
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

Dipartimento di Informatica – Scienza e Ingegneria
Corso di Laurea in Ingegneria e Scienze Informatiche

Titolo dell’elaborato

OPoly: an OpenMP
polyhedral compiler

Elaborato in
High-performance Computing

Relatore
Prof. Moreno Marzolla

Presentata da
Giacomo Aloisi

IV Sessione di Laurea
Anno Accademico 2019-2020

ii

Abstract

In this thesis, we introduce polyhedral compilation, a multitude of techniques
for representing programs, especially those involving nested loops and arrays,
thanks to parametric polyhedrons, and exploit transformations on these objects
to automatically analyze and optimize the given programs. In particular, we
describe our implementation of a polyhedral compiler: OPoly.

OPoly is a Python application able to perform automatic parallelization of
loop nests that can be expressed as a set of uniform recurrent equations. OPoly
analyzes loop nests written in pseudocode language and generates parallelizable
C code with OpenMP directives, which can replace its original, serial implemen-
tation without changing the meaning of the program.

OPoly uses the MiniZinc constraint programming modeling language to
model the optimization problems of the polyhedral approach, which are cru-
cial for finding the best possible transformation from the original loop to the
parallelizable one.

We describe the architecture of OPoly and give some practical solutions to
problems that arise when implementing a polyhedral compiler.

Finally, we compare the performance of the generated parallel code to its
original implementation, by studying the application of OPoly on a well-known
scientific algorithm implementation.

iii

iv

Sommario

In questa tesi introduciamo la polyhedral compilation, una moltitudine di tecniche
volte a rappresentare programmi, specialmente quelli che coinvolgono cicli in-
nestati e vettori, rappresentandoli attraverso poliedri parametrici e sfruttando
alcune trasformazioni su di essi per analizzare e ottimizzare automaticamente
i programmi dati. In particolare, descriviamo la nostra implementazione di un
polyhedral compiler: OPoly.

OPoly è un’applicazione realizzata in Python in grado di parallelizzare auto-
maticamente cicli innestati che possono essere espressi attraverso un insieme di
equazioni ricorsive uniformi. OPoly analizza dei cicli innestati scritti in pseudo-
linguaggio e genera del codice sorgente parallelizzabile scritto in C e compreso
di direttive OpenMP, che può rimpiazzare l’implementazione seriale originale,
senza cambiarne il significato.

OPoly sfrutta il linguaggio di modellazione per programmazione a vincoli
MiniZinc per modellare il problemi di ottimizzazione dell’approccio poliedri-
co, che sono cruciali per trovare la trasformazione migliore possibile dal ciclo
originale a quello parallelizzabile.

Descriviamo l’architettura di OPoly e diamo alcune soluzioni pratiche a
problemi che sorgono implementando un polyhedral compiler.

Infine, compariamo le prestazioni del codice parallelizzabile generato da
OPoly con quelle della relativa implementazione originale, studiando il caso di
un noto algoritmo scientifico.

v

vi

To my parents, thank you for teaching me about many aspects of life.
To my friends, without whom I would not have withstood

through these dark times.
To my partners in crime, thanks for putting up with my madness

and sharing with me a bit of yours too.
To my professors, my gratitude for letting me thrive intellectually

while instilling inspiration for my future self.
To my university, my thankfulness for giving me the chance to become

a better person and to get to know a lot of crazy people like myself.
To my former colleagues, I hope to give back just a tiny bit of what you gave me while

trying to teach this dumb guy about the real stuff.
To all who supported me, my deepest thanks.

Science is what we understand
well enough to explain to a
computer.
Art is everything else we do.

Foreword to the book “A=B”
Donald E. Knuth

vii

viii

Acknowledgements

First of all, I would like to thank my thesis supervisor, professor Moreno
Marzolla, who inspired me in pursuing high-performance computing studies,
after attending his academic course on the subject. Definitely one of the most
interesting courses I attended as an undergraduate student. His great tips and
attention to detail also helped me write a better thesis overall.

I found out about polyhedral compilation when I was in Paris for my cur-
ricular internship, so big thanks to Huawei Technologies France, my former
tutor Zhen Zhang and his colleagues for introducing me to the subject. I have
learned a lot from that experience and my interest in high-performance com-
puting grew stronger after that. If it was not for you, this thesis would not have
been accomplished.

Last but not least, many thanks to all the members of the polyhedral research
community. Over the years, you have done an amazing job in the dissemination
of polyhedral compilation. With your numerous contributions, I was able to
write this thesis and (hopefully) help to spread the interest in this subject to
the academic world. I will definitely continue to learn more about polyhedral
compilation, with the hope of becoming a contributor in the future.

ix

x

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis structure . 3

2 Background 5
2.1 Notations . 6
2.2 The geometry of programs . 8
2.3 The polytope model . 11

2.3.1 Z-polyhedron . 11
2.3.2 Schedule + allocation = transformation matrix 13
2.3.3 Target polyhedron . 14

2.4 The hyperplane method . 16
2.4.1 The occurrence mapping . 16
2.4.2 The 〈 f , g〉 sets . 17
2.4.3 The hyperplane theorem . 20
2.4.4 Completing the transformation 22

2.5 Scanning polyhedra . 24
2.5.1 Fourier-Motzkin elimination 24
2.5.2 Bounds extraction . 25
2.5.3 Code generation . 28

3 Design 31
3.1 Program representation . 32

3.1.1 Expressions . 33
3.1.2 Statements . 33

3.2 Architecture . 36
3.2.1 Parser . 36
3.2.2 Checker . 37
3.2.3 Detector . 37

xi

xii CONTENTS

3.2.4 Scheduler . 37
3.2.5 Allocator . 38
3.2.6 Scanner . 38
3.2.7 Generator . 38

4 Implementation 41
4.1 Python . 42

4.1.1 NumPy and SymPy . 42
4.1.2 PyMzn . 42
4.1.3 Pytest . 43

4.2 MiniZinc . 44
4.2.1 Minizinc model structure 44
4.2.2 Schedule model . 45
4.2.3 Allocation model . 47

4.3 Pseudocode . 50
4.3.1 Definitions . 50
4.3.2 Syntax . 51
4.3.3 Examples . 53

4.4 C code generation . 55

5 Benchmarks 57

6 Conclusions 65

List of Figures

2.1 The index space and dependence graph of alg. 2.1. 9
2.2 The target index space and dependence graph of alg. 2.2. Red

lines indicate points that can be executed in parallel. 10

3.1 Expressions class diagram. 34
3.2 Statements class diagram. 35
3.3 OPoly pipeline diagram. 36

5.1 Execution times of the Gauss-Seidel implementations in various
dimensions. The original, serial version is show as reference with
a dashed line. 61

5.2 Speedup and strong scaling efficiency plots of the parallel Gauss-
Seidel versions in different dimensions. 62

xiii

xiv LIST OF FIGURES

List of Listings

2.1 Original loop nest format. 6
2.2 Rewritten loop nest format. 7
4.1 MiniZinc schedule model. 46
4.2 MiniZinc determinant function using the Laplace expansion. . . . 48
4.3 MiniZinc allocation model. 49
4.4 Algorithm 2.1 rewritten in OPoly pseudocode. 53
4.5 Algorithm 2.3 rewritten in OPoly pseudocode. 54
4.6 Multiple assignments loop nest in OPoly pseudocode. 54
4.7 Pseudocode generated by OPoly of alg. 2.1 from the starting im-

plementation in listing 4.4. 56
4.8 C code generated by OPoly of alg. 2.1 from the starting imple-

mentation in listing 4.4. 56
5.1 2D Gauss-Seidel algorithm (alg. 5.2) rewritten in OPoly pseudocode. 59
5.2 C code generated by OPoly from the 2D Gauss-Seidel implemen-

tation in pseudocode syntax (listing 5.1). 60

xv

xvi LIST OF LISTINGS

List of Algorithms

2.1 2D computation example . 8
2.2 2D computation example (parallel) 9
2.3 Simplified 2D relaxation . 18
2.4 Fourier-Motzkin elimination . 25
2.5 Simplified 2D relaxation (parallel) 29

5.1 1D Gauss-Seidel algorithm . 57
5.2 2D Gauss-Seidel algorithm . 58
5.3 3D Gauss-Seidel algorithm . 58

xvii

xviii LIST OF ALGORITHMS

Chapter 1

Introduction

1.1 Motivation

“Any program using a significant amount of computer time spends most of that
time executing one or more loops”: this is the beginning of the introduction
of The Parallel Execution of DO Loops [Lam74] by Leslie Lamport, which we use
throughout the thesis as our main reference for many of the ideas regarding
polyhedral compilation. This statement is particularly true for scientific com-
putations, in which many nested loops perform CPU-intensive work, usually
by operating on multidimensional arrays to store intermediate results.

With the advent of parallel computing (and parallel architectures in general),
much of the existing code needs to be rewritten (partially or completely) to fulfill
a certain degree of parallelization necessary to speed up computation, otherwise
limited by the single CPU’s clock frequency.

However, parallel programming has earned a reputation as one of the most
difficult subjects in computer programming, that very few programmers can
understand, let alone code it all right. As explained in [McK17], parallel pro-
gramming difficulties can fall into several categories, such as the historic high
cost and relative rarity of parallel systems, or the typical researcher’s and practi-
tioner’s lack of experience with parallel systems. Fortunately, things are starting
to change due to the increase in accessibility of multi-processors systems to end
users, ready-to-use APIs for parallel computing, and advancements in automatic
parallelization of existing code.

This thesis ventures into the vast world of polyhedral compilation, trying to
tackle just a small part of it from an end-user perspective. Broadly speaking,
Polyhedral Compilation (PC) is a variety of techniques used to represent pro-
grams as some sort of mathematical model, namely polyhedrons (or polyhedra),
and to apply transformations on these objects to optimize them in some way;

1

2 CHAPTER 1. INTRODUCTION

finally, the resulting model is transformed back into code that is now optimized,
without changing the meaning of the original program.

For the intents of this thesis, we want to use PC to generate parallelizable
programs given their serial implementations. This is done by using a technique
known as the hyperplane method [Lam74]. This approach finds a way to rewrite
a loop nest such that the statements in the loop body can be concurrently exe-
cuted for all points lying along a hyperplane of the index space, hence the name
hyperplane method. Many hyperplanes are (serially) scanned during computa-
tion until no more points in the index space are to be computed. However, each
point in the given hyperplane can be computed in parallel, so that a part of the
resulting program can now be parallelized.

Generally, PC involves the manipulation of polyhedra or polytopes, geomet-
ric objects having “flat” sides that represent the index space of the loop nest.
Each loop iteration of the loop nest can be treated as a point in the lattice
of a polyhedron, hence transformations on the polyhedron also transform the
order in which the iterations are being executed. By doing proper dependence-
preserving transformations, one can convert the initial polyhedron into an equiv-
alent, but optimized accordingly to some optimization goals, target polyhedron,
which can then be used to generate the transformed loop nest through a process
called polyhedra scanning. In our case, the optimization goal is to minimize the
number of hyperplanes that need to be scanned to compute all the points inside
the polyhedron, hence minimizing the serial part of the target program.

With this said, in a reader’s mind a question may arise (sorry for the rhyme,
and then for the word pun): why isn’t polyhedral compilation used everywhere?
Simply putting it, there are certain assumptions that the code must fulfill to be
optimized with polyhedral compilation. Generally, every technique has its own
set of restrictions on what can or cannot be inside the loop body and other
properties of the program. The hyperplane method has its assumptions too,
perhaps the most restrictive ones since it is one of the first approaches adopted,
as well as one of the foundation methods of PC in general.

In this work, we describe OPoly, a polyhedral compiler that implements
the hyperplane method to generate parallelizable C code containing OpenMP
clauses from a program written in pseudocode language. OPoly can easily
be extended to support different languages and other parallel programming
paradigms, and, with a bit of effort, different PC techniques.

We also talk about the gains in performance of the generated code with regard
to the serial version. To do this, we apply the OPoly transformation to some
well-known scientific algorithm implementations, then analyze the speedup
and scaling efficiencies of these parallel versions.

1.2. THESIS STRUCTURE 3

1.2 Thesis structure

This thesis is structured into chapters, each one regarding a different aspect of
the knowledge behind OPoly. One can choose to skim over chapters to find what
they need, or simply read the whole thesis from top to bottom. However, getting
the grasp of the main concepts of the hyperplane method may be necessary in
order to understand some notions used in other chapters, so it is recommended
to read carefully at least section 2.4 (and possibly section 2.1 and section 2.2) of
chapter 2 before adventuring into other chapters. Accordingly, the remainder
of this thesis is structured as follows.

Chapter 2 introduces notations and definitions used throughout the thesis,
describing the polytope model and, more specifically, the hyperplane method.
As stated, this is probably the most important (and in our opinion interesting)
chapter that should be at least looked at. We also describe the assumptions the
code must satisfy in other to be parallelizable with the hyperplane method and
the methods used for scanning polyhedra to generate the target program.

In chapter 3 we argue the choices that lead to the design of OPoly, describing
the adopted representation of programs and the architecture of the application.

Chapter 4 gives a detailed explanation on how to effectively solve the prob-
lems presented in chapter 2, by describing the techniques and algorithms used
by OPoly and introducing MiniZinc [Net+07], a modeling language for con-
straint programming problems. We also describe the pseudocode language
used to express programs that can be analyzed by OPoly and the generation of
the resulting parallel code.

In chapter 5 we show how to use OPoly in practice by generating parallel
code for some implementations of the Gauss-Seidel algorithm. We also analyze
the performance of the generated code by showing execution times, speedups,
and scaling efficiencies.

Finally, chapter 6 concludes this thesis by summarising OPoly’s main achieve-
ments and outlining a roadmap for future extensions and optimizations of
OPoly.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, we introduce the main ideas of polyhedral compilation (PC),
focusing on the contribution of [Lam74]. We use concepts and notations from
[Fea96] and [Len93] to formalize these ideas.

