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Abstract

Correlated Mott-insulating states alternated with unconventional supercon-

ductivity have been lately observed in magic-angle graphene superlattices. For

small angles of rotation the band structure of twisted bilayer graphene (TBG)

exhibits isolated nearly-flat bands, which are responsible for such correlated

behaviour. At first, we describe TBG effective model in order to construct

a topological phase diagram for the mini-bands near charge neutrality. Then,

through symmetry analysis, we try to unravel and understand the limit of such

model, when one tries to revert back to localised low-energy orbitals in real

space (Wannier functions) for Hubbard-like descriptions.
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Introduction

Two articles published in 2018 on the science journal "Nature" by Jarillo-Herrero and
colleagues [1] [2] represent a remarkable step for those studying condensed matter
physics. Those papers carry the discovery of correlated insulating and supercon-
ducting states in "magic angle" twisted bilayer graphene (TBG), leading to a con-
siderably intensified theoretical activity in the already burgeoning field of graphene
research.

This fascinating material is made of a 2-D layer of carbon atoms that are bonded
together, generating an honeycomb shaped lattice. Graphene was discovered for the
first time in 2004 by two scientists, Geim and Novoselov [3], who were trying to
isolate the thinnest possible layer of graphite through common scotch tape. Since
then this material has been used for the most varied purposes and still now its
possible applications are being explored.

However, the study of graphene honeycomb lattice is much older. The linear
energy dispersion relation at the Dirac cones makes this material a semi-metal with
unusual electronic properties, that are best described by theories of mass-less rela-
tivistic particles. Remarkable in the history of graphene was the discovery of Quan-
tum Hall effect and topological phases of matter. In 1987 Duncan Haldane proposed
its Haldane model [4], to explain Anomalous Quantum Hall effect in the presence of
Bloch band structure and time reversal broken symmetry in graphene lattice struc-
tures. As the studies on topological phase transitions intensified, graphene became
a reference model in the understanding of topological materials.

A turning point came in 2012 with the continuum Dirac model for small angle
twisted bilayer graphene by A. MacDonald and collegues [5]. When 2-D materials
are stacked with a relative twist, a so-called moiré pattern is formed. For small
angles of rotation the two layers of graphene show a long range modulation shaped
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Introduction

as an honeycomb super-lattice with extended AA stacking regions at the vertices,
alternate with AB/BA ones, figure (1).

Figure 1: Two stacked lattices of graphene with a twist. In the picture it is shown the
formation of the hexagonal super-cell of the moiré lattice for two sheets of graphene rotated
about a common atom site. The vertices of the triangles coincide with AA stacking regions,
while the internal part correspond to AB ones. [6]

Although the formation of a crystalline lattice depends on the commensurability
of the rotation angle, MacDonald formulated a low-energy effective Hamiltonian
always valid for small angles of twist. This in fact, is able to describe the electronic
structure using Bloch bands even for incommensurate patterns.

The band structure is thus folded into a mini Brillouin Zone, whose valleys
show interesting topological properties. At small twist angles low energy nearly flat
bands form, inducing a significant decrease in Fermi velocity at the charge neutrality
points. In particular, Fermi velocity drops to zero at a series of special angles called
magic angles. Correlated insulating states at half-filling of these bands, that can
be possibly explained with a Mott-like theory, have been observed experimentally.
More interestingly, at the magic angle when the flat bands are doped in a slightly
different way from the Mott-like insulating states, superconductivity is achieved [2].
The power of this material relies on the possibility of studying correlated systems
controlling its electronic density and low-energy bandwidth, simulating different
scenarios. In this prospective it is necessary the implementation of a tight-binding
model to explore unsolved questions. Nevertheless this remains an open problem
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Introduction

and a faithful tight-binding model has not been formulated yet.
This work is divided into five sections following the most important steps in the

comprehension of TBG. High regard is placed in understanding the continuum model
and the topological properties of the single valley low-energy nearly-flat bands. The
effect of relaxation of the two layers, together with the symmetries of the effective
model, are examined on two levels. At first they are used to construct a topological
path diagram for the single valley flat bands. Later, they are studied as limits in
the construction of a tight-binding model.
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Monolayer graphene

Figure 1.1: Graphene lattice. The 2D planar structure is shown with its bonds. σ-bonds
result from an overlap of sp2 hybrid orbitals and tie together three nearest neighbors atoms
of carbon. Non-hybridised p orbitals, perpendicular to the plane, form half-filled bands that
can generate π bonds with other atoms [7]

Graphene is a single layer material made of a two dimensional lattice of carbon
atoms, whose orbitals have sp2 hybridisation. Each atom in fact is tied together
with its three nearest neighbors by σ-bonds, creating a trigonal planar structure.
The total shape results in a honeycomb lattice of hexagonal cells with the sigma
bonds on the plane and the non-hybridised p orbitals perpendicular to the structure.
Because of the carbon electrons structure (1s)2(2s)2(2p)4, p, orbitals form half-filled
bands that can generate π bonds with other atoms and make graphene a semi-metal.
These lasts π bonds, in particular, are responsible for the electronic conduction of
graphene.
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Monolayer graphene

1.1 Direct and reciprocal lattice

Because of graphene crystal structure, it is possible to find within the lattice a unit
cell shaped of a 2-dimensional rhombus. The cell consists in two identical carbon
atoms placed at two different positions labelled by A and B respectively. The unit
cell constant is a0 = a

√
3, where a = 1, 42Å is the distance between two nearest

neighborhood atoms A and B. The 2-D unit cell vectors are a1 = a
2
(3,
√

3) and
a2 = a

2
(3,−

√
3), so any position vector in the lattice can be expressed as a linear

combination R = n1a1 +n2a2 with n1 and n2 real integers. The result is a structure
of two sub-lattices made up of only A and only B atoms that interpenetrate.

Figure 1.2: Honeycomb lattice in real space. The lattice is made up of hexagonal cells with
A and B inequivalent sub-lattices. The vectors δn connect the nearest-neighborhoor cites,
whereas a1 and a2 are unit cell vectors, such that any position vector can be expressed as
R = n1a1 + n2a2 with n1 and n2 real integers. a = 1, 42Å is the distance between two
nearest neighborhood [8]

From a1 and a2 it is possible to construct the reciprocal lattice basis vectors
b1 and b2 which must satisfy aibj = 2πδij, such that b1 = 2π

3a
(1,
√

3) and b2 =
2π
3a

(1,−
√

3). In a similar way to real lattice, every vector in the reciprocal space can
be described by a linear combination of the basis b1 and b2, such that k = k1b1+k2b2

with k1 and k2 real integers. Hence, any generic exponential factor e(ikR) in Bloch
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Monolayer graphene

wave functions with k a real vector, can be expressed restricting the wave number
vector k to the First Brillouin Zone. It is geometrically parameterized by the same
expression but with k1 and k2 defined in [0, 1]. It follows that the FBZ has the same
shape as the original hexagons of the honeycomb lattice, but it is rotated by a π

2

angle.

Figure 1.3: Honeycomb lattice in reciprocal space. The figure shows the first Brillouin
Zone. K and k′ label the two inequivalent Dirac cones. b1 and b2 are the basis vectors,
such that any vector in the reciprocal space can be written as k = k1b1 + k2b2 with k1 and
k2 real integers. To restrict k to the First Brillouin Zone k1 and k2 are defined in [0, 1]
[9]

The six vertices of the FBZ locate the Dirac cones that identify two set of three
equivalent points. It is satisfactory then, to refer to just one point per group and
to label it with K and K ′ respectively. These are located in the reciprocal space at
position K = 2π

3a
(1, 1√

3
) and K′ = 2π

3a
(1,− 1√

3
). Dirac cones are extremely important

to describe the physics of graphene and to characterise its properties [9]. This is
why a deep analysis of the shape of the energy bands close to those points is carried
out in this work.

1.2 A tight-binding Hamiltonian

To study the non interacting-fermions band structure of graphene, it is sufficient to
restrict the study to the analysis of electrons in the perpendicular p orbitals, the
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Monolayer graphene

others in fact do not take place into its conductivity properties. A good description
is given by a tight-binding Hamiltonian [10], in which electrons can hop to nearest-
neighbor and to next nearest-neighbor atoms. The tight-biding Hamiltonian is

H = −t
∑
〈i,j〉

(a†ibj + h.c.)− t′
∑

<<i,j>>

(a†iaj + b†ibj + h.c.) (1.1)

where the spin index is understood. ai and bi are respectively the destruction op-
erators of one electron in sub-lattice A and B; the angle brackets refer to nearest-
neighbor, while the double ones to next to nearest-neighborhood atoms; h.c. stands
for hermitian conjugate and in the end t and t′ set the energy band scale of the
two hopping processes. These last two terms have magnitude t ≈ 2.8 eV and
0.02t . t′ . 0.2t depending on the tight binding parameterization [9].

1.2.1 Nearest neighbor hoppings

It is convenient to start considering just the first piece of the Hamiltonian and
neglecting the next nearest-neighbor hopping term. The expression thus assumes
the form

H0 =− t
∑
〈i,j〉

(a†ibj + h.c.) = −t
∑
i∈A

∑
δ

(a†ibi+δ + h.c.)

where in the second equality the sum over n.n. is made explicit. The first summation
contains all the ri vectors pointing to sub-lattices A, while

∑
δ runs over the three

vectors connecting the three B nearest neighborhood sites located at δ1 = a
2
(1,
√

3),
δ2 = a

2
(1,−

√
3) and δ3 = −a(1, 0). Since the lattice is periodic (no edges have

been fixed and one can assume either infinite or periodic boundaries), a Fourier
transform of the destruction and creation operator can be performed. Assuming the
same number of A and B sites (N)

ai =
1

N

∑
k

eikriak

bi =
1

N

∑
k′

eik
′ribk′

8



Monolayer graphene

the Hamiltonian becomes

H0 =− t

N

∑
i∈A

∑
δ

∑
k,k′

(ei(k
′−k)rieik

′δa†kbk′ + ei(k−k
′)rie−ik

′δb†k′ak) =

=− t
∑
δ

∑
k

(eikδa†kbk + e−ikδb†kak)

where the sum over ri in the exponential has been replaced with a Kronecker delta
δk,k′ and N is the number of atoms in each sub-lattice A or B, to be kept large but
finite for the moment. It follows that the Hamiltonian can be written as

H0 = ψ†h(k)ψ −→ h(k) = −t

(
0 ∆k

∆∗k 0

)
(1.2)

with vectors

ψ =

(
ak

bk

)
ψ† =

(
a†k b†k

)
and

∆k =
∑
δ

eikδ → δ=δ1,δ2,δ3

The eigenvalues of (1.2) are the two energy values

ε±(k) = ±t
√

∆k∆∗k = ±t
√

3 + f(k) (1.3)

This result is obtained expanding ∆k as follows

∆k =
∑
δ

eikδ = eikδ1 + eikδ2 + eikδ3 = eikδ3(1 + eik(δ1−δ3) + eik(δ2−δ3)) =

= e−iakx(1 + ei
3a
2
kxe−i

√
3a
2
ky + ei

3a
2
kxei

√
3a
2
ky) =

= e−iakx(1 + ei
3a
2
kx(e−i

√
3a
2
ky + ei

√
3a
2
ky)× 2

2
) =

= e−iakx(1 + 2ei
3a
2
kx cos

(√
3a
2
ky

)
)

(1.4)

where the product kδ has been made explicit using δ coordinates [11].
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Monolayer graphene

Hence from (1.4)

∆k∆∗k = [e−iakx(1 + 2ei
3a
2
kx cos

(√
3a
2
ky

)
][eiakx(1 + 2e−i

3a
2
kx cos

(√
3a
2
ky

)
] =

= 1 + 4 cos
(

3a
2
kx
)

cos
(√

3a
2
ky

)
+ 4 cos2(

√
3a
2
ky)
∗∗ =

= 3 + 4 cos
(

3a
2
kx
)

cos
(√

3a
2
ky

)
+ 2 cos

(√
3ky

)
=

= 3 + f(k)

Figure 1.4: Electronic dispersion of graphene. The figure shows a 3-D plot of the valence
and conductance band of graphene, obtained solving a tight-binding model Hamiltonian with
just first nearest-neighbors. The bands cross the Fermi level at the Dirac points, i.e. the
six vertices of the First Brillouin Zone. (Left) Zoom of the energy bands close to one of
the Dirac points. [12]

From the second line of this expression it comes that the points at which the two

=1 + 4 cos
(

3a
2 kx

)
cos
(√

3a
2 ky

)
+ 4 cos

(√
3aky

)
+ 4 sin2(

√
3a
2 ky) =

=1 + 4 cos
(

3a
2 kx

)
cos
(√

3a
2 ky

)
+ 4 cos

(√
3aky

)
+ 2 cos(0)− 2 cos(3akx)

10



Monolayer graphene

energy bands touch, i.e. εk = 0, are set by the following conditions

3akx
2

= 2nπ cos
(√

3a
2
ky

)
= −1

2

3akx
2

= (2n+ 1)π cos
(√

3a
2
ky

)
= 1

2

Within the first hexagonal Brillouin Zone there are six points (kx, ky) such that
ε(k) = 0. These are exactly the loci of the six Dirac cones within the FBZ
[8]. It should be noticed that, considering just nearest-neighbor hopping terms in
the Hamiltonian the energy spectrum is exactly symmetric about the Dirac points
(ε(k) = 0) and there is no gap between the two bands. This is not true anymore as
soon as the second nearest-neighbor terms is counted.

1.2.2 Second nearest neighbor hoppings

Let’s consider then the second term of the Hamiltonian (1.1)

H ′ = −t′
∑

<<i,j>>

(a†iaj + b†ibj + h.c.)

moving to k-space and performing the same calculations done for H0, the Hamilto-
nian can be written as

H ′ = ψ†h′(k)ψ −→ h′(k) = −t′


∑
a

2 cos(ka) 0

0
∑
a

2 cos(ka)

 (1.5)

showing that it is already in diagonal form. The
∑
a

is the summation over the lattice

vectors a1, a2, a3 = a2− a1. Thus one can now expand the cosine substituting the
values of an∑

a

2 cos(ka) = 2[cos
(

3a
2
kx +

√
3a
2
ky

)
+ cos

(
3a
2
kx −

√
3a
2
ky

)
+ cos

(√
3aky

)
] =

= 2[2 cos
(

3a
2
kx
)

cos
(√

3a
2
ky

)
+ cos

(√
3aky

)
]

11



Monolayer graphene

This leads to the expression

f ′(k) = 4 cos
(

3a
2
kx
)

cos
(√

3a
2
ky

)
+ 2 cos

(√
3aky

)
= f(k)

From this result the total energy spectrum of (1.1) is

E±(k) = ±t
√

3 + f(k)− t′f ′(k)

in fact (1.5) is already in diagonal form, so the f ′(k) gives always a negative con-
tribution to (1.3). It follows that the energy spectrum is not symmetric about
E±(k) = 0, instead the π band is lowered, while π∗ is flattened around the Dirac
point. Introducing the t′ interaction energy, a gap cannot be opened between the

Figure 1.5: Electronic dispersion of graphene. The figure shows a 3-D plot of the valence
and conductance band of graphene, obtained solving a tight-binding model Hamiltonian with
first and second nearest-neighbors. The bands cross the Fermi level at the Dirac points, i.e.
the six vertices of the First Brillouin Zone. (Left) Zoom of the energy bands close to one
of the Dirac points. One should notice that when second nearest-neighbors are taken into
account the energy spectrum loses its symmetric behaviour about E±(k) = 0. Particle-hole
symmetry is spoiled [9]

Dirac cones because all the real symmetries of the system are preserved and what is
broken is particle-hole symmetry. A deep analysis of the symmetries of the system
will be performed in the section dedicated to the topological properties of graphene
in the third chapter.
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Monolayer graphene

1.3 Dirac cones and continuum model

It is interesting to analyse more in detail the behaviour of the energy spectrum
where the two bands touch, i.e. close to the Dirac points. It is convenient to refer to
the Hamiltonian (1.2) neglecting the second nearest-neighborhood hopping term. In
order to expand close to the Dirac point K = 2π

3a
(1, 1√

3
) let’s introduce a 2-D vector

q, such that k = K + q with q �K. The ∆ term (1.4) becomes

∆k =
∑
δ

eikδ = e−iakx(1 + 2ei
3a
2
kx cos

(√
3a
2
ky

)
) =

= e−iaKxe−iaqx(1 + 2ei
3a
2
Kxei

3a
2
qx cos

(√
3a
2

(Ky + qx)
)

=

= e−iaKxe−iaqx(1 + 2eiπei
3a
2
qx cos

(
π
3

+
√

3a
2
qy

)
)

expanding to first order around q = 0

∆k = e−iaKx(1)(1− 2(1 + 3a
2
qx(

1
2
−
√

3a
4
qy)
∗∗) =

= e−iaKx(3a
2
qy − 3a

2
iqx)

1 So the result is simply

∆K+q = −3
2
aie−i

2π
3 (qx + iqy)

It is possible to fix a Gauge such that the phase −ie−i
2π
3 in front of the parenthesis

does not appear in the equation. The Hamiltonian (1.2) becomes

H0(k) = ψ†h(K + q)ψ −→ h(K + q) = ~vf

(
0 qx + iqy

qx − iqy 0

)
(1.6)

In the expression of h(K + q) it has been introduced the Fermi velocity, which is
defined as vf = 3ta

2~ .

