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Abstract

Teleparallel equivalent of General Relativity (TEGR) is an alternative theory of gravity
that describes gravitational interactions only in terms of spacetime torsion instead of
curvature. This theory can also be nicely formulated as a gauge theory for the translation
group. TEGR, as the name suggests, is believed to be equivalent to General Relativity
(GR) since their corresponding actions are equal up to a boundary term B, which does
not contribute to the equations of motion.

Even though TEGR and GR are dynamically equivalent, boundary terms do affect
black hole thermodynamics. For this reason, one could expect to obtain different results,
if compared to GR, concerning BH thermodynamics in TEGR. However, at least at
the leading order, this turns out not to be the case. Indeed, in this work we compute
entropy and energy of the Teleparallel equivalent of a Schwarzschild BH, and we find
that these values agree with those obtained in GR. Also, we construct the TEGR analog
of the Landau-Lifshitz energy-momentum pseudo-tensor, from which we obtain the total
conserved energy of Teleparallel Schwarzschild BH. This allows us to confirm the previous
results, reinforcing the equivalence of black hole thermodynamics in GR and TEGR at
the leading order.

Upon quantization, however, higher-order terms are expected to show up and spoil
this equivalence. Thus, we study as well one-loop corrections to the partition function.
To this purpose, we employed heat kernel methods to calculate the one-loop divergences
of the effective action of a scalar field minimally coupled to gravity in TEGR. We find
that these divergences are the same as what one obtains in GR. Then, we give some hints
on the analogous calculations for the gravitational sector of the theory. In particular,
we find out the second-order differential operator relevant for the heat kernel method
and we present a simple argument that seems to indicate that the one-loop divergences
of quantum TEGR are the same as in quantum GR too. However, there is a possible
shortcoming concerning 1-loop corrections, discussed in the conclusions, since the needed
counterterms are not expected to have all the symmetries of TEGR.



"L’occhio non vede cose ma figure di cose che significano altre cose."
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Chapter 1

Introduction

Boundaries and boundary terms are very important in many areas of physics. In classi-
cal electrostatic, for example, a fundamental problem is to find the arrangement of the
potential in a given disposition of conductors. The study of this problem is equivalent to
find the solution of the Laplace equation in a space with boundaries, which are given by
the conductors’ surfaces. Another well-known example is the Casimir effect in quantum
electrodynamics. In the simplest situation, the Casimir effect, which essentially is quan-
tum, consists of an attractive force proportional to a−4, where a is the distance between
two conducting parallel plates of characteristic length L such that a� L.

In this work, we focus on a further area in which boundary terms play a dominant role,
namely BH thermodynamics from path integrals [1–4]. Let us briefly discuss why this is
the case. In the path integral approach, the partition function at the leading order is given
by the classical action, which gives the semiclassical approximation to the path integral.
Studying BH thermodynamics, however, it is found that the action is usually divergent.
The most common strategy to cure this divergence has been developed by Gibbons and
Hawking in [3]. It consists of cutting the spacetime at some fixed distance r from the
BH, add a suitable counterterm, and send r back to infinity. Thus, we have to work
with a spacetime with boundary. In presence of such a boundary, we need to add to the
familiar Einstein-Hilbert action a boundary term, called Gibbons-Hawking-York (GHY)
boundary term. Concisely, this is because the Einstein-Hilbert action contains second-
order derivatives of the metric and the presence of the GHY term in the action ensures
the existence of a well-defined variational principle, i.e., a variation of this total action
yields the correct Einstein equations. Consider now a Schwarzschild BH, the system that
we will focus on during the thesis. For a Schwarzschild BH, Einstein equations set the
Einstein-Hilbert action to zero and, then, the action is completely determined by the
GHY term. Therefore, BH thermodynamics provides as well a very good physical reason
to introduce the GHY term. Indeed, without considering it, we would obtain that the
partition function is identically zero.

In this thesis, we deal with the thermodynamics of a Teleparallel Schwarzschild BH,
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i.e., the Teleparallel equivalent of a Schwarzschild BH. Teleperallel Equivalent of General
Relativity (TEGR) is a gauge theory for the translation group [5–9]. Because of the
properties of this gauge group, TEGR will differ in many ways from standard gauge
theories. The main difference is the presence of a tetrad field, which, among other things,
ensures the presence of torsion, which turns out to be the field strength of the theory.
Indeed, TEGR describes gravity in terms of torsion instead of curvature. We stress
also that in many theories of gravity including torsion (e.g., Einstein-Cartan theory)
curvature and torsion represent different gravitational degrees of freedom. In TEGR,
instead, they are related to the same degrees of freedom. We notice that this fact, among
the torsional modified theories of gravity, points in favor of TEGR. Indeed, so far, there
is no experimental evidence for new physics associated with torsion. Furthermore, from
the point of view of TEGR, torsion does not geometrize gravitational interactions. In this
theory, test particles do not follow geodesics, but force equations in which torsion appears
in the right-hand side of the equation of motion of a free particle, similarly to the Lorentz
force in electromagnetism. Thus, although torsion has a precise geometrical meaning, it
seems irrelevant for the teleparallel description of the gravitational interactions. TEGR
offers also some advantages if compared to GR. For example, in TEGR it is possible
to split gravity and inertia. Indeed, in this theory gravity is described by a gauge
potential while inertial effects are described by the spin connection. For this reason, as
we will see, it seems possible in this theory to construct a genuine energy-momentum
tensor for the gravitational field. Besides, TEGR can be formulated without the weak
equivalence principle [6]. Since the equivalence and the uncertainty principles seem to
be in contradiction, TEGR could provide a better framework than GR to deal with the
inconsistencies between Quantum Mechanics and gravity.

In the TEGR community, Teleparallel Gravity and GR are usually considered to be
fully equivalent because their actions differ by a boundary term B. This implies that
the two theories are dynamically equivalent, i.e., they have the same equations of mo-
tion. However, little attention is often paid to the TEGR boundary term B, which,
though, should have an impact on BH thermodynamics in the context of Teleparallel
Gravity. Moreover, it seems probable, at least in principle, that the boundary term B
could lead to a modification of BH entropy and energy, spoiling the equivalence between
the two theories. For these reasons, it is worth studying BH thermodynamics in TEGR.
Although somewhat unexpected, we have found that, at the semiclassical level, BH ther-
modynamics in TEGR and GR are precisely the same. This turned out to be, as we will
show later, because the TEGR boundary term B is found to be equal to the GHY term.
After quantization, however, higher-order terms show up in the partition function, which
in principle could spoil this equivalence. This leads us to consider one-loop corrections
to the path integral, which, physically, can be thought of as the contribution of thermal
graviton and matter quanta to the free energy.

Quantum gravity is one of the major open problems of modern theoretical physics.
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Many attempts have been made to overcome this problem but it is out of our scope to
give a detailed review of all these efforts. For this work we are interested in a quite
conservative approach to quantum gravity, that is to apply effective field theory (EFT)
methods to gravity using the standard definition of effective action. In this framework,
however, we did not construct the effective action (EA) from first principles. Instead we
just employed heat kernel methods to study the divergent part of the one-loop EA [10–14].
Indeed, this is much easier since the heat kernel method, combined with the background
field formalism, provides a simple algorithm to compute such divergences starting only
with the knowledge of the quadratic action in the quantum fields.

The thesis is organized as follows. In Chapter 2, we give the basics of TEGR. In
particular, we provide some fundamental theoretical tools as the tetrad formulation,
Lorentz connection, and the definitions of its curvature and torsion. Then, we con-
struct TEGR gauging translations, presenting covariant derivatives, the field strength,
the construction of the TEGR Lagrangian, and the field equations. Thereafter, we show
some known results in the TEGR literature that will be useful in the following chap-
ters, like the TEGR gravitational coupling and a proposal for a genuine gravitational
energy-momentum tensor.

Chapter 3 is devoted to recalling some general results which we will employ later. In
particular, we recall the introduction of the GHY term and the computations of energy
and entropy from the path integral for a Schwarzschild BH in GR. Next, we describe the
basics of the heat kernel theory presenting the algorithm for the one-loop divergences
for a quite general class of second-order differential operators. More in detail, the most
general operator that we will consider has the form −gµν∇µ∇ν + E, where the covariant
derivative contains both the Levi-Civita and the gauge connection and E is known as
"potential term". This class of operators, which contains second-order derivatives in the
form of a D’Alambertian, are known in the literature as minimal operators.

In Chapter 4, we present our results about BH thermodynamics in TEGR. In par-
ticular, we start showing that the TEGR boundary term B is equal to the GHY. Next,
we present the TEGR analog of the calculations of energy and entropy of a Teleparal-
lel Schwarzschild BH. Moreove, we discuss an alternative way to regularize the action
which makes use of the TEGR spin connection. Thereafter, we show a different ap-
proach to obtain the same values of energy and entropy. Fundamentally, we use an
analogy between the Landau-Lifshitz energy-momentum pseudo-tensor and the TEGR
equations of motion to obtain the energy E as a conserved charge of a suitable current.
Within this approach, we obtain for the energy the same value as before. Using our
result for the energy E, we naïvely construct the first law of BH mechanics in the form
TdS = dE + σdA, where, following reference [6], σ = −∂E/∂A is a "surface" pressure
defined in analogy with the ordinary pressure. From this equation, then, we obtain the
entropy, which turns out to be given again by the same value as in the previous case.
Thus, this approach strengthens the GR-TEGR equivalence in BH thermodynamics at
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the leading order. The last part of the Chapter is devoted to one-loop corrections to the
partition function. In particular, we will start by considering the divergences at one-loop
coming from the quantization of a scalar field on a classical TEGR background, that we
explicitly compute using the aforementioned algorithm. Interestingly, the divergences
that we find are the same as of a quantized scalar field on a GR (curved) background. In
the conclusions, however, we discuss the probable existence of a shortcoming concerning
the equivalence between TEGR and GR in BH thermodynamics at one-loop. The point
is that the necessary counterterms to regularize these divergences, which are the same
as in GR, are not expected to share all the symmetries of TEGR. Later, we give some
hints on the evaluation of the divergent part of the effective action of TEGR itself. More
in detail, we present a simple argument suggesting that also the divergent part of the
TEGR effective action at one-loop is precisely the same as in GR. However, since TEGR
and GR have deep conceptual differences, it is highly desirable to explicitly obtain the
one-loop divergences. For this reason, we as well obtain the second-order differential
operator relevant to the heat kernel method. Unfortunately, using the Lorentz gauge, we
arrive at a so-called non-minimal operator from which is much more difficult to obtain
one-loop divergences. Due to of lack of time we leave this computation for future work.
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Chapter 2

Teleparallel Gravity: gravity and
torsion

Gravity is a peculiar force among the four known universal forces. Indeed, it is well-
known that gravity is equally felt by particles, irrespective of their masses or composi-
tion. Physicists usually refer to this universality as the universality of free falling. This
is a peculiar aspect of the gravitational interaction when compared to the other funda-
mental forces. This universality is what allowed Einstein to build up General Relativity
(GR), a theory describing gravity through the curvature of the spacetime and where
the fundamental variable is the metric of the spacetime. In this case, the underlying
spacetime is a pseudo-Riemaniann space. In the GR description of gravity, we stress a
couple of interesting points for this work. The first one is the very well-known fact that
gravity in GR does not act as a force, but particles follow geodesics lines. The second
one is that in GR inertial effects are geometrized together with the gravitational forces:
they are both contained in the usual Christoffel connection and in general cannot be
separated from each other. In this thesis, we will work with a modified theory of gravity:
the Teleparallel Equivalent of General Relativity (TEGR). TEGR is a theory equivalent
to GR, at least at the level of the equations of motion, which describe gravity in terms
of torsion instead of curvature. In fact, in this context one assumes curvature to be
vanishing. Now the pseudo-Riemaniann space is replaced with a so-called Weitzenböck
spacetime. A Weitzenböck spacetime is essentially a differential manifold equipped with
a Weitzenböck connection (defined below) and so it is a flat but twisted manifold. Al-
though equivalent, to some extent, TEGR is conceptually quite different from GR. For
example, in this theory gravity is no longer geometrized but it acts as a force. As we
will see, geodesics are replaced with force equations where the role of force is played by
the contortion tensor. TEGR offers also some advantages if compared to GR. For ex-
ample, in TEGR it turns out that it is possible to split gravitational and inertial effects
by means of an appropriate spin connection. This intriguing possibility will offer us a
possible expression of the gravitational energy-momentum tensor. The presence of the
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spin connection is also crucial for the local Lorentz invariance of the theory. Finally,
TEGR admits a nice formulation as a gauge theory of the translation group, which is
the strategy that we will follow to construct TEGR. In this approach, the torsion tensor
naturally arises as field strength of what will be called translational covariant derivative.
This gauge formulation of gravity is an interesting fact, for example, for quantization
purposes.

In this chapter, we begin by introducing some concepts as tetrads fields, which are
the very starting point of TEGR, and Lorentz connections. Then, we very briefly recall
some crucial aspects of gauge theories with some references to gravitational theories.
We then construct the Teleparallel action and the field equations. Next, we present the
gravitational coupling and particle mechanics. Finally, we discuss the possibility of con-
structing the energy-momentum tensor in TEGR. For this Chapter our main references
are [5–9], which are those reported in the introduction.

2.1 Preliminary concepts
Two very basic objects that will be fundamental in the construction of Teleparallel Grav-
ity are linear frames and tetrads. Linear frames and tetrad fields are constitutive parts of
a differential manifold and they are always present as soon as a manifold is assumed to be
differential. As it is well-known, at each point of a general spacetime, which is a pseudo-
Riemannian manifold M , there is a tangent space TxM with the same dimensionality
of the manifold. This tangent space is seen as a vector space and it is identified with a
Minkowski spacetime. We recall here that the (disjoint) union of all tangent spaces forms
the so-called tangent bundle TM =

⋃
x∈M

TxM , which will be the geometrical setting for

TEGR.
Now, the basic idea is to introduce at each point of the spacetime a set of four

orthonormal vectors, constituting a basis for the tangent space, and which transform
covariantly under local Lorentz transformations.

2.1.1 Tetrad formulation

As said, the main idea is to introduce at each point of the spacetime a basis for the
tangent space. Thus, we take four orthonormal vectors {ea}, one time-like and three
space-like, called linear frames

g(ea, eb) = ηab, (2.1)

which are usually defined only in restricted domains. The whole set of these four vector
fields constitutes the bundle of linear frames, the prototype of principal bundles. Of
course, we can introduce the dual basis (co-frame) {ea} for 1-forms, defined as usual by
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the relation
ea(eb) = δab . (2.2)

As always, the coordinates basis satisfy as well a similar relation, dxν(∂µ) = δνµ. Consider
now that, in their common definition domain, frames and co-frames can be expanded in
terms of the coordinate basis {∂µ} and the dual {dxµ} as

ea = e µ
a ∂µ, ea = eaµdx

µ. (2.3)

Conversely, we of course also have

∂µ = eaµea, dxµ = e µ
a e

a. (2.4)

From these relations, we easily find that (2.1) can be written as

gµν e
µ
a e ν

b = ηab, (2.5)

and using dxν(∂µ) = e ν
a e

b
µ e

a(eb) = eaµe
ν
a = δνµ we obtain that the inverse relation of

(2.5) is
gµν = ηab e

a
µ e

b
ν . (2.6)

In addition, a general linear basis {ea} satisfies the commutation relations

[ea, eb] = f cab ec, (2.7)

where the anholonomy coefficients, using the expansion of the tetrads in terms of the
coordinate basis, are easily found to be given by

f cab = e µ
a e

ν
b (∂νe

c
µ − ∂µecν). (2.8)

The "matrices" eaµ and e µ
a just introduced are called tetrads fields. Since these different

kinds of indices can be confusing, we highlight that our convention is to use Latin indices
to denote the "internal" (or Lorentz) indices a, b = 0, . . . , 3, i.e., living in the internal
space where the gauge transformations will act, while we use Greek indices to denote
"external" (or spacetime) indices µ, ν = 0, .., 3. Lorentz indices are raised and lowered
with the Minkowski metric while spacetime indices are raised and lowered with the
spacetime metric [15].

The inverse relation (2.6) will be of great importance later on. It allows us to find
the tetrads fields once that the spacetime metric is known. However, it is important
to notice that the spacetime metric has 10 independent degrees of freedom while the
tetrads have 16 degrees of freedom. Equation (2.6), in fact, determine the tetrads fields
up to local Lorentz transformations eaµ(x) → Λa

b (x)ebµ(x): this is the natural freedom
of choosing an orthonormal basis in Minkowski spacetime.

Tetrads fields give us the possibility to introduce intuitively the concept of spin con-
nection, also called Lorentz connection. To do this we notice that tetrads fields, carrying
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them two kinds of indices, allow to define tensors with Latin and/or mixed indices simply
contracting a spacetime tensor T with the tetrads. For example,

T a1...anb1...bn = ea1α1
...eanαn T

α1...αn
β1...βn

e β1
b1

...e βn
bn

. (2.9)

Once that these quantities with a new type of indices have been introduced, it is natural
to extend the notion of parallel transport also to them. For this reason, one can introduce
some new connection coefficients Aabµ, which undergo the name of spin (or Lorentz)
connection. We can now introduce "full" covariant derivatives of objects carrying both
kinds of indices. For example, we can define

∇̃µT aν = ∂µT aν + ΓνρµT aρ + AabµT bν . (2.10)

More formally, a Lorentz connection, a particular case of linear connection, can be defined
as a 1-form taking values in the Lorentz algebra

Aµ =
1

2
AabµSab, (2.11)

where Sab are the Lorentz generators in some representation. For instance, for a scalar
field φ they have the form Sab = 0 while for a spinor field ψ, in terms of the Dirac
matrices γa, they are Sab = i

4
[γa, γb]. Of course, the Lorentz connection Aabµ transforms

as a good connection under local Lorentz transformation Λa
b = Λa

b(x)

Aabµ → Λa
cA

c
dµ(Λ−1) d

b + Λa
c∂µ(Λ−1) c

b , (2.12)

in such a way that the covariant derivative built using this connection is Lorentz-
covariant. This covariant derivatives is known as Fock-Ivanenko covariant derivative
and is defined as Dµ = ∂µ − i

2
AabµSab [6].

If we choose to consider that objects like T aν and T µν are the same invariant entity
in different disguises, it is natural to require that the two notions of parallel transport
defined by Aabµ and by Γνρµ actually coincide. Formally, we can ask that the tetrads
fields, which change the type of indices, commute with taking the covariant derivative of
a tensor. A way to impose this condition is to require that the "full" covariant derivative
of the tetrad vanishes

∂µe
a
ν + Aabµe

b
ν − Γρνµe

a
ρ = 0, (2.13)

which is also known as tetrad postulate. Equation (2.13) can be solved for the general
linear connection as

Γρνµ = e ρ
a ∂µe

a
ν + e ρ

a A
a
bµe

b
ν = e ρ

a Dµe
a
ν , (2.14)

where Dµ is the Fock-Ivanenko covariant derivative for a Lorentz vector. Alternatively,
it can be solved for the spin connection as

Aabµ = eaν∂µe
ν
b + eaνΓ

ν
ρµe

ρ
b = eaν∇µe

ν
b , (2.15)
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where∇µ is the standard covariant derivative in terms of Γνρµ. From equations (2.15) and
(2.14), which will be very useful for our work, we see that, under the tetrad postulate, to
each spin connection Aabµ there is an associated general linear connection and vice-versa.

We conclude this paragraph recalling that a connection Γνρµ is said to be metric
compatible if the following holds

∇λgµν = ∂λgµν − Γρλµgρν − Γρνλgµρ = 0. (2.16)

The right-hand side, if not zero, is a rank-three tensor known as nonmetricity tensor. In
tetrad formalism, and using (2.13), equation (2.16) can be rewritten as

∂ληab − Adaµηdb − Adbµηad = 0, (2.17)

which can be expressed as
Abaµ = −Aabµ. (2.18)

From the previous equation, we conclude that the metricity condition holds as long as
we work with a Lorentz connection. TEGR will belong to the class of theories with zero
nonmetricity.