The basis for the automatic synthesis of nested loops with the polytope model
was laid in the 1960s with the paper [KMW67] regarding uniform recurrence
equations. In the 1970s, Lamport was the first to apply this approach and
develop a method for the automatic parallelization of for loops. After that, the
idea picked up and developed further with the birth of systolic arrays, unified
in the late 1980s with a paper [RK88] that resulted in a theory for the automatic
synthesis of all systolic arrays.

Nowadays, the theory has evolved to include several other optimizations
and to progressively remove restrictions on the properties of the programs that
can be optimized with these techniques. Many polyhedral libraries [Loe99;
WIL00] and compilers [BRS07; GGL12; Bag+19] have been created for dealing
with polyhedra and for automatic parallel code generation.

The goal of this thesis is not to present cutting-edge methods for PC since
the theory underneath it is so complex that a lot of prior knowledge on the
subject would be needed to understand them. Our scope is to give a gentle
introduction to PC by getting a gist of a simple method like the hyperplane
method, that is comprehensible by anyone who has a bit of confidence with
simple programming, linear algebra, and linear programming problems.

We also describe the process of completing the space transformations and
rewriting the loop nests to obtain code that is parallelizable straight away, while
being computationally equivalent to the original.

We give examples as we explain the concepts, to achieve better clarity and
to let the reader follow through with the explanations.

5

6 CHAPTER 2. BACKGROUND

2.1 Notations

In this section, we introduce some of the basic notations used throughout the
thesis.

We assume that every numeric value from now on assumes only integer values
from the set Z, unless explicitly stated otherwise.

We denote a scalar value with a lowercase letter (e.g. k ∈ Z).

We denote a n-dimensional vector with a bold lowercase letter (e.g. v ∈ Zn).

We denote an m-by-n matrix with an uppercase letter (e.g. M ∈ Zm×n).

We denote with f : D→ C a function f with domainD and codomain C.

We say that two vectors a,b ∈ Zn are in lexicographic order and we denote it
with a� b if there exists an 1 ≤ i ≤ n such that ai < bi and a j ≤ b j for all 1 ≤ j < i
(e.g. with n = 3, (5, 3,−2)� (5, 4,−10)).

Loop notation
We consider n-nested loops of the form of listing 2.1 (similar to the one

in [Lam74]), where the i1, . . . , in are the loop index variables, the `1, . . . , `n and
the u1, . . . ,un are integer-valued expressions called respectively the lower bounds
and upper bounds of the loops. The bounds ` j and u j of the j-th loop can involve
program’s parameters, constant values, or linear combinations of indexes from
previous loops: that is expressions of the form a1i1 + . . .+ a j−1i j−1 where a ∈ Z j−1

(e.g. u3 = i1 + 2i2 + M − 2 where M ∈ Z is a program’s parameter). We allow
only unitary increments of the loop indexes.

FOR i1 FROM `1 TO u1
. . .

FOR in FROM `n TO un
loop body

Listing 2.1: Original loop nest format.

Let VAR be an array variable that appears in the loop body. A variable that
appears once or more on the left-hand side of an assignment statement in the
loop body is called a generated variable.

2.1. NOTATIONS 7

An occurrence of VAR is any appearance of it in the loop body. If it appears
on the left-hand side of an assignment statement, the occurrence is called a
generation; otherwise, it is called a use. Thus, generations modify the values of
elements of the array variables, while uses do not.

We make the following assumptions about the loop body:

(A1) It contains no I/O statement.

(A2) It contains no transfer of control to any statement outside the loop.

(A3) It contains no subroutine or function call which can modify data.

(A4) Any occurrence in the loop body of a generated variable VAR is in the form
VAR(e1, . . . , er) where each ei is an expression not containing any generated
variables.

More assumptions on the statements regarding the loop body are be considered
in section 2.4.

OPoly rewrites the loop nest from the form of listing 2.1 to the form of
listing 2.2, where the i′1, . . . , i

′

n are the new loop index variables, the λ1, . . . , λn

and the µ1, . . . , µn are the new loop bounds. The FOR CONC notation express the
fact that the loop can be executed concurrently by many processors.

FOR i′1 FROM λ1 TO µ1
FOR CONC i′2 FROM λ2 TO µ2

. . .
FOR CONC i′n FROM λn TO µn

loop body

Listing 2.2: Rewritten loop nest format.

8 CHAPTER 2. BACKGROUND

2.2 The geometry of programs

The base intuition behind PC is that for loops iterations can be seen as points in
a traditional Euclidean space. Each loop that iterates through a variable, called
index, is effectively representing a dimension on this space, hence a loop nest
of n nested loops define a n-dimensional index space. The index space IS, is
the set of all values that are assumed by the indexes during the execution of the
loop nest.

To better illustrate this concept, consider the loop nest in alg. 2.1. In the loop
body, Q is an array variable (specifically a matrix) that is initialized before the
start of the computation, and its elements are updated according to the inner
loop statement. The loop nest has two index loop variables, namely i and j,
which assume the range of integers between 1 and N inclusively. The parameter
N is an integer know at execution time which value does not change during the
execution. In this specific case, the value N + 1 is assumed to be the size of the
matrix Q (with zero-based indexing).

Algorithm 2.1: 2D computation example
1 for i from 1 to N do
2 for j from 1 to N do
3 Q(i, j)← (Q(i − 1, j) + Q(i, j − 1)) ∗ 0.5
4 end
5 end

The index space of this loop is:

IS = {(i, j) | 1 ≤ i ≤ N, 1 ≤ j ≤ N}.

The index space of this loop nest can be represented in a 2-dimensional space,
where each axis represents the values that the corresponding index assumes
during execution. A visual representation of the index space of alg. 2.1 is shown
in fig. 2.1a.

This loop nest is not parallelizable right away, because there are loop-carried
dependencies between some elements of Q: for example, Q(2, 2) cannot be com-
puted before computing Q(1, 2) and Q(2, 1). In general, in order to compute
Q(i, j) for some i, j = 1 . . .N, we need to wait for the computation of Q(i − 1, j)
and Q(i, j−1). A representation of the dependencies between different iterations,
also known as the dependence graph, is shown in fig. 2.1b.

Trying to parallelize the loop nest as-is (for example by diving the workload
on multiple processors) will lead to wrong and unpredictable results. We want

2.2. THE GEOMETRY OF PROGRAMS 9

(a) Index space. (b) Dependence graph.

Figure 2.1: The index space and dependence graph of alg. 2.1.

to rewrite the loop nest in a way that some points can be safely computed in
parallel. Specifically, we find that the loop nest can be rewritten as alg. 2.2, by
finding the indexes transformation:

i′ = i + j
j′ = j

.

Algorithm 2.2: 2D computation example (parallel)
1 for i′ from 2 to 2N do
2 for conc j′ from max(1, i′ −N) to min(N, i′ − 1) do
3 Q(i′ − j′, j′)← (Q(i′ − j′ − 1, j′) + Q(i′ − j′, j′ − 1)) ∗ 0.5
4 end
5 end

Original index values can be obtained by inverting the transformation:

i = i′ − j′

j = j′

The index space TS of the transformed loop nest, also called the target space,
is described by:

TS = {(i′, j′) | 1 ≤ i′ − j′ ≤ N, 1 ≤ j′ ≤ N},

10 CHAPTER 2. BACKGROUND

Figure 2.2: The target index space and dependence graph of alg. 2.2. Red lines
indicate points that can be executed in parallel.

New lower and upper bounds for the transformed index variables can be found
from the target space with a process called polyhedra scanning. A visual represen-
tation of the target space is shown in fig. 2.2, as well as the original dependencies
between points. Points that can be computed in parallel lie on the same red line.
Note that the points lying on the same line do not depend on each other, but
only on the points lying on the line before.

Each “line” of points can be computed in parallel, but only after computing
all the points in the previous lines. This assures that the computation gives
correct and predictable results.

The inner loop of alg. 2.2 can now be executed concurrently by many pro-
cessors, while the outer loop is still executed sequentially. Assuming that we
assign a different processor for each iteration of the inner loop, the total number
of sequential iterations is reduced from N2 to 2N − 1, giving the possibility of a
big reduction in execution time.

In the next sections, we formalize these concepts by introducing the polytope
model and the hyperplane method.

2.3. THE POLYTOPE MODEL 11

2.3 The polytope model

This geometric representation of programs can be expressed by mathematical
objects called polyhedra (plural of polyhedron). In classical Euclidean geometry,
the word polyhedron indicates a three-dimensional shape with polygonal faces,
and the generalization of a polyhedron for any number of dimensions is usually
called polytope, or n-polytope if its dimensions are n. With this nomenclature, a
polygon is a 2-polytope and a polyhedron is a 3-polytope.

In certain fields of mathematics, the term polyhedron refers to a generic
object in any dimensions, whilst the term polytope is used to denote a bounded
polyhedron, i.e. a polyhedron which does not extend infinitely in some direction.

In this thesis, we use the term polyhedron and polytope indifferently to
represent a n-dimensional, bounded, convex geometric object with “flat” sides.

Definition 2.3.1 (Polyhedron). In linear programming, a polyhedron is described
by a set of m linear inequalities in n variables:

Ax ≤ b, (2.3.1)

where A ∈ Rm×n and x,b ∈ Rn. A polyhedron P is the set of all x ∈ Rn which
satisfy these inequalities:

P = {x | Ax ≤ b}. (2.3.2)

A polyhedron can be empty (the set of defining inequalities is said to be infea-
sible) or unbounded (it extends infinitely in some direction). The basic property
of a polyhedron is convexity: if two points x and y belong to a polyhedron, then
so do all convex combinations λx + (1 − λ)y, 0 ≤ λ ≤ 1.

One can also describe a polyhedron by the set of all convex combinations of
a finite set of points, some called vertices and other rays (the latter if they are at
some direction at infinity).

Polyhedra are usually defined in a Rn space, so, in order to consider integer
points only, we need a way to restrict the possible points inside a polyhedron to
a so-called lattice of integral points.

2.3.1 Z-polyhedron

Definition 2.3.2 (Z-module). Let v1, . . . ,vn be a set of linearly independent vec-
tors of Zn. The set:

L(v1, . . . ,vn) = {µ1v1 + . . . + µnvn | µi ∈ Z}, (2.3.3)

is the Z-module generated by v1, . . . ,vn.

12 CHAPTER 2. BACKGROUND

Any Z-module can be characterized by the square matrix V of which the
(v1, . . . ,vn) are the column vectors. L(V) is also called the lattice of points
generated by V.

If V = I the identity matrix, then the set of all integral points in Zn is the
Z-module generated by the canonical basis vectors in V.

However, many different matrices can represent the same Z-module. In
this regard, it is useful to define a special type of square, integer matrix, called
unimodular matrix.

Definition 2.3.3 (Unimodular matrix). A square matrix U is said to be unimodular
if it is an integer matrix (U ∈ Zn×n) and det(U) = ±1.

It is easy to prove that V and VU generate the same lattice of points (for more
information about unimodular matrices see [Ban93]).

We can now combine a polyhedron with a Z-module to represent a polyhe-
dron with only integer points.

Definition 2.3.4 (Z-polyhedron). A Z-polyhedron is the intersection of a Z-
module and a polyhedron:

F = {z | z ∈ L(V),Az ≤ b}. (2.3.4)

If the context is clear, and if L(V) is the canonical Z-module (V = I), it may
be omitted in the definition.

Looking back at the loop in alg. 2.1, we can describe its index space ISwith
the following (parametric) Z-polyhedron:

−1 0
0 −1
1 0
0 1

[
i
j

]
≤

−1
−1
N
N

 .
It is called a parametric Z-polyhedron because the vector b is made up of
constants and parameters (e.g. −1 and N).

Definition 2.3.5 (Index space). In general, we can describe the index space IS
of a n-nested loop with the following (parametric) Z-polyhedron:

IS = {i | Ci ≤ d}, (2.3.5)

where C ∈ Z2n×n, d ∈ Z2n and i ∈ Zn.

The index vector i = (i1, . . . , in) represents a specific loop iteration for the
values assumed by the index variables i1, . . . , in. Every lower and upper bound
of the loop nest can be transformed into an inequality regarding the index vari-
ables. The matrix C contains the coefficients of the index variables in these
inequalities, while the vector d contains integer-valued expressions with pro-
gram’s parameters and constants.

2.3. THE POLYTOPE MODEL 13

2.3.2 Schedule + allocation = transformation matrix

The goal of this approach is to find a correctness-preserving transformation of
the initial index space that yields a new index space in which the points are now
reordered in a way that some of them can be computed in parallel. To achieve
this, we must consider the dependencies between points of the computation
and find a valid schedule that maps a point to a certain time in which it can be
computed.

Definition 2.3.6 (Schedule). Let IS be aZ-polyhedron and consider the depen-
dence graph (IS,E), where E is the edge set defining the dependencies between
points in IS. The function t : IS → Z is called a schedule if it preserves the
dependencies:

∀p,q : p,q ∈ IS ∧ (p,q) ∈ E : t(p) < t(q) (2.3.6)

That means that the points that are dependent on each other are scheduled
at successive times. All points that share the same schedule can be therefore
computed in parallel.

Geometrically, the schedule slices the index space into parallel hyperplanes,
subspaces whose dimensionality is one less than that of the index space (in
the case of fig. 2.2, hyperplanes are lines). The requirement for the schedule
prescribes that the hyperplanes are not parallel to any edge of the dependence
graph.

Definition 2.3.7 (Allocation). LetIS be a n-dimensional polytope and t a sched-
ule, the function a : IS → Zn−1 is called an allocation with regard to the schedule
t if each process it defines is internally sequential:

∀p,q : p,q ∈ IS : t(p) = t(q)⇒ a(p) , a(q) (2.3.7)

Geometrically, the allocation segments the index space into parallel lines.
Each line contains the points executed by a fixed processor. The consistency
requirement for schedule and allocation prescribes that the lines generated by
the allocation are not parallel to the hyperplanes generated by the schedule.

