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Abstract

Nowadays people are spending more and more time online: this is a perma-
nent change that leads to a huge amount of diversified data like never before
which needs to be managed to extrapolate knowledge from it.

This also involves social media which produces free textual information
very difficult to process, but occasionally very useful. For instance, in the field
of rare diseases, our specific testing context could lead to the possibility to
organize the voice of patients and of caregivers, difficult to gather otherwise.

People who are affected by a rare disease often strive to find enough
information about it. Indeed, not much material is available online and the
number of doctors qualified for those specific diseases is quite limited. Social
networks become then the best place to exchange ideas and opinions. The main
difficulty in finding useful information on social networks though is that text
gets lost quickly and it’s not straightforward to give a semantic structure to it
and dynamically evolve this representation over time.

In literature, there are some techniques that manage to transform unstruc-
tured data into useful information, extracting them using artificial intelligence.
These techniques are often well expressive and are able to precisely convert
data into knowledge, but they are not directly connected to text sources nor
to a system that stores and allows to update the extrapolated information.
Consequently, they are not well automated in incrementally keeping informa-
tion up-to-date as new text is provided, resulting in the need for a mechanical
process to do it.

The contribution proposed in this thesis focuses on how to use these tech-
nologies to maintain information in order over time, enhancing their usability
and freshness. It consists of a system that connects the text source providers to
the built knowledge graph, which contains the knowledge acquired and updated.
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Introduction

We now live in times where it’s common to spend most of our day online.
Despite the negative ways this might affects our wellbeing, there’s also a positive
side on this: a lot of diversified data is available on the web. In fact, people
spend hours a day consulting social media, websites, watching videos, sharing
experiences through textual posts, images and videos. This has created a
parallel world extremely connected and diversified, where billions of people
around the world constantly are protagonist and demolished the barrier of
distance. In this world people feel more and more free to share their private
lives, especially if they find spots where they don’t feel judged or taunted, but
they feel part of a community where they understand each other. This process
doesn’t have precedents and, like never before, lot of diversified data is created
every day. Nevertheless data itself is useless on it’s own if not interpreted and
if knowledge is not extrapolated from it. This is a current problem which is
subject of research and which commits many experts of the field.

The places where most of free textual information are shared and stored are
social medias. Among these data, some of them are occasionally very useful but
difficult to process. There are many groups or pages online where a lot of data
or instructions are lost over time. It may happen that some of them remain
valid over time but they get buried by new ones. There are tons of examples,
like social groups of expats looking for information about local policies or
regulations, or, in the field of rare diseases, our specific testing context, groups
where the “voice of patients” and caregivers emerges. These contributes are
very precious and, sometimes, they are unique and not gatherable elsewhere,
but in order to be usable they need to be organized.

Indeed it’s common that, people who are affected by a disease which is rare
by definition, find many difficulties when it comes to find information about it.
Firstly there is not much organized material available online to be consulted
and the number of doctor specialized into single diseases are quite limited. In
this scenario poor of answers, social networks become therefore the best place
to exchange ideas and opinions. Another difficulty in finding useful information
on social networks is that it’s not straightforward to keep them arranged in
real-time.
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x Introduction

In literature, through the usage of Artificial Intelligence (AI), some tech-
niques exist and have achieved good results in transforming unstructured data
into useful information. However, these techniques have encountered obstacles
in finding a solution which could:

• be a descriptive text mining (find the reason behind events);

• automatically read and understand natural language;

• find statistically significant correlations;

• explain and interpret correlations in a statistical way, with a low number
of dimensions (differently from neural networks);

• be unsupervised;

• be domain independent.
Furthermore, these techniques are often well expressive, but another of their

limit is that they are not communicating directly with neither a text source
nor to a storage system which allows to update the knowledge. This means
that an automation in keeping information up-to-date incrementally is missing
and therefore the process to do it is quite mechanical.

This thesis aims to fill this gap by implementing an autonomous solution
which uses these technologies to maintain extrapolated knowledge in order over
time. It consists of a web application which uses a recent methodology that
satisfied all the previous requirements and connects text source provider to the
built knowledge graph, which contains the knowledge acquired and updated
over time.

The thesis has been divided in the following chapters:

• Chapter 1 - Background on how knowledge can be represented through
the usage of standards, different type of graphs architectures, the world
of integration of knowledge worldwide and its evolution over time;

• Chapter 2 - Context on which the work has been tested, the voice of
patients of people affected by a rare disease and the methodology used to
extrapolate information from it;

• Chapter 3 - The comparison of knowledge graph tools that are available
to store the created connections and the chosen one for this project;

• Chapter 4 - The development of the project which keeps a knowledge
graph updated from a textual source in real time;

• Chapter 5 - Conclusions and further developments which would maxi-
mize the potential with further implementations.
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Chapter 1

Background

1.1 Knowledge representation

Human brains have their way to represent knowledge and how to remember
it. Most of the time it varies from person to person and there’s no standard to
regulate it.
When it comes to informatics, a formal model is needed to represent knowledge
and make it understandable by machines. There are several ways to do it, like
using Ontologies or Knowledge Graphs.

1.1.1 Ontologies

One way of representing information is through the usage of Ontologies.
This term is used to mean “the study of categories of things that exist or
may exist in some domain” [4]. Indeed, the word Ontology comes from the
antique Greek words ontos (being) and logos (study). Ontology doesn’t have
a universal definition, but the most common in Computer Science has been
given by Thomas R. Gruber: “an ontology is an explicit, formal specification of
a shared conceptualization. The term is borrowed from philosophy, where an
Ontology is a systematic account of Existence. For AI systems, what ’exists’
is that which can be represented” [5]. This can be better explained exploding
the meaning of the keywords: conceptualization refers to the abstract model
of the world within the domain considered — and it needs to be shared to
capture consensual knowledge; it must be explicit because there shouldn’t be
any concept left undefined; formal indicates that it must be usable by machines.

An ontology is therefore a way to describe knowledge-creating formal con-
cepts and relations between them. The formalization of those concepts takes
place in the following components: class, individuals, and relations. Classes are
composed of attributes (name-value pairs) and can be linked to other classes.
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2 Chapter 1. Background

Relations are special attributes that link two classes (or more in hypergraphs)
and their value are therefore objects of other classes. Individuals are instances
of a class and can have relations with other classes or other individuals. For
example, Samuele can be an individual of the class Person and it specializes
in it. Classes used in an ontology can also be linked to classes that don’t
necessarily belong to the same ontology, enabling creating a cross-database
search and interoperability. Generalization is as important as the relationship
between different classes and together allows the ontology to work and reason
similarly to how humans perceive interlinked concepts.

1.1.2 Knowledge Graphs

A knowledge graph is a knowledge base that uses a graph-structured data
model. It is a network of entities, their semantic types, properties, and relation-
ships. One of its main characteristics is that it’s generally built with free-form
semantics and therefore entities are not necessarily based on classes and they
are not inserted respecting a data structure. The structure of the data can,
on the other hand, be deducted based on the data which is contained in the
graph. It’s possible to represent data contained in a knowledge graph as a list
of triplets subject - verb - object.
Here are more complete definitions of knowledge graphs: “A knowledge graph
acquires and integrates information into an ontology and applies a reasoner
to derive new knowledge” [6]. “A knowledge graph is a multirelational graph
composed of entities and relations which are regarded as nodes and different
types of edges, respectively” [7].

1.1.3 Ontologies vs Knowledge Graphs

The main difference which separates the concept of Knowledge graph from
the one of Ontology is the focus of what is represented. Describing a domain,
Ontologies sharpen the metadata/schema of it, while knowledge graphs con-
centrate on real data, possibly allowing to find patterns and updating the
metadata itself. It’s, therefore, possible to say that an ontology, combined with
real data, creates a knowledge graph.

1.1.4 Web semantic standards

Web semantic goal is to make Internet data machine-readable. Machines
can not easily interact directly with unstructured information and a standard
needed to be created. W3C is the entity in charge of defining, maintaining,
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and improve these standards. To do so, a standard needed to be defined. The
main components of this standard are RDF, RDFS, OWL, and SPARQL.