2.1.2 Curvature and torsion

Curvature and torsion are tensorial properties of Lorentz connections. Physicists are used
to speaking about curvature of spacetime. However, working with connections presenting
different curvatures and torsions, it seems more convenient to follow the mathematicians
and consider connections as additional structures over a manifold.
Formally, the curvature of a Lorentz connection is defined as a 2-form assuming values
in the Lie algebra of the Lorentz group

R =
1

4
Ra

bµν S
b
a dxµ ∧ dxν , (2.19)

where the components of the curvature are given by

Ra
bνµ = ∂νA

a
bµ − ∂µAabν + AaeνA

e
bµ − AaeµAebν . (2.20)

The torsion tensor is also a 2-form but assuming values in the Lie algebra of the trans-
lation group

T =
1

2
T aνµ Pa dx

µ ∧ dxν , (2.21)

where the components of T are given by

T aνµ = ∂νe
a
µ − ∂µeaν + Aaeνe

e
µ − Aaeµeeν . (2.22)
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Through a contraction with the tetrads and using equation (2.15), the spacetime-indexed
quantities are found to be given by the usual expressions

Rρ
λνµ = e ρ

a e
b
λR

a
bνµ = ∂νΓ

ρ
λµ − ∂µΓρλν + ΓργνΓ

γ
λµ − ΓργµΓγλν , (2.23)

and
T ρνµ = e ρ

a T
a
µν = Γρµν − Γρνµ. (2.24)

Curvature and torsion tensors can be written also in terms of Lorentz indices only.
Further contracting with the tetrad fields and recalling that Aabc = Aabνe

ν
c , it can be

verified that

Ra
bcd = ec(A

a
bd)− ed(Aabc) + AaecA

e
bd − AaedAebc − f ecdAebe, (2.25)

and
T abc = Aacb − Aabc − fabc, (2.26)

where fabc are the anholonomy coefficients of the basis {ea}, which can be expressed as
in (2.3). Using equation (2.26) for three different combinations of indices, we can express
the spin connection as

Aabc =
◦
Aabc +Ka

bc, (2.27)

in which
◦
Aabc =

1

2
(f c
b a + f b

c a − fabc) (2.28)

is the spin connection of General Relativity (all the quantities of GR will have the empty
circle above), and

Ka
bc =

1

2
(T c

b a + T b
c a − T abc), (2.29)

is the contortion tensor. Equation (2.27) is actually the content of a theorem and will be
of major importance afterwards. Expressing (2.27) through the corresponding general
linear connection, we have the well-known result

Γρµν =
◦

Γρµν +Kρ
µν , (2.30)

where
◦

Γρµν is the familiar Levi-Civita connection and Kρ
µν is the spacetime-indexed

contortion tensor, which reads

Kρ
µν =

1

2
(T ρ

ν µ + T ρ
µ ν − T ρµν). (2.31)
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2.1.3 Local Lorentz transformations

In addition to diffeomorphism invariance, TEGR is invariant under local Lorentz trans-
formations, and it is translational gauge invariant. We will consider gauge invariance
later, in section 2.2. We now take into account the issue of local Lorentz invariance.
Essentially, a local Lorentz transformation is a point-dependent Lorentz transformation
taking place in the tangent space. On tangent space coordinates it has form

x′
a

= Λa
b(x)xb. (2.32)

Under local Lorentz transformations, frames and co-frames, of course, will transform as

e′
a

= Λa
b(x)eb and e′a = Λ b

a (x)eb. (2.33)

We have seen from equation (2.6) that the knowledge of the spacetime metric does not
completely fix the tetrads, but we are left with the freedom to perform local Lorentz
transformations in the tangent space indices. Consider in fact a locally Lorentz rotated
frames {e′a}. Then, equation (2.6) becames

gµν = ηcde
′c
µe
′d
ν . (2.34)

Contracting both side of the previous equation with e µ
a e

ν
b , we obtain that

ηab = ηcd(e
′c
µe

µ
a )(e′

d
νe

ν
b ). (2.35)

We see that, if we introduce the matrix

Λa
b(x) = e′

a
µe

µ
b , (2.36)

then, equation (2.35) became the condition for (2.36) to belong to the Lorentz group.
Therefore, we can say that, in the previous equation, Λa

b(x) is a Lorentz matrix. Next,
inverting equation (2.36), we obtain the transformation law for the tetrads under local
Lorentz transformations

e′
a
µ = Λa

b(x)ebµ. (2.37)

We have already noticed in equation (2.12) that spin connections transform as good
connections. For readability, we report here this transformation law

A′
a
bµ = Λa

cA
c
dµ(Λ−1) d

b + Λa
c∂µ(Λ−1) c

b . (2.38)

Then, from their definitions, one can verify in a similar way [6] that Ra
bνµ and T aνµ

transform covariantly under local transformations

R′
a
bνµ = Λa

c(x)Λ d
a (x)Rc

dνµ, (2.39)
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and
T ′

a
νµ = Λa

b(x)T bνµ. (2.40)

This tells us that the spacetime-indexed quantities Rρ
βνµ, T

ρ
νµ and Γρµν , just as the

spacetime metric, are (local) Lorentz invariants. This fact will guarantee that the TEGR
action is invariant under local Lorentz transformations. Indeed, this action will be con-
structed through the so-called torsion scalar.

2.1.4 Trivial and nontrivial frames

Trivial frames, or trivial tetrads, are frames that are not related to gravitation. Phys-
ically, they represent observers in special relativity; while, mathematically, constitutes
the general linear basis on Minkowski spacetime. Thus, they only exist when gravity is
absent. This class of frames will be denoted as {Ea} and {Ea}, and they are related by
the usual dual relation Ea(Eb) = δab . They can as well be expanded in terms of coordi-
nates basis as in equations (2.3). Moreover they satisfy the commutation relations (2.7),
that now can be written as

[Ea, Eb] = f cabEc, (2.41)

where the anholonomy coefficients are

f cab = E µ
a E

ν
b

(
∂νE

c
µ − ∂µEc

ν

)
. (2.42)

A basic property of these frames is that we can identify among them the special class of
inertial frames {E ′a}, in which the anholonomy coefficients vanish

f ′
c
ab = 0. (2.43)

This condition is valid everywhere for the class of inertial frames. Namely, it is not a
local property. As usual, frames characterized by this condition are called holonomic,
similarly to coordinate basis.

Another property of trivial tetrads, holonomic or not, is that they relate the tangent
Minkowski space to a Minkowski spacetime, i.e., usually Minkowski spacetime in general
coordinates. Consider the Minkowski metric. In Cartesian coordinates, it takes the
familiar diagonal form

ηµν = diag(+1,−1,−1,−1), (2.44)

but, of course, in any other coordinate system, it will be a function of the spacetime
coordinates. Trivial tetrads fields will relate the tangent Minkowski ηab to this spacetime
Minkowski metric ηµν . Thus, equation (2.5), can be written as

ηµν E
µ
a E ν

b = ηab, (2.45)

14



as can be easily verified. The inverse relation is instead found to be

ηµν = ηab e
a
µ e

b
ν , (2.46)

repeating the same steps as before. Let us present now the concept of nontrivial frames.

Nontrivial frames are defined as those frames whose anholonomy coefficients are re-
lated to both gravitational and inertial effects. In this work, they will be denoted as

{ha} and {ha}. (2.47)

They satisfy relations analogous to equations (2.3), and to the dual relations as ha(hb) =
δab . Of course, also the nontrivial tetrad satisfy the commutation relations

[ha, hb] = f cab hc, (2.48)

with anholonomy coefficients given by

f cab = h µ
a h

ν
b

(
∂νh

c
µ − ∂µhcν

)
. (2.49)

However, f cab are now related to both inertia and gravitation. In particular, it is not
possible to globally set the anholonomy coefficients to zero, although it is still possible
to have f cab = 0 locally. The condition f cab = 0 locally, means that we are working
in a local frame in which inertial effects compensate gravitational effects. Moreover,
nontrivial tetrads relate the spacetime metric and the Minkowski tangent space metric
via the usual relation

gµν h
µ
a h ν

b = ηab, (2.50)

which can be seen as the orthogonality relation g(ha, hb) = ηab, in terms of the tetrads
fields. From the dual relation haµh ν

a = δµν we obtain the inverse relation

gµν = ηab h
a
µ h

b
ν . (2.51)

From this equation, we see as well that the metric determinant

g = det(gµν) (2.52)

is related to the determinant of the tetrads by the equation

h = det
(
haµ
)

=
√
−g. (2.53)

We will frequently use this notation in the following sections.
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2.1.5 TEGR Lorentz connection and Weitzenböck connection

As we will see more explicitly in the next section, in TEGR, since it is a gauge theory, the
gravitational field is represented by a suitable gauge potential and not by a (spacetime
or Lorentz) connection. In particular, this means that in TEGR the spin connection
keeps its special relativistic role of describing inertial effects only. In special relativity,
Lorentz connections represent inertial effects present in non-inertial frames and they are
vanishing in inertial frames. We can see how a Lorentz connection appears in special
relativity starting from relation (2.45), and performing a local Lorentz transformation.
Let us denote as {E ′a} the class of inertial frames, i.e., those for which the anholonomy
coefficients f cab are zero. From the expansion in terms of the coordinate basis (2.3), and
using the Cartan structure equation dE ′c = −1

2
f cabE

′a ∧ E ′b ≡ 0, we can see that the
tetrads of this class of frames can be represented in general coordinates as

E ′
a
µ = ∂µx

′a, (2.54)

where x′a = x′a(x) is a spacetime dependent Lorentz vector. The relation between the
spacetime metric and the tangent space metric is as usual

η′µν = ηabE
′a
µE

′b
ν . (2.55)

Now, under a local transformation, x′a transform as a Lorentz vector

xa = Λa
b(x)x′

b (2.56)

and the holonomic frame E ′aµ as

Ea
µ = Λa

b(x)E ′
b
µ. (2.57)

Using equation (2.54) and (2.56) it is then easy to show that the locally Lorentz rotated
tetrad (2.57) takes the form

Ea
µ = ∂µx

a +
•
Aabµx

b =
•

Dµx
a, (2.58)

in which
•
Aabµ = Λa

e(x)∂µΛ e
b (x) (2.59)

is a Lorentz connection depending solely on the Lorentz transformations, and conse-
quently it only represents inertial effects in the rotated frame. As such, we will refer to
(2.59) as the purely inertial spin connection, which will turn out to be the TEGR spin
connection. The purely inertial spin connection is simply the spin connection obtained

by local Lorentz transformation of the vanishing spin connection
•
A′abµ = 0. This can be

easily seen from the transformation law (2.12)
•
Aabµ = Λa

c(x)
•
A′

c
dµΛ d

b (x) + Λa
c(x)∂µΛ c

b (x). (2.60)
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If we start in a frame in which
•
A′abµ = 0, that is an inertial frame, different classes of

frames are reached through local Lorentz transformations, while within any class all the
infinite reference frames are related by global (point independent) Lorentz transforma-
tion. Conversely, starting from a general frame, we can always impose the condition
•
A′abµ = 0, known as Weitzenböck gauge, through a Lorentz transformation. Of course,
this choice breaks the Lorentz invariance of TEGR because we have chosen a specific
class of frames. However, this is not a deficit since it is a sort of gauge gauge fixing
procedure in gauge theories [20] and Lorentz invariance can be restored by using the
appropriate spin connection.

We have seen in equation (2.14) that to each spin connection corresponds a general
linear connection, because of the tetrad postulate. The spacetime connection correspond-
ing to the purely inertial spin connection is called Weitzenböck connection and, for a
generic tetrad, it is given by

•
Γρ νµ = e ρ

a ∂µe
a
ν + e ρ

a

•
Aa bµe

b
ν = e ρ

a

•
Dµe

a
ν . (2.61)

Some comments are in order. To begin with, we recall that the previous equation is
equivalent to assume the validity of the tetrad postulate (2.13), that for a nontrivial
tetrad takes the form

∂µh
a
ν +

•
Aa bµh

b
ν −

•
Γρ νµh

a
ρ = 0. (2.62)

In the class of reference frames, in which the purely inertial spin connection
•
Aa bµ is zero,

it simply becomes

∂µh
a
ν −

•
Γρ νµh

a
ρ = 0, (2.63)

which is the teleparallel condition (or distant parallelism condition), from where Telepar-
allel Gravity takes its name. Of course, this condition holds only in this particular class
of reference frames but, for historical reasons, we shall keep call it in that way.
Next, we notice from equations (2.22) and (2.20) that the curvature of a spin connection
depends only on the spin connection, while the torsion depends on tetrad fields too. Of
course, as a purely inertial spin connection, the curvature

•
Ra

bνµ = ∂ν
•
Aa bµ − ∂µ

•
Aa bν +

•
Aa eν

•
Ae bµ −

•
Aa eµ

•
Ae bν = 0 (2.64)

of the connection (2.59) is vanishing and, for a trivial tetrad, its torsion too
•
T a νµ = ∂νE

a
µ − ∂µEa

ν +
•
Aa eνE

e
µ −

•
Aa eµE

e
ν = 0 (2.65)

is zero. However, we anticipate that in the next section we will obtain that nontrivial
tetrads can be written as a trivial tetrad plus the gauge potential. Thus, we will see that
for a nontrivial tetrad the Weitzenböck torsion is non-vanishing

•
T a νµ = ∂νh

a
µ − ∂µhaν +

•
Aa eνh

e
µ −

•
Aa eµh

e
ν 6= 0, (2.66)
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while curvature, depending only on the spin connection, is still vanishing. In TEGR the
spacetime is flat but twisted. For reference, we mention that from equation (2.24) we
immediately obtain the spacetime indexed version of Weintzenböck torsion (2.66)

•
T ρ νµ =

•
Γρ µν −

•
Γρ νµ, (2.67)

where
•

Γρ µν is the Weitzenböck connection (2.61) computed using a nontrivial tetrad.
This situation is the opposite of what happen in GR, whose spin connection present
non-vanishing curvature

◦
Ra

bνµ = ∂ν
◦
Aa bµ − ∂µ

◦
Aa bν +

◦
Aa eν

◦
Ae bµ −

◦
Aa eµ

◦
Ae bν 6= 0, (2.68)

but vanishing torsion

◦
T a νµ = ∂νh

a
µ − ∂µhaν +

◦
Aa eνh

e
µ −

◦
Aa eµh

e
ν = 0. (2.69)

2.2 Fundamentals of Teleparallel Gravity
We are now ready to present the Teleparallel Equivalent of General Relativity (TEGR)
or, for short, Teleparallel Gravity. We will construct this theory as a gauge theory for
the translation group. In this section, we start by recalling, very briefly, some basics
facts about (classical) gauge theories and we make at the same time some comments
on the most relevant differences between standard gauge theories and TEGR. Then,
following the usual framework of gauge theories, we introduce gauge transformations,
gauge potentials and covariant derivatives, Lagrangian, and field equations.

2.2.1 Gravity and Gauge Theories

Let us begin with a short and rough reminder about gauge theories. All the details
can be found in many textbooks of Quantum Field Theory (QFT). For physicists, the
prototypes of gauge theories are Yang-Mills’ theories, which have successfully described
three out of the four fundamental forces. Fiber bundles are composite manifolds that
encode all the geometrical aspects of gauge theories. They are composite since they are
obtained by combining, in such a way to have a differential manifold, a base-manifold,
that for us will be the spacetime, and another space of interest, like the gauge group
or any space carrying one of its representations. This bundle is such that in a given
point p of the base-manifold it is locally the direct product of both involved spaces. For
example, the gauge principal bundle is constructed by attaching to each spacetime point
the gauge group G itself. Thus, for a principal bundle, each fiber is a group. Let us now
present some important properties of gauge bundles. The fiber bundle is equipped with a
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"projection" π that takes all the points of the fiber in p into the corresponding base-space
point p. Conversely, there is as well a "section" σ taking points in the neighbourhood of
p into the bundle manifold.
Along with principal bundles, we also have the so-called "associated" bundles. The
associated bundles are obtained by substituting the group G with one of its linear repre-
sentations. Source fields live in the vector spaces carrying such representations and then
are objects carrying gauge indices, on which the gauge group acts, and depending on the
base space coordinates. Thus, they are subject to gauge transformations

Ψ′
i
(x) = U i

j(x)Ψj(x), (2.70)

where U i
j(x) are the entries of a gauge group element U(xµ), representing the action of

the gauge group in the point p of coordinates xµ. In this notation, we have i, j = 1, 2, ..., d,
where d is the dimension of the representation of the group. The gauge group element
can be expressed through the exponential representation as

U i
j(x) =

{
exp

[
εb(x)Tb

] }i
j
, (2.71)

where Tb are the group generators in a given representation, εb(x) are the group param-
eters, where b = 1, 2, ..., n and n is the dimension of the group. The generators Tb satisfy
the commutation relations

[Ta, Tb] = f cabTc, (2.72)

where, of course, f cab are the structure constants of the gauge group. We recall that the
adjoint representation is defined by the fact that the generators, denoted by Ja, are n×n
matrices with entries given by the structure constants

(Ja)
c
b = f cab. (2.73)

We can also express the gauge transformation (2.70) dropping the matrix indices as

Ψ′(x) = exp
[
εb(x)Tb

]
Ψ(x). (2.74)

The corresponding infinitesimal transformation is obtained for |εb(x)| << 1, and it reads

δΨ(x) = Ψ′(x)−Ψ(x) = εb(x)TbΨ(x). (2.75)

Then, one can introduce the gauge boson field, a 1-form taking values in the Lie algebra
of the gauge group, as

Aµ = TcA
c
µdx

µ, (2.76)

from which, starting from the general definition of covariant derivative

DµΨ(x) = ∂µΨ(x)− Abµ
δΨ(x)

δεb(x)
, (2.77)
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and using the infinitesimal transformation (2.75), we arrive at the conclusion that the
covariant derivative acting on matter fields is

DµΨ(x) = ∂µΨ(x)− AbµTbΨ(x), (2.78)

where now the gauge potential takes values in the appropriate representation, concerning
the matter field Ψ, of the gauge group. After imposing, as usual, a suitable transforma-
tion law on the gauge field, the covariant derivative (2.78) truly transforms in the same
way as the field Ψ on which it acts. Basically, if Ψ transforms as in equation (2.70), its
covariant derivative transforms in the same way

D′µΨ′(x) = U(x)DµΨ(x). (2.79)

Then, imposing this condition we find that the gauge potential has to transform as

A′µ = U(x)AµU
−1(x) + U(x)∂µU

−1(x). (2.80)

The gauge potential, which is a connection, belongs to the adjoint representation, and
so the generators in (2.80) are the structure constants. Then, the infinitesimal version
of (2.80) is

δAaµ = A′
a
µ − Aaµ = −

[
∂µε

a(x)− fabcAbµεc(x)
]

= −Dµε
a(x), (2.81)

where Dµ is the gauge covariant derivative in the adjoint representation.
The field strength of the theory is defined as the commutator of covariant derivatives

Fµν(x) = F a
µν(x)Ta = [Dµ, Dν ] , (2.82)

where F a
µν is given by

F a
µν(x) = ∂µA

a
ν − ∂νAaµ + fabcA

b
µA

c
ν . (2.83)

Under gauge transformation, the field strength transforms as

F ′µν = U(x)F µνU
−1(x), (2.84)

that infinitesimally is
δF a

µν = F ′
a
µν − F a

µν = fabc ε
b F c

µν . (2.85)

To end this brief reminder about gauge theories we recall that the Yang-Mills Lagrangian,
from which we derive the dynamical equations for the gauge potential, is defined as

L = Ls −
1

4
γabF

a
µνF

bµν , (2.86)
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where
γab = Tr (JaJb) = f cadf

d
bc (2.87)

is the Cartan-Killing metric, which is a metric only for semi-simple groups (notice that
for the group U(1), for example, it is not defined), since for non semi-simple groups
γab is degenerate. Ls = Ls(Ψ, DµΨ) is the matter Lagrangian obtained from the free
Lagrangian using the minimal coupling prescription: ∂µ → Dµ.

Let us now make some additional comments about TEGR as a gauge theory. GR
presents some problematics as a gauge theory (as well as TEGR actually). Concerning
GR, some of the more relevant problems are

• the fundamental field of a gauge theory is the gauge potential, while, in GR, there
is a connection (Levi-Civita connection) but it is not a fundamental field: it is
uniquely defined by the metric which is the true fundamental field.

• Usually, gauge Lagrangians are quadratic in the curvature while the GR action is
linear in the curvature.

• Gauge interactions are mediated by forces, in GR a gravitational force is absent.

