Control

One of the most well-known and widespread reinforcement learning algorithms is Q-
Learning, designed by Christopher Watkins in 1989 [24]. Q-Learning learns an action-
value function that directly approximates the optimal value function ¢.. For convergence,

it is only required that all pairs are continuously updated with the following rule:
Q(St, Ar) < Q(St, Ar) + | Ryq + ymgx Q(St41,a) — Q(Sy, Ay) (2.12)

where the step size «, that controls the present weight of past rewards, is constant, and
the update target is Ryy1 + ymax,Q(Sii1,a). It is called an off-policy method because,
while the action value that will be updated is determined by the policy, the target for
said update is taken as the maximum of the action values in the next state, thus not
necessarily following the current policy. A pseudo-code algorithm for Q-Learning is
illustrated in Algorithm 1.

Algorithm 1: Q-learning
Parameters:
step size o € (0, 1], small € > 0
Initialize:
Q(s,a) Vs € ST, Va € A(s) arbitrarily, except Q(terminal,-) =0
foreach episode do
Initialize S
foreach step of episode until S is terminal do
Choose A from S using policy derived by Q (e.g. e-greedy)
Take action A and observe R, S’
Q(Sy, Ay) + Q(Sy, Ay) + a[Ryy1 + ymax, Q(Si41,a) — Q(St, Ay)]
S« 5

end
end

2.1. Reinforcement Learning 15

2.1.6 Value Function Approximation

All the methods described so far have been demonstrated to converge under the finite
MDP assumption. They rely on the storing of the values in a lookup table, consisting
in one row for each possible state and one column for each possible action. For this
reason, they are also known as tabular methods. This approach, though, quickly becomes
intractable as the number of state increases. Consequently value-function approximation

methods have been developed.

Function
Approximator

Figure 2.2: Value function approximators act like a black box to approximate the value func-
tions. In this image, the action-value function ¢(s,a) is approximated by q.

Value-function approximation solves the problem of tabular methods by approximat-
ing the value function by using a parametrized functional form with weight vector w € R¢
instead of a matrix. For example, the approximated state-value function, given a state s
and a weight vector w, would be defined as v(s,w) & v,(s). The approximation v can be
any function of the weights, both linear and non-linear; in general, though, a non-linear
approximation is preferred. The function approximator takes samples from the desired
function (in the example above, the state-value function) and, by updating the weight
vector, attempts to generalize them to approximate the real function. A widely used
technique is to use a multi-layer artificial neural network (ANN) to compute the value

function.

Convolutional Neural Networks

Among the ANNs, one category in particular has obtained many good results when

applied as function approximators. Convolutional Neural Networks (CNNs) are a sub-

16 Chapter 2. Background

class of artificial neural networks (ANNs) used for processing data arranged in a grid-like
shape, with images as the most prominent usage; because of this, they are largely applied
to computer vision and image recognition tasks. In general, CNNs are ANNs in which
one or more layers consist of convolution operations [25]. Such operation, in a discrete

domain, is defined as
S(i,5) = (I« K)(i,5) =Y > I(m,n)K(i—m,j—n) (2.13)

Usually, CNNs perform convolutions (or, sometimes, cross-correlations!) in which a
bidimensional array, called kernel or filter, is slid across the image according to a certain
stride, that determines the amount of positions each shift should skip. The size of the
filter is smaller than that of the image, and the weights of the kernel are used to compute
the convolution operation at each position. These weights represent the parameters of
the layer, that are learned in order to detect features in the image. The output of this
process is called feature map and it is usually passed as input to a successive convolutional
layer or flattened into a one-dimensional tensor and passed to a fully connected layer.

In these situations, CNNs are better suited than fully connected ANNs because of

two reasons:

e sparse connectivity: since the kernel is smaller than the image, we can detect
meaningful features such as edges while storing fewer parameters, reducing memory

requirements and improving its statistical efficiency.

e parameter sharing: instead of learning a different set of parameters for each posi-
tion, we only learn one set and use it for the whole image. This means that while
striding the kernel across the image, the kernel itself does not change, therefore re-
ducing the storage requirements. Furthermore, parameter sharing allows the layer
to be equivariant to translation, meaning that if the input changes the output

changes in the same way.

Deep Q-Learning

One of the most important results in recent years in the field of reinforcement learning
comes from the development of the Deep @Q-Learning algorithm [4, 5] based on a multi-

layer artificial neural network. This agent was able to master all 49 games of the Atari

IThe cross-correlation function is defined in the same way as the convolution, but the kernel K is not
flipped, hence the righthand side of the equation features sums instead of subtractions. This, however,
as opposed to the convolution, makes the cross-correlation not commutative.

2.1. Reinforcement Learning 17

2600 console, simulated through the Arcade Learning Environment (ALE) [26], without
any domain-specific knowledge.

The choice of using deep learning as the main engine behind the algorithm is justified
by the impressive results obtained using deep neural networks in the field of computer
vision [27, 28] and speech analysis [29, 30]. The key factor of the success of ANNs in
these fields is that by making a neural network learn the representation of the data it
is possible to obtain better results than handcrafted features. In particular, they used
CNN to extract the features directly from the raw pixel data coming from the ALE and
to output the estimated value function of each action.

A predecessor of the DQN algorithm is Neural Fitted Q-learning (NFQ) [31], that
made use of RPROP [32] to update the neural network parameters. The batch update
NFQ was based on, however, is very costly, proportional to the size of the dataset, while
DQN applies stochastic gradient descent updates that are constant in time, thus better
scaling. Moreover, while NFQ has been applied to visual data by scaling down the
representation of the state with autoencoders, DQN applies reinforcement learning on
the whole pipeline and directly on the images of the states.

Since the approximator used is a deep ANN, and the subject of the updates are no
longer Q-values but the weights of the network, the Q-learning update is modified as

follows:
Wiy = Wt + Oz[RtH + vmqud(Sm, a,wy) — 4(S, Ay, wt)} Vq(St, Ar, wy) (2.14)

where w is the weight vector of the network, and ¢(S;, A;, w;) is the action-value function

approximated by the Q-network with weights w;.
The Deep Q-Network (DQN) agent featured in these works takes as input the prepro-

cessed images from the environment emulator. Then, three convolutional layers extracts
the features of the images; lastly, two fully connected layers output a single estimated
Q-value for each action. The agent also relies on a technique called experience replay
[33], which consists in storing in a buffer known as replay memory the agent’s experience
e = (S, Ay, Riy1, Siy1) for each time step ¢. Then, when updating the network weights,
a random batch of size D is drawn from the buffer and used to perform the updates.
The advantages of experience replay over standard Q-Learning are two: firstly, randomly
extracting experiences means that every tuple is potentially used in more than one up-
date, increasing data efficiency; secondly, using consecutive samples would mean that the
experiences are heavily correlated, thus, by randomizing the extraction, the correlation

is broken and the variance of the updates decreases.

18 Chapter 2. Background

While in the first paper [4] the DQN agent was tested on seven games of the Atari
suite, outperforming all the other approaches on six of them and even beating expert
human players on three, in their second work [5] the authors modified the algorithm to
improve its stability. In particular, this new version makes use of an additional DQN,
labeled target network (), to compute the target maXaQ(StH, a) used in the backprop-
agation step of the other, on-line, network. More precisely, every C' updates the on-line
network is cloned into Q, which is used to generate the targets for the successive other

C updates. Therefore, the network update is now defined as:
Wiy = Wy + oz[RtH + vmgxd(5t+1, a,w;) — ¢(S, Ay, wt)] Vq(Si, Ag,wy) (2.15)

where max, G(Si41, a,w;) is computed by the target network Q with the cloned weights
w; . Bach C' updates, the weights are cloned once again, so that w, = w;.

This greatly improves the stability of the algorithm compared to its predecessor,
where an update to Q(S;, A;) often also increases QQ(S;41,a) for all a, possibly causing
oscillations or even divergence of the policy. Using this new version of the agent, the
authors managed to master all 49 games of the Atari suite, outperforming human experts
in the majority of them, while also keeping network architecture and hyperparameters

consistent across all experiments.

2.1.7 OpenAl Gym

As we explained in Subsection 2.1.3, reinforcement learning can be formalized by MDPs.
MDPs contemplate two entities: an agent, which selects one action at every timesteps,
and an environment, which reacts to the agent’s actions and provides it with rewards
based on a reward function dependant on the quality of the action chosen.

When designing a RL agent, the environment should be one of the first elements
that should be taken into account. A good environment should have precisely defined
reward function, state space and observation space, and should provide the agent with
enough information to successfully perform the training. Because of this, designing an
environment from scratch not only is time consuming, but might make the results hard to
read from the lack of a common benchmark. For these reasons, the environment for the
experiments in this work will be chosen from the OpenAI Gym [13, 34, 35] framework,
one of the most wide-spread toolkits for the development of reinforcement learning algo-
rithms. Gym is an open-source framework that provides many pre-built environments,

each with a well defined observation space, action space and reward function. All of the

2.1. Reinforcement Learning 19

problems included in Gym expose a common interface to ease the development and the
benchmarking of the RL agents and makes no assumptions about the structure and form
of the agent, while being compatible with any of the numerical computation libraries, so
as to allow the user to focus solely on the definition of the algorithm in the most general
way possible and to quickly test it. In particular, Gym focuses on episodic tasks that

can be formalized as partially observable MDPs (see Subsection 2.1.3).

Gym is an attempt to fix two of the core problems affecting RL research before its
creation. Firstly, while in supervised learning large datasets such as ImageNet [36] were,
and still are, central in driving progress, RL on the other hand lacked thereof. The
open-source collections of environment at the time were poor in variety and seldom hard
to use. Secondly, there were no standard environments to be used in publications, and,
since even a subtle difference in the reward function or set of actions can drastically alter
the outcome of a task, this makes it difficult to reliably reproduce the research and to

compare the results of different papers.

In particular, benchmarking is a critical topic for what concernes reinforcement learn-
ing. The benchmarks environment are vital in enabling the research work to be accurately
reproduced, thereby facilitating further advancements in the field: it is possible to re-
liably judge the efficacy of a method. with respect to another, only if the underlying

assumptions regarding the environment are kept consistent.

Specifically, a Gym environment is created by calling Gym.make(id), where id is
the identifier string for the chosen environment. One of the most important functions
exposed by the environment object is step(action), which takes as input a number cor-
responding to a given action and performs it on the environment. This function returns
four values: an observation, which is an environment-specific object encoding the new
state of the environment (for example, pixel values from a camera, the configuration
of the board in a board game, etc); a reward, a float number representing the reward
following the action taken in the previous time step; done, a boolean flag that indicates
the termination of an episode; and an additional info dictionary, containing diagnostic

information useful for debugging.

Aside from done and info, we can clearly notice how the step function implements a
classic agent-environment loop, with the quadruple (S;, A¢, Si11, Riy1): at each time step,
the agent chooses the action for the step function based on the current observation,
and the environment returns the observation for the following state and the associ-
ated reward. This process is started by calling reset(), a function that resets the

environment to the initial state and returns the corresponding observation.

20 Chapter 2. Background

action

2

Agent Environment

__

observation, reward

Figure 2.3: Classic agent-environment loop. The agent, based on the current state of the envi-
ronment (represented by the observation object in Gym) chooses an action. The environment
reacts to it by changing its state and by giving the agent a numerical reward.

MiniGrid

OpenAl Gym is easily extensible by design. One such extensions is MiniGrid [37], a
collection of environments for Gym designed to be simple and lightweight, in which the
agent is represented by a red triangle that moves in a discrete grid of N x M tiles with

a green goal tile, and, optionally, pickable objects, doors, and obstacles.

2.2 Cryptography

Historically, cryptography was introduced as a means to maintain privacy of the infor-
mation sent between two parties, even in the presence of a third party, called adversary,
with access to the communication channel [38]. This type of cryptography is often re-
ferred to as classical cryptography, and its usage dates back to the ancient Egypt. Until
the 20th century, cryptography did not have a solid theoretical basis, and we lacked a
general definition of what a secure system would be.

This began to change with the 20th century and the proliferation of computers and
communication systems, which brought a demand for a secure way to protect information
in digital form and provide security services. Thus, modern cryptography was born:
the emersion of a very rich theory providing scientific back up to the subject enabled
cryptography to be studied as a science; furthermore, cryptography is no longer only
about secrecy, but it now encompasses many other fields like authenticity, integrity, and

digital signatures [39].

2.2. Cryptography 21

(Classical cryptography, on the other hand, concerned exclusively the secrecy of the
information, and it was mainly used by the military. One of the most well-known ex-
amples of classical cryptography usages is Ceasar’s cipher. This scheme takes as input
a sentence, and shifts each of its character by a fixed amount of positions in the alpha-
bet. Of course, this type of encryption is not secure: we only need to perform a basic
statistical analysis to understand what is the most common letter of the gibberish, then
compare it with most common letter of the original language, and we would have figured
out the number of positions of the shift. Furthermore, even without knowing the most
common letter of the language, we could try all 26 possibilities until we find a configu-
ration that turns the gibberish in a meaningful sentence. This type of attack is know as

brute force.

2.2.1 Symmetric-key Setting

In the symmetric-key setting, also called private-key encryption, two parties that wish
to communicate secretly share some secret information called key. The sender uses this
key to encrypt, or scramble, the message before sending it, obtaining a ciphertext; then,
the receiver, upon reception, uses the same key to decrypt, or unscramble, the ciphertext,

acquiring the original readable message, known as plaintext.

key Insecure communication channel key

ciphertext |

encryption » decryption Bob

Charlie

Figure 2.4: Symmetric encryption scheme. Alice encrypts a message with a key and sends it
to Bob. Bob decrypts the message with the same key and obtains the original message. Even
if Charlie eavesdrops the conversation and knows the algorithm used for the encryption, they
cannot read the message without the key.