1

cos
(
π
3

+
√

3a
2
qy

)
) = cos

(
π
3

)
cos
(√

3a
2
qy

)
− sin

(
π
3

)
sin
(√

3a
2
qy

)
=

(
1

2
cos
(√

3a
2
qy

)
−
√

3

2
sin
(√

3a
2
qy

))
q→0

=

= 1
2
−
√

3
2

√
3a
2
qy = 1

2
−
√

3a
4
qy

13



Monolayer graphene

This result can be expressed in terms of Pauli matrices,

h(K + q) = hK = ~vf (σxqx − σyqy) = ~vfσ∗q (1.7)

where σ = (σx, σy, σz) and σ∗ = (σx,−σy, σz). It follows that, diagonalizing the
matrix, the energy spectrum is found to be linear in q and it depends only on the
modulus of q

E±(k) = ±t
√

∆K+q∆∗K+q = ±~vf |q| (1.8)

Thus the two energy bands are described by cones with the vertices lying at the Dirac
points. Equation (1.8) in fact, characterises mass-less Dirac particles with spin 1

2

and velocity vf ∼= 106m/s. As a consequence the wave function of the Hamiltonian
is given by a 2-component spinor with θq, the angle of q in momentum space with
respect to the x axis

ψ(K),±(q) =
1√
2

(
ei
θq
2

±e−i
θq
2

)
(1.9)

where θq = tan−1( qx
qy

) and ± refers to the two possible outcomes of the energy. This
vector is such that the phase changes just by π when the phase of the vector qx+ iqy

is rotated by 2π, as it should be for spinors. Nevertheless the two components of
the wave-function are not referred to the two values of the spin, that has been
implied since (1.1). In this case spinor components describe the distribution of the
electrons in the two sub-lattices A and B, and this is why one should rather speak
of pseudo-spin.

When the calculations are performed on K′ = 2π
3a

(1,− 1√
3
), the result for (1.4)

becomes
∆K′+q = −3

2
a(qx − iqy)

with Hamiltonian
hK′ = ~vf (σxqx + σyqy) = ~vfσq

and wave-function

ψ(K′),±(q) =
1√
2

(
ei
θq
2

±e−i
θq
2

)

14



Monolayer graphene

Despite this result, the excitations near K and K ′ are not one another anti-
particles. From equation (1.8) and (1.9) it is clear that the couple particle anti-
particle is given respectively by the positive and negative outcomes of the energy E =

±~vf |q|. These two results come from the possible combinations of the excitations
on the A and B sub-lattices near just one of the Dirac points and these are really
what defines the particle anti-particle couple.

1.4 Properties of graphene

As it was mentioned before, in graphene each atom has a pz orbital perpendicular
to the plane that is responsible for its electronic properties. It follows that within
each unit cell, the two pz orbitals form π bonding and π∗ anti-bonding. The two
electrons per-cell fill completely the π orbitals of the valence band, leaving empty
the π∗ orbitals of the conduction one. The electronic structure resembles that one
of an insulator. Nevertheless at the Dirac points the two bands touch, so graphene
ends up being a semi-metal. Close to these points, where the dispersion relation is
linear Eq = ~vf , one can compute the density of states that is equal to the number
of electronic states per unit cell area Ac and energy

ρ(E) =
dN

dEq
=
dN

dq

dq

dEq
=

1

~vf
dN

dq
=

2Ac
π

E

(~vf )2
(1.10)

where the derivative of the number of states N

dN

dq
=

d

dq

∫
d2q

g

4

Ac
π2

=
d

dq

(
Ac
π
q2

)
=

2Acq

π
=

2Ac
π

E

~vf
(1.11)

and g = 4 is the multiplicity, that gives a contribution of 2 for the spin and 2 for
the two Dirac cones at K and K ′.

From (1.10) it is clear that the density of state is symmetric about the point
E = 0, where ρ = 0. Because of the linear dispersion relation in fact, ρ(E) = ρ(−E)

showing the electron-hole symmetry of the spectrum close to the Dirac points.

Equation (1.7) describes mass-less Dirac particle, so it is natural to introduce a
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Monolayer graphene

cyclotron mass m∗ which is defined in the semi-classical approximation as

m∗ =
1

2π

[
∂A(E)

∂E

]
E=Ef

(1.12)

where A = πq(E)2 = πE2

(~vf )2
is the area of an orbit enclosed by the momentum q,

and Ef is the Fermi energy. Substituting in (1.12) the expression for A

m∗ =
Ef

(~vf )2
=

qf
~vf

(1.13)

The electron density n, which is the number of filled states per unit volume, can be
expressed in terms of the Fermi momentum qf , so from (1.11), n =

q2f
π
. It follows

that the effective mass is
m∗ =

√
πn

~vf
(1.14)

proportional to the
√
n. This result is used in experiments to proof that in graphene

particles behaves as mass-less Dirac fermions close to the Dirac points [8] [9].

1.5 Gapping Dirac cones

Coming back to the study of the Dirac Hamiltonian and looking at equation (1.6),
one can think of adding a term proportional to σz. Given a generic parameter m,
the Hamiltonian becomes

hK =

(
m ~vf (qx − iqy)

~vf (qx + iqy) −m

)
≡ ~vf (σxqx − σyqy) +mσz (1.15)

This introduces an asymmetry between the two sites which should modify somehow
the shape of the energy bands. Diagonalizing (1.15), the energy eigenvalues are

E± = ±
√

(~vf |q|)2 +m2

From this result it is clear that there are not solutions with E = 0, so the two energy
bands never touch.

The introduction of any asymmetry between sub-lattice A and B produces the
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Monolayer graphene

opening of a gap between π and π∗, in such a way that the Dirac cones do not touch
anymore. On the contrary, the addition of a term m proportional to the identity
does not alter the shape of the Dirac cones, it just shift them of this same quantity.
In this case the eigenvalues of the energy are in fact

E± = vf (m± |q|)

that have E± = 0 value for m = ∓|q|

17





2

The effective model of TBG

Figure 2.1: Moiré pattern generated by two honeycomb lattices stacked one on top of the
other with a certain rotation angle. [13]

The analysis performed so far is about a 2-D single layer of graphene and its elec-
tronic properties. Many experiments have been performed in the last twenty years
on graphene-based structures, meaning 0-D, 1-D or 2-D arrangements of carbon
atoms on nano-structures. These can be imagined to be formed from the pristine
2-D carbon layer that is further stacked, or folded. These samples present differ-
ent band-structures and transport characteristics that can be available for various
carbon-based electronics.
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A big contribution to this field has been the introduction of new preparation
methods of multi-layer materials, that consent to create different stacking configu-
rations with arbitrary small rotation angles. In general the lattice periods of the
individual atomic layers are incommensurate, due to the misorientation between the
sheets. Focusing just on a bilayer systems, the double-layers graphene configuration
is particularly interesting and presents low-energy electronic properties strongly de-
pendent on the stacking arrangement. For twist angles larger then few degrees, the
two layers graphene are almost electronically isolated. On the contrary, as the angle
becomes smaller, interlayer coupling strengthens and the Fermi velocity at the Dirac
point begins to decrease. From the analysis of the problem performed by Allan H.
MacDonald and colleagues [5], it turns out that for small angles of rotation (. 10°)
and first order approximation at the Dirac cones, bilayer graphene presents always
linear energy dispersion relation, exactly as it happens for single layer sheets. In
addition to that, for what are called magic angles, Fermi velocity tends to zero at
the Dirac points. It follows that, in these configurations, bilayer graphene presents
extremely interesting electronic properties and phase states not yet totally explored.

Coming back to the general case and starting from a conventional stacking, the
geometry of bilayer systems, which creates a Moiré pattern, is characterised by a
twist angle θ and a translation vector d. The commensurability depends only on
the angle of rotation and a two dimensional crystal forms just for a discrete set of
commensurate θ generating a Moiré periodic super-lattice. This implies that for
generic angles of twist, Bloch’s theorem cannot be applied and the electronic band
structure of the bilayer material cannot be directly computed with usual band-theory
methods.

The goal of this chapter is to retrace the solution of this problem proposed
by Castro-Neto [14], MacDonald and colleagues for small angle rotation bilayer
graphene and to give a first understanding of the meaning of magic angles. In par-
ticular it is shown that one can build a low-energy continuum model Hamiltonian
at the Dirac points. Moreover it is allowed the construction of the electronic struc-
ture using Bloch bands even for incommensurate twist angles. It emerges that these
bands depend on the numerical value of the rotation angle θ, which affects their
shape [14] [5] [15] [16] [17].
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2.1 The model

The low energy model of bilayer graphene close to the Dirac points, is constructed
introducing just three terms:

• two Hamiltonians that describe each one of the single isolated sheet

• a tunnelling hopping matrix between the layers

The interactions between electrons are neglected similarly to the single layer case.
The decoupled Hamiltonian is the one of a Dirac spinor, it has the same expression
found in the previous chapter (equation (1.6)) close to K point

hk(θ) = vk

(
0 ei(θk−θ)

e−i(θk−θ) 0

)
(2.1)

However the angle θ dependence is present here. It is, in fact, the rotation angle of
one layer with respect to the other. k is, as before, the fluctuation in momentum at
the Dirac point.

The inter-layer term is constructed considering hopping from each site in layer
one to the closest sites of layer two. There is no coupling between different valleys
K and K ′ [14]. An electronic state with a Bloch wave vector k on layer one and
one with k′ on layer two are coupled only when

k +G1 = k′ +G′2 (2.2)

where G1 and G′2 are reciprocal lattice vectors. This is accounted as a general
Umklapp process between misoriented crystals and gives a necessary condition to
find a non-zero hopping term [16]. Another remark that should be made, is that
the model considered is the one of a π-band tight-binding Hamiltonian. For this
model, in general, the hopping term t(r) depends only on the planar projection
r between two different layers sites. It follows that there is not dependence on
the perpendicular distance between the sheets, nor on the nature of the hopping
sub-lattice (respectively A and B) [15].
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2.1.1 The hopping matrix

The matrix hopping element between Bloch states within the two layers is defined
as

< Ψα
k|Hint|Ψβ

k′ > (2.3)

where Hint is the inter-layer interacting Hamiltonian. Therefore, one should first
understand how these |Ψα

k > are constructed and how they are related.

The Bloch state for a single layer j = 1, 2, labelled by its momentum k and the
band index n, can be written as

|Ψ(j),n
k >= a(j),n

k,A |ψ
(j)
k,A > +a(j),n

k,B |ψ
(j)
k,B >

where a(j),n
k,α are the coefficients associated to each one of the two sub-lattices α =

A,B. These are referred to the result found in the previous chapter for the spinor
eigenvectors eqrefψ of the tight-binding Hamiltonian close to the Dirac point(

a(j),n
k,A

a(j),n
k,B

)
=

1√
2

(
e−i

θq
2

±ei
θq
2

)

The Bloch basis projected on a single sub-lattice |ψ(j)
k,α >, is simply defined as

|ψ(j)
k,α >=

1√
N

∑
R

eik(R+τα)|R+ τα > (2.4)

where k is the two dimensional Bloch wave vector parallel to the lattice, N is the
number of α sites (which is equivalent to the number of unit cells within the layer),
R are the triangular Bravais lattice vectors and τα is fixed in a way that it connects
the two atoms in the unit cell, meaning τA = 0 and τB = τ . As it was mentioned
before, the second layer is rotated by a θ angle and displaced by a d vector with
respect to the first one. By convention all the vectors referred to the second layer
are labelled with prime ′. It follows that r and r′, and the the wave vectors k and
k′, are related by the transformation relations

r′ = M(θ)r + d

k′ = M(θ)k
(2.5)
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where M(θ) is the rotation matrix. For the second layer, equation (2.4) becomes

|ψ(2)
k,β >=

1

N

∑
R′

eik(R′+τ ′β)|R′ + τ ′β > (2.6)

where β = A,B.

(2.4) and (2.6) are constructed in a way that the number of unit cells in the two
layers is the same (N), so the two Bloch states are simply related by

|Ψ(2),n
k′ >= |Ψ(1),n

k >

with the replacements expressed in (2.5).

Coming back to equation (2.3), the matrix hopping term is

T nn
′

kp′ =< Ψ
(1),n
k |Hint|Ψ(2),n′

p′ >=< Ψ
(1),n
k |Hint|Ψ(1),n′

p > (2.7)

where n and n′ are the band indices. Substituting (2.4) and (2.6) in equation (2.7),
and using the two-centre approximation

T nn
′

kp′ =
1

N

∑
α,β

(a(1),n
k,α )∗a(1),n′

p,β

∑
R,R′

e−ik(R+τα)+ip(R′−d+τ ′β)t(R′ + τ ′β −R− τα)

with
< τα +R|Hint|R′ + τ ′β >= t(R+ τα −R′ − τ ′β)

The expression for T nn′kp′ can be written performing a Fourier transform on t(r)

T nn
′

kp′ =
1

N

∑
α,β

(a(1),n
k,α )∗a(1),n′

p,β

∑
R,R′

1

N

∑
q

t(q)e−ik(R+τα)+ip(R′−d+τ ′β)eiq(R′+τ ′β−τα−R)

(2.8)
It is convenient to work just with the second summation term of (2.8). Only this
one in fact, is manipulated to find the final result

∑
R,R′

1

N

∑
q

t(q)e−ik(R+τα)+ip(R′−d+τ ′β)eiq(R′+τ ′β−τα−R) =

=
∑
R,R′

1

N

∑
q

t(q)e−ik(R+τα)ei(p+q)(R′+τ ′β)e−ipde−iq(τα+R)
(2.9)
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Performing the Poisson summation formula with the Kronecker delta on the second
layer R′ and introducing G′2, which is a rotated reciprocal space vector [18]

∑
R′

eiR
′(p+q) = N

∑
G′2

δp+q,G′2

(2.9) becomes

=
∑
R,G′2

1

N
N
∑
q

t(q)e−ik(R+τα)ei(p+q)τ ′βe−ipde−iq(τα+R)δp+q,G′2
=

=
∑
R,G′2

t(−p+G′2)eiG
′
2τ
′
βe−ipdei(p−G

′
2−k)(τα+R)

(2.10)

Applying again Poisson summation, but now on the first layer vector R

∑
R

ei(p−G
′
2−k)R = N

∑
G1

δp−G′2,k+G1

equation (2.10) becomes

=N
∑
G1,G′2

t(−p+G′2)eiG
′
2τ
′
βe−ipdei(p−G

′
2−k)ταδp−G′2,k+G1

=

=N
∑
G1,G′2

t(k +G1)eiG
′
2τ
′
βe−iG

′
2de−i(k+G1)deiG1ταδp−G′2,k+G1

=

=N
∑
G1,G′2

t(k +G1)e−iG
′
2τ
′
βeiG

′
2de−i(k+G1)deiG1ταδp+G′2,k+G1

(2.11)

where in the last equality it has been set G′2 = −G′2 for symmetry.

The hopping term is such that, performing a Fourier transform

t(k +G1) =
1

Ω

∫
dr t(r)eir(k+G1) ≡ 1

Ω
tk+G1 (2.12)

and plugging (2.12) into (2.11) and the result so found, back to (2.8)

T nn
′

kp′ =
1

Ω

∑
α,β

(a(1),n
k,α )∗a(1),n′

p,β

∑
G1,G′2

tk+G1δp+G′2,k+G1
e−iG

′
2τ
′
βeiG

′
2de−i(k+G1)deiG1τα

(2.13)
This result was obtained referring to [15], where the initial configuration is described
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by an AA stacked bilayer and the origin of vectors is at an honeycomb lattice point.
It is convenient, for subsequent calculations, to refer to another article [5], where the
initial configuration is an AB Bernal Stacking. The positions of the carbon atoms
in the two layers are in this case related by r′ = M(θ)(r − τ ) + d, where τ takes
into account the initial Bernal stacking misalignment.