We can ask if there is a way to describe gravitation in an alternative fashion more closely
related to a gauge theory. Let us take Electromagnetism (EM) as example. EM is a gauge
theory for the group U(1). In this theory, the source of the electromagnetic field is the
electric current, which is the conserved current associated, through Noether’s theorem, to
the invariance of the Dirac Lagrangian under global U(1) transformations. Then, to keep
the Dirac Lagrangian symmetric under local U(1) transformations, we introduce a con-
nection (the gauge potential) assuming values in the Lie algebra of U(1) and transforming
in a suitable way. Analogously, the gravitational field source is the energy-momentum
tensor. According to Noether’s theorem, the energy-momentum tensor is the conserved
current associated with the invariance of the Lagrangian under spacetime translations.
Therefore, the idea of relating TEGR, or more generally gravity, to translations is very
natural. However, as we will see briefly below, extending that link to a gauge theory of
the translations group could be more subtle.

2.2.2 Gauge transformations

Let us now start to build up TEGR gauging translations. For TEGR the geometrical set-
ting is the tangent bundle. Tangent bundles are constructed taking a (pseudo)Riemannian
spacetime R3,1 as base-space and as fiber the Minkowski tangent space M = TpR3,1, in
which gauge transformations take place. For TEGR a gauge transformation is a point-
dependent translation of the TpR3,1 coordinates

x′
a

= xa + εa(xµ). (2.88)
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The infinitesimal version of this gauge transformation is

δxa = εb Pbx
a, (2.89)

where, of course, Pb are the generators of translations

Pa =
∂

∂xa
= ∂a, (2.90)

which obviously satisfy the commutation relations

[Pa, Pb] = 0. (2.91)

The tangent bundle is more closely related to the spacetime structure than the usual
gauge principal bundle. The main difference, as already mentioned, is the presence of
soldering. Soldering ensures the presence of tetrad fields, indeed it is using tetrad fields
that internal indices can be transformed into spacetime indices. We can notice from
equation (2.22) that, essentially, the torsion tensor is the Lorentz covariant derivative
of the tetrad fields. Thus, in usual non-soldered gauge theories, torsion is simply not
existent.

Source fields Ψ are usually defined as local sections of the fiber bundle

ΨV : V → π−1(V ) ∼ V × F, (2.92)

where π is the bundle projection from the fiber into the spacetime, V is an open set of
the spacetime, F is a fiber and ∼ indicates that π−1(V ) is diffeomorphic to V × F , a
general property of tangent bundles known as local triviality. This diffeomorphism is
called local trivialization and can be indicated as

φV : π−1(V )→ V × F. (2.93)

Using the local trivialization φ, the local section ΨV can be equivalently expressed as
the application

xµ → φ−1
V (xµ, xa) , (2.94)

where the coordinate set {xµ} indicate a point in spacetime and {xa(xµ)} a point in
the fiber attached in the point xµ. Then, a source field, is an object that by definition
depends on both xµ and xa (here a = 1, 2, ...d, with d the dimension of the fiber)

Ψ = Ψ (xµ, xa) ≡ Ψa (xµ) . (2.95)

The last equality holds for usual Yang-Mills-like gauge theories, where the fiber are
finite-dimensional vector spaces (carrying unitary finite-dimensional representations of
the gauge group) and, then, the source fields are finite multiplets in which the internal
coordinate are the components. For TEGR, a fiber is a copy of the entire Minkowski
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spacetime, i.e., it is not finite. Then, in this case, the continuum coordinates xa(xµ) (we
continue to use the notation xa to emphasize that the tangent Minkowski space is the
fiber) takes the role of the components of the multiplet and then the source field can be
written as

Ψ = Ψ (xa (xµ)) . (2.96)

After that, it is immediate to find that, under a gauge translation of the kind (2.88), Ψ
transforms as

δΨ (xa (xµ)) = εa (xµ) ∂aΨ (xa (xµ)) , (2.97)

or more easily
δΨ = εa∂aΨ. (2.98)

Equation (2.97) gives the variation of the matter field at fixed xa and xµ: the typical
gauge transformations. We conclude this subsection by saying that, for quantum mechan-
ical reasons, the representation of the gauge group must be unitary. It is, however, well-
known that only compact groups have finite unitary representations; for non-compact
groups as translations, unitarity is jeopardized.

2.2.3 Translational covariant derivative

We have just seen that matter fields Ψ = Ψ (xa (xµ)) transform under a gauge transfor-
mation (2.88) as

δΨ = εa∂aΨ. (2.99)

Then, as usual, under a local translation εa = εa (xµ) the ordinary derivative ∂µΨ does
not transform covariantly

δ(∂µΨ) = εa∂a(∂µΨ) + (∂µε
a) ∂aΨ. (2.100)

To introduce a derivative that transforms covariantly under a gauge transformation, we
have to introduce a gauge potential Bµ taking values in the Lie algebra of the gauge
group, i.e., translations

Bµ = Ba
µPa. (2.101)

We can then introduce the translational gauge covariant derivative hµ

hµΨ = ∂µΨ +Ba
µ∂aΨ. (2.102)

This derivative transform covariantly under gauge transformations

δ(hµΨ) = εa∂a(hµΨ), (2.103)

if the gauge field satisfies the transformation law

δBa
µ = −∂µεa. (2.104)
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Then, the translational coupling prescription is obtained by substituting ordinary with
covariant ones

∂µΨ→ hµΨ. (2.105)

We notice that, because of the soldering property of the bundle, equation (2.102) can be
rewritten as

hµΨ = haµ∂aΨ, (2.106)

where haµ is a nontrivial tetrad field of form

haµ = ∂µx
a +Ba

µ. (2.107)

Of course, to be nontrivial it has to satisfy

Ba
µ 6= ∂µε

a, (2.108)

because otherwise Ba
µ would be only a gauge transformation of the nontrivial tetrad.

Next, from equation (2.107) we can see that we are working in the class of reference
frames in which the spin connection vanishes. Indeed, we recognize in ∂µxa the trivial
tetrad (2.54). Thus, to obtain the translational covariant derivative in a general frame,
we proceed as before and we apply a local Lorentz transformation

xa → Λa
b(x)xb, (2.109)

under which the matter field transforms in the usual way

Ψ→ U(Λ)Ψ, (2.110)

where U(Λ) is a Lorentz transformation in the appropriate representation for Ψ. Taking
into account that the gauge potential is a Lorentz vector in the tangent space index, that
is it transforms as

Ba
µ → Λa

b(x)Bb
µ, (2.111)

one obtains [6] that the translational covariant derivative

hµΨ = haµ∂aΨ, (2.112)

is expressed using the tetrad field

haµ = ∂µx
a +

•
Aa bµx

b︸ ︷︷ ︸
=
•

Dµxa≡Eaµ

+Ba
µ, (2.113)

and where
•
Aa bµ is given by

•
Aabµ = Λa

e(x)∂µΛ e
b (x). (2.114)
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In the previous equation, we recognize the purely inertial spin connection (2.59). Thus,
we can write the tetrad field more compactly as

haµ = Ea
µ +Ba

µ, (2.115)

where Ea
µ is the trivial (that is non gravitational) part of the tetrad. In the class of

reference frames in which the spin connection is non-vanishing the gauge transformation
of the gauge potential is

δBa
µ = −

•
Dµε

a, (2.116)

instead of (2.104). Now it can be easily verified that the tetrad (2.113) is invariant under

the gauge transformations δxa = εb Pbx
a and δBa

µ = −
•

Dµε
a:

δhaµ = 0. (2.117)

This important result ensures the translational gauge invariance of the torsion tensor
and consequently of the TEGR Lagrangian.

2.2.4 Translational field strength and fundamental fields

Finally, we are ready to obtain the translational field strength: the torsion tensor. The
translational field strength can be obtained with the usual recipe of gauge theories, that
is taking the commutator of gauge covariant derives (2.82). From the translational gauge
covariant derivative (2.112) just presented, it is easy to obtain

[hµ, hν ] =
•
T aµν(x)Pa, (2.118)

where the translational field strength is

•
T aµν = ∂µB

a
ν − ∂νBa

µ +
•
AaeµB

e
ν −

•
AaeνB

e
µ =

•
DµB

a
ν −

•
DνB

a
µ. (2.119)

As the notation already indicates, it is easy to show that the translational field strength
is nothing else but torsion. To reach this result, we add to the right-hand side of (2.119)
the vanishing piece

•
Dµ

(
•

Dνx
a

)
−

•
Dν

(
•

Dµx
a

)
=

[
•

Dµ,
•

Dν

]
xa = 0. (2.120)

Then, we obtain

•
T aµν =

•
Dµ

(
•

Dνx
a +Ba

ν

)
−

•
Dν

(
•

Dµx
a +Ba

µ

)
. (2.121)
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In the previous equation, we recognize the nontrivial tetrad (2.113)

haµ =
•

Dµx
a +Ba

µ. (2.122)

We arrive at the conclusion that the translational field strength is just the torsion tensor
(2.66)

•
T aµν =

•
Dµh

a
ν −

•
Dνh

a
µ. (2.123)

We conclude this paragraph by stating that, since the tetrad field is invariant under
gauge transformations (2.117), then also the torsion tensor is invariant under gauge
transformations

•
T ′

a
µν =

•
T aµν . (2.124)

This is a somewhat expected result since the translation group, as the group U(1) of
electrodynamics, is abelian.

In TEGR the gravitational field is fully represented by the gauge potential Ba
µ, a

1-form taking values in the Lie algebra of the translation group

B = Ba
µPadx

µ. (2.125)

Indeed, the fundamental Lorentz connection of TEGR is the purely inertial spin con-
nection, as can be seen in (2.113), which depends only on Lorentz transformations. As
already said, this means that in TEGR the spin connection describes inertial effects only,
as in special relativity. Now we can as well better understand why (2.66) holds. Consider
a nontrivial tetrad

haµ = eaµ +Ba
µ with Ba

µ 6=
•

Dµε
a (2.126)

thus, the torsion tensor for a nontrivial tetrad will be, in general, non-vanishing
•
T aµν =

•
Dµh

a
ν −

•
Dνh

a
µ

= ∂µB
a
ν − ∂νBa

µ +
•
AaeµB

e
ν −

•
AaeνB

e
µ 6= 0.

(2.127)

As repeatedly said, the fact that the fundamental Lorentz connection of TEGR is the
purely inertial spin connection means that its curvature is always vanishing. This also
tells us that the fundamental linear connection of TEGR is the Weitzenböck connection
(2.61), in terms of which we can express the spacetime indexed torsion as in (2.67).

2.3 Lagrangian, field equations and equivalence with
GR

As a gauge theory for translations, the action of TEGR can be written in the general
form

•
S =

c3

16πG

∫
ηab

•
T a ∧ ?

•
T b. (2.128)
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In this equation,
•
T a is the torsion 2-form

•
T a =

1

2

•
T aµνdx

µ ∧ dxν (2.129)

and ?
•
T b is the associated dual form

?
•
T a =

1

2

(
?
•
T aµν

)
dxµ ∧ dxν , (2.130)

defined using the generalized dual form for soldered bundles [6]

?
•
T aµν =

h

2
εµναβS

aαβ. (2.131)

Finally, we recall that h = det
(
haµ
)
. Consequently, the TEGR action (2.128) can be

written as
•
S =

1

8ck

∫
•
T aµν

(
?
•
T aρσ

)
dxµ ∧ dxν ∧ dxρ ∧ dxσ, (2.132)

where k = 8πG/c4. Using then the definition of the generalized dual for soldered bundles
as well as the identity

dxµ ∧ dxν ∧ dxρ ∧ dxσ = −εµνρσh d4x, (2.133)

we can arrive to write the action functional (2.128) as

•
S =

1

4ck

∫
•
T aµν

•
S µν
a h d4x. (2.134)

In this equation

•
S µν
a = −

•
S νµ
a = h ρ

a

(
•
Kµν

ρ − δ ν
ρ

•
T σµσ + δ µ

ρ

•
T σνσ

)
(2.135)

is called superpotential and

•
Kµν

ρ =
1

2

(
•
T νµρ +

•
T µν
ρ −

•
T µνρ

)
(2.136)

is the contortion tensor of the Weitzenböck torsion (2.67). From the TEGR action
(2.134), we read the Teleparallel Lagrangian density

•
L =

c4 h

32πG

•
T aµν

•
S µν
a ≡ c4 h

32πG

•
T ρµν

•
Sρµν , (2.137)
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where the last equality is obtained through obvious contraction with the tetrads. Using
now the identity

•
Kµ

ρµ =
•
T µµρ, (2.138)

the TEGR lagrangian (2.137) can be rewritten in terms of the contortion only as

•
L =

c4 h

17πG

(
•
Kµνρ

•
Kρνµ −

•
Kµρ

µ

•
Kν

ρν

)
. (2.139)

Using the definition of the contortion tensor (2.136), it can as well be written in terms
of the torsion tensor only

•
L =

h

16π

(
1

4

•
T ρµν

•
T µν
ρ +

1

2

•
T ρµν

•
T νµρ −

•
T ρµρ

•
T νµν

)
. (2.140)

Some comments are in order. We see, from the previous equation, that the first term is
the usual Lagrangian for the gauge fields. The presence of the other two terms can be
understood from the soldering character of the tangent bundle: the tetrad field allows
internal and external indices to be treated on the same footing, and, consequently, new
kinds of contractions become possible. Contracting with the tetrads, the Lagrangian can
also be written in terms of Lorentz indices only as

•
L =

h

16π

(
1

4

•
T abc

•
T bc
a +

1

2

•
T abc

•
T cba −

•
T aba

•
T cbc

)
. (2.141)

From this equation, we see that, since the torsion tensor transforms covariantly under
local Lorentz transformations, each term of the Lagrangian is a Lorentz invariant inde-
pendently from the values of the coefficients.

Consider now the Lagrangian

L =
•
L+ Lm, (2.142)

where
•
L is the TEGR Lagrangian and Lm is a general matter (or source) Lagrangian.

Varying the full Lagrangian 2.142 with respect to the tetrads fields, or equivalently
with respect to the gauge field, it can obtained, after a lengthy calculation, the TEGR
equations of motion for the gravitational field [6]

∂ν

(
h

•
S µν
a

)
− kh

•
J µ
a = khΘ µ

a . (2.143)

In the previous equation, we have

h
•
S µν
a = −k ∂

•
L

∂(∂νhaµ)
, (2.144)

28



where
•
S µν
a is the superpotential defined in equation (2.135), whereas

h
•
J µ
a = − ∂

•
L

∂haµ
=
h

k
h ρ
a

•
S σµ
c

•
T cσρ − h µ

a

•
L+

h

k

•
Acaσ

•
S µσ
c (2.145)

is the analogue of the gauge current. The remaining term, which reads

hΘ ρ
a = − δLs

δhaρ
≡ −

(
∂Ls
∂haρ

− ∂µ
∂Ls
∂µ∂ha

)
, (2.146)

it is instead the energy-momentum tensor for the matter field. We can also recast the
equation of motion (2.143) using spacetime-indexed quantities. We do this starting
from (2.143) and expressing ∂ρh λ

a using the Weitzenbock connection without the spin
connection. In this way it can be obtained that

E ρ
µ ≡ ∂σ

(
h

•
S ρσ
µ

)
+ kh

•
t ρµ = khΘ ρ

µ . (2.147)

where
h
•
t ρµ =

1

k
h
•
Γασµ

•
S σρ
α + δ ρµ

•
L (2.148)

is the spacetime-indexed gravitational energy-momentum pseudo tensor [8].
It is now quite easy to see the equivalence between TEGR and GR. To this purpose we

recall that any connection satisfying the metricity condition (2.16) can be decomposed
as the sum of the Levi-Civita connection plus the contortion torsion (2.30). This, in
particular, holds for the Weitzenböck connection

•
Γρ µν =

◦
Γρµν +

•
Kρ

µν , (2.149)

where
•
Kρ

µν is the contortion tensor (2.31). If we insert this decomposition in the general
formula defining the Riemann tensor

•
Rρ

λνµ = ∂ν
•

Γρλµ − ∂µ
•

Γρλν +
•

Γργν
•

Γγλµ −
•

Γργµ
•

Γγλν , (2.150)

it is only a matter of calculations to see that the curvature undergoes a similar splitting

•
Rρ

λνµ =
◦
Rρ

λνµ +
•
Qρ

λνµ, (2.151)

where
◦
Rρ

λνµ = ∂ν
◦

Γρλµ − ∂µ
◦

Γρλν +
◦

Γργν
◦

Γγλµ −
◦

Γργµ
◦

Γγλν (2.152)
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is the Levi-Civita curvature, and
•
Qρ

λνµ is given by

•
Qρ

λνµ =∂ν
•
Kρ

λµ − ∂µ
•
Kρ

λν +
•

Γρσν
•
Kσ

λµ −
•

Γρσµ
•
Kσ

λν

−
•

Γσλν
•
Kρ

σµ +
•

Γσλµ
•
Kρ

σν +
•
Kρ

σµ

•
Kσ

λν −
•
Kρ

σν

•
Kσ

λµ,
(2.153)

which is a tensor written in terms of the Weitzenböck only. We have said many times that
the curvature of the Weitzenböck connection vanishes

•
Rρ

λνµ = 0. Using this condition
in equation (2.151), it becomes

•
Qρ

λνµ = −
◦
Rρ

λνµ. (2.154)

Taking the usual contractions to obtain the Ricci scalar, this equation yields the afore-
mentioned TEGR-GR equivalence

•
Q =

(
•
Kµνρ

•
Kρνµ −

•
Kµρ

µ

•
Kν

ρν

)
+

2

h
∂µ

(
h
•
T νµν

)
= −

◦
R, (2.155)

where
◦
R stands for the Ricci scalar. Thus, taking into account the expression of the

TEGR Lagrangian in terms of the contortion tensor only (2.139), it can be verified that

•
L ≡

◦
L − ∂µ

(
h

8π

•
T νµν

)
,

◦
L = − 1

16π

√
−g

◦
R. (2.156)

So, as claimed, the TEGR Lagrangian is the same as the Einstein-Hilbert up to a bound-
ary term depending only on torsion

B = ∂µ

(
h

8π

•
T νµν

)
. (2.157)

We will refer to this boundary term as the TEGR boundary term and later it will be of
central importance.

2.4 Gravitational coupling prescription and particle me-
chanics

We now tackle the problem of the gravitational coupling prescription. In TEGR exists a
coupling prescription completely equivalent to the gravitational coupling in GR [6]. The
TEGR coupling is composed out of two parts:

• Translational coupling prescription. It is universal and it comes from the require-
ment of translational gauge invariance.
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• Lorentz coupling prescription. It is non-universal, since it depends on the matter
content, and it comes from the requirement of local Lorentz invariance.

Let us begin with the translational coupling prescription. The minimal coupling prescrip-
tion in gauge theories amounts to substitute ordinary derivatives with gauge covariant
derivatives. Considering a generic matter field Ψ, it amounts to substitute

∂µΨ→ hµΨ. (2.158)

Where hµ is the translational covariant derivative. Rewriting this equation as

Ea
µ∂aΨ→ haµ∂aΨ, (2.159)

we see that the minimal translational coupling is equivalent to substitute a trivial tetrad
with a nontrivial tetrad

Ea
µ → haµ. (2.160)

Fundamentally, this substitution is equivalent to the replacement

ηµν → gµν , (2.161)

since Ea
µ and haµ satisfy the relations ηabEa

µE
b
ν = ηµν and ηab h

a
µ h

b
ν = gµν , respec-

tively. Let us now consider the Lorentz part of the coupling. The requirement of local
Lorentz covariance introduces, even although it is not a dynamical symmetry, an ad-
ditional coupling that, loosely speaking, amount to substitute ordinary with Lorentz
covariant derivatives. The Lorentz coupling can be obtained from the general covariance
principle [6], and it amounts to perform the substitution

∂aΨ→ DaΨ = haΨ−
i

2

(
Abca −Kbc

a

)
SbcΨ. (2.162)

Combining now the translational coupling prescription (2.159) and the Lorentz coupling

prescription (2.162), and using the TEGR spin connection
•
Aabc and its contortion, we

arrive to the full gravitational coupling prescription

Ea
µ∂aΨ→ haµDaΨ = haµ

[
haΨ−

i

2

( •
Abca −

•
Kbc

a

)
SbcΨ

]
. (2.163)

It is immediate to see that the full gravitational coupling can be written also as

∂µΨ→
•
DµΨ = ∂µΨ− i

2

( •
Abcµ −

•
Kbc

µ

)
SbcΨ. (2.164)
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Recall that for a Lorentz vector φd the Lorentz generators are (Sbc)
a
d = i(δab ηcd − δab ηbd).