RDF

As described by D. Tomaszuk [8], “The Resource Description Framework
(RDF) [9] is a standard data model proposed by the World Wide Web Con-
sortium (W3C) to describe resources (i.e. real or abstract things) occurring
in any application domain. The “description of a resource” means an explicit
representation of the attributes and relationship of the resource.”

In the 1990s, Tim Bray formulated RDF at Netscape as a meta-data schema
for describing things. The idea is simple and it’s based on the triple concept
reported above. RDF files are therefore composed of a set of logical assertions of
the form subject-predicate-object. This construct is based on a 3 degrees
of freedom format, enabling the description of anything describable. Here comes
the real difference from systems based on traditional tables and databases which
only had 2 degrees of freedom, where external logic is needed to interpret them.

RDF goes even beyond the idea of a subject-predicate-object triple. It also
defines that subject and predicate have to be expressed as a URL, while the
object could either be a URL or a literal. This means that by loading the URL
of a predicate in a browser, it’s possible to find its definition. The downside of
it is quite obvious, as URLs are much longer than literals or variable names, but
this was mitigated with the introduction of prefixes. A prefix is a common part
of a URL that can be defined before its usage and preponed to the variable name,
shortening it. For instance, instead of writing http://example.com/myClass, it’s
possible to define once prefix pref = https://example.com/ and use pref:myClass.

In addition to this, RDF introduces an important feature to the basic triple
form: a set of reusable predicates. The most important is the predicate rdf:type,
which allows to define a hierarchical structure, where entities have a particular
type. For example, pref:cat → rdf:type → pref:animal. Using this construct,
we can infer things, taking advantage of the fact that, for example, a cat is an
animal and not a human.

RDFS and OWL

D. Tomaszuk [8] also describes how OWL and RDFS are extension of RDF
and add more reusable predicates to the base standard. “The Web Ontology
Language (OWL) is a W3C recommendation designed to describe ontologies.
Specifically, it allows to describe classes, properties, individuals, and data values.
In order to describe a domain of interest, OWL defines a set of terms – often
called a vocabulary – where each term has a specific meaning, e.g. the term
owl:Class represents the class of all classes of resources. An OWL ontology can
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be described using RDF with a precise formal meaning.” Most important OWL
terms will follow:

• The term owl:Class identifies the class of resources that are RDF classes.
An RDF triple (C, rdf:type, owl:Class) defines that C is a class in the
data domain.

• (C1, rdfs:subClassOf, C2) defines that C1 is a subclass of C2.

• owl:DatatypeProperty identifies the class of properties that link objects
to data values. The triple expression (P , rdf:type, owl:DatatypeProperty)
defines that P is a datatype property.

• owl:ObjectProperty identifies the class of properties that relates objects
to other objects. The expression (P , rdf:type, owl:ObjectProperty)
defines that P is an object property.

• (P , rdfs:domain, C) defines that the resource class C is the domain of
the predicate P .

• (P , rdfs:range, C) defines that the resource class C is the range of the
predicate P.

• (P1, rdfs:subPropertyOf, P2) defines that P1 is a sub property of P2.

• (R, rdfs:label, lab) defines that lab is a human readable label (name)
for the resource R.

• (R, rdfs:comment, com) defines that com is a human readable description
of the resource R.

• (C, owl:unionOf, list) defines that C is the union of the classes in the
collection list.

• (P , rdf:type, owl:AnnotationProperty) defines that P is an annota-
tion property.

• (R, rdf:type, rdfs:Datatype) defines thatR is a (personalized) datatype.

SPARQL

Since RDF was proposed, the problem of how to query data in this format
was raised. As reported by Jorge Perèz [10], in 2004 the RDF Data Access
Working Group (part of the Semantic Web Activity) released a first public
working draft of a query language for RDF, called SPARQL. Now, SPARQL is
the recommended query language for RDF from W3C.



1.2. Graph types 5

Essentially, it’s a Graph-matching query language, and given a data source
(possibly multiple sources) it’s possible to run a query against it to get results.
The query is composed of three parts: pattern matching, solution modifiers,
and output. The pattern matching enables to choose the data source, filter-
ing values of possible matchings, and specify constraints for the query. The
solution modifiers allows modifying the output computed applying operators
like projection, distinct, order, limit, and offset. The output is the actual final
result of the query and can be in the form of a boolean, selection of values,
construction of new triples, and descriptions of resources, as explained in [10].

1.2 Graph types
Graph databases have become more and more important for several reasons

like flexibility and extensibility. It’s not always clear though the difference
between the two main types of graph technologies: semantic graphs and
property graphs. A good understanding of the major difference between the
two is written in an article by Jans Aasman [11], that also says:

“For simple graph oriented data relationships, a non-semantic (or property
graph) database approach might solve a single dimensional problem like:
shortest path, one-to-many relationships, weighted elements, structured

inter-relationships.
But rarely are problems and queries that simple. Real world data is highly
complex, multi-dimensional, and needs the powerful additional features of a

semantic graph solution.
Also, property graphs require the fixed definition of classes/objects, types, and
nodes – basically a fixed schema. If the data or data sources ever change, those

changes need to be coded before any new data can be accessed.”

On the other hand, it’s not to be undervalued the complexity of RDF, the
standard on which semantic graph models are based on. In the book “Validating
RDF Data” by Dan Brickley and Libby Miller they explain their concern about
these models:

“People think RDF is a pain because it is complicated. The truth is even worse.
RDF is painfully simplistic, but it allows you to work with real-world data and

problems that are horribly complicated” [12].

It’s hard to state uniquely which technologies should be used, as it mainly
depends on the user’s need. Summing up, while one model has a data-centric
focus, the other has a more knowledge-centric way of representing data.
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Figure 1.1 shows the most common graph database engines that exist today,
dividing them in two categories (semantics and property graphs), while Figure
1.2 shows which technologies are in use underneath. The following sections will
describe the two major variants of graph databases and some of the standards
and technologies that have been built on top of them.

Figure 1.1: Graph Types Model Comparison.
Obtained from https://medium.com/swlh/top-seven-hits-and-misses-in-the-graph-database-world-ab98cc785c61

1.2.1 Semantic Graphs

Semantic graphs are those which follow semantic standards: RDF, SPARQL,
and OWL. They can store complex data that represent the real world. It’s
based on a construct commonly called a “triple”, which has three key parts to
store concept and context, in the most granular and atomic form. For example,
a statement like “Samuele is a son of Massimiliano”, three parts are identified:
Samuele - the Subject, is a son of - the Predicate, and Massimiliano - the
Object. Using semantic graphs, it’s also possible to understand relationships
that are not explicitly defined, inferring them. In fact, in case another statement
is “Massimiliano is a son of Alberto”, it’s possible to infer that Samuele is a
grandson of Alberto. Also, it would be possible to know that both Samuele
and Massimiliano are sons and that both Massimiliano and Alberto are
fathers.

https://medium.com/swlh/top-seven-hits-and-misses-in-the-graph-database-world-ab98cc785c61


1.2. Graph types 7

Figure 1.2: Graph Types Technology comparison.

1.2.2 Labeled Property Graphs

Labeled property graphs are the second major variant of graph databases.
They’re much simpler than RDF and are composed of a set of nodes and a
set of edges. Each element in this type of graphs is like a struct with a set of
key-value fields, which describe the instance itself. Edges, in this case, are not
serialized as part of a triple but are a special property of the node, where the
value is just a pointer to another node.

Looking at Figure 1.3 it’s visible how the popularity of Neo4j, one of the
most common Labelled Property Graph (LPG), is exponentially higher than
other types of graph databases.

There are many reasons behind this. One of these is certainly the pragmatic
approach with which LPGs have been built, creating a database that ordinary
humans could understand. Instead of being focused on semantics like RDF
graphs, property graphs were always fundamentally focused on the graph as
the best abstraction for modeling the world.