22 Chapter 2. Background

The symmetric encryption scheme relies on the assumption that the two parties have
a secure way of deciding a common, secret key. This limits the applicability of systems
that solely make use of symmetric key encryption; despite this, there are many settings
in which these methods comply with the security requirements, making them broadly
used. For example, in disk encryption the two parties are represented by the same user,
who uses a key to read and write to disk. Also, symmetric methods are widely used in
conjunction with asymmetric methods.

More formally, a symmetric-key encryption scheme, or cipher, is composed by three
algorithms [39]:

e The key-generation algorithm Gen probabilistically outputs a key k;

e The encryption algorithm Enc takes the key k and the plaintext message m as

input and outputs the ciphertext ¢, and we denote Encg(m) = ¢;

e the decryption algorithm Dec takes the key k and the ciphertext ¢ as input and

outputs the plaintext m, and we denote Decg(c) = m.

For the cipher to run correctly, we must have that
Deci(Encg(m)) =m, Vk € K,Vm € M (2.16)

where I is the key space and M the message space.

Ciphers are divided into two categories, based on their modality of operation:

e stream ciphers encrypt each bit individually, by carrying out a logic operation (for

example, a XOR) between the plaintext and a key stream;

e block ciphers divide the plaintext into blocks of a predetermined length and encrypt
them with a key, so that the encryption of each bit of plaintext in a block depends

on every other bit in the same block.

2.2.2 Modes of Operation

A mode of operation specifies how block ciphers should encrypt messages of arbitrary
length [39]. Since block ciphers divide the message into fixed-length blocks, the message
length should be equal to or a multiple of the block size. If it is not, the plaintext
is usually padded with arbitrary bits (PKCS#7 [40] being the current standard) to a

multiple of the block size before encryption. Therefore, from now on we will assume

2.2. Cryptography 23

that the length of the plaintext is always a multiple of the block size. In the following

paragraphs, some of the most well-known modes of operation will be listed.

Electronic Code Book - ECB

The ECB mode is the most naive mode of operation. Given a message m = mq,mo, ...,
m;, the ciphertext is obtained by encrypting each block m; of plaintex independently,
that is, ¢ = (Fx(my), Fx(ms), ..., Fx(m;)), where Fi(-) is the encryption function per-
formed by each block with key k. The ECB encryption is deterministic, and it is not
indistinguishable in presence of an adversary, even if it is only used once. This is due to
the fact that if the same block is repeated several times in the plaintext, the resulting

ciphertext blocks encrypted with the same key will also be the same.

Cipher Block Chaining - CBC

The CBC mode involves a random initialization vector, denoted IV, of length n. The
first ciphertext block is generated by computing the encryption of the XOR between the
IV and the first plaintext block my: ¢; = F(IV @ m;). From here, each subsequent
ciphertext block is obtained by encrypting the XOR between the current plaintext and
the previous ciphertext. More formally, the i** ciphertext block is obtained as ¢; =
Fi(cio1 ® m;), where ¢g = IV. At the end of the process, the encrypted message is
(IV,c1,¢q,...,¢). The IV does not have to be kept secret, and it is usually sent in
plaintext along with the ciphertext, so that the receiver can successfully decrypt the
message.

CBC is probabilistic, but has the drawback that each ciphertext ¢; is required to
encrypt c;11, hence the encryption must be carried out sequentially and cannot be paral-
lelized (however, decryption can be parallelized provided that the recipient of the message
already has all of the ciphertext blocks). Moreover, two identical plaintexts encrypted
with the same key and IV will result in identical ciphertexts. For this reason, it is
mandatory that the same IV is not used more than once, but a new, randomized one

should be generated each time.

Output Feedback - OFB

In this mode, the block cipher is used to generate a pseudorandom stream that is then
XORed with the plaintext, turning a block cipher into a stream cipher. The first step
is to choose a random IV < {0,1}". From the IV, we generate a stream by doing

r; = Fy(ri_1), where r; is the i* block of the stream and ry = IV. From here, the

24 Chapter 2. Background

Figure 2.5: Tux penguin image in plaintext (left), encrypted in ECB (middle) and in a secure
block cipher mode (right). Note how in the ECB version, while the pixels are encrypted, it is
still very possible to discern the original image since the plaintext is made by many recurring
patterns, which ECB preserves. Courtesy of [41].

XOR between each plaintext block and the corresponding stream block is performed:
c¢i = m; @ r;. As in the CBC mode, the I'V is usually included in plaintext along with
the encrypted message to allow decryption.

OFB is probabilistic. Both encryption and decryption must be carried out sequen-
tially and cannot be parallelized. In this case, however, the pseudorandom stream can

be computed beforehand, after which encrypting or decrypting the data is much faster.

Counter - CTR

Much like OFC, CTR also turns a block cipher into a stream cipher. As usual, a random
IV + {0,1}" is chosen and will take the name of ctr. The encryption step consists in
r; = Fy(ctr + i), where the addition is performed modulo 2". Lastly, the encryption of
each plaintext block is computed as ¢; = r; & m;.

Both encrytpion and decryption can be fully parallelized, and its pseudorandom
stream can be computed ahead of time like in the OFB case. It is also possible to
perform random access decryption, that is, decrypting the single i*" block without de-

crypting anything else.

2.2.3 AES - The Advanced Encryption Standard

In 1997, the National Institute of Standards and Technology (NIST) of the United States
kicked off a competition to define a new cryptographic algorithm that would be called
Advanced Encryption Standard [39]. Many teams of expert cryptographers and crypt-

analysts submitted candidate algorithms, and all had interest in finding some potential

2.2. Cryptography 25

flaws in the other proposals. Thus, each of the submissions was thoroughly analyzed for
their security and performance. In 2000, the NIST announced Rijndael, named after the
authors Vincent Rijmen and Joan Daemen, as the winner of the competition [42].
Intuitively, AES is essentially a substitution-permutation network. It holds a 4 by 4
vector named state, initialized to the input of the cipher (16 bytes), and over which the
substitutions and permutations are performed. Each round of AES-Rijndael is divided

into four stages [39]:

1. AddRoundKey: at each round, we obtain from the master key a 16-byte round key,
reshaped as a 4 by 4 matrix of bytes. Then we compute the XOR of the round
key with the state array. As such, this step consists in computing a; ; = a,; @ k; ;,
with i, 7 € [1,4].

2. SubBytes: using a fixed lookup table S, each byte of the state array is substituted
by another byte. S is a bijection over {0, 1}®, so that a; ; = S(a;;), with 4, j € [1,4].

3. ShiftRows: each row of the state array is shifted to the left by a number of position
equal to s = i —1, therefore the first row is left untouched, the second row is shifted
by one position, the third by two, and the fourth by three. The shifts are cyclic,
meaning that each byte that would end up out of the 4 by 4 boundaries is reinserted

at the end of the array. For example, byte as; becomes byte as 4 after the shift.

4. MixColumns: an invertible linear transformation is applied to each column, that
are interpreted as a polynomial over GF'[28], then multiplied modulo z* + 1 with
the fixed polynomial c¢(z) = 323 + 2% + x + 2.

The number of rounds performed in the AES-Rijndael algorithm is dependant on the
size of the key: 10 for 128-bit keys, 12 for 192-bit keys, and 14 for 256-bit keys.

Regarding its security, the only successful attacks found to date are for reduced-
rounds variants of AES, and even those still have a high complexity. For the full AES

construction, no attack better than a brute force search over the key space is known.

2.2.4 Homomorphic Encryption

Homomorphic encryption (HE) was first introduced by Craig Gentry in 2009 [43], as a
solution to a much older open problem labelled pivacy homomorphism by Ronald Rivest
et al. in 1978 [44], and later named fully homomorphic encryption scheme by Gentry

himself. The core concept behind this scheme is to allow one to compute an arbitrary

26 Chapter 2. Background

function over the encrypted data without needing to decrypt it. In other words, given
the encryptions E(mq), E(ms) ... E(m,) of the plaintext messages my, ma,...m,, one
should be able to compute f(my,...m,) for any function f.

Like any other encryption scheme, HE relies on the main functions Gen, Enc, and
Dec for the generation of the key, the encryption step and the decryption step respec-
tively. However, in addition there is an evaluation function Eval. In general, HE can be

summarized as

Dec(sy, Eval(py, C,c1, ¢, ..., ¢y)) = C(my, ma, ..., my) (2.17)
where si is a secret key, py is the corresponding public key, my, mo,...,m, is a set of
plaintext messages, ¢y, co, ..., c, is a set of ciphertexts and C'is a circuit.

The key idea that allows us to compute functions over the ciphertext is to make the
encryption function Enc add a small value, called noise, to the plaintext m; during the
encryption step. Hence, each ciphertext ¢; will have a small amount of noise associated
with it and, when we compute the sum of two ciphertexts, their noise grow with them.
The decryption step Dec, then, is only able to correctly decrypt the ciphertext as long as
the noise is below a certain threshold, that creates a bound on the amount of operations
that can be performed. Furthermore, the only supported operations are additions and
multiplications.

Gentry [43] designed the first fully homomorphic encryption scheme, that is, a HE
scheme that supports an arbitrary depth circuit, by introducing a technique used to
decrease the noise associated with the ciphertexts without needing to access s called
bootstrapping. However, because of the big computational cost and slow processing time,
FHE is impractical for actual use.

Successive versions [45, 46, 47, 48, 49] of the scheme improved on the initial one
designed by Gentry and gradually made it more and more practical. All of the FHE
schemes rely on an underlying Somewhat Homomorphic Encryption (SHE) scheme, that
performs the additions and the multiplications on the encrypted data, responsible for
the growth of the noise factor. The bootstrapping technique is then responsible of the
reduction of the noise level, extending the SHE to FHE.

Since the noise factor grows exponentially in SHE, this scheme is very limited from the
point of view of how many operations are computable before bootstrapping. Indeed, SHE
can only evaluate polynomial functions up to a bounded degree. However the scheme was
later improved by making the noise factor growth polynomial in the number of multipli-

cations [49, 50], instead of exponential. Such schemes are called Leveled Homomorphic

2.3. Related Work 27

Encryption (LHE) schemes and allow the evaluation of the polynomial functions to a
higher, although still bounded, degree without using the costly bootstrapping technique.

One of the most well-known implementations of homomorphic encryption is Microsoft
SEAL [51], a C4++ cryptographic library that includes two recent HE schemes: BFV [52]
and CKKS [53].

2.3 Related Work

Machine learning models can greatly benefit their user in upgrading the service they offer,
but not every owner has the economical or structural resources to build a computational
hub for running them. Cloud providers are obviously a great choice, but when the data
that the models should be trained or run upon is sensitive, many privacy-concerning
issues are raised.

For this reason, many works that try to combine machine learning with cryptography
have been published in recent years. However, to date, none of them applies reinforce-

ment learning to such scenarios.

2.3.1 Machine Learning with Encrypted Datasets

Unfortunately, not every service that might benefit from the application of machine
learning has the economical or structural resources to privately build and train the
models. For this reason, many cloud providers offer solutions, general or tailored, to use
a model remotely, so that clients can make use of machine learning without needing to
build a computational center for it. This, alongside the clear advantages, also carries
some concerns, especially about the privacy of the data that is being handed to the
providers.

This example has the purpose of introducing the main issue that some recent works
that aimed to combine machine learning with privacy-preserving procedures try to solve.
One of the first works that explored this direction is ML Confidential [8], published
in 2012, a confidential machine learning algorithms based on low-degree polynomial
versions of classification algorithms. The encryption scheme was a leveled homomorphic
encryption scheme, in which the noise growth is limited to a polynomial function, allowing
to perform a bounded amount of operations without resorting to the bootstrapping
technique (recall Section 2.2.4). The authors implemented a Linear Means classifier and
a Fisher’s Linear Discriminant (FLD) [54] on the publicly available Wisconsin Breast

Cancer Dataset [55], obtaining better results in terms of efficiency compared to the

28 Chapter 2. Background

other HE encryption benchmarks of the time.

There have also been applications [56] of cloud-hosted prediction services that took
as input private encrypted medical data and returned, always in encrypted form, the
probability of suffering of cardiovascular disease. The working proof of concept leveraged
a fully homomorphic encryption scheme to allow computation on the data.

Furthermore, in 2015, R. Bost et al. [57] constructed three major classification mod-
els: hyperplane decision, Naive Bayes, and decision trees, combined with AdaBoost. The
models were applied to a FHE scheme based on a polynomial representation requiring
only a small number of multiplications. Not only they obtained efficient models, but
also created a library of building blocks for constructing many others classifiers in a
privacy-preserving way, such as a multiplexer or a face-detection classifier.

Not long after, the first neural networks were applied to encrypted data as well.
However, since homomorphic encryption only supports additions and multiplications,
neural networks cannot be simply applied to encrypted data as they are, but require
some modifications. One of the most challenging tasks is to approximate the activation
functions, such as the Rectified Linear Unit (ReLU) or Sigmoid, with functions that only
make use of additions and multiplications, like polynomials.

For example, in 2016, another Microsoft research group worked on the implementation
of a project named CryptoNets [9]. Also in this case, the considered encryption scheme is
HE and the assumption is that a cloud service hosts the neural network and allows data
owners to send their data in encrypted form. The neural network is then applied, and the
prediction is returned always in encrypted form. Homomorphic encryption, as stated in
Section 2.2.4, allows a function to be computed on the encrypted data without knowledge
of the secret key. Therefore, since the cloud service is not in possession of such key, it
is not able to gain any information on the data nor on the predictions. The activation
function was approximated with the lowest degree non-linear polynomial, the square
function. CryptoNets consisted in a CNN and was applied to the MNIST [58] dataset, a
common benchmark for convolutional neural networks consisting in handwritten digits
to be correctly classified, after encryption. It achieved 99% accuracy and was able to
hold a throughput of 51,000 predictions per hour.

However, CryptoNets quickly became ineffective for deeper ANNs. An improvement
to the model [10] addressed this problem by applying batch normalization [59] to the
data. This time, the ReLU units were approximated with a Taylor series. The new,
deeper CryptoNet was applied to the same encrypted MNIST dataset registering accu-
racy similar to the best non-secure versions at the time.