Thus we have SbcΨ ≡ (Sbc)
a
dφ

d. Then, for example, the full gravitational coupling
prescription for Ψ ≡ φd takes the form

∂µφ
d →

•
Dµφ

d = ∂µφ
d +

( •
Adcµ −

•
Kd

cµ

)
φc. (2.165)

The corresponding spacetime version is obtained contracting with the tetrads [6], and it
reads

∂µφ
ρ →

•
∇µφ

ρ = ∂µφ
ρ +

(
•

Γρλµ −
•
Kρ

λµ

)
φλ. (2.166)

We notice that, because of the relation (2.27)

◦
Aabc =

•
Aa bc −

•
Ka

bc, (2.167)

the TEGR gravitational coupling is equivalent to the GR gravitational coupling

•
DµΨ =

◦
DµΨ. (2.168)

From the gravitational coupling, we can derive the equation of motion of test particles
using a variational principle. We begin with the equation of motion of free particles.
Then, using the coupling prescription, we obtain the equation of motion of gravitationally
coupled test particles. We present now the equivalence with the geodesic motion. We
begin with Minkowski spacetime, whose quadratic spacetime interval reads

dσ2 = ηµνdx
µdxν . (2.169)

Recalling that the four-velocity is defined as uµ = dxµ
dσ

, we can express the spacetime
interval as

dσ = uµdx
µ =

(
Ea

µua
)

(E µ
c E

c) = uaE
a, (2.170)

where we have used that Ea
µE

µ
c = δac . Then, the action functional for a free particle of

mass m is given by

S = −mc
∫
dσ = −mc

∫
uaE

a. (2.171)

Remembering that a trivial frame can be expressed as (cf. (2.58))

Ea = dxa +
•
Aabµx

bdxµ, (2.172)

our action functional is now written as

S = −mc
∫
ua

(
dxa +

•
Aabµx

bdxµ
)
. (2.173)
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Taking the variation under spacetime coordinates change xµ → xµ + δxµ, and using

δxa = ∂µx
aδxµ, δ

•
Aabµ = ∂ρ

•
Aabµδx

ρ, (2.174)

one can arrive at the variation [6]

δS = mc

∫ [
Ea

µ

(
dua
dσ
−
•
Abaρubu

ρ

)]
dσδxµ. (2.175)

Imposing δS = 0 and using the arbitrariness of δxµ, we obtain the equation of motion
for a free particle

dua
dσ
−
•
Abaρubu

ρ = 0. (2.176)

We can easily obtain the equation describing the motion of particles interacting with
gravity following the gravitational coupling prescription. In equation (2.171) we easily
substitute the trivial tetrad with a nontrivial tetrad (since there are no derivatives). One
obtains the action functional for a gravitationally interacting particle of mass m in the
form

S = −mc
∫
ds = −mc

∫
uah

a, (2.177)

where ds is the spacetime interval

ds = uµdx
µ = uah

a, (2.178)

obtained from ds2 = gµνdx
µdxν with the same steps as before. Taking now the variation

of (2.177) with respect to spacetime coordinates and using

δxa = ∂µx
aδxµ, δ

•
Aabµ = ∂ρ

•
Aabµδx

ρ, δBa
µ = ∂ρB

a
µδx

ρ (2.179)

one obtains

δS = mc

∫ [
haµ

(
dua
ds
−
•
Abaρubu

ρ

)
−
•
T bµρubu

ρ

]
ds δxµ. (2.180)

Then, the equation of motion is

dua
ds
−
•
Abaρubu

ρ =
•
T baρubu

ρ. (2.181)

Making use of the identity
•
T baρubu

ρ = −
•
Kb

aρubu
ρ, (2.182)

the equation of motion for the gravitationally interacting particle becames

dua
ds
−
•
Abaρubu

ρ = −
•
Kb

aρubu
ρ, (2.183)
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while its contravariant form is easily found to be
dua

ds
+
•
Aabρu

buρ =
•
Ka

bρu
buρ. (2.184)

These equations are the teleparallel version of the equations of motion for a particle of
mass m in a gravitational field. As already claimed, they are force equations in which the
contortion (or torsion) tensor takes the role of gravitational force. Now, from equation
(2.184) is easy to see the equivalence with the geodesic equation. Contracting with the
tetrads and using the tetrad postulate (2.13), it becames

duµ

ds
+
•

Γµρνu
ρuν =

•
Kµ

ρνu
ρuν , (2.185)

and through the equation
•

Γµρνu
ρuν −

•
Kµ

ρνu
ρuν =

◦
Γµρνu

ρuν (2.186)

we find that (2.185) is exactly the usual geodesic equation.

2.5 Energy and momentum of the gravitational field
We close our introduction to TEGR by presenting one last interesting result. That is the
opportunity to obtain in TEGR a true tensorial expression for the energy-momentum ten-
sor for gravity. This intriguing result is due to the possibility of separating gravitational
and inertial effects by the means of an appropriate spin connection. Indeed, gravitation
is represented by the translational gauge potential, while inertia by the purely inertial
spin connection. Now, the sourceless gravitational field equation of TEGR is (2.143)

∂ν

(
h

•
S µν
a

)
− kh

•
J µ
a = 0, (2.187)

where, we recall for readability, that the superpotential is (2.135)
•
S µν
a = −

•
S νµ
a =

•
Kµν

a − h ν
a

•
T σµσ + h µ

a

•
T σνσ, (2.188)

while the energy-momentum current is given by

•
J µ
a = −1

h

∂
•
L

∂haµ
=

1

k
h ρ
a

•
S σµ
c

•
T cσρ −

h µ
a

h

•
L+

1

k

•
Acaσ

•
S µσ
c . (2.189)

The central point is that the term of the field equation containing the derivative of the
superpotential and the last term of the expression for

•
J µ
a (the one proportional to the

spin connection) make up a Lorentz covariant derivative

∂ν

(
h
•
S µν
a

)
−

•
Acaσ

(
h
•
S µσ
c

)
=

•
Dν

(
h
•
S µν
a

)
, (2.190)
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that acts on the algebraic indices only. Consequently, we can re-express the field equa-
tions as

•
Dν

(
h

•
S µν
a

)
− kh

•
t µa = 0, (2.191)

where
•
t µa , absorbing the last term of equation (2.189) in the Lorentz covariant derivative

•
Dν , is given by

•
t µa =

1

k
h ρ
a

•
S σµ
c

•
T cσρ −

h µ
a

h

•
L, (2.192)

which is a tensorial current. Taking now into account that[
•

Dµ,
•

Dν

]
= 0, (2.193)

since the TEGR spin connection has vanishing curvature (differently to GR), we arrive
to conclude that

•
Dµ

(
h
•
t µa

)
= 0, (2.194)

because of the antisymmetry of the superpotential
•
S µν
a = −

•
S νµ
a . Then, we see that

we can interpret
•
t µa as the energy-momentum density of the gravitational field only.

Basically we have split the non-covariant energy-momentum current as

•
J µ
a =

•
t µa +

•
I µ
a , (2.195)

where
•
I µ
a =

1

k

•
Acaσ

•
S µσ
c (2.196)

can now be interpreted as the energy-momentum density of inertial effects. We recall
that the covariant conservation law (2.194) does not lead to a conserved quantity, while
instead we see, once again because of the antisymmetry of the superpotential, that the
total non-covariant energy-momentum current satisfies a true conservation law

∂µ

(
h
•
J µ
a

)
= 0. (2.197)

Thus, we can say that the usual expressions for the gravitational energy-momentum
density are pseudotensors because they contain, in addition to the energy-momentum
density of gravitation, a contribution coming from inertial effects. We conclude with an
important observation for the following sections. If one makes use of the identity

∂ρh = h
◦
Γννρ = h

(
•
Γνρν −

•
Kν

ρν

)
, (2.198)
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the conservation law ∂ρ(h
•
J ρ
a ) = 0 can be rewritten in the covariant form

•
Dρ

•
J ρ
a ≡ ∂ρ

•
J ρ
a +

(
•
Γρλρ −

•
Kρ

λρ

) •
J λ
a = 0, (2.199)

where
•
Dρ is the so-called teleparallel covariant derivative. Next, we notice that

•
t ρµ ,

equation (2.148), is not merely the gauge current
•
J ρ
a with the internal index changed to

a spacetime index. Indeed, from the derivative term in equation (2.143), we get an extra
piece

•
t ρλ = haλ

•
J ρ
a + k

•
Γµλν

•
S ρν
µ . (2.200)

We can as well notice that, like the gauge current (h
•
J ρ
a ), also the pseudo tensor (h

•
t ρµ )

is conserved because of the field equations

∂ρ(h
•
t ρµ ) = 0. (2.201)

However, because of the pseudotensorial character of
•
t ρµ , this conservation law cannot

be expressed with the Teleparallel covariant derivative. Moreover, it can be shown that
it corresponds exactly to the Möller energy-momentum pseudotensor. Due to these
features, we can say that the gauge current, which is a true spacetime and gauge tensor,
it is an improved version of the older Möller expression [8] and so we will use

•
J ρ
a to

define an energy-momentum vector.

36



Chapter 3

Black Hole Thermodynamics and path
integrals in General Relativity

In this chapter, we introduce the theoretical tools that we will use to study BH ther-
modynamics in Teleparallel Gravity. We begin by presenting the calculation of the
Schwarzschild BH entropy and energy from the Euclidean Path integral, mainly follow-
ing [1–3]. After that, we give a tool to study one-loop corrections to the partition func-
tion, the heat kernel method. For the heat kernel method we will mostly follow [10,12,14].

3.1 Black Holes Thermodynamics and the Euclidean
action in GR

The basic idea of the path integral approach to BH thermodynamics is to exploit the
well-known formal analogy between the canonical partition function and the Euclidean
path integral with periodic boundary conditions. We briefly recall this analogy using a
scalar field. The partition function of a canonical ensemble at temperature T = 1/β is
obtained from its density matrix ρ = e−βH as

Z(β) = tr e−βH =
∑
φ1

〈φ1|e−βH |φ1〉 . (3.1)

The path integral computes instead the amplitude

〈φ2, t2|φ1, t1〉 = 〈φ2| e−iH(t2−t1) |φ1〉 =

∫
Dφ eiS[φ]. (3.2)

Now, let’s perform a Wick’s rotation setting t2 − t1 = −iβ. We can notice that this
means that we are imposing that the field is periodic in imaginary time with period β.
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Then, we impose periodic boundary conditions for the field φ1 = φ2 and, summing over
φ1, we have

Z(β) =

∫
Dφ e−SE [φ]. (3.3)

In the previous equation, SE is the Euclidean action and the Euclidean path integral
is computed over fields with periodic boundary conditions and which are periodic in
imaginary time with period β. Then, the partition function for a d-dimensional theory
on the sphere Sd−1, that is the relevant case for a Schwarzschild BH, is the path integral
on Sd−1×S1, where S1 represent the periodically identified Euclidean time [1]. Including
the metric in our set of fields, the Euclidean path integral is

Z =

∫
DgDφ e−SE [g,φ], (3.4)

As in the previous case, its meaning depends on boundary conditions. Then, for a 4-
dimensional theory, one defines the partition function Z(β) as the Euclidean path integral
evaluated on a Euclidean manifold given by S3 × S1, so that its boundary is given by
a 2-sphere of radius r = r0 = const times a circle of circumference β (representing
again the periodically identified imaginary time axis). Topologically, the boundary of
the spacetime is, in this case, simply given by

S2 × S1,

and so is compact. We approximate now the expression for Z(β) by Taylor expanding
SE around the background fields (a solution of the classical equation of motion obeying
the correct boundary condition) ḡ and φ̄

Z(β) = exp
(
−SE[ḡ, φ̄]

) ∫
DgDφe−(SE)2[δg,δφ]+.... (3.5)

where g = ḡ+δg, φ = φ̄+δφ and (SE)2 is quadratic in the perturbations δg, δφ. The first
term (i.e., the classical action) in the semiclassical approximation to the path integral it
is the leading term. The second term gives 1-loop corrections, which will be considered
later. Thus, at the leading order the free energy is given by the Euclidean action

lnZ(β) ≈ −SE[ḡ, φ̄]. (3.6)

Then, recalling that lnZ(β) = S − βE, we have

S = (1− β∂β) lnZ(β), E = −∂β lnZ(β). (3.7)

Since our goal is to compute the Euclidean action for a Schwarzschild BH, we begin by
introducing the Euclidean Schwarzschild BH, obtained from a Wick’s rotation.
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3.1.1 Euclidean Schwarzschild Black Hole

The Euclidean Schwarzschild black hole is obtained by performing a Wick’s rotation τ =
−it of the usual Lorentzian solution. Using Kruskal-Szekeres coordinates {T,X, θ, φ}, we
have instead to define the Euclidean Kruskal time T = iT . We are going to see that this
implies that Euclidean BH has no interior and that τ takes values in a circle of length
8πM . To see this, consider the relation between the Schwarzschild time and X,T

X + T

X − T
= e

t
2M . (3.8)

Defining the imaginary time by τ = it from this equation, it follows that, to avoid conical
singularity on the horizon, τ has to be periodic with period 8πM [3]. This result can as
well be derived as follow. We start with the Schwarzschild solution

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2dΩ2
2. (3.9)

Then, we set
(
1− 2M

r

)
= f(r), and we make the coordinates transformation

f(r) ≈ ε2, or r = 2M(1 + ε2). (3.10)

Expanding (3.9) for small ε, we obtain

ds2 = −ε2dt2 + 16M2dε2︸ ︷︷ ︸
Rindler

+4M2dΩ2
2 + ... (3.11)

where the {t, ε} piece is the Rindler metric ds2 = −R2dη2 + dR2, after appropriate
rescaling. Rindler metric is related to polar coordinates ds2 = dR2 + R2dθ2 through
η = iθ, in which θ is a periodic variable: θ ≈ θ+ 2π. Therefore, we take η to be periodic
in the imaginary direction

η ∼ η + 2πi. (3.12)

Looking now at equation (3.11), which relates the vicinity of the black hole horizon to
Rindler space, we conclude that the Schwarzschild time has periodicity

t ∼ t+ 8iπM. (3.13)

Recall now the relation between the Schwarzschild radius and X,T( r

2M
− 1
)
e

r
2M = X2 − T 2. (3.14)

If we now set T = iT , this equation becames( r

2M
− 1
)
e

r
2M = X2 + T 2 > 0 (3.15)
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from which we see that the interior of the BH r < 2M is not covered by the Euclidean
coordinates {X, T }. In other words, we can say that, in the Euclidean section, r must
be equal or greater than 2M . With these results at hand, we define the Euclidean
Schwarzschild BH as

ds2 =

(
1− 2M

r

)
dτ 2 +

dr2

1− 2M
r

+ r2dΩ2
2, (3.16)

with the Euclidean time τ periodic with period 8πM

τ ∼ τ + 8πM. (3.17)

Moreover, Euclidean BH has no interior or singularity. Therefore, we recover the well-
known result TH = 8πM for the Hawing temperature of a Schwarzschild BH, which is
usually obtained studying QFT on curved background [19]. We conclude this section by
noticing that the Euclidean BH has just the correct boundary conditions to obtain the
partition function from the path integral.

3.1.2 The Gibbons-Hawking-York term

Before arriving at the explicit calculation of the Euclidean action, we have to address
one last problem. We have said that the Euclidean path integral will give the partition
function if we compute it on a manifold with topology Sd−1×S1. To tackle divergences in
the partition function for the Schwarzschild BH, the best strategy is to cut the spacetime
at some large r, and at the end of the calculations send r → ∞. Besides a needed
regularization procedure developed in [3] that we will consider later, we have to recall
that in presence of a spacetime boundary, which for us is S2×S1, we have to add another
piece to the usual Einstein-Hilbert Lagrangian, called the Gibbons-Hawking-York term
(GHY). The GHY is required to have a well-defined variational principle, i.e., to obtain
the correct Einstein equations. Alongside this somewhat "formal" need of the GHY, we
have as well a very good physical reason to add it, concerning BH thermodynamics from
path integrals. Indeed, the Einstein-Hilbert action for a Schwarzschild BH is zero and,
consequently, the full contribution to the classical action comes from GHY. Without
adding it one would obtain a vanishing partition function. We now briefly recall in some
more details how the GHY term is introduced. To do that, let’s start by computing the
variation of the GR action with respect to the metric. It is a standard computation [15]
to show that

(16π) δSEH =

∫
M

d4x δ

(√
−g gαβ

◦
Rαβ

)
=

∫
M

d4x
◦

Gαβ

√
−gδgαβ +

∮
∂M

δ
◦
Aµnµ

√
|h|d3y,

(3.18)
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where
δ
◦
Aµ = gαβδ

◦
Γµαβ − gαµδ

◦
Γβαβ, (3.19)

in which
◦
Γµαβ is the Levi-Civita connection. We recall that, in our notation, quantities

with the empty circle above are computed with respect to the Levi-Civita connection.
To obtain this equation, we have used

δ
√
−g = −1

2

√
−ggαβδgαβ (3.20)

δ
◦

Rαβ =
◦
∇µ

(
δ
◦
Γµαβ

)
−
◦
∇β

(
δ
◦
Γµαµ

)
. (3.21)

The second term in equation (3.18) is exactly the one which is cancelled by the GHY
term. It can be checked by an explicit calculation that if we define the boundary term

SGHY =

∮
∂M

K
√
|h|d3y, (3.22)

where ∂M is the spacetime boundary and K = nα;α is the trace of the extrinsic curvature
of the boudary, then the variation of equation (3.22) cancel out the boundary term in
(3.18). As a result, we arrive to the following equation

δStot = δSEH + δSGHY =
1

16π

∫
M

d4x
◦

Gαβ

√
−gδgαβ. (3.23)

In the previous equation

Stot = SEH + SGHY =
1

16π

∫
M

d4
√
−g

◦
R +

∮
∂M

K
√
|h|d3y (3.24)

is the total for the gravitational field in presence of a spacetime boundary.

3.1.3 BH Thermodynamics at the leading order in GR

Now we can finally evaluate the action. Of course, by Einstein equations, for a Schwarzschild
BH we have R = 0. Because of this, the full contribution to the Euclidean version of
(3.24) comes from the boundary term. The Schwarzschild Euclidean action can be writ-
ten as [3]

SE = − 1

16π

∫
M

d4x
√
gR− 1

8π

∫
∂M

d3y
√
hK. (3.25)

Evaluating now the GHY term on the 2-sphere × S1, we obtain

1

8π

∫
∂M

d3y
√
hK =

1

8π
[8πβr0 − 12πβM ] . (3.26)
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To regularize this result (it clearly explode sending r0 →∞), we consider a counter term
that lead to the Euclidean action

SE = − 1

16π

∫
M

d4x
√
gR− 1

8π

∫
∂M

d3y
√
hK +

1

8π

∫
∂M

d3y
√
hK0, (3.27)

where K0 is given by the extrinsic curvature for a flat space-time with the same boundary
∂M , which for Schwarzschild is S2 × S1. We notice that the counterterm depends only
on the induced metric h on the boundary. To compute the counterterm, we repeat the
previous calculation using the flat metric

ds2
subtraction =

(
1− 2M

r0

)
dτ 2 + dr2 + r2dΩ2

2. (3.28)

This leads to the counterterm [1]

1

8π

∫
∂M

d3y
√
hK0 =

1

8π
[8πβr0 − 8πβM + β O(1/r0)] . (3.29)

Considering this counterterm, which regulates the divergence, we arrive at the following
formula for the Euclidean action

SE =
βM

2
= 4πM2. (3.30)

The partition function at leading order is then

Z(β) = exp
(
−4πM2

)
= exp

(
− β2

16π

)
. (3.31)

From this result, we easily find from standard thermodynamics that

S = (1− β∂β) lnZ(β) = 4πM2

E = −∂β lnZ(β) = M.
(3.32)

We notice that S is in agreement with the "area law" of BH thermodynamics, S = Area/4
and that, physically, the last result means that the energy of a Schwarzschild BH entirely
comes from its rest mass.