From a low-level point of view, on the contrary, RDF has a pure graph
structure, whereas LPGs are not easily implemented straightforwardly. One
consequence of this is that the edges of triples cannot have properties natively.
Even if there are several ways of obviating this problem, there’s no particular
interest by semantic web academic community in creating a standard, like to
build more complex data-structure in RDF which represent qualified edges.
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Figure 1.3: DB engines popularity [1]

The tendency is to stay more focused on expressiveness and inference.

Figure 1.4: RDF vs LPG triple representation
Obtained from https://medium.com/terminusdb/graph-fundamentals-part-2-labelled-property-graphs-ba9a8edb5dfe

1.2.3 Multi-model Graphs

As Figure 1.1 suggests, some graph databases use multi-model systems
beneath and support graph APIs on top of NoSQL DBs. One of the most

https://medium.com/terminusdb/graph-fundamentals-part-2-labelled-property-graphs-ba9a8edb5dfe
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known is grakn.ai1.

1.3 Linked Open Data

Data today is the new oil and for many learning software, the amount of
data they can access and use it’s critical to its success. It would be ideal for
such software to be able to access, use and contribute to all the data available
on the web in an interlinked way. It’s already possible to access many resources,
but as Bauer highlights in its article, two main problems slow down this process:

“First of all, databases are still seen as silos, and people often do not want
others to touch the database for which they are responsible. This way of thinking
is based on some assumptions from the 1970s: that only a handful of experts
can deal with databases and that only the IT department’s inner circle can
understand the schema and the meaning of the data. This is obsolete. In
today’s internet age, millions of developers can build valuable applications
whenever they get interesting data.”

“Secondly, data is still locked up in certain applications. The technical
problem with today’s most common information architecture is that metadata
and schema information are not separated well from application logics. Data
cannot be re-used as easily as it should be. If someone designs a database, he
or she often knows the certain application to be built on top. If we stop empha-
sising which applications will use our data and focus instead on a meaningful
description of the data itself, we will gain more momentum in the long run. At
its core, Open Data means that the data is open to any kind of application and
this can be achieved if we use open standards like RDF to describe metadata”
[13].

Figure 1.5 shows how the web has quite turned in this direction during the
last years though, creating an interlinked knowledge based on the RDF model,
each called Linked Open Data (LOD). The so-called LOD Cloud [14] covers
now more than 50 billions entities, linking many different facts and areas. The
most known ones include DBPedia2, Freebase3, Linked GeoData4 etc. Figure
1.6 shows how many LOD contribute nowadays to build the LOD cloud.

There are many examples of real usage which express how important is that
data is available and connected, like Linked Data in biomedicine [15, 16] or in
Linked government data [17, 18].

1https://grakn.ai
2https://wiki.dbpedia.org/
3http://www.freebase.com/
4http://linkedgeodata.org/

https://grakn.ai
https://wiki.dbpedia.org/
http://www.freebase.com/
http://linkedgeodata.org/
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Figure 1.5: Semanticness of the web through years

Figure 1.6: LOD cloud
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1.4 Time-Evolving Graph
Recently, we note that most of the time, data used to build a knowledge

graph gets continuously changed and integrated with more data. Examples of
this are KG based on social media, where posts are published every day, or
less evidently, on Medicine research, where discoveries update the knowledge
in the field. However, most algorithms for KG embedding have been designed
for static data, which lead to low efficiency and high error rate. Therefore,
modeling dynamically-evolving, multi-relational graph data has received a
surge of interest with the rapid growth of heterogeneous event data. And
recent research has focused on temporal knowledge graphs and their temporal
information [19].





Chapter 2

Context

2.1 The Voice of Patients

A disease, in order to be defined rare, needs to have a prevalence (number
of cases over a given population) which doesn’t exceed a threshold established
by each country. Many people are touched by rare disease challenges, among
which there are patients, families, caregivers, clinicians and researchers.

Official entities like Orphanet [20] report more than 6000 registered rare
diseases (but up to 7000 are estimated) and more than 350 million people live
with them every day (5% of the world population). This means that, even if
the percentage of lives involved by a single RD is limited by definition, the
total number of patients is not limited at all.

Furthermore, almost the totality of rare diseases is not curable and only its
5% has therapeutic options. 80% of these have genetic origin and 50% of people
affected by a RDs is referred to children (with a mortality rate of 35% in their
first 5 years of living)[21, 22, 23]. Moreover, diagnoses of these pathologies are
often belated or wrong for a long period of time (averagely 4.8 years and 7.3
doctors visited, per RDs), leading to a worsening of the disease itself[24, 25].

In this field, information is scarcely available and disintegrated, and in
recent years we are witnessing a strong growth of patient communities on
social platforms such as Facebook. People with these diseases are often feeling
lonely in this challenge and consequently in need to dialogue with others in the
same conditions. Social contexts become therefore the place where experiences,
opinions and information are shared, during the whole path of a rare disease
patient (from symptomatology to diagnosis, from therapeutic treatments to
specialized centers, from doctors of reference to the impact on lifestyle) [26].

13
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2.2 POIROT

In order to gather information from social media we’ll use a technique for
semantic correlation extractions between terms and documents which is based
on POIROT [2].

In the following sections it’ll be explained the operation of this methodology
and other useful aspects of my contribution in this thesis.

POIROT will be reported because knowledge will be extracted from text
with this methodology and because authors have already applied and tested it
(obtaining a F1 measure of 79%) with the same study case considered in this
thesis. Its research has been developed by an original contribution of professor
Gianluca Moro and it recently won the Best Paper Award.

Furthermore, the way these correlations are reported on the knowledge
graph follows the same principles proposed by the authors in KDIR [3].

Authors of the study cited above, argue that a right step towards a future of
inclusion can be the extraction of knowledge from text and to find phenomena
explanation of various kinds in it. This would be a future where data concern-
ing personal experiences (also called “real world”) of patients don’t get lost.
Solutions of this kind can have a huge impact for caregivers and researches, but
it’s also an interesting challenge in NLP, considering that posts and comments
are short, unlabeled, full of noise, and with a lot of grammatical imperfections
[2].

2.2.1 Methodology

As also reported by authors in the Springer extension[2], it’s becoming
increasingly important to learn knowledge from text as the amount of un-
structured content on the Web rapidly grows. Despite recent breakthroughs
in natural language understanding, the explanation of phenomena from tex-
tual documents is still a difficult and poorly addressed problem. Additionally,
current NLP solutions often require labeled data, are domain-dependent, and
based on black box models. In this thesis we’re using POIROT [2], which is a
descriptive text mining methodology for phenomena explanation. It has been
designed to provide accurate and interpretable results in unsupervised settings,
and quantifying them based on their statistical significance.

Discovering the reasons that explain some phenomena expressed within a
corpus of textual documents requires bringing out semantic relationships among
unbounded combinations of relevant concepts, such as symptoms, treatments,
drugs, and foods.

The solution in use is domain and language independent and consists
of various modules whose implementation can be adapted to the specific
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problem under consideration, as shown in Figure 2.1: quality preprocessing (to
improve the quality of the text documents contained within the starting corpus),
document classification (to recognize the phenomenon to be investigated),
analysis preprocessing (to prepare the data for the analysis), term weighting
(to identify the significance of each term in each document, defining also the
vocabulary), and language modeling (to bring out semantic similarities between
terms and documents within a low-dimensional latent vector space).

Figure 2.1: Poirot modularity

Information retrieval and statistical hypothesis testing in the space just
constructed makes it possible to derive and quantify semantic correlations
between terms, documents, and classes. The generation of a textual explanation
is incrementally carried out on a query, which is like an artificial document.

As also explained by authors in their publications [3, 27], after identifying a
first term or considering a starting query, at each step the query is folded into
latent space. From here, it searches for new terms semantically close to the
query and with greater significance, choosing the one that — if combined with
the current description — continues to be representative of the phenomenon.
The degree of correlation between the query and the phenomenon is indicated
by the p-value resulting from the application of the chi-squared (χ2) statistical
hypothesis test, together with R-precision. The process ends when it is no
longer possible to enrich the query and remain below the pre-established p-value
threshold.