The hopping matrix element (2.13) is replaced with

T nn
′

kp′ =
1

Ω

∑
α,β

(a(1),n

k̄,α
)∗a(1),n′

p̄,β

∑
G1,G′2

tk̄+G1
δp̄+G′2,k̄+G1

e−iG2(τβ−τ )e−iG
′
2deiG1τα =

=
∑
α,β

(a(1),n

k̄,α
)∗a(1),n′

p̄,β Tαβ
(2.14)

where the bar notation stands for momentum computed with respect to the centre
of the first Brillouin Zone.

2.1.2 The new moiré pattern

The construction of the matrices that describe the interlayer interaction, hinges on
the understanding of the geometrical structure of the bilayer. The wave vectors that
figure in equation (2.14), are computed in each layer with respect to the Dirac point
and are assumed to be small deviation compared to the First Brillouin wave vectors.
The value of tq is not exactly known. Thus, to find a numerical estimate, it has
been considered the result proposed in reference [15], in which the following ansatz
is made

tq = t0e
−α(qd⊥)γ (2.15)

t0 = 2eVÅ2, α = 0, 13, γ = 1, 25, and d⊥ = 3.34Å is the distance between the
layers. The fact that, the wave vectors in equation (2.14) are assumed to be small
deviation on K, is now understood. The amplitude of tq in fact, bends to 0 rapidly
with q defined in the Moiré first Brillouin Zone. The negative exponential e−α(qd⊥)γ

in equation (2.15), clearly forces tq to zero for qd⊥ > 1. Given that kD is the
magnitude of the momentum at the corner of the BZ of a single layer, the biggest
value tq can reach is given by |q| ' kD. It corresponds to the three equivalent Dirac
cones that are connected by reciprocal lattice vectors G(1)

1 and G(2)
1 (respectively

G(2) and G(3) in figure (2.2)). This results in three different hopping processes.
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Figure 2.2: Reciprocal-space geometry of a twisted bilayer. (A) Dashed lines locate the
first Brillouin Zone of an unrotated layer, where G(2) and G(3) connect the three equiva-
lent Dirac points. The blue circles are the new positions of the cones of the two stacked
layers, after a rotation of ±θ/2. The dots are connected by the vector qb of modulus
kθ = 2kDsin(θ/2), with kD the magnitude of the Brillouin-zone corner wave vector of a
single layer. (B) The three equivalent Dirac points in the first Brillouin zone result in
three distinct hopping processes, defining a new reciprocal lattice. The green line marks the
Moiré band Wigner–Seitz cell [5].

The lattice generated by repeated translation of these hopping processes, form
a new reciprocal space that one can imagine to be associated with the Moiré lat-
tice. The Dirac cones are now identified by the vectors qj, with modulus |qj| =

2kDsin(θ/2) = kθ. This is clearly understood looking at the figure (2.2). Each
layer is in fact rotated respectively of θ/2 and −θ/2, thus q/2 is the height of the
triangle with hypotenuse kD and angle θ/2. Because of momentum conservation,
the interaction processes between the two layers must satisfy kj = k + qj, where
k is an excitation close to a Dirac point. qj are the three vectors defined before
that have modulus kθ and identify the three tunnelling processes between the two
layers at the three equivalent Dirac points K. These vectors, in the following, will
be labelled by qb, qtr, qtl detecting respectively the three hopping directions (0,−1),
(
√

3
2
, 1

2
), (−

√
3

2
, 1

2
). These correspond to the three angles of rotation θq1 = 3π

2
, θq2 = π

6
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and θq3 = 5π
6
. Now let’s consider only the Tαβ of the hopping expression (2.14) and

perform a Fourier transform

Tαβ(r) =
3∑
j=1

eiq
′
jrTαβj (2.16)

The only terms taken into account are the three qj corresponding to the reciprocal
lattice vectors qb, qtr, qtl listed above. The other terms of the Fourier expansion in
fact, are not relevant for tq. The three hopping matrices Tj are

T1 =
tkD
Ω

(
1 1

1 1

)
(2.17)

T2 =
tkD
Ω
e−iG

(2)d

(
e−iφ 1

eiφ e−iφ

)
T3 =

tkD
Ω
e−iG

(3)d

(
eiφ 1

e−iφ eiφ

)

The G(x) terms are the two rotated reciprocal lattice vectors pointing at the equiva-
lent K Dirac points in the second lattice. tq, in equation (2.15), has been replaced
with the biggest value it can assume tkD . In fact |kD| = |kD+G1| for everyG1 recip-
rocal lattice vector, and from experiments for AB stacked bilayer tkD

Ω
= w ≈ 110meV

[5]. The terms of the matrices are derived directly from the exponential of (2.14),
so one easily finds that φ = 2π

3
. Expression (2.16) is simply reduced to 3wδαAδβB

when d, θ = 0. This result is found directly substituting these values in (2.14) and
shows that in this case the hopping term does not depend on position r.
In the expression for Tj the dependence on the interlayer translation vector d, can
be neglected. The sliding between two layers, in fact, leads to a shift of the Moiré
interference pattern that can be understood as a shift in the origin of phase space
[16]. As a consequence, the dependence on d in the Hamiltonian, can be eliminated
by a unitary transformation. It is convenient then to set always d = 0.
This is not true anymore as soon as θ = 0, in this case in fact the dependence on d
cannot be neglected and the energy bands change with this vector.
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2.2 The continuum Hamiltonian

One can now put back together all the results found so far and try to write down
the low energy Hamiltonian for the continuum model of TBG. The hopping term
is local, it depends on r, and it is periodic whether or not the angle of rotation
is commensurate and the structure is crystalline. This consents to apply Bloch’s
theorem for every θ, at this level of approximation. The periodicity in fact, comes out
of the local hopping process described by qj vectors. The Fourier expansion of the
hopping term (2.16), expressed as a superposition of waves vector of the reciprocal
lattice, takes contributions only from the three qj described before. It follows that
T (r) has the same periodicity of the lattice generated by the very qj. Referring to
figure (2.2) it becomes clear that, by repeating the hopping processes, one generates a
k-space honeycomb lattice whose real space identifies a Moiré pattern. It is precisely
the green honeycomb in the figure that detects the Moiré Wigner-Seitz cell. Writing
down the Hamiltonian in k and k′ space, one can include only the single layer
Hamiltonian described by equation (2.1), the three Tj hopping terms in the second
layer and truncate Hk at the first honeycomb energy-shell of the super-lattice. The
Hamiltonian then, is described by a 8 × 8 matrix including the sub-lattice degrees
of freedom (A and B).

Hk =


hk(θ/2) Tb Ttr Ttl

T †b hkb(−θ/2) 0 0

T †tr 0 hktr(−θ/2) 0

T †tr 0 0 hktl(−θ/2)

 (2.18)

In this formulation one assumes that both layers are rotated of θ/2 in opposite di-
rections. This expression has been reported for conformity with MacDonald and
Bistritzer, reference [5], nevertheless this clarification is irrelevant for further com-
putations. This Hamiltonian acts on an eight-components spinor

Ψ =


ψ0

ψ1

ψ2

ψ3

 (2.19)
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where ψ0 refers to the first isolated layer near the Dirac point and ψj are related to
the three momentum near qj in the second layer.
In the equation for hj the dependence on θ is negligible for small rotation angles.
One can easily replace (2.1) with

hj = vkθ

(
0 eiθqj

e−iθqj 0

)

lightening the notation. One should recall that |qj| = kθ ∀ j and θqj can assume the
three rotation angles listed above. The Hamiltonian (2.18), where kj = k + qj, can
be written as the sum of

Hk = H0 +H ′k (2.20)

The first term is fixed by the condition k = 0, while the second represents the k-
dependence. k in fact can be considered as a fluctuation of the wave vector close to
the Dirac point. Solving the Hamiltonian at leading order in the excitation, H ′k can
be replaced with

H
(1)
k = v


σ∗k 0 0 0

0 σ∗k 0 0

0 0 σ∗k 0

0 0 0 σ∗k


To find the elements of the matrix (2.20), one should start proving the assumption
that H0 has null energy eigenvaluesh0ψ0 + Tjψj = 0

T †j ψ0 + hjψj = 0
−→

h0ψ0 + Tjψj = 0

ψj = −h−1
j T †j ψ0

(2.21)

From direct calculation one finds that

Tjh
−1
j T †j = 0

so multiplying on the left the second equation of (2.21) by Tj

Tjψj = 0 −→ h0ψ0 = 0 (2.22)
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As it was mentioned before, ψ0 is one of the two zero energy states, ψ(1)
0 and ψ(2)

0

of the isolated layer. Here the indices 1 and 2 are used to label the two degrees of
freedom of the individual layer, namely A/B or electron/holes bands.

The two zero energy eigenstates ofH0, follow from (2.22) and the second equation
of (2.21). From this result the elements of the Hamiltonian, up to leading order in
k, are

< Ψ(i)|Hk|Ψ(i) >

< Ψ(i)|Ψ(j) >
=
< Ψ(i)|H0|Ψ(i) >

< Ψ(i)|Ψ(j) >
+
< Ψ(i)|H(1)

k |Ψ(i) >

< Ψ(i)|Ψ(j) >
(2.23)

where Ψ are the eigenvalues of the unperturbed Hamiltonian H0. From now on the
upper indices (i) and (j) label the sub-lattice A and B.

The first term of equation (2.23) is null of course, so one is left with

< Ψ(i)|Hk|Ψ(i) >

< Ψ(i)|Ψ(j) >
=
< Ψ(i)|H(1)

k |Ψ(i) >

< Ψ(i)|Ψ(j) >
(2.24)

The modulo of Ψ is
|Ψ|2 = |ψ0|2 + |ψj|2

in fact it can be set |ψ0|2 = 1, while ψj is such that

|ψj|2 = ψ†jψj = ψ†0Tjh
−1†
j h−1

j T †j ψ0

Using the fact that

h−1
j = − 1

vkθ

(
0 eiθqj

e−iθqj 0

)
= − 1

ε2θ
hj (2.25)

it follows
h−1†
j h−1

j = 1
1

v2|q|2j
leaving just

|ψj|2 =
1

v2|q|2j
ψ†0TjT

†
j ψ0

The product of the Tj terms, where the sum over j is superimposed, can be
computed explicitly giving ∑

j

TjT
†
j = 6w21
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Finally, the modulo of Ψ is just

|Ψ|2 = 1 + 6α2

where α = w
v|q|j .

One can compute now (2.24)

< Ψ(i)|H(1)
k |Ψ(i) >

< Ψ(i)|Ψ(j) >
=

1

6α2 + 1

(
Ψ

(i)†
0 hkΨ

(j)
0 + Ψ

(i)†
0 Tjh

−1†
j hkjh

−1
j T †j Ψ

(j)
0

)
=

=
v

6α2 + 1
Ψ

(i)†
0

(
σ∗k −

∑
j

Tjh
−1†
j σ∗kh−1

j T †j
)
Ψ

(j)
0

(2.26)

From equation (2.25), where εθ = vkθ, (2.26) becomes

< Ψ(i)|H1
k|Ψ(i) >

< Ψ(i)|Ψ(j) >
=

v

6α2 + 1
Ψ

(i)†
0

(
σ∗k − 1

(vkθ)2

∑
j

Tjσ
∗kT †j

)
Ψ(j)

where the last term of the sum is just 1

∑
j

Tjσ
∗kT †j = 3w2σ∗k

Finally the result for (2.26) is

< Ψ(i)|H(1)
k |Ψ(i) >

< Ψ(i)|Ψ(j) >
= v
(1− 3α2

1 + 6α2

)
Ψ

(i)†
0 σ∗kΨ

(j)
0 = v∗Ψ

(i)†
0 σ∗kΨ

(j)
0 (2.27)

1Using that
∑

j TjT
†
j = 6w21, it follows∑

j

TjσkT
†
j − 3σk =

∑
j

TjT
†
j − 61 =

∑
j

TjσkT
†
j −

∑
j

TjT
†
j = 3w2σk − 6w21 =

=
∑
j

(Tj(σk − 1)T †j )
† =

∑
j

(3w2(σk − 21))†
×T−1

j−−−−−−−→
on the left∑

j

(σk − 1)T †j =
∑
j

(3w2T−1j (σk − 21))

∑
j

σkT †j =
∑
j

(3w2T−1j σk − 6w2T−1j + T †j )
×Tj−−−−−−−→

on the left∑
j

TjσkT
†
j =

∑
j

(3w2TjT
−1
j σk − 6w2TjT

−1
j + TjT

†
j ) = 3

∑
j

(TjT
−1
j σk) = 3w2σk

Notice that the result obtained is analogous for σ∗k
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The Dirac velocity of this Hamiltonian is

v∗ = v
1− 3α2

1 + 6α2
(2.28)

Equation (2.27) shows that the result obtained, has the same form of the continuum
model Hamiltonian of a single layer of graphene ε∗k = v∗k.

Figure 2.3: Renormalized Fermi velocity for twisted bilayer. v∗ is plotted as a function of
α2, α = w/(vkθ), for 0.18° < θ < 1.2°. Bigger values of α correspond to smaller angles.
The first point where v∗/v = 0, is given by α2 = 1/3 and corresponds to the first magic
angle α2 = 1/3, θ = 1.05°. (Inset) Renormalized velocity at larger twist angles. The solid
line refers to numerical results and dashed line to analytic results based on the eight-band
model [5]

The renormalized Fermi velocity has the expression given in equation (2.28),
which is different from the one found for the monolayer Dirac Hamiltonian. The
fractional term 1−3α2

1+6α2 < 1, so v∗ is always smaller then the single layer case. v∗

depends on the rotation angle of the two lattices through α, which contains the
sin(θ) in the denominator. As a consequence, from equation (2.28), it is possible to
compute the angle for which v∗ = 0. This is called magic angles and it is just the
first of many others that can be found from numerical computations and occur for
smaller values.

The first magic angle, computed precisely from (2.28), is θ = 1.05°. To find this
result one should first recall that α = w

v2kD sin(θ/2)
, so bigger values of α2 correspond

to smaller rotation angles. From (2.28) one can find α2 = 1
3
. Solving with the
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expressions for vF and kD (which is the modulus of K or K ′) and substituting the
values of t = 2, 8 eV [9] and w = 0, 11 eV , one finds exactly θ = 1.05°.

The other smaller magic angles are shown in figure (2.3), exhibiting an ambiguous
trend for the velocity. The inset in figure(2.3), instead, plots the trend of the velocity
as a function of the rotation angle for analytic (dashes line) and numerical results
(solid line) [5]. The only visible magic angle is θ = 1.05°, revealing a monotonic
behaviour for v∗/v which is totally lost for smaller θ.

2.2.1 The band structure

Figure 2.4: Moiré bands. (A) Band structure in the continuum model for the 14 bands
closest to the Dirac points plotted along the k-space trajectory A → B → C → D (2.2).
Three different rotation angles θ, show different energy dispersion. In particular the second
figure represents the magic angle configuration with the two flat bands at 0 energy. (B)
These are the corresponding plot of the density of states. (C) It is the plot of the energy as
a function of twist angles for the k = 0 states. It shows that the band separation decreases
with the rotation angle θ. (D) Full dispersion of the flat bands at the magic angle θ = 1.05°
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To get a better understanding of what happens for small twist angles, it is
convenient to analyse the graph in figure (2.4). These plots, together with (2.3),
were obtained by McDonald and colleagues [5]. The figures (2.4) A, show the energy
dispersion for the 14 bands closer to the Dirac points for the three different angles
of twist θ = 5°, θ = 1.05° and θ = 0.5° (only the second one is "magic"). The bands
are plotted following the line A→B→C→D in figure (2.2), meaning their shape
along the Moiré band Wigner-Seitz cell (green honeycomb cubicle in the figure (2.2)
B). These band structures are recovered throughout numerical calculations. It is
sufficient, in fact, to include in the computations of the bilayer Hamiltonian, not
just the three summation values of equation (2.16), but higher order terms. It is
clear now that formally, the effective model corresponds to an infinite-band problem
for each valley [19]. From figure (2.4) A, one can neatly see that, as the twist angle
is reduced, the number of bands in a given energy range increases and the bands at
the Dirac points flatten. In particular, at the magic angle θ = 1.05° the two bands
closer to charge neutrality, are almost totally flat and even though it is not visible
from the picture, they are well separated from the other bands.

The fact that only a certain number of terms are considered in the construction of
these bands, implies that the plot in (2.4) A is just an approximation. Nevertheless
it is sufficiently accurate even far away from the Dirac points. This is a consequence
of the way the Brillouin Zone was constructed. Recalling figure (2.2) B, the relevant
hopping processes within the two bands, qj, are the very vectors that define the FBZ
of "super-lattice" and its unit-cell. Thus the band structure in (2.4) A is referred to
this fictitious Moiré periodic super-lattice and this is why it can be considered an
accurate plot.