3.2 One-loop Euclidean Effective Action and partition
function

Now we see a general method to study one-loop corrections to the Euclidean path integral.
We start recalling very briefly the general expression for the one-loop effective action [11].
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To this purpose, we consider for simplicity a scalar field φ(x). In the Euclidean theory
the generating functional is given by

Z[J ] =

∫
Dφ exp

(
−1

~
S[φ]−

∫
d4xJ(x)φ(x)

)
= exp

(
−1

~
E[J ]

)
, (3.33)

where E is the generating functional of the connected components of the n-points corre-
lation functions. In particular, the mean field Φ(x) in presence of the source J is given
by

Φ(x) = −δE[J ]

δJ(x)
=

1

Z[J ]

δZ[J ]

δJ(x)
. (3.34)

Assuming that this equation is invertible, we denote J [Φ] as the source which corresponds
to the mean field configuration Φ(x). We use this expression to define the effective action
Γ[Φ] as the Legendre transform of E[J ]

Γ[Φ] = E[J ]− J · Φ, (3.35)

where we have used the notation

J · Φ =

∫
d4xJ(x)Φ(x). (3.36)

The basic property of the effective action is that it is the generating functional of 1-
particle-irreducible Green’s functions. Differentiating with respect to the field Φ the
definition of the effective action, we obtain

δΓ[Φ]

δΦ
= −J [Φ](x). (3.37)

A useful expression of the effective action can be obtained combining equations (3.33),
(3.35) and equation (3.37). It reads

exp

[
−1

~
Γ[Φ]

]
=

∫
Dφ exp

[
−1

~

(
S −

∫
d4x

δΓ[Φ]

δΦ
(φ− Φ)

)]
. (3.38)

In addition, we recall that the effective action admit a formal expansion in powers of
~ [21]

Γ =
∞∑
n=0

~nΓ(n) = S + ~Γ(1) +O
(
~2
)
, (3.39)

where Γ(n) is the n-loop contribution to Γ and so S = Γ(0) is the classical action and Γ(1)

the one-loop contribution. Using the loop expansion (3.39) in equation (3.38) we can
find an expression for the one-loop effective action. Consider indeed the splitting

φ = Φ +
√
~ϕ. (3.40)
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Consequently, the classical action can be expanded as

S[Φ +
√
~ϕ] = S[Φ] +

∞∑
n=1

~n/2

n!

∫
dx1 . . . dxnSn(x1 . . . xn; Φ)ϕ(x1) . . . ϕ(xn), (3.41)

where
Sn(x1 . . . xn; Φ) =

δnS

δφ(x1) . . . δφ(xn)

∣∣∣∣
Φ

. (3.42)

To further simplify the following expressions, we introduce the notations∫
dx1 . . . dxnSn(x1 . . . xn; Φ)ϕ(x1) . . . ϕ(xn) ≡ Sn(Φ)ϕn, (3.43)

and
δΓ[Φ]

δΦ
≡ Γ1[Φ]

∫
dxϕ(x)

δΓ[Φ]

δΦ
≡ ϕΓ1[Φ]. (3.44)

Considering the notations just introduced and using (3.41) and (3.40), equation (3.38)
can be written as

exp

[
−1

~
Γ[Φ]

]
=

∫
Dϕ exp

[
− 1

~

(
S[Φ] +

~
2
S2ϕ

2 +
∞∑
n=3

~n/2

n!
Sn[Φ]ϕn+

−
√
~ϕ(Γ1[Φ]− S1[Φ])

]
.

(3.45)

With some very simple passages, the previous equation can be written as

exp

[
−1

~
(Γ[Φ]− S[Φ])

]
=

∫
Dϕ exp

[
− 1

2
S2[Φ]ϕ2 −

∞∑
n=3

~n/2−1

n!
Sn[Φ]ϕn+

+ ~−1/2ϕ(Γ1[Φ]− S1[Φ])

]
,

(3.46)

where we see that the effective action appear only in the combination Γ̄[Φ] ≡ Γ[Φ]−S[Φ].
Thus, from the loop expansion (3.39), we immediately get Γ̄[Φ] =

∑∞
n=1 ~nΓ(n), which

then represent the quantum corrections to the classical action. Inserting the expansion
of Γ̄[Φ] in equation (3.46), we can write it in the form

exp

[
−
∞∑
n=1

~n−1Γ(n)

]
=

∫
Dϕ exp

[
− 1

2
S2[Φ]ϕ2 −

∞∑
n=3

~n
2
−1

n!
Sn[Φ]ϕn+

+
∞∑
n=1

~−
1
2

+nϕ(Γ1)(n)

]
.

(3.47)
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This equation is the basis for the construction of a perturbation theory in powers of ~
known as loop expansion. Equation (3.47) in the one-loop approximation reads

exp
[
−Γ(n)[Φ]

]
=

∫
Dϕ exp

[
− 1

2
S2[Φ]ϕ2

]
. (3.48)

Recalling the rule for bosonic functional determinants∫
Dφ exp

[
−1

2

∫
φ∆φ

]
=

1

(det ∆)1/2
, (3.49)

we arrive at the following expression for the one-loop corrections to the effective action

Γ(1) =
1

2
ln det ∆φ, where ∆φδ(x, y) =

δ2S

δφ(x)δφ(y)

∣∣∣∣
Φ

. (3.50)

Dropping the subindex E, our free energy (3.5) at one-loop looks like

lnZ(β) ≈ −S[ḡ, φ̄] + ln

∫
D(δg) exp (−S2[δg]) + ln

∫
D(δφ) exp (−S2[δφ]) , (3.51)

where the first term is the leading one and the remaining two are the one-loop corrections
coming from the gravitational sector of the theory and from a scalar field minimally cou-
pled to gravity. Physically, the 1-loop corrections can be thought of as the contribution
from thermal gravitons and thermal scalar particles to the free energy. As we have seen,
the one-loop terms are obtained by Taylor expanding the action in the path integral.
Thus, roughly speaking, they are the Hessians matrices of the Euclidean GR action (its
second functional derivative) and of the action of a scalar field minimally coupled to
gravity. So, considering for simplicity only the scalar field, our one-loop corrections to
the partition function are given by

ln

∫
Dφ exp

(
−1

2

∫
δ2S

δφ(x)δφ(y)

∣∣∣∣
φ̄

ϕ(y)ϕ(x)d4xd4y

)
= −1

2
ln det ∆φ = −Γ(1) (3.52)

where the operator is given by

∆φ =
δ2S

δφ(x)δφ(y)

∣∣∣∣
φ̄

. (3.53)

3.3 Heat kernel method
The heat kernel method is a very general and useful method to study the divergent part of
the one-loop effective action. This section aims to introduce a general-enough algorithm
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for computing the divergent part of the effective action, which gives interesting pieces
of information about the theory, such as renormalizability properties and the form of
the necessary counterterms. As always throughout this essay, we work in the Euclidean
formulation of the theory. For simplicity, we begin presenting the method for a Euclidean
scalar field on a curved background, however, all the results can be obtained for a much
more general theory, as we will see below. We begin recalling the Euclidean formulation
of a scalar field minimally coupled to gravity. The action of a scalar field propagating
on a d-dimensional curved manifold with metric gµν is

S[φ, g] =
1

2

∫
ddx
√
−ggµν∂µφ∂νφ. (3.54)

Performing then a Wick’s rotation t = −iτ

iS[φ, g] = i
1

2

∫
dtdd−1x

√
−g [g00(∂tφ)2 − gij∂iφ∂jφ]

=
1

2

∫
dτdd−1x

√
−g [−g00(∂τφ)2 − gij∂iφ∂jφ] = −SE[φ, gE],

(3.55)

where
SE[φ, gE] =

1

2

∫
ddx
√
gE g

µν
E ∂µφ∂νφ, (3.56)

and
(gE)µν =

(
g00 0
0 gij

)
(3.57)

is a Euclidean metric, i.e., positive definite. Since we will always work on the Euclidean
manifold, we will drop the subindex E. Integrating by parts, and assuming that the
boundary conditions on the fields are such that we can do that without having any
boundary terms left out, we obtain

S[φ, g] =
1

2

∫
ddx
√
g φ∆φ, (3.58)

in which ∆ = −gµν∇µ∇ν is the covariant Laplacian. The heat kernel K∆(x, y; t) is a
solution of the heat equation

dΨ

dt
+ ∆Ψ = 0, (3.59)

describing diffusion processes on a manifold M with metric g over an external "time" t,
and satisfying boundary conditions

K∆(x, y; 0) = δ(x, y). (3.60)

46



Notice that t has dimensions of length squared. From the definition of the heat kernel,
we have that the field Ψ, at any time, can be expressed as

Ψ(x; t) =

∫
ddyK∆(x, y; t)Ψ(y; 0). (3.61)

We obtain then that the heat kernel satisfy an heat equation of the form

∂K∆(x, y; t)

∂t
+ ∆K∆(x, y; t) = 0 with K∆(x, y; 0) = δ(x, y). (3.62)

Thus, formally, we can write the heat kernel as

K∆(t) = e−t∆. (3.63)

Consider now the eigenvalue problem for the Laplacian

∆φn = λnφn, (3.64)

where λn are the eigenvalues and φn are orthonormal eigenvectors with respect to the
scalar product (φn, φm) =

∫
M
ddx
√
gφn(x)φm(x) = δnm. Then, from equation (3.63), we

can obtain the heat kernel in terms of the eigenfunctions

K∆(x, y; t) =
∑
n

φn(x)φn(y) e−tλn , (3.65)

called spectral decomposition. We will be mainly interested in the trace of the heat
kernel

TrK∆(t) =

∫
ddx
√
gK∆(x, x; t) =

∑
n

e−tλn . (3.66)

This is because we can formally express the effective action in terms of it, using the
generalized ζ-function. Indeed, changing variable t̄ = λt in the definition of the gamma
function Γ(s) =

∫∞
0
dt̄ t̄s−1 exp{−t̄}, we have

λ−s =
1

Γ(s)

∫
dt ts−1 exp{−λt}. (3.67)

Then the ζ-function ζ∆(s) =
∑

n λ
−s
n can be written as

ζ∆(s) =
1

Γ(s)

∫ ∞
0

dt ts−1TrK∆(t). (3.68)

It is well-know [17, 18] that we can express the one-loop effective action through the
derivative of the ζ-function

1

2
ln det ∆φ =

1

2
Tr ln ∆ = −1

2

∑
n

d

ds
λ−sn = − d

ds
ζ∆(s)|s=0. (3.69)
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From this equation, using (3.68) and ignoring that the integrals are divergent, we have
the formal expression for the one-loop effective action

Γ = −1

2

∫ ∞
0

dt t−1TrK∆(t). (3.70)

So, we can express the effective action in terms of the trace of the heat kernel. This
expression is formal in the sense that it is actually divergent. Indeed, without setting
s = 0 in equation (3.69), we could write the "effective action" as a function of s as [14]

Γs = −1

2
µ2s

∫ ∞
0

dt ts−1TrK∆(t)

= −1

2
µ2sΓ(s)ζ∆(s),

(3.71)

where µ is a mass parameter introduced to have the effective action with the proper
dimension. Recall now that in s = 0 the gamma function has a simple pole

Γ(s) =
1

s
− γE +O(s), (3.72)

in which γE is the Euler-Mascheroni constant. We see in this way that in s = 0 the
effective action (3.71) also has a pole. We are about to see how, in general, we can
obtain the form of this divergence. Notice that, since the parameter t has dimension of
inverse squared length, the lower end of the integration range in (3.70) corresponds to
the ultraviolet (UV) while the upper end corresponds to the infrared (IR) divergences.
Then, to explicitly see the UV divergences, one introduces an UV cut-off ΛUV and a
finite reference mass µ < ΛUV and then, finally, one can split the integral

∫∞
1/Λ2

UV
=∫ 1/µ2

1/Λ2
UV

+
∫∞

1/µ2
. Now, if ∆ does not have negative or zero eigenvalues [12], the second piece

is convergent. Instead, in the piece containing the UV divergences, we need an "early-
time" expansion of the trace of the heat kernel, i.e., an expansion of TrK∆(t) valid for
small t. This early-time expansion is well-known in the mathematical literature, however,
without the pretension of being too formal, we can intuitively obtain such expansion. We
consider that in flat spacetime the heat kernel equation can be solved through Fourier
analysis. We denote the coordinates as d-dimensional vectors ~x. In flat spacetime the
heat equation (3.62) can be rewritten in terms of the Fourier transform K̃∆(~q, ~y; t) as

dK̃∆(~q, ~y; t)

∂t
+ q2K̃∆(~q, ~y; t) = 0 with K̃∆(~q, ~y; 0) = e−~q·~y. (3.73)

The solution is then K̃∆(~q, ~y; t) = e−q
2t−~q·~y. From the inverse Fourier transform then we

obtain
K∆(~x, ~y; t) =

∫
d~q

(2π)d
e−q

2t−~q·(~x−~y) =
1

(4πt)d/2
e
|~x−~y|2

4t . (3.74)
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And so the trace of the heat kernel (3.66) is

TrK∆(t) =
V

(4πt)d/2
, (3.75)

where V is the infinite volume of the manifold. Now comes the point. Since locally
every manifold looks like a flat manifold, for t → 0 the trace of the heat kernel has to
reduce to equation (3.75). Because deviations from the flat space are represented by the
curvature we expect that the corrections to (3.75) in curved spacetime are proportional
to curvature invariants. The easiest form of the "corrected" trace of heat kernel for t→ 0
is then a power law of the form

TrK∆(t) ≈ 1

(4πt)d/2
[
B0(∆) + tB2(∆) + t2B4(∆) + ...

]
, (3.76)

where
Bn(∆) =

∫
d4x
√
g bn(∆), (3.77)

and bn(∆) are constructed in terms of the curvature and its covariant derivatives. Now
we can fix the dependence of bn(∆) on the curvature and its covariant derivatives by
dimensional analysis. For dimensional reasons bn(∆) must contain n-derivatives of the
metric tensor. Then b2(∆) ∝ R, while b4(∆) ∝ RµναβR

µναβ, RµνR
µν , R2,∇2R and so

on. This line of reasoning left undetermined the numerical coefficients of the expansion,
which however can be determined with iterative procedures [18]. The final result for the
coefficients appearing in the early-time expansion of the trace of the heat kernel for the
covariant Laplacian is

b0(x, x) = 1

b2(x, x) =
1

6
R

b4(x, x) =
1

180

(
RαβµνR

αβµν −RµνR
µν +

5

2
R2 + 6∇µ∇µR

)
.

(3.78)

These coefficients are known as HAMIDEW coefficients [16]. We can use them to obtain
the divergent part of the effective action. We have previously introduced the decom-
position

∫∞
1/Λ2

UV
=
∫ 1/µ2

1/Λ2
UV

+
∫∞

1/µ2
of the integral in equation (3.70). Inserting now the

early-time expansion (4.82) in the first piece of this decomposition, we can write the
effective action as

Γdiv =− 1

2

1

(4π)d/2

∫
ddx
√
g

∫ 1/µ2

1/Λ2
UV

dt
[
t−

d
2
−1b0 + t−

d
2 b2 + ... + t−1bd + ...

]
= −1

2

1

(4π)d/2

∫
ddx
√
g

[
Λd
UV

d/2
b0 +

Λd−2
UV

d
2
− 1

b2 + ...+ ln
Λ2
UV

µ2
bd + finite terms

]
(3.79)
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where the coefficients bn are listed in (3.78). Some comments are in order. Notice
that the first diverging term is proportional to the volume of the spacetime and can
absorbed in the definition of the cosmological constant, renormalizing it. The second
term is proportional to the Einstein-Hilbert action and so can be used to renormalize
the Newton’s constant [22]. The most interesting it is the third terms, since it tells us
that to renormalize the theory we have to add to the action terms which are second order
in curvature and have essentially the form of b4.

This construction can be greatly generalized substituting to ∆ a generic differential
operator F (∇), where ∇ = ∇R+ω do not contain only the usual Levi-Civita connection
but as well a gauge connection, and it contains, in addition, a so-called potential term
(see below). All the equations obtained in this section, excluding of course the result for
the HAMIDEW coefficient, are valid also in this much more general framework replacing
∆→ F (∇). In the next section, we will see some of these generalizations.

3.3.1 Generalizations and Master Formula

We have presented the heat kernel method for a scalar field on a curved background.
However, it can be extended to compute the one-loop divergences in any QFT. In partic-
ular, we present now the result for the HAMIDEW coefficients for a much more general
second-order differential operator, with form −gµν∇µ∇ν + E, where E is an endomor-
phism called potential term. For our work, we do not strictly need such generalizations,
but we very briefly present it for the sake of completeness. Following reference [12], we
consider covariant derivatives that, very schematically, reads ∇ = ∂ +A+ω; where A is
the spin connection associated to the usual torsion-free Levi-Civita connection (see our
discussion in section (1.1.1)), and ω is a gauge connection (gauge potential). Let us be
now more precise. Let us consider a quantum field Ψ. This field has a given mass and
spin, which means that it transforms in some well-defined representation σ of the Lorentz
group SO(1, 3). The field Ψ transforms also under a gauge group G, which identifies a
principal bundle P , in some representation ρ. The representation ρ identifies one of the
associates of P , let us call it V . Thus, the field Ψ carries two kinds of indices Ψ ≡ Ψi

A.
In this expression the index A is an index in the space S carrying the representation σ
(it is a Lorentz index), while i is an index in the space V carrying the representation ρ
(it is a gauge index). We can then introduce the "full" covariant derivative of Ψi

A as

∇µΨi
A = ∂µΨi

A + Aabµ(σab)
B
A Ψi

B + ωmµ(ρm)i jΨ
j
A. (3.80)

where Aabµ is the GR spin connection and ωmµ is a gauge potential. In addition, σab are
the generators of the Lorentz group in the representation σ. Instead, (ρm)i j, where m is
an index of the Lie algebra of the gauge group G, are the generators of G in the repre-
sentation ρ. We recall that this covariant derivatives can be equivalently written, using
the tetrad postulate, through the usual Levi-Civita connection instead of a spin con-
nection. In particular, there are no differences concerning the values of the HAMIDEW
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coefficients below. Let us define now a generalization of the Laplacian, given by

− gµν∇µ∇ν , (3.81)

where now ∇ is the covariant derivative (3.80). We also assume that the action can be
written as

S(Ψ;A, ω) =
1

2
G(Ψ,∆Ψ) with G(Ψ,Ψ′) =

∫
dx
√
gGAB

ij Ψi
AΨj

B, (3.82)

where GAB
ij is a metric in the field space and ∆ is a general second order differential

operator with the form
∆ = −gµν∇µ∇ν + E, (3.83)

where E ≡ E B
A

i

j is and endomorphism of S ⊗ V , called potential term. Repeating step
by step the calculations of the previous section we arrive to the following expression of
the effective action, called master formula

Γdiv = −1

2

1

(4π)d/2

∫
ddx
√
g

[
Λd
UV

d/2
b0 +

Λd−2
UV

d
2
− 1

b2 + ...+ ln
Λ2
UV

µ2
bd + finite terms

]
.

(3.84)
Where now the HAMIDEW coefficients for the operator (3.83) are given by [12]

b0(x, x) = tr1

b2(x, x) =
1

6
R1− trE

b4(x, x) =
1

180

(
RαβµνR

αβµν −RµνR
µν +

5

2
R2 + 6∇µ∇µR

)
tr1

+
1

2
trE2 − 1

6
RE +

1

12
trΩµνΩ

µν − 1

6
∇2trE.

(3.85)

In the previous formulae Ωµν is the so called gauge bundle curvature, defined by the
commutation relations

[∇µ,∇ν ]Ψ = ΩµνΨ, (3.86)

where ∇ is the covariant derivatives (3.80). So Ωµν , for a gauge theory on flat space, is
just the field strength of the gauge field. The Riemann tensor is instead defined from
the commutator of covariant derivatives (3.80), but acting on a spacetime vector V µ

[∇ρ,∇σ]V µ = Rµ
αρσV

α. (3.87)

Finally, 1 in equation (3.85) is the identity in S ⊗ V . Thus, tr1 is equal to the product
of the dimensions of the spaces carrying the representations σ and ρ. We conclude this
chapter by mentioning that further generalizations of the heat kernel method exist. In
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particular, we have presented the heat kernel method for operators such as (3.83), whose
principal symbol, defined as the higher derivative term with the derivatives replaced
by a vector pµ, is given by p2 = gµνpµpν . This type of operators are called minimal
operators. However, exist a generalization [10] of the method for operators whose second
derivatives do not form a d’Alembertian, the so-called non-minimal operators. The
authors, in [10, 11], develop the method also for operators of any order, provided they
satisfy some causality conditions. To conclude, we signal that another generalization,
for Riemann-Cartan spacetimes, exists and it can be found in the intresting article [13].
However, since we will do not need this results, we do not explicitly report the values for
the HAMIDEW coefficients.
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Chapter 4

Black Hole Thermodynamics and path
integrals in TEGR

This chapter aims to study the thermodynamics of the Teleparallel equivalent of a
Schwarzschild black hole. In particular, we derive the thermodynamical entropy and
energy from the path integral, following the lines of chapter 2. To begin with, we con-
sider the partition function at the leading order and so our first job is to evaluate the
classical TEGR action. One-loop corrections are considered at the end of the chapter.