We consider the case in which both t and a are linear functions, that is they
can be written in the forms:

t(x) = τ1x1 + . . . τrxn, (2.3.8)

a(x) =

 n−1∑
j=1

α j,1x1, . . . ,
n−1∑
j=1

α j,nxn

 , (2.3.9)

14 CHAPTER 2. BACKGROUND

for some τ ∈ Zn,A ∈ Z(n−1)×n:

τ = (τ1, . . . , τn),

A =

α1,1 . . . α1,n
...

. . .
...

αn−1,1 . . . αn−1,n

 .
Combining τ and A gives use the matrix T ∈ Zn×n, also called the space-time

matrix, that defines the transformation:

T =

[
τ
A

]
. (2.3.10)

The requirement on the allocation is that det(T) , 0, so that 2.3.7 is fulfilled.
The challenge is to find not only a valid transformation but also a good

quality one. We dive deeper into the definition and finding of a good quality
transformation in section 2.4.

2.3.3 Target polyhedron

We now need to describe how to apply the transformation matrix T to find
the target space TS = T(IS), that is the target polyhedron after applying the
transformation to the initial index space IS. The points of the target space are
defined by:

T(IS) = {i′ | ∃i : i′ = Ti,Ci ≤ d}, (2.3.11)

where Ci ≤ d is the system of inequalities describing the index space IS of the
original loop nest. This shows that i′ belongs to the lattice L(T). Since T is
invertible, the set T(IS) can be rewritten as:

T(IS) = {i′ | i′ ∈ L(T),CT−1i′ ≤ d}, (2.3.12)

which defines a Z-polyhedron.

Returning to the example described in section 2.2, the space-time matrix that
describes the transformation from alg. 2.1 to alg. 2.2 is:

T =

[
1 1
0 1

]
,T−1 =

[
1 −1
0 1

]
,

defining the mapping:

Ti =

[
1 1
0 1

] [
i
j

]
=

[
i + j

j

]
= i′,

2.3. THE POLYTOPE MODEL 15

the inverse mapping:

T−1i′ =

[
1 −1
0 1

] [
i′

j′

]
=

[
i′ − j′

j′

]
= i,

and the target space TS bounded by the system of inequalities:

CT−1i′ ≤ d
−1 0
0 −1
1 0
0 1

[
1 −1
0 1

] [
i′

j′

]
≤

−1
−1
N
N

−1 1
0 −1
1 −1
0 1

[
i′

j′

]
≤

−1
−1
N
N

i′ − j′ ≥ 1
j′ ≥ 1
i′ − j′ ≤ N
j′ ≤ N

16 CHAPTER 2. BACKGROUND

2.4 The hyperplane method

In this section, we introduce the hyperplane method (described in [Lam74]) that
we use to find an optimal schedule for the transformation of loops that can
be represented as uniform recurrence equations [KMW67]. To consider only
uniform dependencies, we need to add another assumption on the form of the
variables in the loop body:

(A5) Each occurrence of a generated variable VAR in the loop body is of the
form:

VAR(i j1 + m1, . . . , i jr + mr), (2.4.1)
where m1, . . . ,mk are integer constants, and j1, . . . , jr are r distinct inte-
gers between 1 and n. Moreover, the j1, . . . , jr are the same for any two
occurrences of VAR.

This enforces that data dependencies between points in the index space are
point-to-point and local.

It is possible to generalize to the case of affine recurrence equations, where the
occurrences are in the form VAR(e1, . . . , er) where the e1, . . . , er are affine functions
of the index variables i1, . . . , in (i.e. e j = a ji+b j, a j ∈ Zn, b j ∈ Z for some 1 ≤ j ≤ r),
but we consider only uniform functions for simplicity.

The name “hyperplane method” comes from the fact that we want to find a
parametric hyperplane such that points lying on it can be executed concurrently.
The hyperplane we refer to is defined by the schedule function of definition 2.3.6.
At the time the hyperplane method was proposed, the polytope model was not
yet formalized, so some nomenclature got changed during the evolution of PC
techniques.

Looking back at the example in alg. 2.1, the hyperplane method finds the
schedule t(i, j) = i + j which defines an hyperplane of the form i + j = constant.
The constant is incremented after each iteration of the transformed outer loop
(see alg. 2.2) until the loop body has been executed for all points in the index
space.

2.4.1 The occurrence mapping

In section 2.3 we used the dependence graph to define a schedule in defini-
tion 2.3.6. We can express the dependencies between each variable occurrences
in a more compact way by introducing the occurrence mapping function and the
〈 f , g〉 sets.

Firstly, we need a function that, given a variable occurrence and a point
in IS, gives us the element of the variable referred by that occurrence at that
specific iteration.

2.4. THE HYPERPLANE METHOD 17

From now on, we call q1 the generation Q(i, j) of the variable Q in alg. 2.1, q2
the use Q(i − 1, j) and q3 the use Q(i, j − 1). For example, given the occurrence
q2 and the point (2, 1), the function gives us the point (1, 1).

In general, given a variable VAR containing r indexes of the n indexes of the
loop, we define the occurrence mapping function h f : IS → Zr with regard to the
occurrence f of the variable VAR so that f references the h f (p) element of VAR
during execution of the loop body for p ∈ IS. Recalling the example above,
hu2(i, j) = (i − 1, j). Similarly, hu1(i, j) = (i, j) and hu3(i, j) = (i, j − 1).

We are looking for a way to update the definition 2.3.6 to use the new
occurrence mapping function instead of the dependence graph.

In our loop nest, the data dependencies may be of one of these three types:

• data-flow (or true dependence), also known as Read After Write (RAW);

• anti dependence, also know as Write After Read (WAR);

• output dependence, also known as Write After Write (WAW).

We can see that if a generation f and a use g of the same variable VAR
reference the same array element during the execution of the loop, there is a
RAW or WAR dependence (depending on the order of execution of the two).
If both are generations, there is a WAW dependence. In any case, the order of
these references must be preserved by the schedule function.

We can use the occurrence mapping to express this condition, saying that if
h f (p) = hg(q) and p� q, then the schedule must preserve the order t(p) < t(q).

These remarks can be combined in the following condition:

(C1) For every variable and every ordered pair of occurrences f , g of that vari-
able, at least one of which is a generation, for each p,q ∈ IS,p � q such
that h f (p) = hg(q), the schedule t must satisfy the relation t(p) < t(q).

2.4.2 The 〈 f , g〉 sets

We still have some trouble defining proper constraints for the schedule function
t since the condition (C1) requires us to consider many points p,q ∈ IS. We
would like to express rule (C1) more compactly, such that constraints on the
values τi, . . . , τn that define t are independent of the index space IS. Before
continuing, consider the loop in alg. 2.3.

This loop differs from the one in alg. 2.1 because the outer loop index i is
missing in the occurrences of the array variable U. In fact, we can say that r = 2
for the occurrences of the variable U, as defined in eq. (2.4.1). We assign names
to the occurrences of the variable U in alg. 2.3 from left to right as they appear

18 CHAPTER 2. BACKGROUND

Algorithm 2.3: Simplified 2D relaxation
1 for i from 1 to L do
2 for j from 2 to M do
3 for k from 2 to N do
4 U(j, k)← (U(j− 1, k) + U(j, k− 1) + U(j + 1, k) + U(j, k + 1)) ∗ 0.25
5 end
6 end
7 end

Sets Elements� 0 Constraints

〈q1, q1〉 = (0, 0) - -

〈q1, q2〉 = (1, 0) (1, 0) τ1 > 0

〈q2, q1〉 = (−1, 0) - -

〈q1, q3〉 = (0, 1) (0, 1) τ2 > 0

〈q3, q1〉 = (0,−1) - -

Table 2.1: Table showing the 〈 f , g〉 sets, elements greater than 0, and schedule
constraints of alg. 2.1

in the statement, starting from U(i, j) which we call u1, and so on. With the
previous definition of occurrence mapping, we can see that hu1(p) = hu2(q) only
if q = p + (∗, 1, 0) where ∗ denotes any integer. For example, if p = (5, 3, 7), then
all possible values for q that satisfy hu1(p) = hu2(q) are q = (x, 4, 7) where x is any
integer.

This suggests the following definition:

Definition 2.4.1 (〈 f , g〉 set). For any pair of occurrences f , g of a generated vari-
able in the loop, define the 〈 f , g〉 set as:

〈 f , g〉 = {x | x ∈ Zn,∃ p ∈ Zn : h f (p) = hg(p + x)}. (2.4.2)

We observe that the 〈 f , g〉 set is independent of the index space IS. In our
previous example, 〈u1,u2〉 = {(x, 1, 0) | x ∈ Z}. All the 〈 f , g〉 sets for alg. 2.1 and
alg. 2.3 are listed in table 2.1 and table 2.2 respectively.

We now recall that t(p + x) = t(p) + t(x), since we have assumed t to be a
linear function (eq. (2.3.8)). Also, p � p + x if and only if x � 0. We can then
substitute p + x for q in condition (C1) and obtain the following condition:

2.4. THE HYPERPLANE METHOD 19

Sets Elements� 0 Constraints

〈u1,u1〉 = (∗, 0, 0) (+, 0, 0) τ1 > 0

〈u1,u2〉 = (∗, 1, 0)
(+, 1, 0)
(0, 1, 0)

τ1 + τ2 > 0
τ2 > 0

〈u2,u1〉 = (∗,−1, 0) (+,−1, 0) τ1 − τ2 > 0

〈u1,u3〉 = (∗, 0, 1)
(+, 0, 1)
(0, 0, 1)

τ1 + τ3 > 0
τ3 > 0

〈u3,u1〉 = (∗, 0,−1) (+, 0,−1) τ1 − τ3 > 0

〈u1,u4〉 same as 〈u2,u1〉

〈u4,u1〉 same as 〈u1,u2〉

〈u1,u5〉 same as 〈u3,u1〉

〈u5,u1〉 same as 〈u1,u3〉

Table 2.2: Table showing the 〈 f , g〉 sets, elements greater than 0, and schedule
constraints of alg. 2.3

(C1’) For every variable and every ordered pair of occurrences f , g of that vari-
able, at least one of which is a generation: for each p,p+x ∈ ISwith x� 0
such that h f (p) = hg(p + x), the schedule t must satisfy the relation t(x) > 0.

Substituting the clause “for each p,p + x ∈ IS such that h f (p) = hg(p + x)” with
“for each x ∈ 〈 f , g〉” from (C1’) gives us a the following stronger condition for t
to satisfy:

(C2) For every variable and every ordered pair of occurrences f , g of that vari-
able, at least one of which is a generation: for each x ∈ 〈 f , g〉 with x � 0,
the schedule t must satisfy the relation t(x) > 0.

Finding a schedule that satisfies (C2) gives us a valid schedule as in defini-
tion 2.3.6. Moreover, (C2) is independent of the index space IS. Each condition
t(x) > 0 gives us a constraint on the values τ1, . . . , τn in the form:

t(x) = τ1x1 + . . . + τnxn > 0 . (2.4.3)

Computing the 〈 f , g〉 sets
Recalling assumption (A5), say that an occurrence f of a generated variable

is of the form eq. (2.4.1) and another occurrence g of the same variable is of the
similar form VAR(i j1 + l1, . . . , i jr + lr). Then h f (p1, . . . , pn) = (p1 + m1, . . . , pr + mr),

20 CHAPTER 2. BACKGROUND

and hg(p1, . . . , pn) = (p1 + l1, . . . , pr + lr). It is easy to see from definition 2.4.1 that
〈 f , g〉 is the set of all elements ofZn whose jkth coordinate is mk− lk for k = 1, . . . , r
and whose remaining n − r coordinates are any integers. This gives us a way to
compute and describe the 〈 f , g〉 set with the tuple (x1, . . . , xn) where x jk is either
the integer mk − lk or ∗ denoting any possible integer.

The index variable i j is said to be missing from the variable VAR if i j is not
one of the i jk in eq. (2.4.1). In other words, i j is missing from VAR if the 〈 f , g〉 set
has an ∗ in the jth coordinate, for any pair of occurrences f , g of VAR.

We call i j a missing index if it is missing from some generated variable in the
loop.

2.4.3 The hyperplane theorem

The hyperplane theorem was introduced by Lamport in [Lam74] and proves
the existence of a valid schedule for a loop in the form of listing 2.1 satisfying
the assumptions (A1)-(A5). We use a special case of the theorem in which the
following assumption is added:

(A6) None of the index variables i2, . . . , in in the loop is a missing index.

In this way, each of the 〈 f , g〉 sets can be described either by (∗, x2, . . . , xn) or
(x1, . . . , xn) where the x j are integers.

We can split the descriptor (∗, x2, . . . , xn) in two by considering the values
of x1 > 0 and x1 = 0, using the notation (+, x2, . . . , xn) for the former case and
(0, x2, . . . , xn) for the latter. This can be done since we are only interested in
descriptors that are lexicographically greater than 0. As show in the theorem, we
can substitute the “+” with a 1, because t(1, x2, . . . , xn) > 0 implies t(x1, x2, . . . , xn)
for all x1 > 0 if we assume that the τ1, . . . , τn representing the schedule are all
nonnegative integers. These descriptors x are called dependence vectors.

Say that there are r dependence vectors xk
� 0 in all the 〈 f , g〉 sets described

in definition 2.4.1. Then the schedule t must satisfy all the constraints in the
form:

t(xk) = τ1xk
1 + . . . + τnxk

n > 0, (2.4.4)

for each k = 1, . . . , r. A schedule that satisfies these constraints also satisfies the
condition (C2), thus being a valid schedule. We call D ∈ Zr×n the dependence
matrix composed by the dependence vectors x1, . . . , xr:

D =

x1

1 . . . x1
n

...
. . .