Precisely, POIROT projects relevant terms and documents in a latent se-
mantic space and statistically reports significant correlations between them.
Next, those areas linked to the phenomenon of interest which have an unex-
pected concentration are investigated, and it constructs interpretable global
textual explanations by iterative refining, keeping trace of accurate probabilistic
information.
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Authors do this in several ways, in DATA [27] they do it with Latent
Semantic Analysis (LSA) [28, 29] and in POIROT they also experimented a
probabilistic language model like Latent Dirichlet Allocation (LDA) [30] and
Probabilistic Latent Semantic Analysis (pLSA) [31].

LSA fold-in and incremental query enrichment

LSA is a powerful technique for capturing knowledge that closely matches
human semantic similarities. It is based on Singular Value Decomposition
(SVD) [32] applied to text, and is based on the decomposition of the matrix
terms-documents into the matrices U , Σ and V T , as shown in Figure 2.2.

Figure 2.2: LSA matrix decomposition and their reduction through SVD [2]

We only get into details of LSA because it is the technique which lead the
author to reach their best results and consequently the reference implementation
for this thesis.

As also the author report in POIROT presentation [2], LSA performs a map-
ping of a term-document matrix (eventually weighted) into a low-dimensional
latent semantic space. The mapping is based on Singular Value Decomposition
(SVD), a linear algebra technique that factorizes a matrix C into the product
of three separate matrices.

U and V (Figure 2.2) are two orthogonal matrices, and Σ is a diagonal
matrix containing the singular values of C in descending order. The singular
values in Σ are the components of the new dimensions, and the first of them
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captures the greatest variation of the data (i.e., contain more information).
SVD reduces dimensionality by selecting only the largest k singular values,
and only keeping the first k columns of U , and the first k rows of V T . The
positions of all terms and documents in the latent semantic space are obtained
from the products of matrices Uk × Σk and Vk × Σk, respectively. The value of
the hyperparameter k can be calibrated to delete noise and unnecessary data,
as well as better capture the mutual implications of terms.

The incremental process for the construction of explanations for a certain
phenomenon of interest — representing the last part of POIROT, based on
techniques of information retrieval and test of statich hypothesis — adopts the
fold-in technique. The fold-in consists in the determination of an embedding
of a new document in the space without requiring its regeneration, realizing
the transposition of queries in the latent semantic space. Clearly, those query
must undergo the same preliminary transformations that the cell entries of the
matrix received before model construction (i.e., quality preprocessing, entity
tagging, analysis preprocessing, term weighting).

2.2.2 Application to Knowledge Graph Learning

In a recent paper [3], author also showed a possible application of POIROT
to the task in Knowledge graph learning in acquiring knowledge from a collection
of short, unstructured and unlabeled texts, through a custom implementation
of learning layer cake. In the paper they show how to do an extraction of
relational facts from plain text, keeping interpretability and the interrogability
of the results. It is actually one of the main approaches for the construction
and expansion of KGs.

The subject which studies the mechanism to transform the creation and
updating of ontologies into a semi or completely automatic process is Ontology
learning (OL).

The process of ontology acquisition directly from unstructured text is been
recently subject of attempts of automation as a result of the huge increase in
magnitude and throughput related to the generation of textual content. Conse-
quently, the development of NLP and advanced machine learning approaches
— essential to extract knowledge from text document — goes simultaneously
with the development of OL.

OL and Knowledge graph learning (KGL) from text follow the same prin-
ciples, usually based on a multistep approach known as learning layer cake
(Figure 2.3). It’s normally based on the following steps: the extraction of
terms and their synonyms from the underlying text, the formation of concepts
through the combination combination of them, the identification of taxonomic
and non-taxonomic relationships between the found concepts, and finally the
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generation of rules.

Figure 2.3: Learning layer cake [3]

In their last paper [3], POIROT authors also demonstrated how a POIROT
extension can be effectively applied to this task and how KGs enhance the ex-
pressive power, interrogability, and interpretability of the extracted knowledge.

Compared to POIROT, the output of this new module is a KG instead
of a flat set of clusters made up of correlated unlabeled terms. The graph
also includes some terms that are recognized as entities within hierarchical
taxonomy and therefore correlations are interconnected and not independent
from each other. This means an enhancement in expressiveness.

Named Entity Recognition (NER) [33] system introduced a typing of terms
is an important step towards interpretability, allowing users which are not
expert of the domain to better understand what a certain term represents (e.g.,
canary is_a /animal/bird).

This greater expressive power also leads to new forms of interrogability.
For instance, as also the authors report [3]: “if a user wants to investigate all
the significant correlations between two or more types of entities (e.g., drug ↔
symptom, symptom ↔ food), he is no longer forced to check them individually
and to know all the terms related to the instances of the types considered (e.g.,
<“lansoprazole gerd”: ?>, <“aspirin headache”: ?>, . . . ). Now it is possible to
manage queries concerning the meta-levels of the concept hierarchy.”

On the obtained graph, authors also showed advantages resulted from what
reported through the execution of several Semantic Query-enhanced Web Rule
Language (SQWRL).
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SQWRL queries were executed on the KG learned from the textual corpus
and their results show the potential deriving from the new meta-level knowledge
introduced in the system.

2.2.3 Dataset

The application is built upon data regarding the Esophageal Achalasia
(ORPHA:930), a rare disorder of the esophagus characterized by the inability of
the lower esophageal sphincter (LES) to relax. Collaborating with Associazione
Malati Acalasia Esofagea (AMAE)12 — the main Italian patient organization
for the disease under consideration — we keep downloading anonymous text
documents from the Facebook Group directly managed from it3 (with ≈ 2000
current users and > 10 years of history). We’re using the same dataset that
were used in previous work about POIROT and its application in the world of
graph learning [27, 26, 2, 3] As of 5/8/2019 the dataset consisted of 6,917 posts
and 61,692 first-level comments, published between 21/02/2009 and 05/08/2019,
and it is increasing every day with each new post.

2.2.4 Limitations

The POIROT model is definitely flexible, modular and an expressive method
to convert unstructured data to usable information. It also is independent from
any neural model language, which, in NLP, is often representing a black-box
caused from the high number of dimensions of those models, like T5 [34] or
GPT-3 [35]. Nevertheless, in its actual form, it presents some limits which
prevent to unlock its potential.

• First of all it has to be run in batches. Poirot algorithm needs to take
into account the whole text in order to understand the context and create
weighted relationship between terms. The world, on the contrary, is
dynamic and changes quickly.

In POIROT, authors concentrated on text from a social network which was
gathered in batch, but they haven’t focused yet on integrating knowledge
based only on the text of new posts. It would be quite impractical to run
the algorithm on the new whole data set at every post. An incremental
approach would be more practical instead, taking advantage of previously
calculated connections.

1https://www.amae.it/
2https://www.orpha.net/consor/cgi-bin/SupportGroup_Search.php?lng=EN&

data_id=106412
3https://www.facebook.com/groups/36705181245/

https://www.amae.it/
https://www.orpha.net/consor/cgi-bin/SupportGroup_Search.php?lng=EN&data_id=106412
https://www.orpha.net/consor/cgi-bin/SupportGroup_Search.php?lng=EN&data_id=106412
https://www.facebook.com/groups/36705181245/
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• The knowledge graph generated is static and it’s not evolving over time.
It’s also just stored in an OWL file and needs an intermediary software
to be queried or analyzed.

• Temporal analysis and changes over time can not be recorded and ana-
lyzed.

• In the example case, text is taken from a single source only. Even if the
Facebook group seems to be quite active so far, people are changing their
favorite social media quite rapidly and enabling multiple sources would
grant more accuracy and completeness of information.

2.3 Goals
As primarily objective of the proposed project is to capture the “voice of

patients” from their messages on social media communities through the usage
of the POIROT methodology.