4.1 Euclidean TEGR action for the path integral
To begin with, we find the Teleparallel description of the Euclidean Schwarzschild black
hole. We recall that such a BH, which is static, can be obtained from the Lorentzian BH
by means of a naïve Wick rotation of the time coordinate t = −iτ . Consequently, the
Euclidean Schwarzschild metric is given by

ds2 =

(
1− 2M

r

)
dτ 2 +

dr2

1− 2M
r

+ r2dΩ2
2. (4.1)

Essentially, we have to find the (Euclidean) tetrads corresponding to this metric. Instead
of solving the field equations, we use equation (2.6). To this purpose, we notice that
applying the Wick rotation t = −iτ , the Minkowski metric in the tangent space get
replaced by (ηE)ab = δab = diag(+1,+1,+1,+1) and, thus, equation (2.6) becames

(gE)µν = (ηE)ab(hE)aµ(hE)bν , (4.2)

where (gE)µν is the Euclidean metric and (hE)aµ the corresponding Euclidean tetrad.
Since we will always work in Euclidean signature, in the following we will usually refer
to Euclidean quantities without any particular sign.
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In the next subsections, we will see that the TEGR boundary term is equal to the
GHY term, and, thus, the TEGR action (2.156) "behaves" under Wick rotation as the
GR action in presence of a spacetime boundary, i.e., the Einstein-Hilbert action plus
GHY. Indeed, we will consider as (classical) Euclidean action in TEGR the usual GR
Euclidean action with the GHY term replaced by the TEGR boundary term, see equation
(4.5) below. Further, we will see that for the actual calculations of SE, we need only the

r-component of the torsion vector
•
T νµν , which remains unchanged under Wick rotation.

Using now equation (4.2) and the Euclidean Schwarzschild metric, it is immediate to find
(up to local Lorentz transformations) the diagonal Euclidean nontrivial tetrads

h µ
a = diag(f(r)−

1
2 , f(r)

1
2 , r−1, r−1 sin−1 θ)

haµ = diag(f(r)
1
2 , f(r)−

1
2 , r, r sin θ),

(4.3)

where f(r) =
(
1− 2M

r

)
. To compute the (classical) Euclidean action in a Teleparallel

context, we start by considering the Lagrangian (2.156), which establish the equivalence
between TEGR and GR up to a boundary term. Taking (2.156) and (3.27) into account,
and performing a Wick’s rotation, one could try to consider in TEGR an Euclidean
action of the following form

SE =− 1

16π

∫
◦
M

d4x
√
g
◦
R− 1

8π

∫
∂
◦
M

d3y
√
hK +

1

8π

∫
∂
◦
M

d3y
√
hK0

− 1

8π

∫
•
M

∂µ

(
√
g
•
T νµν

)
d4x+

1

8π

∫
•
M

∂µ

(
√
g
•
T νµ0 ν

)
d4x.

(4.4)

In the previous equation,
◦
M is the usual Euclidean Schwarzschild spacetime, therefore

we have
◦
R = 0. ∂

◦
M is instead its boundary, which, topologically, as defined before, is

S2×S1. So the first three terms are the same as in Euclidean GR. We recall that in our
notation the empty circle just indicates quantities in GR. Indeed, the second term is the
GHY term, and the third one is the counterterm (3.29). In the last two terms, instead,

•
M

is the Teleparallel spacetime equivalent to
◦
M , which correspond to a flat space endowed

with the appropriate Weitzenböck connection,
•
M = (R4,

•
Γρµν). The fourth term comes

from the Lagrangian (2.156), whereas the last one is another needed counterterm defined
as the same expression of the fourth term, but computed in absence of gravity, i.e., using
a trivial tetrad field (see below). However, as we are about to show that the choice
(4.4) is not the right one since adding the GHY term (and its regularization) actually is
redundant. This is because the boundary term (2.156), due only to torsion, can already
eliminate the boundary terms coming from the variation of the Einstein-Hilbert action in
presence of a spacetime boundary. In other words, the TEGR boundary term of equation
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(2.156) plays the role of the GHY, becoming pointless to add it in (4.4). Indeed, we are
going to see that

SE = − 1

16π

∫
◦
M

d4x
√
g
◦
R− 1

8π

∫
•
M

∂µ

(
√
g
•
T νµν

)
d4x+

1

8π

∫
•
M

∂µ

(
√
g
•
T νµ0 ν

)
d4x, (4.5)

is the right choice for the Euclidean action. We present now some computations showing
this claim.

4.1.1 Equivalence between the GHY term and the TEGR bound-
ary term

One could suspect that GHY should not be taken into account by noticing that, ul-
timately, we need to add GHY in GR because the Lagrangian contains second-order
derivatives of the metric. Indeed, a schematic variation of the Einstein-Hilbert action
leads to [1]

δ

∫
M

√
gR ∼

∫
M

(eom)δg +

∫
∂M

[A(g, ∂g)δg +B(g, ∂g)∂δg] , (4.6)

where "eom" is, essentially, the left-hand side of the Einstein equations, and the second
integral comes from integrating by parts. Thus, if one imposes, as usual, boundary
conditions such that δg|∂M = 0 at r = r0, we have that the first term in the second
integral vanishes, but the second one does not. So, varying this action in presence of
a boundary of the spacetime and imposing that δg|∂M = 0, one does not obtain the
left-hand side of Einstein equations. GHY solves this problem since it is chosen so that
δ
∫
M

√
gR ∼

∫
M

(eom)δg. Reconsider now the Teleparallel Lagrangian in terms of the
torsion tensor only

•
L =

h

16π

(
1

4

•
T ρµν

•
T µν
ρ +

1

2

•
T ρµν

•
T νµρ −

•
T ρµρ

•
T νµν

)
,

where, we recall, h = det
(
haµ
)

=
√
−g. One immediately notices that the TEGR La-

grangian is only of first-order in the derivatives of the tetrads. Thus, for TEGR there
is no need to add a boundary term in presence of a boundary of the spacetime, since
varying

•
L one already obtains the correct equations of motion. We recall now equation

(2.156) and that, for a Schwarzschild BH,
◦
R = 0. Thus, in this simple case, we obtain

that computing the TEGR action it is equivalent to calculate the integral

•
S =

∫
•
L d4x = −

∫
∂µ

(
h

8π

•
T νµν

)
d4x. (4.7)
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Following this argument we obtain, as will be explicitly derived in the following section,
that for a Teleparallel Schwarzschild BH the Euclidean action is

SE =
βM

2
= 4πM2, (4.8)

and so in TEGR, at least without loop contributions, we obtain from the TEGR boundary
term the same thermodynamical entropy and energy as from GHY (cf. equation (3.32)).
Thus, for the simple case of a Teleparallel Schwarzschild BH, we have no reasons to
include GHY. Moreover, we notice that if we include both the boundary terms as in
equation (4.4), we obtain a doubling of the values of the entropy and the energy of GR.
This result leads to a physical interpretation problem that will be discussed at the end
of the next section. However, this result can be avoided by proving, as previously said,
that the GHY term should not be considered in TEGR. Let’s now try to be a little bit
more general considering the variation of

•
S without taking

◦
R = 0 from the beginning

δ

∫
•
L d4x = δ

∫
◦
L d4x− δ

∫
∂µ

(
h

8π

•
T νµν d

4x

)
. (4.9)

Where now the Ricci scalar can be thought of in terms of the tetrads. Looking at this
equation, it seems that to safely exclude the GHY term from the action we have to
study if the last integral in the previous equation is equal to the variation of GHY term
in equation (3.23). So we ask: does the boundary term in equation (2.156) the same job
as the GHY term? Now, let us verify if that is the case. Using that the equations of
motion of TEGR and GR are the same, we can say that the variations of the bulk terms
in the left and right-hand sides cancel each other out. Recalling now that

•
L contain only

first derivatives, we see that from the variation of the TEGR action does not come out
any boundary term. Thus, using Stokes theorem in the form

∫
M

Aµ;µ
√
−gd4x =

∫
M

(√
−gAµ

)
,µ
d4x =

∮
∂M

AµdΣµ

=

∮
∂M

Aµnµ
√
|σ|d3y,

(4.10)

where nµ is the normalized normal vector to ∂M , and σ = det{σab} = det
{

[g|∂M ]ab
}
.

Taking care of the numerical factors, we can state that the following equation holds

δ

(
2

∫ √
σ
•
T νµνnµ d

3y

)
= 2

∫ √
σ δ

•
T νµν nµ d

3 =

∫
δ
◦
Aµnµ

√
σd3y. (4.11)

Where the first equality comes from the fact that if we take the boundary and the metric

on the boundary fixed δg|∂M = 0, then δ
(√

h
•
T νµνnµ

)
=
√
h

(
δ
•
T νµν

)
nµ. In equation
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(4.11) the last integral in the right-hand side is the boundary term coming from the
variation of the Einstein-Hilbert action expressed in terms of the tetrads. Therefore, we
can say that really the TEGR boundary term does the same job of the GHY, which thus
can be excluded from the calculation of the Euclidean action.

4.2 BH Thermodynamics at the leading order in TEGR
We are now ready to present the calculations leading to the evaluation of the thermo-
dynamical entropy (and energy) of a Teleparallel Schwarzschild BH. This is interesting
because the divergence in equation (2.156) could lead to a different value for the entropy
with respect to the GR case. Our goal is to compute the Euclidean action

SE = − 1

8π

∫
•
M

∂µ

(
√
g
•
T νµν

)
d4x+

1

8π

∫
•
M

∂µ

(
√
g
•
T νµ0 ν

)
d4x, (4.12)

which is the same action that one usually considers in GR but with GHY replaced by
the TEGR boundary term. Let us begin with the first integral. We evaluate this term
using again Stokes theorem (4.10)∫

M

Aµ;µ
√
−gd4x =

∫
M

(√
−gAµ

)
,µ
d4x =

∮
∂M

AµdΣµ

=

∮
∂M

Aµnµ
√
|σ|d3y.

(4.13)

Hence, we have

1

8π

∫
•
M

∂µ

(
√
g
•
T νµν

)
d4x =

1

8π

∫ β

0

dτ

∫
S2

•
T νµνnµ

√
σd2y, (4.14)

where we have used that ∂
•
M = S2×S1. The integral in the Euclidean time is done over

S1, which represents the periodically identified Euclidean time, that behaves, as stated
before, as an angular-like coordinate τ ∼ τ + 8πM = τ + β. Now, the line element of
the boundary is given by ds2 = f(r0)dτ 2 + r2

0dΩ2
2, so that

√
σ = f(r0)

1
2 r2

0 sin θ. (4.15)

We compute now the unitary normal vector to the surface r = r0. The un-normalized
normal is n̄µ = ∂µ r = (0, 1, 0, 0), so its module is given by

ε = n̄µn̄µ = gµνn̄νn̄µ = grr = f = 1− 2M

r
.
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Then, the properly normalized normal vector, is

nµ =
∂µ r

ε
1
2

= f−
1
2 (0, 1, 0, 0) = (0, f−

1
2 , 0, 0). (4.16)

We only have left to consider the torsion vector
•
T νµν . From equation (4.16), we see

that we only need the r component of the torsion vector (which remains unmodified
under Wick rotation). Let us now choose the class of reference frames in which the spin
connection is zero. Using the definition of the Weitzenböck connection in such class
•
Γρµν = h ρ

a ∂νh
a
µ, the torsion tensor is written as

•
T νρµ = h ν

a

(
∂ρh

a
µ − ∂µhaρ

)
. (4.17)

From this equation, and using the tetrads (4.3), it is only a matter of algebra to find out
the components of the torsion vector

•
T ν0ν = 0
•
T ν1ν =

1

2
∂r ln f +

2

r
•
T ν2ν = cot θ
•
T ν3ν = 0.

(4.18)

Looking at equation (4.16) and at (4.14), we see that we only need the component
•
T ν1

ν ,
that depends uniquely on the radial coordinate. Using (4.18), we easily have

•
T ν1

ν = g1ρ
•
T νρν = g11

•
T ν1ν = f

(
f ′

2f
+

2

r

)
=

2

r
− 3M

r2
.

Then, taking into account the normal vector (4.16), we obtain

•
T νµνnµ =

•
T ν1

νf
− 1

2 =

(
2

r
− 3M

r2

)
f−

1
2 . (4.19)

Collecting (4.19) and (4.15), the last integral in equation (4.14) gives

1

8π

∫ β

0

dτ

∫
r0=const

(
2

r0

− 3M

r2
0

)
r2

0 sin θ dθ dφ =
1

8π

∫
(2r0 − 3M) sin θdτ dθ dφ

=
1

8π
(8πβr0 − 12πβM)

(4.20)
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Where obviously we have used that
∫ (∫

sin θdθdφ
)
dτ = 4πβ. Let’s notice that, inter-

estingly, it is exactly the result obtained in GR (3.26), further confirming the result of
the previous section. This integral needs to be regularized. To this purpose, we consider
the counterterm

1

8π

∫
•
M

∂µ

(
√
g
•
T νµ0 ν

)
d4x =

1

8π

∫ β

0

dτ

∫
S2

•
T νµ0 νnµ

√
σd2y, (4.21)

where
•
T νµ0 ν is the torsion corresponding to the (Euclidean) trivial tetrads associated

with the flat metric (3.28) ds2
subtraction =

(
1− 2M

r0

)
dτ 2 + dr2 + r2dΩ2

2, so that again

√
σ = f(r0)

1
2 r2

0 sin θ.

In the present case, the normal unit vector is given by

nµ = ∂µ r = (0, 1, 0, 0), (4.22)

since, comparing with the previous equations, ε = grr = 1. Proceeding as before, the
diagonal trivial tetrad corresponding to (3.28) are found to be

E µ
a = diag(f(r0)−

1
2 , 1, r−1, r−1 sin−1 θ)

Ea
µ = diag(f(r0)

1
2 , 1, r, r sin θ).

(4.23)

Assuming again vanishing spin connection, the Weitzenböck connection takes the form
•
Γρµν = E ρ

a ∂νE
a
µ and the components of the torsion are now given by

•
T νρµ = E ν

a

(
∂ρE

a
µ − ∂µEa

ρ

)
. (4.24)

Looking at the last integral in (4.21) and considering (4.22), we see that again we need

just the r-component of the torsion tensor
•
T νµ0 νnµ =

•
T ν1

0 ν . Using (4.24), we find that
•
T ν0 1ν = 2

r
and thus

•
T ν1

0 ν = g1ρ
•
T ν0 ρν = g11

•
T ν0 1ν =

2

r
. (4.25)

Using (4.25) and (4.23), the second integral in (4.21) is

1

8π

∫
r0

2

r
r2

(
1− 2M

r

) 1
2

sin θdτ dθ dφ =
1

8π

(
8πβr0 − 8πβM + βO

(
1

r0

))
, (4.26)

that again is the same result as (3.29), which gives another confirmation of what we
have obtained in the previous section. The integral (4.26) regulates (4.20) and change
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the finite term. Considering (4.20) and (4.26), we finally obtain for the classical Euclidean
action (4.12) the following value

SE =
βM

2
= 4πM2, (4.27)

which is the precisely the result obtained in GR (cf. (3.30)). Thus, for the partition
function of the Teleparallel Schwarzschild BH, we obtain

Z(β) = exp
(
−4πM2

)
= exp

(
− β2

16π

)
, (4.28)

which, obviously, is the same result as in (3.31). Therefore, also in TEGR, for entropy
and energy of a Schwarzschild BH, we obtain the values (cf. (3.32))

S = (1− β∂β) lnZ(β) = 4πM2

E = −∂β lnZ(β) = M.
(4.29)

We notice that if we start with (4.4), instead of (4.5), then we would have obtained a
doubling of the action. Consequently, we would have had as well a doubling of S and E.
Indeed, using (3.30) and (4.27), one obtains. from the "wrong" Euclidean action (4.4),
the result

SE =
βM

2
+
βM

2
= βM = 8πM2, (4.30)

which is twice the result obtained in GR. Therefore, in this case, for the partition function
we would obtain

Z(β) = exp
(
−8πM2

)
= exp

(
−β

2

8π

)
, (4.31)

instead of (4.28). Thus, from the previous partition function, we would have entropy
and energy equal to

S = (1− β∂β) lnZ(β) = 8πM2

E = −∂β lnZ(β) = 2M.
(4.32)

As stated before, we obtain twice the results in (4.29). Moreover, there would be a
physical interpretation problem: where the additional factor M in (4.32) does come
from? In GR, the result (4.29) for the energy, it is usually interpreted stating that the
energy comes from the BH rest mass. One could then try to link the additional factor of
M in (4.32) to the gravitational energy stored in the spacetime. Indeed, it seems quite
natural to think that gravitational energy plays a role in the thermodynamical behaviour
of the BH. However, as we will see below, this seems not to be the case. We will see,
basically building up the Landau-Lifshitz energy-momentum pseudotensor [15], that the
total conserved energy of a Teleparallel Schwarzchild BH seems to be M , in agreement
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with the result just obtained. Thus, using this different approach, we support further
the equivalence between the TEGR boundary term and GHY.

Summarizing: we have obtained in (4.29) that in TEGR, although it introduces an
(apparently) new boundary term, the BH thermodynamics is essentially the same. This
unexpected result is due to the equivalence of the TEGR boundary term and the GHY
term, a result which has been proved in section 4.1.1. Before presenting the construction
of the Landau-Lifshitz energy-momentum pseudotensor in TEGR, we give an alternative
way to regularize the TEGR Euclidean action.

4.3 A different way to regularize the action
We present now a different way to regularize the term (4.20). This approach, physically,
is based on the idea that this divergence is due to inertial effects, which do not vanish
at infinity. The idea is, then, to remove these inertial effects by considering a suitable,
generally non-vanishing, purely inertial spin connection. This possibility can be seen
in this way. We start by considering that a trivial tetrad (no gravity) can be formally
written as

Ea
µ = ∂µx

a +
•
Aabµx

b, (4.33)

where
•
Aa bµ is the purely inertial spin connection (2.59) and therefore, as we have already

observed, its torsion tensor vanishes identically

•
T aµν(E

a
µ,

•
Aabµ) = 0, (4.34)

while we have seen that it will be non-vanishing for a nontrivial tetrad. Despite this,
we have explicitly seen in equation (4.26) that the action computed with a trivial tetrad

and vanishing spin connection
•
SE(eaµ, 0) =

∫
•
M

•
L(eaµ, 0) diverge. Instead, from equation

(4.34), i.e., using the appropriate spin connection
•
Aa bµ, we find that

•
SE(Ea

µ,
•
Aabµ) = 0. (4.35)

We see that by considering an appropriate spin connection we can remove all the inertial
effect. This is indeed the action for inertial effects only since we are considering a trivial
tetrad. Considering now that the spin connection of TEGR is purely inertial we can
use the same spin connection of the previous equation as well in presence of a nontrivial
tetrad. We should obtain a renormalized (finite) action (that takes into account only
gravitation and without any inertial effect) computing

•
SE(haµ,

•
Aabµ) =

∫
•
M

•
L(haµ,

•
Aabµ). (4.36)
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To check this we have to find the associated spin connection to a given tetrad and
repeat the calculation that leads to equation (4.20) but considering a non vanishing spin
connection.

4.3.1 Associated spin connection to a given tetrad

The basic idea is that we can compute the associated spin connection using a trivial tetrad
Ec

µ, obtained from the nontrivial tetrad (4.3) "switching off gravity". This is because
Ec

µ and hcµ only differ for their "gravitational content". We can obtain an expression
for the spin connection easily combining two well-established theoretical results that we
have already presented. The first result is equation (2.27) for the purely inertial spin
connection

•
Aa bc =

1

2

(
f a
b c +

•
T a
b c + f a

c b +
•

T a
c b − facb −

•
T acb

)
. (4.37)

This equation has been obtained taking three different combinations of the Lorentz
indexed torsion tensor (2.26). We recall that fabc are the anholonomy coefficients of a
nontrivial tetrad, which are given by equation (2.49)

f cab = h µ
a h

ν
b

(
∂νh

c
µ − ∂µhcν

)
. (4.38)

The second result is equation (4.34)

•
T aµν(E

a
µ,

•
Aabµ) = 0, (4.39)

which holds for a trivial tetrad. Using (4.34) in (4.37) we obtain the following expression
for the spin connection

•
Aa bµ =

1

2
Ec

µ

(
f a
b c(E

c
µ) + f a

c b(E
c
µ)− facb(Ec

µ)
)
. (4.40)

This equation gives the inertial spin connection associated to the tetrad Ec
µ, that we

recall is a trivial tetrad obtained from (4.3) "switching off gravity". However, we have
said at the beginning of the paragraph that, since the nontrivial tetrad hcµ and Ec

µ differ
only by their gravitational content, equation (4.40) represent the inertial spin connection
naturally associated as well to hcµ. Indeed, we will use (4.40) as the equation for the
Lorentz connection associated to a nontrivial tetrad.