...
xr

1 . . . xr
n

 (2.4.5)

2.4. THE HYPERPLANE METHOD 21

All the elements � 0 and the constraints on the τ1, . . . , τn for alg. 2.1 and
alg. 2.3 are listed in table 2.1 and table 2.2 respectively.

Note that the choice of τ1 = τ2 = 1 for alg. 2.1 satisfies all the constraints in
table 2.1. We will later choose τ1 = 2, τ2 = τ3 = 1 for alg. 2.3, that also satisfy all
the constraints in table 2.2.

Finding an optimal schedule
Lamport also considers the problem of finding an optimal schedule, specifi-

cally the schedule that minimizes the number of iterations in the sequential outer
loop of listing 2.2. If a sufficiently large number of processors is available, this
gives the maximum amount of concurrent computation. This means that we
need to minimize the value λ1 − µ1. Since λ1 and µ1 are the lower and upper
bounds of the target polyhedron in the first dimension, it is easy to see that:

µ1 − λ1 = (u1 − `1)|τ1| + . . . + (un − `n)|τn|, (2.4.6)

where the `1, . . . , `n and u1, . . . ,un are the original lower and upper bounds of
the starting loop as in listing 2.1. This substitution leads us to the following
minimization objective:

minimize
n∑

i=1

(ui − `i)|τi|. (2.4.7)

Since the lower and upper bounds of the starting loop may not be known
at compile time, another reasonable objective is to minimize the sum of the
absolute value of the coefficients of the schedule t:

minimize
n∑

i=1

|τi|. (2.4.8)

Intuitively, minimizing this value also minimizes the maximum value that the
schedule function can reach, which is also known as the latency of the schedule.

If we assume that the coefficients are all nonnegative integers, then the
problem of finding a valid, minimal latency schedule can be expressed by the
following integer linear programming problem:

minimize
n∑

i=1

τi

subject to τ ∈ Zn, τ j ≥ 0,
Dτ > 0,

(2.4.9)

22 CHAPTER 2. BACKGROUND

where D is the dependence matrix of the form in eq. (2.4.5). Integer linear
programming (ILP) problems can be efficiently solved by iterative algorithms
like the Simplex method, combined with techniques like the cutting plane method
or the branch and bound method for finding integer solutions. In chapter 4 we
discuss the tools we used to solve these kinds of problems.

For example, consider the problem of finding a schedule for alg. 2.1. Given
the constraints in table 2.1, the schedule which minimizes the optimization
objective is λ =

[
1 1

]
. Similarly, considering alg. 2.3 and its constraints in

table 2.2, the optimal schedule is λ =
[
2 1 1

]
.

2.4.4 Completing the transformation

We now need to complete the transformation by choosing a matching allocation
for the given schedule. In section 2.3.2 we stated the minimal requirement for
a valid allocation, specifically that the time-space matrix T has det(T) , 0. We
restrict this requirement by choosing an allocation a such that T is unimodular
(see definition 2.3.3). Unimodular matrices have the property of defining one-
to-one mappings, such that each point in the initialZ-polyhedron can be mapped
to a point in the target one. This greatly simplifies the task of scanning the
polyhedron (see section 2.5) since the matrix T−1 has only integer elements and
there are no “holes” to be taken care of inside the target polyhedron.

There are ways to deal with non-unimodular matrices, usually by building
its Hermite normal form H = TU where U is unimodular. More details on how
to deal with non-unimodularity are presented in [Len93] and [Fea96].

A classical number theoretic calculation described in [Mor69, p.31], gives us
a completion of the schedule vector τ = (τ1 . . . , τn) into a unimodular matrix.
We do not go into the details of this calculation, but it can be proven that we
can always find a unimodular matrix completion given relatively prime integer
coefficients of the first row. It is easy to see that the τ1, . . . , τn resulting from the
solution of eq. (2.4.9) are relatively prime, i.e. their greatest common divisor is
1, because we can always divide the τi by their g.c.d., giving new values of τi

satisfying the constraints for a smaller value of the minimization objective.
Since there are multiple allocation matrices A that complete the schedule

vector τ into a unimodular matrix, we also consider the problem of finding an
efficient allocation. There are numerous optimization objectives one can impose
on the construction of A, such as maximizing spatial locality and many others.
We considered the objective of finding the allocation minimizing the sum of all
non-zero elements of A and their distance to the diagonal of T. Trying to make
T sparse and diagonal also helps T−1 being more sparse and diagonal, hence
reducing the number of non-zero coefficients of the inequality matrix of the

2.4. THE HYPERPLANE METHOD 23

target polyhedron. Simpler inequalities lead to simpler bounds for the target
loop, hence fewer computations to be made during code execution.

This optimization objective, as well as the constraint that T is unimodular,
can be represented by the following constraint optimization problem:

minimize
n−1∑
i=1

n∑
j=1

αi, j(1 + |i − j|)

subject to A ∈ Z(n−1)×n, αi, j ≥ 0,
|det(T)| = 1,

(2.4.10)

where T =

[
τ
A

]
. Constraint optimization problems are a generalization of the

more classic constraint satisfaction problems, which can be solved by a multitude
of techniques. In chapter 4 we show how we used a solver that efficiently solves
these kinds of problems for relatively small inputs.

For example, consider the problem of finding an allocation for alg. 2.1 given
the optimal schedule λ =

[
1 1

]
. The allocation which minimizes the opti-

mization objective is A =
[
0 1

]
, giving the transformation matrix T =

[
1 1
0 1

]
.

Similarly, considering alg. 2.3 and its optimal scheduleλ =
[
2 1 1

]
, the optimal

allocation is A =

[
1 0 0
0 0 1

]
, giving the transformation matrix T =

2 1 1
1 0 0
0 0 1

.

24 CHAPTER 2. BACKGROUND

2.5 Scanning polyhedra

Once we found a valid transformation, we then need to compute the bounds
for the new index variables for the target loop in the form of listing 2.2. This
process is also known as polyhedral scanning, i.e. enumerating the points in the
polyhedron by “scanning” the dimensions one at a time.

Specifically, we want to represent each lower and upper bound of the jth
nested loop as a function of the previous j − 1 index variables. Recall the
construction of the target polyhedron in eq. (2.3.12). The target polyhedron
is bounded by the system of inequalities CT−1i′ ≤ d, where Ci ≤ d are the
boundaries of the starting polyhedron. We must transform this polyhedron into
an equivalent one of the form C′i′ ≤ d′, whose defining inequalities refer only
to the indices of enclosing loops, i.e. the two halves of C′ are lower triangular.

Several algorithms for calculating C′ and d′ have been proposed and we
opted for the simpler Fourier-Motzkin elimination algorithm. The Fourier-
Motzkin elimination algorithm is a method for iteratively eliminating a variable
from a system of linear inequalities. The elimination of a variable from the
system refers to the creation of another system, but without the eliminated
variable, such that both systems have the same solutions over the remaining
variables. A detailed explanation of the Fourier-Motzkin elimination is given in
the next section.

2.5.1 Fourier-Motzkin elimination

Consider a systemS of n inequalities with r variables x1, . . . , xr, with the variable
xr to be eliminated, described by Ax ≤ b. Each of the linear inequalities in the
system can be classified in one of these three groups, depending on the sign of
the coefficient ai,r for the i-th inequality:

1. inequalities that are of the form

xr ≥
bi −

∑r−1
k=1 ai,kxk

ai,r
,

denoting them by xr ≥ L j(x1, . . . , xr−1) = L j for each 1 ≤ j ≤ nL where nL is
the number of such inequalities;

2. inequalities that are of the form

xr ≤
bi −

∑r−1
k=1 ai,kxk

ai,r
,

denoting them by xr ≤ U j(x1, . . . , xr−1) = U j for each 1 ≤ j ≤ nU where nU is
the number of such inequalities;

2.5. SCANNING POLYHEDRA 25

3. inequalities in which xr plays no role (i.e. ai,r = 0), denoting them by
the system E of n − nL − nU inequalities and grouping them into a single
conjunction ∅.

The original system is thus equivalent to:

max(L1, . . . ,LnL) ≤ xr ≤ max(U1, . . . ,UnL) ∧ ∅. (2.5.1)

Elimination consists in producing a system equivalent to ∃xr S. This formula is
equivalent to:

max(L1, . . . ,LnL) ≤ max(U1, . . . ,UnL) ∧ ∅, (2.5.2)

where the inequality:

max(L1, . . . ,LnL) ≤ max(U1, . . . ,UnL), (2.5.3)

is equivalent to nLnU inequalities Li ≤ U j for 1 ≤ i ≤ nL, 1 ≤ j ≤ nU.
We have therefore transformed the original system into another system

where xr is eliminated.
Note that the output system has (n − nL − nU) + nLnU inequalities.

2.5.2 Bounds extraction

We can apply Fourier-Motzkin elimination iteratively to eliminate each index
variable, from the innermost loop to the outermost one, and extract the lower
and upper bounds of that variable at each iteration. The algorithm is described
by alg. 2.4.

Algorithm 2.4: Fourier-Motzkin elimination
Input : A system S of n inequalities in r variables x1, . . . , xr.
Output: The integer bounds λi and µi of each variable xi, such that they

depend only on the previous variables x1, . . . , xi−1.
1 Sr ← S

2 for i from r to 1 do
3 Divide the inequalities in Si regarding xi into the L j, U j and E
4 λi ←

⌈
max(L1, . . . ,LnL)

⌉
5 µi ←

⌊
min(U1, . . . ,UnU)

⌋
6 Si−1 ← {L j ≤ Uk | 1 ≤ j ≤ nL, 1 ≤ k ≤ nU} ∪ E

7 Eliminate inequalities in Si−1 that have no index variable
8 end
9 return λ, µ

26 CHAPTER 2. BACKGROUND

Note that the L j and U j can be rational if fractions are present in the expres-
sions, so we apply ceiling and floor functions to get integer bounds.

Since running an elimination step on a system with n inequalities yields at
most n2/4 inequalities, running r successive steps can result in at most 4(n/4)2r

inequalities, a double exponential complexity in the order of O(n2r). This is
because the Fourier-Motzkin algorithm produces unnecessary constraints, i.e.
constraints that are implied by other constraints. There exist more sophisticated
algorithms that permit the elimination of unnecessary constraints, but they
are beyond the scope of this thesis. For practical purposes, we can eliminate
inequalities where no index variable is present since we know that they are
true if each lower bound of the starting loop nest is less than or equal to its
corresponding upper bound.

Consider the problem of finding the bounds for the transformation T =[
1 1
0 1

]
, T−1 =

[
1 −1
0 1

]
of alg. 2.1. We rename i′1 to i′ and i′2 to j′. The target

polyhedron can be described by the system of inequalities:
i′ − j′ ≥ 1
j′ ≥ 1
i′ − j′ ≤ N
j′ ≤ N

In the first step, we isolate the index variable j′, obtaining the system:
j′ ≥ 1
j′ ≥ i′ −N
j′ ≤ i′ − 1
j′ ≤ N

where the first two inequalities are of the group L j and the second one of the
group U j. The lower bound for j′ is λ2 = max(1, i′ −N), while the upper bound
is µ2 = min(i′ − 1,N). Note that ceiling or floor functions are not needed here
since there are no fractions in the bounds. We then eliminate the variable j′ by
combining each couple of the L j and U j in the system:

1 ≤ i′ − 1
1 ≤ N
i′ −N ≤ i′ − 1
i′ −N ≤ N

2.5. SCANNING POLYHEDRA 27

and after removing inequalities where no index variable is present and simpli-
fying: i′ ≥ 2

i′ ≤ 2N

Note that the variable j′ is gone, and the resulting system represent the bounds
for the last index variable i′, namely λ1 = 2 and µ1 = 2N.

Another example is considering the problem of finding the bounds for the

transformation T =

2 1 1
1 0 0
0 0 1

, T−1 =

0 1 0
1 −2 −1
0 0 1

 of alg. 2.3. We rename i′1 to i′,

i′2 to j′ and i′3 to k′. The target polyhedron can be described by the system of
inequalities:

j′ ≥ 1
i′ − 2 j′ − k′ ≥ 2
k′ ≥ 2
j′ ≤ L
i′ − 2 j′ − k′ ≤M
k′ ≤ N

In the first step, we isolate the index variable k′, obtaining the system:

k′ ≥ i′ − 2 j′ −M
k′ ≥ 2
k′ ≤ i′ − 2 j′ − 2
k′ ≤ N
j′ ≥ 1
j′ ≤ L

where the first two inequalities are of the group L j, the third and the fourth are
of the group U j and the last two are of the system E. The lower bound for k′ is
λ3 = max(2, i′ − 2 j′ −M), while the upper bound is µ3 = min(N, i′ − 2 j′ − 2). We
then eliminate the variable k′ by combining each couple of the L j and U j and

28 CHAPTER 2. BACKGROUND

adding the remaining ones of the system E:

i′ − 2 j′ −M ≤ i′ − 2 j′ − 2
i′ − 2 j′ −M ≤ N
2 ≤ i′ − 2 j′ − 2
2 ≤ N
j′ ≥ 1
j′ ≤ L

and after removing inequalities where no index variable is present and simpli-
fying, we get:

i′ − 2 j′ ≥ 4
i′ − 2 j′ ≤ N + M
j′ ≥ 1
j′ ≤ L

We can apply the second step by isolating the variable j′, obtaining the system:
j′ ≥ i′−N−M

2

j′ ≥ 1
j′ ≤ i′−4

2

j′ ≤ L

Again, we compute the lower bound λ2 =
⌈
max(1, i′−N−M

2)
⌉

and the upper bound

µ2 =
⌊
min(L, i′−4

2)
⌋

of the variable j′ and we eliminate it, obtaining (after removals
and simplifications): i′ ≥ 6

i′ ≤ 2L + N + M

which are the bounds of the last index variable i′.