We also want to overcome the limitations cited before building a general
system which periodically queries (possibly many) data sources, and uses
the new text to incrementally update the knowledge graph specifically for
the considered Rare Disease: Esophageal Achalasia. This RD is taken as an
example to build a knowledge graph upon it, but the system should be applicable
to any type of text sources from which learning would be meaningful. It is
therefore important to keep it general and topic-agnostic, with interchangeable
components.
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Knowledge Graph tools

3.1 Overview

As previously seen, there are many tools to interact with data models. The
main differences between them regard the primary database model (RDF vs
LPG vs Multi-model), the subject of study (KG or Ontologies), the presence
of a reasoner and the available methods to access data.

3.1.1 Protégé

Protégé is, from its website1, a free, open-source platform that provides
a growing user community with a suite of tools to construct domain models
and knowledge-based applications with ontologies. It’s developed by Stanford
University and is called "the leading ontological engineering tool", with more
than 360,000 registered users (as per their website). It’s written in Java and
is used to edit ontologies and manage knowledge. Provides a graphic user
interface to define ontologies. It also has reasoning capabilities thanks to
its deductive classifier, used to validate model consistency and infer implicit
information analysing the ontology itself. Two types of UI are available: the
WebUI, WebProtégé, and the downloadable desktop version, Protégé Desktop.

Protégé is supported by a strong community of academic, government, and
corporate users, who use Protégé to build knowledge-based solutions in areas
as diverse as biomedicine, e-commerce, and organizational modeling.

It stores data on RDF files and is not a database engine.

1https://protege.stanford.edu/products.php

21
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3.1.2 Allegrograph

Allegrograph is a private software owned by Franz Inc., designed to store
RDF triples meeting W3C standards. It can also store document-oriented
informations, in JSON-LD format. This differentiates it from other property
graph databases, since it also allows document storage with contextual and
conceptual intelligence.

It is in use in commmercial projects, a US Deparment of Defense project,
and in the TwitLogic project, that is bringing Semantic Web to Twitter data.
Its functionalities are accessible using programming languages like Java, Python,
Commond Lips and other APIs.

AllegroGraph is W3C/ISO standards compliant and supports JSON, JSON-
LD, SPARQL 1.1, OWL Reasoning, SHACL, and Prolog rules and reasoning
directly and from numerous client applications.

3.1.3 Grakn

Grakn is an open-source, distributed knowledge graph database for knowledge-
oriented systems. It is evolved from the relational database for highly inter-
connected data because it provides a concept-level schema that implements
the Entity-Relationship model completely. It implements the principles of
knowledge representation and reasoning. Graql is Grakn’s declerative query
language which enables deductive reasoning and analytic query language over
large amount of complex data. Effectively it’s remarked as a good base for AI
and cognitive computing systems. From their website2, they boast an intuitive
and expressive knowledge schema, an intelligent automated reasoning in real
time, distributed analytics and an Higher-level language.

3.1.4 Neo4j

Neo4j is a native graph database, built from the ground up to leverage not
only data but also data relationships. Neo4j connects data as it’s stored, enabling
queries never before imagined, at speeds never thought possible, as they report
on they website3. It’s an open source graph database management system
developed in Java by Neo4j, Inc. It’s also ACID compliant with native graph
storage and processing. Even if it’s written in Java, it exposes HTTP endpoint
accessible using the Cypher query language.

Cypher is a graph-optimized language that understands stored connections
in Neo4J, since all connections are stored and not computed at query time.

2https://grakn.ai
3https://neo4j.com

https://grakn.ai
https://neo4j.com
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Data are not stored in tables and therefore, differently from SQL, JOINS are
not present in the query language, making syntax smoother and shorter. A
comparison example is reported from their website.

Cypher:

MATCH (p:Product)-[:CATEGORY]->
(l:ProductCategory)-[:PARENT*0..]->
(:ProductCategory {name:"Dairy Products"})

RETURN p.name

SQL:

SELECT p.ProductName
FROM Product AS p
JOIN ProductCategory pc

ON (p.CategoryID = pc.CategoryID AND
pc.CategoryName = "Dairy Products")

JOIN ProductCategory pc1
ON (p.CategoryID = pc1.CategoryID)

JOIN ProductCategory pc2
ON (pc1.ParentID = pc2.CategoryID

AND pc2.CategoryName = "Dairy Products")

JOIN ProductCategory pc3
ON (p.CategoryID = pc3.CategoryID)

JOIN ProductCategory pc4
ON (pc3.ParentID = pc4.CategoryID)

JOIN ProductCategory pc5
ON (pc4.ParentID = pc5.CategoryID

AND pc5.CategoryName = "Dairy Products");

3.1.5 Stardog

Stardog is a commercial RDF database with SPARQL query, transactions,
and world-class OWL reasoning support. The product is available to be
downloaded or used online on Stardog Cloud. A 30 days trial is available for
free to everyone, but a 1-year license also is available for academic purposes.

Stardog also provides Stardog Studio, the GUI to browse connections in
data, visualize results to see and customize the knowledge graph. Stardog
Studio is based on Electron, an open-source Javascript framework used to write
desktop application in Javascript. Being based on Javascript it also allows the
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program to be run on the browser: Stardog Studio Web UI4.
To interact with Stardog databases there are several way. The first one is

the command line. It’s easy as

stardog query execute --reasoning http://myHost:9090/myDb
"select * where { ?s ?p ?o }"

to execute a query directly to the database. It also provides libraries to be
accessed by programming languages like .Net, Clojure, Groovy, Java, JavaScript,
Python, and Ruby, other than being accessible via HTTP API.

Another key factor of Stardog is the detailed documentation available at:
https://docs.stardog.com.

3.2 Comparison with table
Among the many tools that are available online to manage Ontologies and

Knowledge graphs, Table 3.1 compares the main ones taking many parameters
into account. The table has been created starting from the one generated on
by db-engines.com [36] and later integrated with other parameters of interest,
like the storage system, possibility to query the database, reasoner availability,
visualization tool, and the presence of an IDE.

4https://stardog.studio

https://docs.stardog.com
https://stardog.studio
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Table 3.1: Db engines compared using DB-engines.com and subsequently integrated.

Begin of Table

Protégé AllegroGraph Grakn Neo4J Stardog

Description A free, open-
source ontology
editor and frame-
work for building
intelligent systems

High performance,
persistent RDF
store with addi-
tional support for
Graph DBMS

Grakn is a
distributed,
hyper-relational
database for man-
aging complex
data that serves as
a knowledge base
for cognitive/AI
systems.

Open source
graph database

Enterprise Knowl-
edge Graph plat-
form and graph
DBMS with high
availability, high-
performance rea-
soning, and virtu-
alization

Primary
database model

RDF/OWL file Document store
info
Graph DBMS
RDF store

Graph DBMS
Relational DBMS
info

Graph DBMS Graph DBMS
RDF store

DB-engines
ranking

na Score 1.19
#156 Overall
#26 Document
stores
#13 Graph
DBMS
#7 RDF stores

Score 0.70
#203 Overall
#18 Graph
DBMS
#100 Relational
DBMS

Score 53.79
#19 Overall
#1 Graph DBMS

Score 1.47
#144 Overall
#11 Graph
DBMS
#6 RDF stores
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Continuation of Table 3.1