The geometry of the Brillouin zone of the "super-lattice", implies that the states
near the Dirac points in either layer couple only to the states of energies vkθ. This
is the main difference with respect to the unrotated case in which the Dirac points,
of both layers, occur at the same momentum and the inter-layer hopping couples
two doublets of zero energy states [14]. For twisted graphene instead, the doublet
(ψ(1)

0 and ψ(2)
0 , defined by (2.22)), couples to three pairs of states at energy vkθ.

For big angles of rotation the two structures behaves as isolated layers, for small
angles, instead, the coupling just described implies the persistence of the Dirac
cones. These can be shifted (second image of figure (2.4) A) or lifted (third image
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of figure (2.4) A) depending on θ and the fluctuations in k.
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Topology of monolayer

graphene

Classically matter is characterised by states such as liquid, solid and so on. Nev-
ertheless there are many other phases that are intensively studied by condensed
matter physics and go far behind the classical ones. Quantum theory predicts the
existence of states such as superconductivity, ferromagnetism, Bose-Einstein conden-
sation and many others that are defined by symmetry breaking properties. More
in detail, these are described throughout the mechanism of spontaneous symme-
try breaking (SSB), which is studied by Ginzburg-Landau theory. In this sense, a
phase transition occurs when a symmetry is broken and a local order parameter,
with observable consequences, acquires an expectation finite value. The order of the
transition (first, second and so on) depends on the higher coefficient of the expansion
of the free energy in the order parameter, meaning the value for which it vanishes.

In the last twenty years other kinds of phases of matter have been intensively
studied, namely topological ones. These are states with non-local order parameters
that cannot be described by Ginzburg-Landau theory, giving rise to a new research
field. This originated from the discovery of the Quantum Hall Effect (QHE) in 1980,
in which electrons confined to two dimensions acquire a quantized conductance in
the presence of a perpendicular magnetic field. This state is characterised by no SSB
and no variations with smooth changes in the system parameters, but it is classified
by topological order.

With topological phases of matter, one refers to phases that do take into account
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symmetry in their classification, but phase transitions occur even without breaking
it. The label topological implies the existence of a bulk invariant, usually an inte-
ger, that changes within two different phases that present the same symmetry. To
understand how these invariants are constructed and what is their meaning, one
should first define the set up.

Given two Hamiltonians, H(1) and H(2) at zero temperature and dependent on a
parameterR, if one of them can be continuously deformed into the other, the two are
topologically equivalent. One can restrict to systems with an energy gap, meaning
with a gap between the ground and the first excited state. This implies that now
connecting the two Hamiltonians with a continuous transformation is not trivial.
In this case H(1) and H(2) are said to be topologically equivalent if the transition
happens without ever closing the gap. In this case one says that it is the ground
state of the two systems that is in the same topological phase. Here it comes the
concept of topological invariant. It is a number that cannot change under continuous
transformations classifying all quantum Hamiltonians according to its value. In this
way one creates classes of Hamiltonians which are all topologically equivalent. At
this point it is clear that the invariance under smooth transformations, implies that
topology refers to global properties of the system.

Since the systems described have a gap in their spectrum, they are identified
as insulators. What makes them topological are particular configurations of the
band structure, such as the appearance of gap-less edge states. As a consequence
these systems are described by a topological band theory characterised by those
invariants appointed before, which are for example the Chern number and the Berry
phase. Restricting only to systems with non-interacting fermions and considering
translational invariance, one can apply Bloch’s theorem and find the eigenstates of
the corresponding Bloch Hamiltonians, where the fully filled bands will be separated
by a gap from the empty ones. It is clear that the periodicity of the lattice space
implies that one of the reciprocal lattice, so that crystal momenta lies in a periodic
Brillouin zone. These clarifications about topological band theory are relevant for
the subsequent computations of topological invariants and the analysis of the band
structure in the topological phases.

To conclude this brief introduction, one should recall that topological insulators
can be classified using their symmetries, in particular time-reversal, particle-hole
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(charge conjugation) and chiral symmetry. These are important because they lead
to particular and different behaviours of the ground states. [20] [21]

3.1 Topological invariants

The Berry phase was initially introduced to study the general idea of adiabatic
transport. Only later on, it was realised the importance of this concept in the
studying of Bloch periodic systems. It became clear that Berry phase is one of the
most important ingredients of topological band theory.

Let’s consider an Hamiltonian H(R), which depends on time through the pa-
rameter R(t), and consider its adiabatic evolution along a closed path C, such that
R(0) = R(T ). The adiabatic evolution is defined by the Adiabatic Theorem, which
states that a quantum mechanical system subjected to gradually changing external
conditions, adapts its functional form. This means that the system remains in its
instantaneous eigenstate if a given perturbation is acting on it slowly enough and if
there is a gap between the eigenvalue and the rest of the Hamiltonian spectrum [22].
At the end of this slow deformation along the closed path C, the wave functions gain
two terms, the first one is a dynamical phase, the second is the Berry phase. To
obtain their mathematical expression, one should first introduce an instantaneous
orthonormal basis for the instantaneous eigenstates |n(R)〉 of H(R). Hence the
Hamiltonian is diagonalized for each value of R. It follows that the basis is defined
by

H(R) |n(R)〉 = En(R) |n(R)〉

up to a phase. Thus |n(R)〉 is not unique and one can make a Gauge choice in such
a way that, along C, the phase θ of the basis is single valued and smooth.

In the following, it will be shown that this is not always possible. The initial
eigenstate |n(R(0))〉 will evolve with the Hamiltonian throughout the process into
|n(R(T ))〉. During the adiabatic evolution the phase θ(t) is the only degree of
freedom, so that the state is |ψ(t)〉 = e−iθ(t) |n(R(t))〉 and its time evolution is given
by

H(R) |ψ(t)〉 = i~
d

dt
|ψ(t)〉 (3.1)

Assuming that the states are normalized 〈n(R(T ))|n(R(T ))〉 = 1, one can obtain
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the expression for θ translating (3.1) into a differential equation [20]

θ =
1

~

∫ T

0

En(R(t′))dt′− i
∫ T

0

〈n(R(t′))| d
dt′
|n(R(t′))〉 dt′ = 1

~

∫ T

0

En(R(t′))dt′− γn
(3.2)

The dynamical phase, which is the first integral in equation (3.2), can be removed
by a Gauge transformation while the Berry phase γn cannot. To understand why
γn cannot be removed and what is its physical meaning, it is convenient to rewrite
it making implicit the dependence on time. Hence

γn = i

∫ T

0

〈n(R(t′))|∇R|n(R(t′))〉 dR
dt′

=

= i

∮
C
〈n(R|∇R|n(R)〉 dR =

=

∮
C
An(R)dR

(3.3)

The Berry phase is then a path integral on the parameter space and it represents a
geometrical phase whose value depends on the path C but not on how it is performed
in time. The term

An(R) = i 〈n(R)|∇R|n(R)〉 (3.4)

is a vector potential in analogy with the transport of an electron in an EM field.
(3.4) is called Berry connection or Berry potential and it is defined in such a way
that the Berry phase is real.

The Berry potential is a Gauge dependent quantity. For |n(R)〉 → eiζ(R) |n(R)〉
one finds An(R) → An(R)−∇Rζ(R) with ζ(R) a smooth, single-valued function.
The Berry phase then acquires an extra term as well

γn → γn −
∮
C
ζ(R)dR = γn + ζ(R(0))− ζ(R(T )) (3.5)

After the closing of the path, one expects that the basis comes back to its original
value. So eiζ(R(0)) |n(R(0))〉 = eiζ(R(T )) |n(R(T ))〉 = eiζ(R(T )) |n(R(0))〉. This implies
that

ζ(R(0))− ζ(R(T )) = 2πm (3.6)

with m an integer. Thus on a close path, the Berry phase is a Gauge invariant
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quantity and it cannot be removed unless γn is an integer itself.

One can define a Gauge field tensor from the Berry potential such that

(Vn(R))ij =
∂

∂i
(An(R))j −

∂

∂j
(An(R))i (3.7)

which is called Berry curvature. Considering now a 3-D parameter space, such that
R = (Rx, Ry, Rz), equation (3.7) recasts into

Vn(R) =∇R × An(R) (3.8)

Stokes’ theorem can be applied to equation (3.3). γn becomes

γn = i

∫
< ∇n(R)| × |∇n(R) > dS =

∫
(∇R × An(R))dS =

∫
Vn(R)dS (3.9)

From this formulation, Berry curvature can be viewed as the magnetic field in the
parameter space. It is in fact the curl of the Berry vector potential An(R).

Making use of the equality [23]

〈m|∇n〉 =
〈m|(∇RH(R))|n〉

En − Em

one can find a manifestly Gauge independent expression for the Berry phase that
contains the derivatives of the Hamiltonian and not that one of the wave function.

Equation (3.3) becomes

γn = i

∫ ∑
m 6=n

〈n(R)|∇RH(R)|m(R)〉 × 〈m(R)|∇RH(R)|n(R)〉
(En − Em)2

dS

From this expression one finds out that, given that with the adiabatic approximation
the dynamic of the system has been restricted to the first n-th level of the energy,
the Berry curvature can be thought as the interaction of |n〉 with the other |m〉
states that have been projected out. Thus the Berry curvature sums up to zero if
one adds all the filled bands,

∑
n(Vn(R))ij = 0 ∀ R.

Another property of γn is that it consents to classify degeneracies. In fact, if two
energy levels are such that En − Em ≈ 0 for some R, this point corresponds to a
monopole in parameter space. The degeneracy points act as sources and drains of
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the Berry curvature flux. Integrating the Berry curvature over a closed manifold,
one finds a quantized number which is equal to the number of monopoles inside it
times 2π. This is called Chern number [20][23].

All the analysis performed so far can now be applied to crystals, meaning struc-
tures that are described by a periodic lattice and can be studied with the support
of Bloch’s theorem. In this case the Bloch Hamiltonian depends on the crystal mo-
mentum k, not on a generic parameter R and parameter space can be replaced with
the first Brillouin zone. It follows that equation (3.3) can be expressed as a function
of k

γn = i

∮
C
〈n(k)|∇k|n(k)〉 dk

where C is a closed path in momentum space.

The Berry phase and curvature depend strongly on the dimensionality of the
system and on its electronic properties (metal or insulator). Since the Berry phase
is the integral of the Berry potential over a closed curve, for 1-D systems with
filled bands (insulators), C can be the Bloch momentum defined in the FBZ from
−π ≤ kx ≤ π.

For 2-D metals the integration is performed over 1-D Fermi surfaces. On the
other hand, since the Berry curvature is integrated over a manifold, for 3-D metals
one can integrate over the 2-D Fermi surface.

For 2-D materials with filled bands (insulators), the surface of integration can
be the full Brillouin Zone. In this case, the resulting number is related to the Hall
conductance and it is identical to the Chern number of the filled bands. One should
recall that the FBZ can be mapped into a torus, which is a boundless manifold. So
applying the Stokes’ theorem to the calculation of the Chern number, one reduces
to the integral of the Berry potential An(R) over the boundary of a boundary-less
surface. It follows that, if the Chern number is not null there is not a global Gauge
that is continuous and single valued and that can be defined over the entire Brillouin
zone [20].
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3.2 Graphene

The Hall Conductance is a topological quantity that is not affected by small changes
in the energy of the occupied bands, but it is just dependent on its eigenstates.
Applying a magnetic field on an insulator with periodic boundary conditions, it
appears a Hall conductance even in the presence of a gapped band structure. This
is explained by the occurrence of gap-less edge modes that connect the two separated
valence and conductance bands. Even though the system is a bulk insulator, it can
transport electrons having a Hall conductance different from zero and it behaves as a
metal at the boundaries. This double nature of the system reflects in what is called
bulk-edge correspondence, meaning the topological invariants associated to the bulk
and to the edges have the same value. The sum of the Chern numbers Cn of the
filled bands in fact, is equal to the number of edge modes in the gap. Usually it is the
presence of these edge states that determines the topological nature of an insulator,
meaning its triviality or non-triviality. It is clear that there must be a connection
between a non-null Chern number and the detection of a Hall conductivity in the
sample. This is expressed by TKNN formula [24]

σxy =
e2

2π~
∑
n

Cn → C =
1

2π

∫
FZB=torus

dkxdkyV (k)xy (3.10)

where σxy is the Hall conductivity and the sum in the second equation is over n,
the filled bands. Recalling that, the integral of the Berry curvature over a closed
manifold is equal to the number of monopoles inside it, for a non-zero Chern number
it is impossible to define a smooth Gauge on the entire torus. One must pick
different phases convention inside the regions that surround the monopoles and
the integration over the full torus will be split into different patches. The result
then, gives the winding numbers of the Gauge transformations on the boundaries
of the patches. Thus, another way to picture Cn is as the sum of all the vorticities
(windings) inside the Brillouin Zone. This is a quantity that is always conserved.

It can happen that a system presents Hall conductivity even without applying an
external magnetic field, showing Quantum Anomalous Hall Effect (QAHE). These
structures are called Chern insulators and the first model presented to describe them
was Haldane model. This was invented in 1988 by Duncan Haldane to explain QAHE
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in the presence of Bloch band structure and time reversal broken symmetry. It was
first introduced for graphene lattice structures and then generalised to time reversal
invariant topological insulators.

The focus of this chapter will be the understanding of graphene from a topological
point of view and the study of how the shape of its bands changes modifying the
symmetries of the Hamiltonian.

From the study of graphene in the first chapter, one should recall that this
material presents a band structure characterised by the presence of Dirac cones.
Close to this points, electrons behave as mass-less Dirac particles with Fermi velocity
vf . It follows that graphene is a semi-metal with the valence and conductance bands
that touch for the simple tight-binding model Hamiltonian. One can discuss the
robustness of the Dirac points once perturbations are applied and its symmetries
are broken.

3.2.1 Graphene symmetries

The two main symmetries that prevent Dirac cones from being altered by small
perturbations are time-reversal and inversion symmetry. The first one consists in
the exchange of the two inequivalent Dirac cones, sending K into K ′.

Time reversal acts inverting the sign of time, k → −k. Thus one expects that
h(k)→ h(−k). On the other hand, the expressions for the Hamiltonian at the Dirac
points are

h̃(K + k) =~vfh(k) = ~vfσ∗k

h̃(K ′ + k) =~vfh′(k) = ~vfσk
(3.11)

Time reversal on Pauli matrices acts as complex conjugation

T : (σx, σy, σz)→ (σx,−σy, σz)

It follows that the operator T can be expressed

T = σ0Kc

where Kc is the complex conjugation operator and T 2 = 1 for Hamiltonians that
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describe particles with zero physical spin [25] [26].

From this outcomes, the first expression of (3.11) h(k) = (kxσx − kyσy), trans-
forms

T h(k)T −1 = h(−k)→ h(−k) = h(k)∗

⇓

T h(k)T −1 = (−kxσx + kyσy) = h(−k) = h∗(k) = (kxσx − kyσy)∗ = (kxσx + kyσy)

(3.12)

So
T h(k)T −1 = h′(k)

The equalities in (3.12) become clear if one takes into account the correspondence
between Dirac cones, figure (3.1) b), [20].

Figure 3.1: Honeycomb lattice and its Brillouin zone. (a) is the lattice structure of
graphene, with δ1, δ2 and δ3 the thee vectors connecting nearest-neighborhood sites, and
a1 and a2 the two basis lattice vectors. (b) represents the first Brillouin Zone with the two
inequivalent Dirac cones k and K ′ in alternate positions. b1 and b2 are the two reciprocal
basis vectors [9]

The other important symmetry of the honeycomb lattice, is inversion I. It
switches the sub-lattice A and B. The action of the operator I on Pauli matrices is

I : (σx, σy, σz)→ (σx,−σy,−σz) (3.13)
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So it can be represented by
I = σx

Acting on the Dirac spin-less Hamiltonian (3.11), one finds

Ih(k)I−1 = σx(kxσx − kyσy)σx = (kxσx + kyσy) = h′(k) = h(−k) (3.14)

The equalities become clear referring to figure (3.1) b).

Inversion and time reversal look very similar but their different behaviour comes
clear when a term proportional to σz is added to the Hamiltonian.

Considering T and I separately, Dirac cones are not preserved. It is, in fact,
their combination that is the true symmetry that does not allow the system from
opening a gap at K and K ′. This becomes clear studying what happens to the
band structure of graphene adding terms to the Hamiltonian that spoil T and I
separately.

It is always possible to introduce a mass term of the form mσz in such a way
that (3.11) becomes

h(k) = kxσx − kyσy +mσz (3.15)

This term breaks sub-lattice (inversion) symmetry, assigning opposite on-site energy
to A and B, respectively m and −m. As a consequence the spectrum is gapped and
Dirac cones are not preserved

E±(k) = ±
√
|k|2 +m2 → ∆E = 2m (3.16)

This mass is usually called Semenoff mass and it appears in structures that presents
different sub-lattice atoms.