2.5.3 Code generation

The last step is to generate the loop body of the transformed loop as in listing 2.2.
We can substitute each occurrence of the index variable i j by applying the relative
transformation row of the space-time matrix T such that:

i j = T−1
j i′, (2.5.4)

2.5. SCANNING POLYHEDRA 29

for each 1 ≤ j ≤ n, where T−1
j is the jth row of the inverted transformation

matrix. In a more compact form:

i = T−1i′. (2.5.5)

For example, consider the transformation matrix for alg. 2.3 T =

2 1 1
1 0 0
0 0 1

,
T−1 =

0 1 0
1 −2 −1
0 0 1

, the indexes substitution is:

i = T−1i′ =

 i′2
i′1 − 2i′2 + i′3

i′3

 =

 j′

i′ − 2 j′ + k′

k′

Putting together the bounds calculated in the previous section, we obtain the
rewritten loop in alg. 2.5.

Algorithm 2.5: Simplified 2D relaxation (parallel)
1 for i′ from 6 to 2L + N + M do
2 for conc j′ from

⌈
max(1, i′−N−M

2)
⌉

to
⌊
min(L, i′−4

2)
⌋

do
3 for conc k′ from max(2, i′ − 2 j′ −M) to min(N, i′ − 2 j′ − 2) do
4 U(i′ − 2 j′ − k′, k′)← (U(i′ − 2 j′ − k′ − 1, k′) + U(i′ − 2 j′ − k′, k′ −

1) + U(i′ − 2 j′ − k′ + 1, k′) + U(i′ − 2 j′ − k′, k′ + 1)) ∗ 0.25
5 end
6 end
7 end

30 CHAPTER 2. BACKGROUND

Chapter 3

Design

In this chapter, we discuss the ideas that lead to the design of OPoly. While
designing OPoly, we wanted to achieve the following quality requirements:

• generality: to be free from unnatural restrictions or limitations that are not
constraints of the problem itself;

• modularity: to separate the program’s functionalities into independent, in-
terchangeable modules, that can be replaced or updated without affecting
the whole program;

• extensibility: to be able to extend or add program’s functionalities most
effortlessly.

Two main issues arose from the analysis:

• how to effectively represent programs, especially for loops, in a general, but
effective way, such that OPoly can analyze them and generate new ones
from scratch;

• how to organize the architecture of OPoly to achieve the desired quality
requirements.

In the following sections, we provide the solutions we adopted for solving
these issues: in section 3.1 we show how OPoly can represent for loops using an
object-oriented programming representation; in section 3.2 we illustrate the OPoly
architecture and how we modularized it.

31

32 CHAPTER 3. DESIGN

3.1 Program representation

The first main issue we needed to address is how to represent programs, more
precisely for loops and assignment statements. To achieve generality and exten-
sibility, we wanted to be able to express any for loop in the form of listing 2.1
without adding limitations to its structure or content.

We choose to represent a for loop by composing the following parts:

• an index variable, the iteration dimension of the loop;

• the lower and upper bounds, the iteration space of the loop;

• an (optional) step, the increment of the index variable at each iteration;

• a list of statements, the loop body.

We introduce two concepts that we use to model the loop’s components:

• statements, a program’s syntactic unit that expresses some action to be
carried out. These can be simple, if they cannot contain other statements
(e.g. assignments, declarations, etc), or compound if they can contain other
statements (e.g. loops, if-statements, etc);

• expressions, a program’s syntactic entity that can be evaluated to determine
its value. It combines one or more constants, variables or functions, with
operators describing the relations between them.

A for loop is some kind of statement, specifically a compound statement, since
it has a loop body that contains other statements.

Statements that assign or update a value of some variables in the program
are called assignment statements. Assignments are composed of two parts: the
left part, which is the variable that is being assigned (or one of its elements if it is
an array variable), and the right part, which is an expression, usually involving
multiple constants and variables.

By composing for loop statements and assignments, we can represent any
loop in the form of listing 2.1 and some other cases of not perfectly nested
loops, which can be treated in PC with some more advanced techniques, thus
enabling our representation to be used by possible extensions of OPoly. In our
current implementation, we do not define other useful statements, like if-then-
else statements, but they can easily be implemented by reusing or extending
existent statements and expressions.

From now on, we use the camel case ClassName to denote a class and the
lowercase with underscores attr name to denote an attribute of a class.

3.1. PROGRAM REPRESENTATION 33

3.1.1 Expressions

Expressions are the building blocks for representing complex formulas within
a program. The main concept is that an Expression is made up by other
expressions (terms) concatenated by operators. That is, if an expression has n
terms, n − 1 operators are required to complete the expression, represented by
the following form:

term1 op1 . . . opn−1 termn .

For our specific use case, operators are just strings. One can argue that
operators should be modeled as a different entity with its own set of rules, but
we decided to simplify this by letting any string be an operator, delegating the
responsibility of checking its correct format to the specific implementation of
language-dependent modules (see section 3.2).

An Expression can (not required) be of one of the following three types:

• SingleExpression, an expression having only one term (itself);

• UnaryExpression, an expression with an additional unary operator in
front of itself;

• GroupingExpression, an expression enclosed by two parenthesis.

Furthermore, a SingleExpression can be categorized as:

• VariableExpression, an expression representing a program variable. It
may have a list of expressions, each one representing the value of the array
index;

• ConstantExpression, an expression which has a constant value (integer
or floating point);

• FunctionExpression, an expression representing a function with a list of
arguments which are also expressions.

In fig. 3.1 is depicted the class diagram representing the relations between
different types of expressions.

3.1.2 Statements

Statements express some actions that need to be carried out by the program, for
example assigning a value to a variable. In real program syntax, there can be
a lot of different statements, but we decided to model only the ones required
to represent the loop format in listing 2.1 and also the rewritten loop format in

34 CHAPTER 3. DESIGN

Figure 3.1: Expressions class diagram.

listing 2.2, which essentially needs no more different types of statements from the
former, but we define one more statement (the DeclarationStatement) which
is useful for rewriting the loop.

We basically need two (plus one) types of Statement:

• AssignmentStatement, a statement representing a variable assignment.
We consider the following form:

left term = right term,

where a left term is a VariableExpression, and right term is a general
Expression;

• ForLoopStatement, a statement representing a for loop. It derives from the
class CompoundStatement, meaning it contains other statements, specifi-
cally the ones in the loop body. A for loop has also an index, which is a
VariableExpression; the lowerbound, upperbound and step that define
the loop iteration space (each of them is a general Expression) and a flag
is parallel that denotes if the loop can be executed concurrently or not.

• DeclarationStatement, a statement representing a variable declaration.
We consider the following form:

var type variable = initialization,

3.1. PROGRAM REPRESENTATION 35

Figure 3.2: Statements class diagram.

where var type is a string representing the type of the declared variable,
variable is a VariableExpression, and initialization is an optional
Expression representing the initial value of variable.

Since Statement is an abstract class, the only classes that can be instantiated
are the ones described above. It makes sense to also have a reference to the type
StatementType that a Statementmust have. In our case, is an enumeration with
three possible values: FOR LOOP, DECLARATION and ASSIGNMENT.

We also modeled the abstract classes SimpleStatement and CompoundState-
ment for future classes extensions.

In fig. 3.2 is depicted the class diagram representing the relations between
different types of statements and some expressions that are parts of statements.

36 CHAPTER 3. DESIGN

3.2 Architecture

The architecture of OPoly involves a pipeline of modules that takes as input the
source code with the loop to optimize and outputs the generated parallel code.
In fig. 3.3 is depicted the structure of the pipeline. From now on, we use the
small caps Module to denote a module.

Each module is designed to solve a particular problem, for example, the
Parser module has the task of parsing the input source code to generate the
ForLoopStatement object described in section 3.1.2. In this way, each module
is independent and fully replaceable, given that it maintains the same interface
with the previous and successive modules.

The Parser and Generatormodules are the only language dependent modules,
meaning that they depend on the language of, respectively, the source code and
the generated code. All other modules use the classes described in section 3.1 to
perform their tasks, so they are independent of the source and target language.
These properties further increase the modularity of OPoly and reduce the burden
for the implementation of future extensions.

In the next paragraphs, we describe each module in detail, from the first in
the pipeline (Parser) to the last one (Generator).

Figure 3.3: OPoly pipeline diagram.

3.2.1 Parser

The Parser module has the task of parsing the source code to generate one or
more ForLoopStatement described in section 3.1. Since the ForLoopStatement is

3.2. ARCHITECTURE 37

intrinsically recursive, a nested loop in the form of listing 2.1 can be represented
by a single ForLoopStatement with (possibly) other ones nested within it.

At the time of writing, only one implementation of this module exists, namely
the PseudocodeForLoopParser, which parses a single (nested) loop written in
the OPoly pseudocode language later described in section 4.3. Parsers sup-
porting other languages may be integrated into the pipeline almost effortlessly,
given that they produce as output a ForLoopStatement object.

If the source code has syntax errors, the Parser returns an error, interrupting
the execution of the pipeline and generating a parser error that is shown by
OPoly.

3.2.2 Checker

The Checker module has the task of checking that the ForLoopStatement pro-
duced by the Parsermodule is compliant with some assumptions or restrictions.

For our purpose, the assumptions (A1)-(A6) described in section 2.1 and sec-
tion 2.4 are checked by the module’s implementation LamportForLoopChecker.

If the assumptions are not met, the Checker returns an error, interrupting
the execution of the pipeline and generating a checker error that is shown by
OPoly.

3.2.3 Detector

The Detector module has the task of detecting the dependencies among the
loop’s generated variables. In particular, it generates a number of dependencies
of the form eq. (2.4.3) from a ForLoopStatement. These dependencies constitute
the dependence matrix (see eq. (2.4.5)) needed to find a valid schedule.

The Detectormodule assumes that the ForLoopStatement has been checked
by a particular Checker before generating the dependencies, so no errors should
be returned by this module. This means that the Checker and Detectormodules
are somewhat coupled; in fact, one might argue they can be merged in one single
module. We decided not to do that since the two tasks are quite different from
each other.

For our purpose, we implemented the LamportLoopDependenciesDetec-
tor, which generates the dependencies using the notion of 〈 f , g〉 sets (see defi-
nition 2.4.1).

3.2.4 Scheduler

The Scheduler module has the task of finding an optimal, valid schedule (see
definition 2.3.6 and section 2.4.3) from the loop’s dependencies. This means

38 CHAPTER 3. DESIGN

solving the integer linear programming problem described by eq. (2.4.9). x The
Scheduler takes as input the dependence matrix and returns the coefficients of
the found schedule, i.e. the schedule vector.

We implemented the LamportCPScheduler, which uses a solver for con-
straint programming problems to solve the integer programming problem of
finding an optimal schedule. For more information about the actual implemen-
tation, see section 4.2

3.2.5 Allocator

The Allocatormodule has the task of finding the allocation (see definition 2.3.7)
associated with the schedule found by the Scheduler module. This means
solving the constraint programming problem described by eq. (2.4.10).

The Allocator takes as input the schedule vector and returns the full trans-
formation matrix, where the first row is the schedule vector and the rest of the
matrix is the allocation.

We implemented the LamportCPScheduler, which uses a solver for the
aforementioned constraint programming problem. For more information about
the actual implementation, see section 4.2.

3.2.6 Scanner

The Scanner module has the task of scanning the target polyhedron to extract
the lower and upper bounds for the transformed index variables of the target
loop, and to transform the source ForLoopStatement into an equivalent, but
parallel, one in the form of listing 2.2.

The Scanner takes as input the source ForLoopStatement and the transfor-
mation matrix, and returns the target ForLoopStatement.

We implemented the FourierMotzkinScanner, that applies the Fourier-
Motzkin elimination algorithm (see section 2.5) to the target polyhedron con-
structed as eq. (2.3.12), and generates the target loop by creating the nested
ForLoopStatement with the new index variables, bounds, and declarations of
the old index variables in the body loop by applying the inverse transforma-
tion to the new indexes. This is where the DeclarationStatement comes in
handy because we just need to declare the old index variables instead of sub-
stituting them with new index variables expressions for every occurrence in the
statements of the loop body.

3.2.7 Generator

The Generatormodule has the task of generating the code for the target loop.

3.2. ARCHITECTURE 39

The Generator module takes as input the target ForLoopStatement and
returns a string of code representing the generated loop.

At the time of writing, two implementations of this module are available:
the PseudocodeGenerator, which generates the target loop in OPoly pseu-
docode language, and the CCodeGenerator, which generates the target loop in
C language with correctly placed #pragma omp parallel for OpenMP direc-
tives where needed. For more information on the actual implementation of the
CCodeGenerator, see section 4.4.

40 CHAPTER 3. DESIGN

Chapter 4

Implementation

In this chapter, we discuss the implementation details of OPoly, by introducing
the tools used for its implementations: the Python programming language
and the MiniZinc constraint programming modeling language. At the time of
writing, the implementation of OPoly can be found on GitHub 1, released under
the GNU General Public License v3.0 [Fre07].

We also define the OPoly pseudocode syntax that is used to write programs
that can be parsed by OPoly. Moreover, we describe how the resulting, parallel
C code with OpenMP directives is generated.

The main goal of OPoly is to give an accessible, easy-to-use, and simple
implementation of a polyhedral compiler that can be adopted to automatically
rewrite perfectly nested loops with uniform dependencies among the statements
in the loop body. These are perhaps the most restrictive assumptions for which
a polyhedral compiler may be used, but nevertheless a very common case in
high-performance computations.

We show in chapter 5 that OPoly can lead to substantial speedups in com-
putational time, even in the case of shallow loops like the one in alg. 2.1, by
applying the OPoly transformation to various implementations of the Gauss-
Seidel algorithm.