Protégé AllegroGraph Grakn Neo4J Stardog

Website protege .stan-
ford.edu

allegrograph.com grakn.ai neo4j.com stardog.com

Technical
documentation

protegeproject
.github.io /pro-
tege/

franz.com/
agraph/support/
documentation/
current/

dev.grakn.ai/docs neo4j.com/docs stardog.com/docs

Developer Stanford Center
for Biomedi-
cal Informatics
Research

Franz Inc. Grakn Labs Neo4J Inc. Stardog-Union

Initial release 1999 2004 2016 2007 2010

Current
release

5.5.0, Mar 2019 7.0.0, Apr 2020 1.8.4, Nov 2020 4.2.2, Jan 2021 7.3.0, May 2020

License Open Source commercial, lim-
ited free

Open Source Open Source commercial

Data scheme yes yes yes schema-free and
schema-optional

schema-free and
OWL/RDFS-
schema support

https://protege.stanford.edu/
https://protege.stanford.edu/
https://allegrograph.com
https://grakn.ai
https://neo4j.com
https://stardog.com
https://protegeproject.github.io/protege/
https://protegeproject.github.io/protege/
https://protegeproject.github.io/protege/
https://franz.com/agraph/support/documentation/current/
https://franz.com/agraph/support/documentation/current/
https://franz.com/agraph/support/documentation/current/
https://franz.com/agraph/support/documentation/current/
https://dev.grakn.ai/docs
https://neo4j.com/docs
https://stardog.com/docs
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Continuation of Table 3.1

Protégé AllegroGraph Grakn Neo4J Stardog

SQL SPARQL SPARQL is used
as query language

no no Yes, compatible
with all major
SQL variants
through dedicated
BI/SQL Server

APIs and other
access methods

Java library RESTful HTTP
API, SPARQL

console (shell),
gRPC proto-
col, Workbase
(visualisation
software)

Bolt protoco,
Cypher query lan-
guage, Java API,
Neo4j-OGM info,
RESTful HTTP
API, Spring Data
Neo4j, TinkerPop
3

GraphQL query
language, HTTP
API, Jena RDF
API, OWL,
RDF4J API,
Sesame REST
HTTP Proto-
col, SNARL,
SPARQL, Spring
Data, Stardog
Studio, TinkerPop
3

Clients Protégé client C#, Clojure,
Java, Lisp, Perl,
Python, Ruby,
Scala

All JVM based
languages,
Groovy, Java,
JavaScript
(Node.js), Python,
Scala

.Net, Clo-
jure, Elixir,
Go, Groovy,
Haskell, Java,
JavaScript, Perl,
PHP, Python,
Ruby, Scala

.Net, Clojure,
Groovy, Java,
JavaScript,
Python, Ruby
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Protégé AllegroGraph Grakn Neo4J Stardog

Server-side
scripts

yes yes no yes yes

Triggers no yes no yes yes

Partitioning
methods

na with Federation Sharding none none

Replication
methods

na Multi-source
replication,
Source-replica
replication

Multi-source repli-
cation

Causal Clustering
using Raft proto-
col

Multi-source
replication in
HA-Cluster

MapReduce no no yes no no

Consistency
concepts

On demand consis-
tency check

Immediate Consis-
tency or Eventual
Consistency de-
pending on the
configuration

Immediate Consis-
tency

Causal and Even-
tual Consistency
configurable in
Causal Cluster
setup
Immediate Con-
sistency in
stand-alone mode

Immediate Con-
sistency in
HA-Cluster

Foreign keys no no no yes yes

Transaction
concepts

no ACID ACID ACID ACID
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Continuation of Table 3.1

Protégé AllegroGraph Grakn Neo4J Stardog

Concurrency no yes yes yes yes

Durability yes yes yes yes yes

In memory
capabilities

no no no no yes

User concepts yes Users with fine-
grained authoriza-
tion concept, user
roles, and plug-
gable authentica-
tion

yes Users, roles
and permissions.
Pluggable au-
thentication with
supported stan-
dards (LDAP,
Active Directory,
Kerberos)

Access rights for
users and roles

Storage OWL files Internal Internal Internal Internal

Querying yes yes yes yes yes

Reasoning yes yes yes, internally yes yes

IDE yes yes yes yes yes

Visualization yes yes, with
external tools

yes yes yes

Serialization
format

OWL, RDF,
Turtle, OBO

na GQL proprietary
format .db

na
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Protégé AllegroGraph Grakn Neo4J Stardog

Hypergraph no no yes no no

Relevant
customers

over 360K users Ford
Stanford
Deloitte
U.S.ARMY
ESA
NASA
Pfizer
SIEMENS
IBM

na Allianz
Microsoft
Lyft
UBS
Airbnb
IBM
Financial Times
HP
Ebay

Nasa
U.S. Air Force
Bayer
BOSCH
Ebay
Cisco
Nokia
Siemens
Bank of America
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3.3 Knowledge graph database vs graph database
Knowledge graphs are graphs, therefore every tool which allows a represen-

tation of a graph would be able to maintain the data structured. The main
difference between a graph database and a knowledge graph storage is based
on the operations for which a knowledge graph is useful. Two of the main
operations are querying and reasoning. Querying allows interrogating the graph
to extrapolate information from it. The reasoning is a technique that finds
implicit connections between nodes and uses them to solve queries enhancing
results.

3.4 Chosen tool
In the last part of the project, triples are generated and need to be stored

in a graph database. To choose a graph database, there are several aspect to be
considered. First of all, the need to be usable from a programming language, so
that it can be updated automatically based on time or on events. The second
fundamental feature needed is the reasoner. It enables more intelligent queries
inferring implicit facts. An other feature which is essential is a schema RDF
based, necessary to integrate data with LOD Cloud.

Further important features are a good documentation, to speed-up the
development of the application, scalability, in order to extend the product to
other contexts or diseases, an IDE to visualize the graph, and possibility to
run multiple queries concurrently.

It’d also good that the tool is already in use by well known companies in
relevant projects, as guarantee of usability.

It’s notable as Stardog, the tool chosen for this project, has all these
characteristics.
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Project

The project consists of creating a system that increments the knowledge of
a graph built from unstructured data as new text is available. It’s a general
purpose software, which would work with any text, but specifically tested on
the case of a rare disease,Esophageal Achalasia.

The data source is an Italian Facebook group where members have the
opportunity to chat about their disease, the symptoms, the cures they undergo,
and important information that can be useful to everybody in the group.
Using a technique based on Giacomo Frisoni’s paper [27], unstructured data is
transformed into triples which can be used to update the graph.

Summing up, the system is built as a web service written in Typescript,
which periodically queries Facebook APIs to obtain new text, creates new
graph triples using a script written in R based on Poirot fold-in technique, and
creates a query to store them in the graph database.

The architecture of the graph, as visible in Figure 4.1, consists of a web
application running on a Linux box. It doesn’t expose any endpoint to the
outside so far, since it’s based on a polling system. When the server starts,
it checks that the initial graph has already been built with the POIROT
methodology, and if not, it proceeds running the external code proposed in
literature to create it, considering the whole text available in the text source.

Since then, the application periodically queries the text provider in order to
look for more available text. In order to decide the best time interval between
checks, a trade-off has been made between the willing to keep information
updated in real-time, the frequency of post publishing on the Facebook group
in use, and trying to avoid checks with empty result, given the monthly query
limit imposed to developers from Facebook.

Once new posts are retrieved from the text provider, the Fold-In script
(described in Chapter 2), is used in order to create new triples and to update
the graph. Here, it’s also important to mention that given a triple, each term

33
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of the triple are scanned in order to check whether they’re recognized terms,
and in that case they get referenced. After this important procedure which
prevents to loose information and classifications, the actual query to insert new
triples in the graph is generated, following SPARQL standards.

Finally, the application connects to the database (at the moment in the
same Linux box, but potentially elsewhere) and runs the queries against it,
logging a report of the triples which have been successfully inserted.

Figure 4.1: Application architecture
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4.1 Web server

The web server is written in Typescript, using Node as interpreter. Node
is cross-platform and it’s one of the most common interpreter used to create
full-stack applications. Typescript is the typed JavaScript language, which
makes it extremely more consistent and prevents many errors at compile time.
Compared to alternatives, this setup also has a huge amount of available
libraries and it’s easily expandable in the future.