It is possible to add a mass term in the Hamiltonian that respects inversion but
not time-reversal. Let’s try again with a mass proportional to σz. From inversion,
σxh(−k)σx = h(k), meaning

σxh(−k)σx =

(
−m(−k) −kx + iky

−kx − iky m(−k)

)
= h(k) =

(
m(k) kx + iky

kx − iky −m(k)

)
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One finds that m must satisfy

m(−k) = −m(k) (3.17)

so it must be momentum-dependent. Adding this mass term to (3.11), one finds

K −→ h(k) = kxσx − kyσy +m(k)σz

K ′ −→ h′(k) = h(−k) = kxσx + kyσy −m(k)σz
(3.18)

From this result one can see that the term (3.17) breaks time reversal. K is not
mapped to K ′ anymore.

To have both T and I preserved, a mass proportional to σz cannot be in the
Hamiltonian and the small perturbations allowed are terms proportional to σx and
σy (and the identity of course). The fact that, upon small perturbation, the Chern
number does not change and the two poles are preserved, follows from the require-
ment that time reversal and inversion must be robust symmetries. One finds that
the two Dirac cones, as long as they remain gap-less, carry a vortex giving a Berry
phase equal to ±π. K and K ′ are in fact the two poles where the two bands touch.
For a generic gap-less Dirac Hamiltonian of the form H(k) = kiAijσj, the Berry
phase is equal to ∫

FS

dkA(k) = πsign(detA)

[20]. The integration is performed over the Fermi surface and A is a 2×2 matrix. For
K, one has A11 = 1 and A22 = −1, while for K ′, A11 = 1 and A22 = 1. It follows
that detA(K) = −1, giving a Berry phase negative, while for detA(K ′) = −1 the
Berry phase is positive.

It can be concluded that time reversal and inversion protect Dirac cones only
locally, preventing from the opening of a gap. There is another interesting symmetry,
namely C3, that makes Dirac cones globally stable. It prevents, in fact, K and K ′

from changing position within the Brillouin Zone. C3 is a rotational symmetry, it
allows the system to be invariant under a turning of 2π

3
about the centre of one of

the hexagon cells or the vertices A/B. It follows that under C3 the hopping matrix
elements must be invariant under the cyclic permutation of δ1 → δ2 → δ3 (with δx
n.n. vectors given in chapter 1). Under C3 the hopping parameters are equal for the
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three nearest-neighbor hoppings.

The position of the two gap-less Dirac cones, for a n.n. Hamiltonian with either
time reversal, inversion and C3 symmetry (chapter 1), is given by the values of k
for which

(1 + eika1 + eika2) = 0 (3.19)

It is derived from the off-diagonal term of the Hamiltonian −t(eikδ1 +eikδ2 +eikδ2) =

−teikδ1(1 + eika1 + eika2). From (3.19) and solving

Ka1 =
4π

3
K ′a1 =

2π

3

Ka2 =
2π

3
K ′a1 =

4π

3

(3.20)

one finds the only two solutions K = 2π
3a

(1, 1√
3
) and K′ = 2π

3a
(1,− 1√

3
).

The absence of C3 symmetry implies anisotropy of the hopping terms (t1 6= t2 6=
t3). It follows that the Dirac cones can move within the first Brillouin Zone changing
position. Nevertheless the Chern number, meaning the sum of all vorticities in the
first BZ, must be unchanged as long as the Dirac cones remain gap-less [20].

3.2.2 Edge modes

One of the goal in the study of the topological properties of graphene, is to under-
stand under which conditions chiral edge states appear. These can reveal quantum
Hall phase of graphene, meaning its non-trivial topological phase.

The analysis of graphene performed so far goes on two levels: the studying of its
honeycomb lattice and the construction of a continuum model at the Dirac cones.
Focusing now on the discrete lattice model, one can see that distinct boundary
conditions can determine the appearance of different edge states.

Let’s introduce a generic tight-binding Hamiltonian in real space with just near-
est neighborhood hopping

H = −t
∑
<i,j>

c†icj + h.c.

It is customary to introduce periodic boundary conditions only in one direction,
x-axis in this case, and open boundaries in the other (y-axis).
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Figure 3.2: Graphene edge lattice. (Left) shows the honeycomb graphene lattice with open-
boundary conditions in the y-direction and periodic conditions in the x-direction. A and B
label the sub-lattice sites. kx along the abscissa, refers to the fact that along x there are
periodic boundary condition and can be performed a Fourier transformation that maps x
the to momentum space abscissa kx. (Right) labels the position of the different sites. t and
t’ refer to different hopping energies [20]

Referring to figure (3.2), the lattice presents "zigzag" chains oriented at an angle
of π

6
with respect to the horizontal. It is possible then, to perform a Fourier transform

on the x direction and work out the following Hamiltonian [20]

H =− t
∑
j

(c†2j,kxc2j+1,kx + c†2j,kxc2j−1,kx(1 + e−ikxa1)) =

=−
∑
j

[t(c†2j,kxc2j+1,kx) + t′(c†2j,kxc2j−1,kx)]
(3.21)

with a1 = a
√

3
2

and a the spacing lattice constant.

In equation (3.21), for kx = π
a1

and t′ = 0, one can obtain different energy
dispersion relations depending on the even or odd number of sites of the zig-zag
chain shown in figure (3.2).
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Studying the solutions of the Hamiltonian for different values of kx and different
lattice configurations, the band structures is the one represented in image (3.3).

Figure 3.3: Band structure of graphene tight-binding with edge modes and no mass term
in the Hamiltonian (time reversal and inversion symmetry are preserved). (First) the
boundaries are sites A and B, the chain has an even number of sites, corresponding to
zig-zag edges. (Second) the boundaries are sites B and A, the chain has an even number of
sites, corresponding to bearded edges. (Third) the boundaries are sites A and A, the chain
has an even number of sites, corresponding to zig-zag and bearded edges at the two opposite
borders [20]

The first two plots show the dispersion relation for a lattice with an even number
of sites along the y-direction, while the third corresponds to an odd number. In the
first figure there are an A type sub-lattice in the first site and B type in the last
position (respectively B-A configuration in the second figure). The band structure
shows that, besides the two Dirac cones, there are other 0 energy states. These
are the edge modes obtained from an explicit computation of the energy spectrum.
In the even lattice configuration there is a double degeneracy for each zero energy
value, corresponding to the edge modes at each one of the two borders. These
degeneracies cannot be lifted since it would require a perturbation going through
the whole sample. For the last figure instead, there is not degeneracy and the E = 0

modes go along the entire Brillouin Zone.
When a mass term m, of the kind described above, appears in the Hamiltonian,

the edge modes can be modified in different ways, depending on the symmetry that
m breaks. If the Semenoff mass is added in the Hamiltonian, one of the band
structure in figure (3.4) can show up. The edge modes that terminate on sites A go
up in energy, whereas those on sites B go down. No gap-less states appear.

The edge modes in fact, never cross the gap connecting the valence and con-
duction bands. This implies that these band structures preserve, from a topological
point of view, their trivial nature. The extra modes, shaped by the boundaries of
the sample, can never count as gap-less edge states. One can check that the Chern
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number is null, and no Hall conductance can be detected.

(a) (b)

(c) (d)

Figure 3.4: Band structure of graphene tight-binding with edge modes and Semenoff mass
m = 0.3t (t is the hopping energy). (a) The boundaries are sites B and A, the chain has
an even number of sites and the boundaries have a bearded shape. (b) The boundaries are
sites A and B, the chain has an even number of sites and the boundaries have a zig-zag
shape. (c) The boundaries are sites B and B, the chain has an odd number of sites and the
boundaries have a zig-zag and bearded shape on the opposite sides. (d) Same configuration
of (c) but the edges are A and A sites [20].

The other mass that can be added to the Hamiltonian, is the kind that spoils
time reversal. This is called Haldane mass since it was Duncan Haldane who first
proposed this model. As mentioned before, a system with such broken symmetry,
presents interesting topological properties that are addressed in the next paragraph.

3.2.3 Haldane model

The goal of this model is to construct quantum Hall phases in the absence of a
magnetic field and Landau levels, starting from a standard Bloch band structure with
time reversal broken symmetry. The lattice is the standard graphene honeycomb
one with the two Dirac cones in the first Brillouin zone. To break time reversal,
leaving the translation symmetries of the lattice unchanged, one can add a complex
second nearest neighborhood hopping term.

51



Topology of monolayer graphene

Figure 3.5: Honeycomb cell of graphene. The arrows show the second nearest-neighborhood
hoppings. The clockwise or anti-clockwise rotations give a phase contribution of different
sign that, in the Hamiltonian, is represented by the hopping energy t′2 and its complex
conjugate (t′2)

2 6= t′2 [27].

The presence of n.n. hopping spoils particle-hole symmetry that though, is not
a real symmetry of graphene. On the other side, the fact that this term is complex,
meaning it carries a uni-modular phase, breaks time reversal. This phase simulates
the presence of a periodic local magnetic flux normal to the lattice plane and with
zero total flux through each unit cell. It follows that, the periodicity of the lattice
and so the translation symmetry, is preserved [4]. To be more clear, this phase factor
is defined by ie

~

∫
Adr, with A(r) the vector potential of the magnetic field and with

the integration performed along the hopping path. The fact that this phase factor
does not appear in the first n.n. term, is because in this case the integration goes
along all the unit cell, so the net flux is equal to 0. In the case of second n.n. the
hopping direction can go clockwise or anti-clockwise giving a phase contribution of
different sign. Thus, for clockwise rotations, the hopping is described by t′2, while
for anticlockwise ones by its complex conjugate (t′2)∗ 6= t′2, corresponding to different
chiralities of the system (figure (3.5)).

The Hamiltonian can be written

H = t1
∑
〈i,j〉

(a†ibj+h.c.)+t2
∑

<<i,j>>

(e−iφa†iaj+e
+iφb†ibj+h.c.)+m

∑
i

(a†iai−b
†
ibi) (3.22)

This has the same expression of the Hamiltonian in the first equation of the first
chapter, with the addition of the mass term with different sign in the two sub-lattices
and the e±iφ term. The sign of the phase refers to the convention in figure (3.6). It
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shows that, fixed a hopping direction e±iφ, it is opposite for A and B.

Figure 3.6: Phase convention for second nearest-neighborhood hopping in the Haldane
model, for a Chern insulator [20].

Without fixing any boundaries, but just appealing to translation symmetry, let’s
perform a Fourier transform in a similar way to what is done in the first chapter.
The resulting Hamiltonian is

h(k) = ε(k) + d(k)iσi

where the sum over i is understood and d(k) dependents on the wave function. In
particular

d1(k) =cos(kα1) + cos(kα2) + 1

d2(k) =sin(kα1) + sin(kα2)

d3(k) =m− 2t2sin(φ)(sin(kα1)− sin(kα2) + (sin(kα3))

ε(k) =2t2cos(φ)
∑
a

cos(kα)

(3.23)

where
∑
a

is the summation over the lattice vectors a1, a2, a3 = a2 − a1 defined in

chapter 1.

The term ε(k) is proportional to the identity, so it just lifts the energy bands and
it does not add any interesting property. To keep time reversal from (3.12), one must
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have that d1(k) = d1(−k), d2(k) = −d2(−k), d3(k) = d3(−k) and ε(k) = ε(−k).
The condition for d3(k) is fulfilled only when the sin(φ) = 0, namely φ = 0, π.
Inversion symmetry is instead defined by equation (3.13) and (3.14), giving the
following conditions d1(k) = d1(−k), d2(k) = −d2(−k), d3(k) = −d3(−k) and
ε(k) = ε(−k). Thus, the terms (3.23) satisfy inversion symmetry only for m = 0,
imposing again a constrain only on d3(k).

The Hamiltonian described by (3.23) is invariant under C3. It is not affected by
the permutation of the nearest neighborhood vectors and it has the same value of t
for the three hoppings. It follows that the position of the Dirac cones is fixed and
the opening and closing of the gap can happen only at those exact points within the
first Brillouin Zone.

To see what happen at K and K ′, one should first expand d3(k) close to them.
For k ' K, using (3.20) together with Ka3 = 4π

3
and K ′a3 = 2π

3
, one finds that

the sum in parenthesis in d3(k) gives back −3
√

3
2

for K and 3
√

3
2

for K ′. So

d3(k 'K) = m+ 3
√

3 t2sin(φ)

d3(k 'K ′) = m− 3
√

3 t2sin(φ)
(3.24)

Fixing initially the system on a configuration with m 6= 0 and t2 = 0, it results
gapped. But, increasing/decreasing t2, the system becomes gap-less for the two
values ±

√
3m

3t2sin(φ)
. For the minus sign only K closes, vice versa for the plus.

To study the topological phase transitions close to the Dirac points, one should
first study what changes in the results, obtained so far, when the system is studied
in the continuum limit, meaning going close toK andK ′. In this case by definition,
there is not a lattice and the momentum is defined over the whole Euclidean space.
The Hall conductance is an integer only if the base manifold is compact, which
is a property that the Euclidean space does not have. This explains why in the
continuum, massive Dirac fermions exhibit half-integer quantum Hall effect

σxy =
e2

2π~

∫
dkxdkyV (k)xy =

e2

2π~

∫
dkxdky

m′

2(m′2 + k2)3/2
=

=
e2

~
sign(m′)

2

(3.25)

In particular for a generic Dirac Hamiltonian h(k) = kiAijσj+mσ3 (Aij are numbers
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with i, j = 1, 2), equation (3.25) becomes

σxy =
e2

~
(

1
2
sign(m)sign(det(A))

)
(3.26)

The equation shows that the Hall conductance is equal to 1
2
times the sign of

the mass of the fermions. In the continuum, the bandwidth of the spectrum is in-
finite and there are some fermions, called spectators [20], that do not enter in the
computation of (3.25), thereby to this fractional factor. On a periodic lattice, the
bandwidth is forced within a range of values. It follows that, the points where the
bands bend down, give the contribution of another half to the Hall conductance that
comes back to its integer value. So the study of the problem in the continuum corre-
sponds to confine the computations to a small part of the filled bands. Nevertheless,
even though one cannot have a complete picture of the problem, it is still possible
to collect information about the topological phase transition and the change in the
Hall conductance just focusing close to the transition points.

There is a way to overcome this incompleteness in the results and compute the
quantized integer value of the Hall conductance even in the continuum. Looking at
(3.25), it is clear that if the opening and closing of the gap is accompanied by the
change in the sign of the mass, the Hall conductance changes by 1

∆σxy =
e2

~

(sign(m′ > 0)

2
− sign(m′ < 0)

2

)
=
e2

~
(3.27)

Knowing the value of σxy before the transition, one can find the Hall conductance
after the gap closing and reopening, summing to σxy the value of (3.27) [20].

Coming back to Haldane model, to construct the topological phase diagram of
graphene, one should start from the lattice with a well known configuration, for
which it is possible to compute the integer value of the Hall conductance. Let’s
consider the Hamiltonian in the discrete representation of equation (3.22) and (3.23).
For m→ ±∞ the hopping terms can be neglected and the system describes a trivial
topological situation with the wave functions localized at the A and B sites. One can
conclude that σxy = 0, and so the Chern number, is null. Setting t2 > 0 and 0 < φ <

π, one can increase the value of m → −∞ up to m = −3
√

3 t2sin(φ), which is the
point where K goes through closing and opening of the gap. To compute σxy, one
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should refer to equation (3.26), this is again the continuum limit since the problem is
studied close to the Dirac point. In gap closing and reopening, the Hall conductance
goes from e2

~

(
1
2
sign(m + 3

√
3t2sin(φ)

)
= −1

2
to e2

~

(
1
2
sign(m + 3

√
3t2sin(φ)

)
= 1

2
,

so
∆σxy =

e2

~

Adding this result to the previous value of the conductance, one finds σxy = e2

~ and
the Chern number C = +1. The topological phase is non-trivial.

The value of m can now be increased to 3
√

3 t2sin(φ) where K remains gap-
less, while K ′ closes. The Hall conductance at K ′, goes from e2

~

(
1
2
sign(m −

3
√

3t2sin(φ)
)

= 1
2
to e2

~

(
1
2
sign(m− 3

√
3t2sin(φ)

)
= −1

2
, so

∆σxy = −e
2

~

Adding this result to the previous value of the conductance σxy = e2

~ −
e2

~ = 0. Thus,
the system comes back to a trivial phase with C = 0. (3.7).

Figure 3.7: Phase diagram of the Haldane model for graphene. In the x− axis there is φ,
the phase associated to the t′2 hopping energy to the second nearest-neighborhood, in the the
y − axis there is the mass (m = M) over t2. ν represents the Chern number C, labelling
the three different topological phases with C = 0, ±1 respectively [4].