We would like to insert an additional comment. The main weakness of our procedure
is how to "switch off" gravity. Indeed, in the simple case of a Schwarzschild BH is, at
least, intuitive which flat metric we should use, but in a more general case is not clear
which would be the form of the flat metric to be considered.
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4.3.2 Using the spin connection to regularize the action

A natural choice for the trivial tetrads obtained from (4.3) "switching off gravity" is

E µ
a = diag(1, 1, r−1, r−1 sin−1 θ)

Ea
µ = diag(1, 1, r, r sin θ)

(4.41)

which are the tetrads corresponding to the flat metric δµν in spherical coordinates. Con-
sidering equations (4.41) and (4.40), the non-vanishing components of the associated
spin connection are found to be

•

A1̂
2̂θ = −

•

A2̂
1̂θ = −1,

•

A1̂
3̂φ = −

•

A3̂
1̂φ = − sin θ,

•

A2̂
3̂φ = −

•

A3̂
2̂φ = − cos θ. (4.42)

We consider now the "full" Weitzenböck connection, that we recall is given by

•
Γρµν = h ρ

a ∂νh
a
µ + h ρ

a

•
Aa bνh

b
µ.

In the previous equation, of course, hcµ are the nontrivial tetrads (4.3)

h µ
a = diag(f(r)−

1
2 , f(r)

1
2 , r−1, r−1 sin−1 θ)

haµ = diag(f(r)
1
2 , f(r)−

1
2 , r, r sin θ),

where f(r) =
(
1− 2M

r

)
. In this case, the components of the torsion tensor are given by

•
T ρνµ = h ρ

a

(
∂νh

a
µ − ∂µhaν

)
+ h ρ

a

(
•
Aa bνh

b
µ −

•
Aa bµh

b
ν

)
. (4.43)

As before, we need only
•

T ν1
ν . From equations (4.43) and (4.42) we obtain

•
T ν1

ν = g1ρ
•
T ν ρν = g11

•
T ν 1ν = f

(
1

2

f ′

f
+

2

r
− 2

r
f−

1
2

)
=

1

2
f ′ +

2

r
f − 2

r
f

1
2 =

1

2

2M

r2
+

2

r

(
1− 2M

r

)
− 2

r

(
1− M

r
+O

(
1

r2

))
= −M

r2
+O

(
1

r3

)
,

(4.44)

and then

•
T νµνnµ =

•
T ν1

νf
− 1

2 =

(
−M
r2

+O

(
1

r3

))
f−

1
2 , (4.45)
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to be compared to (4.19). Proceeding as in (4.20), the integral in (4.14) now become

1

8π

∫ (
−M
r2

+O

(
1

r3

))(
1 +

M

r
+O

(
1

r2

))
r2 sin θdτ dθ dφ

=
1

8π
(−4πβM) +O

(
1

r0

)
.

(4.46)

Therefore, with this method, we obtain the same result as in (4.27)

SE =
βM

2
= 4πM2. (4.47)

and, of course, the same values for S and E as in (4.29).

4.4 Gravitational energy in TEGR
To begin with, we recall very briefly the construction of the Landau-Lifshitz energy-
momentum tensor in GR. These introductory computations and all the details can be
found in [16], but we report some steps here for reference. We do that because we
will identify the Landau-Lifsits energy-momentum tensor in TEGR through an analogy
between an equation satisfied by this object and the field equations of TEGR. The idea
of this section is to study the link between the additional factor of M in the expression
for E (4.32) to a possible expression of the energy of the gravitational field. We also
include a "gravitational surface pressure" conjugate to the area A = 4πr2, following the
idea of reference [4].

In absence of gravity, the conservation law of energy and momentum of the matter
is expressed as

∂T µν

∂xν
= 0.

The generalization of this equation in presence of gravity is [15]

T νµ; ν =
1√
−g

∂
(
T νµ
√
−g
)

∂xν
− 1

2

∂gνρ
∂xµ

T νρ = 0, (4.48)

which, however, does not express any conservation law, as usual. Let us now choose
a coordinates system in such a way that all the first derivatives of metric tensor with
respect to the coordinates are zero at a point. At this point, then, equation (4.48)
becomes

T µν,ν = 0.

The quantities that satisfy this equation can the be formally written as

T µν =
∂ηµνρ

∂xρ
,
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where the η’s are antisymmetric with respect to the last two indices

ηµνρ = −ηµρν .

Let us now write down T µν in this form. It can be derived from the Einstein field
equations [15] that

T µν =
∂

∂xρ

[
1

(−g)

∂

∂xγ
(λµνργ)

]
=

1

(−g)

∂

∂xρ

[
∂

∂xγ
(λµνργ)

]
, (4.49)

where we can bring out the factor 1/(−g), since we are working in a coordinate system
in which ∂gµν/∂xν = 0. In equation (4.49) we have set

λµνργ =
c4

16πk
(−g)(gµνgργ − gµρgνγ).

Let’s now set
hµνρ =

∂

∂xγ
λµνργ, (4.50)

which is antisymmetric in the last two indices

hµνρ = −hµρν .

We can then rewrite equation (4.49) as

∂

∂xρ
hµνρ = (−g)T µν .

As said, this equation holds if ∂gµν/∂xν = 0. In an arbitrary coordinate system, the
generically non-vanishing difference ∂

∂xρ
hµνρ− (−g)T µν can be called (−g)tµν . Therefore,

by definition, for a general coordinate system we can write

(−g)(T µν + tµν) =
∂

∂xρ
hµνρ. (4.51)

The fundamental property of tµν is that it is not a tensor, as it is already clear from
the fact that ∂

∂xρ
hµνρ are ordinary derivatives and not covariant derivatives. tµν is called

Landau-Lifshitz energy-momentum pseudotensor of the gravitational field. Now, from
equation (4.51), we have that the following conservation law holds

∂

∂xν
[(−g)(T µν + tµν)] =

∂2

∂xν∂xρ
hµνρ = 0, (4.52)

and so the quantities

P µ =
1

c

∫
(−g)(T µν + tµν)dSν (4.53)
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are conserved. Substituting now equation (4.51) in equation (4.53), one finds out that
the conserved quantities can be written as

P µ =
1

c

∫ (
∂

∂xρ
hµνρ

)
dSν .

Recalling now that, for antisymmetric tensors Aµν = −Aνµ, we can transform this inte-
gral done on a 3d hypersurface to an integral on a 2d surface performing

1

2

∫
Aµνdf ∗µν =

1

2

∫ (
dSµ

∂Aµν

∂xν
− dSν

∂Aµν

∂xµ

)
=

∫
dSµ

∂Aµν

∂xν
,

where df ∗µν is the dual of dfµν = dxµdx′ν−dxνdx′µ, and so df ∗µν = 1
2
eµνργdf

ργ. Taking this
into account, we can finally rewrite the conserved quantities P µ as

P µ =
1

2c

∮
hµνρdf ∗νρ. (4.54)

Take now t = const as 3d hypersurface in equation (4.53). Then, the 2d surface in (4.54)
is purely spatial, and so we have

P µ =
1

c

∮
hµ0idfi, (4.55)

where dfi = df ∗0i are the components three-dimensional element of a 2d surface. We only
need to consider df ∗0i because, in this case, all the other components vanish [15]. From
the result (4.55), it is easy to guess a possible choice for the energy-momentum tensor
in TEGR. We can notice in fact that field equation of TEGR really looks like equation
(4.51). If we simply write them as

∂σ

(
h

•
S ρσ
a

)
= kh(Θ ρ

a −
•
J ρ
a ) = −kh

•
J ρ
a ,

the analogy with equation (4.51) is quite clear. In the last equality we have set the
energy momentum tensor of the matter (source) to zero, as it is for the Schwarzschild
spacetime. Recalling now that the super potential is antisymmetric in the last indices
(ρ↔ σ), one has the following conservation law

∂ρ(h
•
J ρ
a ) = −1

k

[
∂ρ∂σ

(
h

•
S ρσ
a

)]
= 0, (4.56)

which comes directly from the field equations. Let us do a comment before proceeding.
In chapter 1 we have noticed that the "gauge current"

•
J ρ
a , which is a true spacetime and
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gauge tensor, can be considered as an improved version of spacetime-indexed pseudocur-
rent (2.148). For this reason, we use

•
J ρ
a to define an energy-momentum vector instead

of the spacetime-indexed quantity
•
t ρµ . By analogy between equation (4.52) and equation

(4.56), we identify

− 1

k
h

•
Saρσ ∼ hµνρ. (4.57)

Consequently, we try to define the energy momentum vector in TEGR simply in analogy
with equation (4.55) (and setting c = 1)

P a = −1

k

∮
S2

h
•
Sa0idfi

= −1

k

∮
S2

h
•
Sa0i ni dθdφ.

(4.58)

This integral has to be done on a 2d sphere r = const embedded in the 3d space t = const.
In addition, ni is the normal to S2, and so it has only r-component n1. To begin with,
we try to compute the energy, that is given by

P 0̂ = −1

k

∮
S2

h
•

S 0̂01 n1 dθdφ. (4.59)

The calculation proceed straightforwardly using the appropriate spin connection (4.42)
and the diagonal tetrad (4.3). We have

h = r2 sin θ

n1 =

(
1− 2M

r

)−1/2

•

S 0̂01 = −2

(
1− 2M

r

)− 1
2 M

r2
.

Let’s present in some details only the calculation of the last equation. We start with the
definition of the spacetime-indexed superpotential

•
Sρµν =

•
Kµνρ − gρν

•
T σµσ + gρµ

•
T σνσ. (4.60)

So we have
•
S001 =

•
K010 − g01

•
T σ0

σ + g00
•
T σ1

σ =
•
K010 + g00

•
T σ1

σ.
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the last term have already been computed to find out equation (4.45) while, from the
definition of the contortion tensor (2.136), one finds

•
K010 =

1

2

( •
T 100 +

•
T 001 −

•
T 010

)
=

•
T 001.

Now, using the definition (4.43) of the torsion tensor, which includes the spin connection
(4.42) natural associated with the diagonal tetrads (4.3)

•
T 001 = g1νg0µ

•
T 0

µν =
•
T 0

01 = −f−1M

r2
,

and so we reach to the result
•
S001 = −2

[(
1− 2M

r

)−1 M
r2

]
. Considering now that

•
Saµν =

haρ
•
Sρµν , we easily achive to the reported result. Thus, we can compute the integral

(4.59), that reads

P 0 = −1

k

∮
S2

r2 sin θ

(
−f−

1
2

2M

r2

)
f−

1
2dθdφ = M

(
1− 2M

r

)−1

= M

(
1 +

2M

r
+O

(
1

r2

))
−−−→
r→∞

M.

(4.61)

We notice from this equation that, interestingly, at the real singularity r = 0 the grav-
itational energy is zero. However, we notice that our expression for the energy diverges
at the horizon (this could be due to the coordinate singularty of the Schwarzschild BH)
while inside the horizon it is negative. Therefore, we obtain that the energy of the
Schwarzschild spacetime is

E = P 0̂ = M. (4.62)

As anticipated we see that taking also into account a possible expression for the gravi-
tational energy, the total thermodynamical energy seems to be M . We now try to write
down an expression for the first law of BH mechanics in the form

TdS = dE + pdV.

Where the differentials should be understood as "variations" under a Penrose process.
The idea is to derive the value of the entropy associated with our expression of gravi-
tational energy. Following the reference [4], we use, instead of the usual pressure p, a
"surface pressure" defined in analogy with the ordinary pressure as

σ = −
(
∂E

∂A

)
S

=
1

8πr

∂E

∂r
=
M2

r3

(
1− 2M

r

)− 3
2

. (4.63)
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We do that since the spatial volume is not defined. Thus, we write the first law as

TdS = dE + σdA. (4.64)

From the expression of the energy, one finds that

dE =
∂E

∂M
dM +

∂E

∂r
dr = f−1

[
1 +

2M

r
f−1

]
dM − 2M

r2
f−2dr. (4.65)

Using A = 4πr2 and the expression for the surface pressure (4.63), we also find that

σdA =
M2

r3

(
1− 2M

r

)− 3
2

d
(
4πr2

)
=

8π

r2
M2f−

3
2dr. (4.66)

Inserting then (4.66) and (4.65) into (4.64), one finds

TdS = dE + ρdA = f−1

[
1 +

2M

r
f−1

]
dM +

2M

r2
f−

3
2

[
4πM − f−

1
2

]
dr. (4.67)

We recall now that asymptotically and at late time T = (8πM)−1, and that f −−−→
r→∞

1.
As a resul, we find from (4.67) that in the limit r →∞

dS = 8πM dM (4.68)

and therefore that the entropy can be written as

S = 4πM2. (4.69)

This thermodynamical analysis again tells us that in TEGR, as anticipated, the thermo-
dynamical entropy is the same as in GR.

4.5 One-loop corrections in TEGR
In this section, we consider one-loop corrections to the partition function. We take into
account the effect of (SE)2, in the expression (3.5), on the free energy. Physically, one-
loop corrections can be thought of as the contribution from thermal gravitons to the
free energy. In GR, using translational invariance of path integral measure, one finds
from (3.5) that the partition function takes the form (dropping the subindex E and
substituting δg → h and δφ→ φ)

lnZ(β) ≈ −S[ḡ, φ̄] + ln

∫
Dh exp (−S2[h]) + ln

∫
Dφ exp (−S2[φ]) , (4.70)
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We have to study the second and third term of this equation in TEGR. Thus, roughly
speaking, we have to evaluate the determinant of the hessian matrix of the Teleparallel
action (its second functional derivative with respect to the gauge potential), and the
hessian of the action of a scalar field in a Weitzenbock spacetime, i.e., a scalar field
minimally coupled to gravity. To perform these calculations, it is convenient to start
introducing some comments. To begin with, we assume to be in the class of reference
frames in which the spin connection vanishes. Then, we perturb a nontrivial tetrad field
around a nontrivial background

haµ = h̄aµ +Ba
µ, (4.71)

where Ba
µ is the translational gauge potential and h̄aµ is a nontrivial background tetrad.

Indeed, in approaching the quantization of gravity in TEGR, Ba
µ is the field that should

be taken into account. In particular, the gauge potential should both enter in the path
integral in functional quantization and be promoted to an operator in canonical formal-
ism. So in TEGR, with no other field than the tetrads, the path integral should take the
form

Z =

∫
DBa

µ exp

(
−
•
S
)
, (4.72)

where
•
S =

∫
•
L d4x+

1

16π

∫
h

2α
χµcµνχ

ν d4x+ (Sgh). (4.73)

In the previous equation,
•
L is the (Euclidean) TEGR Lagrangian thought as a function

of the gauge potential. The second term is instead a gauge-breaking action. In partic-
ular, cµν is a field independent matrix and χµ = χµ(Ba

µ) is a general gauge-averaging
functional. The ghost action Sgh depends on the specific form of χµ. We will not explic-
itly consider Sgh in TEGR because we will use a gauge-fixing (Lorentz gauge) so that the
ghost Lagrangian is the Lagrangian of a field minimally coupled to gravity, a problem
that we will consider separately in the next section. For this reason, we put the ghost
action between parenthesis and the ghost fields do not appear in the functional measure
in equation (4.72). From the previous equation, we have that the partition function at
one loop in TEGR has the form (including also a scalar field)

lnZ(β) ≈ −S[h̄, φ̄] + ln

∫
DBa

µ exp (−S2[B]) + ln

∫
Dφ exp (−S2[φ]) . (4.74)

where h̄ stands for the nontrivial background tetrad and it must not to be confused with
the perturbations of the metric tensor. The first term is the leading one and has already
been computed in the preceding sections. The other 2 terms are the one-loop corrections.
If we neglect the presence of the ghost fields, the relevant differential operator, from which
the 1-loop corrections are computed, schematically has the form

Fik =
δ2 S[B]

δBi δBk
− δχµ

δBi
cµν

δχν

δBk
, (4.75)
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where Bi ≡ B µ
a (x). To obtain the form of this operator in the case of TEGR, the best

strategy is to first consider the perturbation around a nontrivial background (4.71) and
then expand the TEGR action (or the Lagrangian) up to second order in the gauge
potential about the nontrivial tetrad configuration h̄aµ. For the scalar field, the situation
is much easier. For example, we do not have to deal with gauge-breaking conditions and
ghost fields, the action is already of second and we do not need the background field
method. We begin now to consider this easier case and in the following section, we only
present the computations to find out the relevant operator (4.75) which however turns
out to be a non-minimal operator [11].

4.5.1 One-loop divergences of a scalar field in TEGR

As a simple starting point, we begin with taking into account one-loop corrections coming
from a massless scalar field. The action of a scalar field minimally coupled to gravity
can be written as

Sscalar =

∫
d4x

h

2

{
gµν

•
Dµφ

•
Dνφ

}
. (4.76)

This result is obtained from the full gravitational coupling prescription 2.164

∂µψ →
•

Dµψ = ∂µψ −
i

2

( •
Aabµ −

•
Kab

µ

)
Sab ψ, (4.77)

where ψ is a generic field carrying an arbitrary representation of the Lorentz group,
and Sab are the Lorentz generators in the ψ representation. This coupling is manifestly
equivalent to the GR one and then also the Euclidean formulation will be the same as in
GR. Now, for a scalar field, the Lorentz generators are Sab = 0. Therefore, in our simple
case, the full gravitational coupling takes the form

∂µφ→
•

Dµφ = ∂µφ. (4.78)

Then, the action for the scalar field takes the simple form

Sscalar =

∫
d4x

h

2

{
gµν∂µφ∂νφ

}
. (4.79)

Therefore, in the Barvinsky language [11], we have that the operator of interest is

F (∇) = ∆ = −
•
∇µ

•
∇µ, (4.80)

where
•
∇µ is the operator (2.166), which schematically is given by

•
∇µ = ∂µ +

•
Γµ −

•
Kµ. (4.81)
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Using equation (2.30), we can see that it contains exactly the Levi-Civita connection

rephrased in terms of the Weintzenbock connection as
◦

Γρµν =
•

Γρ µν−
•
Kρ

µν . Of course,
then, the operator (4.80) is precisely the same as the GR covariant Laplacian and, thus,
we will obtain the same one-loop correction as the usual scalar field on a curved back-
ground. We notice that this happens to be the case because the relevant connection, the
one in term of which we write down the coefficients of the early-time expansion of the
trace of the heat kernel, is the one that enters in (4.80). We recall that, for t → 0, the
trace of the heat kernel in d-dimensional spacetimes is expected to have an asymptotic
expansion of the form

TrK∆(t) ≈ 1

(4πt)d/2
[
B0(∆) + tB2(∆) + t2B4(∆) + ...

]
, (4.82)

where
Bn(∆) =

∫
d4xh bn(∆), (4.83)

and bn(∆) are constructed in terms of the "generalized curvatures" entering in equation
(3.85). However, since the operator (4.80) does not contain neither a gauge connection
nor a potential term, we remain only with the "Riemann" curvature, which is obtained
from the commutator of the covariant derivatives entering (4.80) and acting on a space-
time vector V α

[
•
∇µ,

•
∇ν ]V

α = −
•
Qα

βµνV
β =

◦
Rα

βµνV
β, (4.84)

where we have used that
•
Qα

βµν = −
◦
Rα

βµν , which holds because the curvature of the

Weintzenbock connection vanishes. The tensor
•
Qα

βµν is explicitly given by (cf. equation
(2.153))

•
Qρ

θµν =∂µ
•
Kρ

θν − ∂ν
•
Kρ

θµ +
•

Γρσµ
•
Kσ

θν −
•

Γρσν
•
Kσ

θµ

−
•

Γσθµ
•
Kρ

σν +
•

Γσθν
•
Kρ

σµ +
•
Kρ

σν

•
Kσ

θµ −
•
Kρ

σµ

•
Kσ

θν .
(4.85)

Then, the first three HAMIDEW coefficients (all we need in d=4), in terms of which one
writes down the divergent part of the effective action, are

b0(x, x) = 1

b2(x, x) =
1

6

•
Q

b4(x, x) =
1

180

(
•
Qαβµν

•
Qαβµν −

•
Qµν

•
Qµν +

5

2

•
Q2 − 6

•
∇µ

•
∇µ

•
Q

)
.