Soon after, CryptoDL [11] was published, a new model for applying neural networks

2.3. Related Work 29

to encrypted data within the limitations of homomorphic encryption schemes. Firstly,
the authors designed methods to use low-degree polynomials (which are essential for
effinciency) for approximating the most common activation functions used in CNNs,
like ReLLU, Sigmoid or Tanh. Then, the training is performed with the approximated
activation functions. Lastly, they implemented the neural network model and tested it
on the encrypted MNIST, achieving a 99.52% accuracy (very close to the non-private
state of the art version, with 99.77%), and to the CIFAR-10 dataset [60], considered to
be more complex than MNIST, achieving an accuracy of 91.5%.

In the same year was published another project involving deep learning system [61],
this time in conjuction with asynchronous stochastic gradient descent and additively ho-
momorphic encryption to protect the gradients from an honest-but-curious cloud server,
that is, a cloud server that does not actively try to break the protocol, but will try to learn
as much information as possible from the legitimately received messages. The gradients
are stored on the server in an encrypted form, and the additive homomorphic encryption
scheme allows to carry out computations on such gradients without the decryption key.
By doing this, they achieved an intact accuracy, while also leaking no information to the

server.

2.3.2 State Manipulation in Reinforcement Learning

While machine learning over encrypted data has its share of studies, on the other hand
reinforcement learning, at the time of this work, has never been applied to encrypted
states. As stated in Section 2.1, while sharing some similarities, supervised learning and
reinforcement learning are two different paradigms. Specifically, instead of classifying the
input data into labels, reinforcement learning yearns to find a policy, a mapping from sit-
uations to actions, that maximizes a reward signal. This means that RL should probably
follow another direction with respect to the works that were previously discussed.

A paper [62] was published in which count-based exploration methods?, usually em-
ployed in conjunction with tabular methods such as Q-Learning, was to high-dimensional
or continuous deep RL benchmarks. Interestingly, the authors extended the counting-
based methods by discretizing the state space with a hash function, reaching near state-
of-the-art performances on several environments from Atari 2600 and rllab [63], a suite

for the benchmarking of continuous control tasks.

2With count-based exploration methods we mean methods for action selection based on the counting
of the state-action visitations. One such method is the well know Upper Confidence Bound, usually

applied to the bandits problem: A, = argmax, (#(a;) + il(?f;)

30 Chapter 2. Background

This paper is interesting to the matter at hand because it shows that a deep RL
agent is able to learn and to converge to optimality even if the representation of the
state greatly changes. In some way, this is similar to the task we are trying to solve:
encrypted data is a representation of the data manipulated so that an adversary is not
able to understand the underlying plaintext.

However, the concept of manipulating the input to the agent in some way is not
novel. Data augmentation is a procedure that aims at incrementing the amount of data
by manipulating the existing data, or by synthetizing new data [64]. This technique is
employed especially in computer vision tasks, with operations such as geometric trans-
formations, random erasing, feature space augmentation, random cropping or random
flipping [65], that are able to improve the model’s ability to generalize and, as such, lead
to better classification results.

The data augmentation techniques to improve the generalization capabilities of the
models were only recently investigated in the context of reinforcement learning algo-
rithms. There have been instances in which data agumentation such as cutout [66],
where multiple rectangular regions are masked and assigned a random color, or ran-
domized convolutions [67], where random convolutional newtorks are used to output
randomized feature maps over which the RL agent is trained, have proved to be ef-
fective. Two very recent works leveraged data augmentation for reinforcement learning:
Data-regularized Q [68] regularizes the Q-function in conjunction with off-policy methods
and randomized shifting of the input image, while RAD [69] aims to create a framework
for reinforcement learning data augmentation with many data augmentation techniques,
such as randomized cropping, translation, colour jitter and others.

While not directly associable to cryptographic operations, these approaches show that
the modification of the input data for reinforcement learning agents not only is a viable
approach, but can also improve its performance under certain circumstances. Therefore,
it might be natural to ask ourselves how the cryptographic step fits in this picture, and
if the noise produced by the encryption is in some way exploitable for the learning of a

reinforcement learning algorithm.

2.4 Summary

This first chapter serves as an introduction to the concepts that play a key role in the
understanding of our work, and are, as such, required background knowledge. We have

thoroughly explained the problem of reinforcement learning, starting by its history and

2.4. Summary 31

some state of the art works, then defining its simplified form and working our way
up through MDPs, Monte Carlo and Temporal Difference methods, to value function
approximation, a very powerful technique that underlies most of the recent works in the
field. In the same context, we also have reviewed a very widespread framework for the
development and benchmarking of reinforcement learning algorithms known as OpenAl
Gym, and one of its most well-known extensions MiniGrid.

The second section, instead, deals with cryptography. We started with its basic
definitions and a brief history of the disclipline; afterwards, We overviews its two main
usages in the symmetric- and asymmetric-key schemes, while also defining the block
cipher’s modes of operations and the AES algorithm. Homomorphic encryption, that
plays an important part in some recent work, has also been introduced.

Lastly, the third section details some important recent works in the field of machine
learning and encryption, that constitute the research that has been done in the field
most closely realated to our project.

The idea behind our work is that, despite a very active research activity on both
the subject of reinforcement learning, and privacy-preserving machine learning, nothing
has been published yet that tries to merge the two approaches. Indeed, a successful
analysis of the concept might lead the way to some very interesting and potentially
useful applications.

Therefore, this will be the purpose of this work. In the following chapter we will
give an overview of the application of reinforcement learning to encrypted data and we
will, first, formally formulate the problem by identifying the key research questions and
the central aspects at play, and then, propose a reinforcement learning algorithm as a

potential solution.

32

Chapter 2. Background

Chapter 3
Approach

As we discussed in the previous chapter, many recent works have focused their atten-
tion on the study of state manipulations in the context of reinforcement learning or on
the application of cryptographic primitives to inferential machine learning applications.
However, the combination of the two approaches has not yet been explored, therefore it

will be the central topic of this work.

This chapter will serve as an introductory overview of our approach to the general
problem of the application of reinforcement learning on encrypted data, providing the
basic building blocks for the understanding of the algorithm and of the state transfor-
mations used to perform the experiments. In the first section, we will start by giving a
high-level overview of the problem by defining a hypothetical real-world use case; then

we will lay out the main research questions that our work aims to answer.

The second section, instead, focuses on the building of the algorithm followed during
our experiments. First, we will provide a structural overview of the main components
involved; then, we will build a modified MDP framework in which our agent will work;

lastly, we will go more in-depth in the algorithm proposed.

3.1 Reinforcement Learning over Encrypted Data

Being able to apply reinforcement learning to encrypted states would mean creating
an agent that learns a policy without supplying it with complete information about its
surroundings. This would allow us to decouple the environment in which the agent moves
and acts from the algorithms that control such agent, leading the way to numerous use

cases similar to the ones explained in the previous papers.

33

34 Chapter 3. Approach

3.1.1 Purpose

To better understand the aspects at play in this scenario, let us think of a hypothetical
use case. For example, we might find ourselves in an industrial setting, in which there
is a plant with a robot that performs some kind of operation. Such robot can be very
efficiently powered by a reinforcement learning algorithm in which the states are the
images of a camera that frames both the robot and the plant, but, since such algorithm
requires a big amount of computational power to perform efficiently, we are not able to
build it and train it ourselves. For this reason, we could turn to cloud providers, but
privacy concerns prevent us from sharing the pictures of the plant, so that competitors
cannot steal our designs.

This basic and hypothetical use case confirms that being able of taking advantage of
reinforcement learning, that lately has proved to be a very powerful technique in het-
erogeneous scenarios, with encrypted data might be worthy of investigation. In general,
this use case can be extended to all those scenarios in which we wish to decouple the
learning algorithm from the actual environment in which the agent performs its task.
As discussed in the previous section, this would allow us to create many practical imple-
mentation where, in general, the beneficiary of the agent is incapable, for any reason, of
building a reinforcement learning agent autonomously. Since the states are the only de-
scriptive information the agents needs, if those do not leak clues about the environment,
we can effectively delegate the creation of the agent to someone else without providing
knowledge of possibly sensitive data. Furthermore, the most interesting part is that it
would also mean that it is possible to adequately train an agent that has no proper

knowledge of the environment it is operating in.

3.1.2 Research Questions

Nonetheless, it might also raise some questions. Firstly, as discussed in the previous
chapter, reinforcement learning is different from supervised learning, because it tries to
find a policy, that is, a mapping between situations and actions, in order to maximize
a numerical reward, instead of assigning labels to data. Having encrypted states might
very well break this mapping because the encryption has the purpose of turning the
plaintext into noise, so that an adversary is not able to identify the data any longer.
Secondly, reinforcement learning is an intensely interactive problem, in which the
agent and the environment continuously interact with each other. Encrypting the states
might introduce a significant overhead based on the type of encryption performed, as

well as on how the states are represented.

3.2. The Algorithm 35

Therefore, we can identify three key questions that will be central in the following

pages:
e [s a reinforcement learning agent still able to learn with encrypted states?
e What is the impact of the encryption on the training performance?

e Does the encryption step introduce a significant overhead?

Providing an answer to these questions is the key concept behind the work carried
out in this project, and, as such, we will try to create a reinforcement learning agent
and train it over encrypted data, assessing its capabilities to learn while also measuring
the impact, both in term of complexity and efficiency, of the cryptographic primitives

employed for such task.

3.2 The Algorithm

With the problem just outlined, we can start to identify a possible direction in which to
channel our efforts to try to create a RL agent that learns on encrypted data. Specifically,
we will follow the questions mentioned in the previous section to create a logic process
that will frame the problem, allowing us to build an infrastructure for the training and
the testing of the agent.

As we discussed in 2.3.2, while obviously not being close to encryption, manipulations
of the state in reinforcement learning have proved to be a viable approach. The encryp-
tion, from this point of view, is not very different: indeed, it consists in a transformation
of the state. The difference, though, is that in the works mentioned, the transformations
had the purpose of improving the agent’s ability to generalize, while, in our case, we try
to hide the data so that a malevolent third party cannot infer anything on it. Of course,
this might prevent the agent from learning a policy from the states, because we would
break the mapping between state and action. Therefore, we will develop an algorithm
to test if learning still happens.

We have then developed a pipeline that will be applied in this work in order to test
the agent’s ability to learn. We can identify three major components, each with a very

specific task:

e state processing pipeline: the first step each state goes through is a preprocessing
routine. The states might have some redundancy that increases the state space

without adding relevant information about the current situation. This is true in

36 Chapter 3. Approach

Environment —

5;) Enc(@(Sy))
Processing Encryption

Figure 3.1: General workflow proposed for the project. The environment, at each time step
t, outputs a state S;. This state is processed with a scenario-specific preprocessing function
@(Sy); its output is then encrypted with an encryption function Enc(¢(S;)), which is what the

agent receives alongside the reward R;. The agent, with this information, chooses an action
Ay.

general, and many algorithms implement a processing step to speed up and stabilize
the agent’s learning, but even more so when cryptography is involved, because less

data to encrypt also means less noise as input to the agent.

e encryption: after the preprocessing, each state undergoes encryption with a given

cryptographic primitive.

e 1] agent: the last entity in our algorithm is the reinforcement learning agent, that

receives the encrypted states and performs training on them.

Ideally, in the use case we defined in the previous section, the three components are sit-
uated in different physical places. Going back to the plant example, the state processing
and the encryption step would be performed by the owner of the plant. The encrypted
data would then be sent to the cloud provider that feeds it to the reinforcement learning
algorithm which will output what is the best action to perform. Afterwards, the repre-
sentation of the action will be sent back to the robot of the plant, which will decode its
meaning and physically act on the environment.

More in depth, we can extend the general MDP framework we outlined in 2.1.3. We
will define ¢ as the current time step of the environment, and S; € S as the state at
the given time step, where S is the set of all possible states; ¢(S;) is the preprocessing
function, carried out by the first component listed above, that transforms the state
St, and Enc(+) is the chosen encryption method, performed by our second component,
that accepts as input the processed state 1(S;). The environment, at each time step
t, outputs a state S; which encodes its current configuration, and a numerical reward
R;. Now, however, the state is not directly sent to the agent, the third component,
but undergoes a sequence of transformations beforehand. Firstly, the state is processed

with the pre-processing function ¢, that outputs ¢(S;). Then, the encryption method

3.2. The Algorithm 37

encrypts the processed state, resulting in the ciphertext ¢ = Enc(¢(S;)). To simplify
the notation, we will call ¥(S;) = Enc(¢(St)). The reinforcement learning agent receives
this encrypted representation of the state alongside the unchanged numerical reward R;
and uses this knowledge to choose an action A; € A(1(S;)). Therefore, the trajectory of

the agent-environment interaction (2.1) will now take the form

Enc(¢(50))a AO) R17 EnC(d)(Sl)), A17 RQ, E?’LC(¢(S2)), A27 R37 cee (31)
= w(SO)a A07 Rla w(sl)a A17 R27 w(52)7 A27 R37 veee (32)

With the extended MDP framework, we can also redefine the policy 7 as
(A = alS; = ¥(s)) (3.3)

and the state-value functions and action-value functions as

vr(V(s)) = Ex[Ge| S = ¥(s)] = Er

ZWth+k+1|5t = ¢(3)] (3.4)

k=0

%r(dj(s)a CL) =]EW[Gt|St = ¢(8)7 At = a’] =E, Z’yth+k+l|St = 1/}(3)’ At =aj. (35)

k=0

The key takeout is that the agent has no access to the internal, raw state of the environ-
ment, but only sees the encrypted and processed version 1(s) of the states, and tries to

learn and to choose actions on them.

Under these assumptions, we consider the behaviour of the agent that interacts with
such environment, with the goal of choosing the actions that maximize the future rewards,
discounted with the discount factor v, so that at time step ¢, the future discounted return
is Gy = Zfzt v*7tRy,, where T is the time step at which the episode terminates. The
agent selects and executes action with an e-greedy policy based on the learned action-

value function ¢, that works on the processed states 1(s) = Enc(¢(s)).