To complete the phase diagram of the Haldane model, the same calculations
must be performed for φ < 0. One obtains the opposite result, giving rise to the
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diagram in figure.
At this point it is clear that, from bulk-edge correspondence one should expect

the appearance of edge states, whose features should depend in part from the bound-
aries of the sample. Before it was shown that the introduction of a Semenoff mass, in
the tight bonding Hamiltonian of a zigzag boundaries lattice, leads to the appear-
ance of edge states that remain attached to the valence or the conduction bands
after the gap opens ((3.4)). With the same set up for the graphene Hamiltonian, if
one now introduces the Haldane mass, the new edge states that arise connect two
distinct Dirac cones located at opposite bands (the conduction and the valence one
(3.8)). Thus, these modes become a conduit that consent to transfer states between
the two bands. Because of the chirality, only one direction of travel is allowed,
depending on the sign of the Hall conductance, meaning the sign of the fictitious
magnetic flux through the bulk. The appearance of these states travelling from the
valence to the conductance band and vice-versa and a non zero Hall conductance,
become together with a Chern number C = ±1, the main ingredients that describe
topological phases in graphene.

Figure 3.8: Sketch of graphene gap-less edge states with Haldane mass. (Up) The bound-
aries are sites A and A, the chain has an odd number of sites. (Down) The boundaries
are sites B and B, the chain has an even number of sites. The two different figures show
opposite chirality, in one case the charge carriers can flow only from the conduction to the
valence band, vice versa in the other [20].
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Topology of the continuum

model

The topological properties of monolayer graphene and related 2-D models, such as
the Haldane one, show the intriguing features of this material. On the other side,
the introduction of the continuum model for small angle twisted bilayer, exhibits the
analogy between the two structures close to the Dirac cones. This inevitably pushed
people in the attempt to apply the topological results for single layer graphene, to
the bilayer case. Particular interest falls to the two flat bands at the lowest energy
that appear at the magic angle. In the simplest case, thus without the effect of
any relaxation, nor on-site asymmetry between the two layers, these are gap-less
states. The possibility for phase transitions to occur, requires the opening of a gap
in correspondence to the two Dirac cones of the "super-lattice" Brillouin Zone and
the breaking of the symmetries that protect those points.

The goal, here, is to combine the results from second and third chapter, in the
attempt to construct a topological phase diagram of twisted bilayer graphene. The
continuum model is initially perturbed with a small mass and the Berry curvature,
for the Dirac cones of a single valley, is computed. It follows the study of the phase
transitions in dependence to the different features of the perturbation. This analysis
leads to interesting results. Nevertheless it cannot be complete, but requires the final
landing to a tight-binding model that includes more then just the two low-energy
flat bands.
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4.1 Symmetries of the continuum model

The continuum model is independent of the commensurability or inconmmensurabil-
ity of the rotation angle between the two graphene sheets for small θ. The electronic
properties of the two flat bands, in fact, do not depend on the exact geometrical
setting of the problem [28].

Figure 4.1: The effect of symmetry breaking in the continuum model of TBG is
shown. (a) The plot represents the FBZs of the two graphene layers rotated about the
common centre of the hexagon. (b) The low energy mini-bands of the two inequivalent
valleys are sketched, with respectively dashed black lines and red continuous ones.
The labelled sites refer to the high symmetry points of the FBZ. (c) C2, in-plane
rotation of 180°, is broken with the opening of a gap at the Dirac cones. (d) The effect
of an external perpendicular electric field is shown. Mirror symmetry My, namely
C2y, is broken and the two Dirac cones, in the same valley, are not degenerate in
their energy eigenvalues anymore. (e)C3, in-plane rotation of 120°, is broken. The
cones are still protected because of C2T , but they are free to move around in the
FBZ. (f) Valley charge conservation Uv(1) is broken. The two valleys can interact
between each other and the degeneracy is lifted. [19]
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The formation of a reciprocal lattice pattern and the presence of the Dirac cones,
anticipate that the symmetries of the continuum theory must be almost the same
as the monolayer ones. The effective model for a single valley, Hk = Hb

D +H t
D + Tk

(t and b stand for top and bottom layer), implies moiré translation symmetry and
C3 rotation that, as in the monolayer case, inhibits Dirac cones from moving around
within the Brillouin Zone. Particularly interesting it is C2T , that prevents the Dirac
points from opening a gap. This symmetry can be expressed with the operator form

C2T = σxKc

which is the analogous of applying inversion symmetry and time reversal in mono-
layer. This operator leaves invariant the effective Hamiltonian, h(k) = (kxσx−kyσy),
of the two low-energy mini-bands. In fact

(C2T )h(k)(C2T )−1 = σx(k
∗
xσx + k∗yσy)σx = (kxσx − kyσy) = h(k)

mapping one Dirac cone into the other analogous one of the Moiré Brillouin Zone.
Another interesting symmetry is C2y. It consist in a two-fold rotation of the twisted
bilayer in the 3-D space, meaning it flips the two layers. This is why, it is also ac-
counted as mirror symmetryMy, [28]. It can be broken by an electric magnetic field
applied perpendicular to the lattice. Doing so, in fact, the two almost flat bands are
modified at the Dirac cones, as shown in the figure (4.1). After all, the role of this
symmetry is to ensure that the two Dirac cones of the super-lattice are at the same
energy.
Lastly there is valley charge conservation that corresponds to the independent con-
servation of the charge in the two valleys. In the continuum model in fact, the in-
teraction between inequivalent Dirac points is neglected. In figure (4.1) it is shown
how the low energy bands in the continuum model are modifies by the different
symmetries breaking [19]. The two set of mini-bands, that identify the two valleys,
are superimposed and sketched respectively with black dashed lines and solid red
ones.
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4.2 Berry phase of the super-lattice BZ

Following the steps of [29] and the first chapter, one can try to introduce small
variations in the continuum model twisted bilayer Hamiltonian and see how the
band structure for low energy changes. The discussion from now on, will involve
the two almost flat bands that become gradually thinner closer to the magic angle
[1]. To get an idea, for an angle of θ = 1.08° the bandwidth is U = 12meV for the
E > 0 branch and U = 2meV for the E < 0 one, showing a good spacing from the
upper bands (almost 20meV ), as one can see from the plot (4.2).

Figure 4.2: The image plots the energy bands of TBG at θ = 1.05° for the first mini
Brillouin zone of the super-lattice. The figure, by Jarillo-Herrero and colleagues, is
made using the continuum model Hamiltonian. [2]

The energy dispersion relation of the continuum model at the Dirac cones, is
equal to the monolayer one. For two layers rotated by a θ/2 angle in opposite
directions, the Hamiltonian in momentum space, truncated at the first honeycomb
cell of the super-lattice, is described by (2.18). The easiest attempt to open a
gap within the two flat bands is the introduction of a mass term, such as an on-
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site potential different for the two layers, respectively m1 and m2. Working in the
hypothesis that m1,m2 � vfkθ, with kθ the modulus of the hopping momentum
between K1 and K2, one can consider the two masses just as small corrections to
the Hamiltonian. These implies that the first order perturbation matrix, introduced
in the second chapter, can now be replaced with

H
(1)
k =

(
h1,k 0

0 h2,k

)

where h1,k = vfσ
∗k + m1σz for the first layer and h2,k = vfσ

∗k + m2σz for the
second. For now, it is convenient to set m1 = m2 = m and only later study the
behaviour for m1 6= m2.
Once again, one can check that

H0 =


h0(θ/2) Tb Ttr Ttl

T †b hqb(−θ/2) 0 0

T †tr 0 hqtr(−θ/2) 0

T †tr 0 0 hqtl(−θ/2)


has zero energy eigenstates. Neglecting the rotation angle θ in the expression for
hj, one can make use of the almost-exact perturbation theory and find

< Ψ(i)|H(1)
k |Ψ(i) >

< Ψ(i)|Ψ(j) >
=

1

< Ψ(i)|Ψ(j) >

[
Ψ

(i)†
0 h1,kΨ

(j)
0 + Ψ

(i)†
0 (Tjh

−1†
j h2,kh

−1
j T †j )Ψ

(j)
0

]
=

=
1

< Ψ(i)|Ψ(j) >

[
Ψ

(i)†
0

(
σ∗k +mσz

)
Ψ

(j)
0 −Ψ

(i)†
0

(∑
j

Tjh
−1†
j

(
σ∗k +mσz

)
h−1
j T †j

)
Ψ

(j)
0

]
The last expression in the second equality gives

∑
j

Tjh
−1†
j mσzh

−1
j T †j = 3m(1− β2)σz (4.1)

with β = wAA
wAB

. The renormalization instead

|Ψ|2 = 1 + |ψj|2 = 1 + ψ†0Tjh
−1†
j h−1

j T †j ψ0 = 1 + 3(1 + β2)α2 (4.2)

Assuming the hopping is homogeneous for all sub-lattices, β = 1. Therefore the
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result is

< Ψ(i)|H(1)
k |Ψ(i) >

< Ψ(i)|Ψ(j) >
=

1

6α2 + 1
Ψ

(i)†
0

(
v(1− 3α2)σ∗k +mσz

)
Ψ

(j)
0 (4.3)

In addition to the renormalized velocity one finds a renormalized mass

v∗ = v
1− 3α2

1 + 6α2

m∗ =
m

1 + 6α2

Thus the Hamiltonian for the two lowest bands close to K̄ is simply

HK̄ = v∗(σ∗k) +m∗σz (4.4)

The bar notation stands for the Dirac cones in the super-lattice Brillouin Zone.

Figure 4.3: Honeycomb cell for TBG. (a) The figure shows the FBZ of the two
rotated layers of graphene. ξ refers to the two inequivalent valleys. (b) The Dirac
cones are folded to the mini Brillouin Zone of the super-lattice. The labelled sites
are the high symmetry points. K1/2 are the valleys of the monolayer lattice, K̄ and
K̄ ′ the Dirac cones in bilayer graphene. (c) qi are the momentum transfers that
correspond to the three interlayer hopping processes. G1/2 are the reciprocal basis
vectors. [29]
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Equation (4.4) is equal to (3.15), that describes a Dirac spin-less Hamiltonian
with a Semenoff mass that breaks sub-lattice symmetry, assigning opposite on-site
energy to A and B. It follows that the band structure of (4.4) is gapped at the Dirac
cones. In analogy to the monolayer case one might conclude that (4.4) describes a
trivial phase. This is not the case.

To understand the topological properties of this Hamiltonian it is useful to pay
attention to figure (4.3). The two layer honeycomb cells are shown with a rela-
tive rotation angle of θ/2 (caption (a)), forming a new Brillouin zone with different
features from the monolayer case. The adjacent cones in figure (4.3) (b), in fact,
describe two equivalent Dirac points K1 and K2. In the previous chapter, in mono-
layer graphene in correspondence to K and K ′ (respectively K1 and −K1 in the
figure), it was found that the Berry phase has values ±π. In this case instead, deal-
ing with two equivalent cones, one should aspect the same contribution to the Berry
phase coming from K̄ and K̄ ′, leading to a total non-zero Chern number.

Let’s examine at first the monolayer case. Equation (4.4) describes a 2-D Dirac
Hamiltonian in the continuum. It is possible then, to compute the Chern number
of the valence band for each of the two Dirac cones. Following reference [20], one
first finds the eigenvalues of the valence band. Diagonalizing the Hamiltonian (4.4),
E = ±

√
|k|2 +m2 and

ΨK =
1√

2E(
√
E −m)

(
m− E
kx − iky

)
(4.5)

From equation (3.4), the components of the Berry potential are

Ax =− ky
2E(E −m)

Ay =
kx

2E(E −m)

Follows the Berry curvature

Vxy = ∂xAy − ∂yAx = − m

2(m2 + |k|2)3/2
(4.6)

Close to the other inequivalent valley, K ′, the Hamiltonian is HK′ = v(σk) +mσz,
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with eigenvector for the valence band

ΨK′ =
1√

2E(
√
E −m)

(
m− E
kx + iky

)

The result is a Berry curvature with opposite sign with respect to (4.6)

V ′xy =
m

2(m2 + |k|2)3/2
(4.7)

The Berry phase at the Dicac cones gives opposite contributions ±π that sum up
to zero.

Figure 4.4: Electronic band structure of twisted bilayer graphene. (a) the figure
shows the flat bands together with the ones above and below, for the magic angle
θ = 1.05°. C labels the Chern number of the filled bands. If the Fermi energy lies
above or below the mini-bands, C = 0. (b) is a zoom in to the flat bands. The red
lines refer to a mass-less Hamiltonian, the black ones to a m = 2meV . In the latter
case the Chern number of the filled valence band C = −1, providing a topological
phase. (Inset) shows that the value of C is stable for a range of θ close to the magic
angle [29].
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In the bilayer case instead, the two valleys are described by the same Hamiltonian
(4.4), thus they have the same chirality. This implies that now, the two curvatures
sum up to a value different from zero, giving back a Chern number for the valence
band Cv = −1.

Figure (4.4) [29], is constructed in analogy to (2.2) throughout numerical com-
putation of the continuum model Hamiltonian, where higher order terms are taken
into account. It shows the lower energy bands with a zoom in on the flat ones in the
image below. The red lines refer to an Hamiltonian with a mass term m = 0meV ,
the black ones to an Hamiltonian with m = 2meV that gaps the Dirac cones. C is
the Chern number whose value depends on the position of the chemical potential.
If the Fermi energy lies above or below the almost flat bands C = 0. Recalling
equation (3.10), in fact, the Chern number can be computed as a summation over
the filled bands, so the conduction one with Cc = 1 sums up to a zero Chern number
with Cv = −1. Lastly, the inset in the figure shows the value of the Chern num-
ber for different values of twisting, 0.99° ≤ 1.35°. At early stage one can conclude
that the topology is well controlled by the curvature close to K̄ and K̄ ′ and that,
even moving away from the first magic angle, there is not sign of topological phase
transitions.

4.3 Phase diagram of the flat bands

In the following the analysis and results proposed in reference [29] are presented. It
is shown the phase diagram constructed from numerical calculation of the continuum
model Hamiltonian when corrugation and different values of the two masses m1 and
m2 are accounted.

In the second chapter it has been introduced w =
tkD
Ω

= 110meV , the effective
interaction parameter between layers, that has been handled as a constant. Ω is the
unit cell area, while tq is the hopping amplitude that depends on the wave function
q and decays steadily in terms of the excitation momentum. kD is the magnitude of
the momentum at the corner of the Brillouin zone of a single layer, thus the biggest
value tq can reach, is given by |q| ' kD and corresponds to the three equivalent
Dirac cones that are connected by reciprocal lattice vectors (equation (2.15)).

Nevertheless, moving to real space one should take into account the possible
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effect of corrugation in the out of plane direction. From theoretical research and
experimental evidence, the regions with AA stacking have a bigger interlayer spacing
then AB and BA ones. This implies that the value of w cannot be considered site-
independent, but it must rely on the stacking region. In particular, one can fix a
couple of more refined values wAA = 80meV and wAB = 100meV [29].
Equations (2.17) become

T1 =

(
wAA wAB

wAB wAA

)
= wAB

(
β 1

1 β

)

T2 = wABe
−iG(2)d

(
βe−iφ 1

eiφ βe−iφ

)
T3 = wABe

−iG(3)d

(
βeiφ 1

e−iφ βeiφ

)

Figure 4.5: The figure shows the Moiré lattice of twisted bilayer for small rotation
angles. The distances are measured in unit of k−1

θ , with kθ = 2kD sin (θ/2). One can
still see the formation of an hexagonal pattern with AA in the centre and AB/BA
sites at the vertices. Regions with AA stacking show more distance between the two
layers. [5]

In figure (4.5) it is plotted the Moiré lattice of twisted bilayer for small rotation
angles. The local monolayer pattern is reproduced on a macroscopic scale. One can
still see the formation of an hexagonal pattern with AA in the centre and AB/BA
sites at the vertices. In AB stacking regions, there is a small gap within the two
layers produced by the higher energy value of the tunneling matrix, vice versa in
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AA the gap is maximum.

This clarification is important for the construction of the phase diagram. In
particular from (4.1), it comes clear that wAA and wAB take action in the form of
the effective mass and a phase transition might be tuned by the effect of corrugation.

In this regard, the role of the sign of m1 for the Berry curvature, and thus for the
Chern number, is evident. For a negative mass term the valence band eigenvector
of the Hamiltonian (4.4) is

ΨK =
1√

2E(
√
E +m)

(
−m− E
kx − iky

)
(4.8)

The components of the Berry potential are

Ax =− ky
2E(E +m)

Ay =
kx

2E(E +m)

it follows the value for the Berry curvature

Vxy =
m

2(m2 + |k|2)3/2
(4.9)

From equation (4.9), taking into account the two cones K̄ and K̄ ′, the total Chern
number of the valence band is C = 1. A change in the sign of the mass term m

determines topological non trivial states with opposite chirality.