1https://github.com/GiackAloZ/OPoly

41

https://github.com/GiackAloZ/OPoly

42 CHAPTER 4. IMPLEMENTATION

4.1 Python

For implementing OPoly, we mainly used the Python [VD95] programming
language. Python is a high-level, interpreted, general-purpose programming
language. We opted for Python because of its easiness of use and increasing
popularity across all fields of computer science. We used the most recent version
of Python at the time of writing, which was Python 3.9.

Python also has a rich ecosystem of libraries that are useful for developing
all kinds of applications. We now describe the non-standard libraries we used
for implementing OPoly.

4.1.1 NumPy and SymPy

We used two python libraries to help us with algebra and symbolic math compu-
tations, namely NumPy [Har+20] and SymPy [Meu+17]. Both of them are part
of SciPy 2, a Python-based ecosystem of open-source software for mathematics,
science, and engineering.

NumPy is a Python library for dealing with multi-dimensional arrays. We
used it for matrix computations, specifically for multiplications between matri-
ces and inverse matrix calculations.

SymPy is a Python library for symbolic mathematics representations and
computations. We used it to represent parametric polyhedrons as systems of
inequalities with symbolic variables, in order to simplify the implementation
of the Fourier-Motzkin algorithm (see section 2.5). SymPy can isolate variables
and simplify symbolic expressions, as well as perform translations between these
expressions and their equivalents in many common programming languages,
among which the C programming language.

NumPy and SymPy are well integrated, so it is easy to use them in conjunc-
tion.

4.1.2 PyMzn

PyMzn 3 is a python library that wraps the MiniZinc tool for constraint pro-
gramming modeling. We used PyMzn instead of the more standard MiniZinc
Python package, because of its better interfaces and easiness of use.

PyMzn lets us call the minizinc command-line tool directly from Python: it
feeds the model’s parameters and returns the solution(s) found using standard

2For more information on SciPy, visit https://www.scipy.org
3For more information on PyMzn, visit its GitHub repository at https://github.com/

paolodragone/pymzn

https://www.scipy.org
https://github.com/paolodragone/pymzn
https://github.com/paolodragone/pymzn

4.1. PYTHON 43

Python dictionaries.

4.1.3 Pytest

Pytest is one of the most used Python testing frameworks. We used Pytest to
perform modules’ unit tests and integration tests between each module. We
also used the Pytest plugin pytest-cov that produces coverage reports of the
tested code, so we could be aware of the percentage of the written code that was
actually being tested 4.

4For more information on pytest-cov, visit http://pytest-cov.rtfd.org/

http://pytest-cov.rtfd.org/

44 CHAPTER 4. IMPLEMENTATION

4.2 MiniZinc

MiniZinc [Net+07] is a free and open-source modeling language for constraint
programming problems. MiniZinc can be used to model different constraint pro-
gramming problems, specifically satisfaction or optimization problems, without
worrying about the actual methods used for solving them. MiniZinc compiles
the model into FlatZinc, a solver input language that is understood by a wide
range of solvers, such as constraint programming (CP), mixed integer linear pro-
gramming (MIP), or boolean satisfiability (SAT) solvers. A MiniZinc model does
not dictate how to solve the problem, but rather specify the various constraints
on the decision variables (i.e. the values we want to find) using a high-level syn-
tax that is closely related to the mathematical way of representing constraint
programming problems.

MiniZinc models are usually parametric, i.e. they describe a whole class of
problems rather than an individual problem instance. In this way, we can feed
the values of the parameters only when we need to solve an actual problem
instance.

We use MiniZinc to model the problems of finding an optimal schedule
(eq. (2.4.9)) and its matching allocation (eq. (2.4.10)). We use the Chuffed 5 solver
for solving our models. Chuffed is based on lazy clause generation [Chu+11],
which is a hybrid approach to constraint solving that combines features of
finite domain propagation and boolean satisfiability. We experimentally chose
Chuffed after trying many solvers, since it has given the best performance on
solving our particular problems.

4.2.1 Minizinc model structure

A MiniZinc model is usually structured in four main parts:

• parameters declarations: constant values given as input to the model for
solving a particular instance of it. Parameters must be declared with a
type (e.g. int). They can be assigned directly in the model or by giving a
separate file containing their value. Their value cannot change during the
execution of the model, effectively representing the model’s constants.

• decision variables declarations: these are the variables for which we want the
problem to be solved for. Unlike the variables in a standard programming
language, the modeler does not need to give them a value. Rather the
value of a decision variable is unknown and it is only when the model is

5https://github.com/chuffed/chuffed

https://github.com/chuffed/chuffed

4.2. MINIZINC 45

executed that the solver determines if the decision variable can be assigned
a value that satisfies the constraints in the model and if so what this is.

Decision variables must be declared with a type or a domain, representing
the set of possible values that the variable can take. The type of the variable
is then inferred from the type of values in the given domain.

• constraints definitions: boolean expressions that the decision variables
must satisfy to be valid solutions. These expressions can involve a combi-
nation of decision variables and parameters.

• type of problem: what kind of problem we want to solve, i.e. a satisfaction
problem or an optimization problem. In the latter case, we need to also
specify an optimization objective, which can be any kind of arithmetical
expression involving decision variables and parameters.

MiniZinc gives us the syntax for defining constraints in a way that is similar
to the mathematical formulation of the problem. We can use MiniZinc built-in
functions to define the constraints on the decision variables (e.g. the forall con-
straint) or declare our custom functions and constraints using the appropriate
syntax and use a mix of both.

We now explain the two models we wrote for solving the constraint pro-
gramming problems of OPoly.

4.2.2 Schedule model

Recall the scheduling problem in the form of eq. (2.4.9). This is a basic integer
linear programming problem that can be easily modeled with MiniZinc.

The schedule model’s input parameters are:

• the number of nested loops n ∈N (i.e. the polyhedron dimensions, or the
number of loop index variables);

• the number of dependence vectors r ∈N;

• the dependence matrix D ∈ Zr×n.

The decision variable is the schedule vector τ ∈ Zn. We constrain the values of
τ to be nonnegative integers (line 14) and each row of the dependence matrix
multiplied by τ to be strictly positive (line 17). The optimization objective is to
minimize the latency of the schedule (see eq. (2.4.8)), so we minimize the sum of
all coefficients of τ, since we know that they can only be nonnegative (line 20).
The complete schedule model is shown in listing 4.1.

46 CHAPTER 4. IMPLEMENTATION

1 % Parameters definitions

2 par int: n; % Number of indexes

3 par int: r; % Number of dependencies

4 set of int: N = 1..n;

5 set of int: R = 1..r;

6 array[R,N] of par int: D; % Dependency matrix

7 % ---------------------

8 % Variables definitions

9 array[N] of var int: tau; % Schedule vector

10 % -----------------------

11 % Constraints definitions

12 % Valid schedule constraint

13 constraint forall(j in R)(

14 sum(i in N)(D[j,i] * tau[i]) > 0

15);

16 % Nonnegative coefficients

17 constraint forall(i in N)(tau[i] >= 0);

18 % -----------------------

19 % Minimization objective (minimal latency schedule)

20 solve minimize sum(i in N)(tau[i]);

Listing 4.1: MiniZinc schedule model.

4.2. MINIZINC 47

4.2.3 Allocation model

Recall the scheduling problem in the form of eq. (2.4.10). This is a general con-
straint programming optimization problem that can be modeled with MiniZinc
by defining some custom functions that compute the determinant of a matrix.

MiniZinc supports recursive functions, so we define a function determinant
that uses the matrix Laplace expansion formula to compute its determinant. In
linear algebra, the Laplace expansion states that the determinant of an n-by-n
matrix A can be computed with the following recursive formula:

det(A) =

n∑
j=1

(−1)i+ j ai, j det(Ci, j), ∀i ∈ {1, . . . ,n} , (4.2.1)

where ai, j is the element of the ith row and jth column of A, and Ci, j is the
submatrix of A formed by deleting the ith row and the jth column of A. The
term (−1)i+ j det(Ci, j) is also called the cofactor or first minor of the element ai, j.
Equation (4.2.1) is true for every row i of the matrix A we choose, so in particular
it is true for the first row i = 1.

The implementation of the Laplace expansion in MiniZinc is show in list-
ing 4.2. The submatrix function extracts the Ci, j submatrix, the cofactor func-
tion computes the cofactor of the element ai, j and the determinant function
calculates the determinant of a matrix A by using the Laplace expansion on its
first row.

The allocation model’s parameters are:

• the number of nested loops n ∈N;

• the schedule vector τ ∈ Zn.

The decision variable is the complete transformation matrix T ∈ Zn×n made up
by the schedule vector and the allocation matrix (see eq. (2.3.10)).

We can include the module determinant.mnz (listing 4.2) to the allocation
model and use the function determinant to constrain the absolute value of
the determinant of the transformation matrix to be equal to one, giving us a
unimodular matrix (line 19). Other constraints are defined such that the first
row of the transformation matrix is equal to the schedule vector (line 15) and the
coefficients of the allocation matrix are nonnegative (line 17). The optimization
objective is to minimize the values of the coefficients of the allocation matrix
and their distance to the diagonal (line 22). The complete allocation model is
shown in listing 4.3.

48 CHAPTER 4. IMPLEMENTATION

1 % Extracts the submatrix C_{i,j} from the matrix M

2 function array[int,int] of var int: submatrix(int: i, int: j,

int: dim, array[int,int] of var int: M) =

3 array2d(1..(dim-1), 1..(dim-1), [M[a, b] | a in (1..dim

diff i..i), b in (1..dim diff j..j)]);

4

5 % Computes the cofactor of the element (i,j) of the matrix M

6 function var int: cofactor(int: i, int: j, int: dim, array[int,

int] of var int: M) =

7 pow(-1, i+j) * determinant(dim-1, submatrix(i, j, dim, M));

8

9 % Calculates the determinant of a (dim)x(dim) matrix M using

Laplace expansion

10 function var int: determinant(int: dim, array[int,int] of var

int: M) =

11 if dim = 1 then M[1,1] else (

12 sum(j in 1..dim)(M[1,j] * cofactor(1, j, dim, M))

13) endif;

Listing 4.2: MiniZinc determinant function using the Laplace expansion.

4.2. MINIZINC 49

1 % Libraries inclusions

2 include "determinant.mzn";

3 % ---------------------

4 % Parameters definitions

5 par int: n; % Number of indexes

6 set of int: N = 1..n;

7 set of int: A = 2..n; % Allocation matrix set of indexes

8 array[N] of par int: tau; % Schedule vector

9 % ---------------------

10 % Variables definitions

11 array[N,N] of var int: T; % Transformation matrix

12 % -----------------------

13 % Constraints definitions

14 % First row schedule vector constraint

15 constraint forall(j in N)(T[1,j] = tau[j]);

16 % Nonnegative coefficients constraint

17 constraint forall(i in A, j in N)(T[i,j] >= 0);

18 % Unimodular transformation matrix constraint

19 constraint abs(determinant(n, T)) = 1;

20 % -----------------------

21 % Minimization objective (values and distance to the diagonal)

22 solve minimize sum(i in A, j in N)(T[i,j] * (1 + abs(i-j)));

Listing 4.3: MiniZinc allocation model.

50 CHAPTER 4. IMPLEMENTATION

4.3 Pseudocode

Our current implementation of OPoly does not parse C code directly. Instead,
we invented a pseudocode syntax for representing loops in the form of listing 2.1.
We chose this approach because our pseudocode syntax is much more restricted
and easy to parse than real C code would be. However, future implementations
of the Parsermodule (see section 3.2.1) can extend OPoly’s capability of parsing
different languages.

In this section, we present the main constructs of OPoly pseudocode and
some examples of loop nests that have been rewritten in this syntax.

4.3.1 Definitions

We start by giving some definitions of the terms that we will later use to describe
the pseudocode syntax and its current restrictions. First of all, we define two
simple, self-contained symbols that can be used as building blocks for more
complicated expressions:

• constants: numeric symbols that represent their value (e.g. 1, 2, 0.5, etc...).
They can assume integer or decimal values;

• variables: symbols denoted by a name. As variables in a standard pro-
gramming language, they represent some value that can change during
the execution of the program.

Variables can be simple if they store a single value, or indexed if they store
multiple values that can be accessed by a list of indexes. Indexed variables
are the equivalent of multi-dimensional arrays in a standard programming
language.

We can combine constants and variables to form expressions. Each expression
can be imagined as a list of constants or variables, where each pair of successive
elements is connected with an operator that describes what operation is to be
performed between the elements.

Two statements are supported by the parser at the time of writing:

• assignments: statements representing a change of a variable’s value. As-
signments are composed of two terms: the left term is a variable, and the
right term is an expression. This means that the variable in the left term
assumes a new value equal to the value of the expression in the right term.

• for loops: statements representing loops that iterate over a simple variable,
called index variable, assuming a range of integer values.

4.3. PSEUDOCODE 51

The initial value of the index variable is called lower bound, while the last
value is called upper bound. One can also specify the step for which the
index variable is incremented (or decremented) at each iteration. This for
loop formulation is very much similar to that of a Fortran “DO” loop.

There is also one more statement that OPoly pseudocode can represent,
which is the declaration statement. It is very much similar to an assignment
statement, but the right term is optional (initialization). This statement is only
used in the generated code to retrieve the values of the original index variables.

In the next section, we describe the syntax of each one of the concepts we
just introduced.

4.3.2 Syntax

In the syntax definitions, we use the following syntactic notations:

• bold text (boldface) when the text is to be used as-is;

• italic text (italic) when the text represents some replaceable arguments;

• square brackets ([]) surrounding optional arguments;

• ellipses (...) for repeatable arguments.

• pipes (|) for denoting a choice between two arguments.

Moreover, every time we mention a name (like variable names or function
names), it is assumed to be composed of alphanumeric characters and under-
scores (), where the first character must always be alphabetic.

Expressions

The syntax for generic expressions is:

expr [op other expr]...

where expr and other expr are constants, variables or general expressions, and
op is an operator. Supported operators at the time of writing are: “+” addition,
“-” subtraction, “*” multiplication, and “/” division.