Specifically, the reinforcement learning model employed for the task is the DQN with
target network, as seen in [5], since it is a well-known and widespread deep reinforce-
ment learning algorithm that is also more sample-efficient with respect to other modern
techniques. In the context of the extended MDP framework of above, the update rule

2.15 becomes

Wis1 = we+ [Ripy +ymax §(P(Sen), a; w7) = 4((Sh), Ay, wy) [Va((Sy), Ar,wy) (3.6)

38 Chapter 3. Approach

where the target values for the update, represented by
Yy = Ry + *ymgxcj(w(St), a,w,) (3.7)

are computed by the target network, whose weights w™ are cloned from the online net-
work after every C' updates.

Similarly, the agent’s replay memory will store experience tuples of the form

e = (Y(St), A, Riy1,¥(Si11))

and the updates of the neural network are performed by randomly sampling a mini-
batch of transitions from the replay memory and using them to compute a target for
Q-Learning. This sampling can start as soon as the replay memory buffer contains
enough transitions to fully form a minibatch.

The only difference with the original algorithm is that, instead of either making the
agent work directly with the states output by the environment or preprocessing them
before, we include an additional layer of state manipulation between the preprocessing
and the agent in the form of the encryption function Enc(-). This encryption has the
purpose of hiding the features of the states to the agent and to a hypothetical third
party that tries to read the communications that go through the channel, which is con-
sidered insecure by default. The pseudocode for the DQN algorithm modified under this

assumption is shown in Algorithm 2.

3.3 Summary

In this chapter we started from the background knowledge we have built up previously
and have explained the central concept behind our work. Indeed, we started off by illus-
trating the general problem of reinforcement learning over encrypted data by detailing
a possible use case and what innovation it would bring to the discipline, then we have
defined the research questions that will be central in the experiments.

Afterwards, in the second part, we have formally defined the problem. Initially, we
have detailed the components that are part of our application, each with their scope
and purpose. Then, we have defined the pipeline that we will follow by extending the
base MDP framework that we presented in Section 2.1.3; lastly, we have formalised the
algorithm that will be employed in the experimental part of our project.

The next two chapters will start from here and will build upon the theoretical frame-

3.3. Summary 39

Algorithm 2: DQN with encrypted states
Parameters:
replay memory capacity N
small € > 0
amount of cloning steps C'
Initialize:
replay memory D to capacity N
action-value function ¢ with random weights w
target action-value function ¢ with weights w™ = w
foreach episode do
Initialize S
Obtain 1(Sy) = Enc(p(Sy))
foreach step of episode t until terminal state St do
With probability € select a random action A;, otherwise

A; = argmax, §(¢(St), a; w)

Execute action A; and observe Ry, S;i1

Obtain ¥ (Siy1)

Store transition (¢(S;), Ar, Ry, ¥ (S¢41)) in D

if D contains enough transitions then

Sample random minibatch of transitions (¢(S;), A4;, R;j, ¢¥(Sj+1)) from
D

Set y; — {rj A . if S .is terminal

r; +ymaxy ¢(¢¥(S;+1),a’;w) otherwise

Perform a gradient descent step on (y; — G(¢(S;, a;; w))? w.r.t.

network parameters w

end

Every C' steps clone w™ = w
end

end

work that has been built in this chapter. Indeed, we will show two case studies, on two
different environments, that represent the concretization of the problem and of the com-
ponents that were defined here. Each case study will instatiate all parts of the pipeline
() and we will provide a mapping between these components and their specific imple-

mentation for the task at hand.

40

Chapter 3. Approach

Chapter 4

First Case Study: MiniGrid

After outlining the general problem of reinforcement learning over encrypted data, the
next step would be to find out if a RL agent can actually learn anything from an encrypted
state. For this reason, we will now try to answer the research questions we outlined in
Chapter 3. To do that, we will follow the general algorithm defined there and apply our
implementation of such algorithm to various environments whose states will be encrypted,
while thoroughly describing how each component will be realized.

More in depth, this and the next chapters will be case studies of two instantiations of
the problem under different environments. In particular, this chapter will focus on the
application of our reinforcement learning agent to MiniGrid, a gridworld-based (and as
such, discrete) navigation environment. This environment represents an interesting case
study because it features a simple task, in which the agent needs to reach the goal tile,

while also being straightforward to analyze due to its visual nature.

In the first section, we will start by describing the experimental settings of the first
experiments. Here, we will go over the key aspects of the subset of MiniGrid environments
we considered; then, we will define the concretizations of the preprocessing function v(-)
and the encryption function Enc(-), so that the complete state processing pipeline 9 (-)
will be determined. Afterwards, the neural network architecture will be explicated;
finally, we will list the hyperparameters chosen for the task.

The second section will focus on the implementation details of the classes developed
to carry out such task. Each component will have their implementation structure and
functional interface defined, starting by the environments itself and then listing all the
classes responsible for the actualization of our processing pipeline, ending with the class

of the central component of the algorithm, the agent.

Finally, the last section of this chapter will go over all the experimental results that

41

42 Chapter 4. First Case Study: MiniGrid

Figure 4.1: Empty 8x8 environment in MiniGrid. The agent is a red triangle that starts in the
top-left corner of an empty room and has to reach the goal at the opposite corner. Courtesy
of [37].

the algorithm was able to achieve under the settings previously detailed.

4.1 Experimental Settings

The first part of our experiments were focused on the application of our reinforcement
learning agent to a gridworld-based environment. A widespread suite of gridworld en-
vironments is MiniGrid [37], an OpenAl Gym extension that offers a great number of

bidimensional and discrete navigation games.

4.1.1 MiniGrid

In particular, the environments chosen for carrying out the experiments of this work are
the empty room environments, where the agent finds itself in an empty square room
and has the goal of reaching the destination, expressed by a green tile, situated in the
bottom-right corner. The starting position is at the opposite corner to the destination,
or a randomly chosen tile and direction in the random variants. At each time step, the
agent is described by its position (4, j) in the grid and the direction it is currently facing
in, one between right, upwards, left, or downwards. The empty rooms are of variable

size, namely 5x5, 6x6, 8x8, and 16x16.

4.1. Experimental Settings 43

Observations

While MiniGrid, by default, outputs observations as Python dictionaries describing the
current situation in the environment, it also provides wrappers that enable using images
of the grid as states. Images are more information-rich of simple dictionaries and allow
us to easily interpret the current situation in case of plaintext, and to spot out recurring
patterns immediately for the encrypted case; hence, the observations for the experiments

are (H x W x 3) RGB images of the rooms.

Figure 4.2: Observation of the starting state of the 8x8 empty room environment in MiniGrid.
Each tile is 8x8 pixels, and there is an outer gray wall surrounding the walkable area.

Action Space

As noted above, MiniGrid offers many environmental configurations, with some even
involving openable doors, lava, moving obstacles, and pickable objects like keys. For this
reason, the action space includes some actions that are not needed in all the environ-
ments: particularly, the empty rooms involve no objects nor doors, therefore the action
space has been reduced to the minimal set. Both the actions spaces are listed in Table
4.1.

Rewards

Lastly, MiniGrid’s default reward function is characterized by sparse rewards. Indeed,
only a portion of the states gives the agent a feedback: in our case, the agent gets
no reward until it reaches the destination. The reward assigned, then, is calculated as
follows:

T

R =1.0 09 (4.1)

44 Chapter 4. First Case Study: MiniGrid

Number Meaning

0 Turn left

1 Turn right
2 Move forward
3 Pick up object
4 Drop object

) Toggle

6 Done

Table 4.1: MiniGrid discrete action space comprises of many actions, some of which are not
useful in all environments. The subset of actions considered for the empty room environments
is highlighted in bold text.

where T' is the time step in which the agent reached the goal and L is the maximum
amount of time steps in an episode. If, instead, the agent did not reach the goal after L
time steps, the episode is concluded and the reward is 0. We decided to keep the default
reward function since it is a good indicator of how many steps are required to reach the

goal.

4.1.2 State Preprocessing

In Section 3.2 we have formalized an extended version of the classic MDP by adding
two additional state transformations: a preprocessing function ¢(-) and an encryption
function Enc(-), which, piped together, are denoted as ¢(-). In this section, we will focus
on the preprocessing function ¢(-).

MiniGrid allows us to obtain colour images as states of the environment. These images
are three-dimensional RGB integer arrays of shape (H x W x 3), as shown in Figure
4.2. Each tile occupies a surface of 8x8 pixels, and every room is wrapped by a layer of
non-walkable gray wall. This means that the size of the image is 8 times bigger than the
size of the corresponding environment: for example, the 8x8 environment outputs 64x64
images.

Some of the information carried by the images is, in some way, redundant. In our
implementation there is no need for 8-pixels wide tiles, nor for the outer walls. Having
redundant information not only slows down learning in the basic plaintext case, but also
increases the number of possible states for the encryption case, making the overall task
much harder.

For this reason, the first step each image undergoes is a downsampling of factor 8, so
that each tile is represented by a single pixel. Then, the image is converted from RGB to

grayscale. A downside of resizing the images to the minimal possible dimension is that

4.1. Experimental Settings 45

resize gray

remap

crop

Figure 4.3: Image processing pipeline for the 8x8 environment. First, the image is resized by a
factor of 8, so that each tile is represented by a single pixel. Then it is converted to grayscale,
and the direction of the agent is mapped with a fixed pixel intensity. Finally, the image is
cropped.

the direction of the agent is no longer discernible, because it is not possible to see where
the tip of the red triangle representing the agent is currently facing. This would make it
seem like the actions of turning left or right have no impact on the environment; so, the
direction of the agent is remapped into four different pixel intensities, by changing the
value of the pixel corresponding to the agent’s current position to a fixed value for each
direction. Moreover, during this step, the intensities of the pixels are also remapped to
cover the whole [0, 255] range, so to favour colour separation.

Afterwards, the outer walls are cropped to further reduce the size of the image. In
the empty room environments, the walls are always a square outer layer that wraps the
walkable grid. Therefore, this step only consists in deleting the first and last rows and
the first and last columns from the image. Figure 4.3 shows a schematic of the complete

pipeline.

4.1.3 Encryption

In the MDP extension, after the preprocessing function ¢(-), the next step consists in
encrypting the result of the process with a given encryption function Enc(-). Therefore,
we will now focus on such function.

The cryptographic scheme chosen for our experiments is AES [42], a widespread

symmetric block cipher. The reason for choosing a symmetric encryption scheme, and

46 Chapter 4. First Case Study: MiniGrid

AES in particular, are two. Firstly, also recalling the use case outlined in the previous
chapter, the easiest and fastest way to obtain privacy-preserving images of states is to use
a symmetric encryption scheme with a key that only the owner of the data possesses. Our
models do not need to decrypt the images, since they will be trained on the encrypted
versions. Secondly, between the symmetric key schemes AES with 256 bit key is a good
candidate, because it is considered cryptographically secure and it is widely used.

However, the first encryption-like test is performed with a deterministic scramble
of the pixels of the image. Before the run, the indexes of the pixels of the image are
randomly scrambled and the result is stored in a lookup table that encodes a translation
for each pixel position to a new position. Form then on, each image during training is
scrambled in the same way. This step, while not being a proper encryption, acts as a
middle ground between plaintext and ciphertext and it is useful to asses the performance
of the agent.

Then, the agent is trained on the images encrypted with AES in ECB mode. This
mode, as noted in Section 2.2.2, is not cryptographically secure because it is deterministic
and we can still spot recurring patterns in the ciphertext. The key is randomly generated
before the start of the training.

Lastly, the agent is trained on the CBC version of AES. The key is randomly gen-
erated before the start of the training, then the IV is randomly reinitialized before
every encryption step. This makes it so, even with the same plaintext, the ciphertext is
different.

Padding

Since AES is a block cipher, the plaintext size needs to be a multiple of the block size,
in this case 16 bytes. For this reason, the images of the states need to be padded to
comply to this requirement, and the padding type is another parameter of our pipeline.
We identified to possible candidates: a custom padding, used to preserve the spatial
information of the pixels within the image, or PKCS#7 [40], the current cryptographic
standard.

Since the experiments will be carried out using block cipher primitives, the plaintext
needs to be padded to a multiple of the block size before being encrypted. In our case,
we identified two possible padding procedures: a custom "wall” padding, that pads
the image trying to maintain the spatial information of the pixels, and PKCS#7 [40]
padding, the current cryptographic standard, that pads the trailing end of the plaintext
with £ — (I mod k) bytes, each having value & — (I mod k), where [is the length of the

4.1. Experimental Settings 47

input, and k the block size. This primitive, however, works on one-dimensional array of
bytes, therefore the resulting padded message, once reassembled in a H x W shape, will
feature an additional layer of pixel scrambling.

We also added another encryption-like test to ease in the complexity. This procedure
consists in a deterministic scramble of the pixels of the image. Before the run, the indexes
of the pixels of the image are randomly scrambled and the result is stored in a lookup
table that encodes a translation for each pixel position to a new position. Form then on,
each image during training is scrambled in the same way. This step, while not being a
proper encryption, acts as a middle ground between plaintext and ciphertext and it is

useful to asses the performance of the agent.

Figure 4.4: Comparison of the two padding techniques in the 8x8 environment. On the left,
the custom padding that maintains pixel distribution. On the right, the standard PKCS#7
padding. In this case, it is possible to see the twelve padding pixels of intensity value 12 after
the goal.

More in depth, using PKCS#7 would change the shape of the image fed to the
neural network, therefore losing spatial information of the pixels. For example, the
5x5 environment outputs 40x40 images. After the preprocessing, the images are scaled
down to simple 3x3 and, as noted above, AES requires 16-byte blocks, so we need 7
additional bytes to reach the threshold. If we simply apply PKCS#7, we would append
the padding bytes at the end of the byte array; afterwards, when reshaping this byte
array to a H x W shape to perform convolutions, we would end up with a 4x4 image,
in which the pixels are no longer in their original position: pixel in position (2, 1) would
now be in position (1,4) and so on, effectively adding a layer of pixel scrambling. Hence,
we also devised an additional padding procedure which is performed by adding rows
or columns, enough to reach a size multiple to the block size, to the resized image,

filled with values corresponding to the pixel intensity of the walls. In this way each pixel

48 Chapter 4. First Case Study: MiniGrid

retains its original position when the encrypted image is given to the CNN, but it has the
disadvantage of possibly increasing the number of padding bytes. Both of the padding

techniques will be tested during the experiments.