The main class of the application is Server and is constituted as follows:

class Server {
private pollingStartingDate: Date;

private textProvider: TextProvider;

private graphTriplesGenerator: GraphTriplesGenerator;

private graphPersister: GraphPersister;
}

The TextProvider interface provides a method to get the text from what-
ever source it is.

interface TextProvider {
provideText(): Promise<Array<TextUnit>>;

}

The GraphTriplesGenerator interface provides a method to convert text
to an array of Graph Triples.

interface GraphTriplesGenerator {
generateTriples(textUnit: TextUnit): Array<GraphTriple>;

}

The GraphPersister interface provides a method to get the text from
whatever source it is.

interface GraphPersister {
persistTriples(triples: Array<GraphTriple>): void;

}
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The main class is responsible for being the main controller of the whole
server. It consists of a polling system which check for updates from the Facebook
APIs periodically and, if any update is present, the rest of the code is executed.
This, translated in Typescript looks as follow:

let timerId;

public async startServer() {
timerId = setInterval(doPollingUnit, MS_ONE_DAY);

}

public stopServer() {
clearInterval(timerId);

}

private doPollingUnit() {
this.textProvider

.provideText()

.then((textUnits) =>
textUnits.flatMap((textUnit) =>

this.graphTriplesGenerator
.generateTriples(textUnit),

),
)
.then((triples) =>

this.graphPersister.persistTriples(triples));
}
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4.2 Data source
Facebook provides REST APIs 1 for developers that want to interact with

its content. The group which is used is private and therefore admin rights are
needed to access data.

A very useful tool which can be used to test the graph APIs is the Graph
API Explorer 2. The application uses the /feed endpoint, where it’s possible
to query for the feed of a specific group or page. A set of parameters can be
specified:

• fields

– id the id of the element (message, reply, ...)

– message the content of the element (usually text)

– comments possible comments to the element if it’s a post or a com-
ment

– created_time the time in which the element was created

– updated_time the time in which the element was updated

– picture link to the picture (in case the element is a picture)

– shares the number of shares of the post

• since the lower bound for updated_time parameter

• until the upper bound for updated_time parameter

• limit the max number of returned element

The application works with most recent data, periodically calling the API in
order to get the content of post or comments. A last_queried_time variable
is stored in the application and updated at every query iteration, using its
value in the since parameter. An example query can therefore be:

/feed?limit=${MAX_LIMIT}&since=${last_queried_time}&fields=id,
created_time,message,picture,shares,comments

In order to run the query in Typescript there are two main ways: using
the Javascript SDK library3 or using HTTP requests. The latter seemed to
work smoother and be more customizable, therefore a few utilities classes have

1https://developers.facebook.com/docs/graph-api/
2https://developers.facebook.com/tools/explorer
3https://developers.facebook.com/docs/javascript

https://developers.facebook.com/docs/graph-api/
https://developers.facebook.com/tools/explorer
https://developers.facebook.com/docs/javascript
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been written in replacement. Another note on this, is definitely that responses
are paged in order to avoid huge payloads or responses and therefore multiple
queries are executed automatically per search.

The FacebookTextProvider specializes the TextProvider and is the data
source for this application. In its method provideText it fetches all the posts
and comments, then extrapolate the text which is contained in them and then
returns an array of textUnit, containing that text.

export default class FacebookTextProvider implements TextProvider {
// eslint-disable-next-line no-useless-constructor,no-empty-function
private lastUpdatedCheck: Date;

private groupId: string = config.env.groupId;

private token: string = config.env.token;

constructor(firstDateToCheck: Date) {
this.lastUpdatedCheck = firstDateToCheck;

}

public async provideText(): Promise<Array<TextUnit>> {
const solution: Array<TextUnit> = [];
await fetchFacebookPagePosts({
pageId: this.groupId,
fromDate: this.lastUpdatedCheck,
token: this.token,
withComments: true,
withCommentsReplies: true,

})
.then((posts) =>
posts?.forEach((post) =>
this.addFacebookPostMessageToTexts(post, solution),

),
)
.catch((reason) => logger.info(`ERROR: ${reason}`));

this.lastUpdatedCheck = new Date(Date.now());
return solution;

}

private addFacebookCommentMessageToTexts(
facebookPostComment: FacebookPostComment,
texts: Array<TextUnit>,

) {
texts.push({ text: facebookPostComment.message });
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if (facebookPostComment.replies !== undefined) {
facebookPostComment.replies.forEach((reply) =>
this.addFacebookCommentMessageToTexts(reply, texts),

);
}

}

private addFacebookPostMessageToTexts(
facebookPost: FacebookPost,
texts: Array<TextUnit>,

): void {
if (facebookPost.message !== undefined) {
texts.push({ text: facebookPost.message });

}
if (facebookPost.comments !== undefined) {
facebookPost.comments.forEach((comment) =>
this.addFacebookCommentMessageToTexts(comment, texts),

);
}

}
}
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4.3 Text to graph triples
The triple generation code which is available is written in R and the

interaction between the two programming languages is not straightforward.
Nevertheless, a library called r-script4, available as Node module, provides
an interface which enables the serialization and the sharing of objects from a
Javascript program to the R script and the other way round.

Using this module, it’s enough to pass all the previously downloaded text
to the R script and get back the graph triples in return.

const scriptFileName = 'foldInScript.R';

class FoldInGraphTriplesGenerator implements
GraphTriplesGenerator {
generateTriples(textUnit: TextUnit): Array<GraphTriple> {
const out = R(scriptFileName).data(textUnit.text).callSync();
return JSON.parse(out);

}
}

In case the program is run for the first time or by choice of the user, it’s
possible to call a particular R script which, using Poirot technique, creates
the graph starting from all the posts ever available. Otherwise, if the graph is
already present, it’s possible to fold-in and update the knowledge creating new
triples in a faster way.

We’ll adopt the fold-in technique proposed in POIROT and described at
Section 2.2.1, embedding new documents in the semantic space previously built,
enabling to find the embeddings which are semantically closer associated to
both terms and documents, in cosine similarity. The top-n documents and
terms above a certain threshold of similarity gets mapped in new triplets (e.g.
new_doc → term1, new_doc → term2, and so on). Its implementation can be
found at Code 4.1, 4.2 and 4.3.

4https://www.npmjs.com/package/r-script

https://www.npmjs.com/package/r-script
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new_doc <- makeUserQuery(
"Gemelli roma",
userQueryPreprocessingNer,
applyTermWeightingToDocument,
tdmw,
lsa_data$lsam)

# Top-N documents semantically related to the user query
n_nearest <- 10
nearest_docs <- findTopNearestDocuments(
texts = documents$text,
dls = lsa_data$dls,
lsa_dims = lsa_dims,
query_ls = new_doc$ls_q,
n = n_nearest)

return(nearest_docs)

Code 4.1: Example of makeUserQuery function usage and creation of triplets.
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#' Fold-in a custom textual document in a latent semantic space.
#' Apply the same transformation strategy applied to original

documents.
#' unlike a query, the document is not necessarily composed only of

the dictionary terms,
#' but is a text freely expressed by a user (similar to a new post).
#'
#' @param doc The custom textual document
#' @param preprocessingDocFun The preprocessing function to apply to

the document before the fold-in
#' @param termWeightingDocFun The term weighting function to apply on

the binary query
#' @param tdm The term document matrix to enrich
#' @param lsam The latent semantic space on which perform document

fold-in
#' @return The document, its binary vector representation, its

weighted vector, its position in the latent space,
#' its normalized position for visualization purposes, the component

for similarity calculation
makeUserQuery <- function(doc, preprocessingDocFun,

termWeightingDocFun, tdm, lsam) {

# Performs document-level preprocessing
doc <- preprocessingDocFun(doc)

# Custom document fold-in
makeQuery(doc, tdm, termWeightingDocFun, lsam)

}

Code 4.2: Function makeUserQuery implementation.
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#' Perform all the preliminary operations for the calculation of the
similarity