One can now introduce both the corrugation with wAA 6= wAB and different
values for the two mass terms in the two layers, respectively m1 and m2. Making
use of equation (4.1) and (4.2), (4.3) becomes

< Ψ(i)|H(1)
k |Ψ(i) >

< Ψ(i)|Ψ(j) >
=

=
1

1 + 3(1 + β2)α2
Ψ

(i)†
0

(
v(1− 3α2)σ∗k +

(
m1 + 3m2(1− β2)

)
σz
)
Ψ

(j)
0

(4.10)

Here α = wAB
vkθ

depends only on the AB hopping parameter and not on β. This implies
the important result that the value of the first magic angle, α2 = 1

3
, is independent

of the corrugation. On the other side, recalling (2.28), the renormalized velocity v∗
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does depend on β and it can be modifies by the out of plane corrugation

v∗ = v
1− 3α2

1 + 3(1 + β2)α2
(4.11)

Similarly for the effective mass

m∗ =
m1 + 3m2(1− β2)

1 + 3(1 + β2)α2
(4.12)

The sign of (4.12) depends only on the numerator and it is identically zero close to
K̄, when m1 + 3m2(1− β2) = 0.

Figure 4.6: Phase diagram of the continuum model of TBG as a function of the
the mass terms m1 and m2 of the two layers. The red line represents equation
m1 + 3(1− β2)m2 = 0, while the black one m2 + 3(1− β2)m1 = 0. These are found
imposing the condition for the vanishing of the effective mass m∗, respectively at K̄
and K̄. The lines represent the boundary of the phase transition, with C labelling
the Chern number of the valence band, and β fixed at 0, 8. [29]
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Similarly at the other Dirac cone K̄ ′, one finds the condition m2 +3m1(1−β2) =

0. Fixing β = 0, 8 [29], and plotting the two lines corresponding to m∗ = 0, red
for equation m1 + 3m2(1 − β2) = 0 and black for the other, one can construct the
phase diagram in figure (4.6). There is no dependence of the m∗ mass term on the
twisting angle. Hence one can expect that phase transitions occur even for different
angles of rotation, as mentioned before.
For opposite masses in the two layers m1 = −m2, the Chern number C = 0 and the
phases are trivial. This is clear from the previous analysis. The two eigenvectors of
the valence band for the two Dirac cones K̄ and K̄ ′, are described by equation (4.5)
and (4.8), giving opposite curvatures that cancel out. Lastly, it can happen that
only one layer presents a mass term, giving rise to a Chern valley insulator [29].

Figure 4.7: This plot is made along the line of figure (4.6). The phase , this time, is
represented as a function of m2 and β, while m1 = 2meV is fixed. The two lines that
track the boundaries of the phase transitions are still defined by m∗ = 0 at the two
Dirac cones, K̄ and K̄ ′. The white spot shows the values where the equations are not
defined, because of a negative square root. From this plot it is clear that corrugation
has an important role even in the topological properties of TBG. In particular it can
induce phase transitions even for fixed values of the masses.

71



Topology of the continuum model

To see how the corrugation changes the topology of the bilayer, one can fix the
masses and change β2. In figure (4.7), it is plotted the phase diagram as a function
of m2 and β, while m1 = 2meV is fixed. The two lines, that track the boundaries of
the phase transitions, are still defined by m∗ = 0 at the two Dirac cones, K̄ and K̄ ′.
From the plot, it is clear that corrugation has an important role in the topological
properties of the continuum model. In particular it can induce face transitions even
for fixed values of the masses.

To conclude, there are two values of β that should be quoted, since they account
for interesting results. When β =

√
4
3
the only possible phase is the trivial one, vice

versa when β =
√

2
3
, the two dashed lines in figure (4.6) merge and there are only

two states available C = ±1. In this case the non-trivial topology of the flat bands
cannot be altered by any broken symmetry.

This is absurd in a tight binding model. Giving a strong lattice on-site energy
the system is described by isolated atoms with almost zero interaction potential.
In this case it is meaningless to talk about topological phases and the state must
be trivial in a tight-binding description. This is a first warning of the fact that
an exhaustive and faithful explanation of the problem requires more then just two
bands for a tight-binding model.

4.4 Flipped Haldane model

The continuum model gives interesting insight regarding the topology of the flat
bands and good predictions on the shape of the band structure, even far away from
the Dirac cones. Nevertheless, a complete understanding of the problem requires
the introduction of a lattice model. The bulk-edge correspondence predicts the
appearance of edge states for non-trivial topological phases. It is not obvious how
the flat bands at the magic angle con induce superconductive states alternated with
insulating ones at the boundaries. It is primary then, the construction of a tight-
binding model that incorporates the features of the discrete super-lattice. However,
the passage from the continuum to the discrete, in the description of the low energy
almost-flat bands, is not trivial.

The easiest way to understand it from a physical point of view, is the description
of what has been called flipped Haldane model [28]. For a mass term m proportional
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to σz and different for the two sub-lattices A and B, twisted bilayer graphene is in a
topological phase. It follows that inducing a phase transition, spoiling time reversal,
one can either go to a more complex phase or vice versa come to a trivial one.

Recalling the study of Haldane model in the previous chapter, the first step is
to identify a well known configuration. In the monolayer case it was recognised
with equation (3.23), when the mass m → −∞. In that case, in fact, the Chern
number is C = 0. For TBG instead, the Hamiltonian (4.4), even with a strong onsite
potential, has C = −1. This is a consequence of the same chirality of K̄ and K̄ ′ and
a curvature equal to (4.6). The different Chern number of the initial configurations
for the monolayer and bilayer structure, determines an opposite behaviour when an
Haldane-like term is introduced in the Hamiltonian. In the former case, in fact, the
closing and reopening ofK caused a variation in the Hall conductance that brought
the sample into a topological phase with C = 1. Vice versa, assuming the analogous
set up in the bilayer with the Dirac cones at the same positions and the analogous
form for the d3(k) term, one can imagine that a closing and reopening at K̄ induces
a ∆σxy = e2

~ that brings the total Chern number to C = 0. In this sense, one can
think of TBG as a flipped Haldane model where the onsite potential produces a non-
zero Chern number and the trivial insulator is obtained by the second neighborhood
Haldane hopping.

The contradiction in the construction of the two bands tight-binding model is
more clear now. For strong on-site potential, TBG is described by an atomic insula-
tor with a non-zero Chern number. This conclusion clearly does not make sense. A
possible solution is the introduction of extra bands, in such a way that the potential
is no longer a purely onsite term and the non trivial topology can be explained [28].
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Relevant symmetries and

Wannier obstructions

The continuum model furnishes a good description of TBG for small angles of ro-
tation. It allows to construct, with excellent approximation, the band structure
of graphene showing the appearance of Dirac points and the flattening of the va-
lence and conduction bands close to the magic angle. More important, this model
implements all the approximate symmetries listed in the previous chapter, that are
essential in protecting Dirac crossing points. For a general lattice with incommensu-
rate twist angle, one cannot even assume translational invariance, while for a general
commensurate one Uv(1), associated to separate conservation of electrons in the two
valleys, is absent. Nevertheless, these symmetries are fundamental in the description
of Dirac cones stability and excluding them implies the failure of the model. On the
other side, the continuum description does not offer a totally satisfying treatment
of the problem. This, in fact, implies the natural landing to a more complex tight-
binding model and the construction of Wannier functions, namely wavefunctions
in real space that are well-localised in lattice regions where the electrons can hop.
The approximate symmetries, so important for protecting the cones, constitute an
obstacle to this attempt. In particular, the construction of well localised Wannier
functions is prevented by the presence of symmetries that are not exact microscopic
ones.

In the literature, one can find many attempts to construct a satisfying tight-
binding model for small angle TBG, nevertheless the problem is still open. This
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knot is connected to a bigger issue, which is the obstruction in the creation of
Wannier representations for bands with fragile topology [30].

5.1 Band representation

First of all, let’s do a brief introduction on band representation to better understand
the salient points of this chapter analysis.

The space group G contains all the symmetry operations of a crystalline lattice.
The element g ∈ G, that acts in real space, is defined by the action of g = {R|v}
as r → Rr + v {R|v}, with R a point group operation and v a translation vector.
Decomposing {R|v} = {R|t+v′} = {E|t}{R|v′}, the first term of the last equality
is an operation of Bravais lattice translation group with t proportional to the basis
vectors, while {R|v′} is an element of the point group with v′ a generic translation
vector. The site-symmetry group on the other side, is the set of operations that
leave a position q in the Bravais lattice fixed. It is even called the little group of G
and it is such that Gq ≡ {g | gq = q} ⊂ G.

One can now introduce the Wyckoff position through the following definition:

"Any two sites whose site-symmetry groups are conjugate are said to lie in the
same Wyckoff position. Given a site in the Wyckoff position, the number of sites in
its orbit that lie in a single unit cell defines the multiplicity nq of the position" [31].

This means that Wyckoff positions are sites of high symmetry, meaning their
position is preserved by a sub-group or the total space group of the lattice. In
particular the following holds:

"A site-symmetry group is non-maximal if there exists a finite group H 6= Gq,
such that Gq ⊂ H ⊂ G. A site-symmetry group that is not non-maximal is maximal.
A Wyckoff position containing q is maximal if the stabilizer group Gq is maximal"
[31].

These definitions are important because the symmetry-adapted Wannier func-
tions centred at a Wyckoff position q, are basis functions of irreducible representa-
tions (irreps) of the little group Gq.

A Wannier functions can be noted by W (β)
i,1 (r) = W

(β)
i (r − q), where i = 1, ..nβ

is the degeneracy of the representation d(β). The action of an element gq ∈ Gq
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transforms the Wannier functions as

gqW
(β)
i,1 (r) =

nβ∑
i′=1

dβi′i(Rq)W
(β)
i′,1 (r) (5.1)

where dβi′i(Rq) is the matrix representation of group representation d(β) of the ele-
ment gq. A group Gd of linear operators ĝ in fact, is a representation of G in some
vector space L, in such a way that every element g ∈ G is in correspondence with
one and only one element in Gd. The space L, is the space of the representation,
and its dimension n is the dimension of the representation. If ψi, with i1, ..n, is a
basis in L then ĝ is defined by the matrix

ĝψi =
n∑
j=1

d(g)ijψj

One can generate the other Wannier functions at the symmetry equivalent point qj
of q, using the transformation gj0 of the coset decomposition

W
(β)
i,j ≡ gj0W

(β)
i,1 (r) = W

(β)
i (R−1

j (r − qj))

Let’s see now what is the action of a generic space group symmetry operation g on
the Wannier functions. For an arbitrary g = {R|v} ∈ G and the transformation gj0
of the coset decomposition G =

∑
j,n gjnGq with gjn = {Rj|v′j + tn}, it exists only

one gj′n′ and one gq = {Rq|vq + tq} ∈ Gq such that

g = gj′n′gqg
−1
jn

and R = R′jRqR−1
j (point group operation), and tn′ = Tj′j + Rtn (translation

vector). The action of the element g of the space group G on the Wannier functions
is

gW β
ij(r − tn) =

nβ∑
i′=1

dβ(i′i)W
β
i′j′(r − Tj′j −Rtn) (5.2)

where W β
ij(r − tn) is the function in another unit cell obtained applying a transla-

tion tn on the original one. Equation (5.2) is a representation of G, whose space is
labelled by (q, β). This representation is induced by the irrep d(β) of the site sym-
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metry group Gq of the Wyckoff position q. The number of Wannier basis functions
obtained, is equal to nβ × nq ×N , where nq is the multiplicity of the Wyckoff posi-
tion and N is the number of unit cells. One should notice though, that the Wannier
functions calculated in reality are centred within one primitive cell because the rest
are just periodic translations.
Performing a Fourier transform on the Wannier basis, the corresponding Bloch func-
tions are obtained

ψ
(β)
i,j (k, r) =

1√
N

∑
n

eiktnW
(β)
i,j (r − tn)

The result is that, the infinite dimensional Wannier basis nβ × nq × N , is now
substituted with a finite dimensional one nβ × nq for each one of the N k vectors of
the First Brillouin Zone, that correspond to the nβ × nq energy bands. Now, acting
with the element g on the Bloch functions

gψ
(β)
i,j (k, r) =

1√
N
eiRktj′j

∑
i′

dβ(i′i)ψ
(β)
i′,j′(Rk, r)W

(β)
i,j (r − tn)

This is called band representation.
Restricting to the little group of symmetry Gk of a fixed wave vector k in recip-
rocal space, ψ(β)

i,j (k, r) span the space of the representation of Gk with character
χ(β)(g) =

∑nq
j e−iktjj χ̃(β)(R−1

j RRj). From this result one can obtain the number
of times that the small irrep (k, α) of Gk with character χ(α) is contained in this
induced representation (q, β), subduced on Gk. So, given the centres of the Wan-
nier functions and the irreducible representations of their symmetry group, one can
determine the corresponding irreps at each k point and vice versa [31] [32] [33].
The goal of this paragraph was to provide a small introduction to band representa-
tion and to create a bridge between the symmetry properties of Wannier functions
centred at a fixed Wyckoff position, and those ones of the corresponding Bloch
functions at a point of high symmetry k of the first Brillouin Zone.
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5.2 Symmetries

To construct nice Wannier functions for the problem on hand, one should first define
the correct symmetries of the system. Starting with an initial configuration described
by an AA stacking of two layers of graphene, the formation of a crystalline lattice
does not depend on the displacement between the two sheets, neither on the centre
of the rotation. It relies only on the angle of twist.

5.2.1 Valley charge conservation

Based on how the primitive lattice vectors of the unrotated layer, are related to the
Moiré lattice ones, one can obtain two classes of commensurate angles for the bilayer.
These correspond to two different configurations of the folding of the monolayer
Brillouin Zone into the mini-cell of the Moiré reciprocal lattice space. The two
possible outcomes are shown in figure (5.1), and give an intuitive explanation of
what happens in the folding.

Figure 5.1: The first Brillouin Zone of two graphene layers are rotated about their
common centre of an angle θ. The mapping of the momentum in the new moiré BZ
can be of two types, depending on the rotation. For type I, K ′ and Kθ are folded
into the same moiré Km point, while for type II, they are K and Kθ that are folded
into the same Km [28].

79



Relevant symmetries and Wannier obstructions

K and K ′ are the two inequivalent cones in the first layer, while Kθ = R(θ)K

and K ′θ are the two in the second layer, with R(θ) the rotation matrix. This dif-
ference, in the analysis performed in chapter 2, was irrelevant because of the small
value of θ. In type I,K ′ andKθ are folded into the same moiréKm point, while for
type II they areK andKθ that are folded into the sameKm. These are the only two
possible configurations allowed. In fact, because of time reversal, one can never have
that two inequivalent Dirac cones of the same layer are folded into the same Km.
From this construction, it seems that at least for type I configuration, valley charge
conservation Uv(1) is unreasonable. Even if, for type I the two inequivalent Dirac
cones are folded into the same position, restricting to small angles of rotation,K ′ and
Kθ cannot couple. For small θ one finds that |K −Kθ| = |K(1−R(θ))| ∼ O(θ/a)

(recalling K ∼ 1/a), while |K ′ −Kθ| = | −K(1 + R(θ))| ∼ O(1/a). It follows
that |K − Kθ| � |K ′ − Kθ|, so the coupling between inequivalent Dirac cones
requires bigger reciprocal lattice vectors and this is why these hopping processes are
suppressed for small angles of twist. It follows that K and Kθ are grouped into
a single valley and they do not interact with the time reversal cones in the other
inequivalent valley.

One can easily construct the operator associated with this symmetry. In partic-
ular if N̂1 is the operator associated to the number of electrons in the first valley,
and N̂2 in the second, the generator of Uv(1) can be written as ∆N̂v = N̂1 − N̂2,
finding e−iθ∆N̂v .

The arguments made so far are independent of the commensurability of the
lattice and perfectly apply to the effective model. The interlayer hopping term
constructed in the second chapter, in fact, tends to zero rapidly with the reciprocal
lattice vectors. The higher order processes are suppressed and Uv(1) symmetry
perfectly fits into the model.

5.2.2 Point-group symmetries

For a commensurate lattice, the exact point group symmetries do depend on the
centre of the rotation. If it is performed about a generic point of space, one ob-
tains a crystalline lattice with just translational invariance. To form high symmetry
structures, one can twist the two sheets about the centre of one hexagonal cell or
one of the honeycomb sites.
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Figure 5.2: Two stacked lattices of graphene with a twist. In (a) it is shown the
formation of the hexagonal super-cell of the moiré lattice for two sheets of graphene
rotated about a common atom site. The arrows represent the basis vectors and AA
and AB the different stacking regions. In (b) a zoom in to the lattice rotation. In
(c) it is shown the formation of the honeycomb super-cell of the moiré lattice for two
sheets of graphene, rotated about a common centre of two overlapping hexagons. The
arrows represent the basis vectors and AA and AB the different stacking regions. In
(b) a zoom in to the lattice rotation. [6] [34]
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In the first case the system is invariant under D6 point group. It contains the
elements of the group C6 and the other six rotations of angle π about the secondary
axes parallel to the 2-D surface. C6 contains all the rotations on the plane of 60°,
120° and 180° clockwise and counterclockwise, plus the identity E.