= &=

Figure 4.5: Example of encrypted states in the 16x16 environment. On the left, the determin-
istic shuffle. In the middle, AES in ECB mode. On the right, AES in CBC mode. The state
that is being encrypted is the same for all these examples, and it corresponds to the initial
state, with the agent in the top-left corner facing to the right.

4.1.4 Neural Network Architecture

The structure of the ANN depends on the current environment, but all the agents im-
plemented feature at least two convolutional layers and two fully connected layers, and a
number of outputs equal to the cardinality of the subset of valid actions. Convolutional
neural networks introduce spatial inductive biases that are useful for capturing local fea-
tures withing the grids (for example, close positions in the grid lead to similar rewards)
and reduce the total amount of training parameters, enabling faster learning, hence are
appropriate for our objective.

The convolutional layers take as input the image of the state of the environment, with
particular regards to its number of channels. Each layer outputs a feature map, built
with the usage of a filter that passes through the image and computes the convolution of
the pixels inside its kernel, in a sliding window approach. The resulting feature map is
characterized by a certain number of channels, and it is passed as input to the following
convolutional layers.

Usually, in a CNN, after the convolutional layers, there also are some fully connected
layers. Hence, the feature map output of the last convolutional layer needs to be flattened,
that is, transformed to a one-dimensional collection of features, in order to be passed
to the fully connected layers. Each of these layers takes as input for each unit all the

outputs of the previous layer’s units. The final layer consists in a fully connected layer

4.1. Experimental Settings 49

with a number of outputs equal to the number of actions |A(S;)].

Specifically, for the 5x5, 6x6, and 8x8 environments the neural network structure
consists in a first convolutional layer that takes as input the images with 1 channel
(since they are grayscale), and outputs 4 channels, with a kernel of size (2, 2) and a
stride of 1. Then, a second convolutional layer takes as input 4 channels, outputs 8
channels, with the same kernel and stride of the previous layer. Given the size of the
input images, the very small kernel size and stride turned out to be appropriate for the
task. The resulting feature map is then flattened and given as input to 32 fully connected
units. A final, 3-units layer outputs the Q-values for each action. The activation function
for all the hidden layers is the Rectified Linear Unit (ReLU).

Figure 4.6: Illustration of the CNN architecture for the 8x8 state. The input image, after
preprocessing, is of shape 6x8x1. The first convolutional filter outputs a 5x7x4 feature map.
The second convolutional filter outputs a 4x6x8 feature map, which is flattened into 192 units.
Then, there are a fully connected layer of 32 neurons and the output layer of 3 nodes, one for
each action. Illustration created with [70].

This small architecture proved not to be sufficient for the bigger 16x16 environment.
The architecture is then modified as follows: the first convolutional layer takes the 1-
channeled image and outputs 2 channels via a (2, 2) kernel with stride 1; then, the second
convolutional layer takes the 2-channeled feature map and outputs 4 channels with the
same filter; a final convolutional layer transforms the 4 channels into a 8-channel feature
map with the same filter. This feature map is then flattened and processed with two

32-units fully connected layers and a final fully connected layers with 3 unis that outputs

50 Chapter 4. First Case Study: MiniGrid

the Q-values for each action. Also in this case, the activation functions for the hidden

layers are ReL.Us.

<

Figure 4.7: CNN architecture for the 16x16 state. The input image, after preprocessing, has
a shape of 14x16x1. Then, three convolutional layers are applied: the first outputs a 13x15x2
map, the second 12x14x4, and the third 11x13x8. The last feature map is flattened into 1144
units. Then, two 32-units fully connected layers and a final output layer of 3 nodes are applied.
Mlustration created with [70].

4.1.5 Hyperparameters

The choice of hyperparameters is dependant on the environment’s characteristics. As we
mentioned earlier, MiniGrid’s empty room have varying sizes, and the relative hyperpa-
rameters have been found empirically. These values are then kept consistent for all the
experiments, both in the fixed starting state case and in the random starting states, in
order to favor a correct comparison. Table 4.2 lists all the hyperparameters used and

their values.

4.2 Implementation

We will now go over the implementation details for the application of reinforcement
learning over encrypted data. The programming language of choice is Python, because
of its greatly active communities of statistics and machine learning, and for the presence

of very useful scientific computation packages such as NumPy and PyTorch.

4.2. Implementation

51

Parameter | 5x5 | 6x6 | 8x8 | 16x16
N frames 2-10° 2.10° | 25-10° | 4-10°
Learning rate | 1-107% | 1-1073 | 5-107* | 1-10~*
Memory size | 1.5-10° | 1.5-10° | 1.5-10° | 1.5-10°
Batch size 64 64 64 64
e-decay 0.995 0.995 0.995 0.995
€-max 1 1 1 1
e-min 0.1 0.1 0.1 0.1
v 0.9 0.9 0.9 0.9
C 100 100 100 100

Table 4.2: Hyperparameters for each MiniGrid environment.

4.2.1 Environment Wrapper

The environment, created with Gym’s Gym.make (), is wrapped with MiniGrid’s wrappers
RGBImgObservationWrapper and ImgObservationWrapper, that allows to obtain the
observation of the current state of the environment as RGB images, stripping the state of
the natural lanuage string that describes the goal of the agent. An additional wrapper,
named EnvWrapper, is then created. This class has the task of carrying out all the
conversions between NumPy arrays, returned by the environment, and PyTorch tensors,
required for the neural network computations.

This class also incorporates the classes for the image processing and the encryption
that will be overviewed in the later sections, so that all the transformations of the state
are independent of the agent class. It exposes a functional interface that is identical to
the one of Gym’s environment object, so that the agent does not need specific functions
to handle the wrapper, and it can be used indistinguishably with both a wrapped or
unwrapped environment. Notably, the wrapper instantiates the image processing class,
the padding class, and the encryption class based on the requirements of each experiment,
then stores them into class proprieties. The EnvWrapper class, among some other minor

utilities, offers the following core methods:

e transform(state, position, direction): takes as input the non processed cur-
rent state of the environment and the agent’s current position and direction. First,
it calls the processing method from the image processing class, then, if needed, the
encryption method from the encryption class. It returns a PyTorch tensor with

the processed state, may it be encrypted or in plaintext.

e step(action): takes as input the chosen action and performs it in the underlying

environment. It returns the reward, the done flag and the processed new state.

52 Chapter 4. First Case Study: MiniGrid

e reset(): resets the environment to the initial configuration. It returns the pro-

cessed state.

e clone(): creates an independent deep copy of the environment wrapper and of
the underlying processing, encryption, and environment objects. This clone is
identical to the calling object, and, if used in an encrypted case, it also shares the
same encryption key or index table. The main usage of this function is to create
an independent object with a different environment seed to be used in evaluation

mode, in order to not interfere with the training environment.

e seed(seed): sets the given random seed in the underlying Gym environment.
This is especially useful when using environments with random components, such

as random starting states or random obstacles.

4.2.2 Image Processing

The image processing pipeline ¢(-) is implemented in the class ImgProcessor, that han-
dles all the preprocessing-related tasks. During instantiation, it can disable either the
cropping or the risizing portion of the pipeline. It exposes the method transform, that
takes as input the image of the current state and the position and direction of the agent,
and it performs the preprocessing previously explained to return the processed image.
Both the downsampling and the greyscale conversion are implemented via OpenCV

[71] utilities. The conversion is performed using luminance values as follows:
Y + 0299 -R+0.587-G+0.114- B (4.2)

where R, G, B are the luminance values of the Red, Green, and Blue channels of each

pixel, as provided by [72].

4.2.3 Encryption

The encryption-related tasks underlying the function Enc(-) are handled by classes spe-
cific for each type. All the classes implement an abstract BaseEncryptUtils, that ex-
poses the abstract method encrypt(plain). Then, each encryption procedure is imple-

mented in a separate class:

e HomomorphicUtils implements the homomorphic encryption case. Its encrypt
method encrypts the given plaintext in an array of bytes by calling PyFhel’s

encryptInt primitive.

4.2. Implementation 53

e DeterministicShuffler handles the deterministic shuffle operation. During ini-
tialisation, it creates a lookup table by randomly shuffling the original pixel indexes,

then it uses it in the encrypt method to return the corresponding ciphertext.

e AESCrypto is the class for the AES-based encryption methods. It extends the
BaseEncryptUtils class by overriding its init method, specifically to istantiate
the AES algoithm from the library pyca/cryptography, while leaving the encrypt
method abstract. This method is then specialized by the two subclasses ECBCrypto
and CBCCrypto, that implement it according to the right modality.

The factory Crypto has the task of instantiating the correct cryptographic subclass
based on its input parameters, so that the addition of new cryptographic methods is

straightforward.

4.2.4 Padding

The two padding techniques we have mentioned in Section 4.1.3 are implemented each in
a separate class that extends an abstract BasePadder. The former is handled by the class
CustomPadder, that pads the image adding walls to the two-dimensional image array.
During initialisation, it computes a suitable new shape for the image, then proceeds to
pad each state with the method pad(img), that takes the current state of the environ-
ment, pads it with the aforementioned procedure, then returns it as a mono-dimensional
array of bytes. The latter, instead, is realized in the class PKCSPadder, that converts the
state image first to an array of bytes, then pads it accordingly with pyca/cryptography
utilities. The creation of the proper class is delegated to the factory class Padder, that
instantiates the correct padding class based on its input parameters, so that the addition

of new padding techniques is straightforward.

4.2.5 Agent

The neural networks are created inside an Agent class that models the behaviour of the
reinforcement learning agent. The agent class is the core element of the application, since
it is the one responsible for the creation of the neural network and for the definition of
the behaviour in the environment, while also being in charge of carrying out the gradient
descent step. It handles the exploration-exploitation tradeoff and interacts with the
environment at each time step, while also storing its experience in the replay memory
buffer. In particular, the Agent first creates the online network and the target network

and stores them into the variables online_net and target_net, which are saved as

54 Chapter 4. First Case Study: MiniGrid

class proprieties. At each time step t,the agent takes the image of the current state S;
and, after the preprocessing step, feeds it to the neural network, which approximates the
action-value function. It obtains estimates §(S;, a, w;) for each a € A(S;).

The next step consists in choosing an optimizer, which is the component in charge of
performing the gradient descent optimization of the neural networks” weights. One key
aspect of the optimizer is the learning rate parameter, that controls the magnitude of the
changes in the weights with respect to the estimated error, the loss. If the learning rate
is too small, the training will slow down significantly and there is a risk of getting stuck
in a local minimum, while leading to overfitting and unstable learning otherwise. The
optimizer chosen is Adam [73], since it is a standard optimizer widely used because of
its adaptive learning rate scheduler, that can speed up learning and help avoid manual
exploration with constant learning rates [74]. The PyTorch package offers the imple-
mentation of this optimizer in its torch.optim module. Instead, for the learning rate,
the values in Table 4.2 were chosen empirically by conducting a search over the learning
rates 0.005,0.001, 0.0005,0.0001 and found 0.001 to be the most effective for the smaller
environments, and 0.0005 and 0.0001 for 8x8 and 16x16 respectively.

Another very important factor in every agent implementation is how to balance ex-
ploration and exploitation in a satisfying manner (recall Section 2.1). At the beginning
of training, the agent has no knowledge of what its task will be, therefore it has to ex-
plore very often in order to discover which are the best actions in each situation. As the
agent builds some knowledge of the task and of the environment, it will gradually drift
towards a more greedy approach, choosing actions that led to good rewards in the past.
For this reason we chose to follow an e-greedy approach, with ¢ decaying exponentially
for each episode, starting from €,,,, to a minimum value €,,;,. Therefore the agent, at
the beginning of training, will behave randomly very often, with a probability €,,,,. The
probability will gradually decrease to €,,;, as more episodes are completed, meaning that
the random actions will be selected fewer and fewer times. The agent computes the
current € value with the method get_eps(), that returns the maximum value between
€min and the currently decaying e.

The DQN algorithm relies on the technique known as experience replay (recall Deep
Q-Learning, 2.1.6). The replay memory is realized in the agent as a separate class called
ReplayMemory, that implements the replay memory buffer as a circular buffer of a fixed
size N. Each entry of this list consists in a tuple (S;, Ay, Rir1, Sii1, done), where S; is
the image of the state at time step ¢, A; is the action taken in that time step, R, is the
reward received by the environment in the successive time step, S;y1 is the image of the

state resulting from the action, and done is a flag that determines if the episode ended.

4.3. Experimental Results 5Y)

The ReplayMemory class provides two methods:

e push(item): stores the given item, in the form of the aforementioned tuple, into
the buffer. If the current size of the buffer would exceed N, instead the oldest tuple

is replaced, following a FIFO criterion.

e sample(batch_size): uniformly samples a number batch_size of tuples from the

buffer.

Each experience is obtained by the agent while interacting with the environment.
When it gathers all the components required, it calls its method remember(s,a,r,s_,d)
which stores the components into the tuple and calls the method push from the replay
memory.

The agent also offers other relevant methods:

e target_network_update(): every C updates to the neural network, it clones the

weights of the online net into the target net, as happens in [5].

e choose_action(state): takes the current state of the environment and decides
what action to perform. More specifically, it generates a random number p: if
p < €, the next action will be random. If instead p > ¢, the state is given to the
policy_net and the next action will be the greedy one with respect to the g-values

estimated by the neural network.

e update(): samples a number batch_size of experiences from the replay memory
and uses them to create the target for the neural network update. Then it computes

the loss and calls the optimizer to perform the gradient descent step.