Expressions can be preceded by an unary operator to indicate unary expres-
sions, with the following syntax:

unary op expr

52 CHAPTER 4. IMPLEMENTATION

where unary op is an unary operator. At the time of writing, the only supported
unary operator is “-”, denoting a negative expression.

Expressions can be enclosed by a set of parenthesis to represent a grouping
expression, with the following syntax:

(expr)

There can also be function expressions, representing named functions with a
list of expressions as their arguments, with the following syntax:

func name(arg1,...,argn)

where func name is the name of the function and the arguments (arg1, . . . , argn)
are expressions.

Variables

The syntax for variables is:

var name[[index]...]

where var name is the name of the variable and index is an expression represent-
ing the index value. If a variable does not have indexes it is a simple variable.
Otherwise, it is an indexed variable.

For example, the pseudocode foo indicates a simple variable named “foo”,
while bar[i+1][2] indicates an indexed variable named “bar” with two index
expressions i+1 and 2.

Assignments

The syntax for assignments is:

STM left term = right term;

where left term is a variable and right term is an expression. Please note the
STM and at the start and the ; at the end of the statement.

Declarations

The syntax for declarations is:

VAR var name [= initialization];

where var name is the name of the declared variable and initialization is an
expression. Please note the VAR at the start and the ; at the end of the statement.

4.3. PSEUDOCODE 53

For loops

The for loop statement syntax is:

FOR [CONC] index FROM lb TO ub [STEP step] { loop body }

where index is a simple variable denoting the loop index, lb and ub are expres-
sions denoting the lower and upper bounds of the loop, step is an expression
denoting the step of the loop’s index variable, and finally loop body are multi-
ple other statements, potentially loop statements in the case of loop nests. If the
step is omitted, a unitary step is assumed. The CONC keyword is used only in the
generated pseudocode to express that the for loop can be executed concurrently.

Even though OPoly is capable of parsing all loop statements in this form,
in order to parallelize them, the assumptions (A1)-(A6) (see section 2.1 and
section 2.4.3) must be fulfilled. Furthermore, we currently do not support non-
unitary steps or loop bounds that are not expressions in the form:

var|const [+|- const]

where var is a simple variable that can be an index of the previous loops or a
variable which value never changes (parameter), and const is a constant value.

4.3.3 Examples

As examples, we present the algorithms alg. 2.1 and alg. 2.3 that have been
rewritten in pseudocode syntax, respectively in listing 4.4 and listing 4.5.

We are not restricted to have only one assignment or only one variable in the
loop body. We can write a loop nest like the one in listing 4.6 which can also be
parallelized by OPoly.

1 FOR i FROM 1 TO N {

2 FOR j FROM 1 TO N {

3 STM Q[i][j] = (Q[i-1][j] + Q[i][j-1]) * 0.5;

4 }

5 }

Listing 4.4: Algorithm 2.1 rewritten in OPoly pseudocode.

54 CHAPTER 4. IMPLEMENTATION

1 FOR i FROM 1 TO L {

2 FOR j FROM 2 TO M {

3 FOR k FROM 2 TO N {

4 STM U[j][k] = (U[j+1][k] + U[j][k+1] + U[j-1][k] +

U[j][k-1]) * 0.25;

5 }

6 }

7 }

Listing 4.5: Algorithm 2.3 rewritten in OPoly pseudocode.

1 FOR k FROM 1 TO q {

2 FOR i FROM 1 TO n-2 {

3 STM a[i] = b[i+1] + c[i];

4 STM a[i-1] = 1.0 / a[i];

5 STM b[i] = a[i];

6 }

7 }

Listing 4.6: Multiple assignments loop nest in OPoly pseudocode.

4.4. C CODE GENERATION 55

4.4 C code generation

At the time of writing, OPoly can generate code in two different languages:
OPoly pseudocode language, and C language with OpenMP directives for par-
allel execution.

The OpenMP API [DM98] is a specification for a set of compiler directives
that can be used to specify shared-memory parallelism in Fortran and C/C++
programs. We chose OpenMP because of its wide use and support, and also for
its relatively easy way to write parallel for loops.

We adopted the C99 syntax [ISO99] for generating the transformed loops,
which allows us to declare index variables in the loop’s initialization. Also, we
used the OpenMP 4.0 API specifications [Ope13].

As an example, we show the code generated by OPoly from the serial im-
plementation of alg. 2.1 rewritten in pseudocode in listing 4.4. The generated
pseudocode is shown in listing 4.7, while the C code is show in listing 4.8.

The transformed index variables are renamed from “i” and “j” to “new i”
and “new j”. The new loop bounds replace the old ones: in the pseudocode
version, the new bounds are simply placed in the for loop statement; meanwhile,
in the C version, the new bounds are declared as separate variables just before
the for loop statement, and then used within it as usual.

In the pseudocode version, the loops that can be executed in parallel are
tagged with the keyword CONC, while in the C version, a #pragma omp parallel
for OpenMP directive is used, but only for the first loop that can be computed
in parallel (i.e. the second one). We cannot use the collapse OpenMP clause,
because the loops are not rectangular, i.e. the loop bounds are not constant, but
they depend on the values of the previous loops indexes. We could try to use
multiple, nested OpenMP parallel for clauses, by exploiting the so-called nested
parallelism feature of OpenMP. Unfortunately, due to the overhead of handling
nested parallel regions, this approach does not lead to better performance.

Collapsing of non-rectangular for loops is a more recent advancement of
the polyhedral compilation techniques, based on Ehrhart polynomials [Cla96;
CAK17] for counting the number of integer points inside a polyhedron. This
is one of the many enhancements that can be implemented in OPoly for future
work.

56 CHAPTER 4. IMPLEMENTATION

1 FOR new_i FROM 2 TO 2 * N STEP 1 {

2 FOR CONC new_j FROM fmax(1, -N + new_i) TO fmin(N, new_i -

1) STEP 1 {

3 VAR i = new_i - new_j;

4 VAR j = new_j;

5 STM Q[i][j] = (Q[i - 1][j] + Q[i][j - 1]) * 0.5;

6 }

7 }

Listing 4.7: Pseudocode generated by OPoly of alg. 2.1 from the starting
implementation in listing 4.4.

1 for(int new_i = 2; new_i <= 2 * N; new_i++) {

2 int new_j_lb = fmax(1, -N + new_i);

3 int new_j_ub = fmin(N, new_i - 1);

4 #pragma omp parallel for

5 for(int new_j = new_j_lb; new_j <= new_j_ub; new_j++) {

6 int i = new_i - new_j;

7 int j = new_j;

8 Q[i][j] = (Q[i - 1][j] + Q[i][j - 1]) * 0.5;

9 }

10 }

Listing 4.8: C code generated by OPoly of alg. 2.1 from the starting
implementation in listing 4.4.

Chapter 5

Benchmarks

In this chapter, we show how OPoly generates parallelizable code from a se-
rial implementation of an algorithm that is used in practice. We discuss the
performance of the generated code, by comparing it with the original, serial
implementation. We measure execution times of both and analyze the speedup
and strong scaling efficiencies of the generated code.

We considered the problem of generating a parallelized implementation of
the Gauss-Seidel algorithm, which is a classical numerical method for solving
systems of linear equations but can also be used as a smoother component in
multigrid methods [HY73; Bar+94]. The Gauss-Seidel algorithm can be gener-
alized to be implemented in n dimensions, so we compare the implementations
for one, two, and three dimensions. The three algorithms are show respectively
in alg. 5.1, alg. 5.2 and alg. 5.3. The indexes of the array variable φ are assumed
to be zero-based.

Algorithm 5.1: 1D Gauss-Seidel algorithm
1 for q from 1 to niter do
2 for i from 1 to M − 2 do
3 φ(i)← 1

2 (φ(i − 1) + φ(i + 1))
4 end
5 end

We took the implementation in three dimensions from [HW10, p.159], in
which the Gauss-Seidel algorithm is parallelized with a technique called wave-
front parallelization [MA96].

As mentioned in [HW10, p.301], wavefront parallelization is to be preferred
for this particular problem if we use cache-based processors for the computation,
because they suffer from the erratic access patterns generated by the hyperplane

57

58 CHAPTER 5. BENCHMARKS

Algorithm 5.2: 2D Gauss-Seidel algorithm
1 for q from 1 to niter do
2 for j from 1 to M − 2 do
3 for i from 1 to N − 2 do
4 φ(i, j)← 1

4 (φ(i − 1, j) + φ(i + 1, j) + φ(i, j − 1) + φ(i, j + 1))
5 end
6 end
7 end

Algorithm 5.3: 3D Gauss-Seidel algorithm
1 for q from 1 to niter do
2 for k from 1 to L − 2 do
3 for j from 1 to M − 2 do
4 for i from 1 to N − 2 do
5 φ(i, j, k)← 1

6 (φ(i − 1, j, k) + φ(i + 1, j, k) + φ(i, j − 1, k) +
φ(i, j + 1, k) + φ(i, j, k − 1) + φ(i, j, k + 1))

6 end
7 end
8 end
9 end

59

1 FOR q FROM 1 TO niter {

2 FOR j FROM 1 TO M-2 {

3 FOR i FROM 1 TO N-2 {

4 STM phi[i][j] = (phi[i-1][j] + phi[i+1][j]

5 + phi[i][j-1] + phi[i][j+1]) * (1

/ 4.0);

6 }

7 }

8 }

Listing 5.1: 2D Gauss-Seidel algorithm (alg. 5.2) rewritten in OPoly pseudocode.

method, and thus failing to exploit spatial locality. However, the hyperplane
method allows for more concurrent execution than wavefront parallelization
does.

Firstly, we need to rewrite the algorithms in OPoly pseudocode syntax. An
example of such rewriting for the 2D version is shown in listing 5.1. Note that
the 2D version is very much similar to the alg. 2.3 used as example in section 2.4.

Then, we use OPoly to generate the parallel version in C syntax with an
#pragma omp parallel forOMP directive on the second loop, resulting in the
code shown in listing 5.2.

We successively wrote the remaining parts of the programs that read the
input vector phi, execute the generated for loop, and outputs the resulting
vector. The programs start a timer before the algorithm’s for loop and stop it
after exiting it, to measure only the loop’s execution time. The outputs of the
original serial code are compared with their parallelized counterpart, to verify
the correctness of the computation.

We also generated the input files containing the initial values of the elements
of phi, selecting them from a uniform distribution at random. We chose the
input size to be roughly the same for every version of the algorithm, by varying
the algorithm parameters: the number of iterations niter and the size of the
dimensions N, M and L of the array variable phi.

For running the benchmarks, we used a machine with two Intel© Xeon©

E5-2603 v4 processors with 6 cores each, for a total of 12 cores and 64 GB of
RAM.

Parameters for the different versions and execution times (in seconds) with
different numbers of processors used (p) for the parallel versions are shown in
table 5.1.

60 CHAPTER 5. BENCHMARKS

1 for(int new_q = 4; new_q <= M + N + 2*niter - 4; new_q++) {

2 int new_j_lb = ceil(fmax(1, (1.0 / 2.0) * (-M - N + new_q +

4)));

3 int new_j_ub = floor(fmin(niter, (1.0 / 2.0) * (new_q - 2))

);

4 #pragma omp parallel for

5 for(int new_j = new_j_lb; new_j <= new_j_ub; new_j++) {

6 int new_i_lb = fmax(1, -M - 2*new_j + new_q + 2);

7 int new_i_ub = fmin(N-2, -2*new_j + new_q - 1);

8 for(int new_i = new_i_lb; new_i <= new_i_ub; new_i++) {

9 int q = new_j;

10 int j = -new_i - 2*new_j + new_q;

11 int i = new_i;

12 phi[i][j] = (phi[i-1][j] + phi[i+1][j] + phi[i][j

-1] + phi[i][j+1]) * (1 / 4.0);

13 }

14 }

15 }

Listing 5.2: C code generated by OPoly from the 2D Gauss-Seidel
implementation in pseudocode syntax (listing 5.1).

versions execution times

dims params serial parallel
niter N = M = L p = 1 p = 4 p = 8 p = 10 p = 12

1D 10k 100k 7.113 8.095 2.585 1.715 1.585 1.924
2D 1k 1k 13.50 18.65 7.930 4.436 3.689 3.680
3D 100 200 31.46 40.46 15.26 8.586 7.345 7.398

Table 5.1: Execution times of the serial and parallel versions of Gauss-Seidel
algorithms in various dimensions. Times are reported in seconds. The number
of iterations and the array sizes are reported for each version. Execution times
for the parallel versions are reported with regard to p: the number of processors
used in the computation.

Execution times plots of the various versions, with regard to the number of
processors used, are shown in fig. 5.1. Execution times of the original serial
implementations are shown with a dotted horizontal line.

As expected, the parallel versions with p = 1 are a bit slower than the original
serial implementation, since there are extra computations to be performed (loop
bounds) and spatial locality is much worse.

61

(a) Execution times of the 1D Gauss-Seidel algorithm.

(b) Execution times of the 2D Gauss-Seidel algo-
rithm.

(c) Execution times of the 3D Gauss-Seidel algorithm.

Figure 5.1: Execution times of the Gauss-Seidel implementations in various
dimensions. The original, serial version is show as reference with a dashed line.

62 CHAPTER 5. BENCHMARKS

(a) Speedup plot. (b) Strong scaling efficiency plot.

Figure 5.2: Speedup and strong scaling efficiency plots of the parallel Gauss-
Seidel versions in different dimensions.

As the number of processors grows, the execution time gets lower, until p
approaches the number of available cores.