#' between a query and the terms in the latent space
#'
#' @param q The query (a set of key words to research in the

documents)
#' @param tdm The term document matrix
#' @param termWeightingDocFun The term weighting function to apply on

the binary query
#' @param lsam The LSA matrix decomposition after SVD
#' @return The original string query (q),
#' the binary query document in the latent space (bin_q),
#' the query document after tf-idf weighting (w_q),
#' the query document in the latent space (ls_q = dls = V * Sigma)

and its normalization (lsn_q),
#' the query document equivalent to V matrix rows (dk = V),
#' the V * Sigma^1/2 element for semantic similarity calculation

between query and terms (dksrs)
makeQuery <- function(q, tdm, termWeightingDocFun, lsam) {

# THEORY
# uk * sigmak * vk_t
# -> uk (U) = matrix terms x latent variables
# -> vk (V) = matrix documents x latent variables

# LSA PACKAGE
# lsam$tk * lsam$sk * lsam$dk
# -> lsam$tk = uk (U)
# -> lsam$dk = vk (V)
# -> dls = lsam$dk %*% diag(lsam$sk) = vk * sigmak = V * Sigma

# Create the query vector (binary vector)
# Transform the query in a vector representing the presence/absence
# of each term of the bag of words representation
bin_q <- query(q, rownames(tdm))

# The query is like a new document to add to the latent space
# So it applies all the transformations made to those already inside
# (term weighting, normalization) in order to fold it into the LSA

space
# The query vector is now equivalent to a column of tdm matrix
w_q <- termWeightingDocFun(bin_q, tdm)
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# Calculate the position of the query in the latent space (V *
Sigma)

ls_q <- t(w_q) %*% lsam$tk

# Calculate the normalized query vector in latent space for
visualization purposes

lsn_q <- normRows(ls_q)

# Transform the query vector in a new document (row of V matrix)
# q_k = q^T * U_k * Sigma_k^-1
dk <- ls_q %*% diag(lsam$sk ^ -1)

# The similarity between a query and some terms is calculated as a
cosine similarity

# considering the V representation for the query and the terms
vectors multiplicated

# by Sigma^1/2.
# cosine(V * Sigma^1/2, U * Sigma^1/2) = cosine(dk %*%

diag(sqrt(lsam$sk), lsam$tk %*% diag(sqrt(lsam$sk)))
# dksrs is so one of the two necessary elements for similarity

calculation
dksrs <- dk %*% diag(sqrt(lsam$sk))

# Return a named list with the results
list(q = q, bin_q = bin_q, w_q = w_q, ls_q = ls_q, lsn_q = lsn_q,

dk = dk, dksrs = dksrs)

}

Code 4.3: Function makeQuery implementation.

4.4 Store triples

Once triples are generated, the graph needs to be updated in the database.
Stardog has published a node package5 which ease the query creation and
execution. Before running the query, it’s important to recognize if triples
contain well known terms and use their definition instead of creating new ones.
Therefore for each term, a query is run on the graph and in case a match is
found its prefix is used instead. Given a triple, like cat → associated_with →
animal, the procedure is:

5https://www.npmjs.com/package/stardog

https://www.npmjs.com/package/stardog
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1. Check for entities existence (cat, associated_with, animal)

• Create a new entity in case it doesn’t exist with the used prefixes

• Use the existing entity in case it’s already present

2. Create a SPARQL query

3. Run the query

The triples are now stored in the database and can be therefore queried,
with or without enabling the reasoning.

The class which implements this logic is the StardogGraphPersister. It
establishes the connection to the database when it’s initialized, builds the query
to insert the new triples and runs it.

const databaseName = config.env.databaseName;

export default class StardogGraphPersister implements
GraphPersister {

private readonly connection: Connection;
private static recognizedTerms: Map<string,string>;

constructor(
username: string = 'admin',
password: string = 'admin',
endpoint: string = 'http://localhost:5820',

) {
this.connection = new Connection({ username, password,

endpoint });
StardogGraphPersister.checkConnection(this.connection);

}

public persistTriples(triples: Array<GraphTriple>) {
StardogGraphPersister.checkConnection(this.connection);
query
.execute(
this.connection,
databaseName,
StardogGraphPersister.createInsertTriplesQuery(triples),
'application/sparql-results+json',
{
limit: 10,
offset: 0,

},
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)
.then(({ body }: any) => {
logger.info(JSON.stringify(body));

})
.then(() =>
logger.info(
`Persisted ${triples.length} triples into stardog

database.`,
),

)
.catch((reason) => logger.info(`ERROR ${reason}`));

}

private static tripleToQueryFormat(triple: GraphTriple) {
return `${triple.getFirst()} ${triple.getSecond()}

${triple.getThird()} .`;
}

private static createInsertTriplesQuery(triples:
Array<GraphTriple>) {

const ret = `INSERT DATA { ${triples
.map(StardogGraphPersister.useRecognizedTerms)
.map(StardogGraphPersister.tripleToQueryFormat)
.join(' \n')} }`;

logger.info(ret);
return ret;

}

private static useRecognizedTerms(triple: GraphTriple):
GraphTriple {

return new GraphTriple(
recognizedTerms[triple.getFirst()] || triple.getFirst(),
recognizedTerms[triple.getSecond()] || triple.getSecond(),
recognizedTerms[triple.getThird()] || triple.getThird(),

);
}

}

Visually, the insertion of a triple corresponds to the creation of newly
specified nodes and of the edge specified. An example has been created in order
to illustrate how the graph would change subsequently to the insertion of a
triple. We’re now pretending that our application is connected to a text source
where information about artists and music band are shared in real time.
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The starting situation of the database, focused on a single music band,
could be queried in stardog using SPARQL syntax like in Code 4.4, and the
result would look like Figure 4.2.

In case new text like “Have you seen what’s in the new? The Red Hot
have a new member, his name is Samuele Ceroni!” is retrieved by the text
provider, it would be processed using the POIROT methodology and a new
triple like :Samuele_Ceroni→ :memberOf→ :Red_Hot_CHili_Peppers might
be generated.

The web application would therefore generate the Code 4.5 in order to
update the knowledge of the graph.

Finally, running again the query in Code 4.4 would show the up-to-date
situation, which is like showed in Figure 4.3.

CONSTRUCT {
?subject ?predicate ?object

}
WHERE {

?subject ?predicate ?object .
filter (?predicate != rdf:type

&& ?predicate != rdfs:domain
&& ?predicate != rdfs:range
&& ?predicate = :memberOf
&& ?object = :Red_Hot_Chili_Peppers
)

}

Code 4.4: SPARQL query to show a music band in Stardog.

INSERT DATA {
:Samuele_Ceroni :memberOf :Red_Hot_Chili_Peppers

}

Code 4.5: SPARQL query to insert a member of a music band in Stardog.
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Figure 4.2: Stardog query before triple insertion.

Figure 4.3: Stardog query after triple insertion.
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Conclusions and further
developments

This thesis has shown a concrete contribute in one of the most challenging
mission the world have these days: convert data into information. It also
makes an impact on the case of study: the Esophageal Achalasia, keeping more
accurate and always up-to-date information and putting in the first line the
voice of patients. Through the usage of one of the most common web server
technologies and one of the most used and high-performance database engine,
a new service to keep knowledge aligned with new posts on the group has been
created.

As future developments, this service could become a real application available
on the web to automatically create a knowledge graph from multiple text sources
and keep it up-to-date. First of all, instead of an architecture polling-based
which checks for updates on text providers every once in while, a webhook-
based application would be extremely more efficient, especially if the application
needs to scale. At the moment the domain is limited to a rare disease, but
the same application could ideally be able to work with multiple domains and
multiple schema on the database. Furthermore, multiple text sources would
expand dramatically the precision of the data, and ideas of implementable
interfaces (other than FacebookTextProvider) would be RDF Site Summary
(RSS) support, Twitter, Instagram and other social media. Lastly, but probably
the most important, find out a way to use information gathered and organized
in the knowledge graph. With that purpose, a classifier component would help
in modeling and recognizing recurring pattern in habits of patients, reasoning
on data. Ultimately, the graph could definitely be used to create a chat bot to
respond or to suggest posts to people that are looking for specific information
already provided in the past in the same channel.
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