4.3 Experimental Results

This section has the purpose of evaluating the application outlined in the previous pages,
by highlighting the results obtained by training the reinforcement learning agent on the
encrypted states from MiniGrid, with the aim of studying the impact of the encryption
step on the training performance, so that we can provide an answer the the questions
defined in Chapter 3.

For the first part of the experiments, the agent was run on the whole set of environ-
ments for N steps, starting from the 5x5 grid and scaling up to the 16x16 grid. For each

environment, the training was performed every time on a different version of encryption.

56 Chapter 4. First Case Study: MiniGrid

The first run, that acts like a baseline, was performed on the plaintext case, in which
the images of the states only undergo the preprocessing explained in Section 4.3, but not
the encryption. Then, the same training is performed once again with the deterministic
shuffle case; afterwards, the training is repeated on the ECB version and, lastly, on the
CBC version. The details of these techniques can be found in Section 4.1.3.

The first set of environments tested was the empty room environments with the fixed
starting states. Afterwards, we studied the impact of the key length and of the padding
type on the same set of environments. Lastly, we investigated the impact of a random
starting state and position on the performance of the agent.

Moreover, each training batch is performed 10 times, each run with a different random
seed. Indeed, the agent’s performance is heavily influenced by randomness. A certain set
of random actions performed during the exploration-heavy parts of the training might
help the agent to converge faster, while a different set might prevent it from converging
at all. Using a fixed seed allows us to correctly repeat the experiments, and repeating
the runs over 10 different seeds grants us some statistical stability, while also assessing

the agent’s resilience to noise.

4.3.1 Encryption Overhead

All the training runs and the time measurements reported were performed on an ASUS
Laptop with 16 GB of RAM, an Intel Core i7-6700HQ CPU on 4 cores at 2.6 GHz, and
a Nvidia GeForce GTX 960M GPU with 2GB memory.

One of the first step performed to evaluate the agent over encrypted data was to
measure the overhead caused by the encryption step during the state processing pipeline.
Since reinforcement learning is a very interactive problem, a big encryption overhead
would reduce drastically the feasibility of this approach. These results are compared
to a sample of a homomorphic encryption approach, typical of the papers discussed
in Section 2.3, such as ML Confidential [8], CryptoNets [9], and CryptoDL [11]. The
homomorphic encryption primitives are implemented in Pyfhel [75], a Python wrapper
around Microsoft SEAL.

As Figure 4.8 suggests, the encryption step for the considered cryptographic functions
does not induce a significant overhead. On the other hand, we can see that homomorphic
encryption’s time complexity, with respect to AES, is hundreds, or thousands for the
biggest state, times slower. Thus, homomorphic encryption, as of now, does not represent
a feasible encryption method for reinforcement learning problems.

Indeed, as Table 4.3 suggests, the overhead induced by the encryption step is minimal

4.3. Experimental Results 57

mode

det-shuffle

ech
10 che

Homamaorphic
107
107

5x5 Gx6 B

8 16x16

elapsed wall-clock time in seconds

env

Figure 4.8: Encryption timings in seconds.

with respect to the average full step in each environment.

4.3.2 Fixed Starting State

The first batch of experiments was run on the fixed-case variants of MiniGrid empty
rooms. The agent was trained on each map size separately four times, starting from
the plaintext case, in which the state is only padded. Then, we trained the agent again
after the deterministic shuffling of the pixels of the images; afterwards, the training was
repeated on the states encrypted with the ECB mode of AES. Lastly, the same has been
done for the CBC version of AES.

As the plots in Figure 4.9 suggest, the performance of the agent varies depending
on the size of the grid. Across all the experiments, the plaintext agent, the determin-
istic shuffle agent and the AES.ECB agent all perform fairly well. While the plaintext
serves as a baseline for the other encryption methods, the behaviour of these two agents
is explained by the determinism of their state transformation. Indeed, both in the de-

terministic shuffle and in ECB mode for each plaintext state there is one and only one

58

Chapter 4. First Case Study: MiniGrid

0.0

1.0

0.8

environment = 5x5 environment = 6x6

agent
dgn-plain
environment = 8x8 environment = 16x16 — dan-det-shuffle
—— dgn-ecb
—— dgn-cbhc
—— random

250 500 750 1000 O 250 500 750 1000
episode episode

Figure 4.9: Training results on the fixed starting state environments.

4.3. Experimental Results 29

Environment\ None \Det. Shufﬂe\ ECB \ CBC

dXD 1.00186 1.00287 1.00285 | 1.00286
6x6 1.00187 1.00287 1.00287 | 1.00286
8x8 1.00188 1.00288 1.00288 | 1.00288
16x16 1.00197 1.00297 1.00299 | 1.00298

Table 4.3: Comparison in seconds of the duration of an average full step on the environment.

ciphertext counterpart.

However, while CBC is non-deterministic, it still shows a trend of improvement over
the random baseline that only grows bigger as the size of the state increases, heavily
outperforming it in the 16x16 environment. A possible explanation of this phenomenon
lies in the nature of the environment: being the starting state fixed, it is likely that the
agent, instead of learning a state-action mapping, learns a sequence of actions that leads
it to the goal. Instead, the random baseline only acts randomly, and, since the reward
is tied to the amount of steps done before reaching the goal, it receives worse rewards as
the state gets larger. Therefore, in the next section we will repeat our experiments with

the randomized variants of the environment.

Furthermore, we also have studied the impact of both key length for the AES algo-
rithm as well as the padding type on the agent’s performance. For the inspection of the
padding procedure, we repeated the whole batch of experiments with both PKCS#7 and
our custom padding, and compared the results. The same, except for the plaintext and
deterministic shuffle cases that do not depend on a key, has been done for three different
key sizes: 32, 24, and 16 bytes.

Figure 4.10 compares the behaviour of the agent trained on the two padding tech-
niques detailed in Section 4.1.3. As we can see, the plots highlight that the specific

padding technique does not induce a significant difference.

Instead, Figure 4.11 shows the comparison of the agent’s training performance with
different key sizes, starting from the default 256 bit (solid line), then 192 (dashed line),
and 128 (dotted line). As the plots make clear, the length of the key size does not induce
any difference on the ability of the agent to learn. Indeed, while the key size does increase
the encrypted state space, the possible amount of states in our case is heavily bounded
by the limited dimensions of the images. This makes it so that the performance of the

agent is very similar regardless of the key size.

60 Chapter 4. First Case Study: MiniGrid

environment = 5x5 environment = 6x6
1.0
0.8
o 0.6
[1]
=
Lo4
0.2 agent
dgn-plain
0.0 —— dgn-det-shuffle
environment = 8x8 environment = 16x16 —— dgn-ecb
1.0 —— dgn-cbc
padding
0.8 —— custom
————— pkcs
o 0.6
©
=
04
0.2
0.0
0 250 500 750 1000 O 250 500 750 1000
episode episode

Figure 4.10: Impact of the type of padding.

4.3.3 Random Starting State

Once the analysis of the fixed starting state environments was over, we moved onto a
variant of such environments. Instead of being fixed in the top left corner every time,
the initial position and direction of the agent are randomized. This adds a layer of
randomness to the environment and it is therefore useful to assess what impact this
randomness has on the agent’s learning. Because of this, alongside the agent’s training
loop, we also added evaluations runs, executed each % frames, in which the weights
of the neural network are frozen and the agent enters in eval mode in which it solely
behaves greedily.

Therefore, the training run has been repeated with the same structure as the fixed
starting state case. The agent has been trained and evaluated on all four encryption
modalities (plaintext, shuffle, AES in ECB mode, and AES in CBC mode).

Figure 4.12 shows the training performance of the agent under the random starting

4.3. Experimental Results 61

environment = 5x5 environment = 6x6
1.0

0.0

: . agent
0 environment = 8x8 environment = 16x16 —— dgn-ecb

—— dgn-cbc

0.8

0 250 500 750 1000 O 250 500 750 1000
episode episode

Figure 4.11: Impact of the key length in the encrypted cases.

state environments. The trend shown in Figure 4.9 persists even if the position of the
agent is randomized, with the deterministic cases (plaintext, deterministic shuffle, and
ECB) performing well across all the environments, and CBC gradually distancing itself

from the random baseline.

The evaluations of the agent (Figure 4.13) in this randomized variant of MiniGrid
highlight a similar trend, with the cases with deterministic transformations all gradually
improving their performance. The only exception, however, is CBC, that despite being
able to significantly surpass the random baseline during training, is not able to generalize
in most of the environments. A possible explanation for this occurrence is that, since
CBC is non-deterministic, that is, the same plaintext does not produce the same cipher-
text, during training the agent might be biased towards some patterns in the ciphertext

that do not appear during the evaluations. This bias is very harmful where there are few

62 Chapter 4. First Case Study: MiniGrid

environment = 5x5 environment = 6x6

N

e
@©
=
Lo04
0.2
agent
00 - T dgn-plain
environment = 8x8 environment = 16x16 —— dqgn-det-shuffle
1.0 —— dgn-ecb
dgn-cbc
random

reward
(=] o o
N D o

0.0 r

0 250 500 750 1000 O 250 500 750 1000
episode episode

Figure 4.12: Training results in the random starting state environments

states, such as the smaller environments. As the number of states increases, the patterns
learnt gradually become noise, and the agent tends to align with the random agent.
This hypothesis is not entirely consistent with all the cases as, in the 8x8 environment,
the CBC agents shows to perform considerably better than the random baseline (Figure
4.13, bottom left), but it is plausible that this behaviour will even out with a bigger set

of random seeds.

Furthermore, ECB shows a decrease in performance for the 16x16 environment (Fig-
ure 4.13, bottom left) with respect to its behaviour in the other cases. We have yet
to find an explanation, but, for this case as well, more seeds might show a more stable

performance.

4.4. Summary 63

environment = 5x5 environment = 6x6

S \

1.0

reward
o o
(=] co
\x

0.4
0.2
agent
0.0 .
dgnplain
50K 100K 150K 200K 50K 100K 150K 200K
) _) _ — dgndet-shuffle
o environment = 8x8 environment = 16x16 dgnech
’ —— dgnche
random

reward
o o
(o] (0]
Q

0.4
AN
NS
0.2 / / \
0.0
50K 100K 150K 200K 250K 100K 200K 300K 400K

frames frames

Figure 4.13: Evaluation results in the random starting state environments.

4.4 Summary

In this chapter we have conducted a case study on the application of reinforcement learn-
ing to encrypted data on a simple, gridworld environment. In the first section, we have
described the experimental settings, by introducing the key aspects of the environment,
the neural network architectures and the instantiation of the state-processing function
¥(+) that we defined in Chapter 3. Then, in the second section, we have provided the
implementation details of the classes developed to carry out the algorithm. Lastly, in

the third section, we went over all the experimental results obtained.

The results that we have observed during this first case study are interesting. The
agent is able to learn as effectively with deterministic state transformations, and it shows

some traces of learning even with non-deterministic encryption methods.

Table 4.4 shows the total amount of unique states that can be encountered in each

64 Chapter 4. First Case Study: MiniGrid

Environment \ Plaintext \ Det. shuffle \ ECB \ CBC

5x5 34 34 34 | 3.40-10%
6x6 62 62 62 | 1.16- 107"
8x8 142 142 142 | 3.94-10'°
16x16 782 782 782 | 2.79-10°%

Table 4.4: Number of unique possible states in MiniGrid. In the deterministic state transfor-
mations the possible amount of unique states is bounded by the limited number of different
configurations of the environment. However, being non-deterministic, CBC is not limited to
those configurations and the possible unique states are all the pixel combinations: 256™7, where
n, is the total number of pixels of the corresponding image.

environment size and encryption type. In the deterministic transformations, being one-
to-one mappings from unprocessed states to processed states, the state space is bounded
by the possible configurations of the plaintext version, which can be computed as ng;, -
(Ngiges — 1) + 2, where ng;, is the amount of possible directions of the agent (in our case
4), nyes is the number of walkable tiles in the respective environment. The subtraction
of 1 to the tiles and addition of 2 to the result of the multiplication is done to take into
account the goal, that is on the bottom-right corner. The agent cannot start an episode
being already inside the goal, so it can only get there. Hence, when in the goal, the agent
can only be facing to the right or downwards.

Instead, non-deterministic transformations, such as CBC encryption, are not linked
to the plaintext, therefore the state space is composed by all the possible values. In our
case, since we are working with pixel intensities, the state space of CBC is given by 256",
where n,, is the total number of pixel of the plaintext image. Indeed, a random agent ex-
ploration proves that it is possible to encounter the same encrypted state numerous times
with a deterministic technique, but each state bill be unique with a non-deterministic
one. However, despite the combinatorial explosion of the state space, the very limited
amount of different configurations can lead to the emergence of some patterns in the
ciphertext, hinting the agent towards the solution, hence obtaining relatively positive
results during training, but negative results during evaluation.

In order to prove this statement, the next chapter will investigate these encryption

techniques in a different environment: LunarLander.

Chapter 5
Second Case Study: Lunar Lander

Once the analysis of MiniGrid was over, we moved our focus to a completely different
environment. By keeping the research questions of Chapter 3 in mind, we will now try
to apply the same methodology we observed for MiniGrid in Chapter 4 to a new context
and see if the agent’s achievements still hold. The environment, named Lunar Lander, is
one of the classic OpenAl Gym benchmarks. As opposed to the simplicity of MiniGrid,
the task behind LunarLander is more difficult, as it involves the control of a lunar module
in a continuous environment, hence it represents a much more complex control problem
on which to test our agent, comparing the differences in performance between continuous
and discrete state spaces.

This chapter will closely follow the structure of the previous one. The first section
will deal with the experimental settings of this portion of work, starting from the en-
vironment, then describing the new processing and encryption pipeline (-), the neural
network architecture and the hyperparameters.

The second section will instead undertake the task of explaining the specialized class
and methods developed, starting from the initial structure, for this new task, with par-
ticular focus on the new state processing techniques.

The third and last section, finally, will list and detail the experimental results obtained

by our agent in the new environment.