The speedup plot of the parallel versions is shown in fig. 5.2a. The speedup
S(p) of the parallel version with p processors over the same one with one pro-
cessor (in the case that the workload is equal between the two) is defined as
the execution time Tparallel(1) with one processor divided by the execution time
Tparallel(p) with p processors:

S(p) =
Tparallel(1)
Tparallel(p)

. (5.0.1)

Note that we use the execution time Tparallel(1) of the parallel version with only
one processor as reference for computing S(p).

The best case is that S(p) = p, also known as linear speedup. We show the
linear speedup case as a reference in fig. 5.2a. Usually, S(p) is more close to p
with lower values of p, since the overhead costs for handling multiple processes
are lower.

Also, the speedup is constrained by the fraction α of the total execution time
spent on the serial portion of the program. By Amdahl’s law [Amd67] we have
that:

S(p) =
1

α + 1−α
p

. (5.0.2)

63

In our case, there is a substantial part of the program which is executed in
serial, specifically the outer loop. For this reason, we observe that the speedup
of our generated implementations is sub-linear and tends to grow less and less
for bigger values of p. For low values of p, we observe that the speedup is almost
linear.

We can measure the speedup growth by computing the strong scaling effi-
ciency. The strong scaling efficiency E(p) is defined as the speedup S(p) divided
by the number of processors p:

E(p) =
S(p)

p
=

Tparallel(1)
pTparallel(p)

. (5.0.3)

In the best case (linear speedup), E(p) = 1. The strong scaling efficiency plot is
shown in fig. 5.2b.

We observe that the speedup and strong scaling efficiency of the 1D version
are better than the other ones for lower values of p. On the contrary, the 2D and
3D versions begin to scale better than the 1D version as the number of processors
p increases. This is because the computations are better distributed among the
processors as p increases in the 2D and 3D versions.

All things considered, we achieve a good improvement in execution time
with regard to the original serial implementations of the algorithms, even with
a small number of processors.

64 CHAPTER 5. BENCHMARKS

Chapter 6

Conclusions

This thesis aimed at exploring and understanding the basic concepts of the poly-
tope model and polyhedral compilation, while giving the tools for implementing
a simple polyhedral compiler that can perform automatic code generation.

We used this knowledge to implement OPoly and to show that polyhedral
compilation can be successfully used to speed up the computation for perfectly
nested for loops that have uniform dependencies.

Although many libraries for handling polyhedra and much more complex
polyhedral compilers exist, OPoly gives us a simple, but effective way to exploit
polyhedral compilation for automatic parallel code generation.

While we have successfully shown the increased performance of the gener-
ated code, there are a lot of enhancements that are possible to achieve with the
most recent techniques in polyhedral compilation, such as the analysis of spatial
locality for better use of the cache, or specific code generation for massively-
parallel architectures like GPUs. Also, the assumptions on the shape of the
loops and the dependencies in the loop body can be relaxed by generalizing the
theory for affine dependencies and transformations.

Future work aims on diving deeper into the recent techniques for polyhedral
compilation and implementing them in OPoly, in order to achieve better perfor-
mances and include more classes of problems to be optimized and parallelized
automatically with it. In the future, OPoly can be extended to directly parse
complete programs written in various languages, and to also generate code for
different languages and parallel programming models.

Another interesting future project is to give a visual representation of the
original and transformed loops’ index spaces in at most three dimensions. That
would be most useful for explaining visually the geometric representation of
programs for didactic purposes.

65

66 CHAPTER 6. CONCLUSIONS

Bibliography

[Amd67] Gene M. Amdahl. “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities”. In: Proceedings of
the April 18-20, 1967, Spring Joint Computer Conference. AFIPS ’67
(Spring). Atlantic City, New Jersey: Association for Computing Ma-
chinery, 1967, pp. 483–485. isbn: 9781450378956. doi: 10 . 1145 /
1465482.1465560 (cited on page 62).

[KMW67] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. “The
Organization of Computations for Uniform Recurrence Equations”.
In: J. ACM 14.3 (1967), pp. 563–590. doi: 10.1145/321406.321418
(cited on pages 5, 16).

[Mor69] L.J. Mordell. Diophantine Equations. 1st. Vol. 30. Pure and Applied
Mathematics. Academic P.,U.S., 1969. isbn: 978-0-125-06250-3 (cited
on page 22).

[HY73] L. Hageman and David Young. “Iterative Solution of Large Linear
Systems”. In: The American Mathematical Monthly 80 (Oct. 1973), p. 92.
doi: 10.2307/2319285 (cited on page 57).

[Lam74] Leslie Lamport. “The Parallel Execution of DO Loops”. In: Commun.
ACM 17.2 (1974), pp. 83–93. doi: 10.1145/360827.360844 (cited on
pages 1, 2, 5, 6, 16, 20).

[RK88] S. K. Rao and T. Kailath. “Regular iterative algorithms and their
implementation on processor arrays”. In: Proceedings of the IEEE
76.3 (1988), pp. 259–269. doi: 10.1109/5.4402 (cited on page 5).

[Ban93] Utpal Banerjee. “Unimodular Matrices”. In: Loop Transformations for
Restructuring Compilers: The Foundations. Boston, MA: Springer US,
1993, pp. 21–48. isbn: 978-0-585-28004-2. doi: 10.1007/978-0-585-
28004-2_2 (cited on page 12).

67

https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/321406.321418
https://doi.org/10.2307/2319285
https://doi.org/10.1145/360827.360844
https://doi.org/10.1109/5.4402
https://doi.org/10.1007/978-0-585-28004-2_2
https://doi.org/10.1007/978-0-585-28004-2_2

68 BIBLIOGRAPHY

[Len93] Christian Lengauer. “Loop Parallelization in the Polytope Model”.
In: CONCUR ’93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings. Ed. by Eike
Best. Vol. 715. Lecture Notes in Computer Science. Springer, 1993,
pp. 398–416. doi: 10.1007/3-540-57208-2_28 (cited on pages 5,
22).

[Bar+94] Richard F. Barrett et al. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. Other Titles in Applied Math-
ematics. SIAM, 1994. isbn: 978-0-89871-328-2. doi: 10 . 1137 / 1 .
9781611971538 (cited on page 57).

[VD95] Guido Van Rossum and Fred L Drake Jr. Python tutorial. Centrum
voor Wiskunde en Informatica Amsterdam, The Netherlands, 1995
(cited on page 42).

[Cla96] Philippe Clauss. “Counting Solutions to Linear and Nonlinear Con-
straints Through Ehrhart Polynomials: Applications to Analyze and
Transform Scientific Programs”. In: Proceedings of the 10th interna-
tional conference on Supercomputing, ICS 1996, Philadelphia, PA, USA,
May 25-28, 1996. Ed. by Pen-Chung Yew. ACM, 1996, pp. 278–285.
doi: 10.1145/237578.237617 (cited on page 55).

[Fea96] Paul Feautrier. “Automatic Parallelization in the Polytope Model”.
In: The Data Parallel Programming Model: Foundations, HPF Realiza-
tion, and Scientific Applications. Ed. by Guy-René Perrin and Alain
Darte. Vol. 1132. Lecture Notes in Computer Science. Springer, 1996,
pp. 79–103. doi: 10.1007/3-540-61736-1_44 (cited on pages 5,
22).

[MA96] Naraig Manjikian and Tarek S. Abdelrahman. “Scheduling of Wave-
front Parallelism on Scalable Shared-memory Multiprocessors”. In:
Proceedings of the 1996 International Conference on Parallel Processing,
ICCP 1996, Bloomingdale, IL, USA, August 12-16, 1996. Volume 3: Soft-
ware. Ed. by Keshav Pingali. IEEE Computer Society, 1996, pp. 122–
131. doi: 10.1109/ICPP.1996.538567 (cited on page 57).

[DM98] Leonardo Dagum and Ramesh Menon. “OpenMP: an industry stan-
dard API for shared-memory programming”. In: Computational Sci-
ence & Engineering, IEEE 5.1 (1998), pp. 46–55 (cited on page 55).

[ISO99] ISO. ISO C Standard 1999. Tech. rep. ISO/IEC 9899:1999 draft. 1999.
url: http://www.open-std.org/jtc1/sc22/wg14/www/docs/
n1124.pdf (cited on page 55).

https://doi.org/10.1007/3-540-57208-2_28
https://doi.org/10.1137/1.9781611971538
https://doi.org/10.1137/1.9781611971538
https://doi.org/10.1145/237578.237617
https://doi.org/10.1007/3-540-61736-1_44
https://doi.org/10.1109/ICPP.1996.538567
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

BIBLIOGRAPHY 69

[Loe99] Vincent Loechner. PolyLib: A library for manipulating parameterized
polyhedra. 1999. url: https://repo.or.cz/polylib.git/blob_
plain/HEAD:/doc/parampoly-doc.ps.gz (cited on page 5).

[WIL00] DORAN K. WILDE. “A LIBRARY FOR DOING POLYHEDRAL
OPERATIONS”. In: Parallel Algorithms and Applications 15.3-4 (Dec.
2000), pp. 137–166. doi: 10 . 1080 / 01495730008947354 (cited on
page 5).

[BRS07] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. PLuTo: A
Practical and Fully Automatic Polyhedral Parallelizer and Locality Opti-
mizer. Tech. rep. OSU-CISRC-10/07-TR70. The Ohio State University,
Oct. 2007 (cited on page 5).

[Fre07] Free Software Foundation. GNU General Public License Version 3
(GPL-3.0). Accessed 4 March 2021. June 2007 (cited on page 41).

[Net+07] Nicholas Nethercote et al. “MiniZinc: Towards a Standard CP Mod-
elling Language”. In: Principles and Practice of Constraint Program-
ming - CP 2007, 13th International Conference, CP 2007, Providence, RI,
USA, September 23-27, 2007, Proceedings. Ed. by Christian Bessiere.
Vol. 4741. Lecture Notes in Computer Science. Springer, 2007, pp. 529–
543. doi: 10.1007/978-3-540-74970-7_38 (cited on pages 3, 44).

[HW10] Georg Hager and Gerhard Wellein. Introduction to High Performance
Computing for Scientists and Engineers. 1st. USA: CRC Press, Inc.,
2010. isbn: 143981192X (cited on page 57).

[Chu+11] Geoffrey Chu et al. “Symmetries and Lazy Clause Generation”. In:
IJCAI 2011, Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011. Ed.
by Toby Walsh. IJCAI/AAAI, 2011, pp. 516–521. doi: 10.5591/978-
1-57735-516-8/IJCAI11-094 (cited on page 44).

[GGL12] Tobias Grosser, Armin Größlinger, and Christian Lengauer. “Polly -
Performing Polyhedral Optimizations on a Low-Level Intermediate
Representation”. In: Parallel Process. Lett. 22.4 (2012). doi: 10.1142/
S0129626412500107 (cited on page 5).

[Ope13] OpenMP Architecture Review Board. OpenMP Application Program
Interface Version 4.0. July 2013. url: https://www.openmp.org/wp-
content/uploads/OpenMP4.0.0.pdf (cited on page 55).

https://repo.or.cz/polylib.git/blob_plain/HEAD:/doc/parampoly-doc.ps.gz
https://repo.or.cz/polylib.git/blob_plain/HEAD:/doc/parampoly-doc.ps.gz
https://doi.org/10.1080/01495730008947354
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-094
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-094
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1142/S0129626412500107
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf

70 BIBLIOGRAPHY

[CAK17] Philippe Clauss, Ervin Altintas, and Matthieu Kuhn. “Automatic
Collapsing of Non-Rectangular Loops”. In: 2017 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2017, Orlando,
FL, USA, May 29 - June 2, 2017. IEEE Computer Society, 2017, pp. 778–
787. doi: 10.1109/IPDPS.2017.34 (cited on page 55).

[McK17] Paul E. McKenney. “Is Parallel Programming Hard, And, If So, What
Can You Do About It? (v2017.01.02a)”. In: CoRR abs/1701.00854
(2017). arXiv: 1701.00854. url: http://arxiv.org/abs/1701.
00854 (cited on page 1).

[Meu+17] Aaron Meurer et al. “SymPy: symbolic computing in Python”. In:
PeerJ Computer Science 3 (Jan. 2017), e103. issn: 2376-5992. doi: 10.
7717/peerj-cs.103 (cited on page 42).

[Bag+19] Riyadh Baghdadi et al. “Tiramisu: A Polyhedral Compiler for Ex-
pressing Fast and Portable Code”. In: Proceedings of the 2019 IEEE/ACM
International Symposium on Code Generation and Optimization. CGO
2019. Washington, DC, USA: IEEE Press, 2019, pp. 193–205. isbn:
978-1-7281-1436-1. url: https://arxiv.org/pdf/1804.10694.pdf
(cited on page 5).

[Har+20] Charles R. Harris et al. “Array programming with NumPy”. In:
Nature 585.7825 (Sept. 2020), pp. 357–362. doi: 10.1038/s41586-
020-2649-2 (cited on page 42).

https://doi.org/10.1109/IPDPS.2017.34
https://arxiv.org/abs/1701.00854
http://arxiv.org/abs/1701.00854
http://arxiv.org/abs/1701.00854
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://arxiv.org/pdf/1804.10694.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

	Abstract
	Introduction
	Motivation
	Thesis structure

	Background
	Notations
	The geometry of programs
	The polytope model
	Z-polyhedron
	Schedule + allocation = transformation matrix
	Target polyhedron

	The hyperplane method
	The occurrence mapping
	The <f,g> sets
	The hyperplane theorem
	Completing the transformation

	Scanning polyhedra
	Fourier-Motzkin elimination
	Bounds extraction
	Code generation

	Design
	Program representation
	Expressions
	Statements

	Architecture
	Parser
	Checker
	Detector
	Scheduler
	Allocator
	Scanner
	Generator

	Implementation
	Python
	NumPy and SymPy
	PyMzn
	Pytest

	MiniZinc
	Minizinc model structure
	Schedule model
	Allocation model

	Pseudocode
	Definitions
	Syntax
	Examples

	C code generation

	Benchmarks
	Conclusions