All the group operations ofD6 can be constructed combining the three generators
C3z, C2x and C2y. Studying the action of these symmetries on the indices that label
the two layers, 1 and 2, the two sub-lattices within each layer, A and B and the two
sub-lattices AB and BA of the moiré superlattice, one finds

• C3z is the rotation about the z axis perpendicular to the 2-D plane of 120°
that leaves invariant all indices

• C2x is the rotation about the x axis of 180° that leaves invariant the AB and
BA and exchanges the layers, the valleys and the sub-lattice indices

• C2y is the rotation about the y axis of 180° that leaves invariant the A and B,
and exchanges the layer, the moiré sub-lattice and the valley indices

The irreducible representations of the space group D6 and the action of the three
generators on them, are shown in the following table.

Irreps C3z C2x C2y

A1(1) +1 +1 +1

A2(1) +1 -1 -1

B1(1) +1 +1 -1

B2(1) +1 -1 +1

E1(2)

(
cos(φ) − sin(φ)

sin(φ) cos(φ)

) (
+1 0

0 −1

) (
−1 0

0 +1

)

E2(2)

(
cos(φ) − sin(φ)

sin(φ) cos(φ)

) (
+1 0

0 −1

) (
+1 0

0 −1

)

In parenthesis, next to each irreducible representation, it is written the corre-
sponding order of degeneracy. The first four rows list the characters of the matrix
representation, that for the first four rows coincide with the matrix itself. The angle
φ = 2π/3, [35].
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When the rotation centre of the two layers of graphene is one of the honeycomb
sites, the point group rotation shrinks to D3. This implies that among others, C6 is
lost. In this case the character table for the generators of the group is

Irreps C3z C2x

A1(1) +1 +1

A2(1) +1 -1

E(2)

(
cos(φ) − sin(φ)

sin(φ) cos(φ)

) (
+1 0

0 −1

)

There are only three irreps and two generators [36], [37] [38].

The configurations for the two different rotation centres are exhibited in figure
(5.2). The plot refers to small angles of twist showing that in this case AA and
AB/BA stacking-like regions appear.

5.2.3 High symmetry points in the FBZ

It is now time to find the symmetry representations of the high symmetry points in
the First Brillouin zone. These can be used to define the low-energy eigenvalues of
the four minibands of the moiré lattice (two for each valley).

First one should understand the symmetry representations at the Dirac cones
in the monolayer. These points are symmetric under the point group D3, in fact a
C6 rotation would map K into the inequivalent point K ′. Following the analysis
performed in reference [28], let’s consider the action of C3z about the centre of one
hexagonal cell. The rotation acting on a Bloch state

∣∣∣ψσK/K′

〉
at the Dirac point

momentum K/K ′, with σ = ±1 labelling the two sub-lattices A and B, is

CH
3z |ψσK〉 = |ψσK〉ωσ

CH
3z |ψσK′〉 = |ψσK′〉ω−σ

(5.3)

with ω = ei2π/3.

Graphene lattice is still C3 symmetric when the rotation is performed about a
carbon site. This operation can be decomposed into translations about the basis
lattice vectors a1 and a2, plus a rotation about the centre of the hexagon, Cc

3z =
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Ta1Ta2C3z. It follows

Cc
3z |ψσK〉 = |ψσK〉ωσ−1

Cc
3z |ψσK′〉 = |ψσK′〉ω1−σ

(5.4)

These results can be used to understand what happens in the small rotation
angle bilayer case. Let’s take as reference type I configuration in figure (5.1). At the
corner of the moiré Brillouin zone the Dirac point Km, corresponds to the folding
position of Kθ and K ′. These means that the Bloch state at Km can be written∣∣ψσKm

,+
〉
∝
∣∣ψσKθ

〉∣∣ψσKm
,−
〉
∝ |ψσK′〉

(5.5)

with ± that denotes the two decoupled valleys. The twisting centre, within the two
lattices, implies either D6 or D3 point symmetry group, that corresponds to different
irreducible representations. In the first case, taking as centre of C3z rotation an AA
cite

Cc
3z

∣∣ψσKm
,+
〉

=
∣∣ψσKm

,+
〉
ωσ

Cc
3z

∣∣ψσKm
,−
〉

=
∣∣ψσKm

,−
〉
ω−σ

(5.6)

The representation of Cc
3z at Km for the two sub-lattices and the two valleys is

(ω, ω∗) ∪ (ω, ω∗). These are two doubly degenerate representations E of the little
group D3 (table (5.2.2)).

Considering a carbon atom as twisting centre within the layers, the action of the
C3z rotation about an AA cite results

Cc
3z

∣∣ψσKm
,+
〉

=
∣∣ψσKm

,+
〉
ωσ−1

Cc
3z

∣∣ψσKm
,−
〉

=
∣∣ψσKm

,−
〉
ω1−σ

(5.7)

The representation of C3z at Km for the two sub-lattices and the two valleys is
(1, ω)∪(1, ω∗). This in now the combination of all the representations ofD3, meaning
A1 ⊕ A2 ⊕ E (table (5.2.2)).

In both cases one finds that atKm there is a four fold degeneracy that correspond
to four zero energy eigenstates. Nevertheless, having either D3 or D6 as point group
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symmetry of the moiré lattice, implies different representations and thus different
constrains on the tight-binding model. As it is pointed out in reference [28], for
small angles of rotation the electronic properties of the system are independent on
the exact geometrical features of the bilayer. This is true if the energy range of the
analysis is of the order of the meV. It is in fact the case when one studies the almost
flat mini-bands close to the magic angle. It follows that it is useful to implement
always D6, even when this is not an exact symmetry. In experiment Dirac cones are
preserved even in unexpected circumstances and C6 prevents from setting to zero
symmetry allowed terms.

There are other high symmetry points in the moiré Brillouin zone, this are Γ,
the centre of the FBZ and M, the midpoint between the two corners Km and K ′m.
The little group at Γ, GΓ, coincides with the point group G. This implies that for
a D6 lattice, the irreps at this point are the ones listed in table (5.2.2). On the
other side, M has just D2 symmetry group with four irreducible representations.
The high symmetry points are shown in figure (5.3), where the arrows represents
the line followed in the plots of the band structure.

Figure 5.3: Moiré Brillouin Zone of twisted bilayer graphene. Γ, K1/2 and M are
the high symmetry points, while the dashed lines represent the path followed in the
band structure representation. [35]
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5.2.4 Remarks on the effective Hamiltonian

All the analysis performed so far, refers to commensurate structures. Nevertheless
from second chapter for small angles of rotation, it is always possible to describe
TBG with the continuum theory. Its Hamiltonian is constructed with two Dirac
terms and a hopping matrix with a negligible dependence on the twist angle. This
implies that no reference is made to the commensurability of the lattice and a
crystalline study of the problem is allowed. The effective model preserves all the
fundamental symmetries in the protection of Dirac cones. It is time reversal, has
valley charge conservation and D6 point group symmetry. Different lattices are then,
well described by the same effective theory regardless of their different geometrical
features. It implies that the results obtained from group theory can be applied to
the continuum problem to study a wide range of structure. This becomes extremely
important when the effect of corrugation is taken into account.

5.3 Centre of Wannier orbitals

An important step in the construction of Wannier orbitals, is the location of their
centre. This depends on the symmetries of the energy bands at all high symmetry
points [39]. The local density of state for the flat bands, is picked at the AA sites that
generate a triangular lattice [19]. It is natural then, to create a tight-binding model
on a triangular lattice from Wannier orbitals centred at AA regions. This is well
represented in figure (5.2), where the moiré hexagon-cell appears constructed from
six triangles with AA vertices and internal AB stacking. Taking into account a single
valley, in the moiré first Brillouin zone Γ points present no degeneracy while Km and
K ′m are double degenerate (Uv(1) degeneracy is not accounted). The construction
of a triangular lattice model leads to the same symmetry representation for Γ, Km

and K ′m, that are now all non-degenerate or all Dirac points [19]. It follows that
a correct tight-binding model should be described on a honeycomb lattice with the
Wannier orbitals centred at the AB/BA regions, picked at the AA sites and with
a non trivial shape. In monolayer graphene, this is equivalent to choose as centre
of the Wannier orbitals the Wickoff position 2c, that identifies two points in the
hexagonal unit cell. These correspond to the site of the two sub-lattice A and B,
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that are symmetric under the little group Gq2c , isomorphic to D3.

5.4 Relaxation

Figure 5.4: Local structure of bilayer graphene for small twisted angles. The AA,
AB and SP (regions between AB and BA) stacking are shown before and after the
effect of relaxation. After corrugation the AA region shrinks to a small spot at the
centre of the represented circle. [40]

In the previous chapter it has been introduced the appearance of corrugation
normal to the 2-D plane of TBG. Unless the lattice studied is an idealised version of
real TBG, corrugation is a phenomenon that one should always expect and that is
confirmed from experiments, specially at small twist angles. This effect is traced to
a lattice relaxation with a stronger coupling energy between states at the AB/BA
positions with respect to the AA ones. The main consequence is a bigger energy gap
between the low energy mini-bands and those ones above and below. In addition
to that, relaxation implies an in-plane deformation. AA regions tend to shrink,
favouring an expansion of the AB ones and leading to the configuration shown in
figure (5.2). The resulting lattice appears with bumps normal to the 2-D plane in
correspondence to AA. To have an idea, for twisting angles ∼ 1° and full relaxation,
one can find an interlayer distance difference of ∼ 0.2Å between AA (∼ 3, 61Å
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interlayer distance) and AB (∼ 3, 39Å interlayer distance) sites starting with d =

3, 34Å [40]. In figure (5.4), it is represented the local stacking structure before and
after relaxation. In this numerical study, relaxation to stacked equilibrium positions
of the atoms is accomplished by molecular dynamics, with effective force-fields to
parametrize interactions between "classical" atoms. From the first image it is clear
that the AA region shrinks to a small spot at the centre of the represented circle.

(a) (b)

Figure 5.5: Band structure of twisted bilayer graphene for θ = 1, 08 angle of twist. In
(a) the different coloured symbols refer to the irreducible representations at the high
symmetry points. (b) zoom in to the flat bands. Numbers refer to the degeneracy at
Γ, K1/2 and M . It is included the effect of Uv(1) valley charge conservation. [35]
[40]

For such a lattice there is not exact point symmetry group. Nevertheless, one
should always consider D6, even when the starting rotated lattice is D3 [40]. As
already pointed out, the exact local symmetry structure is irrelevant in the studying
of the electronic properties of the sample. This result is proved, for example, by
the study of the Bloch functions at the high symmetry points performed in [40] and
[35].

In the figure (5.5a), it is shown the band structure from a tight binding numer-
ical calculation of TBG at small angles with relaxation taken into account, [35].
The different coloured symbols refer to the irreducible representations at the high
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symmetry points, that transform like the corresponding Bloch functions. Blue, red
and green circles correspond to A1 ⊕B1, A2 ⊕B2, E1 ⊕E2 irreps of D6. Green and
violet triangles stand for irreps E and A1 ⊕ A2 of D3.

Analysing only the low energy mini-bands, one can see that at Γ there are two
doublets, namely A2 ⊕ B2 for the upper band and A1 ⊕ B1 for the lower one. Vice
versa, at K there are two doublets of E ⊕ E (respectively one E for each cone).
In the second figure (5.5b), they are shown just the degeneracies at the flat bands.
At each high symmetry point these are doubled with respect to the expected values.
At K for example, from the E two dimensional representation one should expect
only a double degeneracy. This is explained by the fact that Uv(1) valley charge
conservation must be taken into account. Uv(1), in fact, implies an extra doubling
of each degeneracy.

5.5 Wannier obstructions

At the end of the previous chapter it was clear the necessity to decide a tight-
binding model for the mini-bands at low energy. The first step is to introduce a set
of Wannier functions that exhibit the features and the symmetries of the system.
This is not easy and even though many different models have been proposed, the
problem is still open. As already mentioned, the difficulty on finding a tight-binding
model for just the two low energy bands relies on the so called Wannier obstructions
[28] [19].

The continuum model for a single valley, describes two almost flat bands with
two Dirac cones at the border of the Brillouin Zone. In contrast to the monolayer
lattice, there are two equivalent cones that correspond to a single valley. While
in the first case two inequivalent Dirac points lie on the same band, in the latter
there are two different bands each one with a couple of equivalent nodes. Wannier
obstructions relies on the fact that, in any tight binding model, the Dirac cones
have necessarily opposite winding number and net zero chirality. To overcome this
problem one should add a term in the Hamiltonian for the other opposite valley. The
consequence, though, is the breaking of single valley charge conservation, namely
Uv(1). Unless some symmetries are neglected, a well defined tight-binding model
requires the introduction of extra bands. One can, in fact, describe the two low
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energy bands with all the symmetries of the continuum Hamiltonian and add higher
energy ones that fix Wannier obstruction. This is equivalent to consider two set
of two bands with opposite Chern number, that compensate each other from a
topological point of view. Nevertheless, the obstruction is still somehow inherent in
the problem since the two sets keep individually Wannier obstructions. This knot
is harder to fix because it falls into a bigger issue, which is that bands with fragile
topology do not admit any Wannier representation [41].
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This thesis provides an in-depth analysis of small angle twisted bilayer graphene
(TBG), extending topological properties of the monolayer to the TBG continuum
model Hamiltonian and building a perspective on the most recent approaches to this
problem.

The starting point of this work is the description of the electronic band structure
of TBG throughout the study of the continuum model formulated by A. MacDonald
and colleagues in 2012 [5]. At small angles of twist, the relevant excitations of
the two layers of graphene, organise in a Moiré super-lattice that is described by
an effective Hamiltonian. The Moiré band structure can be evaluated at arbitrary
twist angles, not only at commensurate values. In particular, close to the magic
angle the electronic structure, thus calculated, exhibits two nearly flat-bands near
charge neutrality. Notably, by restricting to the first Moiré Brillouin zone, at first
order approximation, one recovers a Dirac-like Hamiltonian in analogy to the single
layer Dirac cones description.

This result is extremely important since it suggests the application of monolayer
graphene topology at the Dirac cones to the bilayer lattice. In the former case
the topological phase diagram is constructed from the Haldane model that, in some
sense, is the simplest variant of grahene monolayer Hamiltonian exhibiting nontrivial
topological features. This is a toy-model that explains the occurrence of quantum
Hall effect on a standard Bloch band structure with broken time reversal but no
net magnetic flux through the system. This procedure is extended to the bilayer
continuum single valley Hamiltonian, finding a "flipped Haldane model" description.
The phase diagram shows topological non-trivial states when C2 symmetry is broken
throughout an on-site potential that gaps the Dirac cones. On the other hand, the
Chern number of the filled bands is null when the Haldane mass is included in the
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computations. This suggests an inconsistency in the outcomes. A non-zero Chern
number is registered for an atomic insulator generated by a strong on-site potential.
Hence it is reasonable and necessary to implement a tight-binding model with more
then just two bands, to lighten up the physical contradictions of the result and to
analyse the other unresolved properties of TBG.

Non-exact D6 point group symmetry, relaxation of the two overlapping layers,
together with fragile topology of the flat bands, are the problems tackled in the last
part of this thesis. The construction of an accepted tight-binding model is still an
open question and hangs on these obstructions. Even though these have often been
neglected in early works, in our understanding their implementation is essential for
the construction of a faithful model.

From this last viewpoint, this thesis does not show any landing or preference to
a particular model, it rather lays the foundations for a future study. In particular,
the construction of a tight-binding model with correlations between electrons could
explain insulating states at half-filling of the flat bands. From latest experiments,
in fact, it has been shown that TBG at the magic angle evinces Mott-like insulator
behaviour alternated with superconducting phases when driven away from half-filling
conditions. This is the reason why, in the last five years, there has been a tremendous
interest in the study of this material. A good understanding of the problem and the
proper formulation of a tight-binding model could explain the intriguing properties
of this material and open the door for its possible controlled applications.

To conclude, the results of this work is the construction of a critical analysis that
aims to deeply understand the features of small angle TBG continuum model, but
at the same time unravel and comprehend its limits when one tries to revert back
to localised low-energy orbitals in real space (Wannier functions) for Hubbard-like
descriptions.
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