5.1 Experimental Settings

The second part of our work focused on the application of the agent to a different
environment. While MiniGrid was a discrete navigation environment, Lunar Lander is a

continuous control task based on the Box2D physics engine and comes from the collection

65

66 Chapter 5. Second Case Study: Lunar Lander

of standard benchmarks offered by OpenAl Gym.

Figure 5.1: Screenshot of the LunarLander environment. The agent controls the purple lunar
module and it has the task of landing it onto the landing pad on the ground, delimited by the
yellow flags.

5.1.1 Lunar Lander

In this environment the agent controls a lunar module and has the task of landing it safely
onto the landing pad on the ground. The landing pad is always situated at coordinates
(0,0) and, as such, is the origin of the coordinate system of the environment; furthermore,

it is always a flat region delimited by two yellow flags.

Observations

The default state space of LunarLander is continuous and consists in a 8-dimensional

vector of unbounded floating point values,
(xvyvvx7vy707w7llvl7“) (51)

where:
e 1,y are the coordinates of the lander with respect to the landing pad;
e v,, v, are the horizontal and vertical velocities;
e () is the angle of the lander with respect to the ground;

e w is the angular velocity of the lander;

5.1. Experimental Settings 67

e [, 1, are boolean flags (encoded as floats) that are set to 1 if the corresponding leg
of the lander is making ground contact.
Action Space

The action space of the environment is discrete and is composed by 4 actions, all related

to the lander engine. The complete action space is listed in Table 5.1.

Number \ Action
0 Do nothing
1 Fire left engine
2 Fire main engine
3 Fire right engine

Table 5.1: Action space of Lunar Lander.

Reward

The reward from moving from the top of the screen, which is the initial state, towards
the landing pad is in the interval [100, 140], depending on the distance of the lander with
respect to the pad. If the lander crashes or lands, a bonus —100 or +100 is assigned
respectively and the episode ends. The episode also ends if the lander moves too far
away from the pad. A further +10 bonus is added for each of the legs that make ground
contact. Fuel is infinite, but for each frame passed firing the main engine, a —0.3 penalty

is assigned to the overall score.

5.1.2 State Processing

While with MiniGrid we focused on images, for Lunar Lander we will, instead, leverage
the default Box object returned by OpenAl Gym. The state is composed by 8 features,
each expressed by a 32-bit floating point number. However, since after the encryption the
states become essentially noise, the byte-to-float conversion prior to the neural network
led to very high or very low numbers, hence causing an overflow in the forward pass of
the neural network resulting in NaN losses and g-values.

For this reason, the state preprocessing function ¢(-) consists in the discretization
and binning of the continuous components of the state. By studying the environment we
have found some empirical ranges in which the variables are likely to be observed during
the episodes, and used them to perform a 256-bin discretization of the state. The ranges

used for the discretization are listed in Table 5.2.

68 Chapter 5. Second Case Study: Lunar Lander

Variable \ Interval

. [—1.5,1.5]
Y [0, 1.5]
Vs [~5.0,5.0]
vy [—5.0,5.0]
0 [-6.0,6.0]
w [~5.0,5.0]

Table 5.2: Discretization intervals of the continuous variables of the state.

5.1.3 Encryption

After the preprocessing function ¢(-), the next component is the encryption primitive
Enc(-). As in the previous case study on MiniGrid, the primitives involved in the trans-
formations are the same, with the exception of the deterministic shuffling. Indeed, since
we are no longer working with images, and as such pixels, but now the state is composed
by continuous, descriptive variables, there is no spatial correlation between the values
of the state, and deterministic shuffle would only change their order within the array
itself with no impact on the agent; hence, we decided to not include it in the following
experiments.

However, the method followed for the training of the agent remains unchanged. It
is first trained on the plaintext version, then on the ECB mode of AES, and, lastly, on
the CBC mode of AES, with the keys randomly generated before each run, and, for the

CBC case, the IV is randomly reinitialized before each encryption step.

Padding

Given that the encryption primitives are based on AES, which is a block cipher, there
still is the need of making the state reach a multiple of the nominal 16 bytes of the block
size. Since the preprocessing function ¢(-) discretizes the state in 256 bins, the values
of the processed states can be represented by 8-bit integers, therefore occupying a single
byte each.

Hence, the full state size after preprocessing is stored in a 8-byte long array. The
padding step before the encryption has the task of adding bytes to this representation to
reach the minimal length of 16. However, as mentioned above, the variables of the state
do not have any correlation between each other in terms of their spatial distribution
within the array itself; because of this, the quickest and more reliable way to pad this
data is to employ the standard PKCS#7 padding, that will add & — (I mod k) bytes,
with value k£ — (I mod k), where k is the block size and [is the length of the message, at

5.2. Implementation 69

the trailing end of the state. In our case, the result of this operation will be a padding
tail of 8 bytes, each with the value 8.

5.1.4 Neural Network Architecture

For this case, since there is no spatial information in the state of the environment, the
ANN features a fully connected architecture. This means that each unit in each neural
network layer is connected to all the units of the subsequent layer. The first layer, also
known as input layer, consists of 16 units, which corresponds to the size of the array of
features that are being given as state. Afterwards, the data is passed forward through
three 128-unit hidden layers and, lastly, a 4-unit output layer, where the number of nodes
is equal to the cardinality of the set of actions |.A(S;)|. The activation functions for all
the hidden layers are ReL Us.

The architecture has been found empirically, and its big size is contrasting to the
relatively small scale ANNs that are typically employed for the solution of similar tasks.
However, the reason for it lies in the discretization step, that makes the control of the
agent much more coarse-grained with respect to its non-processed, continuous counter-
part, hence making the task harder. Indeed, we have found that, with fewer hidden
layers, the agent was not able to learn at all. Its performance slowly improved with
more complex network, up to the three hidden layers with 128 units each used in these

experiments.

5.1.5 Hyperparameters

The set of hyperparameters used for the execution of the experiments is only one and it
is kept consistent across encryption types to provide a better comparison. The full set

of values is listed in Table 5.3

5.2 Implementation

Considering the experimental setup we have just reviewed, this part of the project that
focuses on Lunar Lander reuses all of the components we have introduced for the first case
study in Section 4.2, as thye were designed to be general purpose. The only exception
is the environment wrapper LunarWrapper, which, for this environment, features some

minor changes.

70 Chapter 5. Second Case Study: Lunar Lander

Parameter \ Value
N steps 5-10°
Learning rate | 5-1074
Memory size D | 2-10°
Batch size 128
e-decay 0.99
€-max 1
e-min 0.01
0 0.99
C 200

Table 5.3: Hyperparameters for LunarLander.

In particular, since we are no longer working with images, but with monodimensional
arrays of values, the state transformations are not operated by a standalone class, but
are carried out by the specialized wrapper itself on the go with a new method called
discretize. This function, called within the transform method, takes as input a
variable, an interval and the total amount of desired bins n_bins, and returns the
integer value of the binned variable, that is, the index of the bin under which the measure
falls into. The discretization operated by discretize is the realization of the prepro-
cessing function ¢(+) outlined in Section 5.1.2, and it plays a key part in preventing the
overflowing of the neural network during forward passes.

However, the other components of the project remain unchanged, hence their imple-

mentation details can be found in Section 4.2.

5.3 Experimental Results

In this section we will evaluate our agent on the LunarLander environment. The purpose
of this evaluation is to compare the results obtained by the agent in the previous case
study and to see if the agent is able to obtain similar results.

The experiments will train the agent on the LunarLander environment, under the
state transformation function (-) illustrated in the sections above. The training is
repeated, separately, with the plaintext case, then with AES in ECB mode, and lastly
with AES in CBC mode. Furthermore, after every % frames, the weights of the agent’s
neural network will be frozen and an evaluation will start, in which the agent will behave
purely greedily for 100 episodes, to assess the current state of the learning. Each train-
evaluation loop is then repeated 10 times, with different seeds, to ensure some statistical

stability and to favor repeatability.

5.4. Summary 71

0 agent
0 dgn-plain
-100 — random
-200 — — —— dqn-ech
-200
o <) —— dgn-cbc
© ©
-400 =
5 agent g 300
800 dgn-plain 400
—— random
—— dgn-ech 500
800 —— dgn-cbc
-600
0 500 1000 1500 2000 2500 3000 100000 200000 300000 400000 500000
episode frames
(a) Training (b) Evaluation

Figure 5.2: Performance of the agent in the LunarLander environment.

While not ever converging, Figure 5.2a shows that the plaintext version is able to start
improving its behaviour during the first part of the training, considerably outperforming
the random agent before drastically diverging. On the other hand, the encrypted versions
are not able to learn at all and perform worse than the random baseline.

Regarding the plaintext case, it is likely that with a deeper search of the hyperaram-
eter space and of the discretization space the agent will improve its performance and
stabilize its behaviour. For example, the total amount of bins of the discretization step
can be increased in order to give the agent better fine-grained control. However, the

same cannot be stated for the encrypted versions, given their very large state space.

5.4 Summary

In this chapter we have conducted a second case study on the application of reinforcement
learning to encrypted states on a more complex environment. In the first section, we
have defined the experimental setup by detailing the core aspects of the environment, the
state processing function () and the network architecture. In the second part we have
focused on the implementation of the new state processing pipeline, with all the other
components of the project being untouched given their general-purpose design. Lastly,
in the third section, we have listed the experimental results on our study.

The results obtained in this second environment are consistent with the statement
made in Section 4.4.

Indeed, as opposed to MiniGrid, the state space in this case is exponentially larger for

the plaintext and ECB versions. The original state of Lunar Lander (see Section 5.1.1)

72 Chapter 5. Second Case Study: Lunar Lander

Plaintext | ECB | CBC
1.12-10% [1.12-10" [3.40- 10%

Table 5.4: Number of unique possible states in LunarLander. In this case, the state space of
the plaintext and ECB versions is much larger: it is given by all the possible bin combinations
of the state. The state space of CBC, instead, is smaller, since the size of the state is smaller
with respect to MiniGrid images.

is composed by six continuous variables and two boolean flags. After the processing
function ¢(-), the continuous parts of the state are discretized in 256 bins, meaning
that each variable can now be one of 256 distinct values. Instead, the boolean flags are
already discrete, and can only be one of two values, either 0 or 1. Therefore, the amount
of possible unique states is now given by 256° - 2 - 2 in the deterministic cases (6 binned
variables and 2 boolean flags). For CBC, instead, since its non-determinism makes it
unrelated to the configurations of the state, the state space is given by all the possible
combinations of values. After ¢(-), each variable is represented by an 8-bit integer, which
represents a number within [0, 256, and, after padding, there are 16 bytes in the state,
hence 2561°.

The poor performance of the agent in the encrypted versions might be explained by
the correlation of the variables of the state. Despite being deterministic, ECB can break
these correlations, or create new ones that are harder to identify. Furthermore, even with
a smaller state space in CBC with respect to MiniGrid, the agent does not show any sign
of improvement during training. This is likely due to the environment: while MiniGrid
had very few possible configurations, the very large state spaces of the plaintext show

that it is not possible for the agent to reliably find a pattern in the noisy data.

Chapter 6

Conclusions

6.1 Contributions

The purpose of this work was to assess the feasibility of the approach of applying rein-
forcement learning to encrypted states. We have therefore identified three key research
questions in Chapter 3 from which the project started. In order to provide an answer to

these questions, we have:

e Extended the Markov Decision Process framework so as to include encrypted states,

by revisiting the core concepts of reinforcement learning under this assumption;
e Applied this revisitation to the DQN algorithm;

e Defined a set of functions for the preprocessing in order to prepare the states for

the encryption step;

e Defined multiple padding techniques and encryption primitives to carry out the

experiments;

e Presented two case studies in which we have applied our algorithm to different
environments and studied the impact of the transformations on the ability to learn

of the agent.

Overall, from the studies directed on our application of the agent to encrypted states, it

emerged that:

e [t is feasible to apply reinforcement learning on encrypted data in certain scenarios
while still maintaining a relatively high performance of the agent. These scenarios,

specifically, are those whose state spaces are small, as demonstrated in Section 4.3.

73

74

Conclusions

In particular, deterministic encryption mechanisms in these scenarios do not hinder
the agent’s learning, and also non-deterministic procedures show signs of learning
(Section 4.3.2). However, adding randomness to these environments hurts the
generalization ability of the agent in case on non-deterministic encryption methods

(Section 4.3.3).

In more complex scenarios where the state spaces are large, instead, the application
of the encryption step to the state leads to a complete collapse of the performance

of the agent and to the divergence of the algortihms (Section 5.3).

The encryption overhead for standard block ciphers and block modes is negligible
with respect to the rest of the standard reinforcement learning loop, whereas homo-
morphic encryption turned out to be too expensive in this context, as demonstrated
in Section 4.3.1.

The length of the key for the encryption primitive has no impact as long as the
space of possible ciphertexts is larger than the space of unique states, and the
specific type of padding employed also makes little difference, as shown in Section
4.3.2.

6.2 Limitations

The work conducted in this dissertation, however, presents some limitations, especially

regarding time limits.

e The amount of random seeds used for the experiments does not guarantee stability,

hence, repeating them with more seeds could improve the statistical confidence of

the results.

e Particularly for the second case study, time constraints have prevented a deeper

exploration of state processing schemes and hyperparameters.

6.3 Future Work

Regardless of the results achieved, however, the research on the application of reinforce-

ment learning to encrypted states is far from over, and we can identify several direction

in which to steer future further investigations, all interesting in perspective:

6.4. Implications 75

e Some other state-of-the-art reinforcement learning techniques might give more in-
sights on the matter. For example, policy gradient methods, which do no work
by the estimation on g-values, might behave differently in presence of encrypted

states.

e In complex environments with large state spaces there is the need of exploring
different encryption mechanisms in order to preserve the reward structure so that

learning can still take place.

6.4 Implications

The results shown above are indeed interesting, but the mechanics of reinforcement
learning over encrypted data are not well understood yet. While a successful application
of these techniques would lead the way to numerous use cases and scenarios and allow
us to decouple the agent from the environment, and despite the experiments showing
that our approach tends to work consistently well with limited state spaces and small
problems, large state spaces tend to prevent the agent from learning. Indeed, more
investigation is still needed to better understand the underlying causes that led to the

emersion of such behavior before this method can be reliably used in the real world.

76

Conclusions

Bibliography

[1]

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore
Graepel, and Demis Hassabis. Mastering the game of Go with Deep Neural Networks
and Tree Search. Nature, 529(7587):484-489, January 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. Mastering the game of Go without human
knowledge. Nature, 550:354—, October 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play. Science,
362(6419):1140-1144, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari With Deep
Reinforcement Learning. In NIPS Deep Learning Workshop. 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, He-
len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 518(7540):529—
533, 02 2015.

7

78

Bibliography

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Daniel Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David
Silver. Rainbow: Combining Improvements in Deep Reinforcement Learning. CoRR,
abs/1710.02298, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal Policy Optimization Algorithms. CoRR, abs/1707.06347, 2017.

Thore Graepel, Kristin Lauter, and Michael Naehrig. ML Confidential: Machine
Learning on Encrypted Data. In Proceedings of the 15th International Conference
on Information Security and Cryptology, ICISC’12, page 1-21, Berlin, Heidelberg,
2012. Springer-Verlag.

Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. CryptoNets: Applying Neural Networks to Encrypted Data
with High Throughput and Accuracy. Technical Report MSR-TR-2016-3, February
2016.

Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel, and
Emmanuel Prouff. Privacy-Preserving Classification on Deep Neural Network. Cryp-
tology ePrint Archive, Report 2017/035, 2017. https://eprint.iacr.org/2017/
035.

Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. CryptoDL: Deep Neural
Networks over Encrypted Data. CoRR, abs/1711.05189, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization. CoRR,
abs/1611.03530, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. OpenAl Gym, 2016.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, Cambridge, MA, USA, 2018.

Edward L. Thorndike. Animal Intelligence. 1911.

Richard E. Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, 1957.

https://eprint.iacr.org/2017/035
https://eprint.iacr.org/2017/035

Bibliography 79

[17]

[20]

[21]

[22]

[23]

[27]

28]

Richard E. Bellman. A Markovian Decision Process. Journal of Mathematics and

Mechanics, 6(5):679-684, 1957.

Gerald Tesauro. Practical issues in temporal difference learning. Machine Learning,
8(3-4):257-277, 1992.

Gerald Tesauro. TD-Gammon, a self-teaching backgammon program, achieves
master-level play. Neural Computation, 6(2):215-219, 1994.

Gerald Tesauro. Temporal difference lerning and TD-Gammon. Communications
of the ACM, 38(3):58-68, 1995.

Gerald Tesauro. Programming backgammon using self-teaching neural nets. Artifi-
cial Intelligence, 134(1-2):181-199, 2002.

Rémi Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In Proceedings of the 5th International Conference on Computers and

Games, CG’06, page 72-83, Berlin, Heidelberg, 2006. Springer-Verlag.

Levente Kocsis and Csaba Szepesvari. Bandit Based Monte-Carlo Planning. In
Johannes Fiirnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, Machine
Learning: ECML 2006, pages 282293, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards. PhD
thesis, King’s College, Cambridge, UK, May 1989.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT
Press, 2016.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intel-
ligence Research, 47:253-279, jun 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification with
deep convolutional neural networks. Neural Information Processing Systems, 25, 01
2012.

Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala, and Yann LeCun.
Pedestrian Detection with Unsupervised Multi-Stage Feature Learning. CoRR,
abs/1212.0142, 2012.

80

Bibliography

[29]

[30]

[31]

[32]

Li Deng, Alex Acero, George Dahl, and Dong Yu. Context-Dependent Pre-trained
Deep Neural Networks for Large Vocabulary Speech Recognition. In IEEE Transac-
tions on Audio, Speech, and Language Processing, volume 20, pages 30-42, January
2012. TEEE SPS 2013 best paper award.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 6645-6649, 2013.

Martin Riedmiller. Neural Fitted Q Iteration — First Experiences with a Data
Efficient Neural Reinforcement Learning Method. In Joao Gama, Rui Camacho,
Pavel B. Brazdil, Alipio Mério Jorge, and Luis Torgo, editors, Machine Learning:
ECML 2005, pages 317-328, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation
learning: the RPROP algorithm. In [EFEE International Conference on Neural
Networks, pages 586-591 vol.1, 1993.

Long-Ji Lin. Reinforcement Learning for Robots Using Neural Networks. PhD thesis,
USA, 1992. UMI Order No. GAX93-22750.

OpenAl Gym. https://gym.openai.com/.

OpenAl Gym documentation. https://gym.openai.com/docs.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-
Scale Hierarchical Image Database. In CVPR09, 2009.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic Gridworld
Environment for OpenAl Gym. https://github.com/maximecb/gym-minigrid,
2018.

Mihir Bellare and Phillip Rogway. Introduction to Modern Cryptography. University
of California, 2005.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chap-
man and Hall/CRC Press, 2007.

Burt Kaliski. PKCS #7: Cryptographic Message Syntax Version 1.5. RFC 2315,
March 1998.

https://gym.openai.com/
https://gym.openai.com/docs
https://github.com/maximecb/gym-minigrid

Bibliography 81

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[49]

[50]

Larry Ewing. https://isc.tamu.edu/~lewing/linux/. Created with The GIMP.

Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the Advanced
Encryption Standard. Springer-Verlag, 2002.

Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity, 2009. crypto.stanford.edu/craig.

R L Rivest, L Adleman, and M L Dertouzos. On Data Banks and Privacy Homo-
morphisms. Foundations of Secure Computation, Academia Press, pages 169179,
1978.

Nigel P. Smart and Frederik Vercauteren. Fully Homomorphic Encryption with Rel-
atively Small Key and Ciphertext Sizes. In Public Key Cryptography - PKC' 2010,
18th International Conference on Practice and Theory in Public Key Cryptogra-
phy, Paris, France, May 26-28, 2010. Proceedings, volume 6056 of Lecture Notes in
Computer Science, pages 420-443. Springer, 2010.

Zvika Brakerski and Vinod Vaikuntanathan. Fully Homomorphic Encryption from
Ring-LWE and Security for Key Dependent Messages. In Phillip Rogaway, edi-
tor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 505-524.
Springer, 2011.

Craig Gentry, Shai Halevi, and Nigel P. Smart. Better Bootstrapping in Fully Ho-
momorphic Encryption. In Marc Fischlin, Johannes Buchmann, and Mark Manulis,
editors, Public Key Cryptography — PKC' 2012, pages 1-16, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic Evaluation of the
AES Circuit. In Advances in Cryptology - Crypto 2012, volume 7417 of Lecture
Notes in Computer Science, pages 850-867. Springer, 2012.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully Homo-
morphic Encryption without Bootstrapping. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ITCS ’12, page 309-325, New York,
NY, USA, 2012. Association for Computing Machinery.

Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances

https://isc.tamu.edu/~lewing/linux/
crypto.stanford.edu/craig

82

Bibliography

[51]

[52]

[54]

[55]

[56]

[57]

[58]

[59]

i Cryptology — CRYPTO 2012, pages 868-886, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November
2020. Microsoft Research, Redmond, WA.

Junfeng Fan and F. Vercauteren. Somewhat Practical Fully Homomorphic Encryp-
tion. TACR Cryptol. ePrint Arch., 2012:144, 2012.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic En-
cryption for Arithmetic of Approximate Numbers. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology — ASIACRYPT 2017, pages 409-437, Cham,
2017. Springer International Publishing.

R. A. Fisher. The Use of Multiple Measurements in Taxonomic Problems. Annals
of Eugenics, 7(7):179-188, 1936.

A. Frank and A. Asuncion. UCI machine learning repository. http://archive.
ics.uci.edu/ml, 2010.

Joppe Bos, Kristin Lauter, and Michael Naehrig. Private Predictive Analysis on
Encrypted Medical Data. Technical Report MSR-TR-2013-81, September 2013.

Raphael Bost, Raluca Popa, Stephen Tu, and Shafi Goldwasser. Machine Learning
Classification over Encrypted Data. 01 2015.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift. In Francis Bach and David
Blei, editors, Proceedings of the 32nd International Conference on Machine Learn-
ing, volume 37 of Proceedings of Machine Learning Research, pages 448-456, Lille,
France, 07-09 Jul 2015. PMLR.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s

thesis, University of Toronto, Department of Computer Science, 20009.

L. T. Phong, Y. Aono, T. Hayashi, . Wang, and S. Moriai. Privacy-Preserving
Deep Learning via Additively Homomorphic Encryption. IEEE Transactions on
Information Forensics and Security, 13(5):1333-1345, 2018.

https://github.com/Microsoft/SEAL
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Bibliography 83

[62]

[63]

[64]

[65]

[66]

[69]

[70]
[71]

[72]

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan,
John Schulman, Filip De Turck, and Pieter Abbeel. #Exploration: A Study of
Count-Based Exploration for Deep Reinforcement Learning. CoRR, abs/1611.04717,
2016.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Bench-
marking Deep Reinforcement Learning for Continuous Control. In Maria Florina
Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International

Conference on Machine Learning, volume 48 of Proceedings of Machine Learning

Research, pages 1329-1338, New York, New York, USA, 20-22 Jun 2016. PMLR.

Connor Shorten and Taghi Khoshgoftaar. A survey on Image Data Augmentation
for Deep Learning. Journal of Big Data, 6, 07 2019.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. In Proceedings of the IEEFE, pages 2278~
2324, 1998.

Karl Cobbe, Oleg Klimov, Chris Hesse, Tachoon Kim, and John Schulman. Quanti-
fying Generalization in Reinforcement Learning. In Kamalika Chaudhuri and Rus-
lan Salakhutdinov, editors, Proceedings of the 36th International Conference on

Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
1282-1289. PMLR, 09-15 Jun 2019.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network Randomization: A

Simple Technique for Generalization in Deep Reinforcement Learning, 2020.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image Augmentation Is All You
Need: Regularizing Deep Reinforcement Learning from Pixels. In International

Conference on Learning Representations, 2021.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind

Srinivas. Reinforcement Learning with Augmented Data, 2020.
Alexander Lenail. NN-SVG. http://alexlenail .me/NN-SVG/index.html.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

OpenCV colour conversion. https://docs.opencv.org/master/de/d25/imgproc_

color_conversions.html#color_convert_rgb_gray.

http://alexlenail.me/NN-SVG/index.html
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html#color_convert_rgb_gray
https://docs.opencv.org/master/de/d25/imgproc_color_conversions.html#color_convert_rgb_gray

84 Bibliography

[73] Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

International Conference on Learning Representations, 12 2014.

[74] Aurelien Geron. Hands-on machine learning with Scikit-Learn and TensorFlow :
concepts, tools, and techniques to build intelligent systems. O’Reilly Media, Se-
bastopol, CA, 2017.

[75] Alberto Ibarrondo, Melek Onen, and Laurent Gomez. Pyfhel: Python for homo-
morphic encryption libraries. https://github.com/ibarrond/Pyfhel, 2017.

https://github.com/ibarrond/Pyfhel

Acknowledgements

With this work ends a long, yet incredibly rewarding, journey that I am so glad I started.
This dissertation, in a way, represents the fitting conclusion of this chapter of my life. So,
I would like to spend the last few words of this document to mention all the people that
played a role in this achievement, both during my dissertation and during the period of
my studies.

First of all, I would like to thank prof. Mirco Musolesi and prof. Rebecca Montanari
for making this project possible in the first place. You allowed me to work on what
I consider two of my main interests simultaneously, and introduced me to the world of
research, enabling a period of incredible personal and professional growth that I probably
would not have taken myself.

Secondly, I would like to thank Victor and Alessandro for being able to deal with my
(multiple) mental breakdowns with a smile, and for always assisting and supporting me
in the greatest way possible. You are good friends to me before supervisors, and I am
glad you were with me during this journey.

I would also like to spend some words on my closest friends that have been with me
throughout these grim times. Thank you, Riccardo, for the Castelline nights; Alessandro,
for the still-to-be-done photography plans; Nicola, for the endless stream of memes;
Federico, Giada, Giovanni, Foglia, Luca, Sula, for turning many of these dull lockdown
nights into good times. All of you managed to make this period of distancing feel much
warmer.

Lastly, but most importantly, I would like to thank my girlfriend Paola. These times
have been incredibly hard, I suffered the loss of a loved one, I faced familiar problems,
but you were always there by my side to support me, always pushing out the best version

of me in every situation. Without you I never would have made it this far. I love you!

Thanks to everyone, from the bottom of my heart.

85

	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Overview
	Contributions
	Structure of the Thesis

	Background
	Reinforcement Learning
	Brief History of Reinforcement Learning
	Elements of Reinforcement Learning
	Finite Markov Decision Processes
	Monte Carlo Methods
	Temporal Difference
	Value Function Approximation
	OpenAI Gym

	Cryptography
	Symmetric-key Setting
	Modes of Operation
	AES - The Advanced Encryption Standard
	Homomorphic Encryption

	Related Work
	Machine Learning with Encrypted Datasets
	State Manipulation in Reinforcement Learning

	Summary

	Approach
	Reinforcement Learning over Encrypted Data
	Purpose
	Research Questions

	The Algorithm
	Summary

	First Case Study: MiniGrid
	Experimental Settings
	MiniGrid
	State Preprocessing
	Encryption
	Neural Network Architecture
	Hyperparameters

	Implementation
	Environment Wrapper
	Image Processing
	Encryption
	Padding
	Agent

	Experimental Results
	Encryption Overhead
	Fixed Starting State
	Random Starting State

	Summary

	Second Case Study: Lunar Lander
	Experimental Settings
	Lunar Lander
	State Processing
	Encryption
	Neural Network Architecture
	Hyperparameters

	Implementation
	Experimental Results
	Summary

	Conclusions
	Contributions
	Limitations
	Future Work
	Implications

	Bibliography