(4.86)
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Consequently, we obtain from the master formula (3.84), the divergent part of the effec-
tive action

Γdiv = −1

2

1

(4π)d/2

∫
ddxh

[
Λd
UV

d/2
b0 +

Λd−2
UV

d
2
− 1

b2 + ...+ ln
Λ2
UV

µ2
bd + finite terms

]

= (d = 4) = −1

2

1

(4π)2

∫
d4xh

[
Λ4
UV

2
b0 + Λ2

UV b2 + ln
Λ2
UV

µ2
b4 + finite terms

]
,

(4.87)

where the coefficients bn are listed in (4.86).
As an aside, one could argue that the most natural choice for the gravitational cou-

pling would be to just follow the gauge paradigm and to substitute the partial derivatives
the gauge covariant derivatives as seen in a general Lorentz frame

∂µψ → hµψ = h a
µ ∂aψ, (4.88)

where
h a
µ = ∂µx

a +
•
Aabµx

b +Ba
µ. (4.89)

According to the coupling (4.88), one would obtain a completely different situation as
compared to before. Indeed, instead of (4.86) we easily attain, from equation (3.85), the
following HAMIDEW coefficients

b0(x, x) = 1

b2(x, x) = 0

b4(x, x) =
1

12
Tr{FµνF µν},

(4.90)

where Fµν is the translational field strength, which is the torsion tensor [hµ, hν ] = Fµν =
•
T aνµPa. In this case, we should have

Tr{FµνF µν} =
•
T aµν

•
T bµν tr [PbPa]︸ ︷︷ ︸

γab=CK form

=
•
T aµν

•
T bµν

[
f cadf

d
bc

]
= 0, (4.91)

because translations are abelian. This result tells us that in (4.87) for d = 4 only the
quartic power divergence survive

Γdiv = −1

2

1

(4π)2

∫
d4xh

[
Λ4
UV

2
b0 + finite terms

]
. (4.92)

The fact that b4 vanishes suggests that, using the coupling (4.88), one would obtain a
renormalizable theory. However, classically, it is very desirable to have a coupling that is
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equivalent to GR. Indeed, at the classical level, any modification to the coupling needs
to be compared (and to be in agreement) with several experimental bounds before being
used. Moreover, since the group manifold is essentially Minkowski, one should use the
Minkowski metric ηab instead of the degenerate Cartan-Killing bilinear form γab. In this
case, instead of a vanishing b4, one would obtain the standard result for a gauge theory.

4.5.2 Towards one-loop divergences of TEGR

We now do some steps toward the computation of one-loop correction coming from
the gravitational part of the Lagrangian. To begin with, we notice that the equation
establishing the equivalence between TEGR and GR (2.156)

•
L =

◦
LEH − ∂µ

(
h

8π

•
T νµν

)
=
◦
LEH −

h

8π

◦
∇µ

(
•
T νµν

)
, (4.93)

suggest that one-loop corrections to the TEGR action will be the same as in GR. This
statement is clear in absence of a boundary of the spacetime. In this case, we can
in fact discard every boundary term and then the TEGR Lagrangian is exactly equal
to the GR lagrangian. In presence of a boundary of the spacetime, the situation is
more subtle. In this case, the HAMIDEW coefficients are modified by some boundary
terms, below denoted with c. These coefficients are expressed in terms of geometric
invariants evaluated at the boundary, which are built up using the "effective" connection
entering the quadratic action. In particular, the early time asymptotic expansion (4.82)
is modified into [11]

TrK(t) ≈ 1

(4πt)d/2

∞∑
k=0

tk/2Bk,

B2n =

∫
ddxh bn(x) +

∫
∂M

dd−1y σ1/2c2n(y),

B2n+1 =

∫
∂M

dd−1y σ1/2c2n+1(y),

(4.94)

where of course {y} are coordinates on the boundary and σ is the determinant of the
induced metric (or, equivalently, of the associated induced tetrad). The coefficients b2n

are the same as in the case of boundaryless spacetimes. The boundary terms in (4.94),
essentially, depend on the boundary conditions (BC) on the fields. These boundary
conditions must be chosen to have symmetric and elliptic differential operators [14].
Often, one choose BC on the fields such that the all the boundary terms vanish. Among
the most used BC there are Dirichlet (D) and generalized Neumann (N) BC

φ|∂M = 0, (D)

(∇n − Ŝ)φ|∂M = 0, (N)
(4.95)
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where ∇n denotes derivatives normal to the boundary and Ŝ is a matrix valued function
defined on the boundary. For these BC several HAMIDEW are known. Some of the
lowest order c read

cD,N0 = 0

cD1 = −
√
π

2
tr1̂, cN1 =

√
π

2
tr1̂

cD2 =
1

3
K tr1̂, cN2 = tr

(
2Ŝ +

1

3
K1̂

)
.

(4.96)

We see that the boundary terms arising from the quadratic action will influence the
choice of BC which, then, will modify the HAMIDEW coefficients. However, since we
have shown that we can identify the TEGR boundary term B with the GHY term, we
expect that no differences will arise in TEGR (with respect to GR of course), even in
presence of a boundary of the spacetime. One should obtain different one-loop corrections
in TEGR only in the case in which the TEGR boundary term would be different from
GHY and the appropriate BC for GR (which seems to be still problematic [18]) are not
"good" for TEGR.

Although this simple reasoning seems to indicate that in TEGR no differences with
respect to GR will arise even at one-loop, it is very desirable to obtain such corrections
directly from the TEGR action. Indeed, conceptually, TEGR and GR differ profoundly
and then it seems worthy to, at least, explicitly check this equivalence. This, however,
turns out to be a highly-nontrivial problem. The procedure to follow is quite clear: one
should take a perturbation of a nontrivial background, obtain the action at second order
in the perturbations of the tetrads fields and impose a gauge fixing condition, identifying
in this way a second-order differential operator. On this operator, we then apply the
heat kernel theory to obtain one-loop corrections, pretty much what we have done in the
case of the scalar field. We will perform these computations applying the background
field method.

To apply this method, one can start from the TEGR Lagrangian (2.140) written for
convenience as

16π
•
L = h

(
1

4

•
T aµν

•
T µν
a +

1

2

•
T ρµν

•
T νµρ −

•
T ρµρ

•
T νµν

)
≡ hT. (4.97)

Then, basically, our second order Lagrangian is given by

16π
•
L(2) = h(0)T(2) + h(1)T(1) + h(2)T(0). (4.98)

So our task is to expand at zero, first and second order in the gauge field (this is actually
the meaning of the numbers in the apices), the inverse tetrad, the determinant and the
torsion scalar. Let’s present the formulas that we need. To begin with, we notice that the
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inverse tetrad, using the formula (A+δA)−1 = A−1−A−1δAA−1+A−1(δA)A−1(δA)A−1+
... , can be expanded as

h ρ
a = h̄ ρ

a −B ρ
a + h̄ ρ

c B
δ
a B

c
δ + ... (4.99)

We further notice that we can rewrite the torsion tensor replacing the ordinary derivatives
with covariant Levi-Civita derivative

•
T aµν = ∂µh

a
ν − ∂νhaµ =

◦
∇µh

a
ν −

◦
∇νh

a
µ, (4.100)

since the the Levi-Civita connection is symmetric. Of course, we as well have

•
T ρµν = h ρ

a

(
◦
∇µh

a
ν −

◦
∇νh

a
µ

)
. (4.101)

Doing this replacement, one has to notice that the perturbation in the tetrad field induces
also a perturbation in the spacetime metric. Indeed, combining the equation gµν =
ηabh

a
µh

b
ν with the perturbations gµ = ḡµ + δgµν and haµ = h̄aµ + Ba

µ, one obtains,
up to first order, δgµν = h̄aµB

a
ν + h̄aνB

a
µ. Thus, in addition, we have to expand the

covariant derivative as

◦
∇µ =

◦
∇

(0)

µ +
◦
Γ

(1)

µ +
◦
Γ

(2)

µ , (4.102)

However we are about to see that only
◦
∇

(0)

µ will matter for the torsion perturbations.
Now the apices indicate the power of the perturbation of the metric. It is now easy to
obtain the following


•

T (0)a
µν =

◦
∇

(0)

µ h̄aν −
◦
∇

(0)

ν h̄aµ
•

T (1)a
µν =

◦
∇

(0)

µ Ba
ν −

◦
∇

(0)

ν Ba
µ

•
T (2)a

µν = 0



•
T (0)ρ

µν = h̄ ρ
a

(
◦
∇

(0)

µ h̄aν −
◦
∇

(0)

ν h̄aµ

)
•

T (1)ρ
µν = h̄ ρ

a

•
T (1)a

µν −B ρ
a

•
T (0)a

µν
•

T (2)ρ
µν = h̄ ρ

a

•
T (2)a

µν −B ρ
a

•
T (1)a

µν+

+h̄ ρ
c B

δ
a B

c
δ

•
T (0)a

µν .

Finally, we recall that the determinant of the tetrad can be expanded as

h = h̄

[
1 +

1

2
B +

(
1

8
B2 − 1

4
Ba

µB
µ
a

)
+ ...

]
, (4.103)

where h̄ = det
(
h̄aµ
)
and B = Ba

µh̄
µ
a . Now that we have all the ingredients, and after

having inserted them into (4.98), it is just a matter of long calculations to obtain the
following expression (omitting the apices (0) in the covariant derivatives)
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16π
•
L(2) = hBa

ν

{[
−1

2
ηabg

µν + A
(0)µν
ab

]
◦
∇ρ

◦
∇ρ − 1

2
ηab

◦
∇µ

◦
∇ν + C

(0) ν
abρ

◦
∇µ

◦
∇ρ + gµνD

(0)
abαρ

◦
∇α

◦
∇ρ+

[
G

(0) νµ
baρ

] ◦
∇ρ −

[
Q

(0)µ
ba

] ◦
∇ν +

[
L

(0)µν
ba

]}
Bb

µ =

= hBa
ν

{[
−1

2
ηabg

µν + A
(0)µν
ab

]
◦
∇ρ

◦
∇ρ − 1

2
ηab

◦
∇ν

◦
∇µ + C

(0) ν
abρ

◦
∇µ

◦
∇ρ + gµνD

(0)
abαρ

◦
∇α

◦
∇ρ+

[
G

(0) νµ
baρ

] ◦
∇ρ −

[
Q

(0)µ
ba

] ◦
∇ν +

[
L

(0)µν
ba − 1

2
ηab

◦
Rµν

]}
Bb

µ,

(4.104)

where the quantities with the apices (0) are various combinations of the background
tetrad and torsion. The coefficients A, C, D, G, Q and L are reported in the concluding
appendix. Now, imposing the gauge condition (Lorentz gauge)

◦
∇µBb

µ = 0, (4.105)

our differential operator become

F µν
ab (∇) =

{[(
−1

2
ηabg

µν + A
(0)µν
ab

)
gαρ + C

(0) ν
abρ δ

µ
α + gµνD

(0)
abαρ

]
◦
∇α

◦
∇ρ+

+
[(
G

(0) νµ
baρ

)
−
(
Q

(0)µ
ba δνρ

)] ◦
∇ρ +

[
L

(0)µν
ba − 1

2
ηab

◦
Rµν

]}

=

{[
N

(0) νµ
abαρ

] ◦
∇α

◦
∇ρ +

[
O

(0) νµ
baρ

] ◦
∇ρ +

[
P

(0)µν
ba

]}
.

(4.106)

We arrive, using the Lorentz gauge, to a non-minimal second order operator from which
is much more difficult to obtain the one-loop corrections. Moreover, it can be shown that
the ghost operator associated to the Lorentz gauge is just the covariant Laplacian [16]
considered in the previous section. Now, it is generally believed that a gauge choice for
which an operator became minimal, where the computations are easier, always exists.
This gauge choice is known as the minimal gauge [10]. Though, it is as well possible
to obtain one-loop corrections in a non-minimal gauge. In this case, the basic quantity
that are needed are the so called non-minimal propagators. We sketch now briefly the
procedure in the more general case of non abelian gauge theories. Let’s call gi = gA(x)
the set of our fields. The total action can then be written as
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S[g] = SG[g] + SGB[g], (4.107)

where SG[g] is a gauge invariant action and SGB[g] is the gauge breaking action with the
generic form

SGB[g] = −1

2
χµcµνχ

ν . (4.108)

In the previous equation χµ = χµ(λ) is a certain linear gauge condition such that χµ(0)
is a minimal gauge and cµν is a local, invertible and field-independent matrix. Then,
schematically, the operator of interest is

Fik =
δ2SG[g]

δgiδgk
− δχµ

δgi
cµν

δχν

δgk
. (4.109)

It is shown in [10] that the effective action in the non.minimal gauge can be written in
terms of the non-minimal propagators

FikG
kn = δni , ∇i

α

δχµ

δgi
Qσ
µ = δσα. (4.110)

of the gauge and ghost fields respectively. We could then follow this strategy but, how-
ever, because lack of time, we left these computations for future work. Anyway, we have
presented as well a heuristic argument suggesting that TEGR one-loop corrections are
same as in quantum GR.
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Chapter 5

Conclusions

In the literature of TEGR, it is often stated that this theory is fully equivalent to GR
because their actions are equal up to a boundary term B, which does not influence the
equations of motion. Albeit boundary terms play an important role in physics, the effect
of B is usually overlooked in the existent literature. For example, the boundary term B
affects BH thermodynamics, which then is worth to be studied. Analyzing this effect has
been the aim of this work. In particular, we have explicitly computed the classical TEGR
action of a Schwarzschild BH, from which we have obtained that the values of entropy
and energy at the leading order are the same as in GR. Therefore, we can say that,
also in TEGR, the BH entropy obeys the well-known area law S = Area/4 and the BH
energy is given by its rest mass. This unforeseen result is due to the equivalence of the
TEGR boundary term and the GHY boundary term, as has been proved in subsection
4.1.1. Moreover, we have examined entropy and energy of a Schwarzschild BH in TEGR
from a different perspective. Namely, we have constructed the TEGR analog of the
Landau-Lifshitz energy-momentum pseudo-tensor of the gravitational field and computed
the associated conserved charge. As we have seen, this approach leads to the same
values of BH energy and entropy. Hence, these results provide further support to the
aforementioned equivalence.

The classical action gives the leading correction in the semiclassical approximation
to the path integral. Therefore, in section 4.5, we have studied if some discrepancies
with GR arise upon quantization. In subsection 4.5.1, we have considered the one-loop
effective action, which gives one-loop quantum corrections to the partition function, of
a scalar field in a classical TEGR background. For this purpose, we have used the heat
kernel method to find out the divergent part of the one-loop effective action. We have
obtained that these divergences are precisely the same as in GR but rephrased in terms
of the Weintzenböck connection. This result is due to the fact that the so-called full
gravitational coupling prescription of TEGR is completely equivalent to the GR cou-
pling prescription. Nevertheless, there could be a shortcoming. Indeed, let’s consider
the logarithmic divergence of the effective action (4.87). As in GR, this divergence is
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proportional to some terms that are not present in the TEGR Lagrangian
•
L. Then,

to renormalize the effective action, we should add some new counterterms to
•
L with

the same structure of these divergences. However, any term added to the Lagrangian
must be in agreement with its symmetries, that for the TEGR Lagrangian are diffeo-
morphism invariance, local Lorentz invariance, and translational gauge invariance. Since
the divergent terms are the same as GR, the necessary counterterms are not expected
to share all these symmetries; translational gauge invariance, in particular, seems un-
likely to occur. We believe that this aspect deserves to be more deeply studied in the
future, since, likely, it could lead to a discrepancy with GR, breaking thus the equiva-
lence between the two theories. Finally, subsection 4.5.1 is concluded with an interesting
observation: by choosing the usual gauge coupling prescription instead of the TEGR
coupling prescription, we would obtain a renormalizable theory for a scalar field mini-
mally coupled to gravity. Nonetheless, there are multiple problems with this conclusion
that invalidate it. A first problem, of physical nature, is that any change of the coupling
prescription, which is inequivalent to the GR coupling prescription, needs to pass several
experimental tests before being safely used. Of course, this is not invalidating per se,
indeed, it just means that we concretely must verify if this new coupling prescription is
compatible with experimental bounds before drawing any conclusions from it. Another
more serious issue is, instead, of mathematical nature. The point is that, in computing
the trace of equation (4.91), we should admittedly use the Minkowski metric instead
of the degenerate Cartan-Killing metric. For this reason, such conclusion is essentially
unfounded. Thereafter, in subsection 4.5.2, we have given some hints on the effect of the
quantization of the gravitational field. In particular, at the beginning of such subsection,
we have presented a heuristic argument suggesting that the one-loop divergences of the
TEGR effective action are the same as in quantum GR as well. However, because of the
conceptual differences between TEGR and GR, it is desirable to explicitly evaluate the
divergent part of the effective action. Following again the heat kernel method, we have
found the relevant second-order differential operator. Unfortunately, using the Lorentz
gauge, we arrive at a so-called non-minimal operator, from which is more difficult to
obtain one-loop corrections. Because of lacking time and technical difficulties this com-
putation is left for future work. We also point out a drawback of our approach. That
is, for simplicity, we have chosen to deal only with the naïve definition of the effective
action, which is known to depend off-shell on the gauge choice. We likewise want to
stress that this gauge dependence takes place only off-shell, and then it does not appear
in scattering amplitudes. Therefore, it would be interesting in the future to perform this
analysis using the Vilkoviski unique effective action.

To conclude, our work seems to suggest that the equivalence between TEGR and GR
can be extended to boundary terms and quantum (one-loop) corrections. Though, we
want underline one more time that there are some subtle aspects about the latter. Indeed,
the renormalization of the scalar field on a classical TEGR background will probably work
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out differently if compared to that of GR, since the necessary counterterms probably do
not share the symmetries of TEGR. In our opinion, these features should to be deepened
in the future.
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Appendix A

We report in this appendix the results for the coefficients appearing in the second order
differential operator (4.106), obtained from the TEGR action expanded at second order in
the gauge field. These coefficients can be expressed in terms of the background quantities
only and so in the following expressions we omit the (0) and the bars above each term.
The first three A, C and D have a simple form. The A coefficient reads

A
(0)µν
ab =

(
h ν
a h

µ
b −

1

2
hµa h

ν
b

)
, (A.1)

while C is
C

(0) ν
abρ =

(
haρhbρ − 2h ν

a hbρ

)
, (A.2)

and D is given by

D
(0)
abαρ =

(
haαhbρ −

1

2
haρhbα

)
. (A.3)

The last three coefficients have a more complicated form. The coefficient Q can be
written as

Q
(0)µ
ba = h ρ

b

•
T µ
a ρ + 2δbah

ρ
c

•
T cµ

ρ, (A.4)

and L can be expressed in the following way

L
(0) νµ
ba = gµνh ρ

b h
β
c

(
•
Taγβ

•
T cγ

ρ − 2
•
Taγρ

•
T cγ

β

)
+

(
h ν
a h

µ
b −

1

4
δabg

µν

)
T+

+
1

2

•
T µ
aρ

•
T ρν
b −

•
T ν
aρ

•
T ρµ
b + h µ

b h
ρ
c

(
•
T ν
aγ

•
T cγ

ρ −
1

2

•
Taγρ

•
T cγν

)
.

(A.5)

We have only the coefficient G left. Since its structure is rather complicated we split it
as

G
(0) νµ
abρ = E

(0) νµ
abρ + gµνF

(0)
abρ +H

(0) µ)ν
ab(ρ , (A.6)

where the second and the first terms contains derivatives of the tetrads field, and come
from integration by parts of terms containing two derivatives. The round brackets are
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notation for H(0) µ)ν
ab(ρ = H

(0)µν
abρ − H

(0)µ ν
ab ρ . The last term instead comes from terms

containing one derivative. Explicitly they are

E
(0) νµ
abρ =

◦
∇ρ (h ν

a h
µ
b )− 1

2

◦
∇ρ (h µ

a h
ν
b ) +

◦
∇µ (haρh

ν
b )− 2

◦
∇µ (h ν

a hbρ) , (A.7)

while F is
Fabρ =

◦
∇α (h α

a hbρ)−
1

2

◦
∇α (haρh

α
b ) . (A.8)

Finally, the tensor H is given by

H
(0) νµ
abρ = 2h µ

b

•
T ν
aρ − δabh µ

c

•
T c νρ +

h ν
a

2

[
1

2

•
T µ
bρ + (h γ

b h
ν
c − 2h ν

b h
γ
c )

•
T cργ

]
. (A.9)